WorldWideScience

Sample records for benzoapyrene oxidative degradation

  1. Peroxidatic oxidation of benzo(a)pyrene and prostaglandin biosynthesis

    International Nuclear Information System (INIS)

    The arachidonic acid dependent oxidation of benzo[a]pyrene to a mixture of 3,6-, 1,6-, and 6,12-quinones has been studied by using enzyme preparations from sheep seminal vesicles. Maximal oxidation is observed at 100 μM benzo[a]pyrene and 150 μM arachiodinic acid. The arachidonic acid dependent oxidation is peroxidatic and utilizes prostaglandin G2 (PGG2), generated in situ from arachidonate, as the hydroperoxide substrate. 15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid is equivalent to PGG2 as a hydroperoxide substrate, but hydrogen peroxide, cumene hydroperoxide, and tert-butyl hydroperoxide are much poorer substrates. Arachidonic acid dependent benzo[a]pyrene oxidation by microsomal and solubilized enzyme preparations is markedly stimulated by a variety of hemes and heme proteins. This is not due to the previously reported heme stimulation of prostaglandin biosynthesis [Yoshimoto, A., Ito, H., and Tomita, K. (1970) J. Biochem. (Tokyo) 68, 487-499]. Instead, the hemes function directly as peroxidases utilizing fatty acids hydroperoxides as substrates. The incubation of PGG2 with commercial methemoglobin in the absence of any other protein gives rise to significant benzo[a]pyrene oxidation to quinones. The widespread occurrence of heme proteins in animal tissue suggests that the peroxidatic oxidation of benzo[a]pyrene will be significant in any tissue that makes appreciable concentrations of fatty acid hydroperoxides

  2. Bacillus subtilis is a Potential Degrader of Pyrene and Benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Lynette Ekunwe

    2005-08-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are a group of compounds that pose many health threats to human and animal life. They occur in nature as a result of incomplete combustion of organic matter, as well as from many anthropogenic sources including cigarette smoke and automobile exhaust. PAHs have been reported to cause liver damage, red blood cell damage and a variety of cancers. Because of this, methods to reduce the amount of PAHs in the environment are continuously being sought. The purpose of this study was to find soil bacteria capable of degrading high molecular weight PAHs, such as pyrene (Pyr and benzo[a]pyrene (BaP, which contain more than three benzene rings and so persist in the environment. Bacillus subtilis, identified by fatty acid methyl ester (FAME analysis, was isolated from PAH contaminated soil. Because it grew in the presence of 33μg/ml each of pyrene, 1-AP and 1-HP, its biodegradation capabilities were assessed. It was found that after a four-day incubation period at 30oC in 20μg/ml pyrene or benzo[a]pyrene, B. subtilis was able to transform approximately 40% and 50% pyrene and benzo[a]pyrene, respectively. This is the first report implicating B. subtilis in PAH degradation. Whether or not the intermediates resulting from the transformation are more toxic than their parent compounds, and whether B. subtilis is capable of mineralizing pyrene or benzo[a]pyrene to carbon dioxide and water, remains to be evaluated.

  3. Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides).

    Science.gov (United States)

    Li, H; Luo, Y M; Song, J; Wu, L H; Christie, P

    2006-01-01

    A pot experiment was conducted to study the effect of growing vetiver grass on the biodegradation of benzo[a]pyrene (B[a]P) under glasshouse conditions. Plant biomass, microbial biomass C and degradation of B[a]P were determined. B[a]P disappeared faster in the plant treatments than in unplanted controls. Disappearance of B[a]P was accompanied by an increase in soil microbial biomass C. Vetiver grass may promote the biodegradation of B[a]P under flooded conditions by plant roots by stimulating the microbial biomass. Microbial biomass was the main factor affecting dissipation of B[a]P under flooded conditions. PMID:16528581

  4. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani

    Energy Technology Data Exchange (ETDEWEB)

    Veignie, Etienne; Rafin, Catherine; Woisel, Patrice; Cazier, Fabrice

    2004-05-01

    In order to study the enzymatic mechanisms involved in the successive steps of BaP degradation by a Deuteromycete fungus Fusarium solani, we developed an indirect approach by using inhibitors of enzymes. We used either specific inhibitors of peroxidases (i.e. salicylhydroxamic acid) and of cytochrome P-450 (i.e. piperonyl butoxyde) or inhibitors of both enzymes (i.e. potassium cyanide). Surprisingly, no expected decrease of BaP degradation was observed with most inhibitors tested. On the contrary, more BaP was degraded. Only butylated hydroxytoluene, which acts as a free radical scavenger, inhibited BaP degradation. The inhibition of these enzymes, which use H{sub 2}O{sub 2} as a cosubstrat, might have resulted in an increase of hydrogen peroxide availability in the fungal cultures. This enhancement could induce formation of reactive oxygen species (ROS) which might be the agents that initiate benzo[a]pyrene oxidation. This study proposed a hypothetic alternative metabolic pathway involved in PAH metabolism by Fusarium solani. - An alternative metabolic pathway was demonstrated.

  5. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani

    International Nuclear Information System (INIS)

    In order to study the enzymatic mechanisms involved in the successive steps of BaP degradation by a Deuteromycete fungus Fusarium solani, we developed an indirect approach by using inhibitors of enzymes. We used either specific inhibitors of peroxidases (i.e. salicylhydroxamic acid) and of cytochrome P-450 (i.e. piperonyl butoxyde) or inhibitors of both enzymes (i.e. potassium cyanide). Surprisingly, no expected decrease of BaP degradation was observed with most inhibitors tested. On the contrary, more BaP was degraded. Only butylated hydroxytoluene, which acts as a free radical scavenger, inhibited BaP degradation. The inhibition of these enzymes, which use H2O2 as a cosubstrat, might have resulted in an increase of hydrogen peroxide availability in the fungal cultures. This enhancement could induce formation of reactive oxygen species (ROS) which might be the agents that initiate benzo[a]pyrene oxidation. This study proposed a hypothetic alternative metabolic pathway involved in PAH metabolism by Fusarium solani. - An alternative metabolic pathway was demonstrated

  6. Asbestos-catalyzed oxidation of benzo(a)pyrene by superoxide-peroxidized microsomes

    International Nuclear Information System (INIS)

    Asbestos and benzo(a)pyrene [B(a)P] are ubiquitous in our environment and both are recognized as causal factors for cancer in man and animals. In vitro studies showed a synergism in morphological transformation of mammalian cells treated with asbestos and B(a)P. It has been shown that asbestos can mediate lipid peroxidation and that iron cations might be involved in the catalytic activity of asbestos fibers. A previous study of B(a)P metabolism by microsomes showed that peroxidative conditions change the balance between activation and deactivation of B(a)P and demonstrated that catalytically active iron can play a role in this process. The present investigation examines the effect of asbestos on oxidation of B(a)P by superoxide - peroxidized microsomes in vitro

  7. Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene

    International Nuclear Information System (INIS)

    We report that oxidative phosphorylation and Ca2+ uptake processes are enhanced in liver mitochondria isolated from benzo[a]pyrene (B[a]P)-treated rats. The carcinogen did not affect either the respiratory control index or the Ca2+ control ratio. B[a]P treatment increased the oxidation rate of several substrates that donate electrons at the level of all three coupling sites, either the ADP- or Ca2+-stimulated rates or those observed after ADP or Ca2+ exhaustion. However, the efficiency of energy coupling was maintained because both ADP/O and Ca2+/site ratios remained unchanged. The electron flow through NADH-oxidase, NADH-duroquinone reductase, NADH-juglone reductase, NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase was enhanced by B[a]P; however, succinate dehydrogenase activity was not affected. All these effects depended on the time post B[a]P administration, with a greater increase close to 48 h after administration of the carcinogen. The contents of cytochromes b, c1, and a + a3 from liver mitochondria, especially those isolated 48 h after B[a]P, were also significantly increased, although cytochrome c levels was just lightly increased 24 h after B[a]P treatment. These results suggest that B[a]P treatment stimulates mitochondrial respiration by increasing the level of several components of the mitochondrial respiratory chain. This may reflect mitochondrial adaptation to the cellular energy requirements of cell division in the neoplastic transformation process

  8. Formaldehyde degradation by catalytic oxidation.

    OpenAIRE

    Shirey, W N; Hall, T. A.; Hanel, E; Sansone, E B

    1981-01-01

    Formaldehyde used for the disinfection of a laminar-flow biological safety cabinet was oxidatively degraded by using a catalyst. This technique reduced the formaldehyde concentration in the cabinet from about 5,000 to about 45 mg/m3 in 8 h. This technique should prove useful in other applications.

  9. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  10. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e-aq). The bimolecular reaction rate constants (M-1 s-1) for diclofenac for •OH was (9.29 ± 0.11) x 109, and, for e- aq was (1.53 ± 0.03) x109. Preliminary degradation mechanisms are suggested based on product analysis using 60Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  11. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    Linbo Qian; Baoliang Chen

    2012-01-01

    The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated.A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium.The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation,which was significantly higher than that from regions of T.versicolor or P.chrysosporium alone.The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition.A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated.After a 48 hr incubation period,the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%,while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T.versicolor.The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS).These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.

  12. Oxidative degradation of lignin, (2)

    International Nuclear Information System (INIS)

    Specifically 14C-labelled pine kraft lignin was oxidized with hydrogen peroxide and ferrous salts under various conditions. The reaction mixtures were applied to gell filtration on Sephadex G-15. The behavior of the specific carbon atoms in the reaction products was studied from the distribution of the radioactivity relative to that of molecular weight. The gaseous reaction products were separated and identified by gas chromatography, and the radioactivity of these products was measured. The results obtained are summarized as follows: 1. When a small amount of hydrogen peroxide was applied, a part of monomer compounds present in kraft waste liquor was condensed to give dimer and oligomer substances through the intermediate o-quinone. The amount of β- and R-carbon in the polymer fraction of kraft lignin in crased by mild oxidation treatment. 2. When a large amount of hydrogen peroxide was applied, the high molecular fraction of kraft lignin was considerably degraded to low molecular weight products. The ring rupture was remarkably observed. The β-carbon was retained in the high molecular fraction more firmly than other carbons even under severe oxidation conditions. 3. The gaseous reaction products identified were carbon dioxide, methane, acetylene + ethylene, ethane and propene. A large part of methoxyl carbon was converted into carbon dioxide and methane under the conditions described above. (author)

  13. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice.

    Science.gov (United States)

    Shahid, Ayaz; Ali, Rashid; Ali, Nemat; Hasan, Syed Kazim; Bernwal, Preeti; Afzal, Shekh Mohammad; Vafa, Abul; Sultana, Sarwat

    2016-06-01

    Benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon (PAH) is a strong mutagen and potent carcinogen. The aim of the present study was to investigate the efficacy of catechin hydrate against B(a)P induced genotoxicity, oxidative stress, inflammation, apoptosis and to explore its underlying molecular mechanisms in the lungs of Swiss albino mice. Administration of B(a)P (125 mg/kg b. wt., p. o.) increased the activities of toxicity markers such as LPO, LDH and B(a)P metabolizing enzymes [NADPH-cytochrome P450 reductase (CYPOR) and microsomal epoxide hydrolase (mEH)] with subsequent decrease in the activities of tissue anti-oxidant armory (SOD, CAT, GPx, GR, GST, QR and GSH). It also caused DNA damage and activation of apoptotic and inflammatory pathway by upregulation of TNF-α, IL-6, NF-kB, COX-2, p53, bax, caspase-3 and down regulating Bcl-2. However, pre-treatment with catechin at a dose of 20 and 40 mg/kg significantly decreased LDH, LPO, B(a)P metabolizing enzymes and increased anti-oxidant armory as well as regulated apoptosis and inflammation in lungs. Histological results also supported the protective effects of catechin. The findings of the present studies suggested that catechin as an effective natural product attenuates B(a)P induced lung toxicity. PMID:27020533

  14. Degradation of 14C labelled Benzo[a]pyrene by a PAH-adapted mixed bacterial culture in the presence of an alkylpolyglycoside-surfactant

    International Nuclear Information System (INIS)

    The biodegradation of the five ring PAH benzo[a]pyrene (BaP) is assumed to be limited by the low water solubility of this compound. A mixed culture of microorganisms - isolated from a PAH-contaminated soil - was able to degrade 14C labelled BaP in mineral medium by co-metabolism with phenanthrene, fluoranthene, anthracene and pyrene as sources of carbon and energy. The mineralisation of these compounds to low levels resulted in an inhibition of the degradation of BaP. After the new addition of the four PAH compounds to the culture medium the mineralisation of BaP started again. A non-ionic surfactant of the alkylpolyglycoside type (Plantacare 2000 UP) increased the concentration of BaP in the culture medium because of solubilization. At high Plantacare concentrations, the degradation of BaP was completely inhibited above the critical micelle concentration (cms). The degradation of the three and four ring PAHs was also inhibited. If the surfactant was metabolised to concentrations below the cmc, an increase of mineralisation of BaP could occur up to 24% in 384 days. (orig.)

  15. Oxidative degradation of lignin, 1

    International Nuclear Information System (INIS)

    Specifically 14C-labelled pine kraft lignin was oxidized with alkaline hydrogen peroxide under various conditions. The reaction mixture was applied to gell filtration on Sephadex G-15. The behavior of the specific carbon atoms of the degraded lignin was studied from the distribution of radioactivity relative to that of molecular weight. No kraft lignin was decomposed to low molecular weight substances, but polymerized. The amount of alpha -, beta - and gamma -carbons of side chain and ring carbon in the polymer fraction was increased by the oxidation treatment. The amount of these carbon in the polymer fraction increased by increasing the amount of applied hydrogen peroxide. On the other hand, the amount of methoxyl carbon in the polymer fraction increased when a small amount of hydrogen peroxide was applied, and decreased when the amount of hydrogen peroxide was increased. The methoxyl carbon was eliminated to a large extent by treating with alkaline hydrogen peroxide, and a part of it was converted into methane. Ring rupture was not observed under these experimental conditions. (author)

  16. The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo[a]pyrene oxidative stress.

    Science.gov (United States)

    Calonne, Maryline; Fontaine, Joël; Debiane, Djouher; Laruelle, Frédéric; Grandmougin-Ferjani, Anne; Lounès-Hadj Sahraoui, Anissa

    2014-01-01

    The phytoremediation assisted by arbuscular mycorrhizal fungi (AMF) could constitute an ecological and economic method to restore polycyclic aromatic hydrocarbon (PAH) polluted soils. Unfortunately, little is known about the PAH impact on the beneficial symbiotic AMF. Using radiolabelling experiments, our work aims to understand how benzo[a]pyrene (B[a]P), a representative of high molecular weight PAH, acts on the AMF lipid metabolism. Our results showed decreases in the sterol precursors as well as in total phospholipid quantities, in link with the [1-(14)C]acetate incorporation decreases in these lipids. Interestingly, a concomitant increase of [1-(14)C]acetate incorporation by 29.5% into phosphatidylcholine with its content decrease in Rhizophagus irregularis extraradical mycelium was observed, suggesting a membrane regeneration. A second concomitant increase (estimated to 69%) of [1-(14)C]acetate incorporation into triacylglycerols (TAG) with the content decrease was also observed. This suggests a fungal TAG biosynthesis activation probably to offset the decrease in storage lipid content when the fungus was grown under B[a]P pollution. In addition, our findings showed that lipase activity was induced by more than 3 fold in the presence of B[a]P in comparison to the control indicating that the drop in TAG content could be a consequence of their active degradation. Taken together, our data suggest the involvement of the fungal TAG metabolism to cope B[a]P toxicity through two means: (i) by providing carbon skeletons and energy necessary for membrane regeneration and/or for B[a]P translocation and degradation as well as (ii) by activating the phosphatidic acid and hexose metabolisms which may be involved in cellular stress defence. PMID:24246754

  17. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    Science.gov (United States)

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. PMID:26675874

  18. Effects of a cocarcinogen, ferric oxide, on the metabolism of benzo[a]pyrene in the isolated perfused lung

    International Nuclear Information System (INIS)

    An isolated perfused New Zealand rabbit lung preparation was used to investigate the effects of a cocarcinogen, ferric oxide (Fe2O3), on the metabolism of benzo[a]pyrene (BaP), a ubiquitous potent carcinogen that has been associated with the increased incidence of human bronchiogenic carcinoma in occupational and urban settings. [14C]-BaP was administered intratracheally to an isolated perfused lung (IPL) preparation with and without Fe2O3 after intraperitoneal pretreatment of the whole animal with BaP or intratracheal pretreatment of the whole animal with Fe2O3 and/or BaP. BaP and its metabolites were isolated from serial blood samples up to 180 min after administration of [14C]BaP to the IPL. BaP and its metabolites were also isolated from lung tissue, washout fluid, macrophage, and trachea bronchi at the end of the perfusion at 180 min. Patterns of BaP metabolites were determined by chromatographic techniques and liquid scintillation counting. Fe2O3 pretreatment to the whole animal or administration of Fe2O3 to the IPL altered BaP metabolism by the perfused lung. Fe2O3 pretreatment to the whole animal resulted in an increase in the total rate of appearance of metabolites of BaP in the blood, while Fe2O3 administration to the IPL resulted in a decrease in the total rate of appearance of BaP metabolites in the blood and inhibited the effect of pretreatment. These data suggest that pulmonary exposure to a known cocarcinogen, Fe2O3, in the presence of BaP results in increased production of dihydrodiols of BaP, which may be further metabolized to the ultimate carcinogenic form(s) of BaP. Therefore, Fe2O3 can enhance the metabolic activation of BaP by the lung, as well as act as a carrier for penetration and retention of BaP in the lung. 49 references, 6 tables

  19. Benzo(a)pyrene oxidation, conjugation and disposition in the isolated perfused rabbit lung: role of the glutathione S-transferases.

    Science.gov (United States)

    Ball, L M; Plummer, J L; Smith, B R; Bend, J R

    1979-10-01

    The isolated perfused rabbit lung metabolised 7--11 % of 20 mumol of [14C]-benzo(a)pyrene added in the perfusion medium in 1 h. The major metabolite formed was 3-hydroxybenzo(a)pyrene, both free (30--40 % of the total metabolites) and conjugated (4 % of total metabolites). Quinones comprised 15 % of the total and metabolism at the 9, 10 position accounted for a further 10 %. Forty per cent of the water-soluble metabolites was chromatographically identical to the glutathione conjugate of benzo(a)pyrene 4,5-oxide. Sulphate and glucuronide conjugates were formed in small but detectable amounts, principally from phenols, but also from dihydrodiols. After 1 h the more water-soluble conjugates had diffused from the lung into the perfusion medium, but the majority (60--90 %) of the metabolic products were still concentrated within the lung. The lung's limited ability to conjugate its major metabolites of benzo(a)pyrene with sulphuric or glucuronic acid, coupled with slow elimination of the products formed, particularly dihydrodiols may contribute to the susceptibility of this organ to polycyclic aromatic hydrocarbon-induced carcinogenesis. PMID:522517

  20. Radiation induced oxidative degradation of polymers

    International Nuclear Information System (INIS)

    The γ-ray induced oxidation of polyethylene and ethylene-propylene copolymer films has been studied to obtain technological information on reducing the period in the radiation resistance testing of polymer materials. The polymers were irradiated under pressurized oxygen atmosphere (0.21 of the order of 10 atm) at high dose rate (0.5 of the order of 1 Mrad/h) in order to accelerate the oxidative degradation. The depth of oxidation region in the film was estimated by the gel fraction measurement. The depth was well agreed with the oxygen penetration region, which was calculated using the observed diffusion coefficient and solubility constant of oxygen in the film and specific rate of the oxygen consumption during irradiation. It was found that the depth of oxidation region was proportional to the square root of [oxygen pressure/ dose rate] and that the testing period could be reduced by higher dose rate irradiation at higher oxygen pressure. (author)

  1. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  2. Neonatal Benzo[a]pyrene Exposure Induces Oxidative Stress and DNA Damage Causing Neurobehavioural Changes during the Early Adolescence Period in Rats.

    Science.gov (United States)

    Patel, Bhupesh; Das, Saroj Kumar; Patri, Manorama

    2016-01-01

    Humans are exposed to polycyclic aromatic hydrocarbons (PAHs) by ingestion of contaminated food and water. Prenatal exposure to benzo[a]pyrene (B[a]P) like PAHs through the placental barrier and neonatal exposure by breast milk and the environment may affect early brain development. In the present study, single intracisternal administration of B[a]P (0.2 and 2.0 µg/kg body weight) to male Wistar rat pups at postnatal day 5 (PND5) was carried out to study its specific effect on neonatal brain development and its consequences at PND30. B[a]P administration showed a significant increase in exploratory and anxiolytic-like behaviour with elevated hippocampal lipid peroxidation and protein oxidation at PND30. Further, DNA damage was estimated in vitro (Neuro2a and C6 cell lines) by the comet assay, and oxidative DNA damage of hippocampal sections was measured in vivo following exposure to B[a]P. DNA strand breaks (single and double) significantly increased due to B[a]P at PND30 in hippocampal neurons and increased the nuclear tail moment in Neuro2a cells. Hippocampal 8-oxo-2'-deoxyguanosine production was significantly elevated showing expression of more TUNEL-positive cells in both doses of B[a]P. Histological studies also revealed a significant reduction in mean area and perimeter of hippocampal neurons in rats treated with B[a]P 2.0 μg/kg, when compared to naïve and control rats. B[a]P significantly increased anxiolytic-like behaviour and oxidative DNA damage in the hippocampus causing apoptosis that may lead to neurodegeneration in adolescence. The findings of the present study address the potential role of B[a]P in inducing oxidative stress-mediated neurodegeneration in the hippocampus through oxidative DNA damage in the early adolescence period of rats. PMID:27271523

  3. Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats.

    Science.gov (United States)

    Patel, Bhupesh; Das, Saroj Kumar; Das, Swagatika; Das, Lipsa; Patri, Manorama

    2016-05-01

    Environmental neurotoxicants like benzo[a]pyrene (B[a]P) have been well documented regarding their potential to induce oxidative stress. However, neonatal exposure to B[a]P and its subsequent effect on anti-oxidant defence system and hippocampal cytomorphometry leading to behavioral changes have not been fully elucidated. We investigated the effect of acute exposure of B[a]P on five days old male Wistar pups administered with single dose of B[a]P (0.2 μg/kg BW) through intracisternal mode. Control group was administered with vehicle i.e., DMSO and a separate group of rats without any treatment was taken as naive group. Behavioral analysis showed anxiolytic-like behavior with significant increase in time spent in open arm in elevated plus maze. Further, significant reduction in fall off time during rotarod test showing B[a]P induced locomotor hyperactivity and impaired motor co-ordination in adolescent rats. B[a]P induced behavioral changes were further associated with altered anti-oxidant defence system involving significant reduction in the total ATPase, Na(+) K(+) ATPase, Mg(2+) ATPase, GR and GPx activity with a significant elevation in the activity of catalase and GST as compared to naive and control groups. Cytomorphometry of hippocampus showed that the number of neurons and glia in B[a]P treated group were significantly reduced as compared to naive and control. Subsequent observation showed that the area and perimeter of hippocampus, hippocampal neurons and neuronal nucleus were significantly reduced in B[a]P treated group as compared to naive and control. The findings of the present study suggest that the alteration in hippocampal cytomorphometry and neuronal population associated with impaired antioxidant signaling and mood in B[a]P treated group could be an outcome of neuromorphological alteration leading to pyknotic cell death or impaired differential migration of neurons during early postnatal brain development. PMID:26946409

  4. THE FTIR STUDIES OF PHOTO-OXIDATIVE DEGRADATION OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    WEN Zaiqing; HU Xingzhou; SHEN Deyan

    1988-01-01

    The photo-oxidative degradation process of polypropylene film containing iron ions was investigated via FTIR and absorbance substraction technique. It is shown that the iron ions play an important role in the decomposition of hydroperoxide and the increase of the degradation rate of polypropylene film. Theamorphous region of PP film undergoes degradation prior to the crystalline one.

  5. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  6. Oxidation of PAHs in water solutions by ultraviolet radiation combined with hydrogen peroxide

    OpenAIRE

    Dorota Olejnik; Jacek S. Miller; Stanisław Ledakowicz

    1999-01-01

    The destruction of three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene, chrysene and fluorene in aqueous solution using advanced oxidation process H2O2/UV was investigated. The influence of pH, initial hydrogen peroxide and radical scavenger concentrations on the reaction rate was studied. The oxidation reactions most rapidly run in neutral and acidic solution at optimal hydrogen peroxide concentration (ca. 0.01 M). The degradation of benzo[a]pyrene and chrysene follows radical reac...

  7. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  8. Mesoporous manganese oxide for warfare agents degradation

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Králová, Daniela; Opluštil, F.; Němec, T.

    2012-01-01

    Roč. 156, JULY (2012), s. 224-232. ISSN 1387-1811 R&D Projects: GA MPO FI-IM5/231 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : homogeneous hydrolysis * chloroacetamide * manganese(IV) oxide * warfare agents Subject RIV: CA - Inorganic Chemistry Impact factor: 3.365, year: 2012

  9. Hydrothermal Oxidative Degradation of Organic Compounds Derived From Produced Water

    International Nuclear Information System (INIS)

    Produced water contains various hazardous organic compounds such as BTEX (benzene, toluene, ethyl benzene and xylene), phenolics and polycyclic aromatic hydrocarbons (PAHs). These compounds are stable and difficult to degrade by conventional wastewater treatment method. Aqueous based hydrothermal oxidative method is viewed as a promising approach for produced water treatment. The experiment was conducted in a micro-bomb reactor at subcritical water condition (200-300 degree Celsius) and 30 minute reaction time. Hydrogen peroxide was used as an oxidant. The reaction products were analyzed using a Fourier Transform Infra-Red (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS). The hydrothermal treatment in the absence of an oxidant showed minimal degradation of organics for the temperature range investigated. With the presence of an oxidant, the organics degradation increased drastically to near completion within the 30 minute reaction time at 300 degree Celsius. The results indicated that most of the organic compounds found in the produced water were successfully degraded using hydrothermal oxidative method. (author)

  10. Degradation of C-hordein by metal-catalysed oxidation.

    Science.gov (United States)

    Huang, Xin; Kanerva, Päivi; Salovaara, Hannu; Sontag-Strohm, Tuula

    2016-04-01

    C-hordein is a monomeric prolamin protein in barley. The unusual primary structure of C-hordein has highly repetitive sequences and forms a secondary structure of beta-turns. C-hordein structure is similar to that of collagen protein, whose degradation by metal-catalysed oxidation has been intensively studied. No information exists on the metal catalysed oxidation of C-hordein, however. In this study, copper-catalysed hydrogen peroxide induced oxidation of C-hordein caused substantial degradation and formed some insoluble compounds. The use of a gliadin standard in R5 ELISA determinations causes an overestimation of hordeins in a sample. A C-hordein standard was therefore directly used as a standard, thus allowing the C-hordein to be analysed as its oxidised prolamin product. After 48 h of oxidation, the prolamin concentration of oxidised C-hordein decreased to 20% of its original amount for competitive ELISA, and to 3% for sandwich ELISA methods. Carbonyl groups were formed during the oxidation. Backbone fragmentation and side-chain modification suggested structural changes of R5 epitopes in C-hordein. Oxidation is an alternative to enzymatic hydrolysis when degrading and modifying C-hordein. PMID:26593614

  11. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in

  12. Degradation of methyl orange waste water by electrochemical oxidation method

    International Nuclear Information System (INIS)

    Degradation of methyl orange (MO) waste water was conducted by electrochemical oxidation method with PbO2/Ti electrode as anode. PbO2/Ti electrode was fabricated by electrochemical deposition of PbO2 on Ti foil. The micrograph and crystal structure of PbO2 show that uniform coating of PbO2 on titanium foil was obtained and the dominant crystal structure was β-PbO2. Degradation experiments of MO solution indicate that the degradation rate increased with cell voltage and solution conductivity. In addition, air aeration also improved the degradation of MO solution; but an increase in cell voltage or input energy decreased the energy efficiency of MO removal. The energy efficiency reached over 0.1mg kJ−1 under a cell voltage lower than 15V, and the removal rate could reach 90%.

  13. Characterization of tunnel-oxide degradation due to plasma field oxide recess in flash memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeungyun [School of Information and Communication Engineering, Sungkyunkwan University, Chunchun-dong, Jangan-gu, Suwon, Kyunggi-do, 440-746 (Korea, Republic of); Semiconductor R and D Center, Samsung Electronics, Hwasung City (Korea, Republic of); Kim, Dong-Kwon; Min, Gyung-Jin [Semiconductor R and D Center, Samsung Electronics, Hwasung City (Korea, Republic of); Chung, Ilsub, E-mail: ichung@skku.ac.kr [School of Information and Communication Engineering, Sungkyunkwan University, Chunchun-dong, Jangan-gu, Suwon, Kyunggi-do, 440-746 (Korea, Republic of)

    2012-05-31

    This paper presents the characterization of degradation of tunnel oxide during plasma recess of field oxide films for Shallow Trench Isolation (STI) in sub 30 nm flash memory devices. Simple plasma charge damage monitor wafers with Metal-Oxide-Semiconductor (MOS) capacitor structures were used to analyze the mechanisms of degradation of tunnel oxide due to process-induced charging damage. We characterized the gate leakage currents and breakdown voltages of MOS capacitors with area antennas after performing the plasma process for field oxide recess of STI with various etching conditions in a dual-frequency capacitively coupled plasma reactor. The results showed that the degradation was strongly dependent on plasma non-uniformity, which could be improved by optimizing the radio-frequency and biasing power. Especially, we found that RF biasing power caused stress-induced leakage currents due to dielectric breakdown by the leakage current originating from the electrostatic chuck. - Highlights: Black-Right-Pointing-Pointer Degradation of tunnel in sub 30 nm flash memory devices is studied. Black-Right-Pointing-Pointer Plasma process induced damage of tunnel oxide during plasma etching is characterized. Black-Right-Pointing-Pointer Plasma etching results in degradation of tunnel oxide due to electrical field stress. Black-Right-Pointing-Pointer Degradation was strongly dependent on plasma non-uniformity.

  14. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σcr,buckling=91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ0=exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  15. A model for the thermo-oxidative degradation of polyimides

    Science.gov (United States)

    Karra, Satish; Rajagopal, K. R.

    2012-08-01

    Polyimides, due to their superior mechanical behavior at high temperatures, are used in a variety of applications that include aerospace, automobile and electronic packaging industries, as matrices for composites, as adhesives etc. In this paper, we extend our previous model in S. Karra and K. Rajagopal (Mech. Mater. 43(1):54-61, 2011), to include thermo-oxidative degradation of these high temperature polyimides. Appropriate forms for the Helmholtz potential and the rate of dissipation are chosen to describe the degradation. The results for a specific boundary value problem, using our model, compares well with the experimental creep data for PMR-15 resin that is aged in air.

  16. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    OpenAIRE

    C. L. P. S. Zanta; Martínez-Huitle, C. A.

    2009-01-01

    In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton p...

  17. Sulphur mustard degradation on zirconium doped Ti-Fe oxides

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i 250 68 Husinec-Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno Veslarska 230, 628 00 Brno (Czech Republic)

    2011-09-15

    Highlights: {yields} New stechiometric materials for sulphur mustard degradation. {yields} High degree of degradation, more then 95% h{sup -1}. {yields} One-pot synthesis procedure. - Abstract: Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr{sup 4+} dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr{sup 4+} to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr{sup 4+} doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites.

  18. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice.

    Science.gov (United States)

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-09-01

    The incidence of colonic toxicity has been epidemiologically linked to the consumption of foods contaminated with benzo(a)pyrene (B[a]P). The present study investigated the effects of B[a]P on biomarkers of oxidative stress, inflammation and wnt-signaling in colon of BALB/c mice following exposure to 62.5, 125 and 250 mg/kg of B[a]P for 7 days by oral gavage. Exposure to B[a]P significantly decreased the colonic antioxidant enzymes activities and glutathione level with concomitant significant increase in myeloperoxidase activity, nitric oxide and lipid peroxidation levels. Colon histopathology results showed treatment-related lesions characterized by atrophy, mucosal ulceration and gland erosion in the B[a]P-treated mice. Immunohistochemistry analysis showed that B[a]P treatment increased the protein expression of nuclear factor kappa B, pro-inflammatory cytokines namely tumor necrosis factor alpha and interleukin-1β, as well as cyclooxygenase-2 and inducible nitric oxide synthase in the mice colon. Altered canonical wnt-signaling was confirmed by strong diaminobenzidine staining for p38 mitogen activated protein kinase, β-catenin expression and absence of adenomatous polyposis coli following B[a]P administration. The present data highlight that exposure to B[a]P induces colon injury via induction of oxidative and nitrosative stress, inflammatory biomarkers and dsyregulation wnt/β-catenin signaling, thus confirming the role of B[a]P in the pathogenesis of colonic toxicity. PMID:27338711

  19. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  20. A model for the degradation of polyimides due to oxidation

    OpenAIRE

    Karra, Satish; K.R. Rajagopal

    2010-01-01

    Polyimides, due to their superior mechanical behavior at high temperatures, are used in a variety of applications that include aerospace, automobile and electronic packaging industries, as matrices for composites, as adhesives etc. In this paper, we extend our previous model in [S. Karra, K. R. Rajagopal, Modeling the non-linear viscoelastic response of high temperature polyimides, Mechanics of Materials, In press, doi:10.1016/j.mechmat.2010.09.006], to include oxidative degradation of these ...

  1. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    International Nuclear Information System (INIS)

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  2. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  3. Models and experiments on degradation of oxidized silicon

    Science.gov (United States)

    Sah, C. T.

    1990-02-01

    The concepts of electronic and protonic traps are introduced to delineate and classify the fundamental mechanisms of charging, generation, annealing and hydrogenation of electronic or electron and hole traps located in the interfacial (gate-conductor/oxide, oxide/nitride and oxide/silicon), insulator (oxide, nitride and oxynitride) and semiconductor surface layers of silicon MOS transistors and integrated circuits. Two matrix tables, one without tunneling (3 × 3) and one with tunneling (3 × 4) are used to classify the trap charging and electronic injection mechanisms according to the initial and final (band or bound) states of the electronic transition and the energy exchange mechanisms (thermal, optical and Auger-impact). The importance of tunneling to and from traps (TTT) as an oxide charge build-up mechanism is discussed. A theoretical tunneling rate to traps is given showing that traps shallower than about 2 eV from the oxide conduction band edge or 3 eV from the oxide valence band edge cannot be charged by the TTT transitions alone. Experimental examples illustrating the use of these mechanism tables as well as the importance of breaking hydrogen and strained intrinsic bonds by hot electron impact and by thermal hole capture are discussed, including: (i) annealing of the oxide/Si interface traps via hydrogenation during 380C chip bonding and during Fowler-Nordheim tunneling electron injection (FN-TEI) and avalanche electron injection (AEI) stresses, (ii) interface trap generation and positive oxide charge build-up during electron injection via FN-TEI or AEI, and (iii) electrical deactivation of boron and other group-III acceptors (Al, Ga, In) in the silicon surface layer during FNTEI or AEI stresses. Examples at three d.c. bias conditions to delineate the dominant degradation mechanisms in silicon MOS transistors are given showing that trap charging via tunneling (FNTEI, FNTHI and TTT) dominates below about 3.3 V in both n-MOS and p-MOS but trap generation

  4. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated.Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  5. Degradation of chlorophenol by in-situ electrochemically generated oxidant

    Institute of Scientific and Technical Information of China (English)

    丛燕青; 吴祖成; 叶倩; 谭天恩

    2004-01-01

    A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m3/h.

  6. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  7. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... degradation of methane and TCE. During the first 10–15 days after the addition of methane a significant degradation of methane and a minor degradation of TCE were observed. This experiment revealed that the ability of mixed cultures of methane-oxidizing bacteria to degrade TCE varied significantly even though...

  8. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-08-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment.

  9. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    International Nuclear Information System (INIS)

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu2+ strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu2+. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH4. The incubation of BSA with IP (50-500μM), in the presence of 100μM Cu2+ leaded to an increased and dose dependent 3 H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu2+ was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400μM IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100μM Cu2+. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  10. Comprehensive screening study of pesticide degradation via oxidation and hydrolysis.

    Science.gov (United States)

    Chamberlain, Evelyn; Shi, Honglan; Wang, Tongwen; Ma, Yinfa; Fulmer, Alice; Adams, Craig

    2012-01-11

    This comprehensive study focused on the reactivity of a set of 62 pesticides via oxidization by free chlorine, monochloramine, chlorine dioxide, hydrogen peroxide, ozone, and permanganate; photodegradation with UV(254); and hydrolysis at pH 2, 7, and 12. Samples were analyzed using direct injection liquid chromatography-mass spectrometry detection or gas chromatography-electron capture detection after liquid-liquid extraction. Many pesticides were reactive via hydrolysis and/or chlorination and ozonation mechanisms under typical drinking water treatment conditions, with less reactivity exhibited on average for chlorine dioxide, monochloramine, hydrogen peroxide, and UV(254). The pyrazole and organophosphorous pesticides were most reactive in general, whereas carbamates and others were less reactive. The screening study provides guidance for the pesticide/oxidation systems that are most likely to lead to degradates in water treatment and the environment. PMID:22141915

  11. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    -order kinetics and occurred in parallel with the oxidation of methane. TeCM, CFC-11, and CFC-12 were not degradable in presence of oxygen and degradation of these compounds in the oxidative zone in landfill top covers is therefore expected to be limited. However these compounds were found degradable in the......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...... anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role in...

  12. Antimutagenic activity of cashew apple (Anacardium occidentale Sapindales, Anacardiaceae fresh juice and processed juice (cajuína against methyl methanesulfonate, 4-nitroquinoline N-oxide and benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Ana Amelia Melo-Cavalcante

    2008-01-01

    Full Text Available Cashew apple juice (CAJ, produced from the native Brazilian cashew tree (Anacardium occidentale, and has been reported to have antibacterial, antifungal, antitumor, antioxidant and antimutagenic properties. Both the fresh unprocessed juice and the processed juice (cajuína in Portuguese has been shown to consist of a complex mixture containing high concentrations of anacardic and ascorbic acids plus several carotenoids, phenolic compounds and metals. We assessed both types of juice for their antimutagenic properties against the direct mutagens methyl methanesulfonate (MMS and 4-nitroquinoline-N-oxide (4-NQO and the indirect mutagen benzo[a]pyrene (BaP using pre-treatment, co-treatment and post-treatment assays with Salmonella typhimurium strains TA100, TA102, and TA97a. In pre-treatment experiments with strains TA100 and TA102 the fresh juice showed high antimutagenic activity against MMS but, conversely, co-treatment with both juices enhanced MMS mutagenicity and there was an indication of toxicity in the post-treatment regime. In pre-, co-, and post-treatments with TA97a as test strain, antimutagenic effects were also observed against 4-NQO and BaP. These results suggest that both fresh and processed CAJ can protect the cells against mutagenesis induced by direct and indirect mutagens.

  13. Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants

    OpenAIRE

    Benner, Jessica; De Smet, Delfien; Ho, Adrian; Kerckhof, Frederiek-Maarten; Vanhaecke, Lynn; Heylen, Kim; Boon, Nico

    2015-01-01

    Methane-oxidizing cultures from five different inocula were enriched to be used for co-metabolic degradation of micropollutants. In a first screening, 18 different compounds were tested for degradation with the cultures as well as with four pure methane-oxidizing bacterial (MOB) strains. The tested compounds included pharmaceuticals, chemical additives, pesticides, and their degradation products. All enriched cultures were successful in the degradation of at least four different pollutants, b...

  14. Rapid degradation of zinc oxide nanoparticles by phosphate ions

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-11-01

    Full Text Available Zinc oxide nanoparticles are highly sensitive towards phosphate ions even at pH 7. Buffer solutions and cell culture media containing phosphate ions are able to destroy ZnO nanoparticles within a time span from less than one hour to one day. The driving force of the reaction is the formation of zinc phosphate of very low solubility. The morphology of the zinc oxide particles has only a minor influence on the kinetics of this reaction. Surface properties related to different production methods and the presence and absence of labelling with a perylene fluorescent dye are more important. Particles prepared under acidic conditions are more resistant than those obtained in basic or neutral reaction medium. Surprisingly, the presence of a SiO2 coating does not impede the degradation of the ZnO core. In contrast to phosphate ions, β-glycerophosphate does not damage the ZnO nanoparticles. These findings should be taken into account when assessing the biological effects or the toxicology of zinc oxide nanoparticles.

  15. Wet Air Oxidation and Catalytic Wet Air Oxidation for Refinery Spent Caustics Degradation

    International Nuclear Information System (INIS)

    The work focuses on evaluating wet air oxidation and catalytic wet air oxidation technique to degrade refinery spent caustics (original COD is 250,781 mg/L) in a milder operation conditions (150-200 degree C, 0.2-2.5MPa). The results show that: in non-catalyst WAO, the highest COD degradation conversion could reach about 75% when 200 degree C, 2MPa oxygen and 300rpm were used. At every temperature, the reaction procedures follow pseudo-first order equations and the activation energy is 45.5 kJ/mol. The reactivity of three main contaminants in wastewater is on the order of sulphide > petroleum > volatile phenol. The COD degradation conversion could improve to about 95% when composite catalyst MnOx-CeO/sub x//sub x/ gamma-Al/sub 2/O/sub 3/ (W/sub Mn//W gamma-/sub Al/sub 2/O/sub 3/ =0.5/ and WCe/W MnOx Al/sub 2/O/sub 3/=0.4) was used. The pseudo-first order equations also could be applied for catalyst system and its activation energy decreases to 27.2 kJ/mol. The catalyst could improve the degradation efficiency of petroleum and volatile phenol. Their conversions could increase to 85% and 74% respectively after catalyst used. (author)

  16. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... and groundwaters. Only three of the eight mixed cultures were able to degrade TCE, or to degrade TCE fast enough to result in a significant removal of TCE within the experimental time, when the cultures used methane as growth substrate. The same three mixed cultures were able to degrade TCE when they...... oxidized methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in...

  17. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: A dose–response study with benzo[a]pyrene and its degradation products

    International Nuclear Information System (INIS)

    The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose–response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints. - Highlights: ► We study innate immune responses to benzo[a]pyrene in Xenopus laevis. ► mRNA expression of three typical proinflammatory proteins was monitored. ► Heat shock protein 70 mRNA induction showed a concentration/response/time relationship. ► Interleukin 1-β also showed a clear concentration/response relationship. ► Interleukin 1-β and heat shock protein 70 are useful indicators of immunotoxic effects. - The present study analyzed the use of cytokine mRNA levels as an earlier tool for predicting immunotoxicological risks to Xenopus laevis in a dose–response pattern.

  18. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    International Nuclear Information System (INIS)

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified

  19. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  20. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    Science.gov (United States)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  1. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen

    OpenAIRE

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van, M.J.A.; Wachem, van, P.B.; Nieuwenhuis, P.; Feijen, J.

    1995-01-01

    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation behavior of either nonsterilized or γ-sterilized DSC. Upon ethylene oxide sterilization, reaction of ethylene oxide with the free amine groups of DSC occurred, which resulted in a decreased helix stab...

  2. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Science.gov (United States)

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, Pavel; Kuráň, Pavel; Štastný, Martin

    2015-07-01

    Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  3. Hydrolytic and Oxidative Mechanisms Involved in Cellulose Degradation

    OpenAIRE

    Nutt, Anu

    2006-01-01

    The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, Hypocrea jecorina and Phanerochaete chrysosporium, including both the action of the individual enzymes and their synergistic interplay. The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose proce...

  4. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jović, Milica, E-mail: milica_jovic@chem.bg.ac.rs [Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan [Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Stanković, Dalibor [Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Dojčinović, Biljana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Obradović, Bratislav [Faculty of Physics, University of Belgrade, Cara Dušana 13, 11000 Belgrade (Serbia); Gašić, Uroš; Roglić, Goran [Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2013-09-15

    Highlights: • Thirteen products are identified during all degradations for both pesticides. • In all degradations same products and mechanism was observed for both pesticides. • Dominant mechanism for all degradations starts with attack on the carbonyl group. • Only in ozone and DBD degradation one product is formed in radical reaction. • Only in Fenton degradation opening of benzene ring occurs. -- Abstract: Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC–DAD) and UHPLC–Orbitrap–MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes.

  5. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes

    International Nuclear Information System (INIS)

    Highlights: • Thirteen products are identified during all degradations for both pesticides. • In all degradations same products and mechanism was observed for both pesticides. • Dominant mechanism for all degradations starts with attack on the carbonyl group. • Only in ozone and DBD degradation one product is formed in radical reaction. • Only in Fenton degradation opening of benzene ring occurs. -- Abstract: Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC–DAD) and UHPLC–Orbitrap–MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes

  6. Degradation of phospholipids by oxidative stress--exceptional significance of cardiolipin.

    Science.gov (United States)

    Wiswedel, Ingrid; Gardemann, Andreas; Storch, Andreas; Peter, Daniela; Schild, Lorenz

    2010-02-01

    The aim of this study was to investigate the effect of oxidative stress on mitochondrial phospholipids. In this context, this study investigated (i) the content of phosphatidylethanolamine (PE), phosphatidylcholine (PC) and cardiolipin (CL), (ii) the correlation of CL degradation with mitochondrial function and (iii) the correlation of CL degradation and CL oxidation. Oxidative stress induced by iron/ascorbate caused a dramatic decrease of these phospholipids, in which CL was the most sensitive phospholipid. Even moderate oxidative stress by hypoxia/reoxygenation caused a decrease in CL that was parallelled by a decrease in active respiration of isolated rat heart mitochondria. The relation between oxidative stress, CL degradation and CL oxidation was studied by in vitro treatment of commercially available CL with superoxide anion radicals and H2O2. The degradation of CL was mediated by H2O2 and required the presence of cytochrome c. Other peroxidases such as horse radish peroxidase and glutathione peroxidase had no effect. Cytochrome c in the presence of H2O2 caused CL oxidation. The data demonstrate that oxidative stress may cause degradation of phospholipids by oxidation, in particular CL; resulting in mitochondrial dysfunction. PMID:20092032

  7. Hydrolytic Degradation of Poly (ethylene oxide)-block-Polycaprolactone Worm Micelles

    OpenAIRE

    Geng, Yan; Discher, Dennis E.

    2005-01-01

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly (ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by poly...

  8. Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties

    OpenAIRE

    RASSELET, Damien; Ruellan, Alexandre; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; Sollogoub, Cyrille; Fayolle, Bruno

    2014-01-01

    International audience The thermo-oxidative degradation of polylactide (PLA) films was studied between 70 and 150 C. It was shown that the oxidative degradation of PLA leads to a random chain cission responsible for a reduction of the molar mass. These molar mass changes affect Tg and the degree of crystallinity, and it was found that Tg decreases according to the Fox-Flory theory whereas the degree of crystallinity increases due to a chemicrystallization process. A correlation between mol...

  9. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  10. Degradation of polyethylene induced by plasma in oxidizing atmospheres

    International Nuclear Information System (INIS)

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  11. Efficient oxidative degradation of 2-chlorophenol and 4-chlorophenol over supported CuO-based catalysts

    Institute of Scientific and Technical Information of China (English)

    Jingjing Li; Yang Hu; Wenhui Lü; Lei Shi; Qi Sun; Yonggang Zhou; Jianfeng Xu; Jian Wang; Bizhong Shen

    2011-01-01

    A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared,and the supported CuO catalysts were studied particularly.The supported CuO catalysts were characterized by XRD and NH3-TPD techniques,in which CuO/γ-Al2O3 exhibited high degradation activity.The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably,in which Na2O was more efficient than K2O.Over CuO/γ-Al2O3-Na2O,CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ℃ for 2 h.The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs.In addition,the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.

  12. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  13. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121. ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  14. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature

    International Nuclear Information System (INIS)

    Microwave-enhance catalytic degradation (MECD) of 4-chlorophenol (4-CP) using nickel oxide was studied. A mix-valenced nickel oxide was obtained from nickel nitrate aqueous solution through a precipitation with sodium hydroxide and an oxidation by sodium hypochlorite (assigned as PO). Then, the as-prepared PO was irradiated under microwave irradiation to fabricate a high active mix-valenced nickel oxide (assigned as POM). Further, pure nanosized nickel oxide was obtained from the POM by calcination at 300, 400 and 500 deg. C (labeled as C300, C400 and C500, respectively). They were characterized by X-ray (XRD), infrared spectroscopy (IR) and temperature-programmed reduction (TPR). Their catalytic activities towards the degradation of 4-CP on the efficiency of the degradation were further investigated under continuous bubbling of air through the liquid-phase and quantitative evaluation by high pressure liquid chromatography (HPLC). Also, the effects of temperature, pH and kinds of catalysts on the efficiency of the degradation have been investigated. The results showed that the 4-CP was degraded completely by MECD method within 20 min under pH 7, T = 40 deg. C and C = 200 g dm-3 over POM catalyst. The relative activity was affected significantly with the oxidation state of nickel

  15. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    OpenAIRE

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-01-01

    In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation...

  16. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    OpenAIRE

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by...

  17. Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO 2 Capture

    KAUST Repository

    Bollini, Praveen

    2011-05-19

    Coal-fired power plant flue gas exhaust typically contains 3-10% oxygen. While it is known that the monoethanolamine (MEA) oxidative degradation rate is a critical parameter affecting liquid amine absorption processes, the effect of oxygen on the stability of solid amine adsorbents remains unexplored. Here, oxidative degradation of aminosilica materials is studied under accelerated oxidizing conditions to assess the stability of different supported amine structures to oxidizing conditions. Adsorbents constructed using four different silane coupling agents are evaluated, three with a single primary, secondary, or tertiary amine at the end of a propyl surface linker, with the fourth having one secondary propylamine separated from a primary amine by an ethyl linker. Under the experimental conditions used in this study, it was found that both amine type and proximity had a significant effect on oxidative degradation rates. In particular, the supported primary and tertiary amines proved to be stable to the oxidizing conditions used, whereas the secondary amines degraded at elevated treatment temperatures. Because secondary amines are important components of many supported amine adsorbents, it is suggested that the oxidative stability of such species needs to be carefully considered in assessments of postcombustion CO2 capture processes based on supported amines. © 2011 American Chemical Society.

  18. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    OpenAIRE

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hallberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled vi...

  19. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    Science.gov (United States)

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  20. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes

    International Nuclear Information System (INIS)

    Highlights: • NP4EO in industrial effluents can be treated before reaching water reservoirs. • Advanced oxidation processes are proposed for the degradation of NP4EO. • The degradation rate depends mainly on the light intensity. • The mineralization rate depends mainly on the current density. • Photo-assisted electrochemical oxidation showed the best degradation results. - Abstract: Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis – HP, eletrochemical oxidation – EO and photo-assisted electrochemical oxidation – PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250 W lamp and a current density of 10 mA/cm2 showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources

  1. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  2. Degradation of solid oxide fuel cells with wood

    International Nuclear Information System (INIS)

    The Technical University of Munich investigates the degradation effects observed on SOFCs when fired with product gases from biomass gasification processes. The TUM has concentrated its research on tubular SOFCs. For this purpose tubular electrolyte-supported SOFCs have been manufactured using commercially available electrolyte tubes, anode foil and cathode paste. The tubular SOFCs were first run with hydrogen and synthetic fuels. Once stable and reproducible results were achieved, tests with product gas from four different biomass gasifiers have started. These gasifiers have been coupled to a gas cleaning device which includes sulphur and particle removal and pre-reforming. Different operation conditions of the gasifiers and the gas cleaning device have been realized and the corresponding fuel cell degradations have been analysed. (authors)

  3. INFLUENCE OF ETHYLENE-OXIDE GAS TREATMENT ON THE IN-VITRO DEGRADATION BEHAVIOR OF DERMAL SHEEP COLLAGEN

    NARCIS (Netherlands)

    DAMINK, LHHO; DIJKSTRA, PJ; VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; FEIJEN, J

    1995-01-01

    The influence of ethylene oxide gas treatment on the in vitro degradation behavior of noncrosslinked, glutaraldehyde crosslinked or hexamethylene diisocyanate crosslinked dermal sheep collagen (DSC) using bacterial collagenase is described. The results obtained were compared with the degradation beh

  4. Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst

    International Nuclear Information System (INIS)

    Highlights: • The photoactivity of sprayed WO3 thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO3 thin films were deposited using spray pyrolysis technique. The prepared WO3 thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO3 films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (Iph = 261 μA/cm2) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO3 has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO3 thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO3 film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO3 photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value

  5. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    International Nuclear Information System (INIS)

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H2O2. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H2O2 system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage

  6. Oxidative degradation of spent ion-exchange resins and alpha-bearing wastes in aqueous medium

    International Nuclear Information System (INIS)

    Different treatment processes of spent ion-exchange resins aiming at volume reduction are under development or on fullscale operation. A new volume reduction technique for treatment of ion-exchange resin materials was developed using hydrogen peroxide as oxidizing agent in presence of catalyst. Details information for this technique is introduced in this report. A newly developed simple and economically attractive technique for oxidative decomposition of spent ion-exchange resins was studied aiming at achieving remarkable volume and weight reduction. Different factors affecting semi-continuous oxidative degradation process e.g. effect of addition rate of oxidant, pH value, grain size of resin as well as type and concentration of catalyst were studied, keeping the reaction time and weight of resins constant for both cationite and anionite forms. In conclusion, the oxidative degradation of ion-exchange resin in aqueous medium could be considered as a very attractive process. (M.N.)

  7. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.

    OpenAIRE

    Leahy, J G; Byrne, A M; Olsen, R H

    1996-01-01

    The degradation of trichloroethylene (TCE) by toluene-oxidizing bacteria has been extensively studied, and yet the influence of environmental conditions and physiological characteristics of individual strains has received little attention. To consider these effects, the levels of TCE degradation by strains distinguishable on the basis of toluene and nitrate metabolism were compared under aerobic or hypoxic conditions in the presence and absence of nitrate and an exogenous electron donor, lact...

  8. Oxidative degradation of toluene and limonene in air by pulsed corona technology

    International Nuclear Information System (INIS)

    The oxidative degradation of two volatile organic compounds, i.e. toluene (fossil fuel based VOC) and limonene (biogenic VOC), has been studied. A hybrid pulsed power corona reactor with adjustable energy density has been utilized for degradation of ppm level target compounds in large air flows. The observed oxidation product range features an energy density-dependent spectrum of oxygen-functional hydrocarbons, which has been qualitatively discussed on the basis of literature studies. Typically, observed stable oxidation products for both target compounds are the biocompatible carboxylic acids acetic and formic acid. Measured degradation G-values are 23 nmol J-1 at 74% conversion of 70 ppm toluene and 181 nmol J-1 at 81% conversion of 10 ppm limonene. (paper)

  9. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    Institute of Scientific and Technical Information of China (English)

    HU Shi-Gang; CAO Yan-Rong; HAO Yue; MA Xiao-Hua; CHEN Chi; WU Xiao-Feng; ZHOU Qing-Jun

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown.For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown.

  10. Sulphur mustard degradation on zirconium doped Ti-Fe oxides

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Matys Grygar, Tomáš; Opluštil, F.; Němec, T.

    2011-01-01

    Roč. 192, č. 3 (2011), s. 1491-1504. ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40320502 Keywords : warfare agents * nanodispersive oxides * homogeneous hydrolysis * urea Subject RIV: CA - Inorganic Chemistry Impact factor: 4.173, year: 2011

  11. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Janos, P.; Skoumal, M.

    2016-01-01

    Roč. 236, č. 2016 (2016), s. 239-259. ISSN 0179-5953 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : chemical warfare agent * metal nanoparticle * unique surface-chemistry * mesoporous manganese oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 3.744, year: 2014

  12. Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaofang Xie; Yongqing Zhang; Weilin Huang; Shaobing Huang

    2012-01-01

    Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature,persulfate concentration and pH conditions were examined in batch experiments.The results showed that,the aniline degradation followed pseudo first-order reaction model.Aniline degradation rate increased with increasing temperature or persulfate concentration.In the pH range of 3 to 11,a low aniline degradation rate was obtained at strong acid system (pH 3),while a high degradation rate was achieved at strong alkalinity (pH 11).Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid and alkalinity (pH 5,7 and 9).Produced intermediates during the oxidation process were identified using liquid chromatography-mass spectrometry technology.And nitrobenzene,4-4'-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the major intermediates of aniline oxidation by persulfate and the degradation meehanism of aniline was also tentatively proposed.

  13. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    OpenAIRE

    BELDEAN-GALEA M.S.; COZMA A.M.; DIODIU R.

    2015-01-01

    In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative pr...

  14. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    Science.gov (United States)

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  15. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes.

    Science.gov (United States)

    Dai, Chao-Meng; Zhou, Xue-Fei; Zhang, Ya-Lei; Duan, Yan-Ping; Qiang, Zhi-Min; Zhang, Tian C

    2012-06-01

    Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process. PMID:22856279

  16. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    International Nuclear Information System (INIS)

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO2:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO2:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO2 nanoparticles under similar illumination conditions

  17. Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman)

    2015-01-05

    Highlights: • A sol–gel method used to synthesize tin oxide nanoparticles. • Nanoparticles of tin oxide doped with different iodine concentrations. • Degradation studies carried up with UV–vis, TOC, HPLC and GC instruments. • 1% iodine doped tin dioxide showed maximum photodegradation efficiency. - Abstract: Iodine doped tin oxide (SnO{sub 2}:I) nanoparticles were prepared by sol–gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO{sub 2}:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO{sub 2} nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO{sub 2} nanoparticles under similar illumination conditions.

  18. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    International Nuclear Information System (INIS)

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments

  19. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review

    Directory of Open Access Journals (Sweden)

    A. Gnanaprakasam

    2015-01-01

    Full Text Available This paper aims to review the recent works on the photocatalytic degradation of organic pollutants in the presence of nanophotocatalyst. In this regard the effects of operation parameters which could influence the photocatalytic degradation of organic pollutants (such as catalyst preparation method, initial concentration of organic pollutants, presence of doping, catalyst loading, calcinations temperature, pH, presence of oxidants, UV intensity, temperature, and presence of supports are discussed. Recent research suggests that the parameters mentioned above have great influence on the photocatalytic activity of prepared nanocatalyst. Also, the general mechanism of photocatalytic degradation and some recent synthesis methods are discussed here.

  20. A study on the enhancement of sonochemical degradation of eosin B using other advanced oxidation processes

    OpenAIRE

    Goel, Mukesh; Das, Ashutosh; Ravikumar, K.; ASTHANA, ABHISHEK

    2014-01-01

    Eosin B is a xanthenes dye and is a derivate of fluorescein. The efficacy of sonochemical degradation coupled with other advanced oxidation process (AOP’s) has been studied for eosin B degradation in aqueous solution. The study compares the effects of H2O2 concentration, saturating gas (argon, N2, and O2), temperature and pH (3–11). Furthermore, kinetic comparison and a figure of merit for the electrical energy consumption were carried out for the degradation under combination of different AO...

  1. Degradation of 14C-Carbaryl in soils modified by organic matter oxidation and glucose addition

    International Nuclear Information System (INIS)

    The behaviour of the insecticide carbaryl was studied during eight weeks by means of radiometric techniques in samples of Brunizem and Dark-Red Latosol soils from Parana, Brazil. Groups of oxidized, sterillized and untreated soils with and without glucose additions were incubated with 14C-Carbaryl and analyzed. In both soils, results showed and increase in the degradation rate of carbaryl on oxidized samples whereas adding glucose did not influence its degradation rate. Three metabolites having R sub(f) 0.23,0.40 and 0.70 were detected. (Author)

  2. Oxidative degradation of lignin by photochemical and chemical radical generating systems

    International Nuclear Information System (INIS)

    Oxidation of specifically radiolabeled 14C-lignins by UV/H2O2, Fenton's reagent, photosensitizing riboflavin, UV- and γ-irradiation was examined. In the presence of UV/H2O2, a hydroxyl radical (radicalOH) generating system, 14C-methoxy, 2-[14C-sidechain] and 14C-ring labeled lignin were rapidly and extensively degraded as measured by gel filtration of the reaction products on Sephadex LH-20. This suggested that exposure to radicalOH leads to rapid, nonspecific lignin degradation. Rapid degradation of 14C-methoxy, 2-[14C-sidechain] and 14C-ring labeled lignin also occurred in the presence of the radicalOH generating system, Fenton's reagent, confirming the primary role of radicalOH in these reactions. Photosensitizing riboflavin, also capable of effecting transformation of organic compounds via Type I hydrogen radical abstractions, caused extensive oxidative degradation of 14C-methoxy labeled lignin and significant degradation of 2-[14C-sidechain] and 14C-ring labeled lignin. In addition, UV- and γ-irradiation caused slower but extensive degradation of the polymers, probably via radical type mechanisms. All of these results indicate that radicalOH as well as organic radical generating systems are effective agents for the purpose of degrading this heterogeneous, optically inactive and random biopolymer. (author)

  3. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  4. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms.

    Science.gov (United States)

    Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang

    2016-06-01

    Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. PMID:27042978

  5. Amoxicillin Oxidative Degradation Synthesized by Nano Zero Valent Iron

    Directory of Open Access Journals (Sweden)

    AR Yazdanbakhsh

    2016-03-01

    Full Text Available Introduction: Amoxicillin is one of the most important groups of pharmaceuticals that benefits humans and animals. However, antibiotics excertion in wastewaters and environment have emerged as a serious risk to the biotic environment, and their toxic effects can harm the organisms. Iron-based metallic nanoparticles have received special attention in regard with remediation of groundwater contaminants. In the typical nZVI-based bimetallic particle system, Fe acts as the reducing agent. Thus, the present study aimed to evaluate the synthesis and characteristics of nZVI in regard with degrading AMX. Methods: In this study, nZVI nanoparticles were synthesized using the liquid-phase reduction method by EDTA as a stabilizer material. Structure and properties of nanoparticles were characterized by BET, SEM, XRD and EDX analysis. A multi-variate analysis was applied using a response surface methodology (RSM in order to develop a quadratic model as a functional relationship between AMX removal efficiency and independent variables ( initial pH values, dosage of nZVI, contact time and amoxicillin concentration. The four independent variables of solution pH (2–10, AMX concentration (5-45mg/l, contact time (5-85 min and nanoparticles dose (0.25 – 1.25 g were transformed to the coded values. Results: The study results demonstrated that more than 69 % of AMX was removed by nZVI. The optimal AMX removal conditions using nZVI were found as 1.25 g of nZVI, pH 4, contact time of 80 min and concentration of 30 mg/l. Conclusions: The ability of nZVI in degradation of AMX revealed that these materials can serve as a potential nano material with respect to the environmental remediation.

  6. Combined treatment using chemical oxidation and radiation for enhancement degradation of chitosan

    International Nuclear Information System (INIS)

    Combined treatment using chemical oxidation and radiation has been considered for enhancement of chitosan degradation. The oxidative reagent was chosen to be hydrogen peroxide from heterogeneous reaction. Optimal conditions of concentration, temperature, pH were also determined. Characteristics of chitosan products were investigated by measurements of proton nuclear magnetic resonance spectroscopy (1HNMR), infrared spectroscopy (IR), viscosity average molecular weight (MW), ultraviolet spectrophotometry (UV), thermogravimetry analysis (TGA) and X-ray diffraction (XRD). (author)

  7. Model-based Interpretation of the Performance and Degradation of Reformate Fueled Solid Oxide Fuel Cells

    OpenAIRE

    Kromp, Alexander

    2013-01-01

    Solid oxide fuel cells offer great prospects for the sustainable, clean and safe conversion of various fuels into electrical energy. In this thesis, the performance-determining loss processes for the cell operation on reformate fuels are elucidated via electrochemical impedance spectroscopy. Model-based analyses reveal the electrochemical fuel oxidation mechanism, the coupling of fuel gas transport and reforming chemistry and the impact of fuel impurities on the degradation of each loss process.

  8. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    Science.gov (United States)

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC. PMID:26452660

  9. SIMULTANEOUS DEGRADATION OF SOME PHTHALATE ESTERS UNDER FENTON AND PHOTO-FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    BELDEAN-GALEA M.S.

    2015-03-01

    Full Text Available In this study the assessment of the degradation efficiency of five phthalates, DEP, BBP, DEHP, DINP and DIDP, found in a mixture in a liquid phase, using the Fenton and Photo Fenton oxidation processes, was conducted. It was observed that the main parameters that influence the Fenton oxidative processes of phthalates were the concentration of the oxidizing agent, H2O2, the concentration of the catalyst used, Fe2+, the pH value, UV irradiation and the reaction time. For the Fenton oxidative process, the highest degradation efficiencies were 19% for DEP, 50% for BBP, 84% for DEHP, 90% for DINP and 48% for DIDP, when the experiments were carried out using concentrations of 20 mg L-1 phthalate mixture, 100 mg L-1 H2O2, 10 mg L-1 Fe2+ at a pH value of 3, with a total reaction time of 30 minutes. For the Photo-Fenton oxidative process carried out in the same conditions as Fenton oxidative process, it was observed that after an irradiation time of 90 minutes under UV radiation the degradation efficiencies of phthalates were improved, being 22% for DEP, 71% for BBP, 97% for DEHP, 97% for DINP and 81% for DIDP.

  10. Sequential reduction–oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    International Nuclear Information System (INIS)

    Highlights: ► Sequential photocatalytic reduction–oxidation degradation of TBBPA was firstly examined. ► Different atmospheres were found to have significant effect on debromination reaction. ► A possible sequential photocatalytic reduction–oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC–MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N2-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO2 system by changing the reaction atmospheres.

  11. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 18500C or extrapolated from the low-temperature data obtained at 0C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >15000C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  12. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: Kinetics and intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yaoguang; Lou, Xiaoyi; Xiao, Dongxue; Xu, Lei [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Zhaohui, E-mail: zhaohuiwang@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jianshe, E-mail: liujianshe@dhu.edu.cn [State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Sequential photocatalytic reduction-oxidation degradation of TBBPA was firstly examined. Black-Right-Pointing-Pointer Different atmospheres were found to have significant effect on debromination reaction. Black-Right-Pointing-Pointer A possible sequential photocatalytic reduction-oxidation pathway was proposed. - Abstract: C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for most brominated organic pollutants. Here a sequential reduction/oxidation strategy (i.e. debromination followed by photocatalytic oxidation) for photocatalytic degradation of tetrabromobisphenol A (TBBPA), one of the most frequently used brominated flame retardants, was proposed on the basis of kinetic analysis and intermediates identification. The results demonstrated that the rates of debromination and even photodegradation of TBBPA strongly depended on the atmospheres, initial TBBPA concentrations, pH of the reaction solution, hydrogen donors, and electron acceptors. These kinetic data and byproducts identification obtained by GC-MS measurement indicated that reductive debromination reaction by photo-induced electrons dominated under N{sub 2}-saturated condition, while oxidation reaction by photoexcited holes or hydroxyl radicals played a leading role when air was saturated. It also suggested that the reaction might be further optimized for pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO{sub 2} system by changing the reaction atmospheres.

  13. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    International Nuclear Information System (INIS)

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from β-H abstraction overlap with those from high temperature pyrolysis, the effect of β-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: ► Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O2 saturation. ► The major degradation pathways were proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. ► The effect of β-H abstraction was not observed possibly because of 1,5 H-transfer inside cavitating bubbles. ► Formation

  14. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation.

    Science.gov (United States)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  15. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    Science.gov (United States)

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization. PMID:26151670

  16. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  17. Photo-oxidative degradation of TiO2/polypropylene films

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO2 incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO2 is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO2 nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO2 powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO2/polypropylene were prepared with 0.1, 0.5 and 1.0 wt% of TiO2. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO2 dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)

  18. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    Science.gov (United States)

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  19. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. PMID:26938496

  20. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Matys Grygar, Tomáš; Pérez, Raul

    2015-01-01

    Roč. 61, JAN (2015), s. 259-269. ISSN 0025-5408 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Nanostructured oxides * Stoichiometric degradation * Trimethyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 2.288, year: 2014

  1. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn75 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn37U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  2. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16. ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 2.711, year: 2014

  3. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    Energy Technology Data Exchange (ETDEWEB)

    Štengl, Václav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem (Czech Republic); Grygar, Tomáš Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem (Czech Republic); Bludská, Jana [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR, v.v.i., 250 68 Řež (Czech Republic); Opluštil, František; Němec, Tomáš [Military Technical Institute of Protection Brno, Veslařská 230, 628 00 Brno (Czech Republic)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  4. Oxidative Degradation of 4-chlorophenol in Aqueous Induced by Plasma with Submersed Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC).Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe2+ were examined.The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation.

  5. Novel photocatalysis oxidation system UV/Fe2+/air to degrade 4-CP wastewater

    Institute of Scientific and Technical Information of China (English)

    DU Yingxun; ZHOU Minghua; LEI Lecheng

    2005-01-01

    This paper reported the degradation of 4-CP wastewater by a novel photocatalysis oxidation system--UV/Fe2+/air system, in which air was used as a cheap oxidant that reacted with the excitation state of organics to form H2O2 under the UV light. The formed H2O2 reacted with the added ferrous ion to form Fenton reaction and led to the quick degradation of organic pollutants. It was found that 4-CP could be completely removed within 40 min. The degradation of 4-CP in the UV/Fe2+/air system was superior to the conventional UV/Fenton system (the initial concentration of H2O2 was 22 mg-L-1). UV/Fe2+/air is an effective and cheap method for treatment of the organics that can be excited by UV light.

  6. In vitro investigations of α-amylase mediated hydrolysis of cyclodextrins in the presence of ibuprofen, flurbiprofen, or benzo[a]pyrene

    DEFF Research Database (Denmark)

    Riisager, Ludmilla Lumholdt; Holm, R.; Jørgensen, E. B.;

    2012-01-01

    -γ-cyclodextrins have different biopharmaceutical behaviours than the other evaluated cyclodextrins. The rate of degradation was affected by the addition of the inclusion complex forming additives flurbiprofen, ibuprofen and benzo[a]pyrene. This effect between the degradation dynamics and the included additives was...

  7. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Suhawati Ibrahim

    2014-12-01

    Full Text Available Natural rubber (NR is a high molecular weight natural polymer and can be degraded to liquid natural rubber (LNR leaving certain functional groups at the end of chains. In this study, LNR samples prepared via oxidative degradation using H2O2 and NaNO2 as reagents were found to have different end groups depending on the pH of the reaction medium. In an acidic medium, LNR with hydroxyl terminal groups was formed as the degradation reaction was initiated by hydroxyl radicals produced from decomposition of peroxynitrite acid. In contrast, a redox reaction took place in an alkaline medium to yield LNR with carbonyl terminal groups. The mechanisms of reaction are discussed and proposed to explain the formation of different end groups when reaction carried out in acidic and alkaline media. Chain degradation in an acidic medium seems to be more effective than in an alkaline medium, and thus yields LNR with lower Mn.

  8. Water electrolysis-induced optical degradation of aluminum-doped zinc oxide films

    International Nuclear Information System (INIS)

    A type of optical degradation of aluminium-doped zinc oxide (AZO) films due to water electrolysis-induced reduction reaction was reported. An experiment was designed in which AZO films were immersed in a 0.01 M NaOH aqueous solution as cathode to electrolyze water. Significant decreases in the optical transmission of the treated samples were observed. Studies by X-ray diffraction and scanning electron microscope showed that the degradation of AZO films was due to compositional and structural changes with the treatment of water electrolysis, which resulted from the reduction reaction of atomic hydrogen generated in the electrolysis of water. This optical degradation reflects the stability degradation of AZO films under water electrolysis environment

  9. Biological degradation of partially oxidated constituents of stabilized sapropel; Biologischer Abbau teiloxidierter Inhaltsstoffe stabilisierter Faulschlaemme

    Energy Technology Data Exchange (ETDEWEB)

    Scheminski, A.; Krull, R.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik

    1999-07-01

    Partial oxidation of sapropel with ozone destroys the cell walls of microorganisms in sludge and releases the cell constituents. Substances that are not biologically degraded because of the size or structure of their molecules are transformed into smaller, water-soluble and biologically degradable fractions by the reaction with ozone. The experiments aim to render the partially oxidated sewage sludge constituents highly biologically degradable using a minimum of oxidation agents. For the experiments described, stabilized sapropels with low biological activity are used. Hence the ozone is mainly used for the partial oxidation of recalcitrant constituents. (orig.) [German] Durch partielle Oxidation von Faulschlaemmen mit Ozon werden die Zellwaende der Mikroorganismen im Schlamm zerstoert und die Zellinhaltsstoffe freigesetzt. Dabei werden Substanzen, die aufgrund ihrer Molekuelgroesse oder -struktur biologisch nicht abgebaut werden, durch die Reaktion mit Ozon in kleinere, wasserloesliche und biologisch abbaubare Bruchstuecke ueberfuehrt. Ziel der Versuche ist es, durch den Einsatz moeglichst geringer Mengen an Oxidationsmitteln eine hohe biologische Abbaubarkeit der teiloxidierten Klaerschlamminhaltsstoffe zu erreichen. Fuer die hier vorgestellten Experimente wurden stabilisierte Faulschlaemme mit geringer biologischer Aktivitaet eingesetzt. Dadurch wird das Ozon vorwiegend zur Teiloxidation recalcitranter Inhaltsstoffe genutzt. (orig.)

  10. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst

    Institute of Scientific and Technical Information of China (English)

    SUN Min; YAO Risheng; YOU Yahua; DENG Shengsong; GAO Wenxia

    2007-01-01

    This paper reports on the degradation of 4-aminophenol using hydrogen peroxide as oxidizer and the enzyme from Serratia marcescens AB 90027 as catalyst.The effecting factors during degradation and the degrading mechanism were studied.Also,the location of the enzyme in the cell,which could catalyze the degradation of 4-aminophenol,was analyzed.The results showed that to degrade 50 mL of 4-aminophenol whose concentration was 500 mg/L,the optimal conditions were:volume of H2O2=3 mL,temperature=40-60℃ and pH=9-10]In the degradation process,4-aminophenol was first converted to benzo quinone and NH3,then organic acids including maleic acid,fumaleic acid,and oxalic acid were formed,and then finally CO2 and H2O were generated as final products.The enzyme that could catalyze the degradation of 4-aminophenol was mainly extracellular enzyme.

  11. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  12. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose

    Science.gov (United States)

    Garajova, Sona; Mathieu, Yann; Beccia, Maria Rosa; Bennati-Granier, Chloé; Biaso, Frédéric; Fanuel, Mathieu; Ropartz, David; Guigliarelli, Bruno; Record, Eric; Rogniaux, Hélène; Henrissat, Bernard; Berrin, Jean-Guy

    2016-01-01

    The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, other recycling enzymes must exist. We investigated the ability of AA3_2 flavoenzymes secreted under lignocellulolytic conditions to trigger oxidative cellulose degradation by AA9 LPMOs. Among the flavoenzymes tested, we show that glucose dehydrogenase and aryl-alcohol quinone oxidoreductases are catalytically efficient electron donors for LPMOs. These single-domain flavoenzymes display redox potentials compatible with electron transfer between partners. Our findings extend the array of enzymes which regulate the oxidative degradation of cellulose by lignocellulolytic fungi. PMID:27312718

  13. Determining the effect of oxidative damage on the degradation of cellular membranes by phospholipase A2

    International Nuclear Information System (INIS)

    Oxidative damage to cellular membranes, proteins and DNA is a consequence of life in the presence of oxygen. The degree of oxidative damage is determined by the balance between the production of oxidising species in the body and their removal by antioxidants. Oxidative damage to cellular membranes has been linked to ageing as well as neurodegenerative diseases, atherosclerosis, cancer, diabetes and arthritis. Phospholipase A2 (PLA2) is a surface-active enzyme that catalyses the degradation of cellular membranes through the hydrolysis of the sn-2 ester bond of phospholipids. It was initially speculated that PLA2 could preferentially remove oxidised phospholipids from damaged cellular membranes due to the decreased packing density of the oxidised membrane allowing easier access of PLA2 to the sn-2 ester bond of the phospholipids. Although the rate of PLA2 degradation of cellular membranes has been reported to increase with oxidised membranes it has not been conclusively shown that the oxidised phospholipids are preferentially removed from the membrane. On the contrary, it has also been reported that PLA2 preferentially removes the non-oxidised phospholipids from the membrane. The structure and composition of oxidised model membranes (tethered phospholipid bilayers) measured using neutron reflectometry both before and after PLA2 mediated membrane degradation will be discussed. Oxidation was achieved using iron(II) and ascorbate, a common initiator of lipid oxidation. Bilayers containing 5, 10 and 3Omol% 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine, a synthetic oxidised phospholipid, were also employed, to bench mark the effect of manual oxidation and the subsequent effect on PLA2 degradation of the bilayer.

  14. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides

    International Nuclear Information System (INIS)

    Nanostructured TiO2 and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m2 g−1. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures. Undoped TiO2 and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH3O from TMP at room temperature and 100 °C. Cleavage of CH3O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP

  15. Oxidative degradation of pyrene in contaminated soils by δ-MnO2 with or without sunlight irradiation

    International Nuclear Information System (INIS)

    The enhanced oxidative degradation of pyrene in quartz sand and alluvial and red soils by micro-nano size birnessite (δ-MnO2) in the presence and absence of sunlight was investigated. The degradation of pyrene by δ-MnO2 in quartz sand showed very little synergistic effect of sunlight irradiation on δ-MnO2 oxidizing power. However, pyrene degradation by δ-MnO2 in alluvial and red soils was greater under solar irradiation than the combination of photooxidation of pyrene and oxidation of pyrene by δ-MnO2. The oxidative degradation percentages of pyrene by δ-MnO2 under sunlight irradiation are 94.8, 97.7, and 100% for alluvial soil, red soil, and quartz sand, respectively. Oxidative degradation percentages of pyrene by δ-MnO2 in alluvial and red soils with irradiation of sunlight almost attained a maximum at 1 h with a 5% (w/w) dose of the amended oxidant. Due to their different total organic carbon (TOC) contents, the sequence of enhanced oxidative degradation of pyrene by δ-MnO2 in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil. Further, this study revealed that δ-MnO2-enhanced oxidative degradation of pyrene is very pronounced in contaminated soils in situ even at deep soil layers where irradiation by sunlight is very limited. - Research highlights: → Synergistic effect of sunlight irradiation and δ-MnO2 promoted pyrene degradation. → Oxidative pyrene degradation in soils by δ-MnO2 without sunlight irradiation can attain a high extent. → Soil organic matter retarded pyrene degradation by δ-MnO2. → Oxidative power of δ-MnO2 in deep soil layers cannot be overlooked.

  16. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    Science.gov (United States)

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation. PMID:26733013

  17. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    XU Bin; GAO Naiyun; RUI Min; WANG Hong; WU Haihui

    2007-01-01

    The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated.A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model.With an initial concentration of 11.0 mg/L,the removal efficiencies of BPA (bisphenol A) could be measured up to 70%,82%,and 90% when the dosages of ozone were 1,1.5,and 2 mg/L,respectively.The impacts on BPA degradation under the conditions of different ozone dosages,water background values,BPA initial concentrations,and ozone adding time were analyzed.The results showed that ozone dosage plays a dominant role during the process of BPA degradation,while the impact of the contact time could be ignored.UV wavelength scanning was used to confirm that the by-products were produced,which could be absorbed at UV254.The value of UV254 was observed to have changed during the ozonation process.Based on the change of UV254,it could be concluded that BPA is not completely degraded at low ozone dosage,while shorter adding time of total ozone dosage,high ozone dosage,and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation.The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study.The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation.

  18. Degradation of transparent conductive oxides: mechanistic insights across configurations and exposures

    Science.gov (United States)

    Lemire, Heather M.; Peterson, Kelly A.; Sprawls, Samuel; Singer, Kenneth; Martin, Ina T.; French, Roger H.

    2013-09-01

    Understanding transparent conductive oxide (TCO) degradation is critical to improving stability and lifetime of both organic and inorganic thin lm PV modules, which utilize TCOs, like indium tin oxide (ITO), aluminumdoped zinc oxide (AZO) and uorine-doped tin oxide (FTO) as electrodes. These TCOs must retain their long-term functionality in diverse outdoor environments. In addition to bulk material degradation, interfacial degradation, a frequent avenue for failure in PV systems, is promoted by exposure to environmental stressors such as irradiance, heat and humidity. ITO, AZO and FTO samples in an open-faced con guration were exposed to damp heat and ASTM G154 for up to 1000 hours. The e ect of exposure on electrical and optical properties and surface energies of cleaned samples was measured. Yellowness, haze, water contact angle and resistivity of the di erent materials trended di erently with exposure time and type, indicating the activation of distinct degradation mechanisms. An encapsulated con guration study was conducted on ITO and AZO, exposing samples to the above accelerated exposures and two outdoor exposures (1x suns and 5x suns on a dual axis trackers), with and without PEDOT:PSS layers. PEDOT:PSS increases the yellowness and haze of ITO and AZO, but does not accelerate the increase in resistivity, suggesting that the optical and electrical degradation mechanisms are not coupled. Additionally, the hazing/roughening mechanism of PEDOT:PSS on AZO appears to be photo-sensitive; 5x outdoor exposure samples demonstrated distinctly higher haze than damp heat exposed samples.

  19. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  20. Transition metal oxide loaded MCM catalysts for photocatalytic degradation of dyes

    Indian Academy of Sciences (India)

    Divya Jyothi; Parag A Deshpande; B R Venugopal; Srinivasan Chandrasekaran; Giridhar Madras

    2012-03-01

    Transition metal oxide (TiO2, Fe2O3, CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

  1. Ubiquitination of inducible nitric oxide synthase is required for its degradation

    Science.gov (United States)

    Kolodziejski, Pawel J.; Musial, Aleksandra; Koo, Ja-Seok; Eissa, N. Tony

    2002-01-01

    Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. We have previously shown that iNOS is degraded through the 26S proteasome. Targeting of proteins for proteasomal degradation may or may not require their covalent linkage to multiubiquitin chains (ubiquitination). In addition, ubiquitination of a protein can serve functions other than signaling proteolysis. In this context, it is not known whether iNOS is subject to ubiquitination or whether ubiquitination is required for its degradation. In this study, we show that iNOS, expressed in HEK293 cells or induced in primary bronchial epithelial cells, A549 cells, or murine macrophages, is subject to ubiquitination. To investigate whether iNOS ubiquitination is required for its degradation, HEK293T cells were cotransfected with plasmids containing cDNAs of human iNOS and of the dominant negative ubiquitin mutant K48R. Disruption of ubiquitination by K48R ubiquitin resulted in inhibition of iNOS degradation. ts20 is a mutant cell line that contains a thermolabile ubiquitin-activating enzyme (E1) that is inactivated at elevated temperature, preventing ubiquitination. Incubation of ts20 cells, stably expressing human iNOS, at the nonpermissive temperature (40°C) resulted in inhibition of iNOS degradation and marked accumulation of iNOS. These studies indicate that iNOS is subject to ubiquitination and that ubiquitination is required for its degradation. PMID:12221289

  2. Effect of Pro-Degradation Additive on Photo-Oxidative Aging of Polypropylene Film

    International Nuclear Information System (INIS)

    This paper describes the effect of pro-degradation additives (PDA) on photo-oxidative aging of polypropylene (PP) films after being time accelerated in UV-weathering chamber. Thin films (0.12 mm) containing these additives were prepared by sheeting process. The effect of UV on PP films in the presence of these additives was investigated. Changes in the PP films appearance, tensile properties and carbonyl index (CI) were used to investigate the degradation behavior. The films became completely pulverised after 100 h of photo-oxidative treatment and could not be tested further. Films containing PDA showed rapid loss in tensile properties within 100 h of photo-oxidative aging. In addition, the CI results of photo-oxidative films increased with increasing PDA amount within the time interval of aging and the activity was due to the mechanism reaction of PP with PDA particles. During the aging process the material becomes denser due to tighter packing and incorporation of oxygen into the amorphous regions of the polymer. The results indicated that the presence of PDA contributed to the photo degradation and the activity was very much influenced by the amount PDA. (author)

  3. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  4. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Science.gov (United States)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  5. Fracturing Fluid (Guar Polymer Gel Degradation Study by using Oxidative and Enzyme Breaker

    Directory of Open Access Journals (Sweden)

    Aung Kyaw

    2012-06-01

    Full Text Available Oxidative and enzyme breakers are used in this research project with the main objective to study on the degradation pattern of fracturing fluid (i.e., guar polymer gel as a function of time, temperature and breaker concentration itself. The fracturing fluid used in hydraulic fracturing or frac pack contain a chemical breakers to reduce the viscosity of the fluid intermingled with the proppant. Chemical breakers reduce viscosity of the guar polymer by cleaving the polymer into small-molecular-weight fragments. The reduction of viscosity will facilitate the flow-back of residual polymer providing rapid recovery of polymer from proppant pack. Ineffective breakers or misapplication of breakers can result in screen-outs or flow-back of viscous fluids both of which can significantly decrease the well productivity. Breaker activity of low to medium temperature range oxidative and enzyme breaker systems was evaluated. ViCon NF an oxidative breaker (Halliburton product and GBW 12- CD an enzyme breaker (BJ Services product were used in this research project with the main objective to study on the degradation pattern of fracturing fluid (guar polymer gel as a function of (time, temperature and breaker concentration itself. This study provides focuses on the way to mix the fracturing fluid, compositions of the fracturing fluid and how to conduct the crosslink and break test. Crosslink test indicate the optimum cross-linker concentration to produce good crosslink gel and the break test gave the characteristic of the gel during degradation process and also the break time. Besides relying on the laboratory experiment, information obtained from research on SPE and US Pattern papers were used to make a comparison study on oxidative and enzyme breakers properties. Degradation pattern observed from the break test showed that reduction in gel viscosity depends on time, temperature and breaker concentration. Observations from experiment also revealed that small

  6. A reactor system combining reductive dechloirnation with cometabolic oxidation for complete degradation of tetrachloroentylene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A laboratory sequential anaerobic-aerobic bioreactor system,which consisted of an anaerobic fixed film reactor and twoaerobic chemostats, was set up to degrade tetrachloroethylene (PCE)without accumulating highly toxic degradation intermediates. A soil(ca. 150 mg/liter) of PCE stoichiometrically intocis-1,2-dichloroethylene (cis-DCE), was attached to ceramic mediain the anaerobic fixed film reactor. A phenol degrading strain,Alcaligenes sp. R5, which can efficiently degrade cis-DCE byco-metabolic oxidation, was used as inoculum for the aerobicchemostats consisted of a transformation reactor and a growthreactor. The anaerobic fixed film bioreactor showed more than 99 %of PCE transformation into cis-DCE in the range of influent PCE48h. On the other hand, efficient degradation of the resultantcis-DCE by strain R5 in the following aerobic system could not beachieved due to oxygen limitation. However, 54% of the maximum(H2O2) was supplemented to the transformation reactor as anadditional oxygen source. Further studies are needed to achievemore efficient co-metabolic degradation of cis-DCE in the aerobic reactor.

  7. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    International Nuclear Information System (INIS)

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of 14C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% 14CO2 when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates

  8. Modelling TCE degradation by a mixed culture of methane-oxidizing bacteria

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1992-01-01

    A model describing the growth of bacteria and the degradation of methane and trichloroethylene (TCE) based on the concept of competitive inhibition is proposed. The model has been applied to laboratory batch experiments representing different initial TCE concentrations (50–4300 μg/l) and initial...... methane concentrations (0.53–3.2 mg/l). The proposed model simulated successfully the data obtained for initial methane concentration (less than 1.8 mg/l), causing constant experimental growth conditions during the experiments. This indicates that the interactions between methane and TCE degradation can...... treatment processes and in situ bioremediation schemes for degradation of TCE by methane-oxidizing bacteria....

  9. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.;

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper the...... oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending on the...

  10. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    Science.gov (United States)

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products. PMID:26832394

  11. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.

    Science.gov (United States)

    Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2013-07-01

    Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. PMID:23726712

  12. Oxidative Degradation of Nadic-End-Capped Polyimides. 2; Evidence for Reactions Occurring at High Temperatures

    Science.gov (United States)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.; Frimer, Aryeh A.

    1997-01-01

    The oxidative degradation of PMR (for polymerization of monomeric reactants) polyimides at elevated temperatures was followed by cross-polarized magic angle spinning (Cp-MAS) NMR. C-13 labeling of selected sites in the polymers allowed for direct observation of the transformations arising from oxidation processes. As opposed to model compound studies, the reactions were followed directly in the polymer. The labeling experiments confirm the previously reported oxidation of the methylene carbon to ketone in the methylenedianiline portion of the polymer chain. They also show the formation of two other oxidized species, acid and ester, from this same carbon. In addition, the technique provides the first evidence of the kind of degradation reactions that are occurring in the nadic end caps. Several PMR formulations containing moieties determined to be present after oxidation, as suggested by the labeling study, were synthesized. Weight loss, FTIR, and natural abundance NMR of these derivatives were followed during aging. In this way, weight loss could be related to the observed transformations.

  13. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    OpenAIRE

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  14. Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-01-01

    Full Text Available This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.

  15. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  16. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions

    Science.gov (United States)

    Habib, K.; Husain, A.; Al-Hazza, A.

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rps) to the polarization resistance of the OPV cell in air (Rpair). In other words, the criterion lim(Rps/Rpair) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rpair became equal (increased) to Rps as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rps were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  17. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    Directory of Open Access Journals (Sweden)

    Jamal Al-Sabahi

    2016-03-01

    Full Text Available Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  18. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  19. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The 2,4,6-trinitrotoluene (TNT) is a potential carcinogens and TNT contaminated wastewater, which could not be effectively disposed with conventional treatments. The supercritical water oxidation (SCWO) to treat TNT contaminated wastewater was studied in this article. The TNT concentration in wastewater was measured by high-performance liquid chromatograph (HPLC) and the degraded intermediates were analyzed using GC-MS. The results showed that SCWO could degrade TNT efficiently with O2. The reaction temperature, pressure, residence time and oxygen excess were the main contributing factors in the process. The decomposition of TNT was accelerated as the temperature or residence time increases. At 550℃, 24 MPa, 120 s and oxygen excess 300%, TNT removal rate could exceed 99.9%. Partial oxidation occurs in SCWO without oxygen. It was concluded that supercritical water was a good solvent and had excellent oxidation capability in the existence of oxygen. The main intermediates of TNT during SCWO include toluene, 1,3,5-trinitrobenzene, nitrophenol, naphthalene, fluorenone, dibutyl phthalate, alkanes and several dimers based on the intermediate analysis. Some side reactions, such as coupled reaction, hydrolysis reaction and isomerization reaction may take place simultaneously as TNT is oxidized by SCWO.

  20. Oxidation of rhizosphere sediments by Alternanthera philoxeroides : roots to quicker petroleum degradation?

    International Nuclear Information System (INIS)

    Environments contaminated with organic compounds and metals can be treated using an emerging technology based on phytoremediation. The oxidation of surficial sediments through plant roots is an important feature of phytoremediation, but there is very little data available on this subject. A geochemical study conducted at the San Jacinto Wetland Research Facility (SJWRF) in Texas has shown that Alternanthera philoxeroides is a particular plant that provides oxygen to sediments. Densely vegetated areas generally exhibit redox potentials from 100 to 350 mV and are more oxidized than sparsely vegetated areas where redox potentials are often less than 0 mV. In addition, phytoremediation can accelerate bioremediation of organic compounds in surface soils by releasing enzymes and sugars that catalyze degradation or raise microbial activity. The study examined the oxidation of the rhizosphere in saturated environments such as shoreline remediation projects where oxygen is generally limited. The rate of petroleum degradation observed in studies conducted in the intertidal zone of the SJWRF is comparable to rates that have been computed for other studies, suggesting that rhizosphere has a great capacity to oxidize natural organic matter in addition to petroleum hydrocarbons. 33 refs., 2 tabs., 4 figs

  1. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver.

    Science.gov (United States)

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-05-01

    The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio-MnOx), biogenic silver nanoparticles (Bio-Ag(0)) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2-anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio-MnOx, Bio-Ag(0) and Ag(+) separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio-MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese-free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co-metabolic removal during active Mn(2+) oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio-MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  2. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    Science.gov (United States)

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio‐MnOx, Bio‐Ag0 and Ag+ separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio‐MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese‐free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co‐metabolic removal during active Mn2+ oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio‐MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  3. Mitochondrial impairment and oxidative stress compromise autophagosomal degradation of α-synuclein in oligodendroglial cells.

    Science.gov (United States)

    Pukaß, Katharina; Goldbaum, Olaf; Richter-Landsberg, Christiane

    2015-10-01

    α-Synuclein (α-syn)-containing glial cytoplasmic inclusions originating in oligodendrocytes are characteristically observed in multiple system atrophy. The mechanisms of glial cytoplasmic inclusion formation remain rather elusive. α-Syn over-expression, uptake from the environment, oxidative stress or impairment of the proteolytic degradation systems have been discussed. Here, we investigated whether in oligodendrocytes autophagy plays a major role in the degradation and aggregation of endogenously expressed α-syn and of α-syn taken up from the extracellular environment. Furthermore, we studied whether in cells with impaired mitochondria the accumulation and aggregation of exogenously added α-syn is promoted. Using primary cultures of rat brain oligodendrocytes and an oligodendroglial cell line, genetically engineered to express green fluorescent protein-microtubule-associated light chain 3 with or without α-syn to monitor the autophagic flux, we demonstrate that both exogenously applied α-syn and α-syn stably expressed endogenously are effectively degraded by autophagy and do not affect the autophagic flux per se. Mitochondrial impairment with the protonophore carbonyl cyanide 3-chlorophenylhydrazone or 3-nitropropionic acid disturbs the autophagic pathway and leads to the accumulation of exogenously applied α-syn and enhances its propensity to form aggregates intracellularly. Thus, mitochondrial dysfunction and oxidative stress, which occur over time and are significant pathological features in synucleinopathies, have an impact on the autophagic pathway and participate in pathogenesis. Glial cytoplasmic inclusions are characteristically observed in multiple system atrophy, their occurrence might be related to failure in protein degradation systems. Here, we show that in oligodendrocytes autophagy is the major route of α-synuclein degradation which is either endogenously expressed or added exogenously (1, 2). Mitochondrial impairment (3) disturbs the

  4. H2 O2-induced higher order chromatin degradation: A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    Gregory W Konat

    2003-02-01

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations.

  5. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  6. Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products

    Science.gov (United States)

    The occurrence of common herbicides (Atrazine, ATZ and Iodosufuron, IDS), in waters presents potential risk to human and ecological health. The oxidative degradation of ATZ and IDS by ferrate(VI) (FeVIO42-, Fe(VI)) is studied at different pH levels where kinetically observed se...

  7. Oxidative degradation of ion-exchange resins in acid medium. Vol. 3

    International Nuclear Information System (INIS)

    Volume reduction of spent ion-exchange resins used in nuclear facilities receive increasing importance due to the increase in storage cost, unstable physical and chemical properties and their relatively high specific activity (in some cases up to 1 Ci per liter). The present study is part of research program on the treatment and immobilization of radioactive spent ion-exchange resins simulate; hydrogen peroxide was used for the oxidative degradation of spent ion-exchange resins simulate in sulphuric acid medium. Five liters ring digester developed in Karlsruhe nuclear research center-(KFK)- in germany was the chosen option to perform the oxidation process. The work reported focused on the kinetics and mechanism of the oxidation process. Heating the organic resins in sulphuric acid results in its carbonization and partial oxidation of only 1.7% of the carbon added. Results show that the oxidation reaction is a relatively slow process of first order with K value in the order of 10-4 min-1, and the main oxidation product was carbon dioxide. The production of carbon oxide in the off gas stream increased sharply by the addition of hydrogen peroxide to the hot sulphuric acid-resin mixture. The results obtained show that more than 97% of the carbon added was oxidized to carbon dioxide and carbon monoxide. The rate constant value (K) of this reaction was calculated to be (1.69±0.13) x 10-2 min-1. The results of gas chromatographic analysis indicate that no significant amounts of hazardous organic materials were detected in the off-gas streams. 6 figs., 4 tabs

  8. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  9. Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); Maydannik, Philipp; Seppänen, Tarja; Cameron, David C. [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); Johansson, Petri; Kotkamo, Sami; Kuusipalo, Jurkka [Paper Converting and Packaging Technology, Tampere University of Technology, Tampere (Finland)

    2013-10-01

    Titanium oxide layers were deposited onto a BOPP film by atomic layer deposition in order to prevent UV degradation of the film. The coatings were deposited in a low-temperature process at 80 °C by using tetrakis(dimethylamido)titanium and ozone as titanium and oxygen precursors, respectively. UV block characteristics of the coatings and their effect on the polymer were measured by using UV–vis and IR spectrometry, and differential scanning calorimetry. According to the results, the coatings provided a considerable decrease in the photodegradation of the BOPP film during UV exposure. IR spectra showed that during a 6-week UV exposure, a 67 nm titanium oxide coating was able to almost completely prevent the formation of photodegradation products in the film. The mechanical properties of the film were also protected by the coating, but as opposed to what the IR study suggested they were still somewhat compromised by the UV light. After a 6-week exposure, the tensile strength and elongation at break of the 67 nm titanium oxide coated film decreased to half of the values measured before the treatment. This should be compared to the complete degradation suffered by the uncoated base sheet already after only 4 weeks of treatment. The results show that nanometre scale inorganic films deposited by ALD show a promising performance as effective UV protection for BOPP substrates.

  10. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  11. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    Science.gov (United States)

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides. PMID:25544494

  12. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES).

    Science.gov (United States)

    Ling, Ting; Huang, Bin; Zhao, Mingxing; Yan, Qun; Shen, Wei

    2016-03-01

    Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment. PMID:26722807

  13. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    Science.gov (United States)

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  14. Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating

    International Nuclear Information System (INIS)

    Titanium oxide layers were deposited onto a BOPP film by atomic layer deposition in order to prevent UV degradation of the film. The coatings were deposited in a low-temperature process at 80 °C by using tetrakis(dimethylamido)titanium and ozone as titanium and oxygen precursors, respectively. UV block characteristics of the coatings and their effect on the polymer were measured by using UV–vis and IR spectrometry, and differential scanning calorimetry. According to the results, the coatings provided a considerable decrease in the photodegradation of the BOPP film during UV exposure. IR spectra showed that during a 6-week UV exposure, a 67 nm titanium oxide coating was able to almost completely prevent the formation of photodegradation products in the film. The mechanical properties of the film were also protected by the coating, but as opposed to what the IR study suggested they were still somewhat compromised by the UV light. After a 6-week exposure, the tensile strength and elongation at break of the 67 nm titanium oxide coated film decreased to half of the values measured before the treatment. This should be compared to the complete degradation suffered by the uncoated base sheet already after only 4 weeks of treatment. The results show that nanometre scale inorganic films deposited by ALD show a promising performance as effective UV protection for BOPP substrates.

  15. Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Jyun-Jen Chen

    2009-10-01

    Full Text Available Silver nanoparticles doped on titanium oxide (TiO2 were produced by laser-liquid interaction of silver nitrate (AgNO3 in isopropanol. Characteristics of Ag/TiO2 (Ag doped TiO2 nanoparticles produced by the methods presented in this article were investigated by XRD, TEM, SEM, EDX, and UV-Vis. From the UV-Vis measurements, the absorption of visible light of the Ag/TiO2 photocatalysts was improved (additional absorption at longer wavelength in visible light region obviously. The photocatalytic efficiency of Ag/TiO2 was tested by the degradation of methylene blue (MB in aqueous solution. A maximum of 82.3% MB degradation is achieved by 2.0 wt% Ag/TiO2 photocatalyst under 2 h illumination with a halogen lamp.

  16. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    process and the reaction process at the Ni-YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural changes in the Ni-YSZ electrode close to the YSZ electrolyte, including percolation loss of Ni and the contact loss of Ni and YSZ electrolyte. The type of the......In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode. A...... oxygen electrode showed an influence to the ohmic degradation: the better performing oxygen electrode corresponded to a lower Rs increase. However, the oxygen electrode itself was found to be relative stable both with respect to the electrochemical performance and microstructure....

  17. Hydrogen peroxide generation by the Weissberger biogenic oxidative system during hyaluronan degradation.

    Science.gov (United States)

    Valachová, Katarina; Topoľská, Dominika; Mendichi, Raniero; Collins, Maurice N; Sasinková, Vlasta; Šoltés, Ladislav

    2016-09-01

    By applying the enzyme catalase, our study on hyaluronan degradation confirms the generation of hydrogen peroxide using the Weissberger biogenic oxidative system (WBOS), which is composed of ascorbate and cupric ions. Dynamic viscosities of hyaluronan (HA) solutions influenced by WBOS in the absence and presence of catalase were analysed by rotational viscometry. Molar masses of HAs were determined by size-exclusion chromatography with multi-angle laser-light scattering. Our results show that catalase dose-dependently inhibited the degradation of HA macromolecules, which presumably confirms the generation of H2O2 in the reaction system. This has implications in range of biomedical applications such as arthritic joint treatment, tissue engineering, ocular and cosmetic surgery. PMID:27185130

  18. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  19. Chemical degradation of trimethyl phosphate as surrogate for organo-phosporus pesticides on nanostructured metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Štengl, Václav, E-mail: stengl@iic.cas.cz; Henych, Jiří; Grygar, Tomáš; Pérez, Raúl

    2015-01-15

    Nanostructured TiO{sub 2} and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m{sup 2} g{sup −1}. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures. Undoped TiO{sub 2} and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH{sub 3}O from TMP at room temperature and 100 °C. Cleavage of CH{sub 3}O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP.

  20. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets

    Science.gov (United States)

    Rastogi, Monisha; Kushwaha, H. S.; Vaish, Rahul

    2016-03-01

    This study investigates BaTiO3 decorated reduced graphene oxide sheets as a potential visible light active catalyst for dye degradation (Rhodamine B). The composites were prepared through conventional hydrothermal synthesis technique using hydrazine as a reducing agent. A number of techniques have been employed to affirm the morphology, composition and photocatalytic properties of the composites; these include UV-visible spectrophotoscopy that assisted in quantifying the concentration difference of Rhodamine B. The phase homogeneity of the composites was examined through x-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) was employed to confirm the orientation of the BaTiO3 particles over the reduced graphene oxide sheets. Photoluminescence (PL) emission spectra assisted in determining the surface structure and excited state of the catalyst. Fourier transformed-infrared (FTIR) spectra investigated the vibrations and adsorption peak of the composites, thereby ascertaining the formation of reduced graphene oxide. In addition, diffuse reflectance spectroscopy (DRS) demonstrated an enhanced absorption in the visible region. The experimental investigations revealed that graphene oxide acted as charge collector and simultaneously facilitated surface adsorption and photo-sensitization. It could be deduced that BaTiO3-reduced graphene oxide composites are of significant interest the field of water purification through solar photocatalysis. [Figure not available: see fulltext.

  1. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang, Pingping; Song, Haiyan [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001 (Australia)

    2014-04-01

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H{sub 2}O{sub 2}. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H{sub 2}O{sub 2} system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H{sub 2}O{sub 2}) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H{sub 2}O{sub 2}. Such experiments indicated that in the presence of H{sub 2}O{sub 2}, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  2. A random-effects model for long-term degradation analysis of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Solid oxide fuel cells (SOFCs) are electrochemical devices converting the chemical energy into electricity with high efficiency and low pollutant emissions. Tough very promising, this technology is still in a developing phase, and degradation at the cell/stack level with operating time is still an issue of major concern. Methods to directly observe degradation modes and to measure their evolution over time are difficult to implement, and indirect performance indicators are adopted, typically related to voltage measurements in long-term tests. In order to describe long-term degradation tests, three components of the voltage measurements should be modelled: the smooth decay of voltage over time for each single unit; the variability of voltage decay among units; and the high-frequency small fluctuations of voltage due to experimental noise and lack of fit. In this paper, we propose an empirical random-effects regression model of polynomial type enabling to evaluate separately these three types of variability. Point and interval estimates are also derived for some performance measures, such as the mean voltage, the prediction of cell voltage, the reliability function and the cell-to-cell variability in SOFC stacks. Finally, the proposed methodology is applied to two real case-studies of long-term degradation tests of SOFC stacks. - Highlights: • We propose an empirical random-effects model for SOFC cells voltage in long runs. • Some SOFC performance and manufacturing quality measures are derived. • An application to two real case-studies of long-term degradation tests is provided. • The reliability function of SOFCs and its lower confidence limit are computed

  3. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  4. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  5. Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-03-06

    Western Research Institute in conjunction with Sierra West Consultants, Inc., Tetra Tech, Inc., and the U.S. Department of Energy conducted laboratory and field studies to test different approaches to enhance degradation of hydrocarbons and associated contaminants. WRI in conjunction with Sierra West Consultants, Inc., conducted a laboratory and field study for using ozone to treat a site contaminated with MTBE and other hydrocarbons. Results from this study demonstrate that a TOD test can be used to resolve the O{sub 3} dosage problem by establishing a site-specific benchmark dosage for field ozone applications. The follow-up testing of the laboratory samples provided indications that intrinsic biodegradation could be stimulated by adding oxygen. Laboratory studies also suggests that O3 dosage in the full-scale field implementation could be dialed lower than stoichiometrically designed to eliminate the formation of Cr(VI). WRI conducted a study involving a series of different ISCO oxidant applications to diesel-contaminated soil and determined the effects on enhancing biodegradation to degrade the residual hydrocarbons. Soils treated with permanganate followed by nutrients and with persulfate followed by nutrients resulted in the largest decrease in TPH. The possible intermediates and conditions formed from NOM and TPH oxidation by permanganate and activated persulfate favors microbial TPH degrading activity. A 'passive-oxidation' method using microbial fuel cell (MFC) technology was conducted by WRI in conjunction with Tetra Tech, Inc., to degrade MTBE in groundwater. These experiments have demonstrated that a working MFC (i.e., one generating power) could be established in the laboratory using contaminated site water or buffered media inoculated with site water and spiked with MTBE, benzene, or toluene. Electrochemical methods were studied by WRI with goal of utilizing low voltage and amperage electrical sources for 'geo-oxidation' of organic

  6. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-20

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption. PMID:27040040

  7. CODEX-AIT-2 experiment. Core degradation test with steam oxidation and air ingress

    International Nuclear Information System (INIS)

    The CODEX-AIT-2 test was performed in the CODEX facility in order to study the fuel rod degradation in the pre-oxidised bundle under air ingress conditions. The fuel rod cladding was oxidised in steam atmosphere in two steps: at 820 deg C and 950 deg C to give an oxide layer thickness of 20-25 microns. After the air injection temperature excursion was observed on the fuel rods to a maximum indicated temperature of 1900 deg C. In the AIT-2 test the damage of the bundle was more severe than in the first test, for the high temperature conditions were kept for longer time in AIT-2 than in AIT-1. The rod-like structure was lost in the upper part of the bundle. The formation of higher uranium oxides was not observed. (author)

  8. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones

    OpenAIRE

    Frébortová, J. (Jitka); Novák, O.; Frébort, I. (Ivo); Jorda, R. (Radek)

    2010-01-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional fre...

  9. Oxidation and degradation of short-chain aliphatic compounds by hyperazeotropic nitric acid

    International Nuclear Information System (INIS)

    To determine the ultimate fate of organic material present in nuclear fuel reprocessing solutions and the chemical nature of the last surviving residues, organic products of the hydrolysis/nitrolysis of tributyl phosphate were subjected to further degradation with boiling 20 M HNO3 (Iodox Process) and carbon balances were run. Except for methyl nitrate, nitrate esters were oxidized in refluxing 20 M HNO3, primarily to a mixture of carbon dioxide and the corresponding and shorter chain aliphatic acids. Typically, 40% or more of the carbon from the nitrate esters was converted to CO2. Except for formic acid, the straight-chain monobasic acids oxidized slowly. Compounds identified among those resulting from oxidation of butyric acid (e.g., from the oxidation of butyl nitrate) included succinic and oxalic acids, 3- and 4-hydroxy-butyric acids, nitrate esters of 3- and 4-hydroxybutyric acid, butyrolactone, and 3-nitrobutyric acid. The mechanisms for formation of these products are briefly discussed. Oxalic acid and the hydroxyaliphatic acids have some potential for complexing ceertain metallic fission products. These results show that traces of organic materials will always be present in actual fuel processing solutions unless special measures are taken to ensure their removal. This conclusion was reinforced by analysis of recycle acid from the Savannah River Plant. The possible implications to a reprocessing plant using 100% recycle are briefly discussed

  10. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  11. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    International Nuclear Information System (INIS)

    Highlights: ► Oxidation with BDD is a powerful electrochemical method able to mineralize. ► SA is oxidized to aromatic compounds then CO2 and H2O. ► Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0–10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm2 area, by applying a current of 100, 300 and 450 mA at 25 °C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical (·OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L−1. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  12. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation.

    Science.gov (United States)

    Gerrity, Daniel; Stanford, Benjamin D; Trenholm, Rebecca A; Snyder, Shane A

    2010-01-01

    This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from meprobamate) in wastewater. Changes in the bulk organic matter based on UV(254) absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals. PMID:19822343

  13. DI-(2-ETHYLHEXYL PHTHALATE OXIDATIVE DEGRADATION BY FENTON PROCESS IN SYNTHETIC AND REAL PETROCHEMICAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    R. Esmaeli

    2011-09-01

    Full Text Available Di-(2-Ethylhexyl phthalate (DEHP belongs to the class of phthalate esters and is used as an additive in many products including plastics, paints and inks or as a solvent in industrial formulations. The degradation of DEHP in aqueous solution using oxidative Fenton reaction (H2O2/Fe2+ was carried out in this study. It was found that H2O2 concentration, Fe2+ concentration, and pH were the three main factors that could significantly influence the degradation rates of DEHP. The highest degradation percentage (85.6 % of DEHP was observed within 60 min at pH 3 in H2O2/Fe2+ system. The results of our study suggested that the concentration with 90 mg/L H2O2, 5 mg/L Fe2+, and 20 mg/L DEHP in the solution at pH 3 were the optimal conditions. The optimized reaction parameters were preceded for treatment of real wastewater obtained from a petrochemical plant.

  14. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.S. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Shinde, P.S. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Sapkal, R.T. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Oh, Y.W. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Haranath, D. [National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Influence of substrate temperature onto the physico-chemical properties. Black-Right-Pointing-Pointer Photochemical, structural, luminescent, optoelectrical and thermal properties. Black-Right-Pointing-Pointer The kinetics of oxalic acid degradation with reaction mechanism. Black-Right-Pointing-Pointer Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV-Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I{sub sc} = 0.357 mA) and open circuit voltage (V{sub oc} = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14-3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  15. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (Isc = 0.357 mA) and open circuit voltage (Voc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  16. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    Science.gov (United States)

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent. PMID:24937659

  17. Degradation and inactivation of adenovirus in water by photo-electro-oxidation.

    Science.gov (United States)

    Monteiro, G S; Staggemeier, R; Klauck, C R; Bernardes, A M; Rodrigues, M A S; Spilki, F R

    2015-12-01

    The present study analyzed the efficiency of the photo-electro-oxidation process as a method for degradation and inactivation of adenovirus in water. The experimental design employed a solution prepared from sterile water containing 5.107 genomic copies/L (gc/L) of a standard strain of human adenovirus type 5 (HAdV-5) divided into two equal parts, one to serve as control and one treated by photo-electro-oxidation (PEO) for 3 hours and with a 5A current. Samples collected throughout the exposure process were analyzed by real-time polymerase chain reaction (qPCR) for viral genome identification and quantitation. Prior to gene extraction, a parallel DNAse treatment step was carried out to assess the integrity of viral particles. Integrated cell culture (ICC) analyses assessed the viability of infection in a cell culture. The tested process proved effective for viral degradation, with a 7 log10 reduction in viral load after 60 minutes of treatment. The DNAse-treated samples exhibited complete reduction of viral load after a 75 minute exposure to the process, and ICC analyses showed completely non-viable viral particles at 30 minutes of treatment. PMID:26628240

  18. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    Science.gov (United States)

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  19. Free radicals of benzo(a)pyrene and derivatives.

    OpenAIRE

    Sullivan, P D

    1985-01-01

    The evidence for biological involvement, the spectroscopic properties (especially EPR), and the reactions, of free radicals derived from benzo(a)pyrene and its methylated, hydroxylated, and fluorinated derivatives are reviewed.

  20. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  1. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    International Nuclear Information System (INIS)

    Highlights: → ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. → The method allows a facile, safe and rapid reaction in aqueous media. → A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  2. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    Science.gov (United States)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  3. Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ∼ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR

  4. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide

    International Nuclear Information System (INIS)

    Photocatalytic degradation (PCD) of resorcinol a potent endocrine disrupting chemical in aqueous medium was investigated by ZnO under sunlight irradiation in a batch photoreactor. The influence of various parameters such as photocatalyst amount, initial concentration of resorcinol and pH was examined for maximum PCD of resorcinol. A considerable influence of pH upon the chemical oxygen demand (COD) disappearance was observed. In general, neutral or basic pH is favorable for COD removal of resorcinol. PCD intermediates were identified using FTIR and GC/MS. Two of the initial oxidation intermediates detected were 1,2,4-trihydroxy-benzene and 1,2,3-trihydroxy-benzene. FTIR studies revealed 1,2,4-trihydroxy-benzene as the major PCD intermediate. A working photodegradation mechanism is also suggested for PCD of resorcinol. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of resorcinol from waste water

  5. Evaluation of electrochemical oxidation techniques for degradation of dye effluents-A comparative approach

    International Nuclear Information System (INIS)

    The high energy cost of an electrochemical method is the fatal drawback that hinders its large scale application in wastewater treatment. The traditional single-chamber electrochemical method used in the waste water treatment mainly focused on anodic oxidation, but hydrogen produced on the cathode and indirect electrochemical treatment involves application of an electrical current to the wastewater containing chloride to convert into chlorine/hypochlorite. The two-compartment electrolytic cell, separated by an anion exchange membrane, has been developed in this work. In the new reactor, indirect oxidation at anode, indirect oxidation by hydrogen peroxide and ultraviolet/hydrogen peroxide (UV/H2O2) at cathode can occur simultaneously. The electrochemically produced hydrogen peroxide at the cathode by reduction of oxygen is affected by passing atmospheric air. Therefore 'dual electrochemical oxidation' in one electrochemical reactor was achieved successfully. Compared to a traditional one-cell reactor, this reactor reduces the energy cost approximately by 25-40%, and thus the present work becomes significant in wastewater treatment. Experiments were carried out at different current densities using Ti/RuO2/IrO2 as anode and carbon felt gas diffusion electrode used as a cathode fed with oxygen containing gases to produce hydrogen peroxide. During the various stages of electrolysis, the parameters such as, effect of pH, chemical oxygen demand (COD), colour, energy consumption were monitored. UV-vis spectrometry, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) studies were carried out to assess efficiencies of dye degradation.

  6. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    International Nuclear Information System (INIS)

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na2SO4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H2O2 from O2 reduction. In EF, PEF and SPEF, hydroxyl radical (·OH) is formed from Fenton's reaction between added catalytic Fe2+ and generated H2O2. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with ·OH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since ·OH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H2O2 with BDD yields the poorest mineralization because pollutants are only removed with ·OH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of ·OH at its surface. Enrofloxacin decay always follows a pseudo first-order reaction. Its primary aromatic by-products and short intermediates including polyols, ketones

  7. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  8. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    Science.gov (United States)

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy). PMID:21700312

  9. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight.

    Science.gov (United States)

    Wang, Yuntao; Pei, Yaqiong; Xiong, Wenfei; Liu, Tingguo; Li, Jing; Liu, Shilin; Li, Bin

    2015-11-01

    Sunlight photocatalyst was fabricated by in situ synthesis of Cu2O in the regenerated chitin (RC)/graphene oxide (GO) composite film, where the porous chitin film was used as the microreactor for the formation of nano Cu2O. Nano Cu2O was immobilized and evenly distributed in the matrix and Cu2O tended to grow on the GO sheets. Cu2O inside the matrix excite and generate free photoelectrons and electron holes, which was responsible for the degradation of dyes, while GO transferred the yielded photoelectrons to prevent the generation of local high potential zone and induce the chain degradation at more points. So it was found that the porous chitin film could load Cu2O and graphene at the same time, controlling the size of Cu2O and leading to easy recycle and reuse of the photocatalyst. Moreover, the introduction of GO has dramatically improved the photocatalytic activity of Cu2O in the Cu2O/GO/RC film, showing great potential application in wastewater treatment utilizing solar energy. PMID:26299711

  10. Comparative Study on the Anti oxidative Properties of Some Natural Polymers Degraded by gamma-rays

    International Nuclear Information System (INIS)

    Radiation induced degradation of chitosan, Na-alginate and carrageenan was carried out to prepare oligosaccharides with different molecular wt. Structural and average molecular wt changes of such oligosaccharides were determined by gel permeation chromatography (GPC), Fourier transform infra-red (FT-IR) and ultraviolet (UV-Vis.) spectroscopy. FT-IR and UV-Vis. studies revealed that during radiation degradation process, the main polysaccharide chain structure was almost remained. Comparative study on the anti oxidative properties of chitosan, Na-alginate and carrageenan oligosaccharides of different molecular wt was investigated. Radical mediated lipid peroxidation inhibition, scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power and the ferrous ion chelating activity assays were used to evaluate the antioxidant activity. The irradiation process enhances the antioxidant activity of such polysaccharides. The lower the molecular wt of oligosaccharides is the higher the antioxidant activity. The antioxidant activity of irradiated chitosan was higher than Na-alginate and carrageenan. At 30 kGy, the inhibition concentration (IC50) on DPPH radicals was 0.154, 0.359, 0.438 and 0.140 mg/ml for chitosan, Na-alginate carrageenan, and ascorbic acid, respectively

  11. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2011-11-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  12. Pulsed laser deposition of Co3O4 nanocatalysts for dye degradation and CO oxidation

    International Nuclear Information System (INIS)

    Co3O4 nanoparticles (NPs) assembled coatings were synthesized using pulsed laser deposition (PLD) by taking advantage of phase explosion process. The coatings were prepared at substrate temperature of 150 °C by using three different laser fluences (3, 5, and 7 J/cm2) in order to tune the size of NPs. Structural property and surface morphology of NPs were investigated by Raman spectroscopy and electron microscopy respectively. The catalytic activity of these Co3O4 NPs coatings was tested for dye degradation as well as for CO oxidation. Co3O4 coating (3 J/cm2) was able to completely degrade Methylene blue dye with significantly high rate, via photo Fenton reaction under visible light irradiation, as compared to Co3O4 powder catalyst mainly owing to the size and nanocrystalline nature of NPs on the catalyst surface. Coating synthesized at low laser fluence (3 J/cm2) showed best catalytic activity. This particular coating also showed above 90% conversion efficiency of CO to CO2 at 250 °C with very high specific rate. The special features of NPs, such as narrow size distribution, small average size (5–20 nm), perfect spherical shape, low degree of agglomeration, and nanocrystalline phase, are the main factors responsible for the enhanced catalytic activity of the PLD produced Co3O4 NPs assembled coating.

  13. Tailoring oxides of copper-Cu2O and CuO nanoparticles and evaluation of organic dyes degradation

    Science.gov (United States)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-04-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu2O and CuO nanoparticles.

  14. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Denise Bargheer

    2015-01-01

    Full Text Available 51Cr-labeled, superparamagnetic, iron oxide nanoparticles (51Cr-SPIOs and 65Zn-labeled CdSe/CdS/ZnS-quantum dots (65Zn-Qdots were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the 65Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring 51Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, 65Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic 65ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC, but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our 65Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in

  15. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation

    International Nuclear Information System (INIS)

    Hydrothermal method was utilized to prepare reduced graphene oxide (RGO) and fabricate ZnO-RGO hybrid (ZnO-RGO) with zinc nitrate hexahydrate and graphene oxide (GO) as raw materials under pH value of 11 adjusted by ammonia water. During the process of reduction of GO, hydrothermal condition with ammonia provided thermal and chemical factors to synthesize RGO. The retained functional groups on RGO planes played an important role in anchoring ZnO to RGO, which was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy and photoluminescence spectra. The various mass ratios of zinc nitrate hexahydrate to GO used to prepare ZnO-RGO impacted significantly on the morphology of ZnO nanostructures such as nanoparticles and nanorods. And, the RGO sheets wrapped ZnO nanoparticles and nanorods very tightly. After the emission of photo electrons from ZnO, RGO in ZnO-RGO can effectively transfer the photo electrons to exhibit a high performance and reproducibility in photocatalytic degradation toward methylene blue (MB) absorbed on the surface of RGO through π-π conjugation.

  16. Ferrate(VI): a novel oxidant for degradation of cationic surfactant - cetylpyridinium bromide.

    Science.gov (United States)

    Yang, Weihua; Lin, Xiaoyan; Wang, Honghui; Yang, Wutao

    2013-01-01

    Ferrate(VI) is an efficient multi-functional water treatment reagent that has several novel properties, such as strong oxidation, absorption, flocculation, disinfection and deodorization. The removal of cationic surfactants based on ferrate (K2FeO4) was performed in the case of cetylpyridinium bromide (CPB). The influence of operating variables on the mineralization efficiency was studied as a function of ferrate dosage, initial pH and reaction time. Total organic carbon (TOC), UV and infrared spectra were performed to gain a better understanding of the degradation process. Results show that the optimal treatment conditions are as follows, solution initial pH is over 5, oxidation time is 5 min and ferrate dosage is 1.5 times that of CPB. The removal efficiency of CPB above 99% and TOC removal percentage of 91.3% can be achieved in minutes. The reaction of CPB with K2FeO4 responds to a second-order kinetic law. PMID:23676386

  17. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng

    2011-06-28

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from experiments on bulk single crystals that Bi2Se3 gets additional n-type doping after exposure to the atmosphere, thereby reducing the relative contribution of SS in total conductivity. In this article, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological SS. Appropriate surface passivation or encapsulation may be required to probe topological SS of Bi2Se3 by transport measurements. © 2011 American Chemical Society.

  18. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    Science.gov (United States)

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization. PMID:26764571

  19. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    Science.gov (United States)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  20. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    Science.gov (United States)

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  1. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    International Nuclear Information System (INIS)

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  2. Split C-V measurements: a new approach to characterize the oxide degradation in power VDMOSFETs in radiation environment

    International Nuclear Information System (INIS)

    A new approach to characterize oxide degradation in VDMOSFETs exposed to irradiation is proposed, which bases on monitoring changes in the split C-V characteristics: gate-drain Cgd(Vg) and gate-source Cgs(Vg) capacitance. (authors)

  3. Methods of determination of oxidative degradation and residual radicals concentration in ultra-high molecular weight polyethylene

    Czech Academy of Sciences Publication Activity Database

    Pokorný, D.; Šlouf, Miroslav; Pilař, Jan; Dybal, Jiří; Lapčíková, Monika; Jahoda, D.; Fulín, P.; Vavřík, P.; Sosna, A.

    Zürich : EFORT, 2008. P1400. [EFORT congress /9./. 29.05.2008-01.06.2008, Nice] R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : UHMWPE * sterilization * oxidative degradation Subject RIV: CD - Macromolecular Chemistry

  4. Innovative Protocols for in SITU MTBE Degradation by Using Molecular Probes-An Enhanced Chemical-Bio Oxidation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-20

    In situ chemical oxidation (ISCO) is a common technology to cleanup petroleum hydrocarbon-contaminated soils and groundwater. Sodium percarbonate (SPC) is an oxidant which is activated by iron (Fe) to produce Fenton-like reactions. Western Research Institute, in conjunction with Regenesis and the U.S. Department of Energy, conducted a study that investigated the performance of a 'safe' oxidant, SPC, to cleanup groundwater and soils contaminated with petroleum hydrocarbons and associated contaminants (e.g., MTBE). Results from a field pilot test in Frenchglen, Oregon showed VOC concentrations in groundwater decreased substantially within 2 weeks after injecting activated SPC (RegenOx). A protocol was established for determining RegenOx TOD in soils and groundwater. Total oxidant demand tests were necessary to determine the correct dosage of RegenOx to apply in the field and sufficiently degrade the contaminants of concern. Bench studies with RegenOx showed this technology was effective in degrading diesel fuel and 1,4-dioxane. The Fe-silica activator (RegenOx Part B) was tested with another oxidant, sodium persulfate. Bench tests results showed the combination of sodium persulfate and RegenOx Part B was effective in reducing PCE, MTBE, benzene, and n-heptane concentrations in water. Overall, the results of this project indicated that most petroleum contaminants in soil and groundwater can be sufficiently degraded using the RegenOx technology.

  5. Degradation of benzalkonium chloride coupling photochemical advanced oxidation technologies with biological processes

    International Nuclear Information System (INIS)

    The combination of Advanced Oxidation Technologies (AOTs) and biological processes can be visualized as a very successful technological option for treatment of effluents, because it combines high oxidizing technologies with a conventional, low-cost and well-established treatment technology.Photochemical AOTs, like UV-C with or without H2O2, photo-Fenton (PF, UV/H2O2/Fe(II-III)) and UV/TiO2 heterogeneous photo catalysis involve the generation and use of powerful oxidizing species, mainly the hydroxyl radical.In almost all AOTs, it is possible to use sunlight. Benzalkonium chloride (dodecyldimetylbencylammonium chloride, BKC) is a widely used surfactant, which has many industrial applications.Due to its antibacterial effect, it cannot be eliminated from effluents by a biological treatment, and the complexity of its chemical structure makes necessary the use of drastic oxidizing treatments to achieve complete mineralization and to avoid the formation of byproducts even more toxic than the initial compound.In this study, different alternatives for BKC treatment using photochemical AOTs followed by bio catalytic techniques are presented.Three AOTs were tested: a) UV-C (254 nm, germicide lamp) with and without H2O2, b) PF (366 nm), c) UV/TiO2 (254 and 366 nm). PF at a 15:1:1 H2O2total/BKC0/Fe0 molar ratio at 55 degree C was the most efficient treatment in order to decrease the tensioactivity and the total organic carbon of the solution . The biocatalysis was studied in a reactor fitted with a biofilm of microorganisms coming from a sludge-water treatment plant. To evaluate the maximal BKC concentration that could be allowed to ingress to the biological reactor after the AOT treatment, the toxicity of solutions of different BKC concentrations was analyzed. The study of the relevant parameters of both processes and their combination allowed to establish the preliminary conditions for optimizing the pollutant degradation

  6. Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions

    Science.gov (United States)

    Sebol, L.A.; Robertson, W.D.; Busenberg, E.; Plummer, L.N.; Ryan, M.C.; Schiff, S.L.

    2007-01-01

    A detailed local-scale monitoring network was used to assess CFC distribution in an unconfined sand aquifer in southwestern Ontario where the zone of 1-5-year-old groundwater was known with certainty because of prior use of a bromide tracer. Groundwater ???5 years old was confined to an aerobic zone at ???5 m depth and had CFC concentrations consistent with modern atmospheric mixing ratios at recharge temperatures of 7-11 ??C, as was observed in the 3-m thick vadose zone at the site. At depths below 6 m, the groundwater became progressively more reducing, however, with a denitrifying horizon at 6-7 m depth, and a Mn and Fe reducing zone below 7 m depth. In the anaerobic zone, 3H/3He ratios indicated that groundwater-age continued to increase uniformly with depth, to a maximum value of 27 years at 13 m depth. CFC concentrations, however, decreased abruptly within the denitrifying zone, leading to substantial age overestimation compared to the 3H/3He ages. Noble gas data indicated that the apparent CFC mass loss was not likely the result of gas stripping from possible bubble formation; thus, CFC degradation was indicated in the anoxic zone. The field data are consistent with first-order degradation rates of 0.3 yr-1 for CFC-12, 0.7 yr-1 for CFC-11, and 1.6 yr-1 for CFC-113. CFC attenuation at this site coincides with a zone where reduced S (pyrite) is actively oxidized by NO3 and dissolved oxygen (DO). Similar behavior has been observed at other sites [Tesoriero, A.J., Liebscher, H., Cox, S.E., 2000. Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow path. Water Resour. Res. 36 (6), 1545-1559; Hinsby, K., Hojberg, A.L., Engesgaard, P., Jensen, K.H., Larsen, F., Plummer, L.N., Busenberg, E., Accepted for publication. Transport and degradation of chlorofluorocarbons (CFCs) in a pyritic aquifer, Rabis Creek, Denmark. Water Resour. Res.], further demonstrating that the use of CFCs for age-dating anaerobic

  7. BENZO[a]PYRENE METABOLITES EXAGGERATE DNA OXIDATIVE DAMAGE UPON THE INVOLVEMENT OF FREE RADICALS%苯并[a]比代谢产物在自由基参与下加速DNA的氧化损伤

    Institute of Scientific and Technical Information of China (English)

    罗云敬; GAO Da-yuan; WEI Hua-chen

    2003-01-01

    @@ Polycyclic aromatic hydrocarbons (PAHs),which constitute a major class of environmental pollu tants are posing a threat to human health. Benzopyrene,an index of PAH levels omnipresent in the everyday environment ,becomes toxic only when being metabolically and/or photo-activated,i. e. ,in the pres ence of UV light. Free radicals such as superoxide anions ('O2),hydrogen peroxide (H2O2),hydroxyl radicals ('OH) and singlet oxygen (1O2) are involved in carcinogenesis. Wei CE etc[1] studied the effects of different scavengers of active oxygen species (superoxide dismutase,catalase,mannitol and dimethyfu ran) on promoting B[a]P mutagenicity. Bryla P ete[2] investigated the roles of several ROS scavengers in the oxidation and binding of B[a]P to calf thymus DNA using the 32p-postlabeling assay.

  8. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-07-01

    In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor. PMID:27055892

  9. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  10. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients.

    Science.gov (United States)

    Gruosso, Tina; Mieulet, Virginie; Cardon, Melissa; Bourachot, Brigitte; Kieffer, Yann; Devun, Flavien; Dubois, Thierry; Dutreix, Marie; Vincent-Salomon, Anne; Miller, Kyle Malcolm; Mechta-Grigoriou, Fatima

    2016-01-01

    Anti-cancer drugs often increase reactive oxygen species (ROS) and cause DNA damage. Here, we highlight a new cross talk between chronic oxidative stress and the histone variant H2AX, a key player in DNA repair. We observe that persistent accumulation of ROS, due to a deficient JunD-/Nrf2-antioxidant response, reduces H2AX protein levels. This effect is mediated by an enhanced interaction of H2AX with the E3 ubiquitin ligase RNF168, which is associated with H2AX poly-ubiquitination and promotes its degradation by the proteasome. ROS-mediated H2AX decrease plays a crucial role in chemosensitivity. Indeed, cycles of chemotherapy that sustainably increase ROS reduce H2AX protein levels in Triple-Negative breast cancer (TNBC) patients. H2AX decrease by such treatment is associated with an impaired NRF2-antioxidant response and is indicative of the therapeutic efficiency and survival of TNBC patients. Thus, our data describe a novel ROS-mediated regulation of H2AX turnover, which provides new insights into genetic instability and treatment efficacy in TNBC patients. PMID:27006338

  11. Enhanced catalytic oxidation ability of ternary layered double hydroxides for organic pollutants degradation.

    Science.gov (United States)

    Fahel, Jean; Kim, Sanghoon; Durand, Pierrick; André, Erwan; Carteret, Cédric

    2016-05-10

    Co(2+) and Cu(2+) substituted MgAl layered double hydroxides with an M(2+)/M(3+) atomic ratio of 2.0 were synthesized by a co-precipitation method and fully characterized using various techniques including powder X-ray diffraction, ICP-AES analysis, FT-IR, DR UV-Vis spectroscopy, N2 adsorption-desorption and transmission electron microscopy. The materials revealed a good crystallinity with no phase impurity and successful substitution of cobalt and copper ions in the framework of binary LDH with the target ratio of metals in the sheet. The adsorption characteristics (kinetic and isotherm) and the catalytic oxidation of organic pollutants, methylene blue (cationic dye) and orange II (anionic) were carried out to investigate a potential use of LDH materials as catalysts. In particular, Co3Cu1Al2 LDH exhibited an excellent catalytic activity towards catalytic dye degradation, especially for orange II with good stability and reusability over several times. Furthermore, this LDH material showed good catalytic performance for several chlorophenol compounds, suggesting its practical application in wastewater treatment. Therefore, layered double hydroxides substituted with Co(2+) and Cu(2+) could be promising candidates in various applications, such as the abatement of organic pollutants. PMID:27097543

  12. Acetone Extract of Almond Hulls Provides Protection against Oxidative Damage and Membrane Protein Degradation.

    Science.gov (United States)

    Meshkini, Azadeh

    2016-06-01

    Several studies have revealed that among foods, the consumption of edible nuts has beneficial effects on health which are attributed to their high content of potent antioxidants. Among nuts, the whole seed of the almond (Prunus dulcis) has been demonstrated to possess potent free radical scavenging activity, which is related to the presence of phenolic compounds. The aim of the current study is to evaluate the polyphenol content and the antioxidant ability of almond hull, which is an agriculture solid waste. The present results revealed that among different extraction methods, the acetone extract of almond hulls has a high content of phenolic and flavonoid compounds and a high antioxidant ability, which were determined by using the phosphomolybdenum method and by measuring the potency of the antioxidant, respectively. Moreover, the experimental data disclosed that the acetone extract of almond hulls provides protection against the oxidative damage and the membrane protein degradation that are caused in human erythrocytes by hydrogen peroxide. These phenomena may likely be due to the recruitment of antioxidants by cell membranes and/or translocation to cytosol. Overall, almond hull extract could be considered as a natural source of antioxidants, and its consumption could have a positive effect on human health. PMID:27342887

  13. Pyrene degradation by a Mycobacterium sp.: Identification of ring oxidation and ring fission products

    International Nuclear Information System (INIS)

    The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of [14C]pyrene was mineralized to CO2 after 96 h of incubation at 24 degree C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that accounted for 95% of the total organic-extractable 14C-labeled residues. Analyses by UV, infrared, mass, and nuclear magnetic resonance spectrometry and gas chromatography identified both pyrene cis- and trans-4,5-dihydrodiols and pyrenol as initial microbial ring-oxidation products of pyrene. The major metabolite, 4-phenanthroic acid, and 4-hydroxyperinaphthenone and cinnamic and phthalic acids were identified as ring fission products. 18O2 studies showed that the formation of cis- and trans-4,5-dihydrodiols were catalyzed by dioxygenase and monooxygenase enzymes, respectively. This is the first report of the chemical pathway for the microbial catabolism of pyrene

  14. Fenton法降解水中布洛芬%Degradation of ibuprofen by Fenton oxidation

    Institute of Scientific and Technical Information of China (English)

    杨丽娟; 胡翔; 吴晓楠

    2012-01-01

    采用benton法降解水中布洛芬,考察了H2O2投加量、FeSO4·7H2O与H2O2的比值、初始pH、反应时间等因素对布洛芬去除率的影响,通过正交实验确定影响作用大小依次为:[Fe2+]:[H2O2]的物质的量之比〉H2O2的投加量〉pH值,最佳的反应工艺条件为:H2O2的投加量为3mL-L1,[Fe2+]:[H2O2]的物质的量之比为1:10,反应初始pH值为3,反应时间为40min.在最佳条件下布洛芬的去除率达到86%以上.同时对布洛芬降解反应动力学进行了研究,发现Fenton降解布洛芬符合二级反应动力学规律.%The degradation of ibuprofen was investigated by using Fenton method. The effects of different tactors on the removal efficiency of ibuprofen were evaluated. The order of main factors were O O rthogo ptimal nal experiments as follow: the mole ratio of Fe2+ to H2O2 〉 H2O2 dosage 〉 reaction conditions were as follow : dosage of H2O2 was 3 mL. L- 1, the mole ratio 1 : 10, the initial pH was 3 and the reaction time was 40 min. Under such conditions, the ibuprofen was over 86%. The reaction kinetics was also investigated. The degradation of oxidation was accord with the second order kinetics.

  15. Degradation mechanisms in solid oxide electrolysis anodes: Cr poisoning and cation interdiffusion

    International Nuclear Information System (INIS)

    High temperature steam electrolysis is one of the most efficient processes for hydrogen generation from water with no CO2 emissions using electricity and heat from nuclear or concentrated solar plants. Solid Oxide Electrolytic Cells (SOEC) are the proposed technology being researched and developed for this purpose. Over a long period of operation of the cells, various sources for degradation in the cells' electrochemical performance prevail, and hence the cell resistance increases and the process becomes inefficient. Our research is aimed at identifying the mechanisms for the loss in the electrochemical performance of the cell, particularly of the oxygen electrode, namely the anode. We are performing post-mortem analysis of the anode materials from SOEC stacks that were subject to demonstration tests over 2000 hours. We are focusing on two mechanisms of degradation: i) on the diffusion and reaction of chromium from the stainless steel interconnects onto the bond layer (cobaltite) and electrode (manganite) surface; ii) inter-diffusion of electrode and composite cations dissociating the anode composition. Chromium penetrates into the electrode microstructure through vapour-phase or solid state transport and reacts with the electrode material to form secondary and inactive phases which block the active sites. We have employed Raman Spectroscopy and identified the secondary phases, on the surface of the bong layer, that include mainly Cr2O3, LaCrO3, La2O3 and Co3O4, which have much lower conductivity than the original perovskite structure. We used scanning Auger Electron Nano-spectroscopy (AES) to study the local variations in the air electrode and the bond layer microchemistry and microstructure on a nano-to-micron scale. Chromium was clearly seen to be present in the cobaltite bond layer, and the chromium content was observed to monotonically decrease along the thickness of the bond layer. The manganite and manganite/zirconia composite electrode layers did not

  16. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Directory of Open Access Journals (Sweden)

    Malkus Kristen A

    2009-06-01

    Full Text Available Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  17. Protective Role of Cys-178 against the Inactivation and Oligomerization of Human Insulin-degrading Enzyme by Oxidation and Nitrosylation*

    Science.gov (United States)

    Ralat, Luis A.; Ren, Min; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-β (Aβ). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the Vmax for Aβ degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Aβ degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function. PMID:19808678

  18. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  19. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Computational approach is effective to reveal the transformation mechanism of MPB. • MPB degradation was more dependent on the [• OH] than temperature during AOPs. • O2 could enhance MPB degradation, but more harmful products were formed. • The risks of MPB products in natural waters should be considered seriously. • The risks of MPB products can be overlooked in AOPs due to short half-time. - Abstract: Hydroxyl radicals (• OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the • OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by • OH via OH-addition and H-abstraction routes. Among these routes, the • OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct (• MPB-OH1) and dehydrogenated radical (• MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O2 and • OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment

  20. Electrochemical degradation of Reactive Brilliant Red K-2BP on Ti/RuTiIrSnMn oxide anode in a batch cell

    Directory of Open Access Journals (Sweden)

    LUO JIANCHENG

    2012-11-01

    Full Text Available Electrochemical degradation of Reactive Brilliant Red K-2BP on Ti/RuTiIrSnMn oxide anode in chloride containing solution was investigated by voltammetry and electrolysis in a batch cell. It is found that the degradation mechanism of K-2BP on Ti/RuTiIrSnMn oxide anode involves an indirect electrocatalytic oxidation, in which K-2BP is oxidized by the electrochemically generated active chlorine. This degradation reaction follows pseudo-first order reaction kinetics. Ti/RuTiIrSnMn oxide exhibits excellent electrocata­lytic activity toward the generation of active chlorine from chloride. Hence, K-2BP can be electrochemically degraded effectively in chloride containing solution. The decolorization efficiency was found to increase with the decrease in pH and with the increase in current density, NaCl concentration, temperature, and flow rate of the solution.

  1. Degradation of bipolar transistors under charge injection into the oxide from the backward-biased emitter p-n junction

    International Nuclear Information System (INIS)

    Results of investigating n-p-n transistors under the action of the reverse tunnel injection current are presented. The reverse volt-ampere characteristics of the emitter junction in conditions of a disconnected collector are measured at 373 K and liquid nitrogen temperature. The data obtained testify to that the radiation resistance of transistors under investigation is determined by two processes of the passivating oxide surface degradation: generation of surface states due to irradiation and reverse tunnel injection

  2. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO2 (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes

  3. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  4. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  5. Design and preliminary results of an NMR tube reactor to study the oxidative degradation of fatty acid methyl ester

    International Nuclear Information System (INIS)

    Biodiesel is the fatty acid alkyl esters produced by the transesterification of vegetable, animal or microbial lipids. After ethanol, it accounts for the largest proportion of global biofuel production. Yet, due to the level of polyunsaturation, biodiesel is also oxidatively unstable. When biodiesel oxidises the viscosity increases, which leads to reduced fuel performance and in extreme cases can lead to engine failure. To aid in understanding the process of this degradation a specialist NMR tube rig was designed to assess the oxidation of biodiesel. The NMR tube rig allowed the in situ1H NMR measurement of the sample while air was bubbled through at fixed intervals. The methyl esters of linolenic acid (18:3), linoleic acid (18:2) and oleic acid (18:1) were oxidised at 110 °C over a 24 h period. The decomposition of biodiesel is complex, and there is more than one mechanism involved in the degradation. Using this rig the onset of oxidation for 18:3 and 18:2 was found to be almost instantaneous. The rate of oxidation was found to be slightly less for 18:2 than 18:3 while the maximum rate was observed for 18:3 from the beginning of the oxidation, this was only observed after 280 min for 18:2. The oxidation of 18:1 started at approximately 500 min and, slowly degraded during the remaining reaction time. The formation of a number of secondary oxidation products such as aldehydes, ketones, alcohols and formates were also quantified. -- Highlights: ► A specialist NMR rig was designed to measure the oxidation of FAME in situ. ► Oxidation of 18:1, 18:2 and 18:3 was observed over 24 h at 110 °C. ► The maximum rate was found at the start of the reaction for 18:3. ► The rate was highest for 18:2 after 300 min but never reached a maximum for 18:1.

  6. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Bentzen, Janet Jonna;

    2013-01-01

    current densities below −0.75 A/cm2. The formation of ZrO2 nano-particles deteriorates Ni percolation and presumably decreases the number of active triple phase boundaries (TPBs) and is therefore considered a degradation phenomenon. It is hypothesized that the degradation of the Ni surface is a result of...

  7. Benzo[a]pyrene contamination in Rostov Region of Russian Federation: A 10-year retrospective of soil monitoring under the effect of long-term technogenic pollution

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2016-04-01

    Full Text Available The aim of the current work was to study the main tendencies in the accumulation and distribution of benzo[a]pyrene in soils of the affected zone of the Novocherkassk regional power plant. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk regional power plant emissions. Monitoring plots were established at different distances from the Novocherkassk regional power plant (1.0–20.0 km. Regularities in the accumulation and distribution of benzo[a]pyrene in chernozemic, meadow-chernozemic, and alluvial soils under the effect of aerotechnogenic emissions from the Novocherkassk regional power plant have been revealed on the basis of long-term monitoring studies (from 2002 to 2011. The tendencies in the distribution and accumulation of BaP in the studied soils coincided during the 10 years of monitoring studies. It has been found the 5-km zone to the northwest from the power station, which coincides with the predominant wind direction, is most subjected to contamination by benzo[a]pyrene, with the maximum accumulation at a distance of about 1.6 km from the source. Dynamics of pollutant accumulation in soils depends on number of Novocherkassk regional power plant emissions. The content of benzo[a]pyrene in the soil is an indicator of the technogenic load impact on the areas, for which the combustion products of hydrocarbon fuel are the major pollutants. A gradual decrease of the pollutant content in the soils was revealed during the period from 2002 to 2011. It explained by the significant decrease in the volume of pollutant emissions from the plant and the self-purification capacity of soils and mechanisms of benzo[a]pyrene degradation.

  8. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3−δ metal oxide

    International Nuclear Information System (INIS)

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O2·− is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment

  9. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  10. Synthesize of Graphene-Tin Oxide Nanocomposite and Its Photocatalytic Properties for the Degradation of Organic Pollutants Under Visible Light.

    Science.gov (United States)

    Shanmugam, M; Jayavel, R

    2015-09-01

    Graphene-tinoxide nanocomposite has been synthesised by coating SnO2 nanoparticles on graphene sheets by the redox reaction between graphene oxide (GO) and tin chloride. Graphene oxide was reduced to graphene and Sn2+ was oxidized to SnO2 during the redox reaction, resulting in the uniform distribution of SnO2 nanoparticles on graphene sheets. The synthesised material was characterized by XRD, SEM, AFM, FT-IR, UV-vis, TGA and Raman spectroscopic studies. SEM and AFM studies reveal the formation of wrinkled paper like structure of graphene sheets with uniform coating of SnO2 nanoparticles on either side. The strong photocatalytic degradation of Methylene orange (MO) dye was analysed using G-SnO2 nanocomposite under the visible light irradiation. PMID:26716310

  11. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.

    Science.gov (United States)

    Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek

    2010-02-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones. PMID:19912568

  12. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Watanabe, A. [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba (Japan); Kudo, N.; Shinozaki, H. [Materials Science Engineering, Tokyo Denki University, Tokyo (Japan); Uemoto, H.

    2007-12-15

    Phenol present in wastewaters from various industries has an inhibitory effect on nitrification even at low concentrations. Hence, the biological treatment of wastewater containing both phenol and ammonia involves a series of treatment steps. It is difficult to achieve nitrification capability in an activated sludge system that contains phenol at concentrations above the inhibitory level. Batch treatment of wastewater containing various concentrations of phenol showed that the ammonia oxidation capability of suspended Nitrosomonas europaea cells, an ammonia oxidizer, was completely inhibited in the presence of more than 5.0 mg/L phenol. To protect the ammonia oxidizer from the inhibitory effect of phenol and to achieve ammonia oxidation capability in the wastewater containing phenol at concentrations above the inhibitory level, a simple bacterial consortium composed of an ammonia oxidizer (N. europaea) and a phenol-degrading bacterial strain (Acinetobacter sp.) was used. Ammonia oxidation did not occur in the presence of phenol at concentrations above the inhibitory level when suspended or immobilized N. europaea and Acinetobacter sp. cells were used in batch treatment. Following the acclimatization of the immobilized cells, accumulation of nitrite was observed, even when the wastewater contained phenol at concentrations above the inhibitory level. These results showed that immobilization was effective in protecting N. europaea cells from the inhibitory effect of phenol present in the wastewater. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Degradation of Corn Oil Wastes by Fenton Reaction and Under Mildly Basic Media in the Presence of Oxidants Assisted with Sun Light

    OpenAIRE

    Josefina V.  Sanchez; Susana S.  Martinez; Maria D.F.T.  Hernandez

    2008-01-01

    The degradation of water soluble corn oil wastes was carried out by Fenton reaction and also under mildly basic media in the presence of oxidants, such as hydrogen peroxide and persulfate, assisted with solar light. The degradation efficiency was obtained by analysis of chemical oxygen demand, carbon dioxide and gas chromatography. Over 90% of both chemical oxygen demand abatement and carbon dioxide recovery was accomplished by Fenton reaction. The presence of oxidants during the photodegrada...

  14. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH.

    Science.gov (United States)

    Mazille, F; Schoettl, T; Klamerth, N; Malato, S; Pulgarin, C

    2010-05-01

    Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO(2) and iron oxide immobilized on functionalized polyvinyl fluoride films (PVF(f)-TiO(2)-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (<0.2mgL(-1)) was observed. Phenol was efficiently degraded and mineralized at operational pH<5 and nalidixic acid degradation was complete even at pH 7, but mineralization stopped at 35%. Pesticide mixture was slowly degraded (50%) after 150min of irradiation. Degradation of the emergent contaminant mixture was successful for eight compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates. PVF(f)-TiO(2)-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVF(f)-TiO(2)-Fe oxide, some iron leaching led to enlargement of the TiO(2) surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation. PMID:20362319

  15. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D

    2013-01-01

    The overall aim of this work was to examine the degradation of trimethoprim (TMP), which is an antibacterial agent, during the application of two advanced oxidation process (AOP) systems in secondary treated domestic effluents. The homogeneous solar Fenton process (hv/Fe(2+)/H2O2) and heterogeneous photocatalysis with titanium dioxide (TiO2) suspensions were tested. It was found that the degradation of TMP depends on several parameters such as the amount of iron salt and H2O2, concentration of TiO2, pH of solution, solar irradiation, temperature and initial substrate concentration. The optimum dosages of Fe(2+) and H2O2 for homogeneous ([Fe(2+)] = 5 mg L(-1), [H2O2] = 3.062 mmol L(-1)) and TiO2 ([TiO2] = 3 g L(-1)) for heterogeneous photocatalysis were established. The study indicated that the degradation of TMP during the solar Fenton process is described by a pseudo-first-order reaction and the substrate degradation during the heterogeneous photocatalysis by the Langmuir-Hinshelwood kinetics. The toxicity of the treated samples was evaluated using a Daphnia magna bioassay and was finally decreased by both processes. The results indicated that solar Fenton is more effective than the solar TiO2 process, yielding complete degradation of the examined substrate within 30 min of illumination and dissolved organic carbon (DOC) reduction of about 44% whereas the respective values for the TiO2 process were ∼70% degradation of TMP within 120 min of treatment and 13% DOC removal. PMID:23508150

  16. Structural characterization of alkaline and oxidative stressed degradation products of lurasidone using LC/ESI/QTOF/MS/MS.

    Science.gov (United States)

    Talluri, M V N Kumar; Dharavath, Shireesha; Kalariya, Pradipbhai D; Prasanth, B; Srinivas, R

    2015-02-01

    A selective, accurate, precise and robust stability indicating liquid chromatography assay method was developed for the monitoring of a novel antipsychotic drug, lurasidone, in the presence of its degradation products (DPs). Also, we investigated degradation behavior of the drug under various stressed conditions such as hydrolytic (acidic, basic and neutral), oxidation, photolytic and thermal. The drug was found to be degraded under base hydrolytic and oxidative conditions, while it was stable in acid and neutral hydrolytic, photolytic and thermal conditions. The method showed adequate separation of lurasidone and its DPs on Xterra C18 (150 mm × 4.6 mm i.d., 3.5 μm) column using 20 mM ammonium formate (pH 3.0): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. This method was extended to liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI/QTOF/MS/MS) for structural characterization of DPs. A total of five DPs were characterized by LC/ESI/QTOF/MS/MS studies. Most probable mechanisms for the formation of DPs were proposed. The developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization Guideline Q2 (R1). PMID:25527975

  17. One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of Rhodamine B

    Science.gov (United States)

    Sun, Hang; Xu, Kongliang; Huang, Majia; Shang, Yinxing; She, Ping; Yin, Shengyan; Liu, Zhenning

    2015-12-01

    Ultrathin manganese dioxide (MnO2) nanosheets have been synthesized in aqueous solution by a facile one-step method. MnO2 nanosheets show a typical 2D lamellar morphology, possessing an average lateral dimension of 100-300 nm, and a typical thickness of 3.1-7.5 nm, corresponding to 4-10 layers of δ-MnO2. The resultant MnO2 nanosheets have been demonstrated to possess superior oxidative degradation ability to Rhodamine B (RhB) by investigating the decomposition rate and comparing the results with the commercial MnO2 powder. Typically, ultrathin MnO2 nanosheets have shown a high oxidation degradation performance of RhB solution (97.9% removed within 30 min) in acid solution (pH 2.0), which can be attributed to special lamellar morphology and the large surface area of the layered MnO2 nanosheets. It is believed that such a convenient approach for the cost-effective and environmentally friendly synthesis of ultrathin MnO2 nanosheets holds great promise for the degradation of complex and various dye wastewater in practical application.

  18. Degradation of 4-chlorophenol in aqueous solution by γ-radiation and ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The degradation of 4-chlorophenol (4-CP) by using gamma rays generated by a 60Co source in the presence of O3 was investigated. The radiolysis of 4-CP and the kinetics of 4-CP mineralization were analyzed based on the determination of total organic carbon (TOC). The influence of initial 4-CP concentration and the free radicals scavengers (such as NaHCO3 and t-butanol) on the 4-CP degradation was also studied. The results showed that when the radiation rate was 336 Gy·min(1, 4-chlorophenol at concentration of 10 mg·L(1 could be completely degraded at the radiation dose of 2 kGy. The degradation of 4-chlorophenol could be described by a first-order reaction model, the rate constant of 4-CP degradation by combined ozonation and radiation was 0.1016 min(1, which was 2.4 times higher than the sum of radiation (0.0294 min(1) and ozonation (0.0137 min(1). It revealed that the combination of radiation and ozonation resulted in synergistic effect, which can remarkably increase the degradation efficiency of 4-CP.

  19. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    Science.gov (United States)

    Li, Jinhuan; Yang, Xia; Yu, Xiaodan; Xu, Leilei; Kang, Wanli; Yan, Wenhua; Gao, Hongfeng; Liu, Zhonghe; Guo, Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+/TiO 2, where RE = Eu 3+, Pr 3+, Gd 3+, Nd 3+, and Y 3+) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+, Pr 3+)/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+/TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  20. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO₃-δ metal oxide.

    Science.gov (United States)

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-09-15

    Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. PMID:23742952

  1. Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Nature of electrode material decides the electrocatalytic mechanism followed. • Electrogenerated strong oxidants on BDD surface improve the color and organic load removal. • Chlorine active species act in solution cage oxidizing organic matter. - Abstract: The present study discusses the electrochemical degradation process of a textile dye, Novacron Yellow C-RG (NY), dissolved in synthetic wastewaters, via direct and indirect oxidation. Experiments were conducted using boron-doped diamond (BDD) and platinum supported on Ti (Pt/Ti) electrodes in the absence and presence of NaCl in the solution. The direct process for removing color is relatively similar for both anodes, while the electrochemical degradation is significantly accelerated by the presence of halogen salt in the solution. Interestingly, it does not depend on applied current density, but rather on NaCl concentration. Therefore, the electrochemical processes (direct/indirect) favor specific oxidation pathways depending on electrocatalytic material. Whereas, the Pt/Ti anode favors preferentially color removal by direct and indirect oxidation (100% of color removal) due to the fragmentation of the azo dye group; BDD electrode favors color and organic load removals in both processes (95% and up to 87%, respectively), due to the rupture of dye in different parts of its chemical structure. Parameters of removal efficiency and energy consumption for the electrochemical process were estimated. Finally, an explanation has been attempted for the role of halide, in relation with the oxygen evolution reaction, concomitant with the electrochemical incineration as well as electrocatalytic mechanisms, for each one of the electrodes used

  2. Effect of oxidation on nitro-based pharmaceutical degradation and trichloronitromethane formation.

    Science.gov (United States)

    Wang, Xiaofeng; Zhou, Beihai; Yang, Hongwei; Wang, Xiaomao; Xie, Yuefeng

    2016-03-01

    Nitro-based compounds are the direct precursors of trichloronitromethane during chlorination disinfection. Two nitro-based pharmaceuticals ranitidine and nizatidine were selected as model compounds to assess the effect of oxidation on the removal of nitro-based pharmaceuticals, as well as the reduction of their trichloronitromethane formation potentials (TCNMFPs). The four oxidants were ozone (O3), chlorine (Cl2), chlorine dioxide (ClO2) and potassium permanganate (KMnO4). The changes in pharmaceuticals and their TCNMFPs during oxidation using various oxidants and dosages were quantified. The relationships between oxidation product structures and TCNMFP changes were also analyzed. The results showed that oxidation with Cl2 and KMnO4 were more effective than ClO2 and O3 in removing the nitro-based pharmaceuticals. Meanwhile, decreased TCNMFPs by KMnO4 oxidation but increased TCNMFPs by Cl2, ClO2 and O3 oxidation were observed. The results of product analysis indicated that chlorine transfer products had higher TCNMFPs, while oxygen transfer products made little contribution to TCNMFPs after oxidation. In addition, one possible reaction pathway leading TCNMFP increase was that chloro-nitromethane or nitromethane, which was a better TCNM precursor, formed when double bond was attacked by oxidants. PMID:26714298

  3. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    International Nuclear Information System (INIS)

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H2O2 system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of neutrophils in

  4. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    Science.gov (United States)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity. PMID:18926633

  5. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  6. Oxidative Degradation of o-Chlorophenol with Contact Glow Discharges in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    高锦章; 杨武; 刘永军; 陈平; 纳鹏君; 陆泉芳

    2003-01-01

    Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investi-gated under different pH, voltages and initial concentrations. And the mechanism of the oxidationwas explored. The results suggested that the degradation followed the first order kinetic law;Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence ofFe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates includedo-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.

  7. Chemical treatment of secondary waste solutions resulting from wet oxidative degradation of spent ion-exchange resins

    International Nuclear Information System (INIS)

    The present experimental work has been carried out to evaluate the chemical treatment process of radioactive secondary waste solutions resulting from the wet oxidative degradation of simulated spent radioactive cation-exchange resins using hydrogen peroxide as oxidant. The present study aims mainly to evaluate the ability of ferrocyanide compound of nickel for selective fixation of radio-cesium from the secondary waste solution in presence of traces of soluble organic residues. Based on the data obtained, it was found that, using 5 x 10-3 of nickel ferrocyanide, at ph range from 1-9 and in the presence of traces of soluble organic carbon, more than 99% of the radiocesium initially found could be efficiently removed from the secondary radioactive waste solutions under consideration

  8. Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    Solid oxide fuel cells produced at Risø DTU have been tested as solid oxide electrolysis cells for steam electrolysis by applying an external voltage. Varying the sealing on the hydrogen electrode side of the setup verifies that the previously reported passivation over the first few hundred hours...

  9. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Chen, Xi [Department of Earth and Environmental Engineering, Columbia University, West 120th Street, New York, NY 10027 (United States); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2014-08-30

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO{sub 4}·{sup −}) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe{sub 3}O{sub 4}/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe{sub 3}O{sub 4}/Cu{sub 1.5}Ni{sub 0.5}Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe{sub 3}O{sub 4}/Cu(Ni)Cr-LDH to generate sulfate radicals (SO{sub 4}·{sup −}). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO{sub 4}·{sup −}), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe{sub 3}O{sub 4

  10. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    International Nuclear Information System (INIS)

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO4·−) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4·−). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4·−), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater

  11. Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants.

    Science.gov (United States)

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Ziarani, Ghodsi Mohammadi

    2016-01-01

    Pure and samarium doped ZnO nanoparticles were synthesized by a sonochemical method and characterized by TEM, SEM, EDX, XRD, Pl, and DRS techniques. The average crystallite size of pure and Sm-doped ZnO nanoparticles was about 20 nm. The sonocatalytic activity of pure and Sm-doped ZnO nanoparticles was considered toward degradation of phenazopyridine as a model organic contaminant. The Sm-doped ZnO nanoparticles with Sm concentration of 0.4 mol% indicated a higher sonocatalytic activity (59%) than the pure ZnO (51%) and other Sm-doped ZnO nanoparticles. It was believed that Sm(3+) ion with optimal concentration (0.4 mol%) can act as superficial trapping for electrons in the conduction band of ZnO and delayed the recombination of charge carriers. The influence of the nature and concentration of various oxidants, including periodate, hydrogen peroxide, peroxymonosulfate, and peroxydisulfate on the sonocatalytic activity of Sm-doped ZnO nanoparticles was studied. The influence of the oxidants concentration (0.2-1.4 g L(-1)) on the degradation rate was established by the 3D response surface and the 2D contour plots. The results demonstrated that the utilizing of oxidants in combination with Sm-doped ZnO resulting in rapid removal of contaminant, which can be referable to a dual role of oxidants; (i) scavenging the generated electrons in the conduction band of ZnO and (ii) creating highly reactive radical species under ultrasonic irradiation. It was found that the Sm-doped ZnO and periodate combination is the most efficient catalytic system under ultrasonic irradiation. PMID:26384896

  12. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light

    International Nuclear Information System (INIS)

    The photocatalytic degradation of phenanthrene (PHE), pyrene (PYRE) and benzo[a]pyrene (BaP) on soil surfaces in the presence of TiO2 using ultraviolet (UV) light source was investigated in a photo chamber, in which the temperature was maintained 30 deg. C. The effects of various factors, namely TiO2, soil pH, humic acid, and UV wavelength, on the degradation performance of polycyclic aromatic hydrocarbons (PAHs) were studied. The results show that photocatalytic degradation of PAHs follows the pseudo-first-order kinetics. Catalyst TiO2 accelerated the photodegradation of PHE, PYRE and BaP significantly, with their half-lives being reduced from 533.15 to 130.77 h, 630.09 to 192.53 h and 363.22 to 103.26 h, respectively, when the TiO2 content was 0.5%. In acidic or alkaline conditions, the photocatalytic degradation rates of the PAHs were greater than those in neutral conditions. Humic acid significantly enhanced the PAH photocatalytic degradation by sensitizing radicals capable of oxidizing PAHs. Photocatalytic degradation rates of PYRE and BaP on soil surfaces with 2% TiO2 were different at UV irradiation wavelengths of 254, 310 and 365 nm, respectively. The synergistic effect of UV irradiation and TiO2 catalysis was efficient for degradation of PAHs in contaminated soil

  13. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1990-01-01

    Fenton's reagent (H{sub 2}O{sub 2} and Fe{sup ++}) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO{sub 2}. This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent. 28 refs., 13 figs., 1 tab.

  14. Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures.

    Science.gov (United States)

    Khataee, Alireza; Saadi, Shabnam; Vahid, Behrouz; Joo, Sang Woo; Min, Bong-Ki

    2016-03-01

    Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone. The 6% Sm-doped ZnO nanoparticles had a band gap of 2.8 eV and demonstrated the highest activity. The degradation efficiency (DE%) of sonolysis and sonocatalysis with undoped ZnO and 6% Sm-doped ZnO was 45.73%, 63.9%, and 90.10%, after 150 min of treatment, respectively. Sonocatalytic degradation of AB92 is enhanced with increasing the dopant amount and catalyst dosage and with decreasing the initial AB29 concentration. DE% declines with the addition of radical scavengers such as chloride, carbonate, sulfate, and tert-butanol. However, the addition of enhancers including potassium periodates, peroxydisulfate, and hydrogen peroxide improves DE% by producing more free radicals. The results show adequate reusability of the doped sonocatalyst. Degradation intermediates were recognized by gas chromatography-mass spectrometry (GC-MS). Using nonlinear regression analysis, an empirical kinetic model was developed to estimate the pseudo-first-order constants (kapp) as a function of the main operational parameters, including the initial dye concentration, sonocatalyst dosage, and ultrasonic power. PMID:26584981

  15. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.;

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from the...

  16. Interactive Oxidation of Photocatalysis and Electrocatalysis for Degradation of Phenol in a Photoreactor

    Institute of Scientific and Technical Information of China (English)

    樊彩梅; 王艳; 梁镇海; 王韵芳; 郝晓刚; 孙彦平

    2009-01-01

    TiO2/C particles as photocatalyst were prepared by dipping TiO2 suspension solution with activated carbon and were applied in the photocatalytic-electrocatalytic degradation of phenol,the Ti/SnO2+Sb2O3/PbO2 electrode and oxygen diffusion electrode were used as anode and cathode respectively,and a 250 W ultraviolet lamp (365 nm) as side light source.The SEM results of TiO2/C and Ti/SnO2+Sb2O3/PbO2 anode indicated that the TiO2 on carbon particles was uniform and PbO2 film on the surface of anode was in cauliflower form,the XRD result of oxygen diffusion electrode showed that only crystalline graphite was found.The influential parameters of degradation process such as applied cell voltage (E),initial concentration of phenol (C0),amount of TiO2 catalyst and air flow rate (v) were discussed.Under the following experimental conditions of C0=50 mg/L,pH=6,E=2 V,TiO2 0.98 mg/mL,v=382.2 mL/min,and light intensity I=10.5 mW/cm2,phenol could be entirely degraded,and about 89% of total organic carbon (TOC) was removed after 3 h degradation.

  17. Effect of oxidation on amine-based pharmaceutical degradation and N-Nitrosodimethylamine formation.

    Science.gov (United States)

    Wang, Xiaofeng; Yang, Hongwei; Zhou, Beihai; Wang, Xiaomao; Xie, Yuefeng

    2015-12-15

    Four pharmaceuticals (ranitidine, nizatidine, doxylamine, and carbinoxamine) were selected as model compounds to assess the efficiency of four oxidants (ozone (O3), chlorine (Cl2), chlorine dioxide (ClO2) and potassium permanganate (KMnO4)) on the removal of amine-based pharmaceutical and personal care products (PPCPs), as well as the reduction of their N-Nitrosodimethylamine formation potentials (NDMAFPs). The changes in PPCPs and their NDMAFPs during oxidation were quantified using various oxidants and dosages. The relationship between oxidation product structures and NDMAFP changes was also analyzed. The results showed that oxidation with O3, Cl2 and ClO2 were effective in removing the selected PPCPs. However, only ozonation was effective in reducing their NDMAFPs. Ozonation at 6 mg/L removed approximately 90% PPCPs and 90% NDMAFPs for all PPCPs. In addition, the results indicated that ozonation products made little contribution to NDMAFPs. In contrast, some PPCP products had higher NDMAFPs than PPCPs after oxidation with Cl2, ClO2 and KMnO4. There were two possible reaction pathways that led to decrease in NDMAFPs after oxidation. One was oxygen transfer to nitrogen at the tertiary amine site and the other was N-dealkylation from the tertiary amine site. PMID:26469132

  18. Mechanism and kinetic properties of OH-initiated atmospheric oxidation degradation of methamidophos in the presence of O2/NO

    Science.gov (United States)

    Shi, Xiangli; Zhang, Ruiming; Zhang, Qingzhu; Wang, Wenxing

    2016-05-01

    Methamidophos is a member of the organophosphorus insecticides. In the present work, the mechanism of the OH radical-initiated atmospheric oxidation degradation of methamidophos and the possible degradation products were investigated with the aid of quantum chemical calculations. The geometrical parameters and vibrational frequencies were calculated at the MPWB1K/6-31+G(d,p) level. The energies of all the stationary points were carried out at the MPWB1K/6-311+G(3df,2p) level of theory. The rate constants of key elementary steps involved in the OH radical-initiated atmospheric degradation of methamidophos were calculated by meaning of the canonical variation transition-state (CVT) theory with the small curvature tunneling (SCT) correction over the possible atmospheric temperature range of 273-333 K. The rate-temperature formulas were fitted for the first time. The pre-exponential factor and the activation energy were obtained. Studies show that the OH additions from the trans-positions of the NH2 and OCH3 groups, the H abstractions from the SCH3 and OCH3 groups as well as the substitution reaction resulting in the products of CH3OP(O)OHNH2 and SCH3 are thermodynamically favorable reaction pathways for the reaction of methamidophos with OH radicals due to the low barrier and strong exothermicity.

  19. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction is...... markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline was...

  20. Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    Science.gov (United States)

    Luo, Lijun; Yang, Ye; Zhang, Ali; Wang, Min; Liu, Yongjun; Bian, Longchun; Jiang, Fengzhi; Pan, Xuejun

    2015-10-01

    The surface fluorinated TiO2/reduced graphene oxide nanocomposites (denoted as F-TiO2-RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO2 particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F- ion adsorbed on the surface of TiO2-RGO surface can enhance photocatalytic activity of F-TiO2-RGO. The photocatalytic activities of F-TiO2-RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F-TiO2-10RGO (0.01501 min-1) was 3.41 times than that over P25 (0.00440 min-1). The result indicated that the enhanced photocatalytic activity of F-TiO2-10RGO was ascribed to the adsorbed F ion and RGO in F-TiO2-RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  1. Spray pyrolysis deposited zinc oxide films for photo-electrocatalytic degradation of methyl orange: influence of the pH

    International Nuclear Information System (INIS)

    Zinc oxide films were made by spray pyrolysis equipped with an optical system for in-situ thickness measurement; zinc acetate water solution was used as spraying solution. The pH of the spraying solution was modified in order to increase the film porosity. Morphology and structure of the films were analyzed by scanning electron microscopy and x-ray diffraction, respectively. X-ray pattern revealed that films were zincite-like with a preferential growth in the [002]-direction. The optical absorbance of the methyl orange aqueous solution and the optical transmittance of ZnO-based films were measured in the wavelength range of 350-800 nm. Those measurements allowed both to control the photo-electrocatalytic degradation of methyl orange and to correlate the optical measurements with surface morphology of ZnO-based films. The zinc oxide based films obtained at different pH conditions of the spraying solution were brought into contact with methyl orange aqueous solution in a reactor in which the photo-electrocatalytically induced degradation under ultraviolet irradiation was investigated; the reactor was provided by an optical system to measure the in-situ optical transmittance of methyl orange solution. Results indicated that there is an increment of the active area of ZnO thin films when the pH of the spraying solution increases. (authors)

  2. Radiation synthesis of CdS/reduced graphene oxide nanocomposites for visible-light-driven photocatalytic degradation of organic contaminant

    Science.gov (United States)

    Fu, Xiaoyang; Zhang, Youwei; Cao, Pengfei; Ma, Huiling; Liu, Pinggui; He, Lihua; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-06-01

    CdS/reduced graphene oxide (CdS/RGO) nanocomposites were successfully synthesized via a one-step gamma-ray radiation-induced reduction method. The composition and structure of the prepared nanocomposites were characterized by thermal gravimetric analysis, micro FTIR spectroscopy, UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. It was found that increasing dose could improve the degree of reduction of graphite oxide (GO), and the feed ratio of GO to CdCl2·2.5H2O significantly influenced the size and dispersion of the CdS nanoparticles. The nanocomposites prepared under dose of 300 kGy and the feed ratio of GO to CdCl2·2.5H2O 1.0 wt% exhibited high visible-light photocatalytic performance for the degradation of Rhodamine B with degradation efficiency of 93%. This work provides a novel and facile method to produce the nanocomposites as efficient photocatalysts for the removal of organic contaminants from aqueous solution.

  3. Investigation of oxidative degradation and non‐enzymatic browning reactions in krill and fish oils

    DEFF Research Database (Denmark)

    Thomsen, Birgitte Raagaard; Haugsgjerd, Bjørn Ole; Griinari, Mikko; Lu, Henna Fung Sieng; Bruheim, Inge; Vogt, Gjermund; Oterhals, Åge; Jacobsen, Charlotte

    2013-01-01

    The aim of this research was to investigate the oxidation progress and pathways of krill and fish oil during 21 days of incubation at 40°C. The oxidative stability of the oils was investigated through: (i) classical methods such as peroxide value (PV), anisidine value (AV), thiobarbituric reactive...... conditions using the Oxipres™ at 90°C. The results from analysis of PV, AV, TBARS, conjugated dienes and trienes, and the antioxidant content suggested that krill oil was more oxidatively stable than fish oil. However, the color or other constituents of the krill oil might affect the result of these...... products and pyrroles formed as a result of non‐enzymatic browning reactions could only be observed in krill oil. The presence of pyrroles might have contributed to the higher oxidative stability of krill oil. Krill oil also contained a higher level of tocopherol, astaxanthin and phospholipids than fish...

  4. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    Science.gov (United States)

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  5. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. PMID:26426294

  6. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    Directory of Open Access Journals (Sweden)

    Annabel Fernandes

    2014-12-01

    Full Text Available The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were also assessed. Both the flow rate and the applied current density have shown positive influence on the oxytetracycline oxidation rate. On the other hand, the mineralization degree presented the highest values at the lowest flow rate and the lowest current density tested. The main oxidation by-products detected were oxalic, oxamic and maleic acids.

  7. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    OpenAIRE

    Annabel Fernandes; Catarina Oliveira; MARIA J PACHECO; Lurdes Ciríaco; Ana Lopes

    2014-01-01

    The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were als...

  8. C.I. Reactive Black 5 degradation by advanced electrochemical oxidation process, AEOP

    OpenAIRE

    Esteves, M. de Fátima; Sousa, Elisabete,1954-

    2007-01-01

    In the last decades, an increasing number of procedures to remove pollutants from wastewater have been reported. Advanced oxidation processes (AOPs) are one of those technologies used for this purpose, namely, for textile wastewater treatment. AOPs are environmentally friendly methods based on chemical, photochemical or photocatalytical production of hydroxyl radical (HO•). This strong oxidant can react with most organic compounds present in wastewater, as dyestuffs. In this paper, an Advance...

  9. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    Science.gov (United States)

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  10. Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Chen, Ming; Hendriksen, Peter Vang;

    2016-01-01

    Establishing the spatial distribution of the various chemical and electrochemical potentials in an operating SOEC is critical as several degradation mechanisms are tightly connected to them, but at the same time very challenging to achieve experimentally. Such distributions are presented here...... conductivities in the electrolyte, the gas composition, temperature, and pressure on the current density distribution over the cell and the oxygen activity distribution within the electrolyte. The developed model is further used to simulate long-term durability experiments during different stages of operation......, thereby helping to rationalize microstructural and chemical changes observed in post-mortem analysis. Finally, measures to mitigate degradation by changing conditions of operation, material or electrode properties or overall cell geometry are suggested....

  11. Photocatalytic Degradation of p-Cresol by Zinc Oxide under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Nor Azah Yusof

    2011-12-01

    Full Text Available Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC. The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO and 100 ppm of p-cresol. P-cresol photocatalytic degradation was favorable in the pH range of 6–9. The detected intermediates were 4-hydroxy-benzaldehyde and 4-methyl-1,2-benzodiol. TOC studies show that 93% of total organic carbon was removed from solution during irradiation time. Reusability shows no significant reduction in photocatalytic performance in photodegrading p-cresol.

  12. Oxidative and reductive degradation of sulfamethoxazole in aqueous solutions. Decomposition efficiency and toxicity assessment

    International Nuclear Information System (INIS)

    Under radiolytic conditions at a concentration of 0.1 mmol dm-3 the reactions of sulfamethoxazole, a worldwide used anti-infective sulfonamide antibiotic, were mainly induced by hydroxyl radicals. With a dose of 5 kGy complete degradation of aromatic system was observed. The sulfur of the molecule was entirely transformed to SO42-, while NO3- and NH4+ were formed from the nitrogen content. The chemical oxygen demand and total organic carbon values indicated complete mineralization during irradiation. In pursuance of toxicity tests, the observed increase in mortality of Vibrio fischeri bacteria was mainly due to H2O2 formed during the radiolytic procedure. The results showed that the degradation was effective; therefore, the irradiation technology can be recommended for treatment of wastewater containing sulfamethoxazole. (author)

  13. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    OpenAIRE

    Ali Nickheslat; Mohammad Mehdi Amin; Hassan Izanloo; Ali Fatehizadeh; Seyed Mohammad Mousavi

    2013-01-01

    Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The ef...

  14. The proteasome and the degradation of oxidized proteins: Part I—structure of proteasomes

    Directory of Open Access Journals (Sweden)

    Tobias Jung

    2013-01-01

    Full Text Available The main machinery responsible for cellular protein maintenance is the ubiquitin-proteasomal system, with its core particle the 20S proteasome. The main task of the system is a fast and efficient degradation of proteins not needed anymore in cellular metabolism. For this aim a complex system of regulators evolved, modifying the function of the 20S core proteasome. Here we summarize shortly the structure of the 20S proteasome as well as its associated regulator proteins.

  15. Oxidative degradation of salicylic acid by sprayed WO{sub 3} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohite, S.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2015-10-15

    Highlights: • The photoactivity of sprayed WO{sub 3} thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO{sub 3} thin films were deposited using spray pyrolysis technique. The prepared WO{sub 3} thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO{sub 3} films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (I{sub ph} = 261 μA/cm{sup 2}) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO{sub 3} has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO{sub 3} thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO{sub 3} film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO{sub 3} photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value.

  16. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes.

    Science.gov (United States)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2014-08-01

    Electrochemical oxidation is a promising technique for degradation of otherwise recalcitrant organic micropollutants in waters. In this study, the applicability of electrochemical oxidation was investigated concerning the degradation of the groundwater pollutant 2,6-dichlorobenzamide (BAM) through the electrochemical oxygen transfer process with two anode materials: Ti/Pt90-Ir10 and boron doped diamond (Si/BDD). Besides the efficiency of the degradation of the main pollutant, it is also of outmost importance to control the formation and fate of stable degradation intermediates. These were investigated quantitatively with HPLC-MS and TOC measurements and qualitatively with a combined HPLC-UV and HPLC-MS protocol. 2,6-Dichlorobenzamide was found to be degraded most efficiently by the BDD cell, which also resulted in significantly lower amounts of intermediates formed during the process. The anodic degradation pathway was found to occur via substitution of hydroxyl groups until ring cleavage leading to carboxylic acids. For the BDD cell, there was a parallel cathodic degradation pathway that occurred via dechlorination. The combination of TOC with the combined HPLC-UV/MS was found to be a powerful method for determining the amount and nature of degradation intermediates. PMID:24873711

  17. Involvement of Hydrogen Peroxide Generated by Polyamine Oxidative Degradation in the Development of Lateral Roots in Soybean

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to determine whether hydrogen peroxide (H2O2) generated by polyamine oxidative degradation is involved in the development of lateral roots in soybean, the length and the number of lateral roots, the activities of polyamine oxidases and diamine oxidases, and the endogenous free polyamine and H2O2 content were analyzed in soybean (Glycine max (Linn.) Merr.) main roots of 2-d-old seedlings after treatments for 2 d with exogenous β-hydroxyethylhydrazine (an inhibitor of polyamine oxidases), H2O2, putrescine, cyclohexylamine (an inhibitor of spermidine synthase) or N,N'-dimethylthiourea (a scavenger of hydrogen peroxide).β-hydroxyethylhydrazine treatment strongly inhibited the development of lateral roots in soybean seedlings,reduced the activities of polyamine oxidases and diamine oxidases, decreased H2O2 levels, and led to the accumulation of endogenous polyamines in the main roots. The inhibitory effect of β-hydroxyethylhydrazine on root development could be alleviated by exogenously applied 10 μmol/L H2O2 (a major product of polyamine oxidation). Treatment with cyclohexylamine and putrescine promoted root growth slightly, but treatment with cyclohexylamine plus N,N'-dimethylthiourea or putrescine plus N,N'-dimethylthiourea prevented the development of soybean lateral roots. The effects of these treatments on the development of soybean lateral roots were consistent with the changes in endogenous H2O2 levels. These results suggest that the development of soybean lateral roots is associated with the oxidative degradation of polyamines, and that their products,especially H2O2, are likely to play an important role in the growth of soybean lateral roots.

  18. Stress degradation study and structure characterization of oxidation degradation product of dexlansoprazole using liquid chromatography-mass spectrometry/time of flight, liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    Lakkireddy PRAKASH; M HIMAJA

    2016-01-01

    The present study deals with the forced degradation behavior of dexlansoprazole under International Conference on Harmonisation( ICH)prescribed stress conditions. The drug was found to be more labile under acid,base,neutral,oxidative hydrolysis and thermal stress,while it was moderately stable under photolytic conditions. The known and unknown degradation products were separated on a C-18 column using a stability-indicating method. Liquid chromatography-mass spectrometry( LC-MS)analysis was performed for all the deg-radation studies. Isolation and structure characterization of oxidation degradation products were executed using sophisticated tools,viz. preparative high performance liquid chromatography( HPLC),liquid chromatography-mass spectrometry/time of flight( LC-MS/TOF),liquid chromatography-tandem mass spectrometry( LC-MS/MS),and nuclear magnetic resonance( NMR). This study demonstrates an ample methodology of degradation studies and structure elucidation of unknown degradation products of dexlansoprazole,which helps in the development and stability study of active pharmaceutical ingredients and formulated products.

  19. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human Bronchi

    DEFF Research Database (Denmark)

    Harris, C.C.; Autrup, Herman; Connor, R.;

    1976-01-01

    The binding of benzo[a]pyrene to DNA in cultured human bronchus was measured in specimens from 37 patients. The binding values ranged from 2 to 151 picomoles of benzo[a]pyrene per milligram of DNA with an overall mean +/- standard error of 34.2 +/- 5.2. This 75-fold interindividual variation in t...

  20. Kinetic modeling of the oxidative degradation of additive free PE in bleach disinfected water

    Science.gov (United States)

    Mikdam, Aïcha; Colin, Xavier; Billon, Noëlle; Minard, Gaëlle

    2016-05-01

    The chemical interactions between PE and bleach were studied at 60°C in immersion in bleach solutions kept at a free chlorine concentration of 100 ppm and a pH of 5 or 7.2. It was found that the polymer undergoes a severe oxidation from the earliest weeks of exposure, in a superficial layer whose thickness (of about 50-70 µm) is almost independent of the pH value, although the superficial oxidation rate is faster in acidic than in neutral medium. Oxidation leads to the formation and accumulation of a large variety of carbonyl products (mostly ketones and carboxylic acids) and, after a few weeks, to a decrease in the average molar mass due to the large predominance of chain scissions over crosslinking. A scenario was elaborated for explaining such unexpected results. According to this scenario, the non-ionic molecules (Cl2 and ClOH) formed from the disinfectant in the water phase, would migrate deeply into PE and dissociate into highly reactive radicals (Cl• and HO•) in order to initiate a radical chain oxidation. A kinetic model was derived from this scenario for predicting the general trends of the oxidation kinetics and its dependence on environmental factors such as temperature, free chlorine concentration and pH. The validity of this model was successfully checked by comparing the numerical simulations with experimental data.

  1. EFFECTS OF ORGANIC COLORANTS ON PHOTO-INITIATED CROSSLINKING AND PHOTO-OXIDATION DEGRADATION OF POLYETHYLENE AND RELATED MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Guo-bing Zhang; Qiang-hua Wu; Bao-jun Qu

    2008-01-01

    The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations, X-ray photoelectron spectroscopy (XPS), mechanical property tests, UV spectroscopy, and light microscope. The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) samples show that the three colorants can decrease the efficiency of photo-initiated crosslinking of polyethylene to some different degree, in which the effect of red colorant is the largest among the three colorants. The colorized samples of 1 mm thickness are easily to be crosslinked to a satisfactory gel content of about 70% by the MWE lamp and optimized reaction conditions, such as the concentration of colorant, irradiation time,and so on. The XPS results give the evidence that the colorants can accelerate the surface photo-oxidation during the photo-crosslinking of polyethylene. The photo-oxidation products such as -CH2-O-and-C(C=O)-groups on the surface of XLPE samples with the colorants apparently increase with increasing the irradiation time. The data from the mechanical tests show that the colorants reduce the tensile strength and improve the elongation at break of XLPE samples. All the above results show that the effects of the three colorants on photo-initiated crosslinking and photo-oxidative degradation decrease with the order of red > blue > green colorants. The light microscope photos show that the colorant can disperse well in PE resin. The mechanism of the colorant effects can be elucidated by comparison of the UV absorption spectra of photo-initiator and colorants. This is because the colorants absorb the same UV wavelength regions as photo-initiator, and thus decrease the photo-crosslinking efficiency of photo-initiator and accelerate the

  2. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  3. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    Science.gov (United States)

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. PMID:26841289

  4. Identification of hydrolytic and isomeric N-oxide degradants of vilazodone by on line LC-ESI-MS/MS and APCI-MS.

    Science.gov (United States)

    Kalariya, Pradipbhai D; Talluri, M V N Kumar; Patel, Prinesh N; Srinivas, R

    2015-01-01

    The present study reports the degradation behavior of a new antidepressant drug, vilazodone, under various stress conditions as per International Conference on Harmonization guidelines (ICH, Q1A(R2). The investigation involved monitoring decomposition of the drug under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions and identifying degradation products. A rapid, precise, accurate and robust ultra high performance liquid chromatography (UPLC) method has been developed on a Waters CSH Phenyl-Hexyl column (100 mm × 2.1 mm, 1.7 μm) using gradient elution of 10mM ammonium acetate buffer (pH 5.0) and acetonitrile as mobile phase. The drug was found to be degraded in hydrolytic (acidic and basic) and oxidative conditions, whereas it was stable under neutral hydrolytic, photolytic and thermal stress conditions. The method was extended to quadrupole time-of-flight mass spectrometry (QTOF-MS) for the structural characterization of degradation products. It has been observed that isomeric N-oxide degradation products were formed under oxidative stress condition. The exact location of N-oxidation in the drug was investigated using atmospheric pressure chemical ionization (APCI) due to the formation of characteristic fragment ions. These fragment ions resulted from Meisenheimer rearrangement owing to thermal energy activation at the vaporizer of APCI source. All degradation products were comprehensively characterized by UPLC-ESI-MS/MS and UPLC-APCI-MS experiments. The most probable mechanisms for the formation of degradation products have also been proposed. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per ICH guidelines. PMID:25459935

  5. Photocatalytic Degradation of p-Cresol by Zinc Oxide under UV Irradiation

    OpenAIRE

    Nor Azah Yusof; Yadollah Abdollahi; Abdul Halim Abdullah; Zulkarnain Zainal

    2011-01-01

    Photocatalytic degradation of p-cresol was carried out using ZnO under UV irradiation. The amount of photocatalyst, concentration of p-cresol and pH were studied as variables. The residual concentration and mineralization of p-cresol was monitored using a UV-visible spectrophotometer and total organic carbon (TOC) analyzer, respectively. The intermediates were detected by ultra high pressure liquid chromatography (UPLC). The highest photodegradation of p-cresol was observed at 2.5 g/L of ZnO ...

  6. Design of Visible-light driven catalysts for water oxidation and VOC degradation

    OpenAIRE

    Thalluri, Sitaramanjaneya Mouli

    2015-01-01

    The PhD thesis involves one or more articles that are either published,submitted or in the process of manuscript preparation. These all chapters are eloborated in context to the understandings and advancements involved during the PhD period. The whole thesis involves insights about synthesis and characterization of BiVO4 in the form of powder as well as thin films. It also describes the ability of BiVO4 powders and thin films in water splitting and volatile organic compound degradation

  7. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.

    OpenAIRE

    Wackett, L P; Brusseau, G A; Householder, S R; Hanson, R S

    1989-01-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monoo...

  8. Study of herbicide ametryne degradation in HDPE packaging using the advanced oxidation process by ionizing radiation

    International Nuclear Information System (INIS)

    This study is part of the project with the objective to evaluate pesticides degradation for decontamination of commercial polymeric packaging of high density polyethylene, HDPE, used in agriculture. The herbicide used to this study was the herbicide ametryne (commercial name, Gesapax 500), due to its great use, mainly on field crops and on corn. Ametryne is commercialized since 1975, and, depending on the pesticide formulation and type of application, residues may be detectable in water, soil and on the surfaces for months or years. In order to evaluate the efficiency of radiation processing on removal the pesticides contamination, HDPE packaging were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch system. The samples were irradiated with water, in various absorbed doses. Ametryne was analyzed by gas chromatography (GC Shimadzu 17A), after extraction with hexane/dichloromethane (1:1 v/v) solution. The calibration curve was obtained with a regression coefficient of 0.986, and the relative standard deviation was lower than 10%. The radiation processing yield was evaluated by the rate of ametryne degradation and by the destruction G-value (Gd). The electron beam irradiation processing, showed high efficiency in destroying ametryne in the HDPE packaging when the samples were irradiated in presence of small quantities of water. (author)

  9. Degradação de fármacos residuais por processos oxidativos avançados Degradation of residual pharmaceuticals by advanced oxidation processes

    Directory of Open Access Journals (Sweden)

    Silene Alessandra Santos Melo

    2009-01-01

    Full Text Available The concern about aquatic ecosystems and the potential risk of drinking water contamination by pharmaceuticals have stimulated the study of processes for the efficient degradation of these contaminants, since the conventional treatment have been inefficient on that purpose. The advanced oxidation processes (AOPs appear as viable alternatives due to their efficiency on the degradation of different classes of organic contaminants. This review presents an overview of the main AOP (O3, H2O2/UV, TiO2/UV, Fenton and photo-Fenton which have been applied to the degradation of different pharmaceuticals. The main results obtained, intermediates identified and toxicity data are presented.

  10. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H2O2/UV and O3.

    Science.gov (United States)

    Wang, Y Z; Yedeler, A; Kettrup, A

    2001-07-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants. PMID:11590760

  11. Degradation of Corn Oil Wastes by Fenton Reaction and Under Mildly Basic Media in the Presence of Oxidants Assisted with Sun Light

    Directory of Open Access Journals (Sweden)

    Josefina V.  Sanchez

    2008-01-01

    Full Text Available The degradation of water soluble corn oil wastes was carried out by Fenton reaction and also under mildly basic media in the presence of oxidants, such as hydrogen peroxide and persulfate, assisted with solar light. The degradation efficiency was obtained by analysis of chemical oxygen demand, carbon dioxide and gas chromatography. Over 90% of both chemical oxygen demand abatement and carbon dioxide recovery was accomplished by Fenton reaction. The presence of oxidants during the photodegradation resulted in high chemical oxygen demand abatement of the oil waste with the disappearance of the majority of the initial fatty acids present in the oil waste before treatment.

  12. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania.

    Science.gov (United States)

    Cao, Muhan; Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2016-04-01

    In this study, magnetic graphene oxide-loaded Ce-doped titania (MGO-Ce-TiO2) hybridized composite was prepared by a facile method. The as-prepared samples exhibited good adsorption capacity, high visible-light photoactive and magnetic separability as a novel photocatalyst in the degradation of tetracyclines (TC). The intermediate products and photocatalytic route of TC were proposed based on the analysis results of LC-MS. Moreover, the repeatability of the photoactivity with the use of MGO-Ce-TiO2 was investigated in the multi-round experiments with the assistance of an applied magnetic field. Therefore, the prepared composite photocatalysts were considered as a kind of promising photocatalyst in a suspension reaction system, in which they can offer effectively recovery ability. The effect of MGO content on the photocatalytic performance was also studied, and an optimum content was obtained. PMID:26799623

  13. Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90.

    Science.gov (United States)

    Averna, Monica; Stifanese, Roberto; De Tullio, Roberta; Salamino, Franca; Bertuccio, Mara; Pontremoli, Sandro; Melloni, Edon

    2007-12-01

    Ca2+ loading of Jurkat and bovine aorta endothelium cells induces the degradation of the neuronal and endothelial nitric oxide synthases that are selectively expressed in these cell lines. For neuronal nitric oxide synthase, this process involves a conservative limited proteolysis without appreciable loss of catalytic activity. By contrast, endothelial nitic oxide synthase digestion proceeds through a parallel loss of protein and catalytic activity. The chaperone heat shock protein 90 (HSP90) is present in a large amount in Jurkat cells and at significantly lower levels in bovine aorta endothelium cells. The differing ratios of HSP90/nitric oxide synthase (NOS) occurring in the two cell types are responsible for the conservative or nonconservative digestion of NOS isozymes. Consistently, we demonstrate that, in the absence of Ca2+, HSP90 forms binary complexes with NOS isozymes or with calpain. When Ca2+ is present, a ternary complex containing the three proteins is produced. In this associated state, HSP90 and NOS forms are almost completely resistant to calpain digestion, probably due to a structural hindrance and a reduction in the catalytic efficiency of the protease. Thus, the recruitment of calpain in the HSP90-NOS complexes reduces the extent of the proteolysis of these two proteins. We have also observed that calpastatin competes with HSP90 for the binding of calpain in reconstructed systems. Digestion of the proteins present in the complexes can occur only when free active calpain is present in the system. This process can be visualized as a novel mechanism involving the association of NOS with HSP90 and the concomitant recruitment of active calpain in ternary complexes in which the proteolysis of both NOS isozymes and HSP90 is significantly reduced. PMID:17970747

  14. Characterization of Series Resistance and Mobility Degradation Parameter and Optimizing Choice of Oxide Thickness in Thin Oxide N-Channel MOSFET

    Directory of Open Access Journals (Sweden)

    Noureddine Maouhoub

    2011-01-01

    Full Text Available We present two methods to extract the series resistance and the mobility degradation parameter in short-channel MOSFETs. The principle of the first method is based on the comparison between the exponential model and the classical model of effective mobility and for the second method is based on directly calculating the two parameters by solving a system of two equations obtained by using two different points in strong inversion at small drain bias from the characteristic (. The results obtained by these techniques have shown a better agreement with data measurements and allowed in the same time to determine the surface roughness amplitude and its influence on the maximum drain current and give the optimal oxide thickness.

  15. Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers

    International Nuclear Information System (INIS)

    Estrone (E1), 17β-estradiol (E2), estriol (E3), equilin (EQ) and 17α-estradiol (17α) estrogen hormones are released by humans and animals and have been detected in the environment and municipal wastewater treatment plants. The structural and electronic properties of natural hormone molecules are investigated by performing density functional theory calculations and used to predict their properties and chemical behavior. Quantitative structure property relationship (QSPR) approach is applied to correlate the estrogenicity associated with the natural estrogen hormones according to their molecular properties. The obtained relationship reveals the importance of the frontier molecular orbital energy in the interpretation of estrogenic activity of hormones, which is consistent with the previous research. Moreover, the obtained molecular descriptors also aid determination of the degradability of hormones, and to rationalize degradation pathways, with chemical oxidizers such as ozone and hydroxyl radical. Both types of interactions belong to the orbital-controlled reactions. The active sites determined by Fukui functions for the estrogen hormone molecules confirm the reaction pattern that initiates the attack of the aromatic ring for both ozone and hydroxyl radical. The reactive sites of the molecules are mapped with subsequent reaction intermediates and compared with experimental data obtained from the literature. - Highlights: ►DFT methods described in this paper are suitable for predicting the degradation behavior of natural estrogen hormones. ►Using QSAR, the estrogenicity of natural hormones was determined by DFT descriptors. ►The sites of primary ozone and hydroxyl radical attack were predicted using DFT, and findings confirmed by experimental data.

  16. Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Rokhina, Ekaterina V.; Suri, Rominder P.S., E-mail: rominder.suri@temple.edu

    2012-02-15

    Estrone (E1), 17{beta}-estradiol (E2), estriol (E3), equilin (EQ) and 17{alpha}-estradiol (17{alpha}) estrogen hormones are released by humans and animals and have been detected in the environment and municipal wastewater treatment plants. The structural and electronic properties of natural hormone molecules are investigated by performing density functional theory calculations and used to predict their properties and chemical behavior. Quantitative structure property relationship (QSPR) approach is applied to correlate the estrogenicity associated with the natural estrogen hormones according to their molecular properties. The obtained relationship reveals the importance of the frontier molecular orbital energy in the interpretation of estrogenic activity of hormones, which is consistent with the previous research. Moreover, the obtained molecular descriptors also aid determination of the degradability of hormones, and to rationalize degradation pathways, with chemical oxidizers such as ozone and hydroxyl radical. Both types of interactions belong to the orbital-controlled reactions. The active sites determined by Fukui functions for the estrogen hormone molecules confirm the reaction pattern that initiates the attack of the aromatic ring for both ozone and hydroxyl radical. The reactive sites of the molecules are mapped with subsequent reaction intermediates and compared with experimental data obtained from the literature. - Highlights: Black-Right-Pointing-Pointer DFT methods described in this paper are suitable for predicting the degradation behavior of natural estrogen hormones. Black-Right-Pointing-Pointer Using QSAR, the estrogenicity of natural hormones was determined by DFT descriptors. Black-Right-Pointing-Pointer The sites of primary ozone and hydroxyl radical attack were predicted using DFT, and findings confirmed by experimental data.

  17. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents

    OpenAIRE

    Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien

    2013-01-01

    Background This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages o...

  18. Manganese oxyhydroxide and oxide nanofibers for high efficiency degradation of organic pollutants

    International Nuclear Information System (INIS)

    Ultrathin MnOOH nanofibers were synthesized on a large scale from diluted Mn(NO3)2 aqueous solution at room temperature. These MnOOH nanofibers were shape-reservedly converted into Mn3O4 and MnO2 nanofibers by post-heat treatment in air at 400 deg. C and 600 deg. C for 1 h, respectively. The morphology and crystalline structures of the nanofibers were characterized by electronic microscopes and x-ray diffraction. These nanofibers had good crystalline structures. These nanofibers were in bundles with a diameter of 25 nm composed of 3-5 nm fine crystalline nanofibers. The Mn3O4 nanofibers had a specific surface area of 71 m2 g-1 and demonstrated highly catalytic degradation of the organic pollutant methylene blue with the assistance of H2O2 at room temperature.

  19. Recovery of thermal-degraded ZnO photodetector by embedding nano silver oxide nanoparticles

    Science.gov (United States)

    Hu, Zhan-Shuo; Hung, Fei-Yi; Chen, Kuan-Jen; Chang, Shoou-Jinn; Hsieh, Wei-Kang; Liao, Tsai-Yu; Chen, Tse-Pu

    2013-08-01

    The degraded performance of annealed ZnO-based photodetector can be recovered by embedding Ag2O nanoparticles resulted from the transformation of as-deposited Ag layer. After thermal treatment, the electrons were attracted at the interface between ZnO and Ag2O. The excess Ag+ ions form the cluster to incorporate into the interstitial sites of ZnO lattice to create a larger amount of lattice defects for the leakage path. The photo-current of ZnO film with Ag2O nanoparticles is less than annealed ZnO film because the photo-induced electrons would flow into Ag2O side. ZnO photodetector with the appropriate Ag2O nanoparticles possesses the best rejection ratio.

  20. Effect of heavy metals on the metabolism of benzo(a)pyrene in rats

    Energy Technology Data Exchange (ETDEWEB)

    Honey, S.A.; Yuan, Zhi-Xin; Kumar, S.; Sikka, H.C. [State Univ. of New York College, Buffalo, NY (United States)

    1996-12-31

    In order to investigate the interaction of heavy metals and PAHs, we have examined the effect of methylmercuric chloride and cadmium chloride on the oxidative metabolism by rats of benzo(a)pyrene [BaP], a model carcinogenic PAR Treatment of male rats with 2.5 or 5.0 mg/kg methylmercury (ip) reduced the rate of metabolism of BaP by liver microsomes by 38.7 and 62.2%, respectively. Cadmium was more potent than methylmercury, decreasing the rate of metabolism of BaP by 28.4, 52.2, and 69.7% by liver microsomes of rats treated with 0.5, 1.0, and 1.5 mg/kg of cadmium, respectively. The liver microsomes from animals treated with methylmercury or cadmium produced a greater proportion of BP-phenols and a lower portion of BP-diols than did the microsomes from untreated animals, suggesting that both metals also inhibit the activity of epoxide hydrase. Neither methylmercury nor cadmium had an effect on the proportion of BP-quinones formed by liver microsomes. Treatment of rats with methylmercury or cadmium did not inhibit the metabolism of BaP by liver microsomes from animals treated with 3-methylcholanthrene (3-MC) prior to metal administration, suggesting that 3-MC treatment protects against the effect of methylmercury or cadmium on the oxidative metabolism of BaP.

  1. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  2. Degradation of Trimethyl Phosphate on TiZrCe Mixed Oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela

    Singapore: IACSIT Press, 2014 - (Liu, J.), s. 41-45. (International Proceedings of Chemical, Biological and Environmental Engineering. 78). ISBN 978-981-09-3005-9. ISSN 2010-4618. [International Conference on Environment, Chemistry and Biology /3./. Port Louis (MU), 29.11.2014-30.11.2014] R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : homogeneous hydrolysis * urea * TMP * mixed oxides Subject RIV: CA - Inorganic Chemistry http://www.ipcbee.com/vol78/008-ICECB2014-D0019.pdf

  3. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  4. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.

    Science.gov (United States)

    Kumar, Sumeet; Ojha, Animesh K; Walkenfort, Bernd

    2016-06-01

    Cadmium oxide (CdO) nanoparticles (NPs), reduced graphene oxide (rGO) and rGO-CdO nanocomposites have been synthesized using one step hydrothermal method. The structural and optical properties of CdO NPs, rGO, and rGO-CdO nanocomposites were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-Vis.) and photoluminescence (PL) spectroscopy techniques. The rGO has a sharp 2D peak compared to GO. The sharp nature of 2D band may be due to the larger contribution from single layer sheet. The photocatalytic activity of the synthesized samples has been investigated under UV irradiation. The results of photocatalytic measurements revealed that ~80% of MB dye is degraded by adding the rGO-CdO nanocomposites as photocatalysts into the dye solution. The decrease in the intensity of emission peaks indicates that the photogenerated charge carriers have been transferred from CdO NPs to rGO sheets, which causes to increase the density of O2(-) and OH radicals in the dye solution. The CdO nanoparticles gown on the rGO sheets showed enhanced ferromagnetism (FM) at room temperature, which may be attributed to the short range magnetic interaction of magnetic moments of CdO NPs and spin units present on the rGO sheets. PMID:27045279

  5. Radiation-induced degradation and crosslinking of poly(ethylene oxide) in solid state

    International Nuclear Information System (INIS)

    The effects of γ-irradiation on solid poly(ethylene oxide) (PEO) of an initial weight-average molecular weight of 6.3 x 105 Da were investigated by gel permeation chromatography and viscometry. The parameters studied were changes in number- and weight-average molecular weight, molecular weight distribution and viscosity of PEO in aqueous solution. Irradiation of poly(ethylene oxide) powder in the presence of oxygen leads to the dominance of chain scission reactions. Their high radiation-chemical yield [G(scission) ∼ 2.5 x 10-6 mol/J] indicates the occurrence of effective chain reactions. Upon irradiation in vacuum, crosslinking and scission occur side-by-side and the changes in molecular weight are less pronounced in the studied dose range (up to 20 kGy). Scission dominates for doses up to ca. 15 kGy, while for higher doses intermolecular crosslinking gains in importance. The competition between these processes seems to depend not only on the applied dose but also to be influenced by the inhomogeneity of the material (molecular weight and/or possibly the crystallinity). Parallel occurrence of scission and crosslinking leads to the broadening of the molecular weight distribution. (author)

  6. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    Science.gov (United States)

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. PMID:23863375

  7. Hot-carrier degradation for 90 nm gate length LDD-NMOSFET with ultra-thin gate oxide under low gate voltage stress

    Institute of Scientific and Technical Information of China (English)

    Chen Hai-Feng; Hao Yue; Ma Xiao-Hua; Li Kang; Ni Jin-Yu

    2007-01-01

    The hot-carrier degradation for 90 nm gate length lightly-doped drain (LDD) NMOSFET with ultra-thin (1.4 nm) gate oxide under the low gate voltage (LGV) (at Vg=Vth,where Vth is the threshold voltage) stress has been investigated.It is found that the drain current decreases and the threshold voltage increases after the LGV (Vg=Yth) stress.The results are opposite to the degradation phenomena of conventional NMOSFET for the case of this stress.By analysing the gate-induced drain leakage (GIDL) current before and after stresses,it is confirmed that under the LGV stress in uItra-short gate LDD-NMOSFET with ultra-thin gate oxide,the hot holes are trapped at interface in the LDD region and cannot shorten the channel to mask the influence of interface states as those in conventional NMOSFET do.which leads to the different degradation phenomena from those of the conventional NMOS devices.This paper also discusses the degradation in the 90 nm gate length LDD-NMOSFET with 1.4 nm gate oxide under the LGV stress at Vg=Vth with various drain biases.Experimental results show that the degradation slopes(n) range from 0.21 to 0.41.The value of n is less than that of conventional MOSFET(0.5-0.6) and also that of the long gate length LDD MOSFET (~0.8).

  8. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  9. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    Science.gov (United States)

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. PMID:26386660

  10. The influence of atmospheric species on the degradation of aluminum doped zinc oxide and Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.J.; Foster, C.; Dasgupta, S.; Vroon, Z.A.E.P.; Barreau, N.; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbondioxide (CO2), oxygen (O2), nitrogen (N2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical, c

  11. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  12. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  13. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  14. Oxide degradation effects in dry patterning of resist using neutral oxygen beams

    International Nuclear Information System (INIS)

    Novel processing methods are being studied to address the highly selective and directional etch requirements of the ULSI manufacturing era; neutral molecular and atomic beams are two promising candidates. In this study, the potential of 5 eV neutral atomic oxygen beams for dry development of photoresist is demonstrated for application in patterning of CMOS devices. The patterning of photoresist directly on polysilicon gate layers enables the use of a self-contained dry processing strategy, with oxygen beams for resist etching and chlorine beams for polysilicon etching. Exposure to such reactive low-energy species and to the UV radiation from the line-of-sight, high-density plasma source can, however, after MOSFET gate oxide quality, impacting device performance and reliability. We have studied this processing related device integrity issue by subjecting polysilicon gas MOS structures to exposure treatments similar to those used in resist patterning using low energy oxygen beams. Electrical C-V characterization shows a significant increase in the oxide trapped charge and interface state density upon low energy exposure. I-V and dielectric breakdown characterization show increased low-field leakage characteristics for the same exposure. High-field electron injection studies reveal that the 0.25-V to 0.5-V negative flatband shifts can be partially annealed by the carrier injection. This could be due to positive charge annihilation or electron trapping, or some combination of both. Physical and analysis of patterned resist layers and electrical characterization data of MOS structures exposed to different neutral beam processing environments and following thermal annealing treatments is presented

  15. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lian; Sun, Binzhe; Wei, Mingyu; Luo, Shilu; Pan, Fei; Xu, Aihua [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia, E-mail: lixxwh@163.com [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China)

    2015-03-21

    Highlights: • OMS-2/PMS/Vis system could efficiently catalyze the degradation of organic dyes. • The system showed much higher activity than that of OMS-2/PMS and OMS-2/Vis. • The OMS-2 catalyst exhibited stable performance for multiple runs. • Sulfate radicals were suggested to be the major reactive species in the system. • The radicals production might involve the redox cycle of Mn(IV)/Mn(III) and Mn(III)/Mn(II). - Abstract: In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7.

  16. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation

    International Nuclear Information System (INIS)

    Highlights: • OMS-2/PMS/Vis system could efficiently catalyze the degradation of organic dyes. • The system showed much higher activity than that of OMS-2/PMS and OMS-2/Vis. • The OMS-2 catalyst exhibited stable performance for multiple runs. • Sulfate radicals were suggested to be the major reactive species in the system. • The radicals production might involve the redox cycle of Mn(IV)/Mn(III) and Mn(III)/Mn(II). - Abstract: In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7

  17. Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water

    Science.gov (United States)

    Darabdhara, Gitashree; Boruah, Purna K.; Borthakur, Priyakshree; Hussain, Najrul; Das, Manash R.; Ahamad, Tansir; Alshehri, Saad M.; Malgras, Victor; Wu, Kevin C.-W.; Yamauchi, Yusuke

    2016-04-01

    Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst exhibits an excellent stability.Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles are successfully prepared via a chemical approach consisting of reducing the metal precursors using ascorbic acid as reductant at an elevated temperature. The prepared nanocomposite is employed as a photocatalyst for the degradation of organic contaminants such as phenol, 2-chlorophenol (2-CP), and 2-nitrophenol (2-NP). The complete degradation of phenol is achieved after 300 min under natural sunlight irradiation whereas the degradation of 2-CP and 2-NP is completed after 180 min. The activity of the photocatalyst is evaluated considering several parameters such as the initial phenol concentration, the photocatalyst loading, and the pH of the solution. The degradation kinetics of all the compounds is carefully studied and found to follow a linear Langmuir-Hinshelwood model. Furthermore, the reusability of the photocatalyst is successfully achieved up to five cycles and the catalyst

  18. Effects of nature organic matters and hydrated metal oxides on the anaerobic degradation of lindane,p,p'-DDT and HCB in sediments

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; QUAN Xie; ZHAO Hui-min; CHEN Jing-wen; CHEN Shou; ZHAO Ya-zhi

    2003-01-01

    Effects of natural organic matters(NOM) and hydrated metal oxides(HMO) in sediments on the anaerobic degradation of γ-666, p,p'-DDT and HCB were investigated by means of removing NOM and HMO in Liaohe River sediments sequentially. The results showed that the anaerobic degradation of γ-666, p,p'-DDT and HCB followed pseudo-first-order kinetics in different sediments; But, the extents and rates of degradation were different, even the other conditions remained the same. Anaerobic degradation rates of γ-666, p,p'-DDT and HCB were 0.020 d-1, 0.009 d-1 and 0.035 month-1 respectively for the sediments without additional carbon resources. However, with addition of carbon resources, the anaerobic degradation rates of γ-666, p, p'-DDT and HCB were 0.071d-1, 0.054d-1 and 0.088 month-1 in the original sediments respectively. After removing NOM, the rates were decreased to 0.047 d-1, 0.037 d-1 and 0.066 month-1; in the sediments removed NOM and HMO, the rates were increased to 0.067d-1, 0.059 d-1 and 0.086 month-1. These results indicated that NOM in the sediments accelerated the anaerobic degradation of γ-666, p,p'-DDT and HCB; the HMO inhibited the anaerobic degradation of γ-666, p,p'-DDT and HCB.

  19. Detoxification of azinophos methyl using gamma radiation mediated advance oxidation process and investigation of degradation products by HPLC and GC-MS

    International Nuclear Information System (INIS)

    Gamma radiolytic degradation of azinophos-methyl was studied in water and methanol separately, using 60Co as a radiation source under varied experimental conditions. Solution of azinophos-methyl was prepared in pure methanol at concentration of 50 μg ml-1, irradiated at gamma dose of 1 to 7 kGy and high performance liquid chromatography (HPLC) coupled with diode array detector was used to monitor the extent of degradation along with numbers of degradation products. At dose of 7 kGy ≥ 99% of azinophos-methyl was degraded. The degradation occurred by interaction of CH3O x and H x radicals generated by the radiolysis of high purity methanol while in water by x OH radical. The degradation in water was increased by 30% than in methanol due the high oxidation potential of x OH while keeping the gamma ray dose constant at 3 kGy. The generated degradation products were identified using GC-MS and their possible transformation pathways are proposed. It is suggested that use of ionization radiations can be an effective and efficient tool for the removal of organophosphate pesticides in waste water.

  20. Chemical composition, anti-oxidative activity and in vitro dry matter degradability of Kinnow mandarin fruit waste

    Directory of Open Access Journals (Sweden)

    Ravleen Kour

    2014-10-01

    Full Text Available Aim: Fruit processing and consumption yield a significant amount of by-products as waste, which can be used as potential nutrient suppliers for livestock. “Kinnow” (Citrus nobilis Lour x Citrus deliciosa Tenora is one of the most important citrus fruit crops of North Indian States. Its residues are rich in carbohydrates but poor in protein and account for approximately 55-60% of the raw weight of the fruit. Present study assessed the chemical composition and anti-oxidative activity of Kinnow mandarin fruit waste (KMW and scrutinized the impact of dietary incorporation of variable levels of KMW on in vitro dry matter digestibility (IVDMD. Materials and Methods: Sun dried and ground KMW was analyzed for proximate composition, fibre fractions and calcium and phosphorus content. Antioxidant potential of KMW as total phenolic count and 1-diphenyl-2-picrylhydrazyl (DPPH scavenging activity was assayed in an alcoholic extract of KMW. The effect of inclusion of KMW at variable levels (0-40% in the isonitrogenous concentrate mixtures on in vitro degradability of composite feed (concentrate mixture:Wheat straw; 40:60 was also carried out. Results: KMW after sun-drying contained 92.05% dry matter. The crude protein content of 7.60% indicates it being marginal in protein content, whereas nitrogen free extract content of 73.69% suggests that it is primarily a carbonaceous feedstuff. This observation was also supported by low neutral detergent fiber and acid detergent fiber content of 26.35% and 19.50%, respectively. High calcium content (0.92% vis-à-vis low phosphorus content (0.08%, resulted in wide Ca:P ratio (11.5 in KMW. High anti-oxidative potential of KMW is indicated by total phenolic content values of 17.1±1.04 mg gallic acid equivalents/g and DPPH free radicle scavenging activity 96.2 μg/ml (effective concentration 50. Mean IVDMD% of all the composite rations was found to be comparable (p>0.05 irrespective of the level of KMW inclusion

  1. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation.

    Science.gov (United States)

    Sygmund, Christoph; Kracher, Daniel; Scheiblbrandner, Stefan; Zahma, Kawah; Felice, Alfons K G; Harreither, Wolfgang; Kittl, Roman; Ludwig, Roland

    2012-09-01

    The genome of Neurospora crassa encodes two different cellobiose dehydrogenases (CDHs) with a sequence identity of only 53%. So far, only CDH IIA, which is induced during growth on cellulose and features a C-terminal carbohydrate binding module (CBM), was detected in the secretome of N. crassa and preliminarily characterized. CDH IIB is not significantly upregulated during growth on cellulosic material and lacks a CBM. Since CDH IIB could not be identified in the secretome, both CDHs were recombinantly produced in Pichia pastoris. With the cytochrome domain-dependent one-electron acceptor cytochrome c, CDH IIA has a narrower and more acidic pH optimum than CDH IIB. Interestingly, the catalytic efficiencies of both CDHs for carbohydrates are rather similar, but CDH IIA exhibits 4- to 5-times-higher apparent catalytic constants (k(cat) and K(m) values) than CDH IIB for most tested carbohydrates. A third major difference is the 65-mV-lower redox potential of the heme b cofactor in the cytochrome domain of CDH IIA than CDH IIB. To study the interaction with a member of the glycoside hydrolase 61 family, the copper-dependent polysaccharide monooxygenase GH61-3 (NCU02916) from N. crassa was expressed in P. pastoris. A pH-dependent electron transfer from both CDHs via their cytochrome domains to GH61-3 was observed. The different properties of CDH IIA and CDH IIB and their effect on interactions with GH61-3 are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis. PMID:22729546

  2. A screen for Benzo(apyrene in Fish Samples From Crude Oil Polluted Environments

    Directory of Open Access Journals (Sweden)

    C. Anyakora

    2008-01-01

    Full Text Available Several studies have shown that exposure to Benzo(apyrene increases the risk of cancer. In this study several fish samples from Niger the Delta region of Nigeria were screened for the presence of Benzo(apyrene. The study was carried out using Gas chromatograph coupled to a mass spectrometry detector. Benzo(apyrenes in the samples were identified through both retention time match with authentic standards and simultaneous maximization of several major ions from GC/MS data. Perylene-d12 was used as the internal standard for quantitation. Concentration of benzo(apyrene in the samples ranged from 1.47 to 10.53 µg/kg which is more than WHO recommended maximum allowable concentration. Therefore this study concludes that the population is at an elevated risk of cancer of occurrence.

  3. BENZO(A)PYRENE CONCENTRATIONS IN SOMATIC AND GONAD TISSUES OF BAY MUSSELS, 'MYTILUS EDULIS'

    Science.gov (United States)

    The purposes of the present study were to measure benzo(a)pyrene concentrations in the somatic and gonadal tissues of mytilus edulis and determine whether or not variations in those two tissue compartments could be related to seasonal fluctuations.

  4. Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.A.; Elbehairy, A.M.; Ghoneim, M.A.; Amer, H.A. [Cairo Univ., Giza (Egypt). Biochemistry Dept. and Biotechnology Center

    2007-03-15

    The current study was carried out to evaluate the potency of curcumin and chlorophyllin as natural antioxidants to reduce the oxidative stress markers induced by cyclophosphamide (CP) and benzo[a]pyrene [B(a)P] which were used as free radical inducers. For this purpose, 126 male albino rats were used. The animals were assigned into 4 main groups: negative control group; oxidant-treated group (subdivided into two subgroups: cyclophosphamide- treated group and benzo[a]pyrene-treated group); curcumin-treated group; and chlorophyllin-treated group. Liver samples were collected after two days post the oxidant inoculation and at the end of the experimental period (10 weeks). These samples were examined for determination of liver microsomal malondialdehyde (MDA), DNA fragmentation, restriction fragment length polymorphism (RFLP) and 8-hydroxy deoxyguanosine (8-OHdG) concentration. Both CP and B(a)P caused increments in DNA fragmentation percentages, liver microsomal MDA, concentration of 8-OHdG and induced point mutation. Treatment of rats with either curcumin or chlorophyllin revealed lower DNA fragmentation percentages, liver microsomal MDA concentration, concentration of 8-OHdG and prevented induction of mutations, i. e., reversed the oxidative stress induced by CP and B(a)P and proved that they were capable of protecting rats against the oxidative damage evoked by these oxidants. (orig.)

  5. Degradation of graphite in gas cooled reactors due to radiolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Moskovic, R., E-mail: robert.moskovic@magnoxnorthsites.com

    2014-04-01

    Magnox reactors employ pile grade A (PGA) graphite as a moderator. Reactor cores are constructed typically of twelve to thirteen layers of graphite bricks. Fuel channels (FC) are in the centre of all bricks and interstitial channels (IC) at the centre of the corners of every second set of four bricks. The reactor core is cooled by carbon dioxide, the temperature of graphite core increases from 250 °C at the bottom to 360 °C at the top of the core. The neutron dose increases progressively with the operating time of the reactor. The graphite core looses mass as a result of radiolytic oxidation. The process is dependent on both total energy deposition and temperature which correlates with core height. Fast neutron dose accumulates at the same rate as the total energy deposited and is readily available. The reduction of density of moderator graphite increases the porosity and in turn changes both the physical and mechanical properties of graphite. The mechanical properties and density of graphite are measured either on samples installed in the reactor prior to service or trepanned from graphite bricks. The data obtained on these samples are interrogated using probability modelling to establish trends with increasing service life. Results of the analyses are illustrated in the paper. PGA graphite is an aggregate of coarse needle coke filler particles within a matrix of fine coke flour particles mixed with pitch binder. The bricks are fabricated in the green condition by extrusion of dry calcinated coke impregnated with liquid pitch binder and then graphitized at 2800 °C. This produces a polygranular aggregate with orthotropic properties. The strength properties of graphite are measured using different types of tests. The most commonly used tests involve bending, uniaxial and diametral compression. The initiation and propagation of cracks was investigated to improve understanding of strength behaviour. Cracking was examined on macro-scale using optical microscopy and

  6. Photo catalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation

    International Nuclear Information System (INIS)

    Photo catalytic degradation of toxic organic chemicals is considered to be the most efficient green method for surface water treatment. We have reported the sol-gel synthesis of Gadoped anatase TiO2 nanoparticles and the photo catalytic oxidation of organic dye into nontoxic inorganic products under UV irradiation. Photodegradation experiments show very good photo catalytic activity of Ga-doped TiO2 nanoparticles with almost 90% degradation efficiency within 3 hrs of UV irradiation, which is faster than the undoped samples. Doping levels created within the bandgap of TiO2 act as trapping centers to suppress the photo generated electron-hole recombination for proper and timely utilization of charge carriers for the generation of strong oxidizing radicals to degrade the organic dye. Photo catalytic degradation is found to follow the pseudo-first-order kinetics with the apparent 1 st-order rate constant around 1.3 x 10-2 min-1. The cost-effective, sol-gel-derived TiO2 : Ga nanoparticles can be used efficiently for light-assisted oxidation of toxic organic molecules in the surface water for environmental remediation.

  7. In-situ synthesis of nanomagnetites on poly(amidoamine)-modified graphite oxides and their novel catalytic performances towards the degradation of p-nitroaniline

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hybrids of modified GO and in-situ synthesized magnetite were prepared. • The hybrid performed light-free catalyses on degradation of p-nitroaniline. • Air and aqueous medium were indispensible for the degradation. • The degradation performed fluently without adding H2O2 or pH adjusting. • Such novel properties differed from those of most reported GO hybrids. - Abstract: An approach of loading nanomagnetites (NMs), obtained by in-situ synthesis, on graphite oxides (GO) or poly(amidoamine)-modified GO (pGO) was described in detail in this work. Compared with the GO-NM, the pGO-NM hybrids performed excellent catalysis on degradation of aqueous p-nitroaniline in surrounding air and aqueous medium with a mechanical agitation without light irradiations and additional hydrogen peroxides. These properties differed tremendously from those of most reported metallic oxide-GO hybrids. The catalytic decomposing of the p-nitroaniline was recorded by the successive measurements of an ultraviolet–visible spectrometer. The chemical modifications on GO were investigated with infrared and X-ray photoelectron spectrometers. The hybrids of GO-NM and pGO-NM are estimated with ultraviolet–visible spectrometer, X-ray diffraction, transmission electron microscopy, cyclic voltammetry measurements and thermogravimetric analyses. The experimental results showed that the dissolved oxygen and water were involved in the degradation, which provided solid evidences for the mechanism discussion

  8. In-situ synthesis of nanomagnetites on poly(amidoamine)-modified graphite oxides and their novel catalytic performances towards the degradation of p-nitroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Cheng, Heming; Zhu, Chaoqun; Li, Shun; Cui, Ping, E-mail: cokecp@sohu.com

    2015-02-01

    Graphical abstract: - Highlights: • Hybrids of modified GO and in-situ synthesized magnetite were prepared. • The hybrid performed light-free catalyses on degradation of p-nitroaniline. • Air and aqueous medium were indispensible for the degradation. • The degradation performed fluently without adding H{sub 2}O{sub 2} or pH adjusting. • Such novel properties differed from those of most reported GO hybrids. - Abstract: An approach of loading nanomagnetites (NMs), obtained by in-situ synthesis, on graphite oxides (GO) or poly(amidoamine)-modified GO (pGO) was described in detail in this work. Compared with the GO-NM, the pGO-NM hybrids performed excellent catalysis on degradation of aqueous p-nitroaniline in surrounding air and aqueous medium with a mechanical agitation without light irradiations and additional hydrogen peroxides. These properties differed tremendously from those of most reported metallic oxide-GO hybrids. The catalytic decomposing of the p-nitroaniline was recorded by the successive measurements of an ultraviolet–visible spectrometer. The chemical modifications on GO were investigated with infrared and X-ray photoelectron spectrometers. The hybrids of GO-NM and pGO-NM are estimated with ultraviolet–visible spectrometer, X-ray diffraction, transmission electron microscopy, cyclic voltammetry measurements and thermogravimetric analyses. The experimental results showed that the dissolved oxygen and water were involved in the degradation, which provided solid evidences for the mechanism discussion.

  9. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil.

    Science.gov (United States)

    Zeng, Jun; Lin, Xiangui; Zhang, Jing; Li, Xuanzhen

    2010-11-15

    The goal of this study was to isolate PAHs degraders that can utilize PAHs associated with soil particulates and investigate the biodegradation of PAHs on agar plate, in liquid culture and soil. Two Mycobacterium strains (NJS-1 and NJS-P) were isolated from PAHs-contaminated farmland soil using enrichment based on soil slurry. The isolates could degrade five test PAHs including pyrene, phenanthrene, fluoranthene, anthracene and benzo[a]pyrene on plate, but showed different effects in liquid culture, especially for fluoranthene. Isolate NJS-1 was capable of utilizing benzo[a]pyrene as a sole carbon and energy source, and an enhanced degradation was observed when pyrene was supplied as cometabolic substrate. Reintroduction of the isolates into sterile contaminated soil resulted in a significant removal of aged pyrene and fluoranthene (over 40%) in 2-months incubation. In pyrene-spiked soil, the degradation of pyrene and fluoranthene increased to 90% and 50%, respectively. Comparing PAHs degradation on plate, in liquid culture and soil, we can conclude that there was corresponding degradation in different test systems. In addition, the degradation of aged PAHs in soil suggested the potential application of two isolates in further bioremediation. PMID:20724073

  10. Effects of benzo(a)pyrene exposure on the antioxidant enzyme activity of scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    PAN Luqing; REN Jiayun; ZHENG Debin

    2009-01-01

    Scallop Chlamys farreri was exposed to different concentrations of benzo(a)pyrene (BaP) (0.5 μg/L, 1.0 μg/L, 10.0 μg/L and 50.0 μg/L) for 30 days in seawater. The 7-ethoxyresorufin O-deethylase (EROD) activity was significantly induced, and increased with the increasing BaP concentration. The glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GPx) activities increased in short time at low concentration of BaP, and was significantly depressed at high concentrations. Scallop gill was more sensitive to BaP than the digestive gland, and the digestive gland was the main tissue to deal with oxyradicals. The contents of malondialdehyde (MDA) increased with the exposure time and there was a positive correlation (concentration-effect) between the MDA content and the concentration of BaP. The biomarkers determined in this experiment had important roles in detoxification, and showed great potential as biomarkers for oxidative stress. Controlled laboratory experiments designed to simulate field exposure scenarios are particularly useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.

  11. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  12. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  13. Toxicokinetic of benzo[a]pyrene and fipronil in female green frogs (Pelophylax kl. esculentus)

    International Nuclear Information System (INIS)

    A general consensus that an increased logKow led to an increase in xenobiotic uptake and bioaccumulation is accepted. In this study we compared the toxicokinetics of two chemically different xenobiotics, i.e. benzo[a]pyrene and fipronil in female green frogs. Surprisingly, the uptake rates and the bioconcentration factors (BCF) of the two contaminants were not predicted by their logKow. The uptake rates obtained were of the same order of magnitude for the two contaminants and the BCFs measured for fipronil were about 3-fold higher than those obtained for benzo[a]pyrene. Fipronil appeared to be more recalcitrant than benzo[a]pyrene to detoxification processes leading to the accumulation of sulfone-fipronil especially in the ovaries. This phenomenon may explain reproductive influence of this contaminant described in other studies. Detoxification processes, including metabolism and the excretion of pollutants, are of importance when considering their persistence in aquatic organisms and trying to quantify their risks. Highlights: ► The uptake of benzo[a]pyrene is 1.5–3 times higher than for fipronil. ► Fipronil was more recalcitrant than benzo[a]pyrene to detoxification processes. ► This lead to increased-bioaccumulation factors except in excretion organs. ► Amphibians can be used as biomonitors for persistent pollutants. - Fipronil is more recalcitrant than benzo[a]pyrene to detoxification processes in frog.

  14. Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET).

    Science.gov (United States)

    Liu, Jia-Nan; Chen, Zhuo; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying; Yang, Cheng

    2016-01-01

    N, N-diethyl-m-toluamide (DEET) is one of the important emerging contaminants that are being increasingly detected in reclaimed water as well as in drinking water sources. However, DEET is refractory to conventional biological treatment and pure ozone which is absent of hydroxyl radical. Current researches on the efficient removal of DEET are still quite limited. This study utilizes a novel method, namely ozone/graphene oxide (O3/GO), to investigate the effects on DEET removal in aqueous systems, especially in reclaimed water. The results indicate that the DEET degradation rate was significantly accelerated through the combined effect of GO and ozonation which can yield abundant hydroxyl radical, compared to pure ozone condition. According to hydroxyl radical scavenging experiments, hydroxyl radical was found to play a dominant role in synergistic removal of DEET. These findings can offer sound suggestions for future research on the removal of emerging organic contaminants. The information could also be beneficial to reclaimed water safety and sustainable management. PMID:27510858

  15. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  16. Reductive and oxidative degradation of iopamidol, iodinated X-ray contrast media, by Fe(III)-oxalate under UV and visible light treatment.

    Science.gov (United States)

    Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-12-15

    Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. PMID:25269106

  17. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process

    International Nuclear Information System (INIS)

    This study investigated the degradation and mineralization of Bisphenol A (BPA) at pH 7, taken as a model compound in the presence of the trace metal-ions, Co2+, and peroxymonosulfate (Oxone: PMS). We took advantage of the high oxidation-reduction potential of hydroxyl and sulfite radicals transformed from PMS as the oxidants to oxidize BPA to less complex compounds (stoichiometric ratio: [PMS]0/[BPA]0 = 2). Afterwards, the expected radicals were used to mineralize those compounds more efficiently (TOC removal ∼40%) as compared to the 1% removal demonstrated in the UV/persulfate system in our previous study. To the best of our knowledge, this is the first attempt to evidence that the dominant behavior of radicals in a (bi)sulfite process is very different from that in a persulfate process. Additionally, the utilization of extremely small amounts of activator and oxidant for the complete degradation of BPA was achieved. The BPA degradation in this Co2+/PMS process formulated a pseudo-first-order kinetic model well over a practicable range of 25-45 oC. The activation energy (ΔE = 57.6 kJ mol-1) was calculated under different conditions, and the detailed discussion indicates that the activity of BPA degradation is not obviously dependent on the PMS concentration, but rather is related to Co2+ dosage. Possible BPA side-chain oxidative metabolic pathways are suggested based on experimental results incorporating the evidence from EPR (electron paramagnetic resonance) and analysis from GC-MS (gas chromatography-mass spectrometry).

  18. Oxidative degradation of anion exchange resin in chloride form during purification of reactor coolant after alkaline permanganate treatment in dilute chemical decontamination

    International Nuclear Information System (INIS)

    In boiling water reactors, primary system piping is contaminated by radioactive species like 51Cr and 60Co, resulting in high radiation fields. Dilute Chemical Decontamination (DCD) is a preferred choice to reduce the radiation field. In DCD process, oxidation step involving alkaline permanganate or acid permanganate is employed for effective dissolution of oxides (rich in chromium), from the metal surfaces of reactor components. After completion of the oxidation step, removal of the unused chemicals is carried out by the use of ion exchange process. This poses a problem of possible degradation of ion exchange resin by the oxidative chemicals during the removal. In this paper, this aspect has been investigated and the results obtained are discussed. (author)

  19. Preparation of reduced graphene oxide/meso-TiO2/AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue

    Science.gov (United States)

    Yang, Yongfang; Ma, Zheng; Xu, Lidong; Wang, Hefang; Fu, Nian

    2016-04-01

    Reduced graphene oxide/meso-TiO2/AuNPs (RGO/meso-TiO2/AuNPs) ternary composites were prepared via the addition of graphene oxide to the dispersion of meso-TiO2/AuNPs under hydrothermal conditions. The structure and the morphology of the RGO/meso-TiO2/AuNPs materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of RGO/meso-TiO2/AuNPs was evaluated by degradation of methyl blue (MB) under visible-light illumination. The ternary composites present an extended light absorption range, efficient charge separation properties, high adsorption ability for MB and high photocatalytic degradation activity of MB compared to the meso-TiO2 and meso-TiO2/AuNPs.

  20. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    Science.gov (United States)

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. PMID:26501718

  1. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  2. Persistence of urinary excretion products of benzo(a)pyrene

    International Nuclear Information System (INIS)

    Persistence of DNA-adducts has been observed in a variety of experimental circumstances and has been suggested as one potential mechanism for explaining the long-term delay before expression of proliferative disease. In this concept, a stable DNA-adduct, which is a remnant of a prior exposure in a nondividing cell, would not express the genotoxic effect until the cells were stimulated to divide, and thus explain the long-term delay in expression of cancer. An alternative view of the observation of persistent DNA-adducts, described in this communication, is the continuing replenishment of DNA adducts by formation and turnover of these adducts from exposure to a constant supply of the ultimate carcinogenic species derived from a prior exposure. It is of interest to note that virtually all experiments where ''persistent'' adducts have been observed have been high dose exposures. During the course of experiments designed to develop improved methods for detection of DNA adducts and related derivatives derived from polynuclear aromatic hydrocarbons (PAH), we observed that there was a continuous excretion of urinary derivatives of the injected benzo(a)pyrene (BaP) beyond the initial burst of detoxification. This report describes the time dependent distribution of those derivatives in blood, urine, feces, and at the site of injection. 11 refs., 5 figs., 4 tabs

  3. [Benzo(a)pyrene contamination of vegetable oils].

    Science.gov (United States)

    Jedra, Małgorzata; Starski, Andrzej; Gawarska, Halina; Sawilska-Rautenstrauch, Dorota

    2008-01-01

    Benzo(a)pyrene (B(a)P) analysis was carried out with glass chromatographic column with alumina followed by reverse phase high-performance liquid chromatography (HPLC) and spectrofluorometric detection. B(a)P level in 40 vegetable oils were as follow: from 0.11 to 0.38 microg/kg in olive; from 0.92 to 3.74 microg/kg in rape seed oils; from 0.11 to 2.25 microg/kg in sunflower oils and from 0.33 to 1.26 microg/kg in soya oils. In another investigated oils: arachide (peanut) corn, safflower, linen, hempen, sesame, pumpkin seeds, grape seeds---values from 0.10 to 1.44 microg/kg and 3.83 microg/kg in sea buckthorn oil were detected. B(a)P concentration in 4 from 40 investigated oils exceed the 2 ppb limit proposed by the European Commission. Heating of sample of oils: olive, rape, soya, linen, corn, sesame, peanut, in temp. 240 degrees C for 30 min. has not influence on decreased of B(a)P level. PMID:18807910

  4. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    International Nuclear Information System (INIS)

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and 14C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of 14C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed

  5. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  6. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    International Nuclear Information System (INIS)

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with PO2 varying from 10-6 to 2x10-4 mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon for PO2≤6x10-6 mbars. When PO2 increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti2O3, Ti3O5, and TiO2. Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at PO2=2x10-4 mbars up to a depth of 3 μm and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti3O5 mainly) at the surface when PO2 increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at PO2=2x10-4 mbars up to 1 μm. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.

  7. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  8. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO2/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2 nanocomposite hydrogels. Both TiO2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  9. Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-10-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO{sub 2} and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO{sub 2}/graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO{sub 2} was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2} nanocomposite hydrogels. Both TiO{sub 2} and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO{sub 2} and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO{sub 2}/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water.

  10. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vivo and in vitro

    DEFF Research Database (Denmark)

    Weinstein, I.B.; Jeffrey, A.M.; Jennette, K.W.; Blobstein, S.H.; Harvey, R.G.; Harris, C.; Autrup, Herman; Kasai, H.; Nakanishi, K.

    1976-01-01

    Evidence has been obtained that a specific isomer of a diol epoxide derivative of benzo(a)pyrene, (+/-)-7 beta,8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, is an intermediate in the binding of benzo(a)pyrene to RNA in cultured bovine bronchial mucosa. An adduct is...

  11. Assessment by HPLC of the degradation behavior of acitretin under hydrolytic, oxidative, photolytic and thermal stress conditions

    Directory of Open Access Journals (Sweden)

    Pawan K. Porwal

    2014-12-01

    Full Text Available Acitretin is a photosensitive oral retinoid with very limited data available on its degradation. The official HPLC method for acitretin determination was insufficient to resolve the degradation products generated during stability studies. Therefore, an isocratic RP-HPLC–UV method was developed for the determination of acitretin in the presence of its related impurities and degradation products. Efficient chromatographic separation was achieved on a Thermo beta-basic column C18 (100 mm×4.6 mm, 5 μm with mobile phase containing 0.3% (v/v glacial acetic acid with acetonitrile (ACN and isopropyl alcohol (IPA in an isocratic ratio of 70:30 at a flow rate of 1.0 mL/min with the eluent monitored at 360 nm. The method was validated for specificity, linearity, precision, accuracy and robustness. The calibration plot was linear over the concentration range of 50–150 μg/mL with a correlation coefficient (r2 of 0.999. The proposed method was used to investigate the degradation kinetics of acitretin under the different degradative conditions. The degradation rate constant (K, half-life (t1/2, and t90 were calculated. Degradation of acitretin followed pseudo-first-order kinetics. The drug was found to be less stable under acidic and photolytic degradation conditions: the photolytic degradation constants for acitretin in sunlight and UV light were 0.002698% and 0.0008402% min−1, respectively. The LOD for acitretin and the known impurities were at a level below 0.02%. The method shows consistent recoveries for ACTR (99.8%–101.2% and also for its known impurities (97.2–101.3%. The method was found to be accurate, precise, linear, specific, sensitive, rugged, robust, and useful for characterizing the stability of this chemical.

  12. Thermal Oxidation of Polyolefins by Mild Pro-Oxidant Additives Based on Iron Carboxylates and Lipophilic Amines: Degradability in the Absence of Light and Effect on the Adhesion to Paperboard

    Directory of Open Access Journals (Sweden)

    Tuan-Anh Nguyen

    2015-08-01

    Full Text Available Marine and inland pollution by non-degradable plastic bags and other plastic articles is a topic of great concern. Natural degradation processes based on oxidation of plastic pollutants could possibly contribute to limit the extent of pollution. Thermal degradation of polyolefins in the absence of light by non-polluting pro-oxidants has not been presented before. In this study, we show that two amines, stearyl amine and [(3-(11-aminoundecanoyl amino propane-1-] silsesquioxane (amino-POSS in combination with ferric stearate (FeSt3 tremendously accelerate the thermal oxidation of polyolefins compared with reference samples. Both amines and FeSt3 are to a large extent based on renewable resources. Polyethylene and polypropylene samples containing less than 100 ppm of iron and 1% of amine were extremely brittle after 10 days in a circulation oven in the absence of light. No significant degradation could be seen with samples containing iron but no amine. In a different application, the initial oxidation of polyethylene can be used in order to increase its adhesion to cardboard. Excellent adhesion between polyethylene and cardboard is important for liquid packaging based on renewable resources. Amino-POSS has been chosen for food packaging applications due to its expected lower leakage from polyethylene (PE compared with stearyl amine. Film samples of PE/amino-POSS/FeSt3 blends were partly oxidized in a circulation oven. The oxidation was documented by increased carbonyl index (CI and melt flow index (MFI. The limited extent of oxidation has been proved by unchanged tensile strength and only moderate changes in elongation at break when compared to reference polyethylene films containing no FeSt3 or amino-POSS. The PE/amino-POSS/FeSt3 blends were compression moulded to paperboard. The adhesion of non-aged blends to paperboard decreased with increasing amino-POSS content which is in good compliance with an earlier reported lubricant effect of high

  13. The use HPTLC and Direct Analysis in Real Time-Of-Flight Mass Spectrometry DART-TOF-MS for rapid analysis of degradation by oxidation and sonication of an azo dye

    OpenAIRE

    Djelal, Hayet; Cornée, Carole; Tardivel, Ronan; Lavastre, Olivier; Amrane, Abdelatif

    2013-01-01

    Advanced oxidation processes are efficient for the removal of recalcitrant compounds, like azo-dyes. However, the intermediates produced during their degradation can be more toxic than the parent compounds. Improving the knowledge concerning the degradation pathways may be therefore helpful to optimize the process. In this aim, HPTLC and Direct Analysis in Real Time-Of-Flight Mass Spectrometry DART-TOF-MS were considered and applied to analyze the sono-oxidation of an azo dye, methyl red sodi...

  14. Degradation of polyethylene induced by plasma in oxidizing atmospheres; Degradacion de polietileno inducido por plasma en atmosferas oxidantes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, E.; Olayo, M.G.; Cruz, G.J. [Facultad de Quimica, UAEM, Av. Tollocan y Colon, 50000 Toluca (Mexico)

    2002-07-01

    The garbage of polyethylene is not easily degradable in normal environmental conditions . The indiscriminate use of this polymer and the enormous quantity of garbage which is generated carries a damage to the environment due to its long life as waste. The objective of this work is to study the conditions in which can be carried out the degradation of polyethylene. A form of accelerating the degradation is exposing it to plasma with reactive atmospheres. In this work a study of surface modification of polyethylene by plasmas with discharges of direct current of oxygen and nitrogen is presented. (Author)

  15. Oxidative degradation of 2,4-dioxohexahydro-1,3,5-triazine in aqueous medium: a radiation and photochemical study

    International Nuclear Information System (INIS)

    The kinetics and spectral nature of the intermediates resulting from the reaction of OH with 2,4-dioxohexahydro-1,3,5-triazine (DHT) have been studied by pulse radiolysis. The degradation leading to a complete disappearance of DHT induced by OH in aqueous medium was also studied using steady state radiolysis technique. The rate constant, determined by competitive kinetic methods, was 1.6 x 109 dm3 mol-1 s-1 at pH 6. The complete degradation in N2O was observed with an absorbed dose of 7 kGy. The complete degradation in presence of ferricperchlorate using UV light was observed within 6 minute. (author)

  16. Deep sequencing-based transcriptome profiling analysis of Chlamys farreri exposed to benzo[a]pyrene.

    Science.gov (United States)

    Cai, Yuefeng; Pan, Luqing; Hu, Fengxiao; Jin, Qian; Liu, Tong

    2014-11-10

    Whole-genome transcriptome measurements are pivotal for characterizing molecular mechanisms of chemicals and predicting toxic classes, such as genotoxicity and carcinogenicity, from in vitro and in vivo assays. We analyzed the dynamic defense transcriptome responsive to Chlamys farreri upon exposure to benzo[a]pyrene (BaP) using a digital gene expression (DGE) approach. Following exposure, 251 and 177 genes were up-regulated, and 142 and 300 genes were down-regulated at 3 days post-exposure and 10 days post-exposure, respectively. The differentially expressed genes were related to toxicological response, oxidative stress and the metabolism of proteins and fats. Of these genes, most genes up-regulated at the early stage of exposure tended to be constantly down-regulated at the later stage whereas the landscape of the up- or down-regulated genes differed significantly at the two time points investigated. Functional enrichment analyses show that RNA-seq yields more insight into the biological mechanisms related to the toxic effects caused by BaP, i.e., two to fivefold more affected pathways and biological processes. Besides, we observed a change in the expression of ten genes which are important and differentially-expressed detoxification-related genes, and this was subsequently confirmed via quantitative real-time PCR. Our results provide evidence that RNA-seq is a powerful tool for toxicology and is capable of generating novel and valuable information at the transcriptome level for characterizing deleterious effects caused by BaP. PMID:25194896

  17. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Qian [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Li, Junyang; Huang, Chao [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Li, Jingquan; Chu, Ruiai [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wu, Yongning, E-mail: wuyongning@cfsa.net.cn [Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); Wang, Hui, E-mail: huiwang@sibs.ac.cn [Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing (China); School of Life Science and Technology, ShanghaiTech University, Shanghai (China)

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.

  18. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    International Nuclear Information System (INIS)

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified

  19. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  20. A model-based approach for current voltage analyses to quantify degradation and fuel distribution in solid oxide fuel cell stacks

    Science.gov (United States)

    Linder, Markus; Hocker, Thomas; Meier, Christoph; Holzer, Lorenz; Friedrich, K. Andreas; Iwanschitz, Boris; Mai, Andreas; Schuler, J. Andreas

    2015-08-01

    Reliable quantification and thorough interpretation of the degradation of solid oxide fuel cell (SOFC) stacks under real conditions is critical for the improvement of its long-term stability. The degradation behavior is often analyzed based on the evolution of current-voltage (V,I) curves. However, these overall resistances often contain unavoidable fluctuations in the fuel gas amount and composition and hence are difficult to interpret. Studying the evolution of internal repeat unit (RU) resistances is a more appropriate measure to assess stack degradation. RU-resistances follow from EIS-data through subtraction of the gas concentration impedance from the overall steady-state resistance. In this work a model-based approach where a local equilibrium model is used for spatial discretization of a SOFC stack RU running on hydrocarbon mixtures such as natural gas. Since under stack operation, fuel leakages, uneven fuel distribution and varying natural gas composition can influence the performance, they are taken into account by the model. The model extracts the time-dependent internal resistance from (V,I)-data and local species concentration without any fitting parameters. RU resistances can be compared with the sum of the resistances of different components that allows one to make links between laboratory degradation experiments and the behavior of SOFC stacks during operation.

  1. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    International Nuclear Information System (INIS)

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  2. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    Science.gov (United States)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  3. Degradation of the electrical characteristics of MOS structures with erbium, gadolinium, and dysprosium oxides under the effect of an electric field

    International Nuclear Information System (INIS)

    The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distribution of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps

  4. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.

    Science.gov (United States)

    Dou, Jinhe; You, Qiongya; Gu, Guochao; Chen, Chuanzhong; Zhang, Xihua

    2016-01-01

    Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days. PMID:27440396

  5. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  6. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.

    Science.gov (United States)

    Hua, Li; Ma, Hongrui; Zhang, Lei

    2013-01-01

    Three azo dyes (Methyl Orange, Direct Brown and Direct Green) were treated by catalytic wet air oxidation (CWAO) with the catalysts CuO/γ-Al(2)O(3) prepared by consecutive impregnation. The relationship of decolorization extent, chemical oxygen demand (COD) removal extent and total organic carbon (TOC) in dye solution were investigated. The results indicated that the CuO/γ-Al(2)O(3) catalyst had excellent catalytic activity in treating azo dyes. Almost 99% of color and 70% of TOC were removed in 2h. The high removal extent of color and TOC indicated that the CWAO obtained perfect decomposition for pollutants. The degradation pathway of azo dyes was analyzed by UV-Vis, FTIR and MS. According to the examined results, the hydroxyl ((·)OH) radicals induced strong oxidizing effects in the target solution and destroyed the chromophoric groups of azo-benzene conjugated of the molecular structure. Considering characteristics of the dye structure, the azo bond (-N=N-) would first be attacked by the hydroxyl radical and other free radicals. With the continuous oxidization and the long reaction time at high temperature, these intermediates could be oxidized to the final oxidation products, such as water and carbon dioxide. PMID:22795071

  7. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.

    Science.gov (United States)

    Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu

    2016-11-15

    A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO2-RuO2-TiO2 anodes), lead to discoloration by 92% and 89%, respectively, in 100min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144h. Based on results obtained through FT-IR and GC-MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater. PMID:27427887

  8. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes

    Science.gov (United States)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-06-01

    This study deals with the exploration of NixCo1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co0.4Ni0.6Fe2O4 (154.02 m2 g-1). Co0.4Ni0.6Fe2O4 showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe2O4 was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH4 on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni2+ in to the cobalt ferrite lattice due to octahedral site preference of Ni2+. Almost 99% degradation was achieved in 20 min using NiFe2O4 nanoparticles as catalyst.

  9. Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes.

    Science.gov (United States)

    Singh, Charanjit; Goyal, Ankita; Singhal, Sonal

    2014-07-21

    This study deals with the exploration of NixCo₁-xFe₂O₄ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) ferrite nanoparticles as catalysts for reduction of 4-nitrophenol and photo-oxidative degradation of Rhodamine B. The ferrite samples with uniform size distribution were synthesized using the reverse micelle technique. The structural investigation was performed using powder X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray and scanning tunneling microscopy. The spherical particles with ordered cubic spinel structure were found to have the crystallite size of 4-6 nm. Diffused UV-visible reflectance spectroscopy was employed to investigate the optical properties of the synthesized ferrite nanoparticles. The surface area calculated using BET method was found to be highest for Co₀.₄Ni₀.₆Fe₂O₄ (154.02 m(2) g(-1)). Co₀.₄Ni₀.₆Fe₂O₄ showed the best catalytic activity for reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 as reducing agent, whereas CoFe₂O₄ was found to be catalytically inactive. The reduction reaction followed pseudo-first order kinetics. The effect of varying the concentration of catalyst and NaBH₄ on the reaction rates was also scrutinized. The photo-oxidative degradation of Rhodamine B, enhanced oxidation efficacy was observed with the introduction of Ni(2+) in to the cobalt ferrite lattice due to octahedral site preference of Ni(2+). Almost 99% degradation was achieved in 20 min using NiFe₂O₄ nanoparticles as catalyst. PMID:24902783

  10. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    Directory of Open Access Journals (Sweden)

    Abdollahi Yadollah

    2012-08-01

    Full Text Available Abstract The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM. The RSM used central composite design (CCD method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model. The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA. The used evidences include high F-value (143.12, very low P-value (2 = 0.99 and the adequate precision (47.067. To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation % be using a few number of three dimensional plots (3D. To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles.

  11. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    OpenAIRE

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2014-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating co...

  12. Dietary effects on the uptake of benzo[a]pyrene.

    Science.gov (United States)

    Stavric, B; Klassen, R

    1994-08-01

    It has been established that exposure to polycyclic aromatic hydrocarbons (PAHs), or more specifically benzo[a]pyrene (B[a]P), either by inhalation through cigarette smoking or by contact through occupational exposure of the lungs or skin, can result in cancerous lesions. It appears that the general population consumes more B[a]P from food than from smoking. Despite this, epidemiological studies have not implicated B[a]P from foods as a causative factor in some human cancers. This lack of an epidemiological correlation between cancer incidence and intake of dietary PAHs/B[a]P could be due to some 'protective' or 'detoxification' mechanism. Despite the abundance of literature regarding the food content of B[a]P, there are few data concerning its uptake from foods. In the present study we investigated the intestinal absorption of B[a]P from foods using bile duct cannulated rats and radioactive B[a]P. [14C]B[a]P was first added to solvents such as water, corn oil, liquid paraffin or 50% ethanol, which were the administered by gavage to rats fed diets with or without added carbon. Additionally, food polyphenols such as quercetin and chlorogenic acid were also tested for their effect on the absorption of B[a]P. The results indicated that the excretion of B[a]P in the bile was reduced by water, carbon, quercetin and chlorogenic acid but was potentiated by corn oil. To complement the in vivo studies, some in vitro tests to investigate the efficiency of B[a]P extraction from different foods using water or oil as solvents were also performed. These tests indicated that extraction of B[a]P from foods was affected by the solvent. It is postulated that reduced solubility, physical adsorption and the formation of chemical adducts between B[a]P and some food ingredients, play a sporadic, although still not well determined, role in reducing the absorption of B[a]P from the gut. The results of these studies suggest that B[a]P absorption from the intestinal tract is markedly

  13. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. PMID:22770942

  14. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  15. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    Science.gov (United States)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural

  16. Characterization of deposits formed on diesel injectors in field test and from thermal oxidative degradation of n-hexadecane in a laboratory reactor

    Directory of Open Access Journals (Sweden)

    Venkataraman Ramya

    2008-12-01

    Full Text Available Abstract Solid deposits from commercially available high-pressure diesel injectors (HPDI were analyzed to study the solid deposition from diesel fuel during engine operation. The structural and chemical properties of injector deposits were compared to those formed from the thermal oxidative stressing of a diesel fuel range model compound, n-hexadecane at 160°C and 450 psi for 2.5 h in a flow reactor. Both deposits consist of polyaromatic compounds (PAH with oxygen moieties. The similarities in structure and composition of the injector deposits and n-hexadecane deposits suggest that laboratory experiments can simulate thermal oxidative degradation of diesel in commercial injectors. The formation of PAH from n-hexadecane showed that aromatization of straight chain alkanes and polycondensation of aromatic rings was possible at temperatures as low as 160°C in the presence of oxygen. A mechanism for an oxygen-assisted aromatization of cylcoalkanes is proposed.

  17. ZnO/MoO 3 mixed oxide nanotube: A highly efficient and stable catalyst for degradation of dye by air under room conditions

    Science.gov (United States)

    Huang, Jiguo; Wang, Xiaohong; Li, Sen; Wang, Yu

    2010-10-01

    As a continuation of our work to develop catalysts with high activity for catalytic air wet oxidation process under mild conditions, degradation of wastewater containing 0.3 g/L Safranin-T (ST) by air oxidation over ZnO/MoO 3 nanotube catalyst was studied. It was found the decolorization efficiency and the chemical oxygen demand (COD) removal of ST reached above 98% and 95%, respectively, within 18 min at room temperature and atmospheric pressure. And the organic pollutants were totally mineralized to simple inorganic species such as HCO 3-, Cl - and NO 3-, while the total organic carbon (TOC) decreased 99.3%. The structure and morphology of the catalyst after ten cycling runs showed that the catalyst was stable under such operating condition and the leaching test showed negligible leaching effect. This ZnO/MoO 3 nanotube is proved to be an active and stable heterogeneous catalyst in CWAO of ST under extremely mild conditions.

  18. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  19. Photocatalytic degradation of acid blue 74 in water using Ag-Ag2O-Zno nanostuctures anchored on graphene oxide

    Science.gov (United States)

    Umukoro, Eseoghene H.; Peleyeju, Moses G.; Ngila, Jane C.; Arotiba, Omotayo A.

    2016-01-01

    Water pollution due to industrial effluents from industries which utilize dyes in the manufacturing of their products has serious implications on aquatic lives and the general environment. Thus, there is need for the removal of dyes from wastewater before being discharged into the environment. In this study, a nanocomposite consisting of silver, silver oxide (Ag2O), zinc oxide (ZnO) and graphene oxide (GO) was synthesized, characterized and photocatalytically applied in the degradation (and possibly mineralization) of organic pollutants in water treatment process. The Ag-Ag2O-ZnO nanostructure was synthesized by a co-precipitation method and calcined at 400 °C. It was functionalized using 3-aminopropyl triethoxysilane and further anchored on carboxylated graphene oxide via the formation of an amide bond to give the Ag-Ag2O-ZnO/GO nanocomposite. The prepared nanocomposite was characterized by UV-Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDX), Fourier transformed infrared spectroscopy (FTIR), and Raman spectroscopy. The applicability of Ag-Ag2O-ZnO/GO nanocomposite as a photocatalyst was investigated in the photocatalytic degradation of acid blue 74 dye under visible light irradiation in synthetic wastewater containing the dye. The results indicated that Ag-Ag2O-ZnO/GO nanocomposite has a higher photocatalytic activity (90% removal) compared to Ag-Ag2O-ZnO (85% removal) and ZnO (75% removal) respectively and thus lends itself to application in water treatment, where the removal of organics is very important.

  20. Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution.

    Science.gov (United States)

    Esmaili-Hafshejani, Javad; Nezamzadeh-Ejhieh, Alireza

    2016-10-01

    Photocatalytic activity of the coupled ZnO-CuO and ZnS-CuS semiconductors supported onto clinoptilolite nanoparticles (CNP) and micronized one (CMP) was studied in photodegradation of benzophenone (BP) aqueous solution. The ZnO-CuO/CNP (or MCP) and ZnS-CuS/CNP (or MCP) catalysts were prepared via calcination and sulfiding of their Zn(II)-Cu(II) ion-exchanged samples, respectively. XRD patterns confirmed loading of the mentioned semiconductors onto the zeolite, and nano dimension of the catalysts was confirmed by XRD and TEM results. Typical Tauc plots obtained from UV-vis DRS spectra showed red shifts for the band gap energies of the supported coupled semiconductors with respect to the supported monocomponent ones especially for ZnO/NCP and ZnS/NCP catalysts. Also, in both indirect and direct transitions, these red shifts were more considerable in the oxidic systems with respect to the sulfidic systems. Accordingly, the supported oxidic systems showed better photocatalytic activity than the sulfidic one. In the oxidic systems changing the dose of CuO played important role while in the sulfidic systems ZnS played considerable role in the degradation of BP. In the used systems, CuO and ZnS played the main e/h generators in the oxidic and sulfidic systems, respectively, while ZnO and CuS played the preventer e/h recombination. Based on the results, production of e/h is the rate limiting step in the used systems. The maximum degradation activity of the catalysts was obtained at: 0.12gL(-1) of ZnO0.80-CuO3.18/NCP and 0.10gL(-1) of ZnS1.39-CuS2.88/NCP catalysts, initial BP concentration of 30mgL(-1) at pH 7.5. PMID:27235827

  1. Effect of the pre-transient oxide on Zy-4 cladding degradation in air and air+steam atmospheres

    International Nuclear Information System (INIS)

    High temperature reactivity in air of Zr based alloys has been mostly investigated with initially bare cladding materials. In this study, attention is paid to the influence of a low temperature pre-oxidation scale aiming to simulate the corrosion scale existing on spent fuel. Different out of pile pre-oxidation methods, inducing significant variation in the pre-oxides microstructure, are compared. The reaction kinetics in air and in mixed air + steam atmospheres, investigated in the 700-950 C. degrees temperature range by thermogravimetry (TGA), shows that a pre-oxide scale formed at low temperature has a protective effect at high temperature by significantly delaying occurrence of the kinetic acceleration, which however still occurs. Efficiency of this protective effect appears to depend on the type of pre-oxide. To better understand the exact role of the pre-oxide, oxygen transport through the pre-oxide has been investigated using the 18O tracer technique. 18O distribution maps have been obtained by micro-Raman imaging, which has proved to offer interesting capabilities for that purpose. Results obtained with a 30 μm pre-oxide scale formed at 425 C. degrees in oxygen suggest that, at 850 C. degrees, only the inner part of the scale acts as a barrier against oxidation while the outermost part of the scale (5 to 15 μm in thickness) seems to be permeable to gaseous oxygen. The use of the 18O isotope tracer technique associated with micro-Raman mapping of the scales is demonstrated to be a powerful method to investigate the transport properties of the scales and will help to gain understanding of the kinetic differences between the different pre-oxides

  2. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    International Nuclear Information System (INIS)

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  3. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.

    Science.gov (United States)

    Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J

    2016-05-17

    The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance. PMID:27088657

  4. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones

    Czech Academy of Sciences Publication Activity Database

    Frébortová, Jitka; Novák, Ondřej; Frébort, Ivo; Jorda, Radek

    2010-01-01

    Roč. 61, č. 3 (2010), s. 467-481. ISSN 0960-7412 R&D Projects: GA ČR GA522/05/0448; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Degradation * cytokinins * maize Subject RIV: EF - Botanics Impact factor: 6.948, year: 2010

  5. Experimental and DFT study of the degradation of 4-chlorophenol on hierarchical micro-/nanostructured oxide films

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Žouželka, Radek; Bíbová-Lipšová, Hana; Jirkovský, Jaromír; Rathouský, Jiří; Pauporté, T.

    2015-01-01

    Roč. 168, JUN 01 (2015), s. 132-140. ISSN 0926-3373 R&D Projects: GA MK(CZ) DF11P01OVV012 Keywords : 4-Chlorophenol degradation * DFT modeling * ZnO hierarchical nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.435, year: 2014

  6. 电化学氧化降解苯胺的研究%On the degradation of aniline by way of electrochemical oxidation

    Institute of Scientific and Technical Information of China (English)

    褚衍洋; 高珂; 张家臣; 杨国龙

    2011-01-01

    以Ti/SnO2 - Sb2O5为阳极,石墨为阴极研究了苯胺的电化学氧化降解.在阳极氧化的基础上,通过外加Fe2+实现了阳极氧化与电Fenton氧化协同降解苯胺.结果表明,不存在Fe2+时,中性介质和高阳极电位有利于提高苯胺去除率.苯胺被阳极氧化降解的同时,-0.65 V和酸性介质条件下石墨阴极具有良好的还原O2生成H2O2的性能.在pH=3.0和-0.65 V阴极电位条件下,电化学反应600min,H2O2的累计质量浓度达到110 mg·L-1.引入Fe2+后,苯胺降解效果和电流效率得到大幅度提高.在阴极电位为-0.65 V,pH值为3.0,初始Fe2浓度为0.50 mmol· L-的条件下,处理180 mg·L-1苯胺水溶液(Na2SO4为支持电解质)600 min,苯胺去除率达100%,COD去除率为78%.因此,使用恰当的电极材料,控制合理的电极电位,可以实现双极电化学氧化降解水中有机物,并且获得较高的电流效率.%The present work intends to introduce its research results on the degradation of aniline by way of electrochemical oxidation while taking Ti/SnO2 - Sb2O5 electrode as anode and graphite electrode as cathode. Actually, what we have done is just in accord with the ever increasing research trend in the application of electrochemical oxidation technology for the organic pollutants degradation in industrial sewage. The results of our experiments show that a neutral medium and a high anodic potential is beneficial for the aniline removal by anodic oxidation in the absence of Fe2+ . In the course of aniline degradation by anodic oxidation, the graphite cathode behaves itself perfectly in generating H2O2 via the reduction of O2 at the presence of - 0.65 V and acid medium. When the initial pH of the solution was 3.0 and the constant cathodic potential was - 0.65 V, it was possible to make the concentration of H2O2 reach 110 mg·L-1 by the electrochemical reaction of 600 min, which presented an important base for the electro-Fenton oxidation. Besides, though the anodic

  7. Phosphatase activity in commercial spleen exonuclease decreases the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling.

    Science.gov (United States)

    Adams, S P; Laws, G M; Selden, J R; Nichols, W W

    1994-05-15

    Spleen exonuclease, which degrades nucleic acids into single 3'-nucleotides, is used in the detection of DNA adducts by 32P-postlabeling. Contamination of the exonuclease with phosphatase activity can reduce the recovery of benzo[a]pyrene and N-hydroxy-2-naphthylamine DNA adducts by 32P-postlabeling. Four preparations of spleen exonuclease containing varying levels of phosphatase activity (2-naphthylamine DNA adducts. Surprisingly, recovery of these DNA adducts was nearly 10 times greater using nuclease P1 than when using 1-butanol extraction for adduct enrichment, since arylamine DNA adducts have previously been reported to be poorly detected by 32P-postlabeling after nuclease P1 treatment. Our data indicate that the hydrolysis of DNA by spleen exonuclease may be an important source of variability in both qualitative and quantitative analysis of adducts by 32P-postlabeling. PMID:8059938

  8. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    International Nuclear Information System (INIS)

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology

  9. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite.

    Science.gov (United States)

    Chen, Xin; Zhao, Qidong; Li, Xinyong; Wang, Dong

    2016-10-01

    Short chain chlorinated paraffins have recently attracted great attention because of their environmental persistence and biological toxicity as an important organic pollutant. In this work, reduced graphene oxide/CoFe2O4/Ag (RGO/CoFe2O4/Ag) nanocomposite was prepared and employed for photocatalytic degradation of short chain chlorinated paraffins. The process of photocatalytic degradation of short chain chlorinated paraffins over RGO/CoFe2O4/Ag under visible light (λ>400nm) was investigated by in situ Fourier transform infrared spectroscopy and the related mechanisms were proposed. An apparent degradation ratio of 91.9% over RGO/CoFe2O4/Ag could be obtained under visible light illumination of 12h, while only about 21.7% was obtained with commercial P25 TiO2 under the same experimental conditions, which demonstrates that the RGO/CoFe2O4/Ag nanocomposite is a potential candidate for effective photocatalytic removal of short chain chlorinated paraffins. PMID:27376973

  10. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Haldorai, Yuvaraj [Supercritical Fluids and Nano Processes Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Kim, Byung-Keuk; Jo, Youl-Lae [Department of Applied Microbiology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [Supercritical Fluids and Nano Processes Laboratory, School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-02-14

    We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms. - Highlights: • Visible-light driven reusable photocatalyst. • Efficient degradation of Rhodamine 123 dye and acetaldehyde. • Excellent antibacterial activity. • Green synthetic approach using supercritical fluid. • New field of sustainable nanotechnology.

  11. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO{sub 4} composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yan [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Sun, Shaofang [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); School of Environmental Science and Engineering, Chang’an University, Yanta Road 126, Xi’an, 710054 (China); Song, Yang; Yan, Xu [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Guan, Weisheng [School of Environmental Science and Engineering, Chang’an University, Yanta Road 126, Xi’an, 710054 (China); Liu, Xinlin [School of Material Science and Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Shi, Weidong, E-mail: swd1978@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China)

    2013-04-15

    Highlights: ► Microwave-assisted in situ growth of RGO-BiVO{sub 4} composite was proposed. ► A relatively small particle size with organic-additives free. ► Graphene was formed during the microwave-heating by oxygen capture. ► GB-2 sample exhibits the highest CIP degradation ratio (3 times over pure BiVO{sub 4}). ► The enhancements of activities result from the effective charge separation. -- Abstract: To improve the photodegradation efficiency for ciprofloxacin (CIP), a new-type microwave-assisted in situ growth method is developed for the preparation of reduced graphene oxide (RGO) -BiVO{sub 4} composite photocatalysts. The as-produced RGO-BiVO{sub 4} composite photocatalysts show extremely high enhancement of CIP degradation ratio over the pure BiVO{sub 4} photocatalyst under visible light. Specially, the 2 wt% RGO-BiVO{sub 4} composite photocatalyst exhibits the highest CIP degradation ratio (68.2%) in 60 min, which is over 3 times than that (22.7%) of the pure BiVO{sub 4} particles. The enhancement of photocatalytic activities of RGO-BiVO{sub 4} photocatalysts can be attributed to the effective separation of electron–hole pairs rather than the improvement of light absorption.

  12. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Highlights: ► Microwave-assisted in situ growth of RGO-BiVO4 composite was proposed. ► A relatively small particle size with organic-additives free. ► Graphene was formed during the microwave-heating by oxygen capture. ► GB-2 sample exhibits the highest CIP degradation ratio (3 times over pure BiVO4). ► The enhancements of activities result from the effective charge separation. -- Abstract: To improve the photodegradation efficiency for ciprofloxacin (CIP), a new-type microwave-assisted in situ growth method is developed for the preparation of reduced graphene oxide (RGO) -BiVO4 composite photocatalysts. The as-produced RGO-BiVO4 composite photocatalysts show extremely high enhancement of CIP degradation ratio over the pure BiVO4 photocatalyst under visible light. Specially, the 2 wt% RGO-BiVO4 composite photocatalyst exhibits the highest CIP degradation ratio (68.2%) in 60 min, which is over 3 times than that (22.7%) of the pure BiVO4 particles. The enhancement of photocatalytic activities of RGO-BiVO4 photocatalysts can be attributed to the effective separation of electron–hole pairs rather than the improvement of light absorption

  13. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Science.gov (United States)

    Zhou, Xun; Shi, Tiejun; Wu, Jing; Zhou, Haiou

    2013-12-01

    Reduced graphene oxide (RGO) and TiO2 nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO2 powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by Csbnd Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO2 powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  14. (0 0 1) Facet-exposed anatase-phase TiO{sub 2} nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xun [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Shi, Tiejun, E-mail: stjhfut@163.com [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Wu, Jing [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Zhou, Haiou [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); School of Materials and Chemical Engineering of Anhui University of Architecture, Hefei 230901 (China)

    2013-12-15

    Reduced graphene oxide (RGO) and TiO{sub 2} nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO{sub 2} powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by C-Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO{sub 2} powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  15. Cultured mouse embryos metabolize benzo[a]pyrene during early gestation: genetic differences detectable by sister chromatid exchange.

    OpenAIRE

    Galloway, S M; Perry, P E; Meneses, J. (Julio); Nebert, D W; Pedersen, R A

    1980-01-01

    Mouse embryos explanted at 7 1/2 or 8 1/2 days of gestation were cultured in medium containing benzo[a]pyrene and supplemented with 5-bromodeoxyuridine to allow detection of sister chromatid exchanges. The murine Ah locus regulates the inducible metabolism of polycyclic hydrocarbons such as benzo[a]pyrene. A high frequency of sister chromatid exchange was induced by benzo[a]pyrene in embryos from three Ah-"responsive" inbred strains (BALB/cDub, C3H/AnfCum, and C57BL/6N); there was little or n...

  16. Oxidation of polycyclic aromatic hydrocarbons using partially purified laccase from residual compost of agaricus bisporus

    Energy Technology Data Exchange (ETDEWEB)

    Mayolo-Deloisa, K. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Machin-Ramirez, C. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico); Rito-Palomares, M. [Center for Biotechnology-FEMSA, Monterrey Institute of Technology, Campus Monterrey, Monterrey (Mexico); Trejo-Hernandez, M.R. [Center for Biotechnology Research, Autonomous University of Morelos State, Cuernavaca, Morelos (Mexico)

    2011-08-15

    Laccase partially purified from residual compost of Agaricus bisporus by an aqueous two-phase system (Lac ATPS) was used in degrading polycyclic aromatic hydrocarbons: fluorene (Flu), phenanthrene (Phe), anthracene (Ant), benzo[a]pyrene (BaP), and benzo[a]anthracene (BaA). The capacity of the enzyme to oxidize polyaromatic compounds was compared to that of the crude laccase extract (CE). After treatment of 72 h, Lac ATPS and CE were not capable of oxidizing Flu and Phe, while Ant, BaP, and BaA were oxidized, resulting in percentages of oxidation of 11.2 {+-} 1, 26 {+-} 2, and 11.7 {+-} 4 % with CE, respectively. When Lac ATPS was used, the following percentages of oxidation were obtained: 11.4 {+-} 3 % for Ant, 34 {+-} 0.1 % for BaP, and 13.6 {+-} 2 % for BaA. The results reported here demonstrate the potential application of Lac ATPS for the oxidation of polycyclic aromatic hydrocarbons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Use of solar advanced oxidation processes for wastewater treatment : follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity

    OpenAIRE

    Brienza, M.; Ahmed, M.M; Escande, A; Plantard, G.; Scrano, L.; Chiron, Serge; Bufo, S. A.; Goetz, V.

    2016-01-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5-/Fe2+) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic conta...

  18. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    OpenAIRE

    Malkus Kristen A; Tsika Elpida; Ischiropoulos Harry

    2009-01-01

    Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with o...

  19. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    Science.gov (United States)

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  20. Study of oil diesel degradation in soil using oxidative advanced processes; Estudo da degradacao do oleo diesel em solo utilizando processos oxidativos avancados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Suenia S.; Silva, Valdinete L. da; Motta, Mauricio da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Silva, Paula Tereza de S. e; Barros Neto, Benicio de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental

    2004-07-01

    Recently it comes if observing several accidents during the exploration, refinement, transport and operation of storage of petroleum and yours derived, such as the diesel oil and the gasoline. In this paper We do a study of the degradation of the diesel oil in a characteristic soil of the state of Pernambuco using peroxide of hydrogen and Fenton reagent. Those two processes are based on the generation of the radical hydroxyl (OH.) that has to can oxidizer loud capable to promote the destruction of recalcitrant organic compositions. The studied soil has about 16,5{+-}0,3 g/kg of total organic carbon. A factorial planning was accomplished 2{sup 3} with 2 repetitions in the central point with the objective of finding the best conditions of degradation of the pollutant. The variables and the studied levels were: FeSO{sub 4} - 0,18 M (0, 4 and 8 Ml); pH (3; without adjustment and without adjustment) and Time of exhibition in the sun (8; 12 and 16:00). The volumes of H{sub 2}O{sub 2} used in the rehearsals were constant, being 80 mL. Soon afterwards it accomplished a fractional experimental planning 2{sup 3-1}, repeating the variables of the first planning, they put using a smaller volume of H{sub 2}O{sub 2}, 40 mL, to evaluate the influence of the amount of H{sub 2}O{sub 2} used about the degradation of the diesel oil. The mass of the soil used in each experiment was of 5 g. It was observed that there were not significant differences in the degradation in relation to the peroxide volume. The best found degradation was around 87% in the following conditions (4 mL of Faith, without pH adjustment, Time of exhibition in the sun of 12:00 and 80 ml of H{sub 2}O{sub 2}). That found degradation was quite satisfactory being still due to study more economical conditions. (author)

  1. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family

    OpenAIRE

    Morgenstern, Ingo; Powlowski, Justin; Tsang, Adrian

    2014-01-01

    Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main ...

  2. Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post-depositional oxidation

    OpenAIRE

    Lengger, S. K.; Kraaij, M.; Tjallingii, R.; Baas, M.; Stuut, J.-B.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.

    2013-01-01

    Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids (GDGTs) are used in various proxies, such as TEX86 and the BIT index. In living organism, they contain polar head groups (intact polar lipids – IPLs). IPL GDGTs have also been detected in ancient marine sediments and it is unclear whether or not they are fossil entities or are part of living cells. In order to determine the extent of degradation of IPL GDGTs over geological timescales, we analyzed turbidite deposits, which had...

  3. Kinetics study of metaxalone degradation under hydrolytic, oxidative and thermal stress conditions using stability- indicating HPLC method

    Institute of Scientific and Technical Information of China (English)

    Vamsi Krishna Marothu; Rajendra N. Dash; Saritha Vemula; Shravani Donkena; Ramesh Devi; Madhavi Gorrepati

    2012-01-01

    An isocratic stability indicating RP-HPLC-UV method is presented for the determina- tion of metaxalone (MET) in the presence of its degradation products. The method uses Dr. Maisch C18 column (250 mm × 4.6 mm, 5μm) with mobile phase consisting of acetonitrile-potassium dihydrogen orthophosphate buffer with 4 mL of 0.4% triethyl amine (pH 3.0; 10 mM) (58:42, v/v) at a flow rate of 1.0 mL/min, pH of the buffer was adjusted with o-phosphoric acid. UV detection was performed at 225 nm. The method was validated for specificity, linearity, precision, accuracy, limit of detection, limit of quantification and robustness. The calibration plot was linear over the concentration range of 1-100 μg/mL having a correlation coefficient (r2) of 0.999. Limits of detection and quantification were 0.3 and 1μg/mL, respectively. Intra-day and inter-day precision (% RSD) was 0.65 and 0.79 respectively. The proposed method was used to investigate the degradation kinetics of MET under different stress conditions employed. Degradation of MET followed a pseudo-first-order kinetics, and rate constant (K), time left for 50% potency (t1/2), and time left for 90% potency 090) were calculated.

  4. Synthesis and application of green mixed-metal oxide nano-composite materials from solid waste for dye degradation.

    Science.gov (United States)

    Singh, Seema; Srivastava, Vimal Chandra; Mandal, Tapas Kumar; Mall, Indra Deo; Lo, Shang Lien

    2016-10-01

    Present study demonstrates reutilization of electrochemical (EC) sludge as a potential low-cost green catalyst for dye degradation. Hexagonal Fe2O3 type phase with trevorite (NiFe2O4)-type cubic phase nanocomposite material (NCM) was synthesized from solid waste sludge generated during EC treatment of textile industry wastewater with stainless steel electrode. For NCM synthesis, sludge was heated at different temperatures under controlled condition. Various synthesized NCMs were characterized by powder X-ray diffraction (PXD), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The synthesized NCMs were found to contain iron, chromium, nickel and oxygen in the form of α-Fe2O3 (metal: oxygen = 40:60), (Fe,Cr,Ni)2O3 and trevorite NiFe2O4, (Ni,Fe,Cr) (Fe,Cr,Ni)2O4 (metal: oxygen = 43:57). Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), pore size distribution, and atomic force microscope (AFM) analysis showed distribution of grains of different shapes and sizes. Catalytic activity of NCM was studied by the methylene red dye degradation by using the catalytic wet peroxidation process. Zeta potential study was performed under different pH so as to determine the performance of the NCMs during dye degradation. PMID:27341375

  5. Degradation of caffeine by ozone oxidation in aqueous solution%水溶液中咖啡因的臭氧氧化降解研究

    Institute of Scientific and Technical Information of China (English)

    徐丹瑶; 缪恒锋; 任洪艳; 赵明星; 阮文权

    2013-01-01

    采用臭氧氧化对咖啡因(CAF)进行降解,考察了操作参数对CAF降解过程的影响,利用UPLC-MS对臭氧氧化前后的CAF溶液进行扫描,通过降解产物的相对分子质量并结合前人研究结果推测降解途径.结果表明,臭氧氧化能有效降解CAF,降解过程符合拟一级反应动力学,呈两阶段反应.随温度的升高,kobs1和kobs2分别在30℃和20℃达到最大值.CAF初始质量浓度的升高、pH值的降低、碳酸氢根和叔丁醇的存在均会降低CAF的降解效率.H2O2的投加对CAF的臭氧降解具有低促高抑的效果.CAF降解后产生7种可能的降解中间产物,降解过程可能主要通过CAF嘌呤环上臭氧分子直接加成反应、脱甲基反应、羰基化反应及水分子加成反应来实现,未发现·OH直接攻击CAF的C4=C5双键反应生成的转化产物.%This paper takes it as its objective to make clear the factors affecting the degradation of caffeine by ozone oxidation and then propose its tentative degradation pathway.For this research purpose,we have carried out kinetic studies on the caffeine degradation process under different operating conditions,such as reaction temperatures,initial concentrations of the caffeine,the pH value of the solution,the addition of radicals scavenger (bicarbonate radical and tertiary butanol),as well as the hydrogen peroxide.So far as we know,the degradation of caffeine by ozone oxidation tends to follow the pseudofirst-order kinetic model in two ozone oxidation stages,with the observed rate constant of the second ozone oxidation stage,kobs2,being higher than the observed rate constant in the first corresponding stage,kobsl.Whereas the kobsl of the caffeine degra dation tends to increase exponentially with the temperature rising from 10 ℃ to 30 ℃,kobs2 drops at the temperature above 20℃.While the increase of the initial concentration of caffeine and the decrease of pH value of the solution along with the added radical scavengers may

  6. Reduction of benzo[a]pyrene with acid-activated magnesium metal in ethanol: A possible application for environmental remediation

    International Nuclear Information System (INIS)

    Highlights: ► In this study we examine the use of Mg-ethanol for the partial reduction of PAHs at room temperature. ► The reduction of B[a]P occurred after the activation of Mg with acetic acid. ► This reducing system transformed 94% of B[a]P and produce six hydrogenated derivatives in 24 h. ► This technique can be a cheap alternative to current PAH remediation and hydrogenation methods. - Abstract: Persistent organic pollutants (POPs) are a well-known threat to the environment. Substances such as polycyclic aromatic hydrocarbons (PAHs) in contaminated soils and sediments can have severe and long-term effects on human and environmental health. There is an urgent need for the development of safe technologies for their effective degradation. Here we present a new technique using ball-milled magnesium powder and ethanol solvent as a convenient electron transfer/proton source for the partial reduction of PAHs under ambient conditions. The rates of degradation were determined while evaluating the influences of acetic acid and type of ball-milled magnesium added to the reaction mixture. The results of these triplicate studies indicate that with the use of acetic acid as an activator and ball-milled magnesium carbon (Mg/C), this reducing system (Mg–EtOH) is able to achieve a 94% conversion of 250 μg/mL of toxic benzo[a]pyrene into a mixture of less toxic and partially hydrogenated polycyclic compounds within 24 h. This methodology can be used as a combined process involving ethanol washing followed by reduction reaction and it can also be considered as an easy handling and efficient alternative process to the catalytic hydrogenation of PAHs.

  7. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  8. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x106 molecules per cells of benzo[a]pyrene and 1x107 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  9. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  10. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó;

    2014-01-01

    LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades...... various hemicelluloses, in particular xyloglucan. This activity was discovered using a glycan microarray-based screening method for detection of substrate specificities of carbohydrate-active enzymes, and further explored using defined oligomeric hemicelluloses, isolated polymeric hemicelluloses and cell...... the LPMOs that are present in current commercial cellulase mixtures in part is due to hitherto undetected LPMO activities on recalcitrant hemicellulose structures....

  11. Analytical aspects of the remediation of soil by wet oxidation - Characterisation of tar contaminants and their degradation products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Nielsen, T.; Plöger, A.;

    1999-01-01

    Wet oxidation of tar compounds gives rise to a wide range of products. Due to the incorporation of oxygen, these products become increasingly more water soluble and the analytical strategy has to take into account the different physical/chemicalproperties of the compounds. An interplay between gas...

  12. Tissue-specific antioxidant responses in pale chub (Zacco platypus) exposed to copper and benzo[a]pyrene.

    Science.gov (United States)

    Kim, Woo-Keun; Park, June-Woo; Lim, Eun-Suk; Lee, Sung-Kyu; Kim, Jungkon; Kim, Sunmi; Lee, Sang-Woo; Choi, Kyungho; Jung, Jinho

    2014-05-01

    In this study, antioxidant responses including lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), were evaluated in the liver, gill and muscle tissues of pale chub (Zacco platypus) exposed to copper (Cu) and benzo[a]pyrene (BaP). Cu exposure induced significant antioxidant responses in Z. platypus, particularly in the liver, whereas BaP exposure had a negligible effect. Following Cu exposure, both SOD and CAT activity increased in a concentration-dependent manner, showing significant correlations with malondialdehyde (MDA) levels as a measure of LPO (r = 0.646 and 0.663, respectively). SOD, CAT and GST mRNA levels were also enhanced following Cu exposure, except at 20 μg L(-1), although significant correlations with antioxidant enzyme activities were not found. The results of this study suggest that combined information on SOD and CAT activities together with LPO levels in the liver could be a useful indicator for assessing oxidative stress in freshwater fish. PMID:24477393

  13. Alterations in the metabolism of benzo(a)pyrene in syrian hamster embryo (SHE) cells pretreated with phenolic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Strniste, G.F.; Okinaka, R.T.; Chen, D.J.

    1983-01-01

    Inhibition of chemical- or raddiation-induced neoplasia has been observed in animals whose diets were supplemented with antioxidants commonly used as food additives. Inhibition of the carcinogenicity of benzo(a)pyrene (BaP) or of 7,12-dimenthylbenz(a)anthracene (DMBA) - in rats has been achieved by the addition of the phenolic antioxidants butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT) to the diet. Our data suggest that in SHE cells antioxidants inhibit the overall metabolism of BaP to its various oxidized moieties including 7,8-diol- and 7,8,9,10-tetrol-BaP. A plausible explanation for our results with SHE cells is that the antioxidants interact directly with AHH, thus inhibiting AHH metabolic capacity. From analysis of nuclear material from SHE cells (+- antioxidants) incubated for 36 hours with BaP at 1 ..mu..g/ml, it is calculated that 4.6, 2.4 and 2.9 pmol BaP are bound to the DNA isolated from 10/sup 7/ nuclei of control, BHA-(20 ..mu..g/ml) and p-MP-(10 ..mu..g/ml) treated cultures, respectively.

  14. Proteomic and metabolomic analysis on the toxicological effects of Benzo[a]pyrene in pearl oyster Pinctada martensii.

    Science.gov (United States)

    Chen, Hao; Song, Qinqin; Diao, Xiaoping; Zhou, Hailong

    2016-06-01

    Benzo[a]pyrene (BaP) is one of the typical toxic polycyclic aromatic hydrocarbons (PAHs) that are widely present in marine environment. BaP has diverse toxic effects, including teratogenic, carcinogenic, mutagenic effects and so on, in various organisms. In this work, we focused on the differential proteomic and metabolomic responses in the digestive gland of pearl oyster Pinctada martensii exposed to two doses of BaP (1 and 10μg/L). Metabolic responses revealed that the high dose of BaP (10μg/L) mainly caused disturbances in osmotic regulation and energy metabolism in the digestive gland. Proteomic responses indicated that both doses of BaP induced disturbances in energy metabolism, cytoskeleton, cell injury, oxidative stress and signal transduction based on the differential proteomic biomarkers. Overall, these results demonstrated a number of potential biomarkers that were characterized by an integrated proteomic and metabolomic approach and provided a useful insight into the toxicological effects on pearl oyster P. martensii. PMID:26999675

  15. Degradation of 4,6-dinitro-o-cresol from water by anodic oxidation with a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Anodic oxidation of 4,6-dinitro-o-cresol (DNOC) has been studied in a cell of 100 ml with a boron-doped diamond anode and a graphite cathode, both of 3-cm2 area. Solutions containing up to approximately 240 mg l-1 of compound in the pH range 2.0-12.0 have been treated at 100, 300 and 450 mA between 15 and 50 deg C. Total mineralization is always achieved due to the great amount of hydroxyl radical (·OH) produced as oxidant on the anode surface. Total organic carbon is more rapidly removed in acid medium, being the optimum pH 3.0. The degradation rate increases when temperature, current and DNOC concentration increase. However, at 100 mA depollution becomes more effective from 71 mg l-1 of initial pollutant. A pseudo first-order kinetics for DNOC decay is always found by reversed-phase chromatography, with a rate constant practically independent of pH, as expected if the same electroactive species is oxidized in all media. Ion-exclusion chromatography allowed the detection of oxalic acid as the ultimate carboxylic acid. The mineralization process leads to the complete release of NO3- ions from the destruction of nitroderivative intermediates. These products are oxidized simultaneously with accumulated oxalic acid up to the end of electrolyses. Comparative treatment of the same solutions with a Pt anode yields a quite poor depollution because of the generation of much lower amounts of reactive ·OH on its surface

  16. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300–1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H2O/OH− through the grain boundaries leading to the formation of Zn(OH)2 or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn5(OH)8Cl2·H2O and Zn4SO4(OH)6·nH2O - Highlights: • Damp heat treatment of polycrystalline ZnO:Al leads to increased resistivity. • Degradation in electrical properties is due to decreased mobility. • Damp heat exposure does not influence optical properties between 300 and 1100 nm. • Water as well as carbon, chlorine and sulfur diffuse into the ZnO:Al bulk. • Possible reaction products are zinc hydroxide and zinc hydrocarbonate

  17. Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode

    International Nuclear Information System (INIS)

    Amaranth dye is used widely in the processing of paper, textiles, foods, cosmetics, beverages and medicines, and effluents contaminated with this compound are discharged daily into the environment. Recent studies have shown that azo dyes, especially those such as amaranth dye that have been classified as endocrine disruptors, may cause adverse effects to animal and human health. This paper describes the application of electrochemical oxidation (with a boron-doped diamond BDD thin-film anode) coupled with ultrasound sonolysis (20 kHz and 523 W cm−2) to the removal of amaranth dye from dilute alkaline solution. The electrochemical and sonoelectrochemical processes (ECh and SECh, respectively) were carried out at constant current density (10 to 50 mA cm−2) in a single compartment cylindrical cell. Sonolysis was virtually less useful for the decolorization and degradation of amaranth dye, whilst ECh and SECh were more effective in degrading the dye with almost complete removal (90 - 95%) attained after 90 min of experiment at an applied current density of 50 mA cm−2. Degradation of the dye followed pseudo first-order kinetics in both processes, but the rate of reaction was faster with the SECh treatment confirming a synergistic effect between the cavitation process and the electrochemical system. Additionally, at low applied current densities (10 and 25 mA cm−2), SECh was considerably more effective than ECh for the amaranth dye mineralization. Although at 35 and 50 mA cm−2, the two processes showed the respective removal of total organic carbon values: (i) 85% for the ECh and 90% for the SECh at 35 mA cm−2; (ii) 96% for the ECh and 98% for the SECh at 50 mA cm−2. It is concluded that SECh presented the most favorable results for the decontamination of wastewaters containing azo dye compounds

  18. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    International Nuclear Information System (INIS)

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst

  19. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago, E-mail: santiago.gomez@urjc.es [Universidad Rey Juan Carlos, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET (Spain)

    2015-02-15

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO{sub 3} in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH{sub 4}F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO{sub 2} with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl{sub 2}] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO{sub 2}), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO{sub 2}–Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  20. A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O{sub 3} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Watanabe, Kimitaka; Arakawa, Masayasu; Arai, Hajime [NTT Corporation, NTT Energy and Environment Systems Laboratories, Morinosato-Wakamiya 3-1, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2009-09-05

    The long-term operation of an anode-supported solid oxide fuel cell was examined to study the degradation factor. The cell was constructed using LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and NiO-SASZ as the cathode, electrolyte, and anode respectively. The cell had Pt current collectors and was operated for 6500 h. The test was carried out at 1073 K with a constant load of 0.4 A cm{sup -2} and included thermal cycling. The cell voltage degradation rate was below 0.86%/1000 h when the cell was operated for up to 5200 h. Changes in the resistance of the cells during the experiments were analyzed by impedance spectroscopy. The cathode polarization resistance and ohmic resistance increased with time. The elements (Si and B) contained in the water condensed from the cathode exhaust gas were identified using inductively coupled plasma (ICP). (author)

  1. Enhanced photocatalytic degradation activity over TiO2 nanotubes co-sensitized by reduced graphene oxide and copper(II) meso-tetra(4-carboxyphenyl)porphyrin

    Science.gov (United States)

    Wei, Meng; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2016-07-01

    In this paper, TiO2 nanotubes (TNT) co-sensitized with copper(II) meso-tetra(4-carboxyphenyl)porphyrin (CuTCPP) and reduced graphene oxide nanosheets (rGO), which was fabricated through two-step improved hydrothermal method and heating reflux process. The effect of rGO and CuTCPP on the co-photocatalytic behavior of TNT for the degradation of Methylene Blue (MB) were measured under visible light irradiation. The photocatalysts have been characterized and analyzed by high-resolution transmission electron microscopy (TEM), selected area electronic diffraction (SAED), elemental mapping by energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and electron paramagnetic resonance (EPR). The results provide a deeper insight into the co-photocatalytic mechanism of CuTCPP/rGO-TNT nanocomposites. The degradation results showed a purification of more than 95% MB in wastewater, which is about 5 times higher than that of the pure TNT. The results also confirm the prepared CuTCPP/rGO-TNT nanocomposites possess superior co-photocatalytic activities.

  2. Separation of water-soluble metabolites of benzo[a]pyrene formed by cultured human colon

    DEFF Research Database (Denmark)

    1979-01-01

    A method has been developed to separate conjugated metabolites of benzo[a]pyrene into three major fractions: sulfate esters, glucuronides and glutathione conjugates. In cultured human colon, formation of sulfate esters and glutathione conjugates is the major conjugation pathway, while formation of...... glucuronides accounts for only 6 per cent of the water-soluble metabolites. Hydrolysis of the sulfate esters with arylsulfatase and the glucuronides with β-glucuronidase released metabolites of benzo[a]pyrene that were extractable with organic solvent. Separation of these metabolites by high-pressure liquid...... chromatography indicated that trans-4,5-dihydro-4,5-dihydroxybenzo[a]pyrene,7,8,9, 10-tetrahydro-7,8,9, 10-tetrahydroxybenzo[a]pyrene and trans-9, 10-dihydro-9, 10-dihydroxybenzo[a]pyrene were the major substrates for UDP-glucuronic acid transferase, while trans-7,8-dihydro-7,8-dihydroxybenzo[a]pyrene and 9...

  3. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  4. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    International Nuclear Information System (INIS)

    The synthesised cryptomelane-type α-MnO2 was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO3. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO2 (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects on the cobalt uptake mainly due to the rather high point of zero charge of the MnO2 surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO2 in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment

  5. Benzo(a)pyrene activation and detoxification by human pulmonary alveolar macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Comparisons of pulmonary alveolar macrophages and circulating lymphocytes from five smokers and five nonsmokers for their ability to metabolize benzo(a)pyrene as determined by high pressure liquid chromatography were carried out. Utilizing this approach, further investigation of activation and detoxification by several human cell types could provide the basis for more precise and comprehensive studies of carcinogen and drug metabolism in the human lung, and for a better assessment of cancer risk in selected populations

  6. Benzo(a)pyrene diolepoxide-DNA adducts detected by synchronous fluorescence spectrophotometry.

    OpenAIRE

    Vahakangas, K.; Trivers, G; Rowe, M.; Harris, C. C.

    1985-01-01

    Using benzo(a)pyrene (BP) as a model carcinogen we are currently applying a fluorescence technique to detect the very low levels of carcinogen-DNA adducts in human populations due to environmental exposure. In synchronous fluorescence spectrophotometry for detection of BP-diol epoxide-DNA, excitation and emission wavelengths are scanned simultaneously with a fixed wavelength difference (delta lambda) of 34 nm. Compared to conventional fluorescence methods only one peak emerges because excitat...

  7. Benzo(a)pyrene inhibits the role of the bioturbator Tubifex tubifex in river sediment biogeochemistry.

    Science.gov (United States)

    Mermillod-Blondin, F; Foulquier, A; Gilbert, F; Navel, S; Montuelle, B; Bellvert, F; Comte, G; Grossi, V; Fourel, F; Lecuyer, C; Simon, L

    2013-04-15

    The interactions between invertebrates and micro-organisms living in streambed sediments often play key roles in the regulation of nutrient and organic matter fluxes in aquatic ecosystems. However, benthic sediments also constitute a privileged compartment for the accumulation of persistent organic pollutants such as PAHs or PCBs that may affect the diversity, abundance and activity of benthic organisms. The objective of this study was to quantify the impact of sediment contamination with the PAH benzo(a)pyrene on the interaction between micro-organisms and the tubificid worm, Tubifex tubifex, which has been recognized as a major bioturbator in freshwater sediments. Sedimentary microcosms (slow filtration columns) contaminated or not with benzo(a)pyrene (3 tested concentrations: 0, 1 and 5 mg kg(-1)) at the sediment surface were incubated under laboratory conditions in the presence (100 individuals) or absence of T. tubifex. Although the surface sediment contaminations with 1 mg kg(-1) and 5 mg kg(-1) of benzo(a)pyrene did not affect tubificid worm survival, these contaminations significantly influenced the role played by T. tubifex in biogeochemical processes. Indeed, tubificid worms stimulated aerobic respiration, denitrification, dehydrogenase and hydrolytic activities of micro-organisms in uncontaminated sediments whereas such effects were inhibited in sediments polluted with benzo(a)pyrene. This inhibition was due to contaminant-induced changes in bioturbation (and especially bio-irrigation) activities of worms and their resulting effects on microbial processes. This study reveals the importance of sublethal concentrations of a contaminant on ecological processes in river sediments through affecting bioturbator-microbe interactions. Since they affect microbial processes involved in water purification processes, such impacts of sublethal concentrations of pollutants should be more often considered in ecosystem health assessment. PMID:23500821

  8. Metabolic activation and DNA binding of benzo(a)pyrene in cultured human bronchus

    DEFF Research Database (Denmark)

    1977-01-01

    predominant metabolite formed by human bronchus from the (-)-trans-7,8-diol is found by high-pressure liquid chromatographic analysis to be the diol-epoxide r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahy-drobenzo(a)pyrene. The results suggest that this diol-epoxide is the major benzo(a)pyrene metabolite bound...

  9. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  10. Oxidative degradation of phenol by manganese dioxide%δ-MnO2氧化降解苯酚的机理研究

    Institute of Scientific and Technical Information of China (English)

    徐建; 张莹; 李蕾; 郭昌胜; 张远

    2013-01-01

    δ-MnO2以水羟锰矿和水钠锰矿的形式普遍存在于陆地和海洋环境中,是酚类等有机污染物发生非生物转化的重要氧化剂.本文研究了实验室制备的δ-MnO2悬浮液对苯酚的去除作用,同时讨论了pH、二氧化锰投加量、离子强度、共存金属离子和腐殖酸等不同影响因素对苯酚去除效率的影响.结果表明,苯酚氧化降解的最佳pH和δ-MnO2投加量分别为3.62和0.13 mg·L-1.溶液中共存的Na+和Mn2+会对苯酚氧化降解产生抑制作用,而Mg2+和Ca2+对反应过程没有明显的影响.溶液中共存的腐殖酸也对苯酚的降解过程产生了抑制作用,随着腐殖酸的浓度由1 mg·L-1增加到5 mg·L-1,苯酚的去除率从96.9%降为78.9%.GC-MS分析发现,对苯二酚为该过程的主要中间产物,同时给出了苯酚在δ-MnO2存在时的可能降解机制.%Manganese dioxides ( δ-MnO2 ) mainly exist in the form of vernadite and birnessite in the natural environment, which are considered to be important oxidants during the abiotic transformation of phenolic compounds. In this study, δ-MnO2 was synthesized by a facile method, and its ability for the degradation of aqueous phenol was investigated. Impacts of solution pH, δ-MnO2 loading, ionic strength, coexistence metal ions, and humic acid on the degradation of aqueous phenol were studied. The optimum solution pH and δ-MnO2 loading were determined to be 3. 62 and 0. 13 mg·L-1 , respectively. The coexistence of Na+ and Mn2+ showed inhibition effect on the oxidative degradation process, while Mg2 + and Ca + did not show any obvious effect during the experimental process. The removal efficiency of phenol decreased from 96. 9% to 78. 9% when the concentration of humic acid in the reaction solution increased from 1 mg· L -1 to 5 mg·L -1 . GC-MS was applied to identity the reaction intermediates, and hydroquinone was found to be the main reaction intermediate in the degradation system. Based on the above

  11. Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermal synthesis of ternary ZnS–Ag2S–RGO nanostructures without any additives. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Near white light emission and stable cycling can lead these composites to find application in near UV-white LEDs and environmental protection issues. - Abstract: In this work, we have successfully synthesized ternary nanohybrid composite, ZnS–Ag2S wrapped with reduced graphene oxide (RGO) using hydrothermal method without any surfactant. We have accessed the photocatalytic ability of ZnS–Ag2S–RGO nanocomposite using the oxidation of Rhodamine B (RhB) under simulated sunlight irradiation. The superior photocatalytic ability of ZnS–Ag2S–RGO compared to bare ZnS, was ascribed to an efficient charge transfer from ZnS to Ag2S and graphene sheets. The recyclability results also demonstrated the excellent stability and reliability of the ZnS–Ag2S–RGO. In addition to the excellent photocatalytic degradation properties, the synthesized ZnS–Ag2S–RGO nanocomposite exhibited near white light emission, which implies that careful design and control of the composition could be lead to find application in near UV-white LEDs. The present work provides new insights into the synthesis and characterizations of ternary ZnS–Ag2S–RGO nanocomposites and its wide applications in the environmental protection issues

  12. Biomolecule-assisted synthesis of In(OH)3 nanocubes and In2O3 nanoparticles: photocatalytic degradation of organic contaminants and CO oxidation

    Science.gov (United States)

    Nayak, Arpan Kumar; Lee, Seungwon; Sohn, Youngku; Pradhan, Debabrata

    2015-12-01

    The synthesis of nanostructured materials without any hazardous organic chemicals and expensive capping reagents is one of the challenges in nanotechnology. Here we report on the L-arginine (a biomolecule)-assisted synthesis of single crystalline cubic In(OH)3 nanocubes of a size in the range of 30-60 nm along the diagonal using hydrothermal methods. Upon calcining at 750 °C for 1 h in air, In(OH)3 nanocubes are transformed into In2O3 nanoparticles (NPs) with voids. The morphology transformation and formation of voids with the increase of the calcination temperature is studied in detail. The possible mechanism of the voids’ formation is discussed on the basis of the Kirkendall effect. The photocatalytic properties of In(OH)3 nanocubes and In2O3 NPs are studied for the degradation of rhodamin B and alizarin red S. Furthermore, the CO oxidation activity of In(OH)3 nanocubes and In2O3 NPs is examined. The photocatalytic and CO oxidation activity are measured to be higher for In2O3 NPs than for In(OH)3 nanocubes. This is attributed to the lower energy gap and higher specific surface area of the former. The present green synthesis has potential for the synthesis of other inorganic nanomaterials.

  13. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation.

    Science.gov (United States)

    Güy, Nuray; Çakar, Soner; Özacar, Mahmut

    2016-03-15

    ZnO nanoplates were synthesized by microwave-hydrothermal methods. Pd doped ZnO photocatalysts were prepared by microwave irradiation, UV irradiation, and borohydride reduction methods. The Pd/ZnO photocatalysts were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and UV-vis spectrophotometry. The obtained FESEM results confirmed the dispersion of Pd nanoparticles on the surface of ZnO nanoplates. The optical band gap value was calculated as 3.25 eV from UV-Vis diffuse reflectance spectra of ZnO and different Pd/ZnO photocatalysts. Since the preparation method of the photocatalyst is of great importance for determining the photocatalysis, the effect of this on photocatalysis was investigated. The results of the photocatalytic degradation of congo red in aqueous solutions under the UV-light showed that Pd/ZnO prepared by borohydride reduction method exhibited higher photocatalytic activity than the other ones. A plausible mechanism for the enhanced photocatalytic activity by Pd doped ZnO was proposed. The kinetics of photodecomposition of congo red, and the identification of photoproducts were investigated by using liquid chromatography-mass spectrometry (LC-MS). The possible photodegradation pathway of congo red was also proposed according to the structures of the photoproducts obtained from LC-MS data. PMID:26720515

  14. Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71

    International Nuclear Information System (INIS)

    Zinc titanate nanocomposite was coated on glass and quartz substrate by sol-gel method. Powder X-ray diffraction (XRD) patterns of the nanocomposite coatings demonstrate that heat treatment change crystalline phase of zinc titanate nanocomposite. Higher temperature led to higher purity of the hexagonal zinc titanate phase. Scanning electron microscope/energy dispersive X-ray spectrometry (SEM/EDX) images demonstrate that size of the nanoparticles decreases with increasing of calcination temperature with an average grain size of 68 nm. UV-vis diffuse reflectance spectra (DRS) of the nanocomposites show that the absorption edge of zinc titanate thin films is shifted to higher wavelengths at higher annealing temperatures which is probably due to the atomic inter diffusion between titania nanoparticles and zinc oxide. Photocatalytic activity of the nanocomposites toward photodegradation of direct blue 71 (DB71) was evaluated under UV visible light irradiation. The results indicate that hexagonal zinc titanate nanocomposite exhibit highest photocatalytic activity among the prepared samples.

  15. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: Assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.).

    Science.gov (United States)

    Shu, Zengquan; Singh, Arvinder; Klamerth, Nikolaus; McPhedran, Kerry; Bolton, James R; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-15

    Low concentrations (ng/L-μg/L) of emerging micropollutant contaminants in municipal wastewater treatment plant effluents affect the possibility to reuse these waters. Many of those micropollutants elicit endocrine disrupting effects in aquatic organisms resulting in an alteration of the endocrine system. A potential candidate for tertiary municipal wastewater treatment of these micropollutants is ultraviolet (UV)/hydrogen peroxide (H2O2) as an advanced oxidation process (AOP) which was currently applied to treat the secondary effluent of the Gold Bar Wastewater Treatment Plant (GBWWTP) in Edmonton, AB, Canada. A new approach is presented to predict the fluence-based degradation rate constants (kf') of environmentally occurring micropollutants including carbamazepine [(0.87-1.39) × 10(-3) cm(2)/mJ] and 2,4-Dichlorophenoxyacetic acid (2,4-D) [(0.60-0.91) × 10(-3) cm(2)/mJ for 2,4-D] in a medium pressure (MP) UV/H2O2 system based on a previous bench-scale investigation. Rather than using removal rates, this approach can be used to estimate the performance of the MP UV/H2O2 process for degrading trace contaminants of concern found in municipal wastewater. In addition to the ability to track contaminant removal/degradation, evaluation of the MP UV/H2O2 process was also accomplished by identifying critical ecotoxicological endpoints (i.e., estrogenicity) of the treated wastewater. Using quantitative PCR, mRNA levels of estrogen-responsive (ER) genes ERα1, ERα2, ERβ1, ERβ2 and NPR as well as two aromatase encoding genes (CYP19a and CYP19b) in goldfish (Carassius auratus L.) were measured during exposure to the GBWWTP effluent before and after MP UV/H2O2 treatment (a fluence of 1000 mJ/cm(2) and 20 mg/L of H2O2) in spring, summer and fall. Elevated expression of estrogen-responsive genes in goldfish exposed to UV/H2O2 treated effluent (a 7-day exposure) suggested that the UV/H2O2 process may induce acute estrogenic disruption to goldfish principally because

  16. Effect of inlet fuel type on the degradation of Ni/YSZ anode of solid oxide fuel cell by carbon deposition

    Directory of Open Access Journals (Sweden)

    Suttichai Assabumrungrat

    2006-11-01

    Full Text Available According to the high operating temperature of Solid Oxide Fuel Cell (SOFC (700-1100ºC, it is known that some hydrocarbon fuels can be directly used as inlet fuel instead of hydrogen by feeding straight to the anode. This operation is called a direct internal reforming SOFC (DIR-SOFC. However, the major difficulty of this operation is the possible degradation of anode by the carbon deposition, as the carbon species are easily formed. In the present work, the effect of inlet fuel (i.e. H2, synthesis gas (H2+CO, CH4, CH4+H2O, CH3OH+H2O, and C2H5OH+H2O on the degradation of nickel cermet (Ni/YSZ, which is the most common anode material of SOFC, was studied.It was found from the work that hydrogen and synthesis gas (CO+H2 are proper to be used as direct inlet fuels for DIR-SOFC with Ni/YSZ anode, since the carbon formation on Ni/YSZ occurred in the small quantity. The mixture of methane and steam (CH4+H2O can also be used as the inlet feed, but the H2O/CH4 ratio plays an important role. In contrast, pure methane (CH4, methanol with steam (CH3OH+H2O and ethanol with steam (C2H5OH+H2O are not suitable for using as direct inlet fuel for DIR-SOFC with Ni/YSZ anode even the higher H2O/CH3OH and H2O/C2H5OH ratios were applied.

  17. Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of flavonoids: quercetin, catechin and morin.

    Science.gov (United States)

    Beker, Bilge Yildoğan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-08-01

    Protection of ascorbic acid (AA) (vitamin C) from Cu(II)-catalyzed autoxidation is an important aspect of antioxidant chemistry. The autoxidation of AA in the absence and presence of Cu(II) ions was investigated in aerated solution at room temperature and I = 0.1 ionic strength (KNO(3)); the effects of three different flavonoids of similar structure (quercetin, morin and catechin) and their mixtures on the AA system were studied. The concentration of unoxidized AA remaining in solution was measured with the modified cupric ion reducing antioxidant capacity spectrophotometric method. The Cu(II)-catalyzed oxidation at pH 4.5 followed first-order kinetics with respect to AA concentration. Catalytic autoxidation of AA was inhibited to a greater extent by stable quercetin and morin complexes of Cu(II) than by catechin complex. The inhibitive effectiveness order of mixtures gives information about possible synergistic or antagonistic combinations of flavonoid antioxidants, which should be further confirmed with other antioxidant tests. PMID:21391791

  18. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO2/MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  19. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    Science.gov (United States)

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  20. A Numerical Solution Routine for Investigating Oxidation-Induced Strength Degradation Mechanisms in SiC/SiC Composites

    Science.gov (United States)

    Sullivan, Roy M.

    2015-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide (SiCSiC) composites with a boron nitride (BN) fiber coating decreases with time within the intermediate temperature range of 700-950 C. Various theories have been proposed to explain the cause of the time dependent stress rupture strength. Some previous authors have suggested that the observed composite strength behavior is due to the inherent time dependent strength of the fibers, which is caused by the slow growth of flaws within the fibers. Flaw growth is supposedly enabled by oxidation of free carbon at the grain boundaries. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of SiCSiC composites. This is achieved through the development of a numerically-based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time dependent behavior.

  1. EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages

    International Nuclear Information System (INIS)

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management and Operating contractor (CRWMS M and O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this

  2. Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabbanini, Simone; Matera, Riccardo [BeC S.r.l., R& D Division, Via C. Monteverdi 49, 47122 Forlì (Italy); Valvassori, Alice [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy); Valgimigli, Luca, E-mail: luca.valgimigli@unibo.it [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy)

    2015-04-15

    Highlights: • A novel method for the UPLC–MS/MS analysis of 4-HNE is described. • The method allows complete analysis of a vegetable oil in 21 min with LOD ≤ 7 ng g{sup −1}. • Excellent recovery from lipid matrices without deuterium-labeled internal standards. • Requires straightforward sample manipulation and routine equipment. • Allows fast, reliable, cost-effective assessment of safety and quality of oils. - Abstract: A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils.

  3. Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils

    International Nuclear Information System (INIS)

    Highlights: • A novel method for the UPLC–MS/MS analysis of 4-HNE is described. • The method allows complete analysis of a vegetable oil in 21 min with LOD ≤ 7 ng g−1. • Excellent recovery from lipid matrices without deuterium-labeled internal standards. • Requires straightforward sample manipulation and routine equipment. • Allows fast, reliable, cost-effective assessment of safety and quality of oils. - Abstract: A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils

  4. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    The oxidation-reduction potentials of lignin peroxidase isozymes H1, H2, H8, and H10 as well as the Mn-dependent peroxidase isozymes H3 and H4 are reported. The potentiometric titrations involving the ferrous and ferric states of the enzyme had Nernst plots indicating single-electron transfer. The Em7 values of lignin peroxidase isozymes H1, H2, H8, and H10 are -142, -135, -137, and -127 mV versus standard hydrogen electrode, respectively. The Em7 values for the Mn-dependent peroxidase isozymes H3 and H4 are -88 and -93 mV versus standard hydrogen electrode, respectively. The midpoint potential of H1, H8, and H4 remained unchanged in the presence of their respective substrates, veratryl alcohol and Mn(II). The midpoint potential between the ferric and ferrous forms of isozymes H1 and H4 exhibited a pH-dependent change between pH 3.5 and pH 6.5. These results indicate that the reductive half-reaction of the enzymes is the following: ferric peroxidase + le- + H+----ferrous peroxidase. Above pH 6.5, the effect of pH on the midpoint potential is diminished and indicates that an ionization with an apparent pKa equal to approximately 6.6-6.7 occurs in the reduced form of the enzymes. A heme-linked ionization group in the ferrous form of the enzymes was confirmed by studying the effect of pH on the absorption spectra of isozymes H1 and H4. These spectrophotometric pH titration experiments confirmed the electrochemical results indicating pKa values of 6.59 and 6.69 for reduced isozymes H1 and H4, respectively. These results indicate the presence of a heme-linked ionization of an amino acid in the reduced form of the lignin peroxidase isozymes similar to that of other plant peroxidases

  5. 羟基氧化铁催化臭氧氧化降解苯胺废水%Degradation of aniline Wastewater by hydroxyl iron oxide catalytic ozone oxidation

    Institute of Scientific and Technical Information of China (English)

    林继辉; 蒋联规; 曾飞虎; 黄先锋

    2012-01-01

    以实验室制备的羟基氧化铁(FeOOH)为催化剂催化臭氧氧化处理苯胺废水,对比催化臭氧氧化与单独臭氧降解苯胺的效率,实验结果表明,FeOOH催化臭氧氧化能加快对苯胺的降解速率,并且矿化程度高.说明FeOOH对臭氧氧化水中的苯胺具有明显的催化作用.探讨了氧气的进气流量、苯胺的初始浓度、水溶液的pH、催化剂的投加量等因素对催化氧化苯胺的影响.研究表明:氧气的进气流量为30L/h、初始浓度300mg/L时、pH值7.3、催化剂的投加量为2g/L、反应15min后,苯胺的去除率可达98.2%,COD的去除率可达70%.在催化体系中加入自由基捕获剂叔丁醇后,催化臭氧氧化反应明显受到抑制,间接证明了FeOOH催化臭氧氧化苯胺遵循自由基反应机理.%By the laboratory preparation of hydroxyl ferric oxide (FeOOH) as catalyst 03 catalytic oxidation wastewater treatment aniline, the contrast of 03 catalytic and individual ozone of aniline degradation efficiency is made. The experimental results show that FeOOH 03 catalytic can accelerate the degradation rate of aniline, and a high degree of mineralization. It also proves that the FeOOH to ozone oxidation of aniline in water has the obvious catalytic activity. The paper discusses the oxygen intake flow, aniline initial concentration, the solution of the catalyst pH and the dosing quantity of factors catalytic oxidation of aniline influence. Research shows that: oxygen intake flow for 30 L/h, initial concentration 300 mg/L, pH value of 7.3, catalyst dosing quantity for 2 g/L, reaction after 15 min to the removal rate of aniline can reach 98.2%. The COD removal rate can amount to 70%. Through the process of free radicals in catalytic to capture agent after uncle butanol, it showed significant inhibitory catalytic oxidation reaction ozone, which indirectly proves that the FeOOH 03 catalytic oxidation aniline follows the free radicals reaction mechanism.

  6. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. PMID:27403873

  7. Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM

    Science.gov (United States)

    Arita, Masashi; Takahashi, Akihito; Ohno, Yuuki; Nakane, Akitoshi; Tsurumaki-Fukuchi, Atsushi; Takahashi, Yasuo

    2015-11-01

    In-situ transmission electron microscopy (in-situ TEM) was performed to investigate the switching operation of a resistive random access memory (ReRAM) made of copper, tungsten oxide and titanium nitride (Cu/WOx/TiN). In the first Set (Forming) operation to initialize the device, precipitation appeared inside the WOx layer. It was presumed that a Cu conducting filament was formed, lowering the resistance (on-state). The Reset operation induced a higher resistance (the off-state). No change in the microstructure was identified in the TEM images. Only when an additional Reset current was applied after switching to the off-state could erasure of the filament be seen (over-Reset). Therefore, it was concluded that structural change relating to the resistance switch was localized in a very small area around the filament. With repeated switching operations and increasing operational current, the WOx/electrode interfaces became indistinct. At the same time, the resistance of the off-state gradually decreased. This is thought to be caused by Cu condensation at the interfaces because of leakage current through the area other than through the filament. This will lead to device degradation through mechanisms such as endurance failure. This is the first accelerated aging test of ReRAM achieved using in-situ TEM.

  8. Enhanced photocatalytic activity of TiO2-impregnated with MgZnAl mixed oxides obtained from layered double hydroxides for phenol degradation

    Science.gov (United States)

    de Almeida, Marciano Fabiano; Bellato, Carlos Roberto; Mounteer, Ann Honor; Ferreira, Sukarno Olavo; Milagres, Jaderson Lopes; Miranda, Liany Divina Lima

    2015-12-01

    A series of TiO2/MgZnAl photocatalysts were successfully synthesized from ternary (Mg, Zn and Al) layered double hydroxides impregnated with TiO2 nanoparticles by the co-precipitation method at variable pH with different Zn2+/Mg2+ molar ratios. The composite photocatalysts were calcined at 500 °C resulting in the incorporation of oxide zinc, in the calcined MgZnAl LDH structure. Synergistic effect between ZnO and TiO2 lead to significant enhancement of TiO2/MgZnAl photocatalytic activity. Composite photocatalysts were characterized by ICP-MS, N2 adsorption-desorption, XRD, SEM, EDS, IR and UV-vis DRS. Phenol in aqueous solution (50 mg/L) was used as a model compound for evaluation of UV-vis (filter cut-off for λ > 300 nm) photocatalytic activity. The most efficient photocatalyst composite was obtained at a 5% Zn2+/Mg2+ molar ratio, in the catalyst identified as TiO2/MgZnAl-5. This composite catalyst had high photocatalytic activity, completely destroying phenol and removing 80% of total organic carbon in solution after 360 min. The TiO2/MgZnAl-5 catalyst remained relatively stable, presenting a 15% decrease in phenol degradation efficiency after five consecutive photocatalytic cycles.

  9. Mixed metal oxide nanocomposites derived from layered double hydroxides as photocatalysts for C.I. Basic Blue 3 degradation under UV light

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, Z.; Sarkarat, M. [Department of Chemistry, Faculty of Basic Sciences, Azarbaijan University of Shahid Madani,Tabriz (Iran, Islamic Republic of); Khataee, A.R. [Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz (Iran, Islamic Republic of); Nejati, K. [Chemistry Department, Payame Noor University, Tehran (Iran, Islamic Republic of)

    2012-11-15

    In this research we report synthesis of the heterostructure Mg-Al-Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH){sub 2}/Mg-Al-layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X-ray diffraction (XRD), FT-IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X-ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X-ray diffraction spectra. The calcined samples at 500, 600 and 700 C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    Science.gov (United States)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-07-01

    In this study, novel flower-like TiO2 sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO2 sphere composite photocatalysts.

  11. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    International Nuclear Information System (INIS)

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions

  12. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yaokun; He, Siyu; Wang, Diangang, E-mail: wangdg@sdu.edu.cn; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions.

  13. Metabolism of benzo(a)pyrene by aortic subcellular fractions in the setting of abdominal aortic aneurysms.

    Science.gov (United States)

    Ramesh, A; Prins, P A; Perati, P R; Rekhadevi, P V; Sampson, U K

    2016-01-01

    As exposure to polycyclic aromatic hydrocarbons (PAHs; a family of environmental toxicants) have been implicated in cardiovascular diseases, the ability of the aortic tissue to process these toxicants is important from the standpoint of abdominal aortic aneurysms and atherosclerosis. Benzo(a)pyrene (B(a)P), a representative PAH compound is released into the environment from automobile exhausts, industrial emissions, and considerable intake of B(a)P is also expected in people who are smokers and barbecued red meat eaters. Therefore, knowledge of B(a)P metabolism in the cardiovascular system will be of importance in the management of vascular disorders. Toward this end, subcellular fractions (nuclear, cytosolic, mitochondrial, and microsomal) were isolated from the aortic tissues of Apo E mice that received a 5 mg/kg/week of B(a)P for 42 days and 0.71 mg/kg/day for 60 days. The fractions were incubated with 1 and 3 μM B(a)P. Post incubation, samples were extracted with ethyl acetate and analyzed by reverse-phase HPLC. Microsomal B(a)P metabolism was greater than the rest of the fractions. The B(a)P metabolite levels generated by all the subcellular fractions showed a B(a)P exposure concentration-dependent increase for both the weekly and daily B(a)P treatment categories. The preponderance of B(a)P metabolites such as 7,8-dihydrodiol, 3,6-, and 6,12-dione metabolites are interesting due to their reported involvement in B(a)P-induced toxicity through oxidative stress. PMID:26530167

  14. Determination of the level of benzo[a]pyrene in fatty foods and food supplements

    OpenAIRE

    Van Der Wielen-Hustinx, Jacqueline Claire Agnes; Jansen, John; Martena, Martijn J.; De Groot, Henk; In T Veld, Paul

    2006-01-01

    Abstract A routine method was developed for the quantification of benzo[a]pyrene (BaP) in edible oils and food supplements. BaP is often taken as an indicator of the presence of polycyclic aromatic hydrocarbons. The method consists of on-line LC-clean up followed by injection to an HPLC-system connected with fluorescence detection. The method has good performance characteristics and gave good results in proficiency tests. From 2002 to 2004 about 1350 samples, oils and food supp...

  15. The Cigarette Smoke Carcinogen Benzo[a]pyrene Enhances Human Papillomavirus Synthesis▿

    OpenAIRE

    Alam, Samina; Conway, Michael J; Chen, Horng-Shen; Meyers, Craig

    2007-01-01

    Epidemiological studies suggest that cigarette smoke carcinogens are cofactors which synergize with human papillomavirus (HPV) to increase the risk of cervical cancer progression. Benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, is detected in the cervical mucus and may interact with HPV. Exposure of cervical cells to high concentrations of BaP resulted in a 10-fold increase in HPV type 31 (HPV31) viral titers, whereas treatment with low concentrations of BaP resulted in an increa...

  16. Redox Regulation of Insulin Degradation by Insulin-Degrading Enzyme

    OpenAIRE

    Cordes, Crystal M.; Bennett, Robert G.; Siford, Gerri L.; Hamel, Frederick G.

    2011-01-01

    Insulin-degrading enzyme (IDE) is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat ...

  17. GC-MS/MS analysis of benzo(a)pyrene by ion trap tandem mass spectrometry

    International Nuclear Information System (INIS)

    The mass spectrometry using an ion trap tandem mass spectrometer has been investigated to find optimum conditions for the analysis of benzo(a)pyrene (3,4-benzpyrene). The applicability to a real soil sample was also investigated to verify the usefulness of the MS/MS (or collision induced dissociation, CID) analysis. The optimum CID condition was 1.5 and 0.45 for the RF excitation voltage and the q value, respectively. For comparison, CID and EI were applied to the analysis of a soil sample. CID analysis was more sensitive than EI analysis of the soil sample. The limit of detection (LOD) of benzo(a)pyrene was 3.18 ng mL-1 and 0.85 ng mL-1 for EI and MS/MS analysis, respectively. The precision at the soil sample for EI and CID showed relative standard deviations of 6.1% and 4.1%, respectively, and the concentrations were 168 μg kg-1 and 162 μg kg-1, respectively

  18. Thesis Abstract Study of biochemical changes in blood and various organs of Phrynops geoffroanus (Schweigger, 1812) (Testudines: Chelidae) collected in contaminated environment or exposed to benzo[a]pyrene.

    Science.gov (United States)

    Silva, M I A; Silva, T L; Almeida, E A

    2016-01-01

    The aquatic organisms are often exposed to a wide variety of chemicals, whose individual components are likely to produce different responses within the organisms and/or interact producing additive, synergistic or antagonistic toxic effects. Most of these substances are potentially cytotoxic, genotoxic or carcinogenic, such as polycyclic aromatic hydrocarbons (PAHs). The Phrynops geoffroanus species ("Geoffroy's side-necked turtle", Schweigger, 1812) is widely distributed in tropical and temperate areas of South America. This species is commonly found in impacted areas, and polluted rivers that cross the urban area and receive domestic and industrial wastewater effluents. In these environments, freshwater turtles are exposed to ecological pressures that threaten their conservation and can influence the animal life habits and physiological conditions. The objective of this study was to evaluate the biochemical changes in various organs (liver, heart, lung, pancreas, brain, small and large intestines) of P. geoffroanus from contaminated environment by human activities (sewage and industrial wastewater effluents) (Step 1) or exposed to benzo[a]pyrene, a PAHs model compound, for 7 days (Step 2). For this, we analyzed the responses of systems related to phases I and II of xenobiotics biotransformation, main antioxidant enzyme activities and malondialdehyde (MDA) levels, indicative of oxidative stress, as biomarkers for biomonitoring of pollutants impact. Furthermore, we have assessed the gamma glutamyl transferase enzymatic activity and DNA fragmentation by comet assay, in P. geoffroanus blood exposed to benzo[a]pyrene, in order to identify hepatic changes and genotoxicity according to the tested doses of this compound. The first step of this study analysis revealed an important influence of contamination by domestic and industrial wastewater effluents in free-living freshwater turtles that presented a series of changes in biomarkers analyzed. We observed higher MDA

  19. Decolorization of dark brown colored coffee effluent using zinc oxide particles: the role of dissolved oxygen in degradation of colored compounds.

    Science.gov (United States)

    Satori, Hirotaka; Kawase, Yoshinori

    2014-06-15

    The degradation of model dark brown colored coffee effluent using photocatalyst zinc oxide (ZnO) has been systematically studied by varying ZnO dosage from 0 to 4000 mg L(-1), coffee loading from 0 to 90 mg L(-1) and intensity of UV light having the radiation peak at 352 nm from 0 to 18 W(m-lamp length)(-1). Almost complete decolorization was achieved after 180 min for the initial coffee concentration of 50 mg L(-1) with ZnO dosage of 3000 mg L(-1) and three UV lamps. The dissolved oxygen (DO) largely affected the photodecolorization process. Without air sparging or with oxygen supply only through the free-surface, the DO concentration significantly decreased during the initial decolorization process and then increased to the saturated DO concentration after about 80% decolorization was achieved. Under the anoxic condition with nitrogen gas sparging, the efficient color removal was not obtained unlike the decolorization without air sparging or under the oxic condition with air sparging. These findings suggest that the change in DO concentration was controlled by the oxygen consumption for the formation of oxygen adduct intermediates such as organoperoxy radicals. The mineralization rate of model coffee effluent was rather slow as compared with the decolorization rate and it was insignificantly affected by anoxic and oxic conditions. The present results indicate that ZnO photocatalyst has potential for treatment of coffee processing wastewaters. PMID:24698992

  20. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  1. Size-Controlled TiO2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids.

    Science.gov (United States)

    Yan, Wen-Yuan; Zhou, Qi; Chen, Xing; Yang, Yong; Zhang, Yong; Huang, Xing-Jiu; Wu, Yu-Cheng

    2016-08-15

    Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance. PMID:27107234

  2. Uptake of 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene in melanin-containing tissues

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, A.; Larsson, B.S. [Uppsala Univ., Dept. of Pharmaceutical Biosciences, Div. of Toxicology, Uppsala (Sweden); Tjaelve, H. [The Swedish Univ. of Agricultural Sciences, Dept. of Pharmacology and Toxicology, Uppsala (Sweden)

    1996-08-01

    It is widely accepted that UV exposure is the main etiological factor for malignant melanoma. Epidemiologic studies, however, have indicated that also chemical carcinogens may be a risk factor for the disease. Polycyclic aromatic hydrocarbons such as 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene represent an important class of carcinogenic chemicals. It is known that 7,12-dimethylbenz(a)anthracene can induce melanotic tumours in various animal species, and human melanocytes in culture have been found to be capable of metabolizing benzo(a)pyrene to its proximate carcinogen benzo(a)pyrene-7,8-diol. In the present study the disposition of {sup 14}C- and {sup 3}H-7,12-dimethylbenz(a)anthracene and {sup 14}C-benzo(a)pyrene was studied in pigmented and albino mice and Syrian golden hamsters by whole-body autoradiography. The results showed pronounced retention of label in the melanin-containing structures of the eyes and the hair follicles in the pigmented animals. The labelling of the corresponding structures in the albino animals was low. Additional experiments showed that 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene as well as some of their metabolites are bound to melanin in vitro. The specific localization of the polycyclic aromatic hydrocarbons in pigmented tissues due to melanin affinity, combined with bioactivating capacity of melanocytes, suggest that these substances may play a role in the induction of malignant melanoma. (au).

  3. MUTAGENICITY OF BENZO(A)PYRENE METABOLITES GENERATED ON THE ISOLATED PERFUSED LUNG FOLLOWING PARTICULATE EXPOSURE (JOURNAL VERSION)

    Science.gov (United States)

    The isolated perfused rabbit lung (IPL) is being used to study the effects of particulate exposure on the pulmonary metabolism of benzo(a)pyrene (BaP). Pasturealla-free New Zealand white rabbits were treated intraperitoneally with BaP prior to kill. The isolated lungs were then a...

  4. Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri

    OpenAIRE

    Jing-Jing, Miao; Lu-Qing, Pan; Jing, Liu; Lin, Zhang

    2008-01-01

    Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri correspondence: Corresponding author. (Lu-qing, Pan) (Lu-qing, Pan) The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China - No. 5--> , Yushan Road--> , Qingdao--> - CHINA (Jing-jing, Miao) The Key Laboratory of Mariculture, Ministry of Education, Ocean University ...

  5. METABOLISM AND DNA (DEOXYRIBONUCLEIC ACID) BINDING OF BENZO(A)PYRENE IN CULTURED HUMAN BLADDER AND BRONCHUS

    Science.gov (United States)

    The metabolism of benzo(a)pyrene (BP) was examined in ex-plant cultures of human bladder and bronchus. Three-day cultures were exposed to radiolabeled BP for 24 h, and the metabolism was determined by analysis of the level of binding of reactive metabolites to DNA, and by the rel...

  6. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs. PMID:25265524

  7. Evaluation of adjuvants for a candidate conjugate vaccine against benzo[a]pyrene.

    Science.gov (United States)

    Schellenberger, Mario T; Farinelle, Sophie; Willième, Stéphanie; Muller, Claude P

    2011-01-01

    We have recently developed an experimental vaccine based on benzo[a]pyrene (B[a]P) conjugated to tetanus toxoid as a carrier protein. In combination with Freund adjuvant, this vaccine induces high levels of B[a]P-specific antibodies to protect against detrimental effects of this carcinogen. Here we evaluate this conjugate vaccine by replacing Freund adjuvant by adjuvants that are potentially compatible with their use in humans. We showed that all adjuvants tested induced specific antibodies against B[a]P and 7,8-diol-B[a]P, its carcinogenic metabolite. The best antibody levels were obtained with Quil A, MF-59 and Alum. Biological activity in terms of enhanced retention of B[a]P was confirmed in mice immunised with Quil A, Montanide, Alum and MF-59. Our findings demonstrate that a vaccination against B[a]P is feasible in combination with adjuvants licensed in humans. PMID:21245662

  8. Liquid chromatographic determination of benzo(a)pyrene in total particulate matter of cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A.; Jenkins, R.A.; Griest, W.H.; Reagan, R.R.; Holladay, S.K.

    1985-09-01

    The benzo(a)pyrene (BaP) delivery of reference and commercially available tobacco cigarettes, as well as reference and placebo marijuana cigarettes, is determined using a sequential liquid chromatographic/liquid chromatographic procedure. The total particulate matter of sample cigarette smoke is collected using a Cambridge filter pad, which is ultrasonically extracted with acetone. The resulting extract is filtered, then fractionated using semipreparative-scale normal phase liquid chromatography (LC). Quantitative determination is achieved using analytical-scale reverse phase LC equipped with a fluorescence detector. The method is precise (+/- 10-15% relative standard deviation) and yields 85% or better BaP recovery at the ng/cig. level. A single pad may be analyzed in 8 person-hours, while a more typical lot of 12 pads (6 pads each for 2 cigarette brands) may be analyzed in 10 person-days.

  9. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  10. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    International Nuclear Information System (INIS)

    Hot-carrier-induced linear drain current (Idlin) and threshold voltage (Vth) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the Vth increasing and the channel conductance (Gch) decreasing, then reduces Idlin. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (Gd), and then increases Idlin. Consequently, the eventual Idlin degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured Idlin anomalously increases while the Vth is increasing with power law. The thin layer field pLDMOS exhibits more severe Vth instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit

  11. Hot-carrier-induced linear drain current and threshold voltage degradation for thin layer silicon-on-insulator field P-channel lateral double-diffused metal-oxide-semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin; Qiao, Ming; He, Yitao; Li, Zhaoji; Zhang, Bo, E-mail: bozhang@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

    2015-11-16

    Hot-carrier-induced linear drain current (I{sub dlin}) and threshold voltage (V{sub th}) degradations for the thin layer SOI field p-channel lateral double-diffused MOS (pLDMOS) are investigated. Two competition degradation mechanisms are revealed and the hot-carrier conductance modulation model is proposed. In the channel, hot-hole injection induced positive oxide trapped charge and interface trap gives rise to the V{sub th} increasing and the channel conductance (G{sub ch}) decreasing, then reduces I{sub dlin}. In the p-drift region, hot-electron injection induced negative oxide trapped charge enhances the conductance of drift doping resistance (G{sub d}), and then increases I{sub dlin}. Consequently, the eventual I{sub dlin} degradation is controlled by the competition of the two mechanisms due to conductance modulation in the both regions. Based on the model, it is explained that the measured I{sub dlin} anomalously increases while the V{sub th} is increasing with power law. The thin layer field pLDMOS exhibits more severe V{sub th} instability compared with thick SOI layer structure; as a result, it should be seriously evaluated in actual application in switching circuit.

  12. Redox regulation of insulin degradation by insulin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Crystal M Cordes

    Full Text Available Insulin-degrading enzyme (IDE is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

  13. Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below.

    Science.gov (United States)

    Ni, Na; Cooper, Samuel J; Williams, Robert; Kemen, Nils; McComb, David W; Skinner, Stephen J

    2016-07-13

    The degradation of intermediate temperature solid oxide fuel cell (ITSOFC) cathodes has been identified as a major issue limiting the development of ITSOFCs as high efficiency energy conversion devices. In this work, the effect of Cr poisoning on (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ (LSCF6428), a particularly promising ITSOFC cathode material, was investigated on symmetrical cells using electrochemical impedance spectroscopy and multiscale structural/chemical analysis by advanced electron and ion microscopy. The systematic combination of bulk and high-resolution analysis on the same cells allows, for the first time, direct correlation of Cr induced performance degradation with subtle and localized structural/chemical changes of the cathode down to the atomic scale. Up to 2 orders of magnitude reduction in conductivity, oxygen surface exchange rate, and diffusivity were observed in Cr poisoned LSCF6428 samples. These effects are associated with the formation of nanometer size SrCrO4; grain boundary segregation of Cr; enhanced B-site element exsolution (both Fe and Co); and reduction in the Fe valence, the latter two being related to Cr substitution in LSCF. The finding that significant degradation of the cathode happens before obvious microscale change points to new critical SOFC degradation mechanisms effective at the nanometer scale and below. PMID:27336290

  14. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Maria, V.L., E-mail: vmaria@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, T., E-mail: tcgomes@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Barreira, L., E-mail: lbarreir@ualg.pt [CCMAR, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, M.J., E-mail: mbebian@ualg.pt [CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2013-11-15

    Highlights: •Distinct protein expression profiles dependent of BaP and Cu accumulation, metabolism and chemical interactions in mussels, Mytilus galloprovincialis. •Processes that involve adhesion and motility, cytoskeleton and cell structure, stress response, transcription regulation and energy metabolism are common mechanisms. •Traditional (ATP synthase, GST, HSP and actin) and novel biomarkers for BaP (ZFP), Cu (chitin synthase) and mixture (MVP) exposures identified in mussels. -- Abstract: In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L{sup −1} (0.396 μM)], and Cu [10 μg L{sup −1} (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear

  15. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis

    International Nuclear Information System (INIS)

    Highlights: •Distinct protein expression profiles dependent of BaP and Cu accumulation, metabolism and chemical interactions in mussels, Mytilus galloprovincialis. •Processes that involve adhesion and motility, cytoskeleton and cell structure, stress response, transcription regulation and energy metabolism are common mechanisms. •Traditional (ATP synthase, GST, HSP and actin) and novel biomarkers for BaP (ZFP), Cu (chitin synthase) and mixture (MVP) exposures identified in mussels. -- Abstract: In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L−1 (0.396 μM)], and Cu [10 μg L−1 (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear receptor

  16. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Anh Khoa Augustin [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Pourtois, Geoffrey [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Agarwal, Tarun [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Afzalian, Aryan [TSMC, Kapeldreef 75, B-3001 Leuven (Belgium); Radu, Iuliana P. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Houssa, Michel [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

  17. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    International Nuclear Information System (INIS)

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs

  18. Degradation of the holmium-barium-copper oxide superconductor, HoBa2Cu3O6.92, under the action of H2O and D2O: A study by the radiothermoluminescence method

    International Nuclear Information System (INIS)

    Information about the existence of impurities and defects on the surfaces of high-Tc superconductors (HTSC) can be obtained by radiothermoluminescence (RTL). The degradation of HTSC materials results from their interaction with water and CO2. It has been established that the intensity of RTL is very insignificant for freshly prepared HTSC or for samples stored in a dry atmosphere. However, a large increase in RTL intensity occurs if specimens are in contact with water. Barium hydroxide, carbonate, and oxides make the largest contribution to RTL of superconducting ceramics with degraded surfaces. The RTL curves for Ba(OH)2 and BaCO3 differ slightly from each other, which makes it difficult to estimate the contribution of each of them to the luminescence observed

  19. The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuemei [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); An Hui; Ao Lin; Sun Lei; Liu Wenbin; Zhou Ziyuan [Department of Hygenic Toxicology, College of Military Preventive Medicine, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing 400038 (China); Wang Yingxiong, E-mail: wyx61221@yahoo.com.cn [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); Cao Jia, E-mail: caojia1962@126.com [Department of Hygenic Toxicology, College of Military Preventive Medicine, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing 400038 (China)

    2011-02-15

    Our previous studies revealed more than 100 pollutants, most of which were endocrine disruptors (EDs) in two Chinese rivers, the Jialing and the Yangtze near Chongqing. Most EDs, such as dibutyl phthalate (DBP) and benzo(a)pyrene (BaP), are known to act individually as reproductive toxicants. However, little is known about the combined toxicity of DBP and BaP. In the current study, male Sprague Dawley rats were subchronically exposed to single dos