WorldWideScience

Sample records for benzoapyrene oxidative degradation

  1. Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products.

    Science.gov (United States)

    Gupta, Himanshu; Gupta, Bina

    2015-11-01

    Photocatalytic decay profiles of polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (B[a]P) have been investigated on various synthesized iron oxides and on soil surfaces under a set of diverse conditions. Samples were analysed using the developed HPLC procedure. Results of the present study demonstrate fastest photodisintegration of B[a]P on goethite followed by haematite, magnetite, akaganeite and maghemite, respectively. The effect of soil pH, irradiation wavelength and iron oxide and oxalic acid dose on the degradation of B[a]P was evaluated. The studies revealed enhancement in photodegradation in the presence of oxalic acid due to the occurrence of fenton like reaction. The results showed faster B[a]P degradation under short wavelength UV radiation. Rate constants in acidic, neutral and alkaline soils under optimum dissipation conditions were 1.11×10(-2), 7.69×10(-3) and 9.97×10(-3) h(-1), respectively. The study indicates that iron oxides along with oxalic acid are effective photocatalyst for the remediation of benzo[a]pyrene contaminated soil surfaces. The degradation products of B[a]P in the soils of different pH in presence of goethite were identified and degradation pathways proposed. Peaks due to toxic metabolites such as diones, diols and epoxides disappear after 120 h in all the three soils.

  2. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Jeremy A. [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States)], E-mail: rentz@wsu.edu; Alvarez, Pedro J.J. [Civil and Environmental Engineering, Rice University, Houston, TX 77251 (United States); Schnoor, Jerald L. [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States)

    2008-02-15

    Batch experiments were conducted to characterize the degradation of benzo[a]pyrene, a representative high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH), by Sphingomonas yanoikuyae JAR02. Concentrations up to the solubility limit (1.2 {mu}g l{sup -1}) of benzo[a]pyrene were completely removed from solution within 20 h when the bacterium was grown on salicylate. Additional experiments with [{sup 14}C]7-benzo[a]pyrene demonstrated 3.8% mineralization over 7 days when salicylate was present is solution, and one major radio-labeled metabolite was observed that accounted for {approx}10% of the initial radio-label. Further characterization of the radio-labeled metabolite using HPLC/MS and HPLC/MS/MS identified radio-labeled pyrene-8-hydroxy-7-carboxylic acid and unlabeled pyrene-7-hydroxy-8-carboxylic acid as novel ring-cleavage metabolites, and a benzo[a]pyrene degradation pathway was proposed. Results indicate that biostimulation of HMW PAH degradation by salicylate, a water-soluble, non-toxic substrate, has significant potential for in situ bioremediation. - Benzo[a]pyrene degradation and mineralization by Sphingomonas yanoikuyae JAR02 was stimulated with salicylate, and novel ring-cleavage metabolites were identified.

  3. Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Lynette Ekunwe

    2005-08-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr and benzo[a]pyrene (BaP, which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33μg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30oC in 20μg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

  4. Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides).

    Science.gov (United States)

    Li, H; Luo, Y M; Song, J; Wu, L H; Christie, P

    2006-01-01

    A pot experiment was conducted to study the effect of growing vetiver grass on the biodegradation of benzo[a]pyrene (B[a]P) under glasshouse conditions. Plant biomass, microbial biomass C and degradation of B[a]P were determined. B[a]P disappeared faster in the plant treatments than in unplanted controls. Disappearance of B[a]P was accompanied by an increase in soil microbial biomass C. Vetiver grass may promote the biodegradation of B[a]P under flooded conditions by plant roots by stimulating the microbial biomass. Microbial biomass was the main factor affecting dissipation of B[a]P under flooded conditions.

  5. Evidence for the involvement of cytochrome P-450 in reduction of benzo(a)pyrene 4,5-oxide by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Kato, R.; Iwasaki, K.; Shiraga, T.; Noguchi, H.

    1976-01-01

    Benzo(a)pyrene 4,5-oxide is reduced to benzo(a)pyrene by microsomes in the presence of NADPH. Carbon monoxide and oxygen inhibit this reduction. The liver has highest activity which is almost lacking in new-born rats. Phenobarbital as well as 3-methylcholanthrene pretreatment increases the epoxide reduction. Additions of FMN or methylviologen stimulate the epoxide reduction; dimethylaniline N-oxide and cumene hydroperoxide are inhibitory. These results indicate that benzo(a)pyrene 4,5-oxide is reduced by the reduced form of cytochrome P-450.

  6. Degradation of metabolites of benzo[a]pyrene by coupling Penicillium chrysogenum with KMnO4

    Institute of Scientific and Technical Information of China (English)

    ZANG Shu-yan; LI Pei-jun; YU Xiao-cai; SHI Kun; ZHANG Hui; CHEN Jing

    2007-01-01

    Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-l,6-quinone (BP 1,6-quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized.The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.

  7. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene.

    Science.gov (United States)

    Veignie, Etienne; Rafin, Catherine; Landy, David; Fourmentin, Sophie; Surpateanu, Gheorghe

    2009-09-15

    This paper investigates the effect of native beta-cyclodextrin (beta-CD) and its CD derivatives, such as hydroxypropyl-beta-cyclodextrin (HPBCD) and randomly methylated-beta-cyclodextrin (RAMEB), on the solubilization of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) and on its degradation by Fenton's reaction. The results show that BaP apparent solubility was significantly increased in the presence of cyclodextrin (CD) in the following order: beta-CDcyclodextrin to solubilize BaP. In the presence of a radical scavenger (mannitol), BaP Fenton degradation was inhibited with RAMEB but not in the presence of HPCD. Molecular modelisation was used to visualize the steric complementarity of these host-guest systems. No significant difference of encapsulation between the two modified CDs was observed. Nevertheless, the results suggest a probable existence of a ternary complex HPCD-BaP-iron permitting the generation of hydroxyl radicals in close proximity to BaP. On the basis of these results, it appears that HPCD may be useful for developing targeted BaP degradation system.

  8. Protein oxidation and degradation caused by particulate matter

    Science.gov (United States)

    Lai, Ching-Huang; Lee, Chun-Nin; Bai, Kuan-Jen; Yang, You-Lan; Chuang, Kai-Jen; Wu, Sheng-Ming; Chuang, Hsiao-Chi

    2016-09-01

    Particulate matter (PM) modulates the expression of autophagy; however, the role of selective autophagy by PM remains unclear. The objective of this study was to determine the underlying mechanisms in protein oxidation and degradation caused by PM. Human epithelial A549 cells were exposed to diesel exhaust particles (DEPs), urban dust (UD), and carbon black (CB; control particles). Cell survival and proliferation were significantly reduced by DEPs and UD in A549 cells. First, benzo(a)pyrene diolepoxide (BPDE) protein adduct was caused by DEPs at 150 μg/ml. Methionine oxidation (MetO) of human albumin proteins was induced by DEPs, UD, and CB; however, the protein repair mechanism that converts MetO back to methionine by methionine sulfoxide reductases A (MSRA) and B3 (MSRB3) was activated by DEPs and inhibited by UD, suggesting that oxidized protein was accumulating in cells. As to the degradation of oxidized proteins, proteasome and autophagy activation was induced by CB with ubiquitin accumulation, whereas proteasome and autophagy activation was induced by DEPs without ubiquitin accumulation. The results suggest that CB-induced protein degradation may be via an ubiquitin-dependent autophagy pathway, whereas DEP-induced protein degradation may be via an ubiquitin-independent autophagy pathway. A distinct proteotoxic effect may depend on the physicochemistry of PM.

  9. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  10. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    Linbo Qian; Baoliang Chen

    2012-01-01

    The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated.A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium.The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation,which was significantly higher than that from regions of T.versicolor or P.chrysosporium alone.The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition.A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated.After a 48 hr incubation period,the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%,while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T.versicolor.The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS).These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.

  11. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site.

    Science.gov (United States)

    Schneider, J; Grosser, R; Jayasimhulu, K; Xue, W; Warshawsky, D

    1996-01-01

    The degradation of three polycyclic aromatic hydrocarbons (PAH), pyrene (PYR), benz[a]anthracene (BAA), and benzo[a]pyrene (BaP), by Mycobacterium sp. strain RJGII-135 was studied. The bacterium was isolated from an abandoned coal gasification site soil by analog enrichment techniques and found to mineralize [14C]PYR. Further degradation studies with PYR showed three metabolites formed by Mycobacterium sp. strain RJGII-135, including 4,5-phenanthrene-dicarboxylic acid not previously isolated, 4-phenanthrene-carboxylic acid, and 4,5-pyrene-dihydrodiol. At least two dihydrodiols, 5,6-BAA-dihydrodiol and 10,11-BAA-dihydrodiol, were confirmed by high-resolution mass spectral and fluorescence analyses as products of the biodegradation of BAA by Mycobacterium sp. strain RJGII-135. Additionally, a cleavage product of BAA was also isolated. Mass spectra and fluorescence data support two different routes for the degradation of BaP by Mycobacterium sp. strain RJGII-135. The 7,8-BaP-dihydrodiol and three cleavage products of BaP, including 4,5-chrysene-dicarboxylic acid and a dihydro-pyrene-carboxylic acid metabolite, have been isolated and identified as degradation products formed by Mycobacterium sp. strain RJGII-135. These latter results represent the first example of the isolation of BaP ring fission products formed by a bacterial isolate. We propose that while this bacterium appears to attack only one site of the PYR molecule, it is capable of degrading different sites of the BAA and BaP molecules, and although the sites of attack may be different, the ability of this bacterium to degrade these PAH is well supported. The proposed pathways for biodegradation of these compounds by this Mycobacterium sp. strain RJGII-135 support the dioxygenase enzymatic processes reported previously for other bacteria. Microorganisms like Mycobacterium sp. strain RJGII-135 will be invaluable in attaining the goal of remediation of sites containing mixtures of these PAH.

  12. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    Science.gov (United States)

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist.

  13. Oxidation and degradation of polypropylene transvaginal mesh.

    Science.gov (United States)

    Talley, Anne D; Rogers, Bridget R; Iakovlev, Vladimir; Dunn, Russell F; Guelcher, Scott A

    2017-04-01

    Polypropylene (PP) transvaginal mesh (TVM) repair for stress urinary incontinence (SUI) has shown promising short-term objective cure rates. However, life-altering complications have been associated with the placement of PP mesh for SUI repair. PP degradation as a result of the foreign body reaction (FBR) has been proposed as a contributing factor to mesh complications. We hypothesized that PP oxidizes under in vitro conditions simulating the FBR, resulting in degradation of the PP. Three PP mid-urethral slings from two commercial manufacturers were evaluated. Test specimens (n = 6) were incubated in oxidative medium for up to 5 weeks. Oxidation was assessed by Fourier Transform Infrared Spectroscopy (FTIR), and degradation was evaluated by scanning electron microscopy (SEM). FTIR spectra of the slings revealed evidence of carbonyl and hydroxyl peaks after 5 weeks of incubation time, providing evidence of oxidation of PP. SEM images at 5 weeks showed evidence of surface degradation, including pitting and flaking. Thus, oxidation and degradation of PP pelvic mesh were evidenced by chemical and physical changes under simulated in vivo conditions. To assess changes in PP surface chemistry in vivo, fibers were recovered from PP mesh explanted from a single patient without formalin fixation, untreated (n = 5) or scraped (n = 5) to remove tissue, and analyzed by X-ray photoelectron spectroscopy. Mechanical scraping removed adherent tissue, revealing an underlying layer of oxidized PP. These findings underscore the need for further research into the relative contribution of oxidative degradation to complications associated with PP-based TVM devices in larger cohorts of patients.

  14. Binding of benzo(a)pyrene to DNA by cytochrome P-450 catalyzed one-electron oxidation in rat liver microsomes and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, E.L.; Rogan, E.G.; Devanesan, P.D.; Cremonesi, P. (Univ. of Nebraska Medical Center, Omaha (USA)); Cerny, R.L.; Gross, M.L. (Univ. of Nebraska, Lincoln (USA)); Bodell, W.J. (Univ. of California, San Francisco (USA))

    1990-05-22

    To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo(a)pyrene (BP) to DNA and formation of the labile adduct 7-(benzo(a)pyren-6-yl)guanine (BP-N7Gua) was investigated. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-((4,6-dichloro-o-biphenyl)oxy)ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.

  15. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  16. ENHANCEMENT OF RESISTANCE TO OXIDATIVE DEGRADATION OF NATURAL RUBBER THROUGH LATEX DEGRADATION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A fully characterised natural rubber latex was subjected to mechanical degradation by stirring at intervals. The resistance to oxidative degradation of the different samples were studied by measuring the Plasticity retention indices (PRI).The results show that there is an enhancement of the PRI from 57% for the undegraded rubber to 79% for the one-hour degraded sample. Further degradation resulted in decrease of PRI as time of degradation increased. Therefore, the one-hour degraded sample is a special rubber with high oxidation resistance which is of great importance in engineering.

  17. Doxycycline Degradation by the Oxidative Fenton Process

    Directory of Open Access Journals (Sweden)

    Alexandre A. Borghi

    2015-01-01

    Full Text Available Doxycycline is a broad-spectrum tetracycline occurring in domestic, industrial, and rural effluents, whose main drawback is the increasing emergence of resistant bacteria. This antibiotic could be degraded by the so-called Fenton process, consisting in the oxidation of organic pollutants by oxygen peroxide (H2O2 in the presence of Fe2+. Experiments were performed according to an experimental Rotational Central Composite Design to investigate the influence of temperature (0–40.0°C, H2O2 concentration (100–900 mg/L, and Fe2+ concentration (5–120 mg/L on residual doxycycline and total organic carbon concentrations. Whereas the final residual doxycycline concentration ranged from 0 to 55.8 mg/L, the oxidation process proved unable to reduce the total organic carbon by more than 30%. The best operating conditions were concentrations of H2O2 and Fe2+ of 611 and 25 mg/L, respectively, and temperature of 35.0°C, but the analysis of variance revealed that only the first variable exerted a statistically significant effect on the residual doxycycline concentration. These results suggest possible application of this process in the treatment of doxycycline-containing effluents and may be used as starting basis to treat tetracycline-contaminated effluents.

  18. THE FTIR STUDIES OF PHOTO-OXIDATIVE DEGRADATION OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    WEN Zaiqing; HU Xingzhou; SHEN Deyan

    1988-01-01

    The photo-oxidative degradation process of polypropylene film containing iron ions was investigated via FTIR and absorbance substraction technique. It is shown that the iron ions play an important role in the decomposition of hydroperoxide and the increase of the degradation rate of polypropylene film. Theamorphous region of PP film undergoes degradation prior to the crystalline one.

  19. Evaluation of anti-cancer and anti-oxidative potential of Syzygium Cumini against benzo[a]pyrene (BaP) induced gastric carcinogenesis in mice.

    Science.gov (United States)

    Goyal, P K; Verma, Preeti; Sharma, Priyanka; Parmar, Jyoti; Agarwal, Annapurna

    2010-01-01

    Syzygium cummini extract (SCE) was used in the present study to explore anti-tumor promoting activity in a stomach carcinogenesis model in mice. For this purpose, Swiss albino mice were administered with 1 mg of benzo-a-pyrene (BaP) in 100?l sesame oil by oral gavage twice a week for 4 consecutive weeks. The animals were sacrificed 14 weeks after the last administration of BaP. Oral administration of the extract to pre-treated (i.e. SCE as 25mg/kg b. wt./ day before BaP application for 2 weeks), post-treated (i.e. SCE after BaP application for 8 weeks) and pre-post treated (i.e. SCE for 2 weeks before treatment of BaP followed by the concomitant treatment with SCE and BaP for 4 weeks during and 2 weeks after the last dose of BaP) groups provided a significant reduction in tumor incidence, tumor burden and cumulative number of gastric carcinomas along with a significant elevation of phase II detoxifying enzymes, and inhibition of lipid per oxidation in the stomach. Thus, the present data suggest that the Syzygium cummini extract has anti-tumor and anti-oxidative potential against chemical induced stomach carcinogenesis.

  20. Protective effects of green and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model.

    Science.gov (United States)

    Kumar, Manoj; Sharma, V L; Sehgal, Amit; Jain, Mridula

    2012-01-01

    In the current investigation, the ameliorative effect of green tea (GT) and white tea (WT) against benzo(a)pyrene (BaP) induced oxidative stress and DNA damage has been studied in the livers and lungs of Balb/c mice. A single dose of BaP (125 mg/kg, b.w. orally) increased the levels of lipid peroxidation (LPO) and decreased endogenous antioxidants such as superoxide dismutase (SOD), glutahione reductase (GR), catalase (CAT), and glutathione (GSH) significantly. Pretreatment with GT and WT for 35 days before a single dose of BaP elevated the decreased activity of GR, SOD, and CAT in liver tissue and also tended to normalize the levels of GSH and LPO in both hepatic and pulmonary tissues. The percentage of DNA in comet tail and 8-hydroxy-2'-deoxyguanosine levels reflected the decreasing pattern of DNA damage from the BaP-treated group to the groups that received pretreatment with GT and WT. Our study concludes that both GT and WT are effective in combating BaP induced oxidative insult and DNA damage. However, WT was found to be more protective than GT with respect to CAT (only in the liver), percentage of DNA in comet tail (only in the lungs), GST activity, and GSH content in both the tissues.

  1. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  2. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells.

    Science.gov (United States)

    Muthusamy, Sasikumar; Peng, Cheng; Ng, Jack C

    2016-12-01

    Mixed contamination of benzo[a]pyrene (B[a]P), arsenic (As), cadmium (Cd), and lead (Pb) is a major environmental and human health concern. The mixture toxicity data on these co-contaminants are important for their risk assessment. In this study, we have determined the mixture toxicity of As, Cd and Pb, and B[a]P with As, Cd or Pb in HepG2 cells. The binary mixtures of Cd + As, Cd + Pb and As + Pb and B[a]P + metals (B[a]P + As, B[a]P + Cd and B[a]P + Pb) were evaluated for their interaction on the cytotoxicity using the MTS assay. A full factorial design (4 × 5) was used to determine the interaction toxicity and all the six mixtures showed significant interaction on the cytotoxicity. We further investigated the role of oxidative stress (reactive oxygen species (ROS) generation) and antioxidant defense mechanism (total glutathione (GSH) level) with the observed cytotoxicity. The mixtures of metals reduced the total GSH level and increased the ROS generation, respectively. In the case of mixtures of B[a]P and metals, both total GSH level and ROS generation were increased. Overall, the binary mixtures of metals and B[a]P with metals caused a dose dependent toxicity to HepG2 cells. The results also showed a significant contribution of oxidative stress to the observed toxicity and the potential protective role of the total GSH level against this mixture toxicity. The findings of interaction between B[a]P and metals might have an impact on the potential human health risk of this mixtures at contaminated sites.

  3. Oxidative Damage to Nucleic Acids and Benzo(apyrene-7,8-diol-9,10-epoxide-DNA Adducts and Chromosomal Aberration in Children with Psoriasis Repeatedly Exposed to Crude Coal Tar Ointment and UV Radiation

    Directory of Open Access Journals (Sweden)

    Lenka Borska

    2014-01-01

    Full Text Available The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19 treated by Goeckerman therapy (GT. The study describes adverse (side effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation. After GT we found significantly increased markers of oxidative stress (8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine, significantly increased levels of benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE DNA adducts (BPDE-DNA, and significantly increased levels of total number of chromosomal aberrations in peripheral lymphocytes. We found significant relationship between (1 time of UV exposure and total number of aberrated cells and (2 daily topical application of 3% crude coal tar ointment (% of body surface and level of BPDE-DNA adducts. The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score.

  4. Oxidation Degradation of Aqueous Carbofuran Induced by Low Temperature Plasma

    Science.gov (United States)

    Pu, Lumei; Gao, Jinzhang; Hu, Yusen; Liang, Huiguang; Xiao, Wen; Wang, Xingmin

    2008-06-01

    The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.

  5. Oxidation Degradation of Aqueous Carbofuran Induced by Low Temperature Plasma

    Institute of Scientific and Technical Information of China (English)

    PU Lumei; GAO Jinzhang; HU Yusen; LIANG Huiguang; XIAO Wen; WANG Xingmin

    2008-01-01

    The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution.

  6. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  7. [Degradation of BPA in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation].

    Science.gov (United States)

    Li, Cong; Gao, Nai-Yun; Zhang, Ke-Jia

    2009-03-15

    The degradation of bispehnol A (BPA) in aqueous suspension by interaction of photocatalytic oxidation and ferrate (VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe (V) and Fe (IV) is in the photoreduction of Fe (VI) by electron (e(cb)-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the presence of Fe (VI) is much greater than that without Fe (VI). In addition, the decomposition of Fe (VI) under different conditions was also investigated. The results indicate that the Fe (VI) reduction is enhanced by photocatalytic oxidation and the adsorption capacity of Fe (VI) at TiO2 surface decreases with pH increase. When the photocatalytic oxidation is used to degrade BPA, Fe (VI) could increase the degradation rate about 2.5 times.

  8. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    Science.gov (United States)

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.

  9. Sulphur mustard degradation on zirconium doped Ti-Fe oxides

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno Veslarska 230, 628 00 Brno (Czech Republic)

    2011-09-15

    Highlights: {yields} New stechiometric materials for sulphur mustard degradation. {yields} High degree of degradation, more then 95% h{sup -1}. {yields} One-pot synthesis procedure. - Abstract: Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr{sup 4+} dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr{sup 4+} to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr{sup 4+} doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  10. Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

    Science.gov (United States)

    Štengla, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2011-09-15

    Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  11. (-)-Epicatechin Attenuates Degradation of Mouse Oxidative Muscle Following Hindlimb Suspension.

    Science.gov (United States)

    Lee, Icksoo; Hüttemann, Maik; Malek, Moh H

    2016-01-01

    The purpose of this study was to conduct a 14-day hindlimb suspension (HS) with and without (-)-epicatechin supplementation to determine whether (-)-epicatechin treatment can attenuate the loss in muscle degradation, angiogenesis, and mitochondrial signaling in oxidative skeletal muscle. Adult mice were randomized into 3 groups: (a) control (C); (b) HS with vehicle (HS-V); and (c) HS with (-)-epicatechin (HS-(-)-Epi). Animals in the HS-(-)-Epi group received (-)-epicatechin (1.0 mg · kg(-1) of body mass) twice daily through oral gavage. For markers related to muscle degradation, the HS-V group had significantly higher protein expression compared with the control and HS-(-)-Epi groups. Moreover, protein expression for myosin heavy chain type I was significantly reduced by approximately 45% in the HS-V group compared with the control and HS-(-)-Epi groups. In addition, capillarity contact and capillary-to-fiber ratio were significantly higher in the HS-(-)-Epi group compared with the HS-V group. Furthermore, protein expression for thrombospondin-1 was significantly higher in HS-V group compared with the control and HS-(-)-Epi groups. Hindlimb suspension also significantly reduced protein expression for mitochondrial signaling compared with the control and HS-(-)-Epi groups. These findings suggest that (-)-epicatechin supplementation attenuates degradation in oxidative muscles after HS.

  12. Creep degradation in oxide-dispersion-strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  13. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  14. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  15. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated.Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  16. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  17. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  18. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  19. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1995-01-01

    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation beh

  20. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  1. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water.

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F Y; Luan, Tiangang

    2015-08-04

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment.

  2. [Degradation of beta-naphthol by catalytic wet air oxidation].

    Science.gov (United States)

    Liu, Jie; Yu, Chao-Ying; Zhao, Pei-Qing; Chen, Ge-Xin

    2012-11-01

    A series of MnO(x)/nano-TiO2 catalysts were prepared and their application in degradation of beta-naphthol by catalytic wet air oxidation (CWAO) was investigated. The catalysts preparation conditions, reaction conditions and its stability were tested. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The results showed that the decrease of the COD removal for the degradation of beta-naphthol at high Mn loading was due to the aggregation of the highly dispersed Mn species and the formation of the correlated crystals. The decline of the COD removal at high calcination temperature was probably attributed to the weak electron transfer between Mn2O3 and MnO2 and the formation of the inactive Mn2O3. The COD removal had been falling slightly when the catalyst was used 6 times, and this was likely related to the decrease of the diffraction peaks. The catalyst had a high activity when the Mn loading (mass fraction) was 4% and the calcination temperature was 450 degrees C. The COD removal was up to 96.4% at 110 degrees C and 0.5 MPa with this catalyst. The COD removal of 92.4% could be obtained with the MnO(x)/nano-TiO2 catalyst was recycled 6 times. The Mn leaching at 50, 80, 110 and 150 degrees C were all less than 9.3 mg x L(-1) by means of Atomic Absorption Spectroscopy (AAS). The probable degradation pathway was proposed according to some publications.

  3. Antimutagenic activity of cashew apple (Anacardium occidentale Sapindales, Anacardiaceae fresh juice and processed juice (cajuína against methyl methanesulfonate, 4-nitroquinoline N-oxide and benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Ana Amelia Melo-Cavalcante

    2008-01-01

    Full Text Available Cashew apple juice (CAJ, produced from the native Brazilian cashew tree (Anacardium occidentale, and has been reported to have antibacterial, antifungal, antitumor, antioxidant and antimutagenic properties. Both the fresh unprocessed juice and the processed juice (cajuína in Portuguese has been shown to consist of a complex mixture containing high concentrations of anacardic and ascorbic acids plus several carotenoids, phenolic compounds and metals. We assessed both types of juice for their antimutagenic properties against the direct mutagens methyl methanesulfonate (MMS and 4-nitroquinoline-N-oxide (4-NQO and the indirect mutagen benzo[a]pyrene (BaP using pre-treatment, co-treatment and post-treatment assays with Salmonella typhimurium strains TA100, TA102, and TA97a. In pre-treatment experiments with strains TA100 and TA102 the fresh juice showed high antimutagenic activity against MMS but, conversely, co-treatment with both juices enhanced MMS mutagenicity and there was an indication of toxicity in the post-treatment regime. In pre-, co-, and post-treatments with TA97a as test strain, antimutagenic effects were also observed against 4-NQO and BaP. These results suggest that both fresh and processed CAJ can protect the cells against mutagenesis induced by direct and indirect mutagens.

  4. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  5. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Science.gov (United States)

    Gui, Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-05-01

    The potential for using hydroxyl radical (OH•) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH• were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  6. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero......-order kinetics and occurred in parallel with the oxidation of methane. TeCM, CFC-11, and CFC-12 were not degradable in presence of oxygen and degradation of these compounds in the oxidative zone in landfill top covers is therefore expected to be limited. However these compounds were found degradable...... in the anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role...

  7. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...

  8. SEMICONDUCTOR DEVICES Hot-carrier-induced on-resistance degradation of step gate oxide NLDMOS

    Science.gov (United States)

    Yan, Han; Bin, Zhang; Koubao, Ding; Shifeng, Zhang; Chenggong, Han; Jiaxian, Hu; Dazhong, Zhu

    2010-12-01

    The hot-carrier-induced on-resistance degradations of step gate oxide NLDMOS (SG-NLDMOS) transistors are investigated in detail by a DC voltage stress experiment, a TCAD simulation and a charge pumping test. For different stress conditions, degradation behaviors of SG-NLDMOS transistors are analyzed and degradation mechanisms are presented. Then the effect of various doses of n-type drain drift (NDD) region implant on Ron degradation is investigated. Experimental results show that a lower NDD dosage can reduce the hot-carrier induced Ron degradation effectively, which is different from uniform gate oxide NLDMOS (UG-NLDMOS) transistors.

  9. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  10. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    Science.gov (United States)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  11. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Science.gov (United States)

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, Pavel; Kuráň, Pavel; Štastný, Martin

    2015-07-01

    Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  12. Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide.

    Science.gov (United States)

    Mehrdad, Abbas; Hashemzadeh, Robab

    2010-01-01

    In this research, degradation of Rodamine B in the presence of (hydrogen peroxide), (hydrogen peroxide+ultrasound), (hydrogen peroxide+aluminum oxide), (hydrogen peroxide+aluminum oxide+ultrasound with different ultrasound power), (hydrogen peroxide+iron oxide) and (hydrogen peroxide+iron oxide+ultrasound with different ultrasound power) were investigated at 25 degrees C. The apparent rate constants for the examined systems were calculated by pseudo-first-order kinetics. The results indicate that the rate of degradation was accelerated by ultrasound. The rate of degradation was increased by increasing power ultrasound. The efficiency of the (hydrogen peroxide+iron oxide+ultrasound) system for degradation of Rodamine B was higher than the others examined.

  13. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  14. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    Science.gov (United States)

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  15. {sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.; CELINA,MATHIAS C.; ASSINK,ROGER A.; CLOUGH,ROGER LEE; GILLEN,KENNETH T.

    2000-03-08

    The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.

  16. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  17. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  18. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: Adsorption, oxidation, and photocatalysis

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiaodi Cheng; Chen Zheng; Xionghan Feng; Guohong Qiu; Wenfeng Tan; Fan Liu

    2011-01-01

    Manganese oxides are known as one type of semiconductors,but their photocatalysis characteristics have not teen deeply explored.In this study,photocatalytic degradation of phenol using several synthesized manganese oxides,i.e,acidic birnessite (BIR-H),alkaline birnessite (BIR-OH),cryptomelane (CRY) and todorokite (TOD),were comparatively investigated.To elucidate phenol degradation mechanisms,X-ray diffraction (XRD),ICP-AES (inductively coupled plasma-atomic emission spectroscopy),TEM (transmission electronic microscope),N2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural,compositional,morphological,specific surface area and optical absorption properties of the manganese oxides.After 12 hr of UV-Vis irradiation,the total organic carbon (TOC) removal rate reached 62.1%,43.1%,25.4%,and 22.5% for cryptomelane,acidic birnessite,todorokite and alkaline birnessite,respectively.Compared to the reactions in the dark condition,UVVis exposure improved the TOC removal rates by 55.8%,31.9%,23.4% and 17.9%.This suggests a weak ability of manganese oxides to degrade phenol in the dark condition,while UV-Vis light irradiation could significantly enhance phenol degradation.The manganese minerals exhibited photocatalytic activities in the order of:CRY > BIR-H > TOD > BIR-OH.There may be three possible mechanisms for photochemical degradation:(1) direct photolysis of phenol; (2) direct oxidation of phenol by manganese oxides; (3) photocatalytic oxidation of phenol by manganese oxides.Photocatalytic oxidation of phenol appeared to be the dominant mechanism.

  19. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis.

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Zheng, Chen; Feng, Xionghan; Qiu, Guohong; Tan, Wenfeng; Liu, Fan

    2011-01-01

    Manganese oxides are known as one type of semiconductors, but their photocatalysis characteristics have not been deeply explored. In this study, photocatalytic degradation of phenol using several synthesized manganese oxides, i.e, acidic birnessite (BIR-H), alkaline birnessite (BIR-OH), cryptomelane (CRY) and todorokite (TOD), were comparatively investigated. To elucidate phenol degradation mechanisms, X-ray diffraction (XRD), ICP-AES (inductively coupled plasma-atomic emission spectroscopy), TEM (transmission electronic microscope), N2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural, compositional, morphological, specific surface area and optical absorption properties of the manganese oxides. After 12 hr of UV-Vis irradiation, the total organic carbon (TOC) removal rate reached 62.1%, 43.1%, 25.4%, and 22.5% for cryptomelane, acidic birnessite, todorokite and alkaline birnessite, respectively. Compared to the reactions in the dark condition, UV-Vis exposure improved the TOC removal rates by 55.8%, 31.9%, 23.4% and 17.9%. This suggests a weak ability of manganese oxides to degrade phenol in the dark condition, while UV-Vis light irradiation could significantly enhance phenol degradation. The manganese minerals exhibited photocatalytic activities in the order of: CRY > BIR-H > TOD > BIR-OH. There may be three possible mechanisms for photochemical degradation: (1) direct photolysis of phenol; (2) direct oxidation of phenol by manganese oxides; (3) photocatalytic oxidation of phenol by manganese oxides. Photocatalytic oxidation of phenol appeared to be the dominant mechanism.

  20. Degradation studies of pentoxifylline: Isolation and characterization of a novel gem-dihydroperoxide derivative as major oxidative degradation product.

    Science.gov (United States)

    Mone, Mahesh Kumar; Chandrasekhar, K B

    2010-11-02

    Pentoxifylline was subjected to various stress conditions and degradation profile was studied with conventional LCMS. Interestingly, under oxidative stress conditions the drug substance underwent distinct transformation to give rise to a single major degradation product. The structure of this product was elucidated using 1D, 2D NMR spectroscopy, high resolution mass spectrometry (Q-TOF LC/MS) and found to be a novel gem-dihydroperoxide, namely 1-(5,5-Bis-hydroperoxy-hexyl)-3,7-dimethyl-3,7-dihydro-purine-2,6-dione. An efficient stability indicating liquid chromatographic separation method was developed for pentoxifylline and its three degradation products (including two from base hydrolysis) using 1.8 microm, C18 reverse phase column and UHPLC. Baseline separation was achieved with a run time of 4 min. The analytical assay method was validated with respect to system suitability, specificity, linearity, range, precision, accuracy and robustness.

  1. Characterization of the Oxidative Degradation Product of Darunavir by LC-MS/MS

    Science.gov (United States)

    Yamjala, Karthik; Atukuri, Jeevitha; Nagappan, Krishnaveni; Halekote Shivaraju, Nivedeetha; Subramania Nainar, Meyyanathan

    2015-01-01

    A rapid, selective, and reliable LC-MSn method has been developed and validated for the isolation and structural characterization of the degradation product of darunavir (DRV). DRV, an HIV-1 protease inhibitor, was subjected to intrinsic oxidative stress conditions using 30% hydrogen peroxide and the degradation profile was studied. The oxidative degradation of DRV resulted in one degradation product. The unknown degradation product was separated on a Hibar Purospher C18 (250 mm × 4.6 mm; 5 µm) column by using 0.01 M ammonium formate (pH 3.0) and acetonitrile as mobile phase in the ratio of 50:50, v/v. The eluents were monitored at 263 nm using a UV detector. The isolated degradation product was characterized by UPLC-Q-TOF and its fragmentation pathway was proposed. The proposed structure of the degradation product was confirmed by HRMS analysis. The developed stability-indicating LC method was validated with respect to accuracy, precision, specificity/selectivity, and linearity. No prior reports were found in the literature about the oxidative degradation behavior of DRV. PMID:26839843

  2. Oxidative degradation of chemical warfare agents in water by bleaching powder.

    Science.gov (United States)

    Qi, Lihong; Zuo, Guomin; Cheng, Zhenxing; Zhu, Haiyan; Li, Shanmao

    2012-01-01

    Degradation of sulfur mustard (HD), S-2-(di-isopropylamino)ethyl O-ethyl methylphosphonothioate (VX) and Soman (GD) in water by bleaching powder was investigated. The degradation products were comprehensively analyzed by gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and ion chromatography. Degradation pathways were deduced based on the identified products. The product analysis results indicated that HD could be degraded through oxidation and chlorination reactions, and a small portion of sulfur atoms could be mineralized into SO(4)(2-) ion. Oxidative degradation of VX could finally generate O-ethyl methylphosphonate acid (EMPA), sulfonic acids, SO(4)(2-) and NO(3)(-) ions. GD would be converted into non-toxic pinacolyl methylphosphonate via nucleophilic substitution.

  3. Catalytic Degradation of Methylphosphonic Acid Using Iron Powder/Iron Oxides

    Science.gov (United States)

    2005-11-01

    aluminium/ aluminium oxide on the degradation of methylphosphonic acid (MPA), the final hydrolysis product of most nerve agents. EGA-FTIR provides... ALUMINIUM OXIDE ) UNDER AIR (BOTTOM). .................. 37 DSTO-TR-1849 1 1. Introduction The Convention on the Prohibition of the...as well as aluminium/ aluminium oxide , using temperature programmed EGA-FTIR. Since MPA is a Schedule II chemical the above requirement can only be

  4. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen

    2011-05-19

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  5. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    Science.gov (United States)

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  6. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Wohlmuth da Silva, Salatiel, E-mail: salatielws@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil); Klauck, Cláudia Regina, E-mail: claudiark@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Siqueira, Marco Antônio, E-mail: marcor@feevale.br [Universidade Feevale, Campus II ERS-239, 2755, Novo Hamburgo, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGEM), Av. Bento Gonçalves, 9500, Porto Alegre, RS (Brazil)

    2015-01-23

    Highlights: • NP{sub 4}EO in industrial effluents can be treated before reaching water reservoirs. • Advanced oxidation processes are proposed for the degradation of NP{sub 4}EO. • The degradation rate depends mainly on the light intensity. • The mineralization rate depends mainly on the current density. • Photo-assisted electrochemical oxidation showed the best degradation results. - Abstract: Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis – HP, eletrochemical oxidation – EO and photo-assisted electrochemical oxidation – PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NP{sub n}EO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NP{sub n}EO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NP{sub n}EO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250 W lamp and a current density of 10 mA/cm{sup 2} showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NP{sub n}EO, avoiding the contamination of water resources.

  7. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  8. INFLUENCE OF ETHYLENE-OXIDE GAS TREATMENT ON THE IN-VITRO DEGRADATION BEHAVIOR OF DERMAL SHEEP COLLAGEN

    NARCIS (Netherlands)

    DAMINK, LHHO; DIJKSTRA, PJ; VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; FEIJEN, J

    1995-01-01

    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation beh

  9. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    Institute of Scientific and Technical Information of China (English)

    HU Shi-Gang; CAO Yan-Rong; HAO Yue; MA Xiao-Hua; CHEN Chi; WU Xiao-Feng; ZHOU Qing-Jun

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown.For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown.

  10. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  11. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds.

    Science.gov (United States)

    Yu, Shann S; Koblin, Rachel L; Zachman, Angela L; Perrien, Daniel S; Hofmeister, Lucas H; Giorgio, Todd D; Sung, Hak-Joon

    2011-12-12

    Chronic inflammation-mediated oxidative stress is a common mechanism of implant rejection and failure. Therefore, polymer scaffolds that can degrade slowly in response to this environment may provide a viable platform for implant site-specific, sustained release of immunomodulatory agents over a long time period. In this work, proline oligomers of varying lengths (P(n)) were synthesized and exposed to oxidative environments, and their accelerated degradation under oxidative conditions was verified via high performance liquid chromatography and gel permeation chromatography. Next, diblock copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were carboxylated to form 100 kDa terpolymers of 4%PEG-86%PCL-10%cPCL (cPCL = poly(carboxyl-ε-caprolactone); i% indicates molar ratio). The polymers were then cross-linked with biaminated PEG-P(n)-PEG chains, where P(n) indicates the length of the proline oligomer flanked by PEG chains. Salt-leaching of the polymeric matrices created scaffolds of macroporous and microporous architecture, as observed by scanning electron microscopy. The degradation of scaffolds was accelerated under oxidative conditions, as evidenced by mass loss and differential scanning calorimetry measurements. Immortalized murine bone-marrow-derived macrophages were then seeded on the scaffolds and activated through the addition of γ-interferon and lipopolysaccharide throughout the 9-day study period. This treatment promoted the release of H(2)O(2) by the macrophages and the degradation of proline-containing scaffolds compared to the control scaffolds. The accelerated degradation was evidenced by increased scaffold porosity, as visualized through scanning electron microscopy and X-ray microtomography imaging. The current study provides insight into the development of scaffolds that respond to oxidative environments through gradual degradation for the controlled release of therapeutics targeted to diseases that feature chronic

  12. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    Science.gov (United States)

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  13. Photocatalytic efficiency of iron oxides: Degradation of 4-chlorophenol

    Science.gov (United States)

    Bakardjieva, Snejana; Stengl, Vaclav; Subrt, Jan; Houskova, Vendula; Kalenda, Petr

    2007-05-01

    The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200 1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.

  14. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaofang Xie; Yongqing Zhang; Weilin Huang; Shaobing Huang

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature,persulfate concentration and pH conditions were examined in batch experiments.The results showed that,the aniline degradation followed pseudo first-order reaction model.Aniline degradation rate increased with increasing temperature or persulfate concentration.In the pH range of 3 to 11,a low aniline degradation rate was obtained at strong acid system (pH 3),while a high degradation rate was achieved at strong alkalinity (pH 11).Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5,7 and 9).Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology.And nitrobenzene,4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation meehanism of aniline was also tentatively proposed.

  15. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  16. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review

    Directory of Open Access Journals (Sweden)

    A. Gnanaprakasam

    2015-01-01

    Full Text Available This paper aims to review the recent works on the photocatalytic degradation of organic pollutants in the presence of nanophotocatalyst. In this regard the effects of operation parameters which could influence the photocatalytic degradation of organic pollutants (such as catalyst preparation method, initial concentration of organic pollutants, presence of doping, catalyst loading, calcinations temperature, pH, presence of oxidants, UV intensity, temperature, and presence of supports are discussed. Recent research suggests that the parameters mentioned above have great influence on the photocatalytic activity of prepared nanocatalyst. Also, the general mechanism of photocatalytic degradation and some recent synthesis methods are discussed here.

  17. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  18. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    Science.gov (United States)

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene.

  19. Amoxicillin Oxidative Degradation Synthesized by Nano Zero Valent Iron

    Directory of Open Access Journals (Sweden)

    AR Yazdanbakhsh

    2016-03-01

    Full Text Available Introduction: Amoxicillin is one of the most important groups of pharmaceuticals that benefits humans and animals. However, antibiotics excertion in wastewaters and environment have emerged as a serious risk to the biotic environment, and their toxic effects can harm the organisms. Iron-based metallic nanoparticles have received special attention in regard with remediation of groundwater contaminants. In the typical nZVI-based bimetallic particle system, Fe acts as the reducing agent. Thus, the present study aimed to evaluate the synthesis and characteristics of nZVI in regard with degrading AMX. Methods: In this study, nZVI nanoparticles were synthesized using the liquid-phase reduction method by EDTA as a stabilizer material. Structure and properties of nanoparticles were characterized by BET, SEM, XRD and EDX analysis. A multi-variate analysis was applied using a response surface methodology (RSM in order to develop a quadratic model as a functional relationship between AMX removal efficiency and independent variables ( initial pH values, dosage of nZVI, contact time and amoxicillin concentration. The four independent variables of solution pH (2–10, AMX concentration (5-45mg/l, contact time (5-85 min and nanoparticles dose (0.25 – 1.25 g were transformed to the coded values. Results: The study results demonstrated that more than 69 % of AMX was removed by nZVI. The optimal AMX removal conditions using nZVI were found as 1.25 g of nZVI, pH 4, contact time of 80 min and concentration of 30 mg/l. Conclusions: The ability of nZVI in degradation of AMX revealed that these materials can serve as a potential nano material with respect to the environmental remediation.

  20. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Bandala, Erick R. [Instituto Mexicano de Tecnologia del Agua, Paseo Cuauhnahuac 8532, Progreso Jiutepec, Morelos 62550 (Mexico)], E-mail: ebandala@tlaloc.imta.mx; Pelaez, Miguel A.; Salgado, Maria J. [Instituto Mexicano de Tecnologia del Agua, Paseo Cuauhnahuac 8532, Progreso Jiutepec, Morelos 62550 (Mexico); Torres, Luis [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico (UNAM) (Mexico)

    2008-03-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR{sub 15}). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR{sub 15} values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR{sub 15} values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice.

  1. Filter Paper Inspired Zinc Oxide Nanomaterials with High Photocatalytic Activity for Degradation of Methylene Orange

    Directory of Open Access Journals (Sweden)

    Huang Liu

    2016-01-01

    Full Text Available Nanometer-sized zinc oxide (ZnO has been synthesized through sol-gel method with natural cellulose substance (commercial filter paper as template. The structure of zinc oxide nanomaterial was characterized by nitrogen adsorption-desorption and XRD. The morphology was observed by SEM and TEM. The results show that the hexagonal wurtzite phase is actually the only crystal phase in the sample and the product faithfully inherits the hierarchical morphology and the complex network structure of the original filter paper, which is composed of many randomly intersecting zinc oxide microfibers and nanosheets with lots of close stacked particles adsorbed on the surface. Moreover, these zinc oxide nanomaterials possess abundant mesoporous structure with an average pore diameter of ca. 21 nm and a wide pore size distribution (3–30 nm. Due to the strong absorption ability in the UV range, the zinc oxide nanomaterial prepared by this method displays significantly high photocatalytic activity for degrading methyl orange. In a short period of 20 minutes, the zinc oxide nanomaterial has degraded about 50% of the original MO, and the MO dye is fully degraded after UV irradiation for 80 minutes.

  2. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Zhaohui, E-mail: zhaohuiwang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jianshe, E-mail: liujianshe@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Sequential photocatalytic reduction-oxidation degradation of TBBPA was firstly examined. Black-Right-Pointing-Pointer Different atmospheres were found to have significant effect on debromination reaction. Black-Right-Pointing-Pointer A possible sequential photocatalytic reduction-oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N{sub 2}-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO{sub 2} system by changing the reaction atmospheres.

  3. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    BELDEAN-GALEA M.S.

    2015-03-01

    Full Text Available In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative process, the highest degradation efficiencies were 19% for DEP, 50% for BBP, 84% for DEHP, 90% for DINP and 48% for DIDP, when the experiments were carried out using concentrations of 20 mg L-1 phthalate mixture, 100 mg L-1 H2O2, 10 mg L-1 Fe2+ at a pH value of 3, with a total reaction time of 30 minutes. For the Photo-Fenton oxidative process carried out in the same conditions as Fenton oxidative process, it was observed that after an irradiation time of 90 minutes under UV radiation the degradation efficiencies of phthalates were improved, being 22% for DEP, 71% for BBP, 97% for DEHP, 97% for DINP and 81% for DIDP.

  4. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  5. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  6. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  7. Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol-gel methods.

    Science.gov (United States)

    Shen, Wenzhong; Li, Zhijie; Wang, Hui; Liu, Yihong; Guo, Qingjie; Zhang, Yuanli

    2008-03-21

    Zinc oxide nanoparticle was obtained by zinc hydrate deposited on the silica nanoparticle surface and zinc hydrate was dispersed in starch gel. The structure of zinc oxide particle was characterized by nitrogen adsorption-desorption and XRD, the morphology was observed by TEM. The result showed that the zinc oxide nanoparticle deposited on the silica nanoparticle surface was well-dispersed and less than 50nm, displayed higher photocatalytic activity for methylene blue degradation. However, the zinc oxide nanoparticle in a size of 60nm was derived from starch gel and showed poorer photocatalytic activity. It provided a simple and effective route to prepare zinc oxide nanoparticle with higher photocatalytic activity through depositing zinc oxide on the silica particle surface, moreover, the catalyst is easier to recover due to its higher density.

  8. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duk Kyung, E-mail: dkim@aum.edu [Department of Physical Science, Auburn University Montgomery, Montgomery, AL 36117 (United States); O' Shea, Kevin E., E-mail: osheak@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199 (United States); Cooper, William J. [Department of Civil and Environmental Engineering, Urban Water Research Center, University of California Irvine, Irvine, CA 92697-2175 (United States)

    2012-07-15

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from {beta}-H abstraction overlap with those from high temperature pyrolysis, the effect of {beta}-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: Black-Right-Pointing-Pointer Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O{sub 2} saturation. Black-Right-Pointing-Pointer The major degradation pathways were proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. Black-Right-Pointing-Pointer The effect of {beta

  9. Anodic oxidation of o-nitrophenol on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Saad, Mohamed El Khames [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Moussaoui, Younes [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Physical Organic Chemistry Laboratory, Science Faculty of Sfax, University of Sfax (Tunisia); Allagui, Mohamed Salah [Science Faculty of Gafsa, University of Gafsa (Tunisia); Bedoui, Ahmed [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Science Faculty of Gabes, 6072, University of Gabes (Tunisia); Elaloui, Elimame [Materials, Environment and Energy Laboratory (06/UR/12-01), Science Faculty of Gafsa, 2112, University of Gafsa (Tunisia); Science Faculty of Gafsa, University of Gafsa (Tunisia)

    2013-04-15

    Highlights: ► Anodic oxidation is an effective method for degrading o-nitrophenol. ► The effect of operating parameters on the degradation was investigated. ► The main intermediate products were determined by HPLC technique. ► A plausible degradation pathway of o-nitrophenol was proposed. -- Abstract: The electrochemical oxidation of pesticide, o-nitrophenol (ONP) as one kind of pesticide that is potentially dangerous and biorefractory, was studied by galvanostatic electrolysis using boron-doped diamond (BDD) as anode. The influence of several operating parameters, such as applied current density, supporting electrolyte, and initial pH value, was investigated. The best degradation occurred in the presence of Na{sub 2}SO{sub 4} (0.05 M) as conductive electrolyte. After 8 h, nearly complete degradation of o-nitrophenol was achieved (92%) using BDD electrodes at pH 3 and at current density equals 60 mA cm{sup −2}. The decay kinetics of o-nitrophenol follows a pseudo-first-order reaction. Aromatic intermediates such as catechol, resorcinol, 1,2,4-trihydroxybenzene, hydroquinone and benzoquinone and carboxylic acids such as maleic glycolic, malonic, glyoxilic and oxalic, have been identified and followed during the ONP treatment by chromatographic techniques. From these anodic oxidation by-products, a plausible reaction sequence for ONP mineralization on BDD anodes is proposed.

  10. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    Science.gov (United States)

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  11. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    Science.gov (United States)

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources.

  12. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    Energy Technology Data Exchange (ETDEWEB)

    Štengl, Václav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem (Czech Republic); Grygar, Tomáš Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem (Czech Republic); Bludská, Jana [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); Opluštil, František; Němec, Tomáš [Military Technical Institute of Protection Brno, Veslařská 230, 628 00 Brno (Czech Republic)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  13. Novel photocatalysis oxidation system UV/Fe2+/air to degrade 4-CP wastewater

    Institute of Scientific and Technical Information of China (English)

    DU Yingxun; ZHOU Minghua; LEI Lecheng

    2005-01-01

    This paper reported the degradation of 4-CP wastewater by a novel photocatalysis oxidation system--UV/Fe2+/air system, in which air was used as a cheap oxidant that reacted with the excitation state of organics to form H2O2 under the UV light. The formed H2O2 reacted with the added ferrous ion to form Fenton reaction and led to the quick degradation of organic pollutants. It was found that 4-CP could be completely removed within 40 min. The degradation of 4-CP in the UV/Fe2+/air system was superior to the conventional UV/Fenton system (the initial concentration of H2O2 was 22 mg-L-1). UV/Fe2+/air is an effective and cheap method for treatment of the organics that can be excited by UV light.

  14. Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    Solid oxide fuel cells produced at Risø DTU have been tested as solid oxide electrolysis cells for steam electrolysis by applying an external voltage. Varying the sealing on the hydrogen electrode side of the setup verifies that the previously reported passivation over the first few hundred hours...... of electrolysis testing was an effect of the applied glass sealing. Degradation of the cells during long-term galvanostatic electrolysis testing [850°C, −1/2 A/cm2, p(H2O)/p(H2)=0.5/0.5] was analyzed by impedance spectroscopy and the degradation was found mainly to be caused by increasing polarization resistance...... associated with the hydrogen electrode. A cell voltage degradation of 2%/1000 h was obtained. Postmortem analysis of cells tested at these conditions showed that the electrode microstructure could withstand at least 1300 h of electrolysis testing, however, impurities were found in the hydrogen electrode...

  15. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    Science.gov (United States)

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  16. Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation

    Science.gov (United States)

    Dang, Trung-Dung; Banerjee, Arghya Narayan; Tran, Quang-Tung; Roy, Sudipta

    2016-11-01

    By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.

  17. Studies on degradation of glyphosate by several oxidative chemical processes: ozonation, photolysis and heterogeneous photocatalysis.

    Science.gov (United States)

    Assalin, Marcia R; De Moraes, Sandra G; Queiroz, Sonia C N; Ferracini, Vera L; Duran, Nelson

    2010-01-01

    Several different Advanced Oxidation Processes (AOPs) including ozonation at pH 6.5 and 10, photolysis and heterogeneous photocatalysis using TiO(2) as semiconductor and dissolved oxygen as electron acceptor were applied to study the degradation of glyphosate (N-phosphonomethyl glycine) in water. The degree of glyphosate degradation, the reactions kinetic and the formation of the major metabolite, aminomethyl phosphonic acid (AMPA), were evaluated. Ozonation at pH 10 resulted in the maximum mineralization of glyphosate. It was observed that under the experimental conditions used in this study the degradation of glyphosate followed the first-order kinetics. The half-life obtained for glyphosate degradation in the O(3)/pH 10 process was 1.8 minutes.

  18. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Suhawati Ibrahim

    2014-12-01

    Full Text Available Natural rubber (NR is a high molecular weight natural polymer and can be degraded to liquid natural rubber (LNR leaving certain functional groups at the end of chains. In this study, LNR samples prepared via oxidative degradation using H2O2 and NaNO2 as reagents were found to have different end groups depending on the pH of the reaction medium. In an acidic medium, LNR with hydroxyl terminal groups was formed as the degradation reaction was initiated by hydroxyl radicals produced from decomposition of peroxynitrite acid. In contrast, a redox reaction took place in an alkaline medium to yield LNR with carbonyl terminal groups. The mechanisms of reaction are discussed and proposed to explain the formation of different end groups when reaction carried out in acidic and alkaline media. Chain degradation in an acidic medium seems to be more effective than in an alkaline medium, and thus yields LNR with lower Mn.

  19. Overlay coating degradation by simultaneous oxidation and coating/substrate interdiffusion. Ph.D. Thesis

    Science.gov (United States)

    Nesbitt, J. A.

    1983-01-01

    Degradation of NiCrAlZr overlay coatings on various NiCrAl substrates was examined after cyclic oxidation. Concentration/distance profiles were measured in the coating and substrate after various oxidation exposures at 1150 C. For each stubstrate, the Al content in the coating decreased rapidly. The concentration/distance profiles, and particularly that for Al, reflected the oxide spalling resistance of each coated substrate. A numerical model was developed to simulate diffusion associated with overlay-coating degradation by oxidation and coating/substrate interdiffusion. Input to the numerical model consisted of the Cr and Al content of the coating and substrate, ternary diffusivities, and various oxide spalling parameters. The model predicts the Cr and Al concentrations in the coating and substrate after any number of oxidation/thermal cycles. The numerical model also predicts coating failure based on the ability of the coating to supply sufficient Al to the oxide scale. The validity of the model was confirmed by comparison of the predicted and measured concentration/distance profiles. The model was subsequently used to identify the most critical system parameters affecting coating life.

  20. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  1. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst

    Institute of Scientific and Technical Information of China (English)

    SUN Min; YAO Risheng; YOU Yahua; DENG Shengsong; GAO Wenxia

    2007-01-01

    This paper reports on the degradation of 4-aminophenol using hydrogen peroxide as oxidizer and the enzyme from Serratia marcescens AB 90027 as catalyst.The effecting factors during degradation and the degrading mechanism were studied.Also,the location of the enzyme in the cell,which could catalyze the degradation of 4-aminophenol,was analyzed.The results showed that to degrade 50 mL of 4-aminophenol whose concentration was 500 mg/L,the optimal conditions were:volume of H2O2=3 mL,temperature=40-60℃ and pH=9-10]In the degradation process,4-aminophenol was first converted to benzo quinone and NH3,then organic acids including maleic acid,fumaleic acid,and oxalic acid were formed,and then finally CO2 and H2O were generated as final products.The enzyme that could catalyze the degradation of 4-aminophenol was mainly extracellular enzyme.

  2. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    Science.gov (United States)

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems.

  3. Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform.

    Science.gov (United States)

    Song, Guosheng; Hao, Jiali; Liang, Chao; Liu, Teng; Gao, Min; Cheng, Liang; Hu, Junqing; Liu, Zhuang

    2016-02-01

    Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity. MoOx-PEG shows efficient accumulation in tumors, the acidic pH of which then leads to longer tumor retention of those nanosheets. Along with the capability of acting as a photothermal agent for effective tumor ablation, MoOx-PEG can load therapeutic molecules with high efficiencies. This concept of inorganic theranostic nanoagent should be relatively stable in tumors to allow imaging and treatment, while being readily degradable in normal organs to enable rapid excretion and avoid long-term retention/toxicity.

  4. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    Science.gov (United States)

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation.

  5. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    XU Bin; GAO Naiyun; RUI Min; WANG Hong; WU Haihui

    2007-01-01

    The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated.A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model.With an initial concentration of 11.0 mg/L,the removal efficiencies of BPA (bisphenol A) could be measured up to 70%,82%,and 90% when the dosages of ozone were 1,1.5,and 2 mg/L,respectively.The impacts on BPA degradation under the conditions of different ozone dosages,water background values,BPA initial concentrations,and ozone adding time were analyzed.The results showed that ozone dosage plays a dominant role during the process of BPA degradation,while the impact of the contact time could be ignored.UV wavelength scanning was used to confirm that the by-products were produced,which could be absorbed at UV254.The value of UV254 was observed to have changed during the ozonation process.Based on the change of UV254,it could be concluded that BPA is not completely degraded at low ozone dosage,while shorter adding time of total ozone dosage,high ozone dosage,and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation.The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study.The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation.

  6. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  7. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  8. Transition metal oxide loaded MCM catalysts for photocatalytic degradation of dyes

    Indian Academy of Sciences (India)

    Divya Jyothi; Parag A Deshpande; B R Venugopal; Srinivasan Chandrasekaran; Giridhar Madras

    2012-03-01

    Transition metal oxide (TiO2, Fe2O3, CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

  9. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin Film Solar Cells (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pern, J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The objectives are: (1) To achieve a high long-term performance reliability for the thin-film CIGS PV modules with more stable materials, device structure designs, and moisture-resistant encapsulation materials and schemes; (2) to evaluate the DH stability of various transparent conducting oxides (TCOs); (3) to identify the degradation mechanisms and quantify degradation rates; (4) to seek chemical and/or physical mitigation methods, and explore new materials. It's important to note that direct exposure to DH represents an extreme condition that a well-encapsulated thin film PV module may never experience.

  10. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  11. Effects of benzo(a)pyrene exposure on oxidative stress and ATPase in the hippocampus of rats%苯并[a]芘对大鼠海马组织氧化应激及ATP酶的影响

    Institute of Scientific and Technical Information of China (English)

    段利; 汤艳; 陈承志; 彭斌; 邱崇莹; 戚友宾; 涂白杰

    2013-01-01

    目的 通过研究苯并[a]芘(B[a]P)对大鼠行为学、海马氧化应激及ATP酶的影响,探讨B[a]P的神经行为毒性分子机制.方法 将120只21d龄雄性SD大鼠,随机分为空白对照组、植物油组(溶剂对照组),2.5、5.0、10.0 mg/kg B[a]P染毒组,每组24只.腹腔注射给药,每天1次,连续4周.染毒结束后,用Morris水迷宫和穿梭箱检测学习记忆能力;用化学比色法测定海马超氧化物歧化酶(SOD)、Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶的活力及丙二醛(MDA)含量;用荧光标记方法测定海马Ca2+浓度.结果 各染毒组大鼠的水迷宫逃避潜伏期、穿梭箱主动回避反应潜伏期(AARL)和被动回避反应潜伏期(RARL)均明显高于空白对照组和溶剂对照组,水迷宫末次跨平台次数和穿梭箱主动回避反应次数(AARF)均明显低于空白对照组和溶剂对照组,差异均有统计学意义(P<0.05);且呈剂量-效应关系.与空白对照组和溶剂对照组比较,染毒组大鼠海马组织SOD活力、Na+-K+-ATP酶和ca2+-Mg2+-ATP酶活力明显下降,且呈剂量-效应关系,差异均有统计学意义(P<0.05).染毒组大鼠海马组织MDA含量、Ca2+浓度均明显高于空白对照组和溶剂对照组,且呈剂量-效应关系,差异均有统计学意义(P<0.05).结论 B[a]P所致神经行为毒性,可能与染毒后大鼠海马组织氧化应激受损,Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶活力下降有关.%Objective To investigate the effects of benzo[a]pyrene (B[a]P) exposure on the behaviors and hippocampal oxidative stress and ATPase in rats and the molecular mechanism of neurobehavioral toxicity of B[a]P.Methods A total of 120 male SD rats (21 days old) were randomly and equally assigned to five groups:blank control group,vegetable oil (solvent control) group,and 2.5,5,and 10 mg/kg B[a]P exposure groups.The rats in B [a]P exposure groups were injected intraperitoneally with B[a]P once a day for 4 consecutive weeks.Then,Morris water maze and

  12. Fracturing Fluid (Guar Polymer Gel Degradation Study by using Oxidative and Enzyme Breaker

    Directory of Open Access Journals (Sweden)

    Aung Kyaw

    2012-06-01

    Full Text Available Oxidative and enzyme breakers are used in this research project with the main objective to study on the degradation pattern of fracturing fluid (i.e., guar polymer gel as a function of time, temperature and breaker concentration itself. The fracturing fluid used in hydraulic fracturing or frac pack contain a chemical breakers to reduce the viscosity of the fluid intermingled with the proppant. Chemical breakers reduce viscosity of the guar polymer by cleaving the polymer into small-molecular-weight fragments. The reduction of viscosity will facilitate the flow-back of residual polymer providing rapid recovery of polymer from proppant pack. Ineffective breakers or misapplication of breakers can result in screen-outs or flow-back of viscous fluids both of which can significantly decrease the well productivity. Breaker activity of low to medium temperature range oxidative and enzyme breaker systems was evaluated. ViCon NF an oxidative breaker (Halliburton product and GBW 12- CD an enzyme breaker (BJ Services product were used in this research project with the main objective to study on the degradation pattern of fracturing fluid (guar polymer gel as a function of (time, temperature and breaker concentration itself. This study provides focuses on the way to mix the fracturing fluid, compositions of the fracturing fluid and how to conduct the crosslink and break test. Crosslink test indicate the optimum cross-linker concentration to produce good crosslink gel and the break test gave the characteristic of the gel during degradation process and also the break time. Besides relying on the laboratory experiment, information obtained from research on SPE and US Pattern papers were used to make a comparison study on oxidative and enzyme breakers properties. Degradation pattern observed from the break test showed that reduction in gel viscosity depends on time, temperature and breaker concentration. Observations from experiment also revealed that small

  13. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Science.gov (United States)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  14. Degradation of VX surrogate profenofos on surfaces via in situ photo-oxidation.

    Science.gov (United States)

    Petrick, Lauren M; Sabach, Sara; Dubowski, Yael

    2013-08-06

    Surface degradation of profenofos (PF), a VX nerve gas surrogate, was investigated using in situ photo-oxidation that combines simple instrumentation and ambient gases (O2 and H2O) as a function of exposure conditions ([O3], [OH], UV light λ = 185 and/or 254 nm, relative humidity) and PF film surface density (0.38-3.8 g m(-2)). PF film 0.38 g m(-2) fully degraded after 60 min of exposure to both 254 and 185 nm UV light in humidified air and high ozone. The observed pseudo-first-order surface reaction rate constant (kobs = 0.075 ± 0.004 min(-1)) and calculated hydroxyl concentration near the film surface ([OH]g = (9 ± 2) × 10(7) molecules cm(-3)) were used to determine the second-order rate constant for heterogeneous reaction of PF and OH (k(OH)PF = (5 ± 1) × 10(-12) cm(3) molec(-1) s(-1)). PF degradation in the absence of 185 nm light or without humidity was lower (70% or 90% degradation, respectively). With denser PF films ranging from 2.3 to 3.8 g m(-2), only 80% degradation was achieved until the PF droplet was redissolved in acetonitrile which allowed >95% PF degradation. Surface product analysis indicated limited formation of the nontoxic phosphoric acid ester but the formation of nonvolatile chemicals with increased hydrophilicity and addition of OH.

  15. A reactor system combining reductive dechloirnation with cometabolic oxidation for complete degradation of tetrachloroentylene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A laboratory sequential anaerobic-aerobic bioreactor system,which consisted of an anaerobic fixed film reactor and twoaerobic chemostats, was set up to degrade tetrachloroethylene (PCE)without accumulating highly toxic degradation intermediates. A soil(ca. 150 mg/liter) of PCE stoichiometrically intocis-1,2-dichloroethylene (cis-DCE), was attached to ceramic mediain the anaerobic fixed film reactor. A phenol degrading strain,Alcaligenes sp. R5, which can efficiently degrade cis-DCE byco-metabolic oxidation, was used as inoculum for the aerobicchemostats consisted of a transformation reactor and a growthreactor. The anaerobic fixed film bioreactor showed more than 99 %of PCE transformation into cis-DCE in the range of influent PCE48h. On the other hand, efficient degradation of the resultantcis-DCE by strain R5 in the following aerobic system could not beachieved due to oxygen limitation. However, 54% of the maximum(H2O2) was supplemented to the transformation reactor as anadditional oxygen source. Further studies are needed to achievemore efficient co-metabolic degradation of cis-DCE in the aerobic reactor.

  16. Reversing and Repairing Microstructure Degradation in Solid Oxide Cells During Operation

    DEFF Research Database (Denmark)

    Graves, Christopher R.

    2013-01-01

    The elevated operating temperature of solid oxide electrochemical cells (SOCs) can lead to long-term degradation of cell components due to instability of materials and microstructures. However, this unique possibility for microstructural changes to occur can also be advantageously exploited...... to counteract performance loss, by careful control of operating parameters and cell design. This paper describes four recently discovered methods of in situ reversal or repair of microstructure degradation: (1) The newest method is the elimination of severe electrolysis-induced degradation at high current...... density by reversible battery-like operation, cycling between electrolysis mode and fuel-cell mode. Also reported are new examples of beneficial effects of (2) redox cycling, (3) exsolution of nano-catalysts, and (4) high cathodic polarization, all of which can be used to maintain or even improve...

  17. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    Science.gov (United States)

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.

  18. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    Science.gov (United States)

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  19. Enzymatic Degradation of Oxidized and Reduced Graphene Nanoribbons by Lignin Peroxidase.

    Science.gov (United States)

    Lalwani, Gaurav; Xing, Weiliang; Sitharaman, Balaji

    2014-10-01

    The expanding use of graphene for various industrial and biomedical applications requires efficient remediation strategies during their disposal into waste streams. Additionally, the interactions of graphene with the biota need thorough evaluation. In this study, we investigated the interactions of oxidized and reduced graphene oxide nanoribbons (GONRs and rGONRs) with lignin peroxidase (LiP), a ligninolytic enzyme released from white rot fungus. GONRs and rGONRs were treated with LiP in the presence and absence of veratryl alcohol (VA; an electron transfer mediator and secondary metabolite of white rot fungi). Transmission electron microscopy showed the formation of large defects (holes) in the graphene sheet, which increased in diameter with increased degradation time. Raman spectroscopic analysis indicated that, within 96 hours, in the presence of hydrogen peroxide and VA, the GONRs and rGONRs were completely and partially degraded by LiP, respectively. Comparisons between groups with or without VA showed that degradation of GONRs was accelerated in the presence of VA. These results indicated that LiP could efficiently degrade GONRs and rGONRs in the presence of VA, suggesting that VA may be an essential factor needed to degrade rGONRs via LiP treatment. Thus, the wide presence of white rot fungi, and thereby LiP, in nature, could lead to efficient degradation of graphene present in the environment. Additionally, LiP, which has a higher theoretical redox potential compared to horseradish peroxidases and myeloperoxidases, could be a better candidate for the environmental remediation of graphene.

  20. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  1. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    Science.gov (United States)

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process.

  2. Mechanism and Kinetics Study for Photocatalytic Oxidation Degradation: A Case Study for Phenoxyacetic Acid Organic Pollutant

    Directory of Open Access Journals (Sweden)

    Kian Mun Lee

    2015-01-01

    Full Text Available Photocatalysis is a rapidly expanding technology for wastewater treatment, including a wide range of organic pollutants. Thus, understanding the kinetics and mechanism of the photocatalytic oxidation (PCO for degradation of phenoxyacetic acid (PAA is an indispensable component of risk assessment. In this study, we demonstrated that the central composite design (CCD coupled with response surface methodology (RSM was successfully employed to probe the kinetics and mechanism of PCO degradation for PAA using an efficient zinc oxide (ZnO photocatalyst. In our current case study, four independent factors such as ZnO dosage, initial concentration of PAA, solution pH, and reaction time on the PCO degradation for PAA were examined in detail. Based on our results obtained from RSM analyses, an efficient pathway leading to the high degradation rate (>90% was applying 0.4 g/L of ZnO dosage with 16 mg/L of concentration of PAA at pH 6.73 for 40 minutes. The experimental results were fitted well with the derived response model with R2 = 0.9922. This study offers a cost-effective way for probing our global environmental water pollution issue.

  3. Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-01-01

    Full Text Available This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.

  4. Degradation of p-nitrotoluene by 03/H2 02 process and oxidation mechanism

    Institute of Scientific and Technical Information of China (English)

    YU Ying-hui; MA Jun; HOU Yan-jun; GAO Jin-sheng

    2009-01-01

    The degradation of p-nitrotoluene by O2/H2O2 process in a bubble contact column was investigated.Effects of the molar ratio of hydrogen peroxide to ozone, pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2 O2/O3 molar ratio for the degradation of p-nitrotoluene was around O. 6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-metbyl-2-nitrophenol, 2-methy1-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl) -2-nitro phenol, acetic acid, 2-methylpropanc diacid and 2-(hydroxylmethyl) propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydrexy intermediate pathway. Then unstable polybydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.

  5. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.

    Science.gov (United States)

    Wei, Huangzhao; Yan, Xiaomiao; Li, Xianru; He, Songbo; Sun, Chenglin

    2013-01-15

    The catalyst Ru/TiZrO(4) was applied in the degradation of Isophorone by catalytic wet air oxidation. Mathematical models for the effects of reaction conditions on the Isophorone degradation by catalytic wet air oxidation were developed using a response surface methodology. A model was obtained for each response with multiple regression analysis and then was refined. Analysis of variance revealed that the models developed were adequate. The validity of the models was also verified by experimental data. Analysis of response surface showed that total organic carbon removal and Isophorone conversion were significantly affected (P≤0.01) by reaction time, temperature and their interactions, and affected (P≤0.05) by the square of reaction time. The point of zero charge of Ru/TiZrO(4) catalyst was about 1.72. The total organic carbon removal and Isophorone conversion had a great association with the zeta potential of Ru/TiZrO(4) catalyst. Finally, the degradation pathway of Isophorone in catalytic wet air oxidation was proposed. Within 410 h, the total organic carbon removal remained above 95%, indicating that the Ru/TiZrO(4) catalyst had a good stability.

  6. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions.

    Science.gov (United States)

    Habib, K; Husain, A; Al-Hazza, A

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rp(s)) to the polarization resistance of the OPV cell in air (Rp(air)). In other words, the criterion lim(Rp(s)/Rp(air)) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rp(air) became equal (increased) to Rp(s) as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rp(s) were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  7. The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers.

    Science.gov (United States)

    Chapanian, Rafi; Tse, M Yat; Pang, Stephen C; Amsden, Brian G

    2009-01-01

    The in vivo degradation of trimethylene carbonate (TMC) containing elastomers was investigated, and the mechanism of degradation explored through in vitro degradation under enzymatic and oxidative conditions. The elastomers were prepared via UV initiated crosslinking of prepolymers of TMC and equimolar amounts of TMC and epsilon-caprolactone (CL). The degradation process was followed by investigating the changes in the mechanical properties, mass loss, water uptake, sol content, differential scanning calorimetry, and surface chemistry through attenuated total reflectance infrared (ATR-FTIR) spectroscopy. During in vivo degradation, TMC and TMCCL elastomers exhibited surface erosion. The tissue response was of greater intensity in the case of the TMC elastomer. Both elastomers exhibited degradation in cholesterol esterase containing solutions in vitro, but no parallels were found between the rate of in vivo degradation and the rate of in vitro degradation. Only the TMCCL elastomer degraded in lipase. Degradation in a stable superoxide anion in vitro medium was consistent with the observed in vivo degradation results, indicating a dominant role of oxidation through the secretion of this reactive oxygen species by adherent phagocytic cells in the degradation of these elastomers.

  8. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions.

    Science.gov (United States)

    Bobu, Maria; Yediler, Ayfer; Siminiceanu, Ilie; Zhang, Feifang; Schulte-Hostede, Sigurd

    2013-01-01

    In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC). Special emphasis was laid on the effect of varying reaction pH as well as of the applied oxidant doses on the observed reaction kinetics for each advanced oxidation processes. High degradation efficiencies, particularly in terms of rates of TOC and COD abatement, were obtained for photo-Fenton assisted ozonation [O(3)/UV/H(2)O(2)/Fe(II)], compared to other advanced oxidation processes. At pH 3 and 25°C best results for the degradation of both investigated drugs were achieved when 10 mM H(2)O(2), 0.5 mM Fe(II) and an initial dose of 8.5 mg L(-1) ozone were applied. In addition, the evolution of toxicity of the reaction mixtures for different AOPs has been studied by the bioluminescence test (LUMIStox 300).

  9. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  10. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  11. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.

    Science.gov (United States)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei; Wang, Zhaohui; Liu, Jianshe

    2012-11-30

    C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N(2)-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO(2) system by changing the reaction atmospheres.

  12. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.H. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China); Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Li, Q.F.; Jensen, J.O.; Bjerrum, N.J. [Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Rudbeck, H.C. [Danish Power Systems ApS, Raadhusvej 59, DK 2920 Charlottenlund (Denmark); Chromik, A.; Kerres, J. [Institute for Chemical Process Engineering, University of Stuttgart, D-70199 Stuttgart (Germany); Xing, W. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2011-12-15

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom linking imidazole ring and benzenoid ring, which may eventually lead to the imidazole ring opening and formation of small molecules and terminal groups for further oxidation by an endpoint oxidation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The 2,4,6-trinitrotoluene (TNT) is a potential carcinogens and TNT contaminated wastewater, which could not be effectively disposed with conventional treatments. The supercritical water oxidation (SCWO) to treat TNT contaminated wastewater was studied in this article. The TNT concentration in wastewater was measured by high-performance liquid chromatograph (HPLC) and the degraded intermediates were analyzed using GC-MS. The results showed that SCWO could degrade TNT efficiently with O2. The reaction temperature, pressure, residence time and oxygen excess were the main contributing factors in the process. The decomposition of TNT was accelerated as the temperature or residence time increases. At 550℃, 24 MPa, 120 s and oxygen excess 300%, TNT removal rate could exceed 99.9%. Partial oxidation occurs in SCWO without oxygen. It was concluded that supercritical water was a good solvent and had excellent oxidation capability in the existence of oxygen. The main intermediates of TNT during SCWO include toluene, 1,3,5-trinitrobenzene, nitrophenol, naphthalene, fluorenone, dibutyl phthalate, alkanes and several dimers based on the intermediate analysis. Some side reactions, such as coupled reaction, hydrolysis reaction and isomerization reaction may take place simultaneously as TNT is oxidized by SCWO.

  14. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  15. H2 O2-induced higher order chromatin degradation: A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    Gregory W Konat

    2003-02-01

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations.

  16. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient...... pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...

  17. Mikrobieller Abbau von 14 C-markiertem Benzo[a]pyren durch PAK-adaptierte Bakterienmischkulturen

    OpenAIRE

    Schwiening, Susanne

    2000-01-01

    In the last years the biodegradation of polycylic aromatic hydrocarbons (PAH) for the bioremediation of polluted soils was studied. Important for a successfull remediation is the degradation of the high molecular weight PAH, a major class of carcinogenic and persistent organic compounds. So the aim of this work was to study the biodegradation of the 5-ring benzo[a]pyrene (BaP) as a priority pollutant of the high molecular weight PAH. With the use of 14C labeled BaP the degradation could be qu...

  18. Natural manganese oxides as catalysts for oxidative coupling of methane: a structural and degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, L.M.; Bosch, P.; Viveros, T.; Sanchez, H.; Borodko, Y.G. [Universidad Autonoma Metropolitana-Iztapalapa, Mexico (Mexico). Dept. of Chem.

    1997-12-01

    Natural manganese oxides were evaluated as oxidative coupling catalysts to convert methane into C{sub 2}-hydrocarbons. Reactions were done in a cyclic redox mode in which the oxidized catalyst was reacted with methane at 850 C in the absence of oxygen. The bulk and surface analyses (XRD, XPS, FT-IR) indicate that the catalyst deactivation in the methane atmosphere is related to reduction of manganese ions, oxygen depletion of the catalyst surface and formation of manganese carbide species. It is proposed that the XPS line of O1s electrons, Eb=528.6 eV should be assigned to the surface oxygen bound to the reduced Mn{sup 2+} cation with close oxygen vacancies, and lines ofMn2p{sub 3/2} electrons, Eb=641 eV and C1s at 282.5 eV may be assigned to the surface manganese carbide. (orig.) 27 refs.

  19. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation.

    Science.gov (United States)

    Chen, Pei-Jen; Linden, Karl G; Hinton, David E; Kashiwada, Shosaku; Rosenfeldt, Erik J; Kullman, Seth W

    2006-11-01

    Endocrine disrupting compounds (EDCs) are exogenous environmental chemicals that can interfere with normal hormone function and present a potential threat to both environmental and human health. The fate, distribution and degradation of EDCs is a subject of considerable investigation. To date, several studies have demonstrated that conventional water treatment processes are ineffective for removal of most EDCs and in some instances produce multiple unknown transformation products. In this study we have investigated the use of direct photolysis with low-pressure (LP) Hg UV lamps and UV+hydrogen peroxide (H(2)O(2)) advanced oxidation process (AOP) for the degradation of a prototypic endocrine disrupter, bisphenol A (BPA), in laboratory water. Removal rates of BPA and formation of degradation products were determined by high performance liquid chromatography (HPLC) analysis. Changes in estrogenic activity were evaluated using both in vitro yeast estrogen screen (YES) and in vivo vitellogenin (VTG) assays with Japanese medaka fish (Oryzias latipes). Our results demonstrate that UV alone did not effectively degrade BPA. However, UV in combination with H(2)O(2) significantly removed BPA parent compound and aqueous estrogenic activity in vitro and in vivo. Removal rates of in vivo estrogenic activity were significantly lower than those observed in vitro, demonstrating differential sensitivities of these bioassays and that certain UV/AOP metabolites may retain estrogenic activity. Furthermore, the UV/H(2)O(2) AOP was effective for reducing larval lethality in treated BPA solutions, suggesting BPA degradation occurred and that the degradation process did not result in the production of acutely toxic intermediates.

  20. Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available The influence of a typical prooxidative additive, cobalt stearate, on the thermal stability, degradation kinetics and lifetime of low-density polyethylene (LDPE was investigated using non-isothermal thermogravimetric analysis (TGA in both nitrogen and air atmosphere. The derivative thermogravimetric (DTG curves indicate single stage and multistage decomposition process in nitrogen and air atmosphere respectively. The kinetic parameters of degradation were evaluated using the Flynn–Wall-Ozawa iso-conversion technique. The apparent activation energies for decomposition have been calculated for degradation under nitrogen atmosphere. The lifetime of LDPE (time for 5% mass loss was estimated to be 8.2·1026 min in nitrogen and was found to decrease dramatically with increase in the concentration of cobalt stearate thereby revealing its pro-oxidative ability. Studies indicated that the service/process temperature also has a strong influence on the lifetime of all the formulations investigated. The effect of cobalt stearate on the air oven aging behavior of LDPE at two different temperatures (70°C and 100°C was also investigated to demonstrate the pro-oxidative nature of cobalt stearate.

  1. Degradation kinetics of peptide-coupled alginates prepared via the periodate oxidation reductive amination route.

    Science.gov (United States)

    Dalheim, Marianne Ø; Ulset, Ann-Sissel T; Jenssen, Ina Beate; Christensen, Bjørn E

    2017-02-10

    Biomaterials based on peptide-coupled alginates must provide both optimal biological environments and tuneable stability/degradation profiles. The present work investigates the degradation pattern and kinetics of peptide-coupled alginates prepared via the periodate oxidation reductive amination route. Alginates degrade slowly (non-enzymatically) under physiological conditions by acid-catalysed hydrolysis and alkali-catalysed β-elimination, both operating simultaneously but dominated by the latter. While periodate oxidation alone largely increases the rate of β-elimination, substitution restores the susceptibility towards β-elimination to that of the parent alginate. For acid hydrolysis the rate of depolymerization is proportional to the degree of substitution, being approximately one order of magnitude larger than the parent alginate, but still lower than for the corresponding materials with fully reduced dialdehydes. Results also suggest a composition-dependent preference for substitution at C2 or C3. These results demonstrate how the various chemistries introduced by the coupling provide useful means to tune the biodegradability profiles.

  2. Influence of tiopronin, captopril and levamisole therapeutics on the oxidative degradation of hyaluronan.

    Science.gov (United States)

    Valachová, Katarína; Baňasová, Mária; Topoľská, Dominika; Sasinková, Vlasta; Juránek, Ivo; Collins, Maurice N; Šoltés, Ladislav

    2015-12-10

    The ability to protect hyaluronic acid (HA) from oxidative degradation by cupric ions and ascorbate (production of (•)OH and peroxy-type radicals) during acute phase joint inflammation has been investigated using the following drugs: tiopronin, captopril, and levamisole. Radical scavenging activity, i.e. the propensity for donation of electrons was assessed for the drugs by ABTS and DPPH assays. The kinetics of HA degradation have been measured in the presence of each drug using rotational viscometry. The results of ABTS and DPPH assays show the highest radical scavenging activity for captopril, followed by tiopronin. For levamisole, no effect was observed. Captopril and tiopronin prevented HA degradation induced by (•)OH radicals in a similar manner, while tiopronin was more effective in scavenging peroxy-type radicals. On the other hand, levamisole was shown to be a pro-oxidant. Recovered HA fragments were characterized using FT-IR analysis, the incorporation of a sulphur atom from captopril and tiopronin but not from levamisole into the HA molecule was demonstrated.

  3. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2

    Science.gov (United States)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Cui, Jingzhen; Zhou, Wenbing

    2011-01-01

    Solid-phase photocatalytic degradation of polyethylene (PE) film with cryptomelane-type manganese oxide (OMS-2) as photocatalyst was investigated in the ambient air under ultraviolet and visible light irradiation. The properties of the composite films were compared with those of the pure PE film through performing weight loss monitoring, IR spectroscopy, scanning electron microscopic (SEM) and X-ray photoelectron spectroscopy (XPS). The photoinduced degradation of PE-OMS-2 composite films was higher than that of the pure films, while there has been little change under the visible light irradiation. The weight loss of PE-OMS-2 (1.0 wt%) composite films steadily decreased and reached 16.5% in 288 h under UV light irradiation. Through SEM observation there were some cavities on the surface of composite films, but few change except some surface chalking phenomenon occurred in pure PE film. The degradation rate with ultraviolet irradiation is controllable by adjusting the content of OMS-2 particles in PE plastic. Finally, the mechanism of photocatalytic degradation of the composite films was briefly discussed.

  4. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  5. Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method.

    Science.gov (United States)

    Liu, Xinjuan; Pan, Likun; Lv, Tian; Sun, Zhuo; Sun, Chang Q

    2013-10-15

    Bi2O3-reduced graphene oxide (RGO) composites were successfully synthesized via microwave-assisted reduction of graphite oxide in Bi2O3 precursor solution using a microwave system. Their morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) and methyl orange (MO) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, UV-vis absorption spectroscopy, and electrochemical impedance spectroscopy, respectively. The results show that the RGO addition can enhance the photocatalytic performance of Bi2O3-RGO composites. Bi2O3-RGO composite with 2 wt.% RGO achieves maximum MO and MB degradation rates of 93% and 96% at 240min under visible light irradiation, respectively, much higher than those for the pure Bi2O3 (78% and 76%). The enhanced photocatalytic performance is ascribed to the increased light adsorption and the reduction in electron-hole pair recombination in Bi2O3 with the introduction of RGO.

  6. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    Science.gov (United States)

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides.

  7. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES).

    Science.gov (United States)

    Ling, Ting; Huang, Bin; Zhao, Mingxing; Yan, Qun; Shen, Wei

    2016-03-01

    Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment.

  8. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method.

    Science.gov (United States)

    Yin, Cheng; Cai, Jinjun; Gao, Lingfei; Yin, Jingya; Zhou, Jicheng

    2016-03-15

    A new microwave catalytic oxidation process based on two kinds of catalysts, the commercially available activated carbon (AC) and Mn2O3 nanoparticle modified AC (Mn2O3/AC), was reported for the degradation of 4-nitrophenol (4-NP) without adding any oxidant. Effects of microwave power, catalyst dosage, irradiation time, and initial concentration for the degradation efficiency were studied. Results indicated that catalyst of Mn2O3/AC showed much higher catalytic activity than pure AC and Mn2O3 particles. Significantly, 4-NP degradation efficiency reached 99.6%, corresponding to 93.5% TOC removal under optimal conditions with microwave power of 400W, Mn2O3/AC dosage of 2g, reaction time of 5min, and initial concentration of 100mg/L. Hydroxyl radicals (OH) generated during catalytic reaction is the main oxidant, and O2 can not effectively improve removal rate. We proposed the microwave 'photoelectric effect' to interpret the generation of OH in view that microwave irradiation can directly excite the catalyst to produce electron-hole pairs and then transform H2O into OH on the surface of catalyst in solution. The obtained kinetic equation for microwave catalytic oxidation degradation of 4-NP was in line with pseudo-first-order kinetic model, that is, apparent rate constant increased as microwave power density increase.

  9. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  10. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Whang, Thou-Jen; Huang, Hsien-Yu; Hsieh, Mu-Tao; Chen, Jyun-Jen

    2009-10-29

    Silver nanoparticles doped on titanium oxide (TiO(2)) were produced by laser-liquid interaction of silver nitrate (AgNO(3)) in isopropanol. Characteristics of Ag/TiO(2) (Ag doped TiO(2)) nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO(2) photocatalysts was improved (additional absorption at longer wavelength in visible light region) obviously. The photocatalytic efficiency of Ag/TiO(2) was tested by the degradation of methylene blue (MB) in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO(2) photocatalyst under 2 h illumination with a halogen lamp.

  11. Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Jyun-Jen Chen

    2009-10-01

    Full Text Available Silver nanoparticles doped on titanium oxide (TiO2 were produced by laser-liquid interaction of silver nitrate (AgNO3 in isopropanol. Characteristics of Ag/TiO2 (Ag doped TiO2 nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO2 photocatalysts was improved (additional absorption at longer wavelength in visible light region obviously. The photocatalytic efficiency of Ag/TiO2 was tested by the degradation of methylene blue (MB in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO2 photocatalyst under 2 h illumination with a halogen lamp.

  12. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in Apc(Min) mouse model.

    Science.gov (United States)

    Banks, Leah D; Amoah, Priscilla; Niaz, Mohammad S; Washington, Mary K; Adunyah, Samuel E; Ramesh, Aramandla

    2016-02-01

    Colon cancer ranks third in cancer-related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult Apc(Min) mice. Mice were assigned to a control (n=8) or treatment group (n=8) consisting of 25, 50 and 100-μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for 60 days. Our studies showed that Apc(Min) mice exposed to B(a)P developed a significantly higher number (Polive oil. Treatment of mice with B(a)P and olive oil significantly altered (Polive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (Polive oil has a protective effect against B(a)P-induced colon tumors.

  13. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  14. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Štengl, Václav, E-mail: stengl@iic.cas.cz; Henych, Jiří; Grygar, Tomáš; Pérez, Raúl

    2015-01-15

    Nanostructured TiO{sub 2} and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m{sup 2} g{sup −1}. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures. Undoped TiO{sub 2} and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH{sub 3}O from TMP at room temperature and 100 °C. Cleavage of CH{sub 3}O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP.

  15. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  16. Iron-Doped Titania Nanoparticles for the Photocatalytic Oxidative Degradation of Nitrite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0. 5 %. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO2 catalyst follows zero-order kinetics, which is different from that over pure TiO2. The reaction rate decreases linearly with the increase of the pH of the solution.

  17. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  18. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  19. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    Science.gov (United States)

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization.

  20. Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-03-06

    Western Research Institute in conjunction with Sierra West Consultants, Inc., Tetra Tech, Inc., and the U.S. Department of Energy conducted laboratory and field studies to test different approaches to enhance degradation of hydrocarbons and associated contaminants. WRI in conjunction with Sierra West Consultants, Inc., conducted a laboratory and field study for using ozone to treat a site contaminated with MTBE and other hydrocarbons. Results from this study demonstrate that a TOD test can be used to resolve the O{sub 3} dosage problem by establishing a site-specific benchmark dosage for field ozone applications. The follow-up testing of the laboratory samples provided indications that intrinsic biodegradation could be stimulated by adding oxygen. Laboratory studies also suggests that O3 dosage in the full-scale field implementation could be dialed lower than stoichiometrically designed to eliminate the formation of Cr(VI). WRI conducted a study involving a series of different ISCO oxidant applications to diesel-contaminated soil and determined the effects on enhancing biodegradation to degrade the residual hydrocarbons. Soils treated with permanganate followed by nutrients and with persulfate followed by nutrients resulted in the largest decrease in TPH. The possible intermediates and conditions formed from NOM and TPH oxidation by permanganate and activated persulfate favors microbial TPH degrading activity. A 'passive-oxidation' method using microbial fuel cell (MFC) technology was conducted by WRI in conjunction with Tetra Tech, Inc., to degrade MTBE in groundwater. These experiments have demonstrated that a working MFC (i.e., one generating power) could be established in the laboratory using contaminated site water or buffered media inoculated with site water and spiked with MTBE, benzene, or toluene. Electrochemical methods were studied by WRI with goal of utilizing low voltage and amperage electrical sources for 'geo-oxidation' of organic

  1. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    OpenAIRE

    Seungwon Lee; Jisuk Lee; Kyusuk Nam; Weon Gyu Shin; Youngku Sohn

    2016-01-01

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscop...

  2. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  3. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide.

    Science.gov (United States)

    Mäkelä, Noora; Sontag-Strohm, Tuula; Maina, Ndegwa Henry

    2015-06-05

    Cereal β-glucans are polysaccharides with health benefits that have been linked to their ability to increase luminal viscosity. However, the functional properties of cereal β-glucans may be diminished by the susceptibility of this polysaccharide to oxidative degradation. In this study, barley β-glucan was oxidised with hydrogen peroxide or ascorbic acid and the oxidative degradation of β-glucan was investigated using both asymmetrical flow field-flow fractionation (AsFlFFF) with aqueous solvent and high performance size exclusion chromatography (HPSEC) with LiBr in DMSO as the solvent. Oxidation was shown to cause degradation of β-glucan, the reaction being faster when oxidised with hydrogen peroxide compared with ascorbic acid. Both HPSEC and AsFlFFF showed comparable results as long as aggregates (only observed in AsFlFFF) were not included in the integration. The compact aggregates observed in oxidised samples suggest oxidation driven interactions between β-glucan molecules.

  4. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.

  5. Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Luck, Kyle A; Arnold, Heather N; Shastry, Tejas A; Marks, Tobin J; Hersam, Mark C

    2016-10-10

    Polyfluorenes have achieved noteworthy performance in organic electronic devices, but exhibit undesired green band emission under photo-oxidative conditions that have limited their broad utility in optoelectronic applications. In addition, polyfluorenes are well-known dispersants of single-walled carbon nanotubes (SWCNTs), although the influence of SWCNTs on polyfluorene photo-oxidative stability has not yet been defined. Here we quantitatively explore the photophysical properties of poly[(9,9-bis(3/-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) under photo-oxidative conditions when it is in van der Waals contact with SWCNTs. Photoluminescence spectroscopy tracks the spectral evolution of the polymer emission following ambient ultraviolet (UV) exposure, confirming that PFN exhibits green band emission. In marked contrast, PFN-wrapped SWCNTs possess high spectral stability without green band emission under the same ambient UV exposure conditions. By investigating a series of PFN thin films as a function of SWCNT content, it is shown that SWCNT loadings as low as ~23 wt% suppress photo-oxidative degradation. These findings suggest that PFN-SWCNT composites provide an effective pathway toward utilizing polyfluorenes in organic optoelectronics.

  6. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  7. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  8. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  9. DI-(2-ETHYLHEXYL PHTHALATE OXIDATIVE DEGRADATION BY FENTON PROCESS IN SYNTHETIC AND REAL PETROCHEMICAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. Esmaeli

    2011-09-01

    Full Text Available Di-(2-Ethylhexyl phthalate (DEHP belongs to the class of phthalate esters and is used as an additive in many products including plastics, paints and inks or as a solvent in industrial formulations. The degradation of DEHP in aqueous solution using oxidative Fenton reaction (H2O2/Fe2+ was carried out in this study. It was found that H2O2 concentration, Fe2+ concentration, and pH were the three main factors that could significantly influence the degradation rates of DEHP. The highest degradation percentage (85.6 % of DEHP was observed within 60 min at pH 3 in H2O2/Fe2+ system. The results of our study suggested that the concentration with 90 mg/L H2O2, 5 mg/L Fe2+, and 20 mg/L DEHP in the solution at pH 3 were the optimal conditions. The optimized reaction parameters were preceded for treatment of real wastewater obtained from a petrochemical plant.

  10. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38-Elimination and degradation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ticiane Pokrywiecki [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: sauer@enq.ufsc.br; Casaril, Leonardo [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: leonardocasaril@ufsc.grad.br; Oberziner, Andre Luiz Bertoldi [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: andreoberzine@hotmail.com; Jose, Humberto Jorge [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: humberto@enq.ufsc.br; Moreira, Regina de Fatima Peralta Muniz [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: regina@enq.ufsc.br

    2006-07-31

    The application of advanced oxidation processes (H{sub 2}O{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV and TiO{sub 2}/UV) to treat tannery wastewater was investigated. The experiments were performed in batch and continuous UV reactors, using TiO{sub 2} as a catalyst. The effect of the hydrogen peroxide concentration on the degradation kinetics was evaluated in the concentration range 0-1800 mg L{sup -1}. We observed that the degradation rate increased as the hydrogen peroxide increased, but excessive H{sub 2}O{sub 2} concentration was detrimental because it acted as a hydroxyl radical scavenger since it can compete for the active sites of the TiO{sub 2}. In the H{sub 2}O{sub 2}/UV treatment, the COD removal reached around 60% in 4 h of reaction, indicating that the principal pollutants were chemically degraded as demonstrated by the results for BOD, COD, nitrate, ammonium and analysis of the absorbance at 254 nm. Artemia salina toxicity testing performed in parallel showed an increase in toxicity after AOP treatment of the tannery wastewater.

  11. Hyaluronic acid abrogates nitric oxide-dependent stimulation of collagen degradation in cultured human chondrocytes.

    Science.gov (United States)

    Surazynski, Arkadiusz; Miltyk, Wojciech; Czarnomysy, Robert; Grabowska, Joanna; Palka, Jerzy

    2009-07-01

    Experimental inflammation induced in cultured chondrocytes by inflammatory cytokine IL-1 beta stimulates collagen degradation by metalloproteinases. We propose that nitric oxide (NO) may represent down stream signaling molecule of IL-1-induced collagen degradation in chondrocytes. It was found that IL-1 beta induced the activity of MMP-2 and MMP-9 during the 48 h time course of the experiment, especially after 24h incubation, while DETA/NO, donor of NO, stimulated the process at 12h incubation. The mechanism of IL-1-dependent stimulation of NO production was found at the level of iNOS expression and activation of NF-kappaB. We found that hyaluronic acid (HA) counteracted IL-induced degradation of collagen in chondrocytes. Although, HA by itself had no effect on the metaloproteinases activity, when added to IL-1 beta or DETA/NO treated chondrocytes it contributed to the restoration of the MMPs activity to the control level. The mechanism of this phenomenon involves inhibition of NF-kappaB activation. The data suggest that NO may represent a target molecule for protective effect of hyaluronic acid on interleukin-1-induced stimulation of metaloproteinases activity in cultured human chondrocytes.

  12. Degradation of gestodene (GES)-17α-ethinylestradiol (EE2) mixture by electrochemical oxidation.

    Science.gov (United States)

    Nájera-Aguilar, Hugo Alejandro; Gutiérrez-Hernández, Rubén Fernando; González de Los Santos, Rocío; García-Lara, Carlos; Méndez-Novelo, Roger; Rojas-Valencia, María Neftalí

    2016-12-01

    Evidence of the negative effects of several pharmaceutical molecules, such as hormones and steroids, on the environment can be observed throughout the world. This paper presents the results of the anodic oxidation of the mixture of gestodene steroid hormones and 17 α-ethinylestradiol present in aqueous medium. The tests were conducted in an undivided cell containing a working volume of 50 mL, using a Na2SO4 solution as support electrolyte and boron-doped diamond electrodes. The experiments were adjusted to the structure of a 3(3) factorial design. The evaluated factors were: support electrolyte concentration (0.02, 0.05, and 0.10 M), pH of the reaction media (2, 3, and 4), and current density (16, 32, and 48 mA cm(-2)). Under the optimum conditions (0.02 M Na2SO4, pH 4, and current density of 32 mA cm(-2)), the degradation of at least 93% of the initial concentration of gestodene and 17α-ethinylestradiol was reached in a reaction time of 5 and 10 min, respectively. The complete degradation of both molecules required 15 min of reaction. Under these conditions, the degradation profile of the pharmaceutical mixture as each one of the active ingredients, followed a pseudo-first order kinetic behavior (kmix = 0.0321, kGES = 0.4206, and kEE2 = 0.3209 min(-1)).

  13. The non-oxidative degradation of ascorbic acid at physiological conditions.

    Science.gov (United States)

    Simpson, G L; Ortwerth, B J

    2000-04-15

    The degradation of L-ascorbate (AsA) and its primary oxidation products, L-dehydroascorbate (DHA) and 2,3-L-diketogulonate (2, 3-DKG) were studied under physiological conditions. Analysis determined that L-erythrulose (ERU) and oxalate were the primary degradation products of ASA regardless of which compound was used as the starting material. The identification of ERU was determined by proton decoupled (13)C-nuclear magnetic resonance spectroscopy, and was quantified by high performance liquid chromatography, and enzymatic analysis. The molar yield of ERU from 2,3-DKG at pH 7.0 37 degrees C and limiting O(2)97%. This novel ketose product of AsA degradation, was additionally qualitatively identified by gas-liquid chromatography, and by thin layer chromatography. ERU is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.

  14. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    Science.gov (United States)

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent.

  15. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    Directory of Open Access Journals (Sweden)

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  16. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    Science.gov (United States)

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  17. Degradation of paraoxon (VX chemical agent simulant) and bacteria by magnesium oxide depends on the crystalline structure of magnesium oxide.

    Science.gov (United States)

    Sellik, A; Pollet, T; Ouvry, L; Briançon, S; Fessi, H; Hartmann, D J; Renaud, F N R

    2016-11-22

    In this work, our goal was to study the capability of a single metallic oxide to neutralize a chemical agent and to exhibit an antibacterial effect. We tested two types of magnesium oxides, MgO. The first MgO sample tested, which commercial data size characteristic was -325 mesh (MgO-1) destroyed in 3 h, 89.7% of paraoxon and 93.2% of 4-nitrophenol, the first degradation product. The second MgO sample, which commercial data size was <50 nm (MgO-2) neutralized in the same time, 19.5% of paraoxon and 10.9% of 4-nitrophenol. For MgO-1 no degradation products could be detected by GC-MS. MgO-1 had a bactericidal activity on Escherichia coli (6 log in 1 h), and showed a decrease of almost 3 log on a Staphylococcus aureus population in 3 h. MgO-2 caused a decrease of 2 log of a E.coli culture but had no activity against S. aureus. Neither of these two products had an activity on Bacillus subtilis spores. Analytical investigations showed that the real sizes of MgO nanoparticles were 11 nm for MgO-1 and 25 nm for MgO-2. Moreover, their crystalline structures were different. These results highlighted the importance of the size of the nanoparticles and their microscopic arrangements to detoxify chemical products and to inhibit or kill microbial strains.

  18. Lactoferrin Directly Scavenges Hydroxyl Radicals and Undergoes Oxidative Self-Degradation: A Possible Role in Protection against Oxidative DNA Damage

    Directory of Open Access Journals (Sweden)

    Yuki Ogasawara

    2014-01-01

    Full Text Available In this study, we examined the protective effect of lactoferrin against DNA damage induced by various hydroxyl radical generation systems. Lactoferrin (LF was examined with regard to its potential role as a scavenger against radical oxygen species using bovine milk LF. Native LF, iron-saturated LF (holo-LF, and apolactoferrin (apo-LF effectively suppressed strand breaks in plasmid DNA due to hydroxyl radicals produced by the Fenton reaction. In addition, both native LF and holo-LF clearly protected calf thymus DNA from fragmentation due to ultraviolet irradiation in the presence of H2O2. We also demonstrated a protective effect of all three LF molecules against 8-hydroxydeoxyguanosine (8-OHdG formation in calf thymus DNA following ultraviolet (UV irradiation with H2O2. Our results clearly indicate that native LF has reactive oxygen species-scavenging ability, independent of its nature as a masking component for transient metals. We also demonstrated that the protective effect of LF against oxidative DNA damage is due to degradation of LF itself, which is more susceptible to degradation than other bovine milk proteins.

  19. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.

    Science.gov (United States)

    Duca, Clara; Imoberdorf, Gustavo; Mohseni, Madjid

    2017-02-21

    This research focused on the effects of inorganic water constituents on the efficiency of vacuum UV (VUV) for the degradation of micropollutants in surface water supplies. Atrazine was used as a model miropollutant, and bicarbonate, sulphate, and nitrate were used as the most common inorganic constituents in the water matrix. First, the absorbance of radiation at 254 and 185 nm was measured in the presence of different ions. At 254 nm, only nitrate showed a measurable absorption coefficient of [Formula: see text] = 3.51 M[Formula: see text] cm[Formula: see text], and all other ions showed a molar absorption coefficient below the detection limit. However, at 185 nm, all the ions showed high absorption coefficients, with nitrate giving the highest absorption coefficient of [Formula: see text] = 5568 M[Formula: see text] cm[Formula: see text]. Second, the hydroxyl radical (HO[Formula: see text]) scavenging effects of the same inorganic ions were evaluated; nitrate and bicarbonate showed a negative effect during the UV/H2O2 and VUV advanced oxidation processes. Sulfate was photolyzed with 185 nm UV to form HO[Formula: see text], and for this reason, it assisted the degradation of the target micropollutant, as demonstrated by increases in the degradation rate constant. An additional component of this work involved developing a method for measuring the quantum yield of atrazine at 185 nm. This made it possible to distinguish the contribution of OH radical attach from that of direct photolysis towards the degradation of atrazine.

  20. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    Science.gov (United States)

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  1. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Science.gov (United States)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-12-01

    The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800-900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic "cauliflower-shape protrusions". The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires' surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires' preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better understanding of the precious metals etching and deposition processes during oxidation.

  2. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  3. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone

    Science.gov (United States)

    2017-01-01

    Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1H and 31P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.

  4. [Characteristics of nitrobenzene containing wastewater catalytic oxidation degradation by Fenton reagent].

    Science.gov (United States)

    Wei, C; Chen, C; Wang, G; Ren, Y; Wu, C; Wu, H

    2001-09-01

    Through the alteration of the concentration of catalyst and oxidant, the rulers and dynamics of nitrobenzene oxidized by Fenton reagent in different concentrations were studied. The correlativity of the reaction time and relatively remain nitrobenzene was analyzed by the unitary linear regress equation. The result of the analysis proves that the coefficient was over the critical constant. The oxidation of nitrobenzene by Fenton reagent was in conformity with first-order dynamics model and the reaction rate constant was got at the same time. The idea, using the complex of Fe as the catalyst replacing Fe2+ in the Fenton Reaction, not only got a higher reaction velocity and efficiency, but also had a distinct exclusive to the degradation of nitrobenzene. The remove velocity of nitrobenzene was improved from 17.48 mg/(L.min) to 71.22 mg/(L.min), the remove rate in 5 minutes was from 9.74% to 91.79%. The nonhomogeneous catalyst made by the artificial zeolite with Fe-complex adsorbed had the same catalyzing behavior. In addition, ultraviolet radiation can also improves the Fenton reaction to some degree. These research works could demonstrate the good application potentiality of Fenton reagent in treating wastewater.

  5. Bioremediation of phenanthrene, chrysene and benzo[a]pyrene by fungi screened from nature

    Directory of Open Access Journals (Sweden)

    Tony Hadibarata

    2009-09-01

    Full Text Available Laccase of Polyporus sp. S133 was able to oxidize most of the 3 different rings amount polycyclic aromatic hydrocarbons (PAHs tested. Phenanthrene was removed by 89% followed by chrysene and benzo[a]pyrene which were oxidized by 66 and 55%, respectively. Addition of 1-hydroxybenzotriazole (HBT to the reaction mixture increased oxidation of PAHs, especially phenanthrene was almost completely removed from the reaction mixture. Oxidation of chrysene and benzo[a]anthracene increased 12 and 10% with the mediator to 78 and 65% in the presence of HBT. PAH-quinones as oxidation products were formed from all PAH to different extents. A part of PAH was polymerized in the laccase/mediator system to products of weight-average molecular weight (MW. The correlation of the ionization potentials of PAH with the oxidation of these compounds is limited to the alternating PAH.

  6. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  7. Electro-catalytic oxidation of phenacetin with a three-dimensional reactor: Degradation pathway and removal mechanism.

    Science.gov (United States)

    Xiao, Mengshi; Zhang, Yonggang

    2016-06-01

    Phenacetin is a common analgesic, anti-arthritic and anti-rheumatic drug. This study dealt with the degradation of phenacetin in alkaline media using a three-dimensional reactor with particle electrodes. Particular attention was paid to the degradation pathway and the reaction mechanism in the system. Liquid chromatography coupled with time-of-flight mass spectrometry was used to identify the intermediates. The phenacetin was observed to be firstly cut off the branch chains main by direct oxidation, and then the intermediates further degraded to ring opening products by hydroxyl radical resulting from indirect oxidation and finally mineralized to CO2, H2O. A possible removal mechanism was proposed that direct and indirect oxidation together did effect on the pollutants with oxygen.

  8. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang, Pingping; Song, Haiyan [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001 (Australia)

    2014-04-01

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H{sub 2}O{sub 2}. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H{sub 2}O{sub 2} system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H{sub 2}O{sub 2}) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H{sub 2}O{sub 2}. Such experiments indicated that in the presence of H{sub 2}O{sub 2}, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  9. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    Science.gov (United States)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  10. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    Science.gov (United States)

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  11. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H202/UV and 03

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2 O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants.

  12. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB.

  13. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  14. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pardeshi, S.K. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India)], E-mail: skpar@chem.unipune.ernet.in; Patil, A.B. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India)

    2009-04-15

    Photocatalytic degradation (PCD) of resorcinol a potent endocrine disrupting chemical in aqueous medium was investigated by ZnO under sunlight irradiation in a batch photoreactor. The influence of various parameters such as photocatalyst amount, initial concentration of resorcinol and pH was examined for maximum PCD of resorcinol. A considerable influence of pH upon the chemical oxygen demand (COD) disappearance was observed. In general, neutral or basic pH is favorable for COD removal of resorcinol. PCD intermediates were identified using FTIR and GC/MS. Two of the initial oxidation intermediates detected were 1,2,4-trihydroxy-benzene and 1,2,3-trihydroxy-benzene. FTIR studies revealed 1,2,4-trihydroxy-benzene as the major PCD intermediate. A working photodegradation mechanism is also suggested for PCD of resorcinol. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of resorcinol from waste water.

  15. Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, I I; Vakhrusheva, T V; Sokolov, A V; Kostevich, V A [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation); Ragimov, A A, E-mail: irina.vlasova@yahoo.com [National Research Centre of Surgery, RAMS, Abrikosovskiy per. 2, Moscow (Russian Federation)

    2011-04-01

    Due to their extraordinary properties, single-walled carbon nanotubes (SWNTs) have a tremendous potential for medical applications such as clinical diagnostics, targeted drug (or gene) delivery and cancer therapy. Hence, effects of SWNTs on living systems as well as mechanisms for biodegradation of SWTNs are of great importance and must be studied before starting to explore SWNTs for medical use. This study was undertaken to compare the potential of different peroxidases in degrading carboxylated SWNT (c-SWNT) and to elucidate the role of peroxidase-generated reactive products in this process. A detailed study showed that neither reactive intermediate products nor free radicals generated via peroxidase cycle can considerably oxidize c-SWNT. Biodegradation of c-SWNT in model system can be induced by free radicals generated as a result of heme degradation. The latter explains why hemoglobin, which is a pseudo-peroxidase possessing low peroxidase activity, is able to oxidize carbon nanotubes with a higher efficiency than horseradish peroxidase. However, c-SWNT in the presence of blood plasma (15 vol %) demonstrated no degradation even at high concentrations of hemoglobin and H{sub 2}O{sub 2}. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that MPO, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in degrading carbon nanotubes. Since neutrophils are a main source of human MPO, we tested the effect of SWNTs on these cells. SWNTs were unable to stimulate neutrophils. On the other hand, they dose-dependently enhanced opsonized zymosan-induced cell stimulation as detected by measuring the amount of hypochlorite produced. This finding may be relevant to the in vivo situation, for example, at inflammatory sites. In order to imitate conditions characteristic of phagosomes and inflammatory sites, we titrated the suspension of c-SWNT in the presence of

  16. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    Science.gov (United States)

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  17. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  18. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  19. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight.

    Science.gov (United States)

    Wang, Yuntao; Pei, Yaqiong; Xiong, Wenfei; Liu, Tingguo; Li, Jing; Liu, Shilin; Li, Bin

    2015-11-01

    Sunlight photocatalyst was fabricated by in situ synthesis of Cu2O in the regenerated chitin (RC)/graphene oxide (GO) composite film, where the porous chitin film was used as the microreactor for the formation of nano Cu2O. Nano Cu2O was immobilized and evenly distributed in the matrix and Cu2O tended to grow on the GO sheets. Cu2O inside the matrix excite and generate free photoelectrons and electron holes, which was responsible for the degradation of dyes, while GO transferred the yielded photoelectrons to prevent the generation of local high potential zone and induce the chain degradation at more points. So it was found that the porous chitin film could load Cu2O and graphene at the same time, controlling the size of Cu2O and leading to easy recycle and reuse of the photocatalyst. Moreover, the introduction of GO has dramatically improved the photocatalytic activity of Cu2O in the Cu2O/GO/RC film, showing great potential application in wastewater treatment utilizing solar energy.

  20. Tailoring oxides of copper-Cu2O and CuO nanoparticles and evaluation of organic dyes degradation

    Science.gov (United States)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-04-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu2O and CuO nanoparticles.

  1. Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-09-01

    Full Text Available In this study, a novel electrochemical oxidation cell using stainless steel electrodes was found to be effective in oxidizing acetaminophen and its transformation products in short reaction times. Aqueous solutions of 10 mg/L-acetaminophen were prepared at pH 3, 5, 7, and 9. These solutions were electrochemically treated at direct current (DC densities of 5.7 mA/cm2, 7.6 mA/cm2, and 9.5 mA/cm2. The pharmaceutical and its intermediates/oxidation products were determined by using high pressure liquid chromatography (HPLC. The results showed that electrochemical oxidation processes occurred in the cell. Acetaminophen degradation rate constants increased proportionally with the increase of current intensity. High current densities accelerated the degradation of acetaminophen; however, this effect diminished remarkably at pH values greater than 5. At pH 3 and 9.5 mA/cm2, the fastest degradation of acetaminophen and its intermediates/oxidation products was achieved. To minimize the wear down of the electrodes, a current density ramp is recommended, first applying 9.5 mA/cm2 during 2.5 min or 7.6 mA/cm2 during 7.5 min and then continuing the electrochemical oxidation process at 5.7 mA/cm2. This strategy will hasten the acetaminophen oxidation, extend the electrode’s life, and shorten the reaction time needed to degrade the pharmaceutical and its intermediates/oxidation products. DC densities up to 9.5 mA/cm2 can be supplied by photovoltaic cells.

  2. A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene.

    Science.gov (United States)

    Kyomoto, Masayuki; Moro, Toru; Yamane, Shihori; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2017-01-01

    The surface and substrate of a cross-linked polyethylene (CLPE) liner are designed to achieve resistance against oxidative degradation in the construction of hip joint replacements. In this study, we aimed to evaluate the oxidative degradation caused by lipid absorption of a highly hydrophilic nanometer-scaled thickness layer prepared by grafting a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer and a high-dose gamma-ray irradiated CLPE with vitamin E blending (HD-CLPE[VE]). The HD-CLPE(VE) and PMPC-grafted HD-CLPE(VE) exhibited extremely high oxidation resistance regardless of lipid absorption, even though residual-free radical levels were detectable. The water wettability of the PMPC-grafted CLPE and PMPC-grafted HD-CLPE(VE) surfaces was considerably greater than that of untreated surfaces. The hydrated PMPC-grafted layer also exhibited extremely low solubility for squalene. Lipids such as squalene and cholesterol esters diminished the oxidation resistance of CLPE despite the vitamin E improvement. Notably, the PMPC-grafted surface was resistant to lipid absorption and diffusion as well as subsequent lipid-related oxidative degradation, likely because of the presence of the hydrated PMPC-grafted layer. Together, these results provide preliminary evidence that the resistance against lipid absorption and diffusion of a hydrated PMPC-grafted layer might positively affect the extent of resistance to the in vivo oxidation of orthopedic implants.

  3. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng

    2011-06-28

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from experiments on bulk single crystals that Bi2Se3 gets additional n-type doping after exposure to the atmosphere, thereby reducing the relative contribution of SS in total conductivity. In this article, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological SS. Appropriate surface passivation or encapsulation may be required to probe topological SS of Bi2Se3 by transport measurements. © 2011 American Chemical Society.

  4. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Denise Bargheer

    2015-01-01

    Full Text Available 51Cr-labeled, superparamagnetic, iron oxide nanoparticles (51Cr-SPIOs and 65Zn-labeled CdSe/CdS/ZnS-quantum dots (65Zn-Qdots were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the 65Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring 51Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, 65Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic 65ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC, but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our 65Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in

  5. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    Directory of Open Access Journals (Sweden)

    Tobias Jung

    2014-01-01

    Full Text Available Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation.

  6. The proteasome and the degradation of oxidized proteins: part III-Redox regulation of the proteasomal system.

    Science.gov (United States)

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation.

  7. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    Science.gov (United States)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  8. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.

    Science.gov (United States)

    Fan, Jinhong; Wang, Hongwu; Ma, Luming

    2016-08-01

    The reaction of zero-valent iron and aluminum with oxygen produced reactive oxidants that can oxidize 4-chlorophenol (4-CP). However, oxidant yield without metal surface cleaning to dissolve the native oxide layer or in the absence of ligands was too low for practical applications. The addition of oxalate (ox) to dissolved oxygen-saturated solution of Fe(0)-Al(0) significantly increased oxidant yield because of the dissolution, pH buffer, and complexing characteristics of ox. Ox-enhanced reactive oxidant generation was affected by ox concentration and solution pH. The critical effect of ox dosing was confirmed with the reactive species of [Fe(II)(ox)0] and [Fe(II)(ox)2 (2-)]. Systematic studies on the effect of the initial and in situ solution pH revealed that 4-CP oxidation was controlled by the continuous release of dissolved Fe(2+) and Al(3+), their fate, and the activation mechanisms of O2 reduction. The degradation pathway of 4-CP in ox-enhanced Fe(0)-Al(0)/O2 may follow the 4-chlorocatechol pathway. The robustness of the ox-enhanced Al(0)-Fe(0)-O2 process was determined with one-time dosing of ox. Therefore, ox is an ideal additive to enhancing the Fe(0)-Al(0)/O2 system for the oxidative degradation of aqueous organic pollutants.

  9. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH(-) or (•)OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  10. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively.

  11. Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole.

    Science.gov (United States)

    González, O; Sans, C; Esplugas, S; Malato, S

    2009-07-01

    This work deals with the treatment of highly concentrated sulfamethoxazole (SMX) solutions by some advanced oxidation processes (AOPs) that have not been studied until now. The antibiotic has been subjected to oxidation by photolysis, UV/H(2)O(2) and photo-Fenton using both artificial light and sunlight as radiation sources depending on the installation scale. SMX, total organic carbon (TOC) and chemical oxygen demand (COD), as well as the generation of NH(4)(+), NO(3)(-) and SO(4)(2-), were followed. SMX photolytic degradation efficiency followed the ranking: 254 nm lamps > sunlight > black-light blue (BLB) lamps (negligible for the latter). The highest eliminations were obtained by means of UV/H(2)O(2) reaction in a lab-scale reactor (254 nm lamps) with an initial H(2)O(2) concentration of 200 mg L(-1): DeltaTOC = 62.3%; DeltaCOD = 79.1% (more than 6 h). Similar removals were achieved with a lab-scale photo-Fenton reactor (BLB lamps) but using 400 mg L(-1) of oxidant (94 min). The use of solar light appeared to be an interesting option since satisfactory results were obtained in the solar-based photo-Fenton experiments compared to the lab-scale ones, and also since a significant improvement with respect to the solar photolysis was achieved when performing the UV/H(2)O(2) reaction with sunlight. Finally, some of the resultant effluents from different reactions were subjected to a short-term biodegradability test in order to estimate their quality from a biological point of view.

  12. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors.

    Science.gov (United States)

    Bhunia, Susanta Kumar; Jana, Nikhil R

    2014-11-26

    Sunlight-induced degradation of organic pollutants is an ideal approach for environmental pollution control and wastewater treatment. Although a variety of photocatalysts have been designed toward this goal, efficient degradation of colorless organic pollutants by visible light is a challenging issue. Here, we show that a reduced graphene oxide (rGO)-based composite with silver nanoparticle (rGO-Ag) can act as an efficient visible-light photocatalyst for the degradation of colorless organic pollutants. We have developed a simple, large-scale synthesis method for rGO-Ag and used it for the degradation of three well-known endocrine disruptors (phenol, bisphenol A, and atrazine) under UV and visible light. It is found that photocatalytic efficiency by rGO-Ag under visible light is significantly higher compared to that of rGO or silver nanoparticles. It is proposed that Ag nanoparticles offer visible-light-induced excitation of silver plasmons, and conductive rGO offers efficient charge separation and thus induces oxidative degradation of the organic pollutant. This approach can be extended for sunlight-induced degradation of different organic pollutants.

  13. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study.

    Science.gov (United States)

    Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H

    2017-03-27

    The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH3)2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH3), N-formyl (N(CH3)CHO), and CHCH3OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.

  14. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  15. Mercury oxide as an efficient photocatalyst for degradation of rhodamine B dye under visible-light irradiation

    Science.gov (United States)

    Li, Datang; Li, Jiayin; Tang, Jianting

    2016-11-01

    In this work, a new visible-light-responsive photocatalyst, mercury oxide (HgO) was successfully developed. Its activity is significantly higher than that of the highly efficient photocatalyst, Ag3PO4 in degradation of rhodamine B (RhB) dye under irradiation of visible light. The HgO photocatalyst can be reused for at least three cycles without obvious loss of its activity in the degradation experiments. It was found that the RhB degradation rate is significantly influenced by the dye solution pH. The ultrahigh photocatalytic activity of HgO is attributed to its strong oxidization-ablility of the photogenerated holes, and high separation-possibility of the photogenerated carriers.

  16. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  17. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.

  18. Innovative Protocols for in SITU MTBE Degradation by Using Molecular Probes-An Enhanced Chemical-Bio Oxidation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-20

    In situ chemical oxidation (ISCO) is a common technology to cleanup petroleum hydrocarbon-contaminated soils and groundwater. Sodium percarbonate (SPC) is an oxidant which is activated by iron (Fe) to produce Fenton-like reactions. Western Research Institute, in conjunction with Regenesis and the U.S. Department of Energy, conducted a study that investigated the performance of a 'safe' oxidant, SPC, to cleanup groundwater and soils contaminated with petroleum hydrocarbons and associated contaminants (e.g., MTBE). Results from a field pilot test in Frenchglen, Oregon showed VOC concentrations in groundwater decreased substantially within 2 weeks after injecting activated SPC (RegenOx). A protocol was established for determining RegenOx TOD in soils and groundwater. Total oxidant demand tests were necessary to determine the correct dosage of RegenOx to apply in the field and sufficiently degrade the contaminants of concern. Bench studies with RegenOx showed this technology was effective in degrading diesel fuel and 1,4-dioxane. The Fe-silica activator (RegenOx Part B) was tested with another oxidant, sodium persulfate. Bench tests results showed the combination of sodium persulfate and RegenOx Part B was effective in reducing PCE, MTBE, benzene, and n-heptane concentrations in water. Overall, the results of this project indicated that most petroleum contaminants in soil and groundwater can be sufficiently degraded using the RegenOx technology.

  19. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material.

    Science.gov (United States)

    Quiroz, Marco A; Sánchez-Salas, José L; Reyna, Silvia; Bandala, Erick R; Peralta-Hernández, Juan M; Martínez-Huitle, Carlos A

    2014-03-15

    Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation.

  20. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    Science.gov (United States)

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  1. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  2. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  3. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions.

    Science.gov (United States)

    Anirudhan, T S; Deepa, J R

    2017-03-15

    Purpose of this study is to report the synthetic procedure of a novel photo catalyst, nano zinc oxide incorporated graphene oxide/nanocellulose (ZnO-GO/NC) for the effective adsorption and subsequent photo degradation of ciprofloxacin (CF), an antibiotic widely used in the poultry. Self cleaning property in cellulose was achieved by introducing a nano zinc oxide incorporated graphene oxide into nanocellulose (NC) matrix. By incorporating nano zinc oxide (ZnO) in graphene oxide (GO), band gap could be tuned to 2.4eV and after the composite formation with NC, the band gap was enhanced to 2.8eV which is in the visible region. Thus the degradation of the CF was achieved under the visible light. Photo degradation was due to electron hole interaction. The step wise modification in the synthesis ZnO-GO/NC was characterized using FT-IR, XRD, SEM, EDS, AFM, DRS-UV and BET N2 adsorption isotherm techniques. The values of surface area, pore volume and pore radius were found to be 12.68m(2)/g, 0.026mL/g and 12.5nm, respectively. Efficiency in the adsorption process of CF onto ZnO-GO/NC was verified by batch adsorption technique. The optimum pH was found to be 5.5 and dose of the ZnO-GO/NC was optimized as 2.0g/L. Equilibrium was attained at 120min and the adsorption of drug followed second-order kinetics. Sips isotherm was the best fitted model and could explain the nature of interaction of CF with ZnO-GO/NC. The studies revealed that the degradation followed first-order kinetics and the optimum pH for the degradation process was found to be 6.0 and achieved a maximum degradation efficiency of 98.0%. The reusability of ZnO-GO/NC after five consecutive cycles indicated it to be a potential candidate for the removal and degradation of CF from aquatic environment.

  4. Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions

    Science.gov (United States)

    Sebol, L.A.; Robertson, W.D.; Busenberg, E.; Plummer, L.N.; Ryan, M.C.; Schiff, S.L.

    2007-01-01

    A detailed local-scale monitoring network was used to assess CFC distribution in an unconfined sand aquifer in southwestern Ontario where the zone of 1-5-year-old groundwater was known with certainty because of prior use of a bromide tracer. Groundwater ???5 years old was confined to an aerobic zone at ???5 m depth and had CFC concentrations consistent with modern atmospheric mixing ratios at recharge temperatures of 7-11 ??C, as was observed in the 3-m thick vadose zone at the site. At depths below 6 m, the groundwater became progressively more reducing, however, with a denitrifying horizon at 6-7 m depth, and a Mn and Fe reducing zone below 7 m depth. In the anaerobic zone, 3H/3He ratios indicated that groundwater-age continued to increase uniformly with depth, to a maximum value of 27 years at 13 m depth. CFC concentrations, however, decreased abruptly within the denitrifying zone, leading to substantial age overestimation compared to the 3H/3He ages. Noble gas data indicated that the apparent CFC mass loss was not likely the result of gas stripping from possible bubble formation; thus, CFC degradation was indicated in the anoxic zone. The field data are consistent with first-order degradation rates of 0.3 yr-1 for CFC-12, 0.7 yr-1 for CFC-11, and 1.6 yr-1 for CFC-113. CFC attenuation at this site coincides with a zone where reduced S (pyrite) is actively oxidized by NO3 and dissolved oxygen (DO). Similar behavior has been observed at other sites [Tesoriero, A.J., Liebscher, H., Cox, S.E., 2000. Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow path. Water Resour. Res. 36 (6), 1545-1559; Hinsby, K., Hojberg, A.L., Engesgaard, P., Jensen, K.H., Larsen, F., Plummer, L.N., Busenberg, E., Accepted for publication. Transport and degradation of chlorofluorocarbons (CFCs) in a pyritic aquifer, Rabis Creek, Denmark. Water Resour. Res.], further demonstrating that the use of CFCs for age-dating anaerobic

  5. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  6. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  7. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.

    Science.gov (United States)

    Luo, Zhaohui; Li, Lu; Wei, Chuanlin; Li, Huixin; Chen, Dan

    2015-07-01

    The optimum operating conditions for TiO2 photocatalytic degradation of tetracycline antibiotic (TC) in aqueous solution and the role of active oxidative species (AOS) from UV/TiO2 in its degradation were investigated. Response surface methodology (RSM) and central composite design (CCD) were adopted to optimize three parameters: TiO2 concentration, initial pH and UV irradiation time. Radical scavengers were added to reaction solution to assess the photocatalytic reaction mechanism of TC. The results showed that 93.1% degradation efficiency was obtained under optimum conditions established during experimentation (TiO2 concentration = 2.09 g l(-1), pH = 5.56 and t = 20.95 min). These results agree with the prediction made by the proposed model. Photocatalytic degradation of TC followed a pseudo first-order reaction rate. Photogenerated holes (h+(VB)) with minor participation from superoxide anions (O2*), were responsible for TC oxidation on TiO2, while hydroxyl radicals (*OH) played a negligible role in titania-TC oxidation.

  8. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals.

    Science.gov (United States)

    Guan, Ying-Hong; Ma, Jun; Ren, Yue-Ming; Liu, Yu-Lei; Xiao, Jia-Yue; Lin, Ling-qiang; Zhang, Chen

    2013-09-15

    Magnetic porous copper ferrite (CuFe2O4) showed a notable catalytic activity to peroxymonosulfate (PMS). More than 98% of atrazine was degraded within 15 min at 1 mM PMS and 0.1 g/L CuFe2O4. In contrast, CuFe2O4 exhibited no obvious catalytic activity to peroxodisulfate or H2O2. Several factors affecting the catalytic performance of PMS/CuFe2O4 were investigated. Results showed that the catalytic degradation efficiency of atrazine increased with PMS and CuFe2O4 doses, but decreased with the increase of natural organic matters concentration. The catalytic oxidation also showed a dependence on initial pH. The presence of bicarbonate stimulated atrazine degradation by PMS/CuFe2O4 at low concentrations but inhibited the degradation at high concentrations. Furthermore, the reactive species for atrazine degradation in PMS/CuFe2O4 system were identified as hydroxyl radical (HO) and sulfate radical (SO4(·-)) through competition reactions of atrazine and nitrobenzene, instead of commonly used alcohol scavenging, which was not a reliable method in metal oxide catalyzed oxidation. Surface hydroxyl groups of CuFe2O4 were a critical part in radical generation and the copper on CuFe2O4 surface was an active site to catalyze PMS. The catalytic degradation of atrazine by PMS/CuFe2O4 was also effective under the background of actual waters.

  9. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process.

    Science.gov (United States)

    Bi, Xiaoyi; Wang, Peng; Jiao, Chunyan; Cao, Hailei

    2009-09-15

    Experiments were conducted to investigate the removal of remazol golden yellow dye in order to assess the effectiveness and feasibility of microwave enhanced chlorine dioxide (ClO(2)) catalytic oxidation process. The catalyst used in this process was CuO(n)-La(2)O(3)/gamma-Al(2)O(3). The operating parameters such as the ClO(2) dosage, catalyst dosage, and pH were evaluated. The results showed that microwave enhanced catalytic oxidation process could effectively degrade remazol golden yellow dye with low oxidant dosage in a short reaction time and extensive pH range compared to the conventional wet catalytic oxidation. Under the optimal condition (ClO(2) concentration 80 mg/L, microwave power 400 W, contacting time 1.5 min, catalyst dosage 70 g/L, and pH 7), color removal efficiency approached 94.03%, corresponding to 67.92% of total organic carbon removal efficiency. It was found that the fluorescence intensity in microwave enhanced ClO(2) catalytic oxidation system was about 500a.u. which was verified that there was much hydroxyl radical produced. Compared with different processes, microwave enhanced ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for dye wastewater treatment.

  10. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.

    Science.gov (United States)

    Nerger, Bryan A; Peiris, Ramila H; Moresoli, Christine

    2015-10-01

    This study examined the photocatalytic oxidation of natural organic matter (NOM) as a method to mitigate membrane fouling in drinking water treatment. ZnO and TiO2 photocatalysts were tested in concentrations ranging from 0.05 g L(-1) to 0.5 g L(-1). Fluorescence peaks were used as the primary method to characterize the degradation of three specific NOM components - fulvic acid-like humic substances, humic acid-like humic substances, and protein-like substances during photocatalytic oxidation. Fluorescence peaks and Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis indicated that higher NOM degradation was obtained by photocatalytic oxidation with ZnO than with TiO2. Treatment of the feed water by ZnO photocatalytic oxidation was successful in reducing considerably the extent of hydraulically reversible and irreversible membrane fouling during ultrafiltration (UF) compared to feed water treatment with TiO2. Fouling during UF of water subjected to photocatalytic oxidation appeared to be caused by low molecular weight constituents of NOM generated during photocatalytic oxidation.

  11. ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye

    Science.gov (United States)

    Qin, Jiaqian; Zhang, Xinyu; Yang, Chengwu; Cao, Meng; Ma, Mingzhen; Liu, Riping

    2017-01-01

    In this work, ZnO microspheres-reduced graphene oxide (rGO) nanocomposites were synthesized via a simple solution method and used for the photodegradation of methylene blue (MB) dye from water under UV light. The SEM and TEM observations demonstrate that the microsphere morphologies of the ZnO microspheres-rGO nanocomposite is composed of ZnO microspheres anchored on rGO sheets, confirming the formation of ZnO microspheres-rGO composites. Raman spectra and X-ray photoelectron spectroscopy reveal that both of the reduction of GO tight contact between ZnO and rGO are achieved during the high temperature calcination process. During the photocatalytic test, in comparison with ZnO microspheres and P25 TiO2, the ZnO microspheres-rGO nanocomposite shows improved photodegradation of MB dye, because the rGO sheets could reduce the charge recombination in electron-transfer processes. According to the scavenger experiments, the possible MB degradation mechanism is contributed mainly to the generation of active species induced by the photogenerated holes (h+) and superoxide radicals (rad O2-).

  12. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    Science.gov (United States)

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  13. Conjugates of degraded and oxidized hydroxyethyl starch and sulfonylureas: synthesis, characterization, and in vivo antidiabetic activity.

    Science.gov (United States)

    Abbas, Muhammad Azhar; Hameed, Shahid; Farman, Muhammad; Kressler, Jörg; Mahmood, Nasir

    2015-01-21

    Orally administered drugs usually face the problem of low water solubility, low permeability, and less retention in bloodstream leading to unsatisfactory pharmacokinetic profile of drugs. Polymer conjugation has attracted increasing interest in the pharmaceutical industry for delivering such low molecular weight (Mw) drugs as well as some complex compounds. In the present work, degraded and oxidized hydroxyethyl starch (HES), a highly biocompatible semisynthetic biopolymer, was used as a drug carrier to overcome the solubility and permeability problems. The HES was coupled with synthesized N-arylsulfonylbenzimidazolones, a class of sulfonylurea derivatives, by creating an amide linkage between the two species. The coupled products were characterized using GPC, FT-IR, (1)H NMR, and (13)C NMR spectroscopy. The experiments established the viability of covalent coupling between the biopolymer and N-arylsulfonylbenzimidazolones. The coupled products were screened for their in vivo antidiabetic potential on male albino rats. The coupling of sulfonylurea derivatives with HES resulted in a marked increase of the hypoglycemic activity of all the compounds. 2,3-Dihydro-3-(4-nitrobenzensulfonyl)-2-oxo-1H-benzimidazole coupled to HES10100 was found most potent with a 67% reduction in blood glucose level of the rats as compared to 41% reduction produced by tolbutamide and 38% by metformin.

  14. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower...... where the co-contaminants were oxidized. The results of the model further indicate that contradicting findings in the literature about the effects of BTEX on the degradation of MTBE are mainly due to differences in the study methodologies. Effects such as short-term toxicity of BTEX and the lack...

  15. Study of Degradation Kinetics of Parathion Methyl On Mixed Nanocrystalline Titania-Zirconium and Titania-Cerium Oxides

    Science.gov (United States)

    Kuráň, Pavel; Pšenička, Martin; Šťastný, Martin; Benkocká, Monika; Janoš, Pavel

    2016-10-01

    The unique surface properties of some nanocrystalline metal oxides and their application for removal of various toxic compounds were reported in early 1990s. Recently, a reliable method for the preparation of reactive cerium dioxide sorbent and its application for degradation of the organophosphate pesticides, such as parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) was published. This paper reports on the kinetics study of degradation of parathion methyl as a representative organophosphate on nanocrystalline metal oxides TiO2, ZrO2, CeO2 and their mixtures in different molar ratios of particular elements. The tested sorbents except of CeO2 were prepared by different methods (e.g. sol-gel, precipitation) in cooperation with Institute of Inorganic Chemistry (Rez, Czech Republic). The degradation kinetics of parathion methyl on tested sorbents was followed by HPLC equipped with diode array detector. The basic kinetics parameters (half-lives of parathion methyl degradation, rate constants of degradation product formation) were calculated for each sorbent from Weber-Morris equation of 1st order diffusion kinetic model. The results proved the ability of prepared sorbents to degrade parathion methyl under formation of 4-nitrophenol as the main degradation product. The most efficient sorbents were TiCe (2:8), TiCe (1:1), TiCe (0:1) (50-70 %) followed by TiZr (1:1), TiCe (8:2), TiZr (8:2), TiZr (2:8) (20-30%) and TiO2, ZrO2 (less than 5 %).

  16. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.

    Science.gov (United States)

    Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi

    2013-01-01

    The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.

  17. Biodegradation of Benzo[a]pyrene by Arthrobacter oxydans B4

    Institute of Scientific and Technical Information of China (English)

    PENG Hui; YIN Hua; DENG Jun; YE Jin-Shao; CHEN Shuo-Na; HE Bao-Yan; ZHANG Na

    2012-01-01

    A bacterial strain,Arthrobacter oxydans (B4),capable of degrading benzo[a]pyrene (BaP) in water body,was isolated from a polycyclic aromatic hydrocarbons-contaminated site.Effects of different factors,such as reaction time,pH value,temperature and organic nutrients,on BaP biodegradation by the strain B4 were studied.After 5 d treatment,the concentration of BaP in mineral salts medium was reduced to 0.318 mg L-1,compared to the initial concentration of 1.000 mg L-1.There was a process of acid formation during the degradation with pH failing from initial 7.01 to 4.61 at 5 d,so keeping the water body under slightly alkaline condition was propitious to BaP degradation.Strain B4 efficiently degraded BaP at 20 to 37 ℃ with addition of organic nutrients.The biodegradation and transformation of BaP mainly occurred on cell surfaces,and extracellular secretions played an important role in these processes.Fourier transform infrared spectroscopy and gas chromatograph-mass spectrometer analyses of metabolites showed that ring cleavage occurred in the BaP degradation process and the resulting metabolically utilizable substrates were generated as sole carbon sources for B4 growth.Furthermore,mineralization extent of metabolites was verified by determining the total organic carbon and inorganic carbon in the degradation system.

  18. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Directory of Open Access Journals (Sweden)

    Malkus Kristen A

    2009-06-01

    Full Text Available Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  19. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle.

    Science.gov (United States)

    Malkus, Kristen A; Tsika, Elpida; Ischiropoulos, Harry

    2009-06-05

    While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  20. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation.

    Science.gov (United States)

    Ralat, Luis A; Ren, Min; Schilling, Alexander B; Tang, Wei-Jen

    2009-12-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-beta (Abeta). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the V(max) for Abeta degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Abeta degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function.

  1. BENZO[a]PYRENE METABOLITES EXAGGERATE DNA OXIDATIVE DAMAGE UPON THE INVOLVEMENT OF FREE RADICALS%苯并[a]比代谢产物在自由基参与下加速DNA的氧化损伤

    Institute of Scientific and Technical Information of China (English)

    罗云敬; GAO Da-yuan; WEI Hua-chen

    2003-01-01

    @@ Polycyclic aromatic hydrocarbons (PAHs),which constitute a major class of environmental pollu tants are posing a threat to human health. Benzopyrene,an index of PAH levels omnipresent in the everyday environment ,becomes toxic only when being metabolically and/or photo-activated,i. e. ,in the pres ence of UV light. Free radicals such as superoxide anions ('O2),hydrogen peroxide (H2O2),hydroxyl radicals ('OH) and singlet oxygen (1O2) are involved in carcinogenesis. Wei CE etc[1] studied the effects of different scavengers of active oxygen species (superoxide dismutase,catalase,mannitol and dimethyfu ran) on promoting B[a]P mutagenicity. Bryla P ete[2] investigated the roles of several ROS scavengers in the oxidation and binding of B[a]P to calf thymus DNA using the 32p-postlabeling assay.

  2. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  3. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó;

    2014-01-01

    The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity ofwell-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora...... walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting...

  4. Selective Determination of Itraconazole in the Presence of Its Oxidative Degradation Product by A New Spectrophotometric Method

    Institute of Scientific and Technical Information of China (English)

    Nesrine TLamie

    2015-01-01

    A simple,specific,accurate and precise spectrophotometric stability indicating method is developed for determination of itraconazole in the presence of its oxidative degradation product and in pharmaceutical for-mulations.A newly developed spectrophotometric method called ratio difference method by measuring the difference in amplitudes between 230 and 265 nm of ratio spectra.The calibration curve is linear over the con-centration range of 5~25μg·mL-1 with mean percentage recovery of 99. 81±1. 002.Selective quantification of itraconazole,singly in bulk form,pharmaceutical formulations and in the presence of its oxidative degrada-tion product is demonstrated.The results have been statistically compared with a pharmacopeial method.

  5. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanpeng [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Hansun [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ji, Yuemeng; Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [{sup •} OH] than temperature during AOPs. • O{sub 2} could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals ({sup •} OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the {sup •} OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by {sup •} OH via OH-addition and H-abstraction routes. Among these routes, the {sup •} OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ({sup •} MPB-OH{sub 1}) and dehydrogenated radical ({sup •} MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O{sub 2} and {sup •} OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  6. Preparation of N-doped TiO2 by oxidizing TiN and its application on phenol degradation.

    Science.gov (United States)

    Huang, Ji-Guo; Zhao, Xiao-Guang; Zheng, Meng-Yang; Li, Sen; Wang, Yu; Liu, Xing-Juan

    2013-01-01

    Incomplete oxidation of titanium nitride (TiN) to prepare nitrogen-doped TiO2 was verified by calcining TiN at different temperatures in air for 30 min. The as-prepared samples were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results confirmed that oxidizing TiN incompletely is an effective and simple method to prepare nitrogen-doped TiO2. Photocatalytic degradation of phenol was conducted to evaluate the photocatalytic activity of as-prepared samples. The results showed that phenol can be degraded efficiently by the as-prepared samples under visible light; low phenol concentration was conducive to degradation; the optimum calcination temperature and photocatalyst dosage are 650 °C and 0.5 g/L, respectively. The effects of different light sources on phenol degradation were compared. The reusability of nitrogen-doped TiO2 was tested and the results indicated a relatively good reusability under laboratory conditions.

  7. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  8. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  9. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hausbrand, R., E-mail: hausbrand@surface.tu-darmstadt.de; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.

    2015-02-15

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO{sub 2} (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes.

  10. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.

    Science.gov (United States)

    Pastrana-Martínez, Luisa M; Morales-Torres, Sergio; Figueiredo, José L; Faria, Joaquim L; Silva, Adrián M T

    2015-06-15

    Flat sheet ultrafiltration (UF) membranes with photocatalytic properties were prepared with lab-made TiO2 and graphene oxide-TiO2 (GOT), and also with a reference TiO2 photocatalyst from Evonik (P25). These membranes were tested in continuous operation mode for the degradation and mineralization of a pharmaceutical compound, diphenhydramine (DP), and an organic dye, methyl orange (MO), under both near-UV/Vis and visible light irradiation. The effect of NaCl was investigated considering simulated brackish water (NaCl 0.5 g L(-1)) and simulated seawater (NaCl 35 g L(-1)). The results indicated that the membranes prepared with the GOT composite (M-GOT) exhibited the highest photocatalytic activity, outperforming those prepared with bare TiO2 (M-TiO2) and P25 (M-P25), both inactive under visible light illumination. The best performance of M-GOT may be due to the lower band-gap energy (2.9 eV) of GOT. In general, the permeate flux was also higher for M-GOT probably due to a combined effect of its highest photocatalytic activity, highest hydrophilicity (contact angles of 11°, 17° and 18° for M-GOT, M-TiO2 and M-P25, respectively) and higher porosity (71%). The presence of NaCl had a detrimental effect on the efficiency of the membranes, since chloride anions can act as hole and hydroxyl radical scavengers, but it did not affect the catalytic stability of these membranes. A hierarchically ordered membrane was also prepared by intercalating a freestanding GO membrane in the structure of the M-GOT membrane (M-GO/GOT). The results showed considerably higher pollutant removal in darkness and good photocatalytic activity under near-UV/Vis and visible light irradiation in continuous mode experiments.

  11. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.

    Science.gov (United States)

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-06-01

    The electrochemical treatment of wastewaters from textile industry is a promising treatment technique for substances which are resistant to biodegradation. This paper presents the results of the electrochemical decolourisation and degradation of C.I. Reactive Orange 4 synthetic solutions (commercially known as Procion Orange MX2R). Electrolyses were carried out under galvanostatic conditions in a divided or undivided electrolytic cell. Therefore, oxidation, reduction or oxido-reduction experiences were tested. Ti/SnO(2)-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively. Degradation of the dye was followed by TOC, total nitrogen, COD and BOD(5) analyses. TOC removal after an oxidation process was higher than after oxido-reduction while COD removal after this last process was about 90%. Besides, the biodegradability of final samples after oxido-reduction process was studied and an improvement was observed. UV-Visible spectra revealed the presence of aromatic structures in solution when an electro-reduction was carried out while oxido-reduction process degraded both azo group and aromatic structures. HPLC analyses indicated the presence of a main intermediate after the reduction process with a chemical structure closely similar to 2-amine-1, 5-naphthalenedisulfonic acid. The lowest decolourisation rate corresponded to electrochemical oxidation. In these experiences a higher number of intermediates were generated as HPLC analysis demonstrated. The decolourisation process for the three electrochemical processes studied presented a pseudo-first order kinetics.

  12. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  13. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  14. Thermal degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) over synthesized Fe-Al composite oxide.

    Science.gov (United States)

    Yang, Fan; Li, Qianqian; Su, Guijin; Huang, Xinchen; Li, Binke; Zhao, Yanhui; Miao, Xue; Zheng, Minghui

    2016-05-01

    A series of Fe-Al composite oxides were synthesized by the hydrothermal method using different urea dosages and examined towards the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) at 300 °C. The as-prepared oxides were characterized by field-emission scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The morphology and composition of the prepared materials could be regulated by controlling the urea concentration. Interestingly, these properties influenced the nature and amount of the hydrodebromination products generated during the degradation of BDE-47. The degradation of BDE-47 over the composite oxide prepared at a urea dosage of 3 mmol generated BDE-17 as the major isomer product, followed by BDE-28/33, -30, and -32, among the tribromodiphenyl ethers (tri-BDEs). Regarding the dibromodiphenyl ethers (di-BDEs) produced, the amount of the isomers decreased in the order of BDE-8/11 > BDE-7 > BDE-15 > BDE-10. And the BDE-1 among monobromodiphenyl was determined. In contrast, over the composite oxides prepared at urea dosages greater than 3 mmol, BDE-28/33 gradually become the major isomer product instead of BDE-17 among tri-BDEs. The amount of the other di-BDEs isomer such as BDE-15 and -10 approach to be comparable to that BDE-8/11. However, regardless of the urea dosage, BDE-47 converted into BDE-75 via an isomerization reaction. Based on these intermediate products identification, a possible hydrodebromination mechanism of BDE-47 over Fe-Al composite oxide was comprehensively traced.

  15. Simazine degradation in bioaugmented soil: urea impact and response of ammonia-oxidizing bacteria and other soil bacterial communities.

    Science.gov (United States)

    Guo, Qingwei; Wan, Rui; Xie, Shuguang

    2014-01-01

    The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.

  16. Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation.

    Science.gov (United States)

    El Rouby, W M A; Farghali, A A; Hamdedein, A

    2016-11-01

    Cerium (IV) oxide (CeO2), samarium (Sm) and gadolinium (Gd) doped CeO2 nanoparticles were prepared using microwave technique. The effect of microwave irradiation time, microwave power and pH of the starting solution on the structure and crystallite size were investigated. The prepared nanoparticles were characterized using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscope. The photocatalytic activity of the as-prepared CeO2, Sm and Gd doped CeO2 toward degradation of methylene blue (MB) dye was investigated under UV light irradiation. The effect of pH, the amount of catalyst and the dye concentration on the degradation extent were studied. The photocatalytic activity of CeO2 was kinetically enhanced by trivalent cation (Gd and Sm) doping. The results revealed that Gd doped CeO2 nanoparticles exhibit the best catalytic degradation activity on MB under UV irradiation. For clarifying the environmental safety of the by products produced from the degradation process, the pathways of MB degradation were followed using liquid chromatography/mass spectroscopy (LC/MS). The total organic carbon content measurements confirmed the results obtained by LC/MS. Compared to the same nanoparticles prepared by another method, it was found that Gd doped CeO2 prepared by hydrothermal process was able to mineralize MB dye completely under UV light irradiation.

  17. Facile one pot synthesis of zinc oxide nanorods and statistical evaluation for photocatalytic degradation of a diazo dye.

    Science.gov (United States)

    Dutta, Suvanka; Ghosh, Ananya; Kabir, Humayun; Saha, Rajnarayan

    In the present work zinc oxide nanorods (ZNRs) have been synthesized to estimate its photocatalytic degradation potential on an industrially used diazo dye and optimization of the total treatment process has been designed. Response surface methodology (RSM) has been used to model the operational parameters for this photocatalytic degradation. The crystallite size (101 plane) of the synthesized ZNR has been found to be 20.99 nm having a band gap energy of 3.45 eV. At elevated pH, the rate of degradation of the photocatalyst was found to be higher than that of acidic pH. The independent variables of the model are time (9.6-122 min), pH (2-12.2), catalyst dose (0.2-0.4 g/L) and dye concentration (88-512 mg/L). It was seen that the degradation efficiency was significantly affected by the initial dye concentration and the pH, the optimal values of the parameters being a pH of 10.67, an initial concentration of 150 mg/L and ZnO dose of 0.37 g/L, the time taken being 88.52 min. The actual degradation efficiency of the dye reached 96.9% at optimized condition, which is quite close to the predicted value of 98.07%.

  18. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S

    2013-10-15

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6- and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus.

  19. Quantitative review of degradation and lifetime of solid oxide cells and stacks

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter;

    2016-01-01

    and lifetime in the field. The data is used to visualizespecific trends regarding choice of materials, operating conditions and degradation rates.The average degradation rate reported is decreasing and is quickly approaching officialtargets. The database is published online for open-access and a continued...

  20. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates of the ca...

  1. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  2. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  3. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 °C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 °C was observed.

  4. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Watanabe, A. [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba (Japan); Kudo, N.; Shinozaki, H. [Materials Science Engineering, Tokyo Denki University, Tokyo (Japan); Uemoto, H.

    2007-12-15

    Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol-degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.

    Science.gov (United States)

    Librando, Vito; Tringali, Giuseppe

    2005-05-01

    This paper studies the reaction products of alpha-pinene, beta-pinene, sabinene, 3-carene and limonene with OH radicals and of alpha-pinene with ozone using FT-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9-2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16-92%, HCOOH 10-54% (OH source: H2O2, 6-25 ppm); HCHO 127-148%, HCOOH 4-6% (OH source: CH3ONO, 5-8 ppm). At high terpene concentrations (4.1-13.2 ppm) the results were: HCHO 9-27%, HCOOH 15-23%, CH3(CO)CH3 0-14%, CH3COOH 0-5%, nopinone 24% (only from beta-pinene oxidation), limona ketone 61% (only from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source H2O2, 23-30 ppm); HCHO 76-183%, HCOOH 12-15%, CH3(CO)CH3 0-12%, nopinone 17% (from beta-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during alpha-pinene degradation (OH source CH3ONO, 14-16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth in the troposphere.

  6. Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue.

    Science.gov (United States)

    Madhu, G M; Raj, M A Lourdu Antony; Pai, K Vasantha Kumar

    2009-03-01

    The aqueous solution of methylene blue (MB) has been subjected to Photocatalytic degradation by UV radiation in presence of TiO2 photo-catalyst containing different concentrations of H2O2. The experiments conducted at different dye concentrations (12 and 20 ppm), catalyst loading, pH and H2O2 dosage (1-10 ml l(-1)), revealed that the degradation rate is strongly influenced by respective experimental parameters. However the influence of catalyst alone is not predominant in degradation. The decolorization of dye proceed to near completeness when H2O2 is used. The best degradation results are observed at 0.1 wt% of catalyst loading at pH 2 for TiO2/UV system. It has been found that the optimum concentration of H2O2 for 12 ppm and 20 ppm amount of the dye was 2 ml l(-1) for UV/H2O2 system. The kinetic of degradation of the dye followed the pseudo first order rate. The degradation studies using TiO2/UV/H2O2 system, indicates enhancement in the degradation rate of the dye compared to that of UV/H2O2 system alone.

  7. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal.

  8. Precursor effects on the morphology and crystallinity of manganese oxides and their catalytic application for methylene blue degradation

    Science.gov (United States)

    Awaluddin, Amir; Agustina, Mutia; Aulia, Rizki Rilda; Muhdarina

    2017-03-01

    The cryptomelane-type manganese oxide catalysts have been prepared by sol-gel method based on the redox reaction between potassium permanganate and glucose or oxalic acid. These catalysts belong to a class of porous manganese oxides known as octahedral molecular sieves (OMS). The SEM results indicated that the marked difference between the morphology of the cyptomelanes produced from glucose and oxalic acid. The glucose precursor produces cotton-shaped morphology, whereas the oxalic acid precursor leads to the formation of the disk-like appearances. The XRD results indicated that the glucose precursor produces more crystalline cryptomelane than that of oxalic acid. The effect of catalyst dosage on methyelene blue degradation was evaluated. Dye-decomposing activity was proportional to the amount of catalyst used, increasing of the catalyst amount leads to higher degradation of methyelene blue at short period of reaction. With different crystalline structures and morphology appearances of the cyptomelanes, however, the total degradation of methylene blue is relatively the same at 120 minute of reaction time with catalyst amount of 100 mg.

  9. TAML activator/peroxide-catalyzed facile oxidative degradation of the persistent explosives trinitrotoluene and trinitrobenzene in micellar solutions.

    Science.gov (United States)

    Kundu, Soumen; Chanda, Arani; Khetan, Sushil K; Ryabov, Alexander D; Collins, Terrence J

    2013-05-21

    TAML activators are well-known for their ability to activate hydrogen peroxide to oxidize persistent pollutants in water. The trinitroaromatic explosives, 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB), are often encountered together as persistent, toxic pollutants. Here we show that an aggressive TAML activator with peroxides boosts the effectiveness of the known surfactant/base promoted breakdown of TNT and transforms the surfactant induced nondestructive binding of base to TNB into an extensive multistep degradation process. Treatment of basic cationic surfactant solutions of either TNT or TNB with TAML/peroxide (hydrogen peroxide and tert-butylhydroperoxide, TBHP) gave complete pollutant removal for both in 75% of the nitrogen and ≥20% of the carbon converted to nitrite/nitrate and formate, respectively. For TNT, the TAML advantage is to advance the process toward mineralization. Basic surfactant solutions of TNB gave the colored solutions typical of known Meisenheimer complexes which did not progress to degradation products over many hours. However with added TAML activator, the color was bleached quickly and the TNB starting compound was degraded extensively toward minerals within an hour. A slower surfactant-free TAML activator/peroxide process also degrades TNT/TNB effectively. Thus, TAML/peroxide amplification effectively advances TNT and TNB water treatment giving reason to explore the environmental applicability of the approach.

  10. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide.

    Science.gov (United States)

    Sekhar, Vini C; Nampoothiri, K Madhavan; Mohan, Arya J; Nair, Nimisha R; Bhaskar, Thallada; Pandey, Ashok

    2016-11-15

    Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  11. Degradation of 4-chlorophenol in aqueous solution by γ-radiation and ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    HU; Jun; WANG; Jianlong; CHEN; Rong

    2006-01-01

    The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP mineralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min(1, 4-chlorophenol at concentration of 10 mg·L(1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min(1, which was 2.4 times higher than the sum of radiation (0.0294 min(1) and ozonation (0.0137 min(1). It revealed that the combination of radiation and ozonation resulted in synergistic effect, which can remarkably increase the degradation efficiency of 4-CP.

  12. Damp-Heat Induced Degradation of Transparent Conducting Oxides for Thin-Film Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.; Li, X.; DeHart, C.; To, B.

    2008-05-01

    The stability of intrinsic and Al-doped single- and bi-layer ZnO for thin-film CuInGaSe2 solar cells, along with Al-doped Zn1-xMgxO alloy and Sn-doped In2O3 (ITO) and F-doped SnO2, was evaluated by direct exposure to damp heat (DH) at 85oC and 85% relative humidity. The results show that the DH-induced degradation rates followed the order of Al-doped ZnO and Zn1-xMgxO >> ITO > F:SnO2. The degradation rates of Al:ZnO were slower for films of higher thickness, higher substrate temperature in sputter-deposition, and with dry-out intervals. As inferred from the optical micro-imaging showing the initiation and propagation of degrading patterns and regions, the degradation behavior appears similar for all TCOs, despite the obvious difference in the degradation rate. A degradation mechanism is proposed to explain the temporal process involving thermal hydrolysis.

  13. Thermal and Thermo-oxidative Degradation of Flame Retardant High Impact Polystyrene with Triphenyl Phosphate and Novolac Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition.step, as radical H1PS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.

  14. Experimental Priapism is Associated with Increased Oxidative Stress and Activation of Protein Degradation Pathways in Corporal Tissue

    Science.gov (United States)

    Kanika, Nirmala D.; Melman, Arnold; Davies, Kelvin P.

    2010-01-01

    Priapism is a debilitating disease for which there is at present no clinically accepted pharmacologic intervention. It has been estimated that priapism lasting more than 24 hours in patients is associated with a 44–90% rate of erectile dysfunction (ED). In this investigation we determined in two animal models of priapism (opiorpin-induced priapism in the rat and priapism in a mouse model of sickle cell disease) if there is evidence for an increase in markers of oxidative stress in corporal tissue. In both animal models we demonstrate that priapism results in increased levels of lipid peroxidation, glutathione S-transferase activity, and oxidatively damaged proteins in corporal tissue. Using Western blot analysis we demonstrated there is up regulation of the ubiquitination ligase proteins, Nedd-4 and Mdm-2, and the lysososomal autophage protein, LC3. The anti-apoptotic protein, Bcl-2, was also up regulated. Overall, we demonstrate that priapism is associated with increased oxidative stress in corporal tissue and the activation of protein degradation pathways. Since oxidative stress is known to mediate the development of ED resulting from several etiologies (for example ED resulting from diabetes and aging) we suggest that damage to erectile tissue resulting from priapism might be prevented by treatments targeting oxidative stress. PMID:21085184

  15. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  16. Benzo[a]pyrene in urban environments of eastern Moscow: pollution levels and critical loads

    Science.gov (United States)

    Kasimov, Nikolay S.; Kosheleva, Natalia E.; Nikiforova, Elena M.; Vlasov, Dmitry V.

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs), particularly benzo[a]pyrene (BaP), are toxic compounds emitted from various anthropogenic sources. Understanding the BaP concentrations, dynamics and decomposition in soil is required to assess the critical loads of BaP in urban environments. This study is the first attempt to evaluate all major input and output components of benzo[a]pyrene (BaP) balance and to calculate the permissible load on the urban environment in different land-use zones in the Eastern district of Moscow. BaP contamination of the snow cover in the Eastern district of Moscow was related to daily BaP fallout from the atmosphere. In 2010, the mean content of the pollutant in the snow dust was 1942 ng g-1, whereas the average intensity of its fallout was 7.13 ng m-2 per day. Across the territory, BaP winter fallout intensities varied from 0.3 to 1100 ng m-2 per day. The average BaP content in the surface (0-10 cm) soil horizons was 409 ng g-1, which is 83 times higher than the local background value and 20 times higher than the maximum permissible concentration (MPC) accepted in Russia. The variations in soil and snow BaP concentrations among different land-use zones were examined. A significant contribution of BaP from the atmosphere to urban soils was identified. Based on the measurements of BaP atmospheric fallout and BaP reserves in the soils, the critical loads of BaP for the land-use zones in the Eastern district were calculated for different values of degradation intensity and different exposure times. It was established that at an annual degradation intensity of 1-10 %, ecologically safe BaP levels in the soils of all land-use zones, excluding the agricultural zone, will only be reached after many decades or centuries.

  17. [The effects of organic matter and hydrous metal oxides on the anaerobic degradation of gamma-666, p,p'-DDT in Liaohe River sediments].

    Science.gov (United States)

    Zhao, Xu; Quan, Xie; Zhao, Huimin; Chen, Shuo; Chen, Jingwen; Zhao, Yazhi

    2002-05-01

    Effects of organic matter and active Fe, Al, Mn oxides on the anaerobic degradation of gamma-666, p,p'-DDT were investigated by means of removing organic matter and hydrous metal oxides in Liaohe River sediments sequentially. The results showed that the anaerobic degradation of gamma-666, p,p'-DDT followed pseudo-first-order kinetics in different sediments; but, the extents and rates of degradation were different, even the other conditions remained same. Anaerobic degradation rates of gamma-666, p,p'-DDT were 0.020 d-1, 0.009 d-1 respectively for the sediments without additional carbon resources. However, with additional carbon resources, the anaerobic degradation rates of gamma-666, p,p'-DDT were 0.071 d-1 and 0.054 d-1 in the original sediments respectively. After removing organic matter, the rates were decreased to 0.047 d-1, 0.037 d-1. In the sediments removed organic matter and hydrous metal oxides, the rates were increased to 0.067 d-1, 0.059 d-1. This results indicated that organic matter in the sediments accelerated the anaerobic degradation of gamma-666, p,p'-DDT; the hydrous metal oxides inhibited the anaerobic degradation of gamma-666 and p,p'-DDT.

  18. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  19. Kinetic Modeling for Microwave-Enhanced Degradation of Methylene Blue Using Manganese Oxide

    Directory of Open Access Journals (Sweden)

    Wen-Hui Kuan

    2013-01-01

    Full Text Available This study was originally performed to compare the MnO2-based degradation of aqueous methylene blue (MB under microwave irradiation- (MW- enhanced and conventional heating- (CH- enhanced conditions. The degradation process and kinetics were investigated to elucidate the microwave effect on the reaction. The results showed that all three tested conditions, sole MnO2, MnO2/CH, and MnO2/MW, followed the third-order (second upon MB and first upon MnO2 kinetic model. However, a higher degradation rate of MB was available under the MW-enhanced process, which implies that the “athermal effect” of MW might be of more benefit for the generation of electrophilic oxygen ions (, , and to degrade MB. The results showed that the degradation percentage of MB could reach 100%, corresponding to 92% total organic carbon (TOC removal under microwave irradiation at pH 7.20 for 10 min.

  20. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    KAUST Repository

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  1. Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2,4-D.

    Science.gov (United States)

    Meenakshi, G; Sivasamy, A

    2017-01-01

    Semiconductor zinc oxide nanorods (NRZnO) were prepared by sol-gel technique using zinc acetate as the precursor and ammonia as the precipitating agent. The prepared photocatalyst were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS), X-ray photoelectron spectroscopy (XPS), Field Emission-Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM), High Resolution-Tunneling Microscope (HR-TEM), Brunauer, Emmett and Teller (BET) and electron paramagnetic resonance spectroscopy (EPR) analysis. Particle size of the prepared photocatalyst was established by XRD and FE-SEM analysis. The morphology and the formation of uniform NRZnO was controlled by the temperature, entire concentration of precursors, duration of aging process. High surface roughness and porosity confirmed by AFM analysis. Band gap energy of the synthesized photocatalyst (3.2eV) was determined by using diffuse reflectance spectroscopy. The in-situ production of OH radicals by the prepared photocatalyst was confirmed by electron paramagnetic resonance spectroscopy (EPR) spin trapping technique. The photocatalytic activity of prepared NRZnO was evaluated by photo degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) under UV and visible light irradiations. Experimental parameter such as effect of pH, catalyst dosage, initial 2, 4- D concentrations and addition of different electrolytes on the degradation of 2, 4-D was also studied in detail. Neutral pH was found to be the optimum and catalyst dosage of 30mg/10ml resulted in higher percentage of degradation. The photo degraded samples were analyzed by chemical oxygen demand (COD) analysis, UV-Visible spectroscopy. Reusability of the prepared photocatalyst was tested upto three cycles without affecting its performance. The experimental shown the rate of degradation follows pseudo-first order rate kinetics with respect to 2, 4 D.

  2. Degradation and decoloration of contaminated water with textile dyes using advanced oxidation processes

    Directory of Open Access Journals (Sweden)

    Laura Castro-Peña

    2014-05-01

    Full Text Available The degradation and decolorization of azo dye COLRON RED SD3B as model pollutant by H2O2/ UV and H2O2/Fe2+/UV processes were investigated. The effects of dye concentration, solution pH, and Fe2+ and H2O2 dosages were studied using Taguchi´s experimental design method. Photo-Fenton process showed to be more efficient than H2O2/UV process for the color removal and degradation of the dye. The conditions that produced higher degradations rates were pH=2, dye concentration of 100 ppm, ferrous dosage of 80 ppm and hydrogen peroxide dosage of 102 ppm (3.0 mmol/L. Under these conditions, 65.5 % COD reduction and 77.0 % decolorization of the azo dye wastewater were achieved after one hour of treatment.

  3. Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Chen, Ming; Hendriksen, Peter Vang;

    2016-01-01

    Establishing the spatial distribution of the various chemical and electrochemical potentials in an operating SOEC is critical as several degradation mechanisms are tightly connected to them, but at the same time very challenging to achieve experimentally. Such distributions are presented here on ......, thereby helping to rationalize microstructural and chemical changes observed in post-mortem analysis. Finally, measures to mitigate degradation by changing conditions of operation, material or electrode properties or overall cell geometry are suggested.......Establishing the spatial distribution of the various chemical and electrochemical potentials in an operating SOEC is critical as several degradation mechanisms are tightly connected to them, but at the same time very challenging to achieve experimentally. Such distributions are presented here...... conductivities in the electrolyte, the gas composition, temperature, and pressure on the current density distribution over the cell and the oxygen activity distribution within the electrolyte. The developed model is further used to simulate long-term durability experiments during different stages of operation...

  4. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  5. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    Science.gov (United States)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  6. Investigation of oxidative degradation and non‐enzymatic browning reactions in krill and fish oils

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Haugsgjerd, Bjørn Ole; Griinari, Mikko;

    2013-01-01

    The aim of this research was to investigate the oxidation progress and pathways of krill and fish oil during 21 days of incubation at 40°C. The oxidative stability of the oils was investigated through: (i) classical methods such as peroxide value (PV), anisidine value (AV), thiobarbituric reactive...... substance (TBARS), conjugated dienes and trienes, and antioxidant content, and (ii) advanced methods such as determination of volatiles content by dynamic headspace (DHS)‐GC/MS, lipid classes, and pyrrole content. In addition, the oxidative stability of the oils was evaluated under accelerated oxidation...... conditions using the Oxipres™ at 90°C. The results from analysis of PV, AV, TBARS, conjugated dienes and trienes, and the antioxidant content suggested that krill oil was more oxidatively stable than fish oil. However, the color or other constituents of the krill oil might affect the result...

  7. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants.

    Science.gov (United States)

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Ziarani, Ghodsi Mohammadi

    2016-01-01

    Pure and samarium doped ZnO nanoparticles were synthesized by a sonochemical method and characterized by TEM, SEM, EDX, XRD, Pl, and DRS techniques. The average crystallite size of pure and Sm-doped ZnO nanoparticles was about 20 nm. The sonocatalytic activity of pure and Sm-doped ZnO nanoparticles was considered toward degradation of phenazopyridine as a model organic contaminant. The Sm-doped ZnO nanoparticles with Sm concentration of 0.4 mol% indicated a higher sonocatalytic activity (59%) than the pure ZnO (51%) and other Sm-doped ZnO nanoparticles. It was believed that Sm(3+) ion with optimal concentration (0.4 mol%) can act as superficial trapping for electrons in the conduction band of ZnO and delayed the recombination of charge carriers. The influence of the nature and concentration of various oxidants, including periodate, hydrogen peroxide, peroxymonosulfate, and peroxydisulfate on the sonocatalytic activity of Sm-doped ZnO nanoparticles was studied. The influence of the oxidants concentration (0.2-1.4 g L(-1)) on the degradation rate was established by the 3D response surface and the 2D contour plots. The results demonstrated that the utilizing of oxidants in combination with Sm-doped ZnO resulting in rapid removal of contaminant, which can be referable to a dual role of oxidants; (i) scavenging the generated electrons in the conduction band of ZnO and (ii) creating highly reactive radical species under ultrasonic irradiation. It was found that the Sm-doped ZnO and periodate combination is the most efficient catalytic system under ultrasonic irradiation.

  8. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. III. Oxidative degradation and stabilization of grafted layer

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, S.; Yamamoto, F.

    1978-09-01

    Vapor-phase mutual grafting of methyl acrylate (MA) onto polyethylene (PE) and subsequent saponification treatment produce a surface graft having a high adhesive bondability, which results from the presence of a hydrolized homopolymer layer (consisting of only monomer componenet) on an inner graft copolymer layer consisting of both PE and monomer components. The oxidative deterioration and the stabilization of the grated surface layer have been investigated to clarify the long-term stability of the adhesive bondability. The bondability rapidly disappears with accelerated weatherly followed by acetone extraction treatment, whereas it is kept unchanged during thermal-oxidative aging at 100/sup 0/C. Microscopic and attenuated total resonance (ATR) infrared spectroscopic observations of the degreaded surfaces show that the bondability loss is due to degradiative removal of the surface homopolymer layer. The addition of combinations of conventional antioxidants and ultraviolet absorbers stabilizes the grafted surface layer against thermal-oxidative and photo-oxidative degradation and thus extends the bondability rentention time. The stabilization is more effective in the grafts of carbon black-containing PE, where carbon black is present in the inner-graft copolymer layer.

  9. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    of succinic acid is suggested to be a result of a coupling reaction of the acetic acid radical A reaction mechanism is suggested for the degradation of quinoline: it involves hydroxyl radicals and the possible interaction with autoclave walls is discussed. (C) 1998 Elsevier Science Ltd. All rights reserved....

  10. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    Science.gov (United States)

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  11. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles.

    Science.gov (United States)

    Fowsiya, J; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-09-01

    The use of plant extract to synthesize nanoparticle has been considered as one of the eco-friendly method. Additionally, it is a strong alternate for conventional methods which includes chemical and physical approach. In this study, microwave assisted extraction of Carissa edulis (C. edulis) at 70°C and 400W was used to extract the secondary metabolites. Further, the metabolites were used as capping agent and Zn (NO3)2 as the metal precursor to synthesize ZnO nanoparticles (ZnO NPs). UV-Vis spectroscopy, FT-IR, XRD, SEM and HR-TEM were used for the characterization of nanoparticles. The Surface Plasmon Resonance around 358nm from the UV-Vis spectroscopy result represents the ZnO NPs formation. The FT-IR confirms the presence of functional groups that acts as the capping agent for the synthesis of ZnO NPs. The crystalline structure of nanoparticles is revealed in the XRD result, morphology showed by SEM results and the size of the ZnO NPs were predicted by HR-TEM. We have carried out the photocatalytic degradation of Congo red at 365nm in photo reactor using ZnO NPs. The result from the photocatalytic degradation Congo red showed rate constant is (-k) 0.4947 with 97% of degradation. This is our first attempt on the C. edulis extract on ZnO NPs preparation and Congo red dye degradation revels that ZnO NPs exhibit good photocatalytic property.

  12. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  13. Interactive Oxidation of Photocatalysis and Electrocatalysis for Degradation of Phenol in a Photoreactor

    Institute of Scientific and Technical Information of China (English)

    樊彩梅; 王艳; 梁镇海; 王韵芳; 郝晓刚; 孙彦平

    2009-01-01

    TiO2/C particles as photocatalyst were prepared by dipping TiO2 suspension solution with activated carbon and were applied in the photocatalytic-electrocatalytic degradation of phenol,the Ti/SnO2+Sb2O3/PbO2 electrode and oxygen diffusion electrode were used as anode and cathode respectively,and a 250 W ultraviolet lamp (365 nm) as side light source.The SEM results of TiO2/C and Ti/SnO2+Sb2O3/PbO2 anode indicated that the TiO2 on carbon particles was uniform and PbO2 film on the surface of anode was in cauliflower form,the XRD result of oxygen diffusion electrode showed that only crystalline graphite was found.The influential parameters of degradation process such as applied cell voltage (E),initial concentration of phenol (C0),amount of TiO2 catalyst and air flow rate (v) were discussed.Under the following experimental conditions of C0=50 mg/L,pH=6,E=2 V,TiO2 0.98 mg/mL,v=382.2 mL/min,and light intensity I=10.5 mW/cm2,phenol could be entirely degraded,and about 89% of total organic carbon (TOC) was removed after 3 h degradation.

  14. Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant

    Science.gov (United States)

    Fu, Xiaoyang; Zhang, Youwei; Cao, Pengfei; Ma, Huiling; Liu, Pinggui; He, Lihua; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-06-01

    CdS/reduced graphene oxide (CdS/RGO) nanocomposites were successfully synthesized via a one-step gamma-ray radiation-induced reduction method. The composition and structure of the prepared nanocomposites were characterized by thermal gravimetric analysis, micro FTIR spectroscopy, UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. It was found that increasing dose could improve the degree of reduction of graphite oxide (GO), and the feed ratio of GO to CdCl2·2.5H2O significantly influenced the size and dispersion of the CdS nanoparticles. The nanocomposites prepared under dose of 300 kGy and the feed ratio of GO to CdCl2·2.5H2O 1.0 wt% exhibited high visible-light photocatalytic performance for the degradation of Rhodamine B with degradation efficiency of 93%. This work provides a novel and facile method to produce the nanocomposites as efficient photocatalysts for the removal of organic contaminants from aqueous solution.

  15. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.

  16. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    Directory of Open Access Journals (Sweden)

    Annabel Fernandes

    2014-12-01

    Full Text Available The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were also assessed. Both the flow rate and the applied current density have shown positive influence on the oxytetracycline oxidation rate. On the other hand, the mineralization degree presented the highest values at the lowest flow rate and the lowest current density tested. The main oxidation by-products detected were oxalic, oxamic and maleic acids.

  17. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    Science.gov (United States)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone.

  18. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R

    2014-09-01

    The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid.

  19. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10(-3) and 12.4 × 10(-3) min(-1), respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  20. Modelling TCE degradation by a mixed culture of methane-oxidizing bacteria

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1992-01-01

    A model describing the growth of bacteria and the degradation of methane and trichloroethylene (TCE) based on the concept of competitive inhibition is proposed. The model has been applied to laboratory batch experiments representing different initial TCE concentrations (50–4300 μg/l) and initial...... methane concentrations (0.53–3.2 mg/l). The proposed model simulated successfully the data obtained for initial methane concentration (less than 1.8 mg/l), causing constant experimental growth conditions during the experiments. This indicates that the interactions between methane and TCE degradation can...... be explained as competitive inhibition. The model simulations of the results from the experiments with the highest initial methane concentration of 3.2 mg/l failed, supposedly because the growth conditions changed during the experiments. The proposed model is a useful engineering tool for design of treatment...

  1. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune

    2008-01-01

    are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work......, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused......-reforming catalysis. In the context of electrochemically tested and technologically relevant cells, the majority of the microstructural work is performed on a cell tested at 850°C under relatively severe conditions for 17,500 hours. It is demonstrated that the major Ni rearrangements take place at the interface...

  2. Effect of Reverse Substrate Bias on Degradation of Ultra-Thin Gate-Oxide n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors under Different Stress Modes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yao; XU Ming-Zhen; TAN Chang-Hua

    2005-01-01

    @@ Degradation of ultra-thin gate-oxide n-channel metal-oxide-semiconductor field-effect transistors with the halo structure has been studied under different stress modes with a reverse substrate bias. The device degradation under the same stress mode with different reverse substrate voltages has been characterized by monitoring the substrate current in a stressing process, which follows a simple power law. When the gate voltage is less than the critical value, the device degradation will first decrease and then increase with the increasing reverse sub strate voltage, otherwise, the device degradation will increase continuously. The critical value can be obtained by measuring the substrate current variation with the increases of reverse substrate voltage and gate voltage. The experimental results indicate that the stress mode with enhanced injection efficiency and smaller device degradation can be obtained when the gate voltage is less than the critical value with a proper reverse substratevoltage chosen.

  3. Involvement of Hydrogen Peroxide Generated by Polyamine Oxidative Degradation in the Development of Lateral Roots in Soybean

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to determine whether hydrogen peroxide (H2O2) generated by polyamine oxidative degradation is involved in the development of lateral roots in soybean, the length and the number of lateral roots, the activities of polyamine oxidases and diamine oxidases, and the endogenous free polyamine and H2O2 content were analyzed in soybean (Glycine max (Linn.) Merr.) main roots of 2-d-old seedlings after treatments for 2 d with exogenous β-hydroxyethylhydrazine (an inhibitor of polyamine oxidases), H2O2, putrescine, cyclohexylamine (an inhibitor of spermidine synthase) or N,N'-dimethylthiourea (a scavenger of hydrogen peroxide).β-hydroxyethylhydrazine treatment strongly inhibited the development of lateral roots in soybean seedlings,reduced the activities of polyamine oxidases and diamine oxidases, decreased H2O2 levels, and led to the accumulation of endogenous polyamines in the main roots. The inhibitory effect of β-hydroxyethylhydrazine on root development could be alleviated by exogenously applied 10 μmol/L H2O2 (a major product of polyamine oxidation). Treatment with cyclohexylamine and putrescine promoted root growth slightly, but treatment with cyclohexylamine plus N,N'-dimethylthiourea or putrescine plus N,N'-dimethylthiourea prevented the development of soybean lateral roots. The effects of these treatments on the development of soybean lateral roots were consistent with the changes in endogenous H2O2 levels. These results suggest that the development of soybean lateral roots is associated with the oxidative degradation of polyamines, and that their products,especially H2O2, are likely to play an important role in the growth of soybean lateral roots.

  4. Oxidative Degradations of the Side Chain of Unsaturated Ent-labdanes. Part I.

    Directory of Open Access Journals (Sweden)

    Karen Catalán Marín

    2007-03-01

    Full Text Available A selective route for the degradation of the unsaturated side chain of ent-labdanes has been devised, giving two useful synthons: 2β-acetoxy-14,15,17-trinor-ent-labdane-8,13- dione (5 and 2β-acetoxy-14,15-dinor-ent-labd-8(17-en-13-one (7, the use of which for the preparation of terpenylquinone derivatives shall be reported elsewhere.

  5. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    Science.gov (United States)

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  6. On oxidative degradation of parchment and its non-destructive characterisation and dating

    Science.gov (United States)

    Možir, Alenka; Strlič, Matija; Trafela, Tanja; Cigić, Irena Kralj; Kolar, Jana; Deselnicu, Viorica; de Bruin, Gerrit

    2011-07-01

    Historic parchment is an extremely complex material, not only due to the various methods of production used and various past environmental histories of objects, but also due to its inhomogeneous structure. Many traditional methods of characterisation are empirical, but useful since they have gained recognition by the end-users. In this paper, we investigated the shrinkage temperature of collagen and the influence of lipids contained in parchment on the measurements. While the content of lipids does not seem to significantly affect shrinkage temperature measurements themselves, it strongly affects the decrease of shrinkage temperature of collagen during degradation, and thus its thermomechanical properties. This confirms the high importance of lipid peroxidation during degradation of parchment. While shrinkage temperature determination is a micro-destructive method, we also demonstrated that it is possible to determine this property using near infrared (NIR) spectroscopy based on partial least squares calibration. The root-mean square error of validation (RMSEV), obtained on a set of variously delipidised and degraded samples, was 7°C, so the method could be used for condition assessment or classification of historic objects. Using a set of 185 historic objects dating from 1200-1800, we also developed a method for non-destructive dating of parchment based on NIR spectroscopy using partial least squares regression (RMSEV=72 years), and successfully determined the correct age of a historic charter from the collection of Nationaal Archief, The Netherlands.

  7. A study on the degradation of endocrine disruptors and dioxins by ozonation and advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.; Kenmochi, Y.; Tutumi, K.; Tanaka, T. [Ebara Corp., Fujisawa (Japan)

    2003-07-01

    Recently, enhancement and development of treatment technologies related to contaminated water environment by endocrine disruptors such as bisphenol-A(BPA), estradiol(E2) and dioxins have become a focus of attention. In this study, the influence of O{sub 3} dosage and the forms of endocrine disruptors on the degradability during O{sub 3} treatment and AOP treatment were investigated. A reaction kinetic evaluation of these processes was also carried out. In this study, the endocrine disruptors were classified into 2 groups: (1) DXNs: dioxins and (2) EDs: endocrine disruptors other than dioxins. For the case of DXNs decomposition, highly concentrated DXNs from incinerator washwater were degraded by UV/O{sub 3} combined treatment. Influence of O{sub 3} dosage and forms of DXNs on the reaction rate constant were evaluated. For the case of EDs decomposition, the effect of O{sub 3} dosage on the reaction rate constant were investigated during O{sub 3} treatment of secondary treated sewage. Also, a degradability comparison was made for the above 2 groups. (orig.)

  8. Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor.

    Science.gov (United States)

    de Luna, Mark Daniel G; Briones, Rowena M; Su, Chia-Chi; Lu, Ming-Chun

    2013-01-01

    Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO(2) carrier particles were supported by glass beads with 2-4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the "two-stage" ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe(2+)]/[H(2)O(2)] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC-MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio.

  9. Oxidative degradation of salicylic acid by sprayed WO{sub 3} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohite, S.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2015-10-15

    Highlights: • The photoactivity of sprayed WO{sub 3} thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO{sub 3} thin films were deposited using spray pyrolysis technique. The prepared WO{sub 3} thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO{sub 3} films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (I{sub ph} = 261 μA/cm{sup 2}) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO{sub 3} has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO{sub 3} thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO{sub 3} film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO{sub 3} photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value.

  10. Stress degradation study and structure characterization of oxidation degradation product of dexlansoprazole using liquid chromatography-mass spectrometry/time of flight, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Lakkireddy PRAKASH; M HIMAJA

    2016-01-01

    The present study deals with the forced degradation behavior of dexlansoprazole under International Conference on Harmonisation( ICH)prescribed stress conditions. The drug was found to be more labile under acid,base,neutral,oxidative hydrolysis and thermal stress,while it was moderately stable under photolytic conditions. The known and unknown degradation products were separated on a C-18 column using a stability-indicating method. Liquid chromatography-mass spectrometry( LC-MS)analysis was performed for all the deg-radation studies. Isolation and structure characterization of oxidation degradation products were executed using sophisticated tools,viz. preparative high performance liquid chromatography( HPLC),liquid chromatography-mass spectrometry/time of flight( LC-MS/TOF),liquid chromatography-tandem mass spectrometry( LC-MS/MS),and nuclear magnetic resonance( NMR). This study demonstrates an ample methodology of degradation studies and structure elucidation of unknown degradation products of dexlansoprazole,which helps in the development and stability study of active pharmaceutical ingredients and formulated products.

  11. Kinetic modeling of the oxidative degradation of additive free PE in bleach disinfected water

    Science.gov (United States)

    Mikdam, Aïcha; Colin, Xavier; Billon, Noëlle; Minard, Gaëlle

    2016-05-01

    The chemical interactions between PE and bleach were studied at 60°C in immersion in bleach solutions kept at a free chlorine concentration of 100 ppm and a pH of 5 or 7.2. It was found that the polymer undergoes a severe oxidation from the earliest weeks of exposure, in a superficial layer whose thickness (of about 50-70 µm) is almost independent of the pH value, although the superficial oxidation rate is faster in acidic than in neutral medium. Oxidation leads to the formation and accumulation of a large variety of carbonyl products (mostly ketones and carboxylic acids) and, after a few weeks, to a decrease in the average molar mass due to the large predominance of chain scissions over crosslinking. A scenario was elaborated for explaining such unexpected results. According to this scenario, the non-ionic molecules (Cl2 and ClOH) formed from the disinfectant in the water phase, would migrate deeply into PE and dissociate into highly reactive radicals (Cl• and HO•) in order to initiate a radical chain oxidation. A kinetic model was derived from this scenario for predicting the general trends of the oxidation kinetics and its dependence on environmental factors such as temperature, free chlorine concentration and pH. The validity of this model was successfully checked by comparing the numerical simulations with experimental data.

  12. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures

    Science.gov (United States)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-09-01

    Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.

  13. EFFECTS OF ORGANIC COLORANTS ON PHOTO-INITIATED CROSSLINKING AND PHOTO-OXIDATION DEGRADATION OF POLYETHYLENE AND RELATED MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Guo-bing Zhang; Qiang-hua Wu; Bao-jun Qu

    2008-01-01

    The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations, X-ray photoelectron spectroscopy (XPS), mechanical property tests, UV spectroscopy, and light microscope. The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) samples show that the three colorants can decrease the efficiency of photo-initiated crosslinking of polyethylene to some different degree, in which the effect of red colorant is the largest among the three colorants. The colorized samples of 1 mm thickness are easily to be crosslinked to a satisfactory gel content of about 70% by the MWE lamp and optimized reaction conditions, such as the concentration of colorant, irradiation time,and so on. The XPS results give the evidence that the colorants can accelerate the surface photo-oxidation during the photo-crosslinking of polyethylene. The photo-oxidation products such as -CH2-O-and-C(C=O)-groups on the surface of XLPE samples with the colorants apparently increase with increasing the irradiation time. The data from the mechanical tests show that the colorants reduce the tensile strength and improve the elongation at break of XLPE samples. All the above results show that the effects of the three colorants on photo-initiated crosslinking and photo-oxidative degradation decrease with the order of red > blue > green colorants. The light microscope photos show that the colorant can disperse well in PE resin. The mechanism of the colorant effects can be elucidated by comparison of the UV absorption spectra of photo-initiator and colorants. This is because the colorants absorb the same UV wavelength regions as photo-initiator, and thus decrease the photo-crosslinking efficiency of photo-initiator and accelerate the

  14. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  15. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    Science.gov (United States)

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line.

  16. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  17. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  18. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  19. Oxidative Degradations of the Side Chain of Unsaturated Ent-labdanes. Part II

    Directory of Open Access Journals (Sweden)

    María Cristina Chamy

    2007-12-01

    Full Text Available A route for the degradation of the side chain of ent-labdane derivatives has beendevised, giving the useful synthon 2β,12-dihydroxy-13,14,15,16,17-pentanor-ent-labdane-8-one (8. The use of this compound in the preparation of terpenylquinone derivatives shallbe reported elsewhere. In addition we have synthesized the compound 2β,12-diacetoxy-8β,17-epoxy-13,14,15,16-tetranor-ent-labdane (10, which upon catalytic epoxide ringopening in alkaline or acid media gave rise in all cases to the formation of tricycliccompounds.

  20. Comparative Study of the Catalytic Activities of Three Distinct Carbonaceous Materials through Photocatalytic Oxidation, CO Conversion, Dye Degradation, and Electrochemical Measurements

    Science.gov (United States)

    Lee, Hangil; Kim, Yeonwoo; Kim, Min Ji; Kim, Ki-jeong; Kim, Byung-Kwon

    2016-01-01

    In order to compare the catalytic activities of reduced graphene oxide (rGO), graphene oxide (GO), and graphene, we conducted oxidation of 2-aminothiophenol (2-ATP) and reduction of nitrobenzene (NB) in their presence by using high-resolution photoemission spectroscopy (HRPES). In addition, we determined conversion rates of CO to CO2 in the presence of these catalysts by performing a residual gas analyzer (RGA) under a UHV condition, Orange II and methylene blue degradations UV-vis spectrophotometry, and electrochemistry (EC) measurements in an aqueous solution, as well as by obtaining cyclic voltammograms and determining the change of the condition of electrodes before and after the oxidation of 2-ATP. We found that we can successively fabricate GO (oxidation) and graphene (reduction) from rGO by controlling the oxidation or reduction procedure time and then clearly comparing the critical properties among them as we perform various oxidation and reduction activities. PMID:27762289

  1. Comparative Study of the Catalytic Activities of Three Distinct Carbonaceous Materials through Photocatalytic Oxidation, CO Conversion, Dye Degradation, and Electrochemical Measurements

    Science.gov (United States)

    Lee, Hangil; Kim, Yeonwoo; Kim, Min Ji; Kim, Ki-Jeong; Kim, Byung-Kwon

    2016-10-01

    In order to compare the catalytic activities of reduced graphene oxide (rGO), graphene oxide (GO), and graphene, we conducted oxidation of 2-aminothiophenol (2-ATP) and reduction of nitrobenzene (NB) in their presence by using high-resolution photoemission spectroscopy (HRPES). In addition, we determined conversion rates of CO to CO2 in the presence of these catalysts by performing a residual gas analyzer (RGA) under a UHV condition, Orange II and methylene blue degradations UV-vis spectrophotometry, and electrochemistry (EC) measurements in an aqueous solution, as well as by obtaining cyclic voltammograms and determining the change of the condition of electrodes before and after the oxidation of 2-ATP. We found that we can successively fabricate GO (oxidation) and graphene (reduction) from rGO by controlling the oxidation or reduction procedure time and then clearly comparing the critical properties among them as we perform various oxidation and reduction activities.

  2. Degradação de fármacos residuais por processos oxidativos avançados Degradation of residual pharmaceuticals by advanced oxidation processes

    Directory of Open Access Journals (Sweden)

    Silene Alessandra Santos Melo

    2009-01-01

    Full Text Available The concern about aquatic ecosystems and the potential risk of drinking water contamination by pharmaceuticals have stimulated the study of processes for the efficient degradation of these contaminants, since the conventional treatment have been inefficient on that purpose. The advanced oxidation processes (AOPs appear as viable alternatives due to their efficiency on the degradation of different classes of organic contaminants. This review presents an overview of the main AOP (O3, H2O2/UV, TiO2/UV, Fenton and photo-Fenton which have been applied to the degradation of different pharmaceuticals. The main results obtained, intermediates identified and toxicity data are presented.

  3. Heterogeneous Catalysis Applied To Advanced Oxidation Processes (AOPs) For Degradation of Organic Pollutants

    Science.gov (United States)

    Cotto-Maldonado, Maria del Carmen

    Water is an essencial resource for humankind and biomes. Actually, the pollution of the water resources, specially the contamination of the fresh water is great concern in our society. Develop of new and more efficient method for degradation of pollutant in water increase the research in this area, especially in the AOPs. During this investigation a comparison between different AOPs methods (photocatalysis, sono-Fenton and photo-Fenton) to determine the most efficient process of them was done. To reach our goal, different catalysts, namely TiO2 nanowires, TiO2 CNTs, ZnO nanoparticles, Fe2O3 nanowires and magnetite nanoparticles were synthesized and characterized by different techniques including FE-SEM, TGA, specific surface area (BET), XRD, Raman spectroscopy, XPS and magnetic susceptibility. Commercial and synthesized catalysts were used in photocatalysis, sono-Fenton and photo-Fenton processes for the degradation of model organic compounds (Methylene Blue, Rhodamine B, Methyl Orange, Gential Violet, Methyl Violet and p-aminobenzoic acid). According with the experimental results, no significant differences were observed between the photo-Fenton and sono-Fenton processes when the same catalysts were used. For the photocatalytic process, the more effective catalyst was TiO2NWs and for the sono-Fenton and photo-Fenton processes, the more effective catalyst was FeCl2.

  4. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassaan

    2017-03-01

    Full Text Available This work tests the viability of applying ozone (O3 and O3 combined with ultraviolet (UV to degrade the content of synthetic wastewater containing Direct Blue 86 (DB-86 dye. The tested parameters, which included pH, initial concentration of DB-86 dye and time of reaction, were tested in a batch reactor to achieve optimum operating circumstances. The results obtained in this study showed that pH and initial concentration of DB-86 dye controlled the efficiency of the decolorization process. The maximum decolorization was obtained at pH 11. More than 98% of color removal was reported after 35 min of O3 treatment (for 100 ppm dye concentration. Kinetic analyses showed that color removal of DB-86 dye followed first-order kinetics. The rate of color removal was primarily relative to the initial DB-86 dye concentration. The effect of seawater on the efficiency of the process was studied. Gas Chromatography Mass Spectrum analysis of treated synthetic DB-86 dye solution was performed at the end of the pre-treatment time to study the final degradation products of DB-86 dye. The obtained results revealed that ozonation processes had reduced the zooplankton toxicity belonging to the raw solution and had improved the biodegradability of the DB-86 dye wastewater.

  5. Characterization of Series Resistance and Mobility Degradation Parameter and Optimizing Choice of Oxide Thickness in Thin Oxide N-Channel MOSFET

    Directory of Open Access Journals (Sweden)

    Noureddine Maouhoub

    2011-01-01

    Full Text Available We present two methods to extract the series resistance and the mobility degradation parameter in short-channel MOSFETs. The principle of the first method is based on the comparison between the exponential model and the classical model of effective mobility and for the second method is based on directly calculating the two parameters by solving a system of two equations obtained by using two different points in strong inversion at small drain bias from the characteristic (. The results obtained by these techniques have shown a better agreement with data measurements and allowed in the same time to determine the surface roughness amplitude and its influence on the maximum drain current and give the optimal oxide thickness.

  6. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    Science.gov (United States)

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  7. Synthesis of novel cobalt doped zinc oxide/carbon nano composite for the photocatalytic degradation of acid blue 113

    Directory of Open Access Journals (Sweden)

    S. Sunitha

    2015-03-01

    Full Text Available Cobalt doped Zinc Oxide/Carbon nano composite was synthesized by solution combustion method and characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscopy analysis. This composite shows X-ray diffraction pattern that matched with nano particle of ZnO with wurtzite structure and average grain size was found to be 10.53 nm. . Further the presence of the elements like C, Co, Zn and O was confirmed by energy dispersive X-ray spectroscopy analysis. The effect of Co doping on the photocatalytic activity was investigated by photo degradation of the dye, acid blue 113. This nano composite exhibited better photocatalytic activity when compared to nano ZnO and nano ZnO/C composites.

  8. Oxidative Degradation of High Quality CVD Diamond%高质量CVD金刚石膜的氧化损伤

    Institute of Scientific and Technical Information of China (English)

    刘敬明; 唐伟忠; 吕反修

    2001-01-01

    Studies of the oxidative degradation of high quality diamond have been conducted to better define the limits of application at high temperature.The infrared(IR)and visible optical performance of polished chemical vapor deposition (CVD) diamond films were degraded seriously after heating at 780℃ for 15min,while heating at 780℃ for 3 min produced a little change .Microscopic etched features were revealed by scanning electron microscopy(SEM),atomic force microscopy (AFM),and Talystep surface profiles.Many of the etched features are concentrated at a variety of defects including grain boundaries,surface porosity etc. The results of heating are increasing the surface roughness of CVD diamond films and degradation of the infrared transmittance.%高质量CVD金刚石膜的高温损伤的研究是其高温应用的基础。抛光的金刚石膜经780℃保温3min后,红外透过和可见光的透过率开始下降;780℃保温15min后,其红外透过和可见光的透过率严重受损。扫描电镜、原子力学显微镜及台阶仪的结果表明:CVD金刚石膜氧化的开始阶段主要集中在晶界、表面孔洞等缺陷处,随后导致金刚石膜的晶面也开始刻蚀,表面粗糙度增大,最终使得金刚石膜丧失红外和可见光的透过。

  9. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper.

  10. Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, C.L. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Y.H. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Chen, C.Y. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China)]. E-mail: ccy7@ccmail.ncku.edu.tw

    2006-02-28

    A novel activated alumina-supported iron oxide-composite (denoted as FeAA-500) was prepared by so-called fluidized-bed reactor (FBR) crystallization. X-ray powder diffraction (XRD), N{sub 2} adsorption/desorption, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the FeAA-500. The photo-catalytic activity of the FeAA-500 was evaluated in the photooxidative degradation of 0.1 mM azo-dye reactive black 5 (RB5) in the presence of H{sub 2}O{sub 2} and UVA light ({lambda} = 365 nm) in a solution with a pH of 2.5. Complete decolorization of the model pollutant RB5 was achieved; the total organic carbon (TOC) removal ratio was 95%, and a trace amount of leached ferric ion was detected following 75 min of reaction when 2.0 g/L FeAA-500 was used as a catalyst. FeAA-500 has high photo-catalytic activity; it is therefore a promising heterogeneous photocatalysis of the degradation of organic compounds.

  11. Effect of various amounts of graphene oxide on the degradation characteristics of the ZnSe/graphene nanocomposites

    Science.gov (United States)

    Hsieh, S. H.; Chen, W. J.; Yeh, T. H.

    2015-12-01

    In this work, the graphene oxide (GO) sheets were synthesized by modified Hummers and Offeman's method. The GO was mixed with ZnSe that was prepared using various amounts of N2H4 at a ratio of (0.25-2):1 to form precursors. The ZnSe/graphene nanocomposites were synthesized under hydrothermal conditions (180 °C; 12 h) from the previous precursor. Obtained ZnSe/graphene photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis diffuse reflection spectroscopy, transmission electron microscope, scanning electron microscope, Raman spectra and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light is evaluated in methylene blue (MB) dye degradation reaction in aqueous phase. The results show that the formation of ZnSe/graphene nanocomposite is depend on ratio of the addition of GO to the amount of ZnSe-N2H4. The optimum degradation efficiency of the ZnSe/graphene nanocomposites on MB increases with increasing the ratio of the addition of GO to the amount of ZnSe-N2H4. When the amount of N2H4 increased from 5 ml to 7 ml, the ratio of the addition of GO to the amount of ZnSe-N2H4 increased from 1 to 1.25.

  12. Shelf life degradation study of a reserve zinc-silver oxide battery

    Science.gov (United States)

    Lander, J. J.; Sowder, T. R.

    The considered battery is hermetically sealed. It is piston-cylinder actuated by means of a gas generator for electrolyte delivery. The cell block contains 20 cells, and each cell contains 19 plates. The new battery delivers about 11 A-hr to 23 V at an average 164 A. Sample batteries were periodically discharged to establish performance degradation rates. The values of various battery parameters were obtained as a function of age. These parameters include the oxygen content of the positive plates, individual plate and whole cell capacities, positive plate active material resistance, and the resistance of positive active material to the grid. It was found that run time of the zinc plate limits capacity. Failure to meet performance requirements is expected to be limited by capacity, not first pulse voltage. If a linear projection of both descriptors can be made, an average of 38 year battery shelf life is anticipated.

  13. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhan-Shuo [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Fei-Yi, E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Kuan-Jen [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); The Instrument Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu [Institute of Microelectronics, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-08-15

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag{sub 2}O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag{sub 2}O. The excess Ag{sup +} ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag{sub 2}O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag{sub 2}O side. ZnO photodetector with the appropriate Ag{sub 2}O nanoparticles possesses the best rejection ratio.

  14. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.

    Science.gov (United States)

    Kumar, Sumeet; Ojha, Animesh K; Walkenfort, Bernd

    2016-06-01

    Cadmium oxide (CdO) nanoparticles (NPs), reduced graphene oxide (rGO) and rGO-CdO nanocomposites have been synthesized using one step hydrothermal method. The structural and optical properties of CdO NPs, rGO, and rGO-CdO nanocomposites were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-Vis.) and photoluminescence (PL) spectroscopy techniques. The rGO has a sharp 2D peak compared to GO. The sharp nature of 2D band may be due to the larger contribution from single layer sheet. The photocatalytic activity of the synthesized samples has been investigated under UV irradiation. The results of photocatalytic measurements revealed that ~80% of MB dye is degraded by adding the rGO-CdO nanocomposites as photocatalysts into the dye solution. The decrease in the intensity of emission peaks indicates that the photogenerated charge carriers have been transferred from CdO NPs to rGO sheets, which causes to increase the density of O2(-) and OH radicals in the dye solution. The CdO nanoparticles gown on the rGO sheets showed enhanced ferromagnetism (FM) at room temperature, which may be attributed to the short range magnetic interaction of magnetic moments of CdO NPs and spin units present on the rGO sheets.

  15. Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue

    OpenAIRE

    Jyun-Jen Chen; Thou-Jen Whang; Mu-Tao Hsieh; Hsien-Yu Huang

    2009-01-01

    Silver nanoparticles doped on titanium oxide (TiO2) were produced by laser-liquid interaction of silver nitrate (AgNO3) in isopropanol. Characteristics of Ag/TiO2 (Ag doped TiO2) nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO2 photocatalysts was improved (additional absorption at longer wavelength in visible light region) obviously. The photocatalyt...

  16. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  17. Photoelectrocatalytic properties of a vertically aligned Ti-W alloy oxide nanotubes array and its applications in dye wastewater degradation.

    Science.gov (United States)

    Li, Mingfang; Zhao, Guohua; Li, Peiqiang; Zhang, Yanan; Wu, Meifen

    2012-01-01

    A highly ordered and vertically oriented array of nanotubes (NTs) of mixed oxide was prepared in situ by Ti-W alloy anodization. Compared with the traditional TiO2 NTs, the photoelectrocatalytic activity of the resulting Ti-W-O NTs was greatly enhanced. Results indicated a narrowing of the band gap from 3.2 eV for pristine TiO2 to 2.7 eV for Ti-W-O NTs. Under irradiation with 254 and 365 nm UV lights, Ti-W-O NTs showed much higher photoelectroconversion efficiency (eta) than TiO2 NTs and TiO2-WO3 coating. The eta254 and eta365 on Ti-W-O NTs reached as high as 51.8% and 57.0% respectively, four to five times those on TiO2 NTs and TiO2-WO3 coating. As a result of its narrow band gap energy and fast electron-hole separation, Ti-W-O NTs presented outstanding photoelectrocatalytic features. The electrochemically assisted photocatalytic degradation of highly concentrated Rhodamine 6G wastewaters was studied. The results showed that the rates of colour and TOC removal were much higher on Ti-W-O NTs than on TiO2 NTs and TiO2-WO3 coating. The photocatalytic material obtained by alloy anodization is of significance in the advanced oxidation of environmental pollutants.

  18. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

    Science.gov (United States)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2016-10-01

    In this work, the durability of Ni-YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H2O + 45% CO2 + 10% H2) at current density of -1.5 or -2.0 A cm-2. The cell consists of ∼300 μm Ni-YSZ support, ∼10 μm Ni-YSZ electrode, ∼10 μm YSZ electrolyte and ∼15 μm LSM-YSZ oxygen electrode. The gas conversion was 45% at -1.5 A cm-2 and 60% at -2.0 A cm-2, and the operating durations were up to 700 h. The detailed electrochemical analysis revealed significant increase of the ohmic resistance, oxide ion transport resistance in the Ni-YSZ composite electrodes and the electrochemical reaction resistance at the Ni-YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural change in the Ni-YSZ electrode close to the YSZ electrolyte, including the percolation loss of Ni, the contact loss between Ni and YSZ electrolyte and the decomposition of YSZ close to Ni-YSZ|YSZ interface. The electrochemical performance and the microstructure of the oxygen electrode were found to be relatively stable.

  19. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G

    Science.gov (United States)

    Zhang, Chao; Zhang, Jing; Su, Yanjie; Xu, Minghan; Yang, Zhi; Zhang, Yafei

    2014-02-01

    We have demonstrated a facile and low-cost approach to synthesize ZnO nanowire (NW)/reduced graphene oxide (RGO) nanocomposites, in which ZnO NWs and graphene oxide (GO) were produced in large scale separately and then hybridized into ZnO NW/RGO nanocomposites by mechanical mixing and low-temperature thermal reduction. Rhodamine 6G (Rh6G) was used as a model dye to evaluate the photocatalytic properties of ZnO NW/RGO nanocomposites. The obtained nanocomposites show significantly enhanced photocatalytic performance, which took only 10 min to decompose over 98% Rh6G. Finally the mechanism of the great enhancement about photocatalytic activity of ZnO NW/RGO nanocomposites is studied. It is mainly attributed to that RGO nanosheets can transfer the electrons of ZnO NWs excited by ultraviolet (UV) irradiation, increase electron migration efficiency, and then longer the lifetime of the holes in ZnO NWs. The high charge separation efficiency of photo-generated electron-hole pairs directly leads to the lower recombination rate of ZnO NW/RGO nanocomposites, makes more effective electrons and holes to participate the radical reactions with Rh6G, thus significantly improving the photocatalytic properties. The high degradation efficiency makes the ZnO NW/RGO nanocomposites promising candidates in the application of environmental pollutant and wastewater treatment.

  20. Oxidative Debromination and Degradation of Tetrabromo-bisphenol A by a Functionalized Silica-Supported Iron(III-tetrakis(p-sulfonatophenylporphyrin Catalyst

    Directory of Open Access Journals (Sweden)

    Masami Fukushima

    2013-05-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a commonly used brominated flame retardant, also functions as an endocrine disruptor. Thus, the degradation of TBBPA has attracted considerable interest among the scientific community. Iron(III-porphyrin complexes are generally regarded as “green” catalysts and have been reported to catalyze the efficient degradation and dehalogenation of halogenated phenols in environmental wastewaters. However, they are quickly deactivated due to self-degradation in the presence of an oxygen donor, such as KHSO5. In the present study, an iron(III-tetrakis (p-sulfonatophenyl-porphyrin (FeTPPS was immobilized on imidazole-modified silica (FeTPPS/IPS via coordination of the Fe(III with the nitrogen atom in imidazole to suppress self-degradation and thus enhance the catalyst reusability. The oxidative degradation and debromination of TBBPA and the influence of humic acid (HA, a major component in leachates, on the oxidation of TBBPA was investigated. More than 95% of the TBBPA was degraded in the pH range from 3 to 8 in the absence of HA, while the optimal pH for the reaction was at pH 8 in the presence of HA. Although the rate of degradation was decreased in the presence of HA, over 95% of the TBBPA was degraded within 12 h in the presence of 28 mg-C L−1 of HA. At pH 8, the FeTPPS/IPS catalyst could be reused up to 10 times without any detectable loss of activity for TBBPA for degradation and debromination, even in the presence of HA.

  1. Degradation pathways of aniline in aqueous solutions during electro-oxidation with BDD electrodes and UV/H2O2 treatment.

    Science.gov (United States)

    Benito, Aleix; Penadés, Aida; Lliberia, Josep Lluis; Gonzalez-Olmos, Rafael

    2017-01-01

    In this work, it has been studied the mineralization of aniline, a toxic substance of low biodegradability typically found in many industrial wastewaters, through electro-oxidation using boron doped diamond (BDD) electrodes and photo-oxidation (UV photolysis and UV/H2O2 treatments). It was observed that in electro-oxidation and UV/H2O2, it was feasible to reach aniline mineralizations higher than 85%. Two different degradation routes have been observed during the aniline oxidation in these two treatments. The first route was the mineralization pathway, in which aniline was oxidized to CO2, water and nitrate. The second route was the polyaniline pathway in which polyanilines of high molecular weight are formed. The intermediate compounds involved in both degradation routes are different depending on the treatment used. In the electro-oxidation, denitrification processes were also observed. From an economical point of view, electro-oxidation of aniline using BDD electrodes is more interesting than UV/H2O2 due it has an 87% lower operational cost. So, electro-oxidation using BDD electrodes seems to be a more suitable technique for the mineralization of wastewater containing aniline than UV or H2O2 based technologies.

  2. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  3. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants.

  4. Compromised proteasome degradation elevates neuronal nitric oxide synthase levels and induces apoptotic cell death.

    Science.gov (United States)

    Lam, Philip Y; Cadenas, Enrique

    2008-10-15

    The significance of impairment of proteasome activity in PC12 cells was examined in connection with nitrative/nitrosative stress and apoptotic cell death. Treatment of differentiated PC12 cells with MG132, a proteasome inhibitor, elicited a dose- and time-dependent increase in neuronal nitric oxide synthase (nNOS) protein levels, decreased cell viability, and increased cytotoxicity. Viability and cytotoxicity were ameliorated by L-NAME (a broad NOS inhibitor). Nitric oxide/peroxynitrite formation was increased upon treatment of PC12 cells with MG132 and decreased upon treatment with the combination of MG132 and 7-NI (a specific inhibitor of nNOS). The decreases in cell viability appeared to be effected by an activation of JNK and its effect on mitochondrial Bcl-x(L) phosphorylation. These effects are strengthened by the activation of caspase-9 along with increased caspase-3 activity upon treatment of PC12 cells with MG132. These results suggest that impairment of proteasome activity and consequent increases in nNOS levels lead to a nitrative stress that involves the coordinated response of JNK cytosolic signaling and mitochondrion-driven apoptotic pathways.

  5. Degradation of 2,4-dichlorophenol with a novel TiO2/Ti-Fe-graphite felt photoelectrocatalytic oxidation process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Degradation of 2,4-dichlorophenol (2,4-DCP) was studied in a novel three-electrode photoelectrocatalytic (PEC) integrative oxidation process, and the factors influencing the degradation rate, such as applied current, flow speed of O2, pH, adscititious voltage and initial 2,4-DCP concentration were investigated and optimized. H2O2 was produced nearby cathode and Fe2+ continuously generated from Fe anode in solution when current and O2 was applied, so, main reactions, H2O2-assisted TiO2 PEC oxidation and E-Fenton reaction, occurred during degradation of 2,4-DCP in this integrative system. The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process, while it was only 31% in E-Fenton process and 46% in H2O2-assisted TiO2 PEC process. So, it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect. By the investigation of pH, it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.

  6. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  7. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  8. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  9. The influence of atmospheric species on the degradation of aluminum doped zinc oxide and Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.J.; Foster, C.; Dasgupta, S.; Vroon, Z.A.E.P.; Barreau, N.; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbondioxide (CO2), oxygen (O2), nitrogen (N2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical, c

  10. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation

    Directory of Open Access Journals (Sweden)

    Alberto Strini

    2016-06-01

    Full Text Available This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin, composite systems (siloxane-hybrid, foamed hybrid, and curing temperatures (room temperature and 60 °C were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste. The geopolymer matrices were previously designed for different applications, ranging from insulating (foam to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM and energy dispersive X-ray (EDS analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

  11. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  12. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.

    Science.gov (United States)

    Frankel, E N; Neff, W E; Brooks, D D; Fujimoto, K

    1987-06-23

    To clarify the mechanism of fluorescence formation between DNA and lipid degradation products in the presence of ferric chloride and ascorbic acid, a number of carbonyl compounds and decomposition products of pure methyl linolenate hydroperoxides were examined. Keto derivatives of methyl ricinoleate, linoleate, and oleate, alkanals and 2-alkenals produced little or no fluorescence with DNA in the presence of ferric chloride-ascorbic acid. 2,4-Alkadienals were more active and 2,4,7-decatrienal was the most active. Mixtures of volatile aldehydes prepared from linolenate hydroperoxide decomposed either thermally or with iron and ascorbate had the same activity as 2,4,7-decatrienal. Higher molecular-weight products from the decomposition of methyl linolenate hydroperoxides showed relatively low activity. beta-Carotene, alpha-tocopherol and other antioxidants effectively reduced the amount of fluorescence formed by linolenate hydroperoxides. The results suggest that, in addition to hydroperoxide decomposition products, singlet oxygen and/or free radical species contribute significantly to the fluorescence formed from the interaction of methyl linolenate hydroperoxides with DNA in the presence of ferric chloride and ascorbic acid.

  13. Simple Fluorimetric Determination of Benzo[a]pyrene in Cigarette Smoke without Preseparation Procedure

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Constant-energy synchronous fluorimetry was used for the identification of benzo[a]pyrene in mixtures with a detection limit of 1.34 nmol/L. The recovery experiments in cigarette smoke samples have also obtained satisfactory results of 99.1-103.5% for benzo[a]pyrene.

  14. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human Bronchi

    DEFF Research Database (Denmark)

    Harris, C.C.; Autrup, Herman; Connor, R.

    1976-01-01

    The binding of benzo[a]pyrene to DNA in cultured human bronchus was measured in specimens from 37 patients. The binding values ranged from 2 to 151 picomoles of benzo[a]pyrene per milligram of DNA with an overall mean +/- standard error of 34.2 +/- 5.2. This 75-fold interindividual variation in t...

  15. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    Science.gov (United States)

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  16. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties.

    Science.gov (United States)

    Jonsson, Sofia; Persson, Ylva; Frankki, Sofia; van Bavel, Bert; Lundstedt, Staffan; Haglund, Peter; Tysklind, Mats

    2007-10-01

    In this study, we investigated how the chemical degradability of polycyclic aromatic hydrocarbons (PAHs) in aged soil samples from various contaminated sites is influenced by soil characteristics and by PAH physico-chemical properties. The results were evaluated using the multivariate statistical tool, partial least squares projections to latent structures (PLS). The PAH-contaminated soil samples were characterised (by pH, conductivity, organic matter content, oxide content, particle size, specific surface area, and the time elapsed since the contamination events, i.e. age), and subjected to relatively mild, slurry-phase Fenton's reaction conditions. In general, low molecular weight PAHs were degraded to a greater extent than large, highly hydrophobic variants. Anthracene, benzo(a)pyrene, and pyrene were more susceptible to degradation than other, structurally similar, PAHs; an effect attributed to the known susceptibility of these compounds to reactions with hydroxyl radicals. The presence of organic matter and the specific surface area of the soil were clearly negatively correlated with the degradation of bi- and tri-cyclic PAHs, whereas the amount of degraded organic matter correlated positively with the degradation of PAHs with five or six fused rings. This was explained by enhanced availability of the larger PAHs, which were released from the organic matter as it degraded. Our study shows that sorption of PAHs is influenced by a combination of soil characteristics and physico-chemical properties of individual PAHs. Multivariate statistical tools have great potential for assessing the relative importance of these parameters.

  17. Oxidative Degradation of κ-Carrageenan%к-卡拉胶的氧化降解

    Institute of Scientific and Technical Information of China (English)

    李桂村; 张志焜; 耿美玉

    2002-01-01

    к-卡拉胶有着良好的药理和生理活性,但是由于分子量大,溶解性差使它的应用受到很大的限制.研究了在中性和酸性条件下利用H2O2对卡拉胶进行降解来制备低分子量的卡拉胶时H2O2浓度、卡拉胶浓度、反应温度和时间对反应的影响.发现提高H2O2浓度、降低卡拉胶浓度、提高反应温度有利于卡拉胶分子量的降低.通过粘度法测量了卡拉胶的平均分子量在1000~10000,并发现它的溶解性大大提高了.利用IR和13C-NMR研究了降解前后卡拉胶的结构变化.%κ-carrageenan has helpful physiological and pharmacological activities, but its applications on medicine are limited due to its high molecular weight and bad solubility. The κ-carrageenan low molecular weight (LMW) by hydrogen peroxide (H2O2) was produced firstly in the neutral and acid conditions. The effects of concentration of hydrogen peroxide, the ratio of reactants, reaction temperature and time were discussed. The average molecular weight (AMW) of κ-carrageenan was measured by viscosity method. The AMW varied from 1000 to 10000 and solubility was increased greatly. The chemical structure and the mechanism of degradation were studied by 13C-NMR and IR spectra.

  18. Degradation of some ceria electrolytes under hydrogen contact nearby anode in solid oxide fuel cells (SOFCs

    Directory of Open Access Journals (Sweden)

    Malta Luiz Fernando Brum

    2004-01-01

    Full Text Available This work is concerned with thermodynamic analysis of the stability of some ceria electrolytes under contact with hydrogen gas nearby anode in fuel cells. It was considered the following types of ceria-electrolytes: pure ceria, strontium-doped ceria, calcium-doped ceria and calcium-bismuth-doped ceria. The equilibrium Log (pH2O/pH2 vs. T diagrams were constructed for x = 0.1 and 0.01, where x is the fraction of initial ceria converted to Ce2O3 (proportional to the ratio between activities of Ce3+ and Ce4+ in the ceria electrolyte, which is proportional to the fraction of electronic conduction in the electrolyte at a given temperature. The predictions of the diagrams are as follows: (a Ce1.9Ca0.1Bi0.8O5.1 and Ce0.9Sr0.1O1.9 are less stable than pure ceria for the whole temperature range (from 0 to 1000 °C; (b Ce0.9Ca0.1O1.9 is more stable than pure ceria below about 650 °C for x = 0.1 and below about 400 °C for x = 0.01; (c at each temperature in the considered range the pressure ratio pH2O(g/pH2(g has to be higher than thermodynamically predicted in order to keep CeO2 stable in the electrolyte contacting hydrogen gas. Thermodynamic predictions are entirely capable of explaining experimental data published on the subject (irreversible cell degradation in the case of SrO-doped ceria; weight loss from doped-ceria electrolyte above 700 °C; oxygen gas release during sintering of ceria.

  19. NF-TiO₂ photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: emerging synergies, degradation intermediates, and reusable attributes.

    Science.gov (United States)

    Andersen, Joel; Pelaez, Miguel; Guay, Lisa; Zhang, Zhaohong; O'Shea, Kevin; Dionysiou, Dionysios D

    2013-09-15

    In order to investigate sustainable alternatives to current water treatment methods, the effect of NF-titania film thickness and subsequent photocatalysis in combination with oxidants was examined under simulated solar light. Such a combination presents a theoretical possibility for a synergistic interaction between the photocatalyst and the oxidant (activation of the oxidant by the catalyst under conditions under which it may not conventionally be activated). To investigate, peroxymonosulfate (PMS) and persulfate (PS) were used as oxidants, and two pesticides, amitrole and atrazine, were used as target contaminants. In the absence of a film, activation of PMS under simulated solar conditions is demonstrated by removal of atrazine, whereas PS provided minimal removal, suggesting inefficient activation. Combining photocatalytic films with PMS and PS manifested synergies for both oxidants. The effect was most pronounced for PS since PMS already underwent significant activation without the photocatalyst. Amitrole degradation results indicated a lack of removal of amitrole by activated PS alone, suggesting that this sulfate radical-based treatment technology may be ineffective for the removal of amitrole. The NF-TiO₂ films demonstrated reusability under solar light both with and without oxidants. Finally, the degradation intermediates were analyzed, and a new intermediate appeared upon incorporating oxidants into the system.

  20. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  1. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lian; Sun, Binzhe; Wei, Mingyu; Luo, Shilu; Pan, Fei; Xu, Aihua [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia, E-mail: lixxwh@163.com [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China)

    2015-03-21

    Highlights: • OMS-2/PMS/Vis system could efficiently catalyze the degradation of organic dyes. • The system showed much higher activity than that of OMS-2/PMS and OMS-2/Vis. • The OMS-2 catalyst exhibited stable performance for multiple runs. • Sulfate radicals were suggested to be the major reactive species in the system. • The radicals production might involve the redox cycle of Mn(IV)/Mn(III) and Mn(III)/Mn(II). - Abstract: In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7.

  2. Effects of nature organic matters and hydrated metal oxides on the anaerobic degradation of lindane,p,p'-DDT and HCB in sediments

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; QUAN Xie; ZHAO Hui-min; CHEN Jing-wen; CHEN Shou; ZHAO Ya-zhi

    2003-01-01

    Effects of natural organic matters(NOM) and hydrated metal oxides(HMO) in sediments on the anaerobic degradation of γ-666, p,p'-DDT and HCB were investigated by means of removing NOM and HMO in Liaohe River sediments sequentially. The results showed that the anaerobic degradation of γ-666, p,p'-DDT and HCB followed pseudo-first-order kinetics in different sediments; But, the extents and rates of degradation were different, even the other conditions remained the same. Anaerobic degradation rates of γ-666, p,p'-DDT and HCB were 0.020 d-1, 0.009 d-1 and 0.035 month-1 respectively for the sediments without additional carbon resources. However, with addition of carbon resources, the anaerobic degradation rates of γ-666, p, p'-DDT and HCB were 0.071d-1, 0.054d-1 and 0.088 month-1 in the original sediments respectively. After removing NOM, the rates were decreased to 0.047 d-1, 0.037 d-1 and 0.066 month-1; in the sediments removed NOM and HMO, the rates were increased to 0.067d-1, 0.059 d-1 and 0.086 month-1. These results indicated that NOM in the sediments accelerated the anaerobic degradation of γ-666, p,p'-DDT and HCB; the HMO inhibited the anaerobic degradation of γ-666, p,p'-DDT and HCB.

  3. Quantifying the effects of sterilization and aging on the oxidative degradation and wear of crosslinked and conventional polyethylene used in total joint replacement

    Science.gov (United States)

    Willie, Bettina Maria

    2005-07-01

    Nearly 500,000 total knee and hip replacements are performed annually in the United States. The generation of ultra-high molecular weight polyethylene (PE) particulate wear debris and associated osteolysis has increasingly become the predominant cause of revision operation. Research has shown that radiation sterilization in air results in increased oxidative degradation and accelerated wear of PE components. The overall goal of this work was to better understand the effect of sterilization, radiation crosslinking, and aging on the oxidative degradation and wear performance of PE components in order to improve clinical outcomes in total joint replacement. The data indicated that after four years of real-time shelf aging, PE that was radiation sterilized in air or nitrogen had significantly greater oxidative degradation compared to PE that was sterilized with either gas plasma or ethylene oxide. After two years of real-time shelf aging, negligible oxidation occurred with minimal changes in density and percent crystallinity, indicating that oxidative degradation was not an issue in the highly crosslinked and conventional polyethylene components examined. The differences measured between time zero and two years shelf aging may be likely explained by instrumentation error or variation within polyethylene manufacturing lots. Data suggest that current manufacturing and packaging technologies have successfully avoided oxidative degradation during shelf aging. Shelf aging may not be a concern in highly crosslinked or conventional polyethylene with current packaging technologies. Conventional PE tibial components had significantly greater percent area of premelt total surface damage compared to crosslinked PE tibial components. However, conventional PE tibial components did not have a significantly different percent area of postmelt total surface damage compared to crosslinked PE tibial components. Data indicated that in vivo duration was a significant predictor of premelt

  4. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton.

    Science.gov (United States)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric

    2016-12-01

    Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.

  5. In-situ synthesis of nanomagnetites on poly(amidoamine)-modified graphite oxides and their novel catalytic performances towards the degradation of p-nitroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Cheng, Heming; Zhu, Chaoqun; Li, Shun; Cui, Ping, E-mail: cokecp@sohu.com

    2015-02-01

    Graphical abstract: - Highlights: • Hybrids of modified GO and in-situ synthesized magnetite were prepared. • The hybrid performed light-free catalyses on degradation of p-nitroaniline. • Air and aqueous medium were indispensible for the degradation. • The degradation performed fluently without adding H{sub 2}O{sub 2} or pH adjusting. • Such novel properties differed from those of most reported GO hybrids. - Abstract: An approach of loading nanomagnetites (NMs), obtained by in-situ synthesis, on graphite oxides (GO) or poly(amidoamine)-modified GO (pGO) was described in detail in this work. Compared with the GO-NM, the pGO-NM hybrids performed excellent catalysis on degradation of aqueous p-nitroaniline in surrounding air and aqueous medium with a mechanical agitation without light irradiations and additional hydrogen peroxides. These properties differed tremendously from those of most reported metallic oxide-GO hybrids. The catalytic decomposing of the p-nitroaniline was recorded by the successive measurements of an ultraviolet–visible spectrometer. The chemical modifications on GO were investigated with infrared and X-ray photoelectron spectrometers. The hybrids of GO-NM and pGO-NM are estimated with ultraviolet–visible spectrometer, X-ray diffraction, transmission electron microscopy, cyclic voltammetry measurements and thermogravimetric analyses. The experimental results showed that the dissolved oxygen and water were involved in the degradation, which provided solid evidences for the mechanism discussion.

  6. Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET)

    Science.gov (United States)

    Liu, Jia-Nan; Chen, Zhuo; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying; Yang, Cheng

    2016-08-01

    N, N-diethyl-m-toluamide (DEET) is one of the important emerging contaminants that are being increasingly detected in reclaimed water as well as in drinking water sources. However, DEET is refractory to conventional biological treatment and pure ozone which is absent of hydroxyl radical. Current researches on the efficient removal of DEET are still quite limited. This study utilizes a novel method, namely ozone/graphene oxide (O3/GO), to investigate the effects on DEET removal in aqueous systems, especially in reclaimed water. The results indicate that the DEET degradation rate was significantly accelerated through the combined effect of GO and ozonation which can yield abundant hydroxyl radical, compared to pure ozone condition. According to hydroxyl radical scavenging experiments, hydroxyl radical was found to play a dominant role in synergistic removal of DEET. These findings can offer sound suggestions for future research on the removal of emerging organic contaminants. The information could also be beneficial to reclaimed water safety and sustainable management.

  7. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  8. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans.

    Science.gov (United States)

    Bezsudnova, Ekaterina Yu; Sorokin, Dimitry Yu; Tikhonova, Tamara V; Popov, Vladimir O

    2007-12-01

    Thiohalophilus thiocyanoxidans is a first halophilic sulfur-oxidizing chemolithoautotrophic bacterium capable of growth with thiocyanate as an electron donor at salinity up to 4 M NaCl. The cells, grown with thiocyanate, but not with thiosulfate, contained an enzyme complex hydrolyzing thiocyanate to sulfide and ammonia under anaerobic conditions with carbonyl sulfide as an intermediate. Despite the fact of utilization of the , high cyanase activity was also detected in thiocyanate-induced cells. Three-stage column chromotography resulted in a highly purified thiocyanate-hydrolyzing protein with an apparent molecular mass of 140 kDa that consists of three subunits with masses 17, 19 and 29 kDa. The enzyme is a Co,Fe-containing protein resembling on its function and subunit composition the enzyme thiocyanate hydrolase from the Betaproteobacterium Thiobacillus thioparus. Cyanase, copurified with thiocyanate hydrolase, is a bisubstrate multisubunit enzyme with an apparent subunit molecular mass of 14 kDa. A possible role of cyanase in thiocyanate degradation by T. thiocyanoxidans is discussed.

  9. Synthesis of bismuth (III oxide films based anodes for electrochemical degradation of reactive blue 19 and crystal violet

    Directory of Open Access Journals (Sweden)

    Petrović Milica M.

    2014-01-01

    Full Text Available The Bi2O3 films-based anodes were synthesized by electrodeposition of Bi on stainless steel substrate at constant current density and during different deposition times, fallowed by calcination, forming Bi2O3. The thickness of the films was determined by two methods: the observation under the microscope and by calculation from mass difference. Electrochemical proceses at the anodes were ivestigated by linear sweep voltammetry. At the anodes obtained within 2, 5, 10 and 15 minutes of deposition, two dyes, namely: Reactive Blue 19 and Crystal Violet, were decolorized by oxidation with •OH radical, generated from H2O2 decomposition at the anodes. Decoloration times of the anodes varied, and the shortest one was achieved with the anode obtained during 5 minutes of deposition, with the film thickness of 2.5±0.3 μm. The optimal H2O2 concentration for the dyes degradation was found to be 10 mmol dm-3. [Projekat Ministarstva nauke Republike Srbije, br. ТR 34008

  10. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  11. Degradation of ethyl paraben by heat-activated persulfate oxidation: statistical evaluation of operating factors and transformation pathways.

    Science.gov (United States)

    Frontistis, Zacharias; Antonopoulou, Maria; Konstantinou, Ioannis; Mantzavinos, Dionissios

    2017-01-01

    A factorial design methodology was implemented to evaluate the importance of ethyl paraben (EP) concentration (500-1500 μg/L), sodium persulfate concentration (400-500 mg/L), temperature (40-60 °C), reaction time (2-30 min), water matrix (pure water or secondary treated wastewater), and initial solution pH (3-9) on EP removal by heat-activated persulfate oxidation. All individual effects, except the solution pH, were statistically significant and so were the second-order interactions of ethyl paraben concentration with temperature or the reaction time. The influence of the water matrix was crucial, and the efficiency of the process was lower in secondary treated wastewater due to the presence of natural organic matter and inorganic salts that compete with ethyl paraben for the reactive oxygen species. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was employed to identify major transformation by-products (TBPs); 13 compounds were detected as TBPs of EP. Degradation occurred through (i) hydroxylation, (ii) dealkylation, and (iii) oligomerization reactions leading to TBPs with ether and biphenyl structures. Oligomerization reactions were found to be the dominant pathway during the first steps of the reaction. The toxicity of 500 μg/L EP in secondary treated wastewater was tested against marine bacteria Vibrio fischeri; toxicity increased during the first minutes due to the production of several TBPs, but it consistently decreased thereafter.

  12. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  13. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.

    Science.gov (United States)

    Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-12-15

    Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes.

  14. Porous Co₃O₄ nanorods-reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue.

    Science.gov (United States)

    Zhang, Zhe; Hao, Jinhui; Yang, Wenshu; Lu, Baoping; Ke, Xi; Zhang, Bailin; Tang, Jilin

    2013-05-01

    A facile two step process was developed for the synthesis of porous Co3O4 nanorods-reduced graphene oxide (PCNG) hybrid materials based on the hydrothermal treatment cobalt acetate tetrahydrate and graphene oxide in a glycerol-water mixed solvent, followed by annealing the intermediate of reduced graphene oxide-supported Co(CO3)0.5(OH)·0.11H2O nanorods in a N2 atmosphere. The morphology and microstructure of the composites were examined by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. It is shown that the obtained PCNG have intrinsic peroxidase-like activity. The PCNG are utilized for the catalytic degradation of methylene blue. The good catalytic performance of the composites could be attributed to the synergy between the functions of porous Co3O4 nanorods and reduced graphene oxide.

  15. The effect of the packaging system and storage time on myofibrillar protein degradation and oxidation process in relation to beef tenderness.

    Science.gov (United States)

    Moczkowska, Małgorzata; Półtorak, Andrzej; Montowska, Magdalena; Pospiech, Edward; Wierzbicka, Agnieszka

    2017-03-18

    This study investigated the impact of packaging systems on the degradation and oxidation of beef proteins regarding beef tenderness of longissimus lumborum (LL) and biceps femoris (BF) muscles stored in vacuum skin packaging (VSP), a modified atmosphere with high oxygen concentration (MAP), and combined of these two methods (VSP+MAP). A significant decrease in the Warner-Bratzler shear force (WBSF) in VSP at D14 and D28 for LL was observed compared to BF. A significant effect of packaging system on troponin-T (Tn-T) and desmin degradation was shown (p≤0.001). A high concentration of oxygen in MAP and VSP+MAP affected protein oxidation, which was reflected in myosin oxidative cross-linking. An increase of WBSF values detected in steaks packed in VSP and VSP+MAP systems could be caused by the intensification of protein oxidation. Furthermore, BF was more susceptible to oxidation compared to LL. The VSP+MAP packaging system has resulted in the maintenance of a bright, red color, however has not improved the beef tenderness.

  16. Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Science.gov (United States)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-04-01

    Reduced graphene oxide/meso-TiO2/AuNPs (RGO/meso-TiO2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO2 and meso-TiO2/AuNPs.

  17. Photochemically deposited nano-Ag/sol-gel TiO2-In2O3 mixed oxide mesoporous-assembled nanocrystals for photocatalytic dye degradation.

    Science.gov (United States)

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-05-01

    This work focused on the improvement of the photocatalytic activity for Congo Red (CR) azo dye degradation of mesoporous-assembled 0.95 TiO2-0.05 In2O3 mixed oxide photocatalyst (with a TiO2-to-In2O3 molar ratio of 0.95:0.05) by loading with Ag nanoparticles. The mesoporous-assembled 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was synthesized by a hydrolytic sol-gel method with the aid of a structure-directing surfactant, prior to loading with various Ag contents (0.5-2 wt.%) by a photochemical deposition method. The optimum Ag loading content was found to be 1.5 wt.%, exhibiting a great increase in photocatalytic CR dye degradation activity. The 1.5 wt.% Ag-loaded 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was further applied for the CR dye degradation in the presence of water hardness. Different types (Ca2+ and Ca2+ -Mg2+ mixture) and concentrations (200 and 500 mg/l) of water hardness were investigated. The results showed that the water hardness reduced the photocatalytic CR dye degradation activity, particularly for the extremely hard water with 500 mg/l of Ca2+ -Mg2+ mixture. The adjustment of initial solution pH of the CR dye-containing hard water to an appropriate value was found to improve the photocatalytic CR dye degradation activity under the identical reaction conditions.

  18. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    Science.gov (United States)

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly.

  19. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    Science.gov (United States)

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  20. Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.A.; Elbehairy, A.M.; Ghoneim, M.A.; Amer, H.A. [Cairo Univ., Giza (Egypt). Biochemistry Dept. and Biotechnology Center

    2007-03-15

    The current study was carried out to evaluate the potency of curcumin and chlorophyllin as natural antioxidants to reduce the oxidative stress markers induced by cyclophosphamide (CP) and benzo[a]pyrene [B(a)P] which were used as free radical inducers. For this purpose, 126 male albino rats were used. The animals were assigned into 4 main groups: negative control group; oxidant-treated group (subdivided into two subgroups: cyclophosphamide- treated group and benzo[a]pyrene-treated group); curcumin-treated group; and chlorophyllin-treated group. Liver samples were collected after two days post the oxidant inoculation and at the end of the experimental period (10 weeks). These samples were examined for determination of liver microsomal malondialdehyde (MDA), DNA fragmentation, restriction fragment length polymorphism (RFLP) and 8-hydroxy deoxyguanosine (8-OHdG) concentration. Both CP and B(a)P caused increments in DNA fragmentation percentages, liver microsomal MDA, concentration of 8-OHdG and induced point mutation. Treatment of rats with either curcumin or chlorophyllin revealed lower DNA fragmentation percentages, liver microsomal MDA concentration, concentration of 8-OHdG and prevented induction of mutations, i. e., reversed the oxidative stress induced by CP and B(a)P and proved that they were capable of protecting rats against the oxidative damage evoked by these oxidants. (orig.)

  1. Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene.

    Science.gov (United States)

    Ibrahim, Marwa A; Elbehairy, Adel M; Ghoneim, Magdy A; Amer, Hassan A

    2007-01-01

    The current study was carried out to evaluate the potency of curcumin and chlorophyllin as natural antioxidants to reduce the oxidative stress markers induced by cyclophosphamide (CP) and benzo[a]pyrene [B(a)P] which were used as free radical inducers. For this purpose, 126 male albino rats were used. The animals were assigned into 4 main groups: negative control group; oxidant-treated group (subdivided into two subgroups: cyclophosphamide-treated group and benzo[a]pyrene-treated group); curcumin-treated group; and chlorophyllin-treated group. Liver samples were collected after two days post the oxidant inoculation and at the end of the experimental period (10 weeks). These samples were examined for determination of liver microsomal malondialdehyde (MDA), DNA fragmentation, restriction fragment length polymorphism (RFLP) and 8-hydroxy deoxyguanosine (8-OHdG) concentration. Both CP and B(a)P caused increments in DNA fragmentation percentages, liver microsomal MDA, concentration of 8-OHdG and induced point mutation. Treatment of rats with either curcumin or chlorophyllin revealed lower DNA fragmentation percentages, liver microsomal MDA concentration, concentration of 8-OHdG and prevented induction of mutations, i.e., reversed the oxidative stress induced by CP and B(a)P and proved that they were capable of protecting rats against the oxidative damage evoked by these oxidants.

  2. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 ÀC. Samples included: two formulations developed at Kansas City Plant (KCP) (#6 and #10), one commercially available formulation (#21), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl #10 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl #10 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  3. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies.

    Science.gov (United States)

    Phugare, Swapnil S; Kalyani, Dayanand C; Patil, Asmita V; Jadhav, Jyoti P

    2011-02-15

    The present study aims to evaluate Red HE3B degrading potential of developed microbial consortium SDS using two bacterial cultures viz. Providencia sp. SDS (PS) and Pseudomonas aeuroginosa strain BCH (PA) originally isolated from dye contaminated soil. Consortium was found to be much faster for decolorization and degradation of Red HE3B compared to the individual bacterial strain. The intensive metabolic activity of these strains led to 100% decolorization of Red HE3B (50 mg l(-1)) with in 1h. Significant induction of various dye decolorizing enzymes viz. veratryl alcohol oxidase, laccase, azoreductase and DCIP reductase compared to control, point out towards their involvement in overall decolorization and degradation process. Analytical studies like HPLC, FTIR and GC-MS were used to scrutinize the biodegradation process. Toxicological studies before and after microbial treatment was studied with respect to cytotoxicity, genotoxicity, oxidative stress, antioxidant enzyme status, protein oxidation and lipid peroxidation analysis using root cells of Allium cepa. Toxicity analysis with A. cepa signifies that dye Red HE3B exerts oxidative stress and subsequently toxic effect on the root cells where as biodegradation metabolites of the dye are relatively less toxic in nature. Phytotoxicity studies also indicated that microbial treatment favors detoxification of Red HE3B.

  4. Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspension of TiO2. Comparison with Fenton oxidation.

    Science.gov (United States)

    Le Campion, L; Giannotti, C; Ouazzani, J

    1999-03-01

    5-nitro-1,2,4-triazol-3-one (NTO) is a powerful insensitive explosive, present in industrial waste waters. A remediation method based on photochemical decomposition and Fenton oxidation of NTO has been evaluated by monitoring the mineralization of 14C-labelled NTO. The TiO2-catalyzed photodegradation (lambda > 290 nm, TiO2 0.4 g/l, NTO 150 mg/l)) leads to the complete mineralization of NTO in 3 hours. This degradation involves a simultaneous denitrification and ring scission of NTO leading to nitrites, nitrates and carbon dioxide. No significant photo-degradation of NTO was detected in the absence of the catalyst. Long term irradiation over one week, leads to a complete degradation of concentrated NTO (5 g/l), suggesting that this method could be useful to clean-up NTO wastes. Fenton oxidation offers an efficient cost-effective method for NTO remediation. This reaction is faster that the TiO2 catalyzed photolysis and find application on the mineralization of high concentrations of NTO (15 g/l). Fenton oxidation provokes ring cleavage and subsequent elimination of the two carbon atoms of NTO as CO2. During this reaction, the nitro group is completely transformed into nitrates.

  5. Effects of benzo(a)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri

    Science.gov (United States)

    Pan, Luqing; Ren, Jiayun; Zheng, Debin

    2009-02-01

    Scallop Chlamys farreri was exposed to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L, 1.0 μg/L, 10.0 μg/L and 50.0 μg/L) for 30 days in seawater. The 7-ethoxyresorufin O-deethylase (EROD) activity was significantly induced, and increased with the increasing BaP concentration. The glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx) activities increased in short time at low concentration of BaP, and was significantly depressed at high concentrations. Scallop gill was more sensitive to BaP than the digestive gland, and the digestive gland was the main tissue to deal with oxyradicals. The contents of malondialdehyde (MDA) increased with the exposure time and there was a positive correlation (concentration-effect) between the MDA content and the concentration of BaP. The biomarkers determined in this experiment had important roles in detoxification, and showed great potential as biomarkers for oxidative stress. Controlled laboratory experiments designed to simulate field exposure scenarios are particularly useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.

  6. Effects of benzo(a)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    PAN Luqing; REN Jiayun; ZHENG Debin

    2009-01-01

    Scallop Chlamys farreri was exposed to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L, 1.0 μg/L, 10.0 μg/L and 50.0 μg/L) for 30 days in seawater. The 7-ethoxyresorufin O-deethylase (EROD) activity was significantly induced, and increased with the increasing BaP concentration. The glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx) activities increased in short time at low concentration of BaP, and was significantly depressed at high concentrations. Scallop gill was more sensitive to BaP than the digestive gland, and the digestive gland was the main tissue to deal with oxyradicals. The contents of malondialdehyde (MDA) increased with the exposure time and there was a positive correlation (concentration-effect) between the MDA content and the concentration of BaP. The biomarkers determined in this experiment had important roles in detoxification, and showed great potential as biomarkers for oxidative stress. Controlled laboratory experiments designed to simulate field exposure scenarios are particularly useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.

  7. Wheat bran and the induction of intestinal benzo(a)pyrene hydroxylase by dietary benzo(a)pyrene.

    Science.gov (United States)

    Clinton, S K; Visek, W J

    1989-03-01

    The mucosa of the intestine responds to polycyclic aromatic hydrocarbons (PAH) with the rapid induction of benzo(a)pyrene hydroxylase (BPH). Studies were conducted to determine if dietary fiber would reduce exposure of the intestine to dietary benzo(a)pyrene (BP) as indicated by intestinal BPH activity. In all studies, female Sprague-Dawley rats were fed a fiber-free purified diet for 7 d, whereupon they were switched to experimental diets for 48 h. After 48 h their small intestinal mucosa was assayed for BPH activity. Diets for the initial study contained 0, 100, 400, 800, or 1200 mg BP/kg diet, each with and without 10% soft white wheat bran. Enzyme induction with 100 and 400 mg BP/kg diet was partially inhibited by bran, but with higher concentrations of BP there was no protective effect. The inhibition in BP-induced intestinal BPH activity was observed with 10% wheat bran but not with 3.3 or 6.6%. Subsequent studies showed no significant inhibition in BPH induction with cellulose or lignin, whereas all forms of wheat bran (hard red, soft white, or finely ground soft white) caused significant inhibition. In the final study, a diet containing charcoal-broiled beef, a known source of PAH, was compared with diets containing raw beef or soybean protein, each with and without 10% soft white wheat bran. BPH activity remained low with raw beef and soybean protein whether or not fiber was added. However, intestinal BPH activity was raised ninefold by charcoal-broiled beef. The addition of bran reduced BPH activity to 65% of that observed with the fiber-free, charcoal-broiled beef diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Mechanism of azo dye degradation in Advanced Oxidation Processes: Degradation of Sulfanilic Acid Azochromotrop and its parent compounds in aqueous solution by ionizing radiation

    Science.gov (United States)

    Pálfi, Tamás; Wojnárovits, László; Takács, Erzsébet

    2011-03-01

    Mechanistic studies were made on hydroxyl radical and hydrated electron reaction with Sulfanilic Acid Azochromotrop (SPADNS) as model azo dye in dilute aqueous solution. SPADNS contains 4,5-dihydroxynaphthalene-2,7-disulfonic acid part and 4-sulfophenylazo group. To establish the details of the reaction mechanism the reactions of two simpler molecules without 4-sulfophenylazo part were also studied: one of them contained one (in position 4, II), the other two (in positions 4 and 5, III) -OH groups. Hydroxyl radicals react with these molecules with radical addition to the naphthalene-2,7-disulfonic acid part. The adduct hydroxycyclohexadienyl type radical decays in radical-radical reactions, or undergoes a (pH dependent) water elimination to yield naphthoxy radical. The radical decay takes place on the ms timescale. Degradation efficiencies are 0.6-0.8. Hydrated electron in the case of the two simpler molecules reacts with the rings, while in the case of dye with the azo bond. Electron scavenging is followed by protonation, this reaction in the case of II and III yields cyclohexadienyl, while with the dye hydrazo radical. The efficiency of degradation with II and III is 0.2-0.6, while for SPADNS it is close to 1.

  9. Mechanism of azo dye degradation in Advanced Oxidation Processes: Degradation of Sulfanilic Acid Azochromotrop and its parent compounds in aqueous solution by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Palfi, Tamas; Wojnarovits, Laszlo [Institute of Isotopes, Hungarian Academy of Sciences, H-1525 Budapest, P.B. 77 (Hungary); Takacs, Erzsebet, E-mail: takacs@iki.kfki.h [Institute of Isotopes, Hungarian Academy of Sciences, H-1525 Budapest, P.B. 77 (Hungary)

    2011-03-15

    Mechanistic studies were made on hydroxyl radical and hydrated electron reaction with Sulfanilic Acid Azochromotrop (SPADNS) as model azo dye in dilute aqueous solution. SPADNS contains 4,5-dihydroxynaphthalene-2,7-disulfonic acid part and 4-sulfophenylazo group. To establish the details of the reaction mechanism the reactions of two simpler molecules without 4-sulfophenylazo part were also studied: one of them contained one (in position 4, II), the other two (in positions 4 and 5, III) -OH groups. Hydroxyl radicals react with these molecules with radical addition to the naphthalene-2,7-disulfonic acid part. The adduct hydroxycyclohexadienyl type radical decays in radical-radical reactions, or undergoes a (pH dependent) water elimination to yield naphthoxy radical. The radical decay takes place on the ms timescale. Degradation efficiencies are 0.6-0.8. Hydrated electron in the case of the two simpler molecules reacts with the rings, while in the case of dye with the azo bond. Electron scavenging is followed by protonation, this reaction in the case of II and III yields cyclohexadienyl, while with the dye hydrazo radical. The efficiency of degradation with II and III is 0.2-0.6, while for SPADNS it is close to 1.

  10. Nanocrystalline ZnO doped lanthanide oxide: An efficient photocatalyst for the degradation of malachite green dye under visible light irradiation

    Directory of Open Access Journals (Sweden)

    G.A. Suganya Josephine

    2015-09-01

    Full Text Available Visible light induced semiconductor photocatalysis has received a great attention in recent years due to the contamination of water bodies. In the present study, we have reported the photo catalytic degradation of a toxic organic dye, malachite green using a ZnO doped Dy2O3 photo catalyst under visible light irradiation. The nanocrystalline photocatalyst was prepared by a precipitation method employing the respective nitrates and sodium carbonate as precursors and were characterized by FT-IR, XRD, UV–Vis DRS, FE-SEM and AFM analysis. The experimental results proved that the prepared photo catalysts were crystalline, nanosized and highly active in the visible region. UV–Vis DRS results suggested that the band gap was 3.1 eV for the prepared photo catalyst. The photodegradation efficiency of malachite green was analysed by various experimental parameters namely pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV–Visible spectrophotometer. The degradation of malachite green was above 99% within 1 h of visible light irradiation employing the doped photocatalyst, whereas pristine metal oxide possessed only 67% and pristine lanthanide oxide possessed activity which was only due to photolysis. A plausible mechanism for the generation of OH radicals and the pathway for MG dye degradation has been proposed in this study. The experimental results clearly show that nanocrystalline semiconductor doped lanthanide oxides are highly active under visible light irradiations and may find wider applications in environmental remediation technologies.

  11. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis.

  12. 不同HALO掺杂剂量的超薄栅pMOSFET的退化%Degradation of pMOSFETs with Ultrathin Oxide and Different HALO Dose

    Institute of Scientific and Technical Information of China (English)

    赵要; 胡靖; 许铭真; 谭长华

    2004-01-01

    研究了热载流子应力下栅厚为2.1nm,栅长为0.135μm的pMOSFET中HALO掺杂剂量与器件的退化机制和参数退化的关系.实验发现,器件的退化机制对HALO掺杂剂量的改变不敏感,但是器件的线性漏电流、饱和漏电流、最大跨导的退化随着HALO掺杂剂量的增加而增加.实验同时发现,器件参数的退化不仅与载流子迁移率的退化、漏串联电阻增大有关,而且与阈值电压的退化和应力前阈值电压有关.%The effect of HALO dose on device parameter degradation of pMOSFET with 2.1nm oxide and 0.135μm channel length at hot carrier stress is analyzed.It is found that the degradation mechanism is not sensitive to HALO dose changing,but the degradation quantities of linear drain current,saturation drain current,and maximum transconductance increase with HALO dose enhancing and are larger than those of speculated before.The degradation of device parameters (linear drain current,saturation drain current,and maximum transconductance) is attributed to not only the drain series resistance enhancing induced by interface states under spacer oxide and carrier mobility degradation but also the threshold voltage variation and initial threshold voltage increasing with HALO dose enhancing.

  13. Thermal Oxidation of Polyolefins by Mild Pro-Oxidant Additives Based on Iron Carboxylates and Lipophilic Amines: Degradability in the Absence of Light and Effect on the Adhesion to Paperboard

    Directory of Open Access Journals (Sweden)

    Tuan-Anh Nguyen

    2015-08-01

    Full Text Available Marine and inland pollution by non-degradable plastic bags and other plastic articles is a topic of great concern. Natural degradation processes based on oxidation of plastic pollutants could possibly contribute to limit the extent of pollution. Thermal degradation of polyolefins in the absence of light by non-polluting pro-oxidants has not been presented before. In this study, we show that two amines, stearyl amine and [(3-(11-aminoundecanoyl amino propane-1-] silsesquioxane (amino-POSS in combination with ferric stearate (FeSt3 tremendously accelerate the thermal oxidation of polyolefins compared with reference samples. Both amines and FeSt3 are to a large extent based on renewable resources. Polyethylene and polypropylene samples containing less than 100 ppm of iron and 1% of amine were extremely brittle after 10 days in a circulation oven in the absence of light. No significant degradation could be seen with samples containing iron but no amine. In a different application, the initial oxidation of polyethylene can be used in order to increase its adhesion to cardboard. Excellent adhesion between polyethylene and cardboard is important for liquid packaging based on renewable resources. Amino-POSS has been chosen for food packaging applications due to its expected lower leakage from polyethylene (PE compared with stearyl amine. Film samples of PE/amino-POSS/FeSt3 blends were partly oxidized in a circulation oven. The oxidation was documented by increased carbonyl index (CI and melt flow index (MFI. The limited extent of oxidation has been proved by unchanged tensile strength and only moderate changes in elongation at break when compared to reference polyethylene films containing no FeSt3 or amino-POSS. The PE/amino-POSS/FeSt3 blends were compression moulded to paperboard. The adhesion of non-aged blends to paperboard decreased with increasing amino-POSS content which is in good compliance with an earlier reported lubricant effect of high

  14. Assessment by HPLC of the degradation behavior of acitretin under hydrolytic, oxidative, photolytic and thermal stress conditions

    Directory of Open Access Journals (Sweden)

    Pawan K. Porwal

    2014-12-01

    Full Text Available Acitretin is a photosensitive oral retinoid with very limited data available on its degradation. The official HPLC method for acitretin determination was insufficient to resolve the degradation products generated during stability studies. Therefore, an isocratic RP-HPLC–UV method was developed for the determination of acitretin in the presence of its related impurities and degradation products. Efficient chromatographic separation was achieved on a Thermo beta-basic column C18 (100 mm×4.6 mm, 5 μm with mobile phase containing 0.3% (v/v glacial acetic acid with acetonitrile (ACN and isopropyl alcohol (IPA in an isocratic ratio of 70:30 at a flow rate of 1.0 mL/min with the eluent monitored at 360 nm. The method was validated for specificity, linearity, precision, accuracy and robustness. The calibration plot was linear over the concentration range of 50–150 μg/mL with a correlation coefficient (r2 of 0.999. The proposed method was used to investigate the degradation kinetics of acitretin under the different degradative conditions. The degradation rate constant (K, half-life (t1/2, and t90 were calculated. Degradation of acitretin followed pseudo-first-order kinetics. The drug was found to be less stable under acidic and photolytic degradation conditions: the photolytic degradation constants for acitretin in sunlight and UV light were 0.002698% and 0.0008402% min−1, respectively. The LOD for acitretin and the known impurities were at a level below 0.02%. The method shows consistent recoveries for ACTR (99.8%–101.2% and also for its known impurities (97.2–101.3%. The method was found to be accurate, precise, linear, specific, sensitive, rugged, robust, and useful for characterizing the stability of this chemical.

  15. Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: effects of nitrate on oxidation and a pilot-scale AOP operation.

    Science.gov (United States)

    Park, J H; Park, C G; Lee, J W; Ko, K B

    2010-01-01

    The major objective of this study was to delineate the oxidation of diethyl phthalate (DEP) in water, using bench-scale UV/H2O2 and O3/H2O2 processes, and to determine the effects of nitrate (NO(3-)-N, 5 mg L(-1)) on this oxidation. The oxidation of DEP was also investigated through a pilot-scale advanced oxidation process (AOP), into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. The bench-scale operation showed that DEP could be oxidized via solely UV oxidation or O3 oxidation. The adverse effect of nitrate on the DEP oxidation was remarkable in the UV/H2O2 process, and the nitrate clearly reduced its oxidation. The adverse effect of nitrate on O3 oxidation was also observed. It was noted, however, that the nitrate clearly enhanced the DEP oxidation in the O3/H2O2 process. A series of pilot-scale AOP operations indicated that the addition of H2O2 enhanced DEP oxidation in both the UV/H2O2 and O3/H2O2 processes. No noticeable adverse effect of nitrate was observed in the NO(3-)-N concentration of about 6.0 mg L(-1), which was naturally contained in the treatment stream. About 52% and 61% of the DEP were oxidized by each of these two oxidation processes in this pilot-scale operation. Both the UV/H2O2 and O3/H2O2 processes appeared to be desirable alternatives for DEP oxidation in treatment effluent streams.

  16. Degradation of polyethylene induced by plasma in oxidizing atmospheres; Degradacion de polietileno inducido por plasma en atmosferas oxidantes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, E.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, Av. Tollocan y Colon, 50000 Toluca (Mexico)

    2002-07-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  17. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  18. Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions

    Science.gov (United States)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    The degradation of solid oxide fuel cells (SOFC) depends on stack and system design and operation. A methodology to evaluate synergistically these aspects to achieve the lowest production cost of electricity has not yet been developed. A repeating unit model, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination, is used to investigate the impact of the operating conditions on the lifetime of an SOFC system. It predicts acceleration of the degradation due to the sequential activation of multiple processes. The requirements for the highest system efficiency at start and at long-term differ. Among the selected degradation processes, those on the cathode side here dominate. Simulations suggest that operation at lower system specific power and higher stack temperature can extend the lifetime by a factor up to 10, because the beneficial decrease in cathode overpotential prevails over the higher release of volatile chromium species, faster metallic interconnect corrosion and higher thermodynamic risks of zirconate formation, for maximum SRU temperature below 1150 K. The counter-flow configuration, combined with the beneficial effect of internal reforming on lowering the parasitic air blower consumption, similarly yields longer lifetime than co-flow.

  19. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

    Directory of Open Access Journals (Sweden)

    Birte Mull

    2017-01-01

    Full Text Available Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2 is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO. TiO2 coated with different GO amounts (0.75%–14% were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples.

  20. Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification.

    Science.gov (United States)

    Giannakis, Stefanos; Jovic, Milica; Gasilova, Natalia; Pastor Gelabert, Miquel; Schindelholz, Simon; Furbringer, Jean-Marie; Girault, Hubert; Pulgarin, César

    2016-07-11

    In this work, an Iodinated Contrast Medium (ICM), Iohexol, was subjected to treatment by 3 Advanced Oxidation Processes (AOPs) (UV, UV/H2O2, UV/H2O2/Fe(2+)). Water, wastewater and urine were spiked with Iohexol, in order to investigate the treatment efficiency of AOPs. A tri-level approach has been deployed to assess the UV-based AOPs efficacy. The treatment was heavily influenced by the UV transmittance and the organics content of the matrix, as dilution and acidification improved the degradation but iron/H2O2 increase only moderately. Furthermore, optimization of the treatment conditions, as well as modeling of the degradation was performed, by step-wise constructed quadratic or product models, and determination of the optimal operational regions was achieved through desirability functions. Finally, global chemical parameters (COD, TOC and UV-Vis absorbance) were followed in parallel with specific analyses to elucidate the degradation process of Iohexol by UV-based AOPs. Through HPLC/MS analysis the degradation pathway and the effects the operational parameters were monitored, thus attributing the pathways the respective modifications. The addition of iron in the UV/H2O2 process inflicted additional pathways beneficial for both Iohexol and organics removal from the matrix.

  1. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  2. Degradation of alpha-pinene oxide and [2H7]-2,5,6-trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761.

    Science.gov (United States)

    Zorn, H; Neuser, F; Berger, R G

    2004-02-01

    When submerged cultured Pseudomonas fluorescens NCIMB 11761 was fed-batch supplemented with alpha-pinene oxide, a rapid formation of 2,6-dimethyl-5-methylene-hept-(2Z)-enal (I) (isonovalal) was observed. Biotransformation and isomerisation of (I) to the (2E)-isomer (II) (novalal) were enhanced by Lewatit OC 1064, a macroporous polystyrene adsorbent. Accelerated isomerisation in the presence of an amino donor (glycine) at pH 7.3 pointed to a merely chemical mechanism. A maximum yield of 48 g of aldehydesl(-1) was achieved, but quantitative analysis of the volatile fraction showed that the molar conversion of the pinene oxide substrate reached no more than 67%. To fill this gap of the mass balance, the acidic fraction was isolated. It contained several compounds which suggested a beta-oxidation-like catabolism starting from 2,6-dimethyl-5-methylene-hept-(2E)-enoic acid (III) (novalic acid). Using [2H7]-2,5,6-dimethyl-hept-(2E)-enoic acid as a conversion substrate and gas chromatography coupled to atomic emission detection and mass spectrometry a degradation pathway via labelled 3,4-dimethylpentenoic and methylpropanoic acids was evidenced. This pathway may play a predominant role in isoprenoid degradation by soil bacteria.

  3. Preparation of reduced graphene oxide/meso-TiO{sub 2}/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Wang, Hefang, E-mail: whf0618@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Fu, Nian, E-mail: funian3678@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); College of Physics Science and Technology of Hebei University, Baoding 071002 (China)

    2016-04-30

    Graphical abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under a hydrothermal condition. The RGO/meso-TiO{sub 2}/AuNPs ternary composites show high photocatalytic activity toward MB. - Highlights: • RGO/meso-TiO{sub 2}/AuNPs were obtained by addition of graphene oxide to meso-TiO{sub 2}/AuNPs. • Au NPs in the mesopores of meso-TiO{sub 2} reduce the recombination of charge carriers. • RGO covered with the surface of the meso-TiO{sub 2} enhance the adsorption of MB. • RGO/meso-TiO{sub 2}/AuNPs composites show high photocatalytic performance toward MB. - Abstract: Reduced graphene oxide/meso-TiO{sub 2}/AuNPs (RGO/meso-TiO{sub 2}/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO{sub 2}/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO{sub 2}/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO{sub 2}/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO{sub 2} and meso-TiO{sub 2}/AuNPs.

  4. NATURAL IRON OXIDE AS A HETEROGENEOUS PHOTO-FENTON-LIKE CATALYST FOR THE DEGRADATION OF 1-NAPHTHOL UNDER ARTIFICIAL AND SOLAR LIGHT

    Directory of Open Access Journals (Sweden)

    L MAMMERI

    2014-07-01

    Full Text Available A heterogeneous photo-Fenton-like degradation process of 1-naphthol (1-NP promoted by natural iron oxide (NIO in the presence of H2O2 was studied under artificial (365 nm and solar irradiation. This is an important reaction for the environment since both H2O2 and iron oxides are common constituents of natural waters. Furthermore, iron oxides function as catalysts in chemical oxidation processes used with H2O2 for treatment of contaminated waters. The NIO used in this study was characterized by X-ray diffraction (XRD, X-ray fluorescence and Brunauer–Emmett–Teller (BET methods. The results show that the NIO is a composite material that contains predominantly crystalline hematite particales (Fe2O3. The Fe2O3 in NIO was able to initiate the Fenton-like and photo-Fenton-like reactions. The effects of initial pH, catalyst dosage, H2O2 concentration and the wavelength of the light source (UV and solar on the photodegradation of 1-NP were investigated. The optimal content of the NIO was 1 g L-1 and the optimal H2O2 concentration was 10 mM. The degradation could occur efficiently over a wide pH range of 3-8.3. Furthermore, an important effect of light was observed. The photo-oxidation of 1-NP in NIO-H2O2 system under solar light was significantly accelerated in comparison with artificial irradiation at 365 nm.

  5. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  6. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.

    Science.gov (United States)

    Hua, Li; Ma, Hongrui; Zhang, Lei

    2013-01-01

    Three azo dyes (Methyl Orange, Direct Brown and Direct Green) were treated by catalytic wet air oxidation (CWAO) with the catalysts CuO/γ-Al(2)O(3) prepared by consecutive impregnation. The relationship of decolorization extent, chemical oxygen demand (COD) removal extent and total organic carbon (TOC) in dye solution were investigated. The results indicated that the CuO/γ-Al(2)O(3) catalyst had excellent catalytic activity in treating azo dyes. Almost 99% of color and 70% of TOC were removed in 2h. The high removal extent of color and TOC indicated that the CWAO obtained perfect decomposition for pollutants. The degradation pathway of azo dyes was analyzed by UV-Vis, FTIR and MS. According to the examined results, the hydroxyl ((·)OH) radicals induced strong oxidizing effects in the target solution and destroyed the chromophoric groups of azo-benzene conjugated of the molecular structure. Considering characteristics of the dye structure, the azo bond (-N=N-) would first be attacked by the hydroxyl radical and other free radicals. With the continuous oxidization and the long reaction time at high temperature, these intermediates could be oxidized to the final oxidation products, such as water and carbon dioxide.

  7. FeMnMg氧化物Fenton催化降解有机废水%Research of FeMnMg Oxide Nano Particles Fenton-Degraded Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    贾若琨; 李佳

    2014-01-01

    采用高温煅烧硝化法制备FeMnMg氧化物纳米晶,并采用扫描电镜( SEM)对FeMnMg氧化物进行表征。结果表明,高温煅烧硝化法制备的FeMnMg氧化物粒径为纳米范围,具有均匀的粒子尺寸和晶体尺寸。采用不同配比的FeMnMg氧化物纳米晶催化剂对亚甲基蓝模拟的有机废水进行Fenton催化降解实验,对实验结果进行分析讨论。 FeMnMg的摩尔比为2∶3∶1的氧化物对亚甲基蓝的降解效果最好。当pH值为7左右,反应温度为25℃时,降解速率最快。 FeMnMg 氧化物催化剂的投加量为0.012 g,保证了亚甲基蓝较好的降解率。在反应体系中采用选取30% H2O20.5 mL(即2 mmol/L),能达到较好的氧化降解效果。%FeMnMg oxide nanocrystals were prepared by a high temperature calcination method,and they were characterized by scanning electron microscope ( SEM ) . The results showed that FeMnMg oxide nanocrystals prepared with temperature calcination method were nano particle size range, and the FeMnMg oxide nanocrystals had uniform particle size and crystallite size. The strong H2 O2-activating ability of FeMnMg oxide nanocrystals showed promising applications in the oxidative degradation of organic pollutants methylene blue. Using the best catalyst of degradation effect of methylene blue in the experiments,carried on the optimal Fenton catalytic conditions on the exploring experiment. We studied the dosing quantity of catalyst FeMnMg oxide nanocrystals,the addition content of H2 O2 ,pH value and reaction temperature effect influence on catalytic deg-radation of methylene blue solution.

  8. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  9. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.

    Science.gov (United States)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-07-21

    This study deals with the exploration of NixCo₁-xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co₀.₄Ni₀.₆Fe₂O₄ (154.02 m(2) g(-1)). Co₀.₄Ni₀.₆Fe₂O₄ showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe₂O₄ was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH₄ on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni(2+) in to the cobalt ferrite lattice due to octahedral site preference of Ni(2+). Almost 99% degradation was achieved in 20 min using NiFe₂O₄ nanoparticles as catalyst.

  10. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation.

    Science.gov (United States)

    Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying

    2017-05-01

    Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (kobs, DDBAC) increased from 0.046 min(-1) to 0.123 min(-1) in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone.

  11. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.

    Science.gov (United States)

    Wu, Qihua; Shi, Honglan; Adams, Craig D; Timmons, Terry; Ma, Yinfa

    2012-11-15

    The potential occurrences of endocrine-disrupting compounds (EDCs), as well as pharmaceuticals, are considered to be emerging environmental problems due to their persistence and continuous input into the aquatic ecosystem, even at only trace concentrations. This study systematically investigated the oxidative removal of eight specially selected ECDs and pharmaceuticals by comparing their relative reactivity as a function of different oxidative treatment processes (i.e., free chlorine, ozone, monochloramine, and permanganate) under various pH conditions. For the oxidative removal study, EDC and pharmaceutical standards were spiked into both deionized water and natural water, followed by treatment using common oxidants at typical water treatment concentrations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for identification and quantification. The removal efficiency of the EDCs and pharmaceuticals varied significantly between oxidation processes. Free chlorine, permanganate, and ozone treatments were all highly effective at the elimination of triclosan and estrone, while they were not effective for removing ibuprofen, iopromide, and clofibric acid. Monochloramine (at a dose of 3mg/L) was mostly ineffective in eliminating any of the selected EDCs and pharmaceuticals under the tested conditions. pH also played an important role in the removal efficiency of the EDCs and pharmaceuticals during free chlorine, permanganate, and ozone treatments. Additionally, the study identified the oxidation products of triclosan by permanganate, and 2,4-dichlorophenol was identified as the major oxidation product of triclosan by permanganate in drinking water system treatment. Furthermore, 2,4-dichlorophenol was further degradated to 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol and/or 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol. The kinetics for this reaction indicated that the reaction was first order in the drinking water system.

  12. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    Directory of Open Access Journals (Sweden)

    Abdollahi Yadollah

    2012-08-01

    Full Text Available Abstract The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM. The RSM used central composite design (CCD method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model. The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA. The used evidences include high F-value (143.12, very low P-value (2 = 0.99 and the adequate precision (47.067. To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation % be using a few number of three dimensional plots (3D. To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles.

  13. Discovery and Understanding of the Ambient-Condition Degradation of Doped Barium Cerate Proton-Conducting Perovskite Oxide in Solid Oxide Fuel Cells

    NARCIS (Netherlands)

    Yan, N.; Zeng, Y.; Shalchi, B; Wang, W.; Gao, T; Rothenberg, G.; Luo, J.L.

    2015-01-01

    Proton-conducting perovskite oxides such as doped barium cerate and barium zirconate are promising electrolytes for solid oxide fuel cells (SOFCs). Here we report that the typical high performance proton conductor, BaZr0.1Ce0.7Y0.2O3±δ (BZCY), is prone to physical, chemical and thereby electrochemic

  14. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms.

  15. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng;

    2013-01-01

    . In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer......Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... degradation in terms of weight loss and molecular weight decrease. The presence of phosphoric acid as an inevitable dopant of the membranes, on the other hand, significantly impeded the membrane degradation by means of metal ion complexing, decreased pH, and acid–base interactions with the amino groups...

  16. Origin of degradation phenomenon under drain bias stress for oxide thin film transistors using IGZO and IGO channel layers.

    Science.gov (United States)

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-20

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.

  17. 铋银氧化物混合物高效氧化降解四溴双酚 A的研究%Efficient Oxidative Degradation of Tetrabromobisphenol A by Silver Bism uth Oxide

    Institute of Scientific and Technical Information of China (English)

    陈满堂; 宋洲; 王楠; 丁耀彬; 廖海星; 朱丽华

    2015-01-01

    以AgNO3和NaBiO3•2H2O为原料,采用离子交换-共沉淀法制备了铋银氧化物混合物(silver bismuth oxide,BSO),并利用它氧化降解溴代阻燃剂四溴双酚A( TBBPA)。研究了制备过程中银铋摩尔比及降解过程中BSO用量对TBBPA降解效果的影响。结果表明,当银铋摩尔比为1:1,BSO用量为1 g•L-1时,40 mg•L-1 TBBPA在7 min内可完全降解,其总有机碳的去除率高达80%。采用离子色谱﹑气相色谱-质谱联用仪及X射线光电子能谱监测降解过程中TBBPA的变化,发现TBBPA降解过程涉及脱溴﹑叔丁基碳的断裂和苯环的开环氧化等反应。利用NaN3作为分子探针,发现单线态氧是BSO氧化降解TBBPA的主要反应活性物种。%Silver bismuth oxide(BSO)was prepared by a simple ion exchange-coprecipitation method with AgNO3 and NaBiO3•2H2O as raw materials, and then used to oxidatively degrade tetrabromobisphenol A( TBBPA) . Effects of the molar ratio of Ag/Bi during BSO preparation and the BSO dosage on the degradation of TBBPA were investigated. The results showed that under the optimized conditions (i. e. , the Ag/Bi molar ratio of 1:1, BSO dosage of 1 g•L-1), 40 mg•L-1 of TBBPA was completely degraded and the removal of total organic carbon achieved more than 80% within 7 min. The degradation intermediates of TBBPA were identified by ion chromatography, gas chromatograph-mass spectrometer and X-ray photoelectron spectroscopy. The degradation pathway of TBBPA included the debromination, the cleavage of tert-butyl group and the open epoxidation of benzene ring. Based on a quenching study of NaN3 , singlet oxygen was proved to play a dominant role in the TBBPA degradation.

  18. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents.

  19. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    Science.gov (United States)

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-05

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5.

  20. Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-Zno nanostuctures anchored on graphene oxide

    Science.gov (United States)

    Umukoro, Eseoghene H.; Peleyeju, Moses G.; Ngila, Jane C.; Arotiba, Omotayo A.

    2016-01-01

    Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag-Ag2O-ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag-Ag2O-ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV-Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag-Ag2O-ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag-Ag2O-ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag-Ag2O-ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.

  1. The oxidative degradation of polystyrene resins on the removal of Cr(VI) from wastewater by anion exchange.

    Science.gov (United States)

    Xiao, Ke; Xu, Fuyuan; Jiang, Linhua; Dan, Zhigang; Duan, Ning

    2016-08-01

    Cr(VI) is a powerful oxidant and is capable of oxidizing most of the organic materials. Therefore, it is possible for Cr(VI) to oxidize the polymeric resins and change the sorption properties of the resins on the removal of Cr(VI) from wastewater by anion exchange. In this study, three polystyrene resins (D201, D202, and D301) with different functional groups (-N(+)(CH3)3, -N(+)(CH3)2(C2H4OH), and N(CH3)2) were assessed on oxidation stability for Cr(VI) removal from wastewater in fixed-bed column experiments. After a 10-cycle operation, due to the oxidation of the resin, the sorption capacity of D201, D202, and D301 resins decreased by 23.5, 29.3, and 17.3%, when approximately 20-34%, 31-50%, and 18-30% of Cr(VI) was reduced to Cr(III) during each cycle respectively. The results of the Fourier transform infrared spectroscopy (FT-IR) showed that both the cleavage of CN and the formation of CO bonds occurred on the polystyrene resins during the Cr(VI) removal process. The resin simulation experiments further validated the oxidation of CC and CN bonds connected with phenethyl groups. Based upon the results from column operations and the resin simulated experiments, the oxidation mechanism of the polystyrene resin was proposed.

  2. Photocatalytic Degradation of Rhodamine B by Cuprous Oxide%氧化亚铜光催化降解罗丹明 B

    Institute of Scientific and Technical Information of China (English)

    黄涛; 吕重安; 杨水金

    2014-01-01

    Cuprous oxide ( Cu2 O) was successfully prepared by the method of reduction in aqueous at room temperature.All the powders were characterized by X -rays diffraction ( XRD) and scanning electron microscopy ( SEM) .The effect of different factors on the degradation was investigated .The best reaction conditions were found out.The photocatalytic degradation of rhodamine B by Cu 2 O under simulated natural light irradiation was investiga-ted.The results demonstrated that initial concentration of rhodamine B is 10 mg/L, catalyst dosage is 0.38 g/L and the pH is 5.2, the degradation ratio of rhodamine B is as high as 96.5%after 30 minutes simulated natural light ir-radiation .%利用室温液相还原法制备了氧化亚铜,通过XRD、 SEM对其进行了表征,探讨了该催化剂对罗丹明B的光催化降解的活性。在催化剂用量为0.38 g/L,过氧化氢量为1.8 mL,罗丹明B的浓度为10 mg/L, pH为5.2的条件下,光照30 min后罗丹明B的降解率为96.5%。

  3. High catalytic activity of magnetic CuFe2O4/graphene oxide composite for the degradation of organic dyes under visible light irradiation

    Science.gov (United States)

    Chen, Peng; Xing, Xiang; Xie, Huifang; Sheng, Qi; Qu, Hongxia

    2016-09-01

    Magnetic CuFe2O4/graphene oxide composite (CuFe2O4/GO) has been synthesized by hydrothermal method and showed excellent visible-light-photocatalytic activity for the degradation of different dyes as Rhodamine B (RhB) and acid orange II (AO7) with no need of H2O2. The Structure and morphology were investigated by XRD, FTIR and TEM and the performance of the catalyst was systematically investigated under various experimental conditions as pH, the dosage of catalyst, dye initial concentration, etc. The dyes degradation on CuFe2O4/GO was also remained in a level in the presence of *OH2- radical scavenger (2-propanol), while it decreased in the presence of *O2- radical scavenger (benzoquinone) and h+ radical scavenger (ammonium oxalate), indicating that *O2- and h+ radicals were responsible for the dye degradation. The magnetic CuFe2O4/GO composite shows potential applications in organic dye water treatment due to its magnetically recyclability and powerful visible-light-photocatalytic activity.

  4. (0 0 1) Facet-exposed anatase-phase TiO{sub 2} nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xun [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Shi, Tiejun, E-mail: stjhfut@163.com [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Wu, Jing [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Zhou, Haiou [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); School of Materials and Chemical Engineering of Anhui University of Architecture, Hefei 230901 (China)

    2013-12-15

    Reduced graphene oxide (RGO) and TiO{sub 2} nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO{sub 2} powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by C-Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO{sub 2} powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  5. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Science.gov (United States)

    Zhou, Xun; Shi, Tiejun; Wu, Jing; Zhou, Haiou

    2013-12-01

    Reduced graphene oxide (RGO) and TiO2 nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO2 powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by Csbnd Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO2 powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  6. Metabolism of benzo(a)pyrene and identification of the major benzo(a)pyrene-DNA adducts in cultured human colon

    DEFF Research Database (Denmark)

    1978-01-01

    ]benzo(a)pyrene for another 24 hr and the binding to cellular DMA and protein was measured. Two adducts, formed between benzo(a)pyrene and DMA, have been isolated. The major adduct (72 to 100%) was formed between the 10-position of benzo(a)pyrene diol-epoxide I and the 2-amino group of guanine, and the minor adduct...

  7. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-10-01

    This study investigated a novel approach for the synthesis of an integrated ternary nanocomposite which could act as a good photo-catalyst under visible light irradiation for the removal of organic pollutants from aqueous environments. The photo-catalyst included nickel oxide (NiO) as a dopant, and reduced graphene oxide (RGO) as a good carbon basal support for enhancement of the photo-catalytic activity of TiO2. Under irradiation with visible light, the ternary nanocomposite (TiO2/NiO-RGO) system generates e(-)/h(+) pairs, and then reacts with H2O and O2(-) molecules to produce oxy-radicals which can be used for the mineralization of o-chlorophenol from aqueous solution. The characteristic of all photo-catalysts were investigated by UV-Vis analysis, with surface area and pore size measurements by Brunauer-Emmett-Teller (BET), crystallinity by X-ray diffraction (XRD), elemental composition by X-ray photoelectron spectroscopy (XPS), and morphology by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The functional groups were measured by Fourier transform infrared (FT-IR) spectroscopy before and after o-chlorophenol degradation. TiO2/NiO-RGO was capable of achieving 88.4% photo-degradation of 100 mg/L o-chlorophenol (100 mL) within 8 h with addition of 0.01% H2O2 under visible light irradiation at pH 6.5. The photo-degradation followed a pseudo-first-order reaction. The TiO2/NiO-RGO nanocomposite retained its high removal efficiency, even after four photo-catalytic cycles.

  8. Hydrothermal synthesis of fluorinated anatase TiO{sub 2}/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lijun [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Biotechnology, Yunnan MinZu University, Kunming, 650500 (China); Yang, Ye [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Zhang, Ali [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Wang, Min; Liu, Yongjun; Bian, Longchun [Advanced Analysis and Measurement Center, Yunnan University, Kunming, 650091 (China); Jiang, Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Pan, Xuejun [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China)

    2015-10-30

    Graphical abstract: - Highlights: • F–TiO{sub 2}–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F{sup −} and RGO improve the photocatalytic activity of TiO{sub 2} synergistically. • The F–TiO{sub 2}–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO{sub 2}/reduced graphene oxide nanocomposites (denoted as F–TiO{sub 2}–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO{sub 2} particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F{sup −} ion adsorbed on the surface of TiO{sub 2}–RGO surface can enhance photocatalytic activity of F–TiO{sub 2}–RGO. The photocatalytic activities of F–TiO{sub 2}–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO{sub 2}–10RGO (0.01501 min{sup −1}) was 3.41 times than that over P25 (0.00440 min{sup −1}). The result indicated that the enhanced photocatalytic activity of F–TiO{sub 2}–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO{sub 2}–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  9. Study of degradation of trace benzene in water by 185 nm UV light and oxidation technique%185nm紫外光/氧化协同降解水体中微量苯的研究

    Institute of Scientific and Technical Information of China (English)

    陆军; 朱承驻

    2011-01-01

    The degradation of trace benzene in water was studied by using 185 nm UV light and oxidation technique. The influence of concentration of benzene, degradation time, pH value of solution, and oxidants on the degradation of benzene was investigated. The degradation products were analyzed by using GC/MS method and the degradation mechanism was presented. The results showed that the trace benzene was effectively degradated by 185 nm UV light and oxidation technique, and after treating for 3 min, the degradation efficiency of CODCr in benzene solution reached above 95% when K2S2O8 was added.%文章利用185 nm紫外光/氧化协同降解技术对水体中微量苯的降解情况进行了研究,考察了溶液中苯的质量浓度、光解时间、溶液pH值以及加入氧化剂等对苯降解的影响,对光解产物进行了分析,并对其降解机理进行了探讨.研究结果表明,该技术能有效降解水体中微量苯,处理3 min时加入K2SO8的苯溶液的CODcr的去除率可达到95%以上.

  10. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    OpenAIRE

    Malkus Kristen A; Tsika Elpida; Ischiropoulos Harry

    2009-01-01

    Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with o...

  11. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    Science.gov (United States)

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  12. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Qian [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Li, Junyang; Huang, Chao [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Li, Jingquan; Chu, Ruiai [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wu, Yongning, E-mail: wuyongning@cfsa.net.cn [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wang, Hui, E-mail: huiwang@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); School of Life Science and Technology, ShanghaiTech University, Shanghai (China)

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.

  13. Degradation of dibutyl phthalate (DBP) by UV-254 nm/H2O2 photochemical oxidation: kinetics and influence of various process parameters.

    Science.gov (United States)

    Wang, Dong; Duan, Xiaodi; He, Xuexiang; Dionysiou, Dionysios D

    2016-12-01

    Degradation of dibuytl phthalate (DBP), a plasticizer and also a widely distributed endocrine disruptor, by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated in this study. A significant DBP removal of 77.1 % at an initial concentration of 1.0 μM was achieved at UV fluence of 160 mJ/cm(2), initial H2O2 dosage of 1.0 mM, and pH of 7.6 ± 0.1. The DBP degradation exhibited a pseudo-first-order reaction kinetic pattern, with the rate constants linearly increasing with increasing H2O2 dosage while decreasing with increasing initial DBP concentration and pH value in a specific range. DBP destruction was significantly inhibited in the presence of alkalinity and natural organic matter (NOM), two known factors that should be taken a serious consideration of in the research and design of UV/H2O2-based AOPs. Presence of common inorganic anions (i.e., Cl(-), SO4(2-), and NO3(-)) and metal cations (i.e., Fe(3+) and Zn(2+)) had a slight impact on the degradation of DBP, although Cu(2+) could improve the degradation efficiency even at a concentration as low as 0.01 mg/L, suggesting a strong potential of applying UV/H2O2 for the removal of DBP with an environmental relevant level of copper.

  14. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  15. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Study of oil diesel degradation in soil using oxidative advanced processes; Estudo da degradacao do oleo diesel em solo utilizando processos oxidativos avancados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suenia S.; Silva, Valdinete L. da; Motta, Mauricio da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Silva, Paula Tereza de S. e; Barros Neto, Benicio de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental

    2004-07-01

    Recently it comes if observing several accidents during the exploration, refinement, transport and operation of storage of petroleum and yours derived, such as the diesel oil and the gasoline. In this paper We do a study of the degradation of the diesel oil in a characteristic soil of the state of Pernambuco using peroxide of hydrogen and Fenton reagent. Those two processes are based on the generation of the radical hydroxyl (OH.) that has to can oxidizer loud capable to promote the destruction of recalcitrant organic compositions. The studied soil has about 16,5{+-}0,3 g/kg of total organic carbon. A factorial planning was accomplished 2{sup 3} with 2 repetitions in the central point with the objective of finding the best conditions of degradation of the pollutant. The variables and the studied levels were: FeSO{sub 4} - 0,18 M (0, 4 and 8 Ml); pH (3; without adjustment and without adjustment) and Time of exhibition in the sun (8; 12 and 16:00). The volumes of H{sub 2}O{sub 2} used in the rehearsals were constant, being 80 mL. Soon afterwards it accomplished a fractional experimental planning 2{sup 3-1}, repeating the variables of the first planning, they put using a smaller volume of H{sub 2}O{sub 2}, 40 mL, to evaluate the influence of the amount of H{sub 2}O{sub 2} used about the degradation of the diesel oil. The mass of the soil used in each experiment was of 5 g. It was observed that there were not significant differences in the degradation in relation to the peroxide volume. The best found degradation was around 87% in the following conditions (4 mL of Faith, without pH adjustment, Time of exhibition in the sun of 12:00 and 80 ml of H{sub 2}O{sub 2}). That found degradation was quite satisfactory being still due to study more economical conditions. (author)

  17. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  18. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    Science.gov (United States)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  19. Uptake and elimination of benzo[a]pyrene in the terrestrial isopod Porcellio scaber.

    Science.gov (United States)

    van Brummelen, T C; van Straalen, N M

    1996-08-01

    In isopods from contaminated sites relatively low levels of high molecular weight polycyclic aromatic hydrocarbons (PAHs) have been observed, which may be caused by either a low bioavailability or a high elimination rate. To shed light on this, the uptake and elimination rates of benzo[a]pyrene were estimated for the isopod Porcellio scaber. The isopod was fed contaminated food (100 microg benzo[a]pyrene/g dwt) for seven weeks followed by four weeks of untreated food. The hindguts of the animals were removed prior to analysis to exclude food material from the body. Benzo[a]pyrene concentrations were log-normally distributed among the individuals. The high inter-individual variation in benzo[a]pyrene content could not be explained from differences in sex, the estimated amount of food in the hindgut, or the body weight. A one-compartment model fitted to the isopod concentrations estimated an assimilation rate of 2.9 microg benzo[a]pyrene/g dwt day, an elimination rate constant of 1.1/day and an equilibrium concentration of 2.5 microg benzo[a]pyrene/g dwt. According to the model 68% of the isopod population had an equilibrium concentration between 1.0 and 7.2 microg benzo[a]pyrene/g dwt day with a benzo[a]pyrene half-life ranging between 0.4 and 1.3 days. The assimilation efficiency was estimated at 20 to 40% of the ingested benzo[a]pyrene. The tissue distribution of benzo[a]pyrene was investigated in a separate experiment. Trace levels of benzo[a]pyrene were detected in haemolymph samples, demonstrating absorption and transport of the compound in the isopod. It is concluded that dietary benzo[a]pyrene is available for uptake to the isopod and that low residues of the compound observed in field isopods are the result of a high elimination rate rather than a reduced bioavailability. As PAHs from soil appear to be available to soil invertebrates, the widespread contamination of the soil from atmospheric emissions is of some concern, especially since the observed

  20. Catalyzed oxidative degradation of methyl orange over Au catalyst prepared by ionic liquid-polymer modified silica

    Science.gov (United States)

    Wang, Y.; Guo, J. S.

    2015-07-01

    A new type of hybrid material was prepared by grafting an ionic liquid monomer, 1-(p-vinylbenzyl)-3-methylimidazolium chloride, on the surface of the porous silica which was synthesized via sodium silicate hydrolysis. The as-synthesized products were characterized by scanning electron microscope, nitrogen physisorption experiment, thermogravimetric analysis and Fourier transform infrared spectra. A catalyst with Au was prepared using the hybrid material as carrier. The experimental results show that the catalyst exhibits a better catalytic effect of hydrogen peroxide on the degradation of methyl orange. The reason may be that the metal component of the catalyst facilitated the dissociation of hydrogen peroxide to produce abundant highly active free radicals which can rapidly ruin the structure of methyl orange molecules in water. Finally, a probable catalytic degradation mechanism based on diffusion was discussed.

  1. Kinetics study of metaxalone degradation under hydrolytic, oxidative and thermal stress conditions using stability- indicating HPLC method

    Institute of Scientific and Technical Information of China (English)

    Vamsi Krishna Marothu; Rajendra N. Dash; Saritha Vemula; Shravani Donkena; Ramesh Devi; Madhavi Gorrepati

    2012-01-01

    An isocratic stability indicating RP-HPLC-UV method is presented for the determina- tion of metaxalone (MET) in the presence of its degradation products. The method uses Dr. Maisch C18 column (250 mm × 4.6 mm, 5μm) with mobile phase consisting of acetonitrile-potassium dihydrogen orthophosphate buffer with 4 mL of 0.4% triethyl amine (pH 3.0; 10 mM) (58:42, v/v) at a flow rate of 1.0 mL/min, pH of the buffer was adjusted with o-phosphoric acid. UV detection was performed at 225 nm. The method was validated for specificity, linearity, precision, accuracy, limit of detection, limit of quantification and robustness. The calibration plot was linear over the concentration range of 1-100 μg/mL having a correlation coefficient (r2) of 0.999. Limits of detection and quantification were 0.3 and 1μg/mL, respectively. Intra-day and inter-day precision (% RSD) was 0.65 and 0.79 respectively. The proposed method was used to investigate the degradation kinetics of MET under different stress conditions employed. Degradation of MET followed a pseudo-first-order kinetics, and rate constant (K), time left for 50% potency (t1/2), and time left for 90% potency 090) were calculated.

  2. Degradation of caffeine by ozone oxidation in aqueous solution%水溶液中咖啡因的臭氧氧化降解研究

    Institute of Scientific and Technical Information of China (English)

    徐丹瑶; 缪恒锋; 任洪艳; 赵明星; 阮文权

    2013-01-01

    采用臭氧氧化对咖啡因(CAF)进行降解,考察了操作参数对CAF降解过程的影响,利用UPLC-MS对臭氧氧化前后的CAF溶液进行扫描,通过降解产物的相对分子质量并结合前人研究结果推测降解途径.结果表明,臭氧氧化能有效降解CAF,降解过程符合拟一级反应动力学,呈两阶段反应.随温度的升高,kobs1和kobs2分别在30℃和20℃达到最大值.CAF初始质量浓度的升高、pH值的降低、碳酸氢根和叔丁醇的存在均会降低CAF的降解效率.H2O2的投加对CAF的臭氧降解具有低促高抑的效果.CAF降解后产生7种可能的降解中间产物,降解过程可能主要通过CAF嘌呤环上臭氧分子直接加成反应、脱甲基反应、羰基化反应及水分子加成反应来实现,未发现·OH直接攻击CAF的C4=C5双键反应生成的转化产物.%This paper takes it as its objective to make clear the factors affecting the degradation of caffeine by ozone oxidation and then propose its tentative degradation pathway.For this research purpose,we have carried out kinetic studies on the caffeine degradation process under different operating conditions,such as reaction temperatures,initial concentrations of the caffeine,the pH value of the solution,the addition of radicals scavenger (bicarbonate radical and tertiary butanol),as well as the hydrogen peroxide.So far as we know,the degradation of caffeine by ozone oxidation tends to follow the pseudofirst-order kinetic model in two ozone oxidation stages,with the observed rate constant of the second ozone oxidation stage,kobs2,being higher than the observed rate constant in the first corresponding stage,kobsl.Whereas the kobsl of the caffeine degra dation tends to increase exponentially with the temperature rising from 10 ℃ to 30 ℃,kobs2 drops at the temperature above 20℃.While the increase of the initial concentration of caffeine and the decrease of pH value of the solution along with the added radical scavengers may

  3. Degradation product emission from historic and modern books by headspace SPME/GC-MS: evaluation of lipid oxidation and cellulose hydrolysis.

    Science.gov (United States)

    Clark, Andrew J; Calvillo, Jesse L; Roosa, Mark S; Green, David B; Ganske, Jane A

    2011-04-01

    Volatile organic compounds emitted from a several decade series of bound periodicals (1859-1939) printed on ground wood paper, as well as historical books dating from the 1500s to early 1800s made from cotton/linen rag, were studied using an improved headspace SPME/GC-MS method. The headspace over the naturally aging books, stored upright in glass chambers, was monitored over a 24-h period, enabling the identification of a wide range of organic compounds emanating from the whole of the book. The detection of particular straight chain aldehydes, as well as characteristic alcohols, alkenes and ketones is correlated with oxidative degradation of the C(18) fatty acid constituency of paper. The relative importance of hydrolytic and oxidative chemistry involved in paper aging in books published between 1560 and 1939 was examined by comparing the relative abundances of furfural (FUR) a known cellulose hydrolysis product, and straight chain aldehydes (SCA) produced from the oxidation of fatty acids in paper. The relative abundance of furfural is shown to increase across the 379-year publication time span. A comparison of relative SCA peak areas across the series of books examined reveals that SCA emission is more important in the cotton/linen rag books than in the ground wood books.

  4. Assessment of the UV/Cl2 advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems.

    Science.gov (United States)

    Javier Benitez, F; Real, Francisco J; Acero, Juan L; Casas, Francisco

    2016-12-26

    Three emerging contaminants (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) frequently found in wastewaters were selected to be individually degraded in ultra-pure water by the advanced oxidation process (AOP) constituted by the combination of UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: AH > MS > PE. A later kinetic study was carried out focused on the evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water was also performed by the same combination UV/Cl2. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/[Formula: see text] and UV/H2O2 AOPs, and the influence of the operating variables was discussed. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested. The presence of dissolved organic matter and bicarbonate ions in the water matrix caused a decrease in the treatment efficiency.

  5. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    Science.gov (United States)

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  6. 铋银氧化物降解孔雀石绿研究%Degradation of Malachite Green by Bismuth Silver Oxide

    Institute of Scientific and Technical Information of China (English)

    喻恺

    2013-01-01

    The oxidative powder bismuth silver oxide(BSO)was prepared by one step coprecipitation method.A simple and efficient approach based on BSO for degrading organic dye was developed and it was evaluated for the oxidation of malachite green (MG).35 mg/L of MG was rapidly decolorized with a pseudo-first-order kinetic constant 0.507 min-1 by mixing with BSO and the reaction can be repeated at least 23 times with the same BSO particles.Characterizations by XRD,SEM,EDX and XPS indicated that perovskite-like structure was transformed into Bi2O2CO3 structure during the cyclic BSO/MG reaction process.Singlet oxygen was identified as the major reactive species for MG degradation.Dissolved oxygen has little influence on the degradation reaction.The reaction mechanism was proposed.The study would provide theoretical basis and experimental reference for practical application of BSO on dye wastewater treatment.%采用一步共沉淀法合成氧化性铋银氧化物(BSO),并基于BSO开发了一种简单高效的有机染料降解方法.以孔雀石绿(MG)为目标污染物考察该方法的降解效率,结果表明,通过搅拌混合BSO,35 mg/L的MG溶液快速降解,一级反应速率常数k=0.507 min-1.BSO可以重复使用,连续降解MG溶液至少23次.XRD、SEM、EDX和XPS等表征结果显示BSO在循环使用过程中初始钙钛矿结构逐渐转变为Bi2O2CO3结构.单重态氧是反应主要活性自由基直接导致了MG降解,反应过程受溶解氧影响很小.提出了BSO降解MG的作用机理,为BSO在降解染料废水的应用提供理论依据和实验方法参考.

  7. Dietary effects on the uptake of benzo[a]pyrene.

    Science.gov (United States)

    Stavric, B; Klassen, R

    1994-08-01

    It has been established that exposure to polycyclic aromatic hydrocarbons (PAHs), or more specifically benzo[a]pyrene (B[a]P), either by inhalation through cigarette smoking or by contact through occupational exposure of the lungs or skin, can result in cancerous lesions. It appears that the general population consumes more B[a]P from food than from smoking. Despite this, epidemiological studies have not implicated B[a]P from foods as a causative factor in some human cancers. This lack of an epidemiological correlation between cancer incidence and intake of dietary PAHs/B[a]P could be due to some 'protective' or 'detoxification' mechanism. Despite the abundance of literature regarding the food content of B[a]P, there are few data concerning its uptake from foods. In the present study we investigated the intestinal absorption of B[a]P from foods using bile duct cannulated rats and radioactive B[a]P. [14C]B[a]P was first added to solvents such as water, corn oil, liquid paraffin or 50% ethanol, which were the administered by gavage to rats fed diets with or without added carbon. Additionally, food polyphenols such as quercetin and chlorogenic acid were also tested for their effect on the absorption of B[a]P. The results indicated that the excretion of B[a]P in the bile was reduced by water, carbon, quercetin and chlorogenic acid but was potentiated by corn oil. To complement the in vivo studies, some in vitro tests to investigate the efficiency of B[a]P extraction from different foods using water or oil as solvents were also performed. These tests indicated that extraction of B[a]P from foods was affected by the solvent. It is postulated that reduced solubility, physical adsorption and the formation of chemical adducts between B[a]P and some food ingredients, play a sporadic, although still not well determined, role in reducing the absorption of B[a]P from the gut. The results of these studies suggest that B[a]P absorption from the intestinal tract is markedly

  8. Analytical aspects of the remediation of soil by wet oxidation - Characterisation of tar contaminants and their degradation products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Nielsen, T.; Plöger, A.;

    1999-01-01

    Wet oxidation of tar compounds gives rise to a wide range of products. Due to the incorporation of oxygen, these products become increasingly more water soluble and the analytical strategy has to take into account the different physical/chemicalproperties of the compounds. An interplay between gas...

  9. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Costa, P.M., E-mail: pmcosta@fct.unl.p [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica (Portugal); Chicano-Galvez, E.; Lopez Barea, J. [Departamento de Bioquimica y Biologia Molecular, Universidad de Cordoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Cordoba (Spain); DelValls, T.A. [UNESCO/UNITWIN/WiCop Chair-Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Poligono rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Costa, M.H. [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica (Portugal)

    2010-10-15

    The livers of soles (Solea senegalensis) injected with subacute doses of cadmium (Cd), benzo[a]pyrene (B[a]P), or their combination, were screened for alterations to cytosolic protein expression patterns, complemented by cytological and histological analyses. Cadmium and B[a]P, but not combined, induced hepatocyte apoptosis and Kupfer cell hyperplasia. Proteomics, however, suggested that apoptosis was triggered through distinct pathways. Cadmium and B[a]P caused upregulation of different anti-oxidative enzymes (peroxiredoxin and glutathione peroxidase, respectively) although co-exposure impaired induction. Similarly, apoptosis was inhibited by co-exposure, to which may have contributed a synergistic upregulation of tissue metalloproteinase inhibitor, {beta}-actin and a lipid transport protein. The regulation factors of nine out of eleven identified proteins of different types revealed antagonistic or synergistic effects between Cd and B[a]P at the prospected doses after 24 h of exposure. The results indicate that co-exposure to Cd and B[a]P may enhance toxicity by impairing specific responses and not through cumulative damage. - The interaction between cadmium and benzo[a]pyrene impairs specific responses to toxicity and tissue repair mechanisms.

  10. Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe²⁺/persulfate process.

    Science.gov (United States)

    Long, Anhua; Zhang, Hui

    2015-08-01

    An electro/Fe(2+)/persulfate process has been conducted for toluene removal from surfactant (SDS) flushing solution, and the pseudo-second-order reaction rate constant (k2 value) of toluene removal has been optimized by a response surface methodology (RSM). The results indicated that in this process, the reaction between persulfate and externally added Fe(2+) generates sulfate-free radicals, and at the same time, Fe(2+) is electro-regenerated at the cathode by the reduction of Fe(3+). RSM based on Box-Behnken design (BBD) has been applied to analyze the experimental variables, of which the concentrations of persulfate and Fe(2+) showed a positive effect on the rate constant of toluene removal, whereas the concentration of SDS showed a negative effect. The interactions between pairs of variables proved to be significant, such as between SDS, persulfate, and Fe(2+) concentrations. ANOVA results confirmed that the proposed models were accurate and reliable for analysis of the variables of the electro/Fe(2+)/persulfate process. The shapes of the 3D response surfaces and contour plots showed that the SDS, persulfate, and Fe(2+) concentrations substantially affected the k2 value of toluene removal. The results indicated that increasing persulfate or Fe(2+) concentration increased the k2 value, whereas increasing SDS concentration decreased the k2 value. The reaction intermediates have been identified by GC-MS, and a plausible degradation pathway for toluene degradation is proposed.

  11. Separation of water-soluble metabolites of benzo[a]pyrene formed by cultured human colon

    DEFF Research Database (Denmark)

    1979-01-01

    A method has been developed to separate conjugated metabolites of benzo[a]pyrene into three major fractions: sulfate esters, glucuronides and glutathione conjugates. In cultured human colon, formation of sulfate esters and glutathione conjugates is the major conjugation pathway, while formation o......-hydroxybenzo[a]pyrene were the major substrates for sulfotransferase in cultured human colon....

  12. Benzo(A)pyrene Decreases Brain and Ovarian Aromatase mRNA Expression

    Science.gov (United States)

    The higher molecular weight polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) are typically associated with genotoxicity, however newer evidence suggests that these compounds may also act as endocrine system disruptors. We hypothesized that a target for reproductive or development...

  13. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Science.gov (United States)

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...

  14. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    Science.gov (United States)

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 'g/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine...

  15. [Preparation and characterization of the recombinant protein containing immunomimetic peptide of benzo[a]pyrene].

    Science.gov (United States)

    Apal'ko, S V; Lunin, V G; Filipenko, M L; Matveeva, V A; Liashchuk, A M; Lavrova, N V; Sherina, E A; Aver'ianov, A V; Kostianko, M V; Glushkov, A N

    2011-01-01

    Two recombinant plasmids were constructed. The first plasmid contained the hybrid gene composed of immunomimetic peptide of benzo[a]pyrene, of the protein pIII of bacteriophage M13 and of cellulose binding domain encoding sequences. The second plasmid contained the hybrid gene composed of the signal peptide of the protein pIII of bacteriophage M13, of immunomimetic peptide of benzo[a]pyrene, of the protein pill of bacteriophage M13 and of cellulose binding domain sequences. The obtained recombinant plasmids were used in expression of chimeric protein containing immunomimetic peptide ofbenzo[a]pyrene based on strain E. coli M15. The lack of the recombinant protein expression using first plasmid was demonstrated. In the same time, it was shown that accumulation of recombinant protein contained immunomimetic peptide with signal peptide of the protein pIIIl of bacteriophage was present. This chimeric protein was produced in "mature" (without signal peptide) and "unprocessing" (with signal peptide) forms. Using the Western-blot analysis, it was shown that the "mature" form only specifically bound to the B2 monoclonal antibody against benzo[a]pyrene. Thus, we expressed, purified, and characterized the recombinant protein containing immunomimetic peptide of benzo[a]pyrene.

  16. Hypoxia diminishes the detoxification of the environmental mutagen benzo[a]pyrene

    NARCIS (Netherlands)

    Schults, Marten A.; Sanen, Kathleen; Godschalk, Roger W.; Theys, Jan; van Schooten, Frederik J.; Chiu, Roland K.

    2014-01-01

    Hypoxia promotes genetic instability and is therefore an important factor in carcinogenesis. We have previously shown that activation of the hypoxia responsive transcription factor HIF alpha can enhance the mutagenic phenotype induced by the environmental mutagen benzo[a]pyrene (BaP). To further elu

  17. Benzo(a)pyrene induced structural and functional modifications in lung cystatin.

    Science.gov (United States)

    Khan, Mohd Shahnawaz; Priyadarshini, Medha; Shah, Aaliya; Tabrez, Shams; Jagirdar, Haseeb; Alsenaidy, Abdulrahman M; Bano, Bilqees

    2013-10-01

    Cystatins are thiol proteinase inhibitors ubiquitously present in the mammalian body. They serve a protective function to regulate the activities of endogenous proteinases, which may cause uncontrolled proteolysis and damage. In the present study, the effect of benzo(a)pyrene [BaP] on lung cystatin was studied to explore the hazardous effects of environmental pollutant on structural and functional integrity of the protein. The basic binding interaction was studied by UV-absorption, FT-IR, and fluorescence spectroscopy. The enhancement of total protein fluorescence with a red shift of 5 nm suggests structural scratch of lung cystatin by benzo(a)pyrene. Further, ANS binding studies reaffirm the unfolding of the thiol protease inhibitor (GLC-I) after treating with benzo(a)pyrene. The results of FT-IR spectroscopy reflect perturbation of the secondary conformation (alpha-helix to β-sheet) in goat lung cystatin on interaction with BaP. Finally, functional inactivation of cystatin on association with BaP was checked by its papain inhibitory activity. Benzo(a)pyrene (10 μM) caused complete inactivation of goat lung cystatin. Benzo(a)pyrene-induced loss of structure and function in the thiol protease inhibitor could provide a caution for lung injury caused by the pollutants and smokers.

  18. Metabolic activation and DNA binding of benzo(a)pyrene in cultured human bronchus

    DEFF Research Database (Denmark)

    1977-01-01

    Human bronchus is one target site for the carcinogenic action of tobacco smoke, which contains chemical carcinogens, including benzo(a)pyrene. Human bronchi were obtained from surgery or “immediate” autopsy and then cultured in a chemically defined medium. The cultured bronchi were exposed...

  19. Genotoxicity testing using the Mutatox assay: evaluation of benzo[a]pyrene as a positive control

    NARCIS (Netherlands)

    Klamer, H.J.C.; Villerius, L.A.; Roelsma, J.; Maagd, de P.G.J.; Opperhuizen, A.

    1997-01-01

    In a study on bioassay-directed chemical factionation of sediment extracts, problems were encountered using benzo(a)pyrene (BaP) as a positive control in the Mutatox™ bacterial genotoxicity assay. Genotoxic responses of tests with this compound, prescribed by the Mutatox supplier, could only be meas

  20. Degradation of 4,6-dinitro-o-cresol from water by anodic oxidation with a boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Flox, Cristina [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere-Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2005-06-10

    Anodic oxidation of 4,6-dinitro-o-cresol (DNOC) has been studied in a cell of 100 ml with a boron-doped diamond anode and a graphite cathode, both of 3-cm{sup 2} area. Solutions containing up to approximately 240 mg l{sup -1} of compound in the pH range 2.0-12.0 have been treated at 100, 300 and 450 mA between 15 and 50 deg C. Total mineralization is always achieved due to the great amount of hydroxyl radical ({center_dot}OH) produced as oxidant on the anode surface. Total organic carbon is more rapidly removed in acid medium, being the optimum pH 3.0. The degradation rate increases when temperature, current and DNOC concentration increase. However, at 100 mA depollution becomes more effective from 71 mg l{sup -1} of initial pollutant. A pseudo first-order kinetics for DNOC decay is always found by reversed-phase chromatography, with a rate constant practically independent of pH, as expected if the same electroactive species is oxidized in all media. Ion-exclusion chromatography allowed the detection of oxalic acid as the ultimate carboxylic acid. The mineralization process leads to the complete release of NO{sub 3} {sup -} ions from the destruction of nitroderivative intermediates. These products are oxidized simultaneously with accumulated oxalic acid up to the end of electrolyses. Comparative treatment of the same solutions with a Pt anode yields a quite poor depollution because of the generation of much lower amounts of reactive {center_dot}OH on its surface.

  1. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO, Thin Film Technology (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices (Netherlands); Boumans, Twan; Stegeman, Felix; Colberts, Fallon; Illiberi, Andrea [TNO, Thin Film Technology (Netherlands); Berkum, Jurgen van [Philips Innovation Services (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS (France); Vroon, Zeger [TNO, Thin Film Technology (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices (Netherlands)

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300–1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H{sub 2}O/OH{sup −} through the grain boundaries leading to the formation of Zn(OH){sub 2} or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn{sub 5}(OH){sub 8}Cl{sub 2}·H{sub 2}O and Zn{sub 4}SO{sub 4}(OH){sub 6}·nH{sub 2}O - Highlights: • Damp heat treatment of polycrystalline ZnO:Al leads to increased resistivity. • Degradation in electrical properties is due to decreased mobility. • Damp heat exposure does not influence optical properties between 300 and 1100 nm. • Water as well as carbon, chlorine and sulfur diffuse into the ZnO:Al bulk. • Possible reaction products are zinc hydroxide and zinc hydrocarbonate.

  2. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium-fluorine-doped titanium oxide nanoparticles

    Science.gov (United States)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-02-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2-Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  3. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.

    Science.gov (United States)

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-10-01

    This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs.

  4. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  5. The organotin coordination polymer [(n-Bu3Sn)4Fe(CN)6H2O] as effective catalyst towards the oxidative degradation of methylene blue.

    Science.gov (United States)

    Etaiw, S E H; Saleh, Dalia I

    2014-01-03

    The structure of the supramolecular coordination polymer SCP 1; [(n-Bu3Sn)4Fe(CN)6H2O] consists of octahedral [Fe(CN)6](4-) building blocks which are connected by the TBPY-5 configured n-Bu3Sn(CN..)2 fragments creating 3D-network structure. Fenton and photo-Fenton oxidative discoloration of Methylene Blue (MB) has been investigated by hydrogen peroxide catalyzed with the SCP 1. The reaction exhibited pseudo first-order kinetics with respect to each of MB and H2O2. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization, Kobs=0.76 h(-1). Mineralization of MB was investigated by FT-IR spectra. Disodium salt of terephthalic acid photoluminescence probing technology was carried out to identify the reactive oxygen species. The different parameters that affect MB degradation rate were evaluated. Moreover, the efficiency of recycled the SCP 1 and the mechanism of degradation of MB dye were investigated.

  6. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation.

    Science.gov (United States)

    Vinothkannan, M; Karthikeyan, C; Gnana kumar, G; Kim, Ae Rhan; Yoo, Dong Jin

    2015-02-05

    The reduced graphene oxide (RGO)/Fe3O4 nanocomposites were synthesized through a facile one-pot green synthesis by using solanum trilobatum extract as a reducing agent. Spherical shaped Fe3O4 nanoparticles with the diameter of 18 nm were uniformly anchored over the RGO matrix and the existence of fcc structured Fe3O4 nanoparticles over the RGO matrix was ensured from X-ray diffraction patterns. The amide functional groups exist in the solanum trilobatum extract is directly responsible for the reduction of Fe(3+) ions and GO. The thermal stability of GO was increa