WorldWideScience

Sample records for benzenedicarboxylic acid-ortho

  1. Ionothermal synthesis, structures, properties of cobalt-1,4-benzenedicarboxylate metal–organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zong-Hui [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fsuzhou, Fujian 350002 (China); Xu, Ling, E-mail: xuling@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China); Jiao, Huan, E-mail: jiaohuan@snnu.edu.cn [Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, Shaanxi Province (China)

    2016-06-15

    Eight kinds of 1-methyl-3-alkylimidazolium halide [RMI]X (R=ethyl (E), propyl (P), butyl (B) and amyl (A); MI = imidazolium; X= Cl{sup −}, I{sup −}) ionic liquids (ILs) were used as reaction media and obtained a series of 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks through the ionothermal reactions of 1,4-benzenedicarboxylic acid (H{sub 2}BDC) with Co(NO{sub 3}){sub 2}·6H{sub 2}O. The 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks exhibit a same (3,6) topology network with [RMI]{sup +} cations locating in the interlayer space. [RMI]{sup +} cations play a template role in the structure constructions, whose influence combining with the effect of X{sup −} anions pass to the TG behaviors. The decomposition temperatures of the [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] frameworks decrease with the alkyl chains in [RMI]{sup +} cations, and the compounds containing Cl{sup −} show higher thermal stabilities than those with I{sup −}. However, compounds 1–8 exhibit two similar broad emissions at ca. 380 and 390 nm, assigned to ILCT. The RMI{sup +} templates and the X{sup −} anions do not exert their influence on the fluorescence. - Graphical abstract: Eight 2D [RMI]{sub 2}[Co{sub 3}(BDC){sub 3}X{sub 2}] compounds were synthesized through ionothermal reactions. [RMI]{sup +} cations play a template role in the structure constructions, and tune the TG behaviors combining with the effect of X{sup −} anions. Display Omitted.

  2. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    Science.gov (United States)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  3. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates

    International Nuclear Information System (INIS)

    Haque, Enamul; Lee, Ji Eun; Jang, In Tae; Hwang, Young Kyu; Chang, Jong-San; Jegal, Jonggeon; Jhung, Sung Hwa

    2010-01-01

    Two typical highly porous metal-organic framework (MOF) materials based on chromium-benzenedicarboxylates (Cr-BDC) obtained from Material of Institute Lavoisier with special structure of MIL-101 and MIL-53 have been used for the adsorptive removal of methyl orange (MO), a harmful anionic dye, from aqueous solutions. The adsorption capacity and adsorption kinetic constant of MIL-101 are greater than those of MIL-53, showing the importance of porosity and pore size for the adsorption. The performance of MIL-101 improves with modification: the adsorption capacity and kinetic constant are in the order of MIL-101 < ethylenediamine-grafted MIL-101 < protonated ethylenediamine-grafted MIL-101 (even though the porosity and pore size are slightly decreased with grafting and further protonation). The adsorption capacity of protonated ethylenediamine-grafted MIL-101 decreases with increasing the pH of an aqueous MO solution. These results suggest that the adsorption of MO on the MOF is at least partly due to the electrostatic interaction between anionic MO and a cationic adsorbent. Adsorption of MO at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with MO adsorption. The adsorbent MIL-101s are re-usable after sonification in water. Based on this study, MOFs can be suggested as potential re-usable adsorbents to remove anionic dyes because of their high porosity, facile modification and ready re-activation.

  4. Syntheses, crystal structures and luminescent properties of two new 1D d 1 coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    International Nuclear Information System (INIS)

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin

    2005-01-01

    Two novel interesting d 1 metal coordination polymers, [Zn(H 2 bibzim)(BDC)] n (1) and [Cd(H 2 bibzim)(BDC)] n (2) [H 2 bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The π-π interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d 1 coordination polymeric framework

  5. Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

    KAUST Repository

    Zheng, Bing; Luo, Jiahuan; Wang, Fang; Peng, Yu; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2013-01-01

    Six novel coordination polymers based on a multifunctional ligand, 5,5'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2

  6. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiqu; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-04-15

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H{sub 2}bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H{sub 2}bdc){sub 3/4}, 1, which has a inorganic-organic hybrid Vernier structure with the H{sub 2}bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H{sub 2}bdc){sub 5/7}, 2, MIL-53Al, [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}, 3, and MIL-53Ga, [Ga(OH)(bdc)](H{sub 2}bdc){sub 12/17}, 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2{sub 1}, a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2{sub 1}/n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2{sub 1}, a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H{sub 2}bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H{sub 2}bdc){sub 11/16}. - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion

  7. Hydrothermal crystal growth and Vernier structures of the metal benzenedicarboxylates MIL-47 and MIL-53 containing guest molecules of benzenecarboxylic acid

    International Nuclear Information System (INIS)

    Wang, Xiqu; Jacobson, Allan J.

    2016-01-01

    The nanoporous frameworks VO(bdc), MIL-47, and M(OH)(bdc), MIL-53; bdc=1,4-benzenedicarboxylate, can absorb various guest species in their channels. As synthesized, the channels are filled with H 2 bdc molecules that have been reported to be disordered, except for [In(OH)bdc](H 2 bdc) 3/4 , 1, which has a inorganic-organic hybrid Vernier structure with the H 2 bdc molecules forming an ordered sublattice. Based on X-ray data from large single crystals grown by hydrothermal techniques, similar Vernier structures have been found for MIL-47, [VO(bdc)](H 2 bdc) 5/7 , 2, MIL-53Al, [Al(OH)(bdc)](H 2 bdc) 11/16 , 3, and MIL-53Ga, [Ga(OH)(bdc)](H 2 bdc) 12/17 , 4. The Vernier structures of 2–4 at room temperature were determined based on superstructure unit cells that index both host and guest sublattices: 2, space group P2 1 , a=23.903(2), b=17.191(2), c=25.722(2) Å, β=105.914(8)°; 3, P2 1 /n, a=105.224(4), b=12.2441(5), c=17.0143(6) Å, β=89.99(1)°; 4, P2 1 , a=114.562(5), b=12.1503(5), c=17.4275(7) Å, β=89.99(1)°. The number of guest H 2 bdc molecules per framework metal ion is determined by the ratio of the repeat distances of the two sublattices which depends on the size of the metal ion in the octahedral chain. The octahedral chains are parallel to [201] in 2, and to [100] in 3 and 4. Remarkably, all atoms in 3 and 4 show significant sinusoidal modulations transverse to the chain axis. - Graphical abstract: The sinusoidal modulation along the channel axis direction involving all atoms in the structure of [Al(OH)(bdc)](H 2 bdc) 11/16 . - Highlights: • Crystal growth of MIL-47, MIL-53Al, and MIL-53Ga. • The Vernier structures have corner-sharing MO6 octrahedral chains and chains of H2BDC molecules. • The stoichiometry is determined by the ratio of the host framework to the guest H2BDC column lengths. • A correlation is established between the stoichiometry and the radius of the metal ion. • All atoms in the Al and Ga compounds show sinusoidal

  8. Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

    KAUST Repository

    Zheng, Bing

    2013-03-06

    Six novel coordination polymers based on a multifunctional ligand, 5,5\\'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2] (2), |(C 3H7NO)2- (H2O)2(H 3O)2|[Cd3(C18H6O 8)2] (3), |(C3H7NO)|[Mn- (C 18H8O8)(C3H7NO) 2] (4), |(C3H7NO)2(H2O)(C 2H7N)3| [Mn6(C18H 7O8)4(H2O)8] (5), and [Mn2(C18H6O8)(C3H 7NO)2] (6), have been constructed under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. In these compounds, the ligand, H4EBDC, exhibits different coordination modes and conformations, constructing various architectures by bridging a variety of metal ions or polynuclear clusters. Compound 1 forms a three-dimensional (3D) FSC network constructed from two-dimensional (2D) layer motifs joined by EBDC4- and 4,4\\'-bipyridine bridges. Compound 2 possesses an NbO topology by linking Zn2(CO2)4 units with the ligand, coordinated amine molecules fill the pores, while compound 3 exhibits a 3D FLU network with Cd2+ as the cation and features an infinite framework built from tricadmium clusters. Compound 4 is based on PtS net, constructed of 4-connected rectangular H4EBDC units with tetrahedral monometallic Mn(CO2)4 nodes. Compound 5 is composed of 2D layers with (3,6)-connected KGD topology, and compound 6 consists of a 3D PtS-X network, built by bridging a metal chain with the ligand. The structures of these compounds have been discussed together with their corresponding properties, such as gas storage, separation, and magnetic properties. © 2013 American Chemical Society.

  9. Emissive lead(II) benzenedicarboxylate metal-organic frameworks

    Indian Academy of Sciences (India)

    Abdul Malik P Peedikakkal

    2018-04-16

    Apr 16, 2018 ... Jang E, Jun S, Jang H, Lim J, Kim B and Kim Y 2010. White-light-emitting ... 2837; (b) Li Y-F, Wang D, Liao Z, Kang Y, Ding. W-H, Zheng X-J, Jin L-P 2016 .... Zuo J-L and Zhou H-C 2007 Synthesis and Characteri- zations of a ...

  10. 76 FR 7703 - 1,4-Benzenedicarboxylic Acid, Dimethyl Ester, Polymer With 1,4-Butanediol, Adipic Acid, and...

    Science.gov (United States)

    2011-02-11

    ...., textiles (clothing and diapers), carpets, swimming pools, and hard surface disinfection on walls, floors... Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May 22, 2001) or...

  11. Synthesis and characterization of zinc-organic frameworks with 1,4-benzenedicarboxylic acid and azobenzene-4,4'-dicarboxylic acid

    Science.gov (United States)

    Nguyen, Van Hung; Phuong Thuy Nguyen, Ngoc; Tuyet Nhung Nguyen, Thi; Thanh Thuy Le, Thi; Nghiem Le, Van; Chinh Nguyen, Quoc; Quang Ton, That; Hoang Nguyen, Thai; Phuong Thoa Nguyen, Thi

    2011-06-01

    The solvothermal reactions of 1,4-bezenedicarboxylic acid (H2BDC) or azobenzene-4,4'-dicarboxylic acid (H2ABD) with zinc ions/clusters lead to the formation of four crystalline materials. All of these compounds were characterized by x-ray diffraction, optical microscopy, thermo-gravimetric analysis and nitrogen adsorption. Block-shaped crystals (BZ1) with various shapes and sizes were obtained at H2BDC:Zn mole ratio of 1:1 and H2BDC concentration of 0.1 M. At more dilute H2BDC concentration of 0.01 M and H2BDC:Zn mole ratio of 1 : 4, the reaction product was cubic crystals (BZ2) with a size of 250 μm. In the H2ABD system, flat-plate-like crystals (AZ1) were obtained at H2ABD:Zn mole ratio of 1 : 1 and H2ABD concentration of 0.01 M. Meanwhile, thick-block-like crystals (AZ2) were formed at the same H2ABD:Zn mole ratio but at 0.004 M H2ABD. The Langmuir surface area (SLang) of the materials was remarkable, enhanced by diluting the reaction solution. For the compounds synthesized in N,N'-dimethylformamide (DMF), SLang increased from 304.6 m2 g-1 for BZ1 to 2631 m2 g-1 for BZ2 and from 475.8 m2 g-1 for AZ1 to 3428 m2 g-1 for AZ2. Meanwhile, BZ2 synthesized in N,N'-diethylformamide (BZ2/DEF) got the highest SLang of 4330 m2 g-1. Both AZ2 and BZ2 materials were stable up to 400 °C.

  12. Evaluation of a novel metal-organic framework as an adsorbent for the extraction of multiclass pesticides from coconut palm (Cocos nucifera L.): An analytical approach using matrix solid-phase dispersion and liquid chromatography.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; Wanderley, Kaline Amaral; Alves Júnior, Severino; Navickiene, Sandro

    2017-08-01

    We report the synthesis, characterization, and application of [Zn(1,4-benzenedicarboxylate)(H 2 O) 2 ] n , Zn(1,4-benzenedicarboxylate) 0.99 (NH 2 -1,4-benzenedicarboxylate) 0.01 (H 2 O) 2 ] n , [Zn(1,4-benzenedicarboxylate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47-67, 51-70, 58-72, and 64-76% for [Zn(1,4-benzenedicarboxylate)(H 2 O) 2 ] n , Zn(1,4-benzenedicarboxylate) 0.99 (NH 2 -1,4-benzenedicarboxylate) 0.01 (H 2 O) 2 ] n , [Zn(1,4-benzenedicarboxylate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenelate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01-0.05 and 0.05-0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01-10.0 μg/g) with r 2  > 0.9991. A direct comparison of [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n with the commercially available neutral alumina showed that [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n was a similar extracting phase for the pesticides investigated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Understanding Hydrogen Sorption in In- soc -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Tudor, Brant; McLaughlin, Keith; Belof, Jonathan L.; Eckert, Juergen; Space, Brian

    2015-01-01

    ,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes

  14. Acid hydrolysis of kallar grass (leptochloa fusca) for the production

    International Nuclear Information System (INIS)

    Chughtai, F.A.; Shah, M.H.

    1993-01-01

    Acid hydrolysis of kallar grass (leptochloa fusca) was carried of with various concentrations of sulphuric acid, ortho phosphoric acid and hydrochloric acid to produce furfural. The study revealed that activity of various hydrolysing acids to produce furfural from kallar grass was of the following order H/sub 2/SO/sub 4/ > H/sub 3/PO/sub 4/ > HCl. Optimum yield (4.78%) of the produce was obtained when the material was digested with 19% H/sub 2/SO/sub 4/ for a period of 20 minutes. (author)

  15. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    International Nuclear Information System (INIS)

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-01-01

    A multifunctional homochiral coordination polymer, [Co(H 2 O)(BDC)(4,4′-BPY)]∙3H 2 O (1) (H 2 BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions

  16. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    Science.gov (United States)

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cobalt-based metal organic framework with superior lithium anodic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaoshi; Hu, Huiping; Li, Chao; Li, Tian; Lou, Xiaobing; Chen, Qun; Hu, Bingwen, E-mail: bwhu@phy.ecnu.edu.cn

    2016-10-15

    The reversible charging of a Co-1,4-benzenedicarboxylate MOF (Co-BDC MOF) prepared via an one-pot solvothermal method was studied for use as the anode in a Li-ion cell. It was found that this MOF anode provides high reversible capacities (1090 and 611 mA h g{sup −1} at current densities of 0.2 and 1 A g{sup −1}, respectively), and an impressive rate performance. Such an outstanding Li-ion storage property has not been reported previously for the LIB anodes within the MOFs category. Ex-situ X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) studies of this material at different state of charge suggest that cobalt stays at Co{sup 2+} state during discharge/charge process, so that in this case Li{sup +} may be inserted into the organic moiety without the direct participation of cobalt ions. - Graphical abstract: Co-1,4-benzenedicarboxylate MOF, synthesized through a straightforward solvothermal method, shows outstanding lithium storage performance. - Highlights: • Co-1,4-benzenedicarboxylate MOF is synthesized by a one-pot solvothermal method. • Reversible capacity of 1090 mA h g{sup −1} is achieved at a current density of 200 mA g{sup −1}. • Reversible capacity of 611 mA h g{sup −1} is achieved at a current density of 1 A g{sup −1}. • Li-ions may be inserted into the organic moieties.

  18. Use of the PIXEL method to investigate gas adsorption in metal–organic frameworks† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ce00555a Click here for additional data file. Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Maloney, Andrew G. P.; Wood, Peter A.

    2016-01-01

    PIXEL has been used to perform calculations of adsorbate-adsorbent interaction energies between a range of metal–organic frameworks (MOFs) and simple guest molecules. Interactions have been calculated for adsorption between MOF-5 and Ar, H2, and N2; Zn2(BDC)2(TED) (BDC = 1,4-benzenedicarboxylic acid, TED = triethylenediamine) and H2; and HKUST-1 and CO2. The locations of the adsorption sites and the calculated energies, which show differences in the Coulombic or dispersion characteristic of the interaction, compare favourably to experimental data and literature energy values calculated using density functional theory. PMID:28496380

  19. Di-(2-Ethylhexyl Phthalate and Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Chiara Testa

    2012-04-01

    Full Text Available ASDs (autism spectrum disorders are a complex group of neurodevelopment disorders, still poorly understood, steadily rising in frequency and treatment refractory. Extensive research has been so far unable to explain the aetiology of this condition, whereas a growing body of evidence suggests the involvement of environmental factors. Phthalates, given their extensive use and their persistence, are ubiquitous environmental contaminants. They are EDs (endocrine disruptors suspected to interfere with neurodevelopment. Therefore they represent interesting candidate risk factors for ASD pathogenesis. The aim of this study was to evaluate the levels of the primary and secondary metabolites of DEHP [di-(2-ethylhexyl phthalate] in children with ASD. A total of 48 children with ASD (male: 36, female: 12; mean age: 11 ± 5 years and age- and sex-comparable 45 HCs (healthy controls; male: 25, female: 20; mean age: 12 ± 5 years were enrolled. A diagnostic methodology, based on the determination of urinary concentrations of DEHP metabolites by HPLC-ESI-MS (HPLC electrospray ionization MS, was applied to urine spot samples. MEHP [mono-(2-ethylhexenyl 1,2-benzenedicarboxylate], 6-OH-MEHP [mono-(2-ethyl-6-hydroxyhexyl 1,2-benzenedicarboxylate], 5-OH-MEHP [mono-(2-ethyl-5-hydroxyhexyl 1,2-benzenedicarboxylate] and 5-oxo-MEHP [mono-(2-ethyl-5-oxohexyl 1,2-benzenedicarboxylate] were measured and compared with unequivocally characterized, pure synthetic compounds (>98% taken as standard. In ASD patients, significant increase in 5-OH-MEHP (52.1%, median 0.18 and 5-oxo-MEHP (46.0%, median 0.096 urinary concentrations were detected, with a significant positive correlation between 5-OH-MEHP and 5-oxo-MEHP (r s=0.668, P<0.0001. The fully oxidized form 5-oxo-MEHP showed 91.1% specificity in identifying patients with ASDs. Our findings demonstrate for the first time an association between phthalates exposure and ASDs, thus suggesting a previously unrecognized role for

  20. Uji Coba Alat Penghasil Asap Cair Skala Laboratorium dengan Bahan Pengasap Serbuk Gergaji Kayu Jati Sabrang atau Sungkai (Peronema canescens

    Directory of Open Access Journals (Sweden)

    Rodiah Nurbaya Sari

    2014-05-01

    energi yang dilepas dari pembentukan asap menjadi asap cair (- 476,45 kJ/kg asap, energi yang diserap air kondensor sebesar 2,1 kJ/kg air sehingga jumlah air bersuhu 30,4oC yang dibutuhkan untuk mengembunkan 1 kg asap menjadi asap cair dengan suhu pirolisis 316,7oC adalah sebanyak 226,88 liter. Kinerja alat adalah 6,98 g/(jam. m. Komponen dominan dalam asap cair yang dihasilkan adalah senyawa 1,2-benzenedicarboxylic acid, diethyl ester (C12H14O4 sebanyak 23,61%.

  1. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    International Nuclear Information System (INIS)

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-01-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4 DMBD) interacts with the increasingly harder metal ions of Cu + , Pb 2+ and Eu 3+ to form the coordination networks of Cu 6 (DMBD) 3 (en) 4 (Hen) 6 (1), Pb 2 (DMBD)(en) 2 (2) and Eu 2 (H 2 DMBD) 3 (DEF) 4 (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu + , Pb 2+ and Eu 3+ ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  2. Nutriceutical potential of Pleurotus tuber-regium sclerotium

    Directory of Open Access Journals (Sweden)

    R. C. Ohiri

    2018-04-01

    Full Text Available The aim of the study was to determine the composition of the sclerotium of Pleurotus tuber-regium and to analyze its nutritional potential. Major minerals and micronutrients content of the P. tuber-regium sclerotium were determined. The study has shown fairly high concentrations of potassium and magnesium as major minerals with values of 60.66 ± 4.13 and 41.79 ± 3.14 mg/kg, while manganese and zinc were micronutrients with the highest values of 1.20 ± 0.10 and 0.95 ± 0.07 mg/kg. Glutamic acid and aspartic acid were also observed in high concentrations with values of 11.51 ± 1.01 and 5.52 ± 0.86 mg/kg. The mushroom powder of P. tuber-regium was a source for production of oil, which was analyzed by GC-MS method. Benzenedicarboxylic acid mono-(2-ethylhexyl ester and benzenedicarboxylic acid butyl-cyclohexyl ester were volatile constituents predominating with percentage total of 78.7 and 5.2, respectively. It is concluded that the presence of mineral elements, amino acids and volatile components observed in this fungus indicated the presence of the nutritional potential in the sclerotia of P. tuber-regium.

  3. Three d10 coordination polymers assembled from 3,5-bis(imidazole-1-yl)pyridine and different polycarboxylates: Syntheses, structures and luminescence properties

    Science.gov (United States)

    Pan, Jie; Zhang, Di; Xue, Zhen-Zhen; Wei, Li; Han, Song-De; Wang, Guo-Ming

    2017-11-01

    Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 1-3 in the solid state at room temperature have been investigated.

  4. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiu-Hua, E-mail: xhli.univ@gmail.com [College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, 350117 Fujian (China); Zhang, Qi [School of Life Science, Changchun Normal University, Changchun, 130032 Jilin (China); Hu, Ping [Southampton Management School, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  5. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  6. Benzoate Acid-Dependent Lattice Dimension of Co-MOFs and MOF-Derived CoS2@CNTs with Tunable Pore Diameters for Supercapacitors.

    Science.gov (United States)

    Zou, Kang-Yu; Liu, Yi-Chen; Jiang, Yi-Fan; Yu, Cheng-Yan; Yue, Man-Li; Li, Zuo-Xi

    2017-06-05

    Herein three novel cobalt metal-organic frameworks (Co-MOFs) with similar ingredients, [Co(bib)(o-bdc)] ∞ (1), [Co 2 (bib) 2 (m-bdc) 2 ] ∞ (2), and {[Co(bib)(p-bdc)(H 2 O)](H 2 O) 0.5 } ∞ (3), have been synthesized from the reaction of cobalt nitrate with 1,4-bis(imidazol-1-yl)benzene (bib) and structure-related aromatic acids (1,2-benzenedicarboxylic acid = o-bdc, 1,3-benzenedicarboxylic acid = m-bdc, and 1,4-benzenedicarboxylic acid = p-bdc) by the solvothermal method. It is aimed to perform systematic research on the relationship among the conformation of benzoate acid, lattice dimension of Co-MOF, and pore diameter of MOF-derived carbon composite. Through the precursor strategy, Co-MOFs 1-3 have been utilized to synthesize porous cobalt@carbon nanotube composites (Co@CNTs). After the in situ gas-sulfurization, secondary composites CoS 2 @CNTs were successfully obtained, which kept similar morphologies of corresponding Co@CNTs without destroying previous highly dispersed structures. Co-MOFs and two series of composites (Co@CNTs and CoS 2 @CNTs) have been well characterized. Topology and Brunauer-Emmett-Teller analyses elucidate that the bdc 2- ion could control the pore diameters of MOF-derived carbon composites by adjusting the lattice dimension of Co-MOFs. The systematic studies on electrochemical properties demonstrate that (p)-CoS 2 @CNT possesses hierarchical morphology, moderate specific surface area, proper pore diameter distribution, and high graphitization, which lead to remarkable specific capacitances (839 F g -1 at 5 mV s -1 and 825 F g -1 at 0.5 A g -1 ) in 2 M potassium hydroxide solution. In addition, the (p)-CoS 2 @CNT electrode exhibits good electrochemical stability and still retains 82.9% of initial specific capacitance at the current density of 1 A g -1 after 5000 cycles.

  7. Synthesis, characterizations and catalytic studies of a new two-dimensional metal-organic framework based on Co-carboxylate secondary building units

    Science.gov (United States)

    Bagherzadeh, Mojtaba; Ashouri, Fatemeh; Đaković, Marijana

    2015-03-01

    A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected.

  8. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  9. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    Science.gov (United States)

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  10. IDENTIFIKASI SENYAWA AKTIF DAUN PLETEKAN (Ruellia tuberosa L. DENGAN MENGGUNAKAN GC-MS

    Directory of Open Access Journals (Sweden)

    Ida Ayu Nopiari

    2017-02-01

    Full Text Available ABSTRACT The use of traditional medicines in human therapies has been claimed to be much safer than that of synthetic medicines with many negative side effects. Pletekan plant (Ruellia tuberosa L. has been used empirically for years as an antidiabetic as its leaves contain poly phenolic compounds with the ability to stimulate beta cells of the pancreas so that its capability to produce insulin improved. The main objective of our research was to identify active compounds contained in Ruellia tuberosa L. leaves extracted with ethanol. Fractionation of these active compounds was conducted by applying column and thin layer chromatography using Dichlorometan and Ethylacetat with a ratio of 6:3 as eluent. Each active compound resulted from fractionation was identified using GC-MS analysis. The results showed that four active compounds (Hexadecanamide, 9-Octadecenamide, (Z, Octadecenamide and 1,2-Benzenedicarboxylic acid were identified in this analysis. Keywords: Ruellia tuberosa L., identification of active compounds.

  11. Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

    International Nuclear Information System (INIS)

    Choi, Eun Young; Gao, Chunji; Lee, Suck Hyun; Kwon, O Pil

    2012-01-01

    We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short -O(CH 2 ) 6 CH 3 or long -O(CH 2 ) 9 CH 3 side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, -(OCH 2 CH 2 ) 2 CH 3 and -(OCH 2 CH 2 ) 3 CH 3 , form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains

  12. Sonochemical Synthesis of Photoluminescent Nanoscale Eu(III-Containing Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Cheng-an TAO

    2015-11-01

    Full Text Available Nanoscale lanthanide-containing metal-organic frameworks (MOFs have more and more interest due to their great properties and potential applications, but how to construct them easily is still challenging. Here, we present a facile and rapid synthesis of Eu(III-containing Nanoscale MOF (denoted as NMOF under ultrasonic irradiation. The effect of the ratio and the addition order of metal ions and linkers on the morphology and size of MOFs was investigated. It is found that both of the ratio and the addition order can affect the morphology and size of 1.4-benzenedicarboxylic acid(H2BDC -based MOFs, but they show no evident influence on that of H2aBDC-based MOFs. The former exhibit typical emission bands of Eu(III ions, while the latter only show the photoluminescent properties of ligands.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9695

  13. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    International Nuclear Information System (INIS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Zeng, Guangming; Chen, Xiaohong; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Hui

    2015-01-01

    Highlights: • NH 2 functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti 3+ –Ti 4+ intervalence electron transfer is important for Cr(VI) reduction. • Used NH 2 -MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH 2 -MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH 2 -MIL-125(Ti) were well characterized by XRD, SEM, XPS, N 2 adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH 2 -MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH 2 -MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti 3+ –Ti 4+ intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater

  14. MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.

    Science.gov (United States)

    Oveisi, Mina; Asli, Mokhtar Alina; Mahmoodi, Niyaz Mohammad

    2018-04-05

    Herein, 1,4-benzenedicarboxylate (BDC) and 2-amino-1,4-benzenedicarboxylate (NH 2 -BDC) as organic linkers and tetraisopropyl orthotitanate as a metal source were used to synthesize several metal-organic frameworks (MOFs) nanomaterials. Five Materials Institut Lavoisiers (MILs) as MOFs include MIL-125(Ti), NH 2 -MIL-125(Ti) and three MILs with different organic linkers molar ratios (BDC/NH 2 -BDC: 75/25, 50/50 and 25/75 denoted as MIL-X1, MIL-X2 and MIL-X3, respectively). The synthesized nanomaterials were used for ultrasound-aided adsorption of cationic dyes (Basic Red 46 (BR46), Basic Blue 41 (BB41) and Methylene Blue (MB)) from single and multicomponent (binary) systems. The BET, XRD, FTIR, SEM, TEM, TGA and zeta potential were used for characterizing the MILs. Dye removal followed pseudo-second order kinetics with constant rate of 0.20833, 0.00481 and 0.00051 mg/g min for BR46, BB41 and MB, respectively. In addition dye adsorption obeyed the Langmuir isotherm model and the experimental dye adsorption capacity for BR46, BB41 and MB was 1296, 1257 and 862 mg/g, respectively. The synthesized MIL showed high reusability and stability over three cycles. The adsorption thermodynamics data presented that dye removal was a spontaneous, endothermic and physical reaction. The free Gibbs energy for dye removal by the NH 2 -MIL-125(Ti) at 308K was -19.424, -15.721 and -17.413 kJ/mol for BR46, BB41 and MB, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxidation of ortho- and para-aminobenzoic acid. A pulse radiolysis- and gamma radiolysis study

    International Nuclear Information System (INIS)

    Solar, Sonja; Getoff, Nikola; Zona, Robert; Solar, Wolfgang

    2011-01-01

    The oxidation of anthranilic acid (ortho-aminobenzoic acid, ANA) and para-aminobenzoic acid (PABA) by · OH, N 3 · and O ·- in basic solution was studied by pulse radiolysis. The kinetic and spectroscopic characteristics of the intermediate transients were determined. For ANA the site attack of the OH radicals was established to be ∼50% on the -NH 2 moiety and ∼50% on the aromatic ring with an overall rate constant k( · OH+ANA)=(5.5x10 9 ) dm 3 mol -1 s -1 . The rate constant of PABA was k( · OH+PABA)=8x10 9 dm 3 mol -1 s -1 . The OH-adducts of both compounds showed a first order decay of 0.8x10 5 and 1.2x10 5 s -1 , respectively, whereby the corresponding anilino-radicals were formed. The rate constant of ANA with solvated electrons was k(e - aq +ANA)=2.9x10 9 dm 3 mol -1 s -1 . The radiation induced decomposition of both substrates was studied by gamma radiolysis as a function of the absorbed dose. They exhibited a distinct radiation resistance, the initial degradation yields were ∼0.16 μmol J -1 , i.e. only 28% of the · OH radicals contributed to their decomposition. The hydroxylation process was of minor importance, the yield of hydroxylated aminobenzoic acids was≤0.01 μmol J -1 .

  16. Green Approach—Multicomponent Production of Boron—Containing Hantzsch and Biginelli Esters

    Directory of Open Access Journals (Sweden)

    René Miranda

    2013-01-01

    Full Text Available Multicomponent reactions are excellent methods that meet the requirements of green chemistry, by reducing the number of steps, and consequently reducing purification requirements. Accordingly, in this work, 11 novel hybrid-boron-containing molecules, namely eight 1,4-dihydropyridines and three 3,4-dihydropyrimidinones, derived from formylphenylboronic acids (ortho, meta and para, were obtained using a green approach, involving H-4CR and B-3CR practices, in the presence of ethanol, which is a green solvent, and using three comparatively different modes of activation (mantle heating, yield 3%–7% in 24 h, Infrared Radiation (IR irradiation, yield 12%–17% in 12 h, and microwave irradiation, yield 18%–80%, requiring very low reaction times of 0.25–0.33 h. In addition, as a green-approach is offered, a convenient analysis, of the 12 green chemistry principles for the overall procedure was performed. Finally, since all the products are new, characterizations were carried out using common analytic procedures (1H, 11B, and 13C NMR, FAB+MS, HRMS, and IR. The accurate mass data of unexpected ions related to interactions between thioglycerol and the expected products, in the FAB+-mode, enabled unequivocal characterization of the target molecules.

  17. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome.

    Science.gov (United States)

    Barrero, Roberto A; Guerrero, Felix D; Black, Michael; McCooke, John; Chapman, Brett; Schilkey, Faye; Pérez de León, Adalberto A; Miller, Robert J; Bruns, Sara; Dobry, Jason; Mikhaylenko, Galina; Stormo, Keith; Bell, Callum; Tao, Quanzhou; Bogden, Robert; Moolhuijzen, Paula M; Hunter, Adam; Bellgard, Matthew I

    2017-08-01

    The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0Gbp represented in 195,170 scaffolds with a N50 of 60,284bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (≥100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  18. Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wu, Yan [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Leng, Lijian; Wu, Zhibin; Jiang, Longbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Hui [Institute of Bio-energy, Hunan Academy of Forestry, Changsha 410004 (China)

    2015-04-09

    Highlights: • NH{sub 2} functionalized MIL-125(Ti) was fabricated by a facile solvothermal method. • The photocatalyst could reduce Cr(VI)–Cr(III) under visible light irradiation. • The Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer is important for Cr(VI) reduction. • Used NH{sub 2}-MIL-125(Ti) can be recycled for the photocatalytic reduction. - Abstract: Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH{sub 2}-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH{sub 2}-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N{sub 2} adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH{sub 2}-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH{sub 2}-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti{sup 3+}–Ti{sup 4+} intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

  19. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.

  20. Two novel thorium organic frameworks constructed by bi- and tritopic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [National Institute for Radiological Protection, Beijing (China). China CDC Key Lab. of Radiological Pretection and Nuclear Emergency; Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Wang, Congzhi; Lan, Jianhui; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Ji, Yanqin [National Institute for Radiological Protection, Beijing (China). China CDC Key Lab. of Radiological Pretection and Nuclear Emergency

    2017-09-01

    Two thorium organic frameworks, Th(BDC){sub 2} and Th(OH)(BCPBA) have been hydrothermally synthesized using 1,4-benzenedicarboxylic acid (H{sub 2}BDC) and 3,5-bi(4-carboxyphenoxy)benzoic acid (H{sub 3}BCPBA), respectively. The obtained two compounds were determined by single-crystal XRD, and they exhibited two new topologies. Th(BDC){sub 2} shows a 3-dimensional (4,4,8)-connected framework with the Schlaefli symbol of (4{sup 14}.6{sup 12}.8{sup 2})(4{sup 2}.6{sup 3}.8)(4{sup 4}.6{sup 2}), and it is a mononuclear thorium(IV) complex. Th(OH)(BCPBA) possesses a (4,6)-connected topology with the Schlaefli symbol of (4{sup 15}){sup 2}(4{sup 6}){sup 3}, and it has a dinuclear thorium(IV) asymmetric unit with the shortest Th-Th distances. Viewing along suitable directions, channels with different shapes can be found in the obtained two frameworks. Based on calculation with PLATON, the amount of void space is 21.9% and 13.5% in Th(BDC){sub 2} and Th(OH)(BCPBA), respectively. Density functional theory (DFT) studies revealed that the metal-ligand interactions were mainly of ionic character in both compounds and the hydroxyl ions might play an important role in the stability of dinuclear thorium(IV) of Th(OH)(BCPBA).

  1. A series of novel lanthanide carboxyphosphonates with a 3D framework structure: synthesis, structure, and luminescent and magnetic properties.

    Science.gov (United States)

    Chen, Kai; Dong, Da-Peng; Sun, Zhen-Gang; Jiao, Cheng-Qi; Li, Chao; Wang, Cheng-Lin; Zhu, Yan-Yu; Zhao, Yan; Zhu, Jiang; Sun, Shou-Hui; Zheng, Ming-Jing; Tian, Hui; Chu, Wei

    2012-08-28

    By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(III) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.

  2. Chemical Composition and Antimicrobial Potential of Palm Leaf Extracts from Babaçu (Attalea speciosa, Buriti (Mauritia flexuosa, and Macaúba (Acrocomia aculeata

    Directory of Open Access Journals (Sweden)

    Adriana Idalina Torcato de Oliveira

    2016-01-01

    Full Text Available Babaçu (A. speciosa, Buriti (M. flexuosa, and Macaúba (A. aculeata are palm trees typical of the ecotone area between Cerrado and the Amazon rainforest. The purpose of this study was to evaluate the antimicrobial potential of the extracts prepared from the leaves of those palms as well as determine their chemical compositions. The ethanol extracts were prepared in a Soxhlet apparatus and tested by disk diffusion and agar dilution technique against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Candida parapsilosis. However, there was no significant activity at concentrations of 25, 50, and 100 mg·Ml−1. Moreover, the phytochemical analysis revealed the presence of tannins, flavonoids, catechins, steroids, triterpenes, and saponins. Gas chromatography (GC/MS analysis also identified organic acids, such as capric (decanoic acid, lauric (dodecanoic acid, myristic (tetradecanoic acid, phthalic (1,2-benzenedicarboxylic acid, palmitic (hexadecanoic acid, stearic (octadecanoic acid, linoleic (9,12-octadecadienoic acid (omega-6, linolenic (octadecatrienoic acid (omega-3, and the terpenes citronellol and phytol. Based on the chemical composition in the palm leaf extracts, the palms have the potential to be useful in the food, cosmetic, and pharmaceutical industries.

  3. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

    KAUST Repository

    Schoedel, Alexander; Boyette, Wesley; Wojtas, Łukasz; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2013-01-01

    A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.

  4. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [College of Engineering, Purdue University, West Lafayette, IN 47907 (United States); Dailly, Anne [Chemical and Environmental Sciences Laboratory, General Motors Corporation, Warren, MI 48090 (United States)], E-mail: poirierem@gmail.com, E-mail: anne.dailly@gm.com

    2009-05-20

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn{sub 4}O(1,3,5-benzenetribenzoate){sub 2}, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g{sup -1}. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g{sup -1} at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol{sup -1} in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  5. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  6. Pt Electrodes Enable the Formation of μ4-O Centers in MOF-5 from Multiple Oxygen Sources.

    Science.gov (United States)

    Li, Minyuan M; Dincă, Mircea

    2017-10-04

    The μ 4 -O 2- ions in the Zn 4 O(O 2 C-) 6 secondary building units of Zn 4 O(1,4-benzenedicarboxylate) 3 (MOF-5) electrodeposited under cathodic bias can be sourced from nitrate, water, and molecular oxygen when using platinum gauze as working electrodes. The use of Zn(ClO 4 ) 2 ·6H 2 O, anhydrous Zn(NO 3 ) 2 , or anhydrous Zn(CF 3 SO 3 ) 2 as Zn 2+ sources under rigorous control of other sources of oxygen, including water and O 2 , confirm that the source of the μ 4 -O 2- ions can be promiscuous. Although this finding reveals a relatively complicated manifold of electrochemical processes responsible for the crystallization of MOF-5 under cathodic bias, it further highlights the importance of hydroxide intermediates in the formation of the Zn 4 O(O 2 C-R) secondary building units in this iconic material and is illustrative of the complicated crystallization mechanisms of metal-organic frameworks in general.

  7. [Monograph on di-2-propylheptyl phthalate (DPHP) - human biomonitoring (HBM) values for the sum of metabolites oxo-mono-propylheptyl phthalate (oxo-MPHP) and hydroxy-mono-propylheptyl phthalate (OH MPHP) in adult and child urine. Opinion of the Commission "Human Biomonitoring" of the Federal Environment Agency, Germany].

    Science.gov (United States)

    2015-07-01

    1,2-benzenedicarboxylic acid, bis(2-propylheptyl)ester (bis(2-propylheptyl)phthalate, DPHP) is used as plasticizer for the manufacture of plastics, i.e. mainly polyvinylchloride (PVC). A subchronic feeding study with rats revealed a NOAEL (no observed adverse effect level) of 40 mg/(kg bw · d), which can be used as a point of departure (POD) for the derivation of an HBM-I value. Application of a total assessment factor of 200 leads to an estimation of 200 µg/kg bw as a tolerable daily intake of DPHP. On the basis of the results of metabolism studies with humans it is possible to calculate from the tolerable daily intake of DPHP to the tolerable concentration of specific metabolites in urine. Thus an HBM-I value of 1 mg/L morning urine for children and 1.5 mg/L morning urine for adults was derived for the sum of the oxidized monoesters oxo-MPHP and OH-MPHP, which were identified as robust and conclusive biomarkers for DPHP.

  8. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Cong; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-01-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  9. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shete, Meera; Kumar, Prashant; Bachman, Jonathan E.; Ma, Xiaoli; Smith, Zachary P.; Xu, Wenqian; Mkhoyan, K. Andre; Long, Jeffrey R.; Tsapatsis, Michael

    2018-03-01

    High aspect-ratio nanosheets of metal-organic frameworks (MOFs) hold promise for use as selective flakes in gas separation membranes. However, simple and scalable methods for the synthesis of MOF nanosheets have thus far remained elusive. Here, we describe the direct synthesis of Cu(BDC) (BDC2-= 1,4-benzenedicarboxylate) nanosheets with an average lateral size of 2.5 mu m and a thickness of 25 nm from a well-mixed solution. Characterization of the nanosheets by powder and thin film X-ray diffraction, electron microscopy, and electron diffraction reveals pronounced structural disorder that may affect their pore structure. Incorporation of the Cu (BDC) nanosheets into a Matrimid polymer matrix results in mixed matrix membranes (MMMs) that exhibit a 70% increase in the CO2/CH4 selectivity compared with that of Matrimid. Analysis of new and previously reported permeation data for Cu(BDC) MMMs using a mathematical model for selective flake composites indicates that further performance improvements could be achieved with the selection of different polymers for use in the continuous phase.

  10. Phytochemical Profile of Erythrina variegata by Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectroscopy Analyses.

    Science.gov (United States)

    Muthukrishnan, Suriyavathana; Palanisamy, Subha; Subramanian, Senthilkumar; Selvaraj, Sumathi; Mari, Kavitha Rani; Kuppulingam, Ramalingam

    2016-08-01

    Natural products derived from plant sources have been utilized to treat patients with numerous diseases. The phytochemical constituents present in ethanolic leaf extract of Erythrina variegata (ELEV) were identified by using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) analyses. Shade dried leaves were powdered and extracted with ethanol for analyses through HPLC to identify selected flavonoids and through GC-MS to identify other molecules. The HPLC analysis of ELEV showed the presence of gallic and caffeic acids as the major components at concentrations of 2.0 ppm and 0.1 ppm, respectively, as well as other components. GC-MS analysis revealed the presence of 3-eicosyne; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; butanoic acid, 3-methyl-3,7-dimethyl-6-octenyl ester; phytol; 1,2-benzenedicarboxylic acid, diundecyl ester; 1-octanol, 2-butyl-; squalene; and 2H-pyran, 2-(7-heptadecynyloxy) tetrahydro-derivative. Because pharmacopuncture is a new evolving natural mode that uses herbal extracts for treating patients with various ailments with minimum pain and maximum effect, the results of this study are particularly important and show that ELEV possesses a wide range of phytochemical constituents, as indicated above, as effective active principle molecules that can be used individually or in combination to treat patients with various diseases. Copyright © 2016. Published by Elsevier B.V.

  11. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  12. Crystal structures and luminescence of two cadmium-carboxylate cluster-based compounds with mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui-Fang; Lei, Qian; Wang, Yu-Ling; Yin, Shun-Gao; Liu, Qing-Yan [College of Chemistry and Chemical Engineering and Key Lab. of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal Univ., Nanchang (China)

    2017-04-04

    Reactions of Cd(NO{sub 3}){sub 2}.4H{sub 2}O with 2-quinolinecarboxylic acid (H-QLC) in the presence of 1,4-benzenedicarboxylic acid (H{sub 2}-BDC) or 1,3,5-benzenetricarboxylic acid (H-BTC) in DMF/H{sub 2}O solvent afforded two compounds, namely, [Cd(QLC)(BDC){sub 1/2}(H{sub 2}O)]{sub n} (1) and [Cd(QLC)(BTC){sub 1/3}]{sub n} (2). Both compounds are two-dimensional (2D) frameworks but feature different cadmium-carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd{sub 2}(QLC){sub 2} units in 1 are bridged by the pairs of bridging water ligands to give a one-dimensional (1D) chain, which is further linked by the second ligand of BDC{sup 2-} to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd{sub 6}(QLC){sub 6} clusters, which are linked by the surrounding BTC{sup 3-} ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand-centered luminescent emissions with emission maxima at 405 and 401 nm, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  14. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea

    Directory of Open Access Journals (Sweden)

    Soad M. Mohy El-Din

    2016-07-01

    Full Text Available Seaweeds are potential renewable resources in the marine environment. The antibacterial activity of Jania rubens, Corallina mediterranea and Pterocladia capillacea were analyzed against human pathogenic bacteria. The present study was performed to investigate the phytochemical constituents of seaweeds, such as alkaloids, flavonoids, steroids, terpenoids and phlobatannins. In this study, we estimated phenols, flavonoids, tannins, pigments and mineral contents and determined the hydrogen peroxide scavenging activity, reducing power and total antioxidant activity of various extracts of selected seaweeds. Phytochemicals were extracted from the three seaweeds using various solvents, such as methanol, ethanol, acetone and chloroform. Among the various extracts, the methanolic extract was found to have the highest reducing power and total antioxidant capacity. We evaluated the seaweeds against Vibrio fluvialis, and Pterocladia capillacea was the most effective at controlling its growth. The highest zone of inhibition was recorded in the methanol extract. The chemical constituents of the seaweeds were characterized by GC–MS, which showed that they contain organic compounds, such as 1,2-benzenedicarboxylic acid.

  15. Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity.

    Science.gov (United States)

    Slater, Benjamin; Wang, Zeru; Jiang, Shanxue; Hill, Matthew R; Ladewig, Bradley P

    2017-12-20

    Efficient chiral separation remains a very challenging task due to the identical physical and chemical properties of the enantiomers of a molecule. Enantiomers only behave differently from each other in the presence of other chiral species. Homochiral metal-organic frameworks (MOFs) have received much attention for their promising enantioseparation properties. However, there are still challenges to overcome in this field such as high enantiomeric separation. Structural defects play an important role in the properties of MOFs and can significantly change the pore architecture. In this work, we introduced missing linker defects into a homochiral metal-organic framework [Zn 2 (bdc)(l-lac)(dmf)] (ZnBLD; bdc = 1,4-benzenedicarboxylic acid, l-lac = l-lactic acid, dmf = N,N'-dimethylformamide) and observed an increase in enantiomeric excess for 1-phenylethanol of 35% with the defective frameworks. We adjusted the concentration of monocarboxylic acid ligand l-lactic acid by varying the ratio of Zn 2+ to ligand from 0.5 to 0.85 mmol. Additionally, a defective framework was synthesized with propanoic acid as modulator. In order to elucidate the correlation between defects and enantiomeric excess, five characterization techniques (FTIR, TGA, 1 H NMR, ICP, and PXRD) were employed. Full width at half-maximum analysis (fwhm) was performed on the powder X-ray diffraction traces and showed that the higher concentration of monocarboxylic acid MOFs were isostructural but suffered from increased fwhm values.

  16. Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: leiw@buaa.edu.cn; Wang, Cong, E-mail: congwang@buaa.edu.cn; Sun, Ying; Shi, Kewen; Deng, Sihao; Lu, Huiqing

    2016-06-01

    The thermodynamic properties and negative thermal expansion (NTE) behavior of metal-organic framework MOF-5 are investigated within the quasi-harmonic approximation, by using density functional theory. For nanoporous MOF-5, the temperature dependence of bulk modulus increases with increasing temperature, indicating that the resistance to compression is enhanced gradually. The large NTE behavior is obtained, which agrees reasonably with the experimental data. From the Grüneisen parameter as a function of temperature, it can be found that low-frequency phonons are closely associated with the NTE of MOF-5. The corresponding vibrational modes can be viewed as the results of local deformations (translation, rotation, twisting) of BDC (1,4-benzenedicarboxylate) linker and zinc clusters. The lowest-frequency phonon mode (the transverse motion of carboxylate groups and benzene ring, zinc clusters being as rigid units) is confirmed to be most responsible for thermal contraction. - Highlights: • The related thermodynamic properties and NTE behavior of MOF-5 are investigated by first principles. • Contrary to other inorganic NTE materials, bulk modulus of MOF-5 increases on heating. • The low-frequency phonons are closely associated with the NTE of MOF-5. • The NTE-contributing vibrational modes are elucidated clearly.

  17. Identification of new phytoconstituents and antimicrobial activity in stem bark of Mangifera indica (L.).

    Science.gov (United States)

    Singh, Ruchi; Singh, S K; Maharia, R S; Garg, A N

    2015-02-01

    Mangifera indica, commonly called mango or amra belonging to a family of Anacardiaceae, is an important medicinal plant widely used in a variety of Ayurvedic preparations. Extract of its bark, leaves, flowers and kernels are being extensively used for curing various chronic diseases. Mango wood is used in yagya as base fire through which medicated smoke is generated. Three new compounds have been isolated from methanolic and hexane extracts of stem bark: 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl)ester and 9,12-tetradecadiene-1-ol-acetate from the hexane extract and 3-chloro-N-(2-phenylethyl) propanamide from the methanolic extract. These were first separated by thin layer chromatography and later in a silica gel column and identified by characteristic infrared bands corresponding to respective functional groups. The compounds were further confirmed on the basis of GC-MS fragmentation pattern after comparing the data with NIST mass spectral database. All three compounds exhibited antimicrobial activity due to triterpenoids and flavonoids. Elemental analyses by INAA show it to be enriched in essential nutrient elements such as Ca, Fe, K, Mn and Zn which all play an important role in enzymatic processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  19. Destabilization in the isomeric nitrobenzonitriles: an experimental thermochemical study

    International Nuclear Information System (INIS)

    Roux, Maria Victoria; Jimenez, Pilar; Davalos, Juan Z.; Temprado, Manuel; Liebman, Joel F.

    2003-01-01

    The enthalpies of combustion and of sublimation, respectively, of the three isomeric nitrobenzonitriles have been measured: o-, {(-3456.3±2.9), (88.1±1.4)} kJ·mol -1 ; m-, {(-3442.8±3.3), (92.8±0.3)} kJ·mol -1 ; p-, {(-3448.2±3.6), (91.1±1.3)} kJ·mol -1 . In turn, from these values, the standard molar enthalpies of formation for the condensed and gaseous state, respectively, have been derived: o-, {(130.1±3.1), (218.2±3.4)} kJ·mol -1 ; m-, {(116.5±3.5), (209.3±3.5)} kJ·mol -1 ; p-, {(122.0±3.8), (213.1±4.0)} kJ·mol -1 . Destabilization energies associated with the presence of the two electron-withdrawing groups have been determined, for o-, m-, and p-nitrobenzonitrile, {(17.6±4.1), (8.7±4.2), and (12.5±4.6)} kJ·mol -1 , respectively, and are consistent with those obtained for the corresponding sets of isomeric methyl benzenedicarboxylates, dicyanobenzenes, dinitrobenzenes, and (neutral and ionized) nitrobenzoic acids

  20. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites.

    Science.gov (United States)

    Xiao, Dianne J; Bloch, Eric D; Mason, Jarad A; Queen, Wendy L; Hudson, Matthew R; Planas, Nora; Borycz, Joshua; Dzubak, Allison L; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G; Gagliardi, Laura; Brown, Craig M; Long, Jeffrey R

    2014-07-01

    Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.

  1. Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water-Stable Zinc-Based Metal-Organic Framework.

    Science.gov (United States)

    Altaf, Muhammad; Sohail, Manzar; Mansha, Muhammad; Iqbal, Naseer; Sher, Muhammad; Fazal, Atif; Ullah, Nisar; Isab, Anvarhusein A

    2018-02-09

    Metal-organic frameworks (MOFs) are class of porous materials that can be assembled in a modular manner by using different metal ions and organic linkers. Owing to their tunable structural properties, these materials are found to be useful for gas storage and separation technologies, as well as for catalytic applications. A cost-effective zinc-based MOF ([Zn(bpcda)(bdc)] n ) is prepared by using N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine [N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine] and benzenedicarboxylic acid (bdc) linkers. This new material exhibits remarkable photoelectrochemical (PEC) catalytic activity in water splitting for the evolution of oxygen. Notably, this non-noble metal-based MOF, without requiring immobilization on other supports or containing metal particles, produced a highest photocurrent density of 31 μA cm -2 at 0.9 V, with appreciable stability and negligible photocorrosion. Advantageously for the oxygen evolution process, no external reagents or sacrificial agents are required in the aqueous electrolyte solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products.

    Science.gov (United States)

    Chandra, Ram; Abhishek, Amar; Sankhwar, Monica

    2011-06-01

    This study deals with the decolorization of black liquor (BL) by isolated potential bacterial consortium comprising Serratia marcescens (GU193982), Citrobacter sp. (HQ873619) and Klebsiella pneumoniae (GU193983). The decolorization of BL was studied by using the different nutritional as well as environmental parameters. In this study, result revealed that the ligninolytic activities were found to be growth associated and the developed bacterial consortium was efficient for the reduction of COD, BOD and color up to 83%, 74% and 85%, respectively. The HPLC analysis of degraded samples of BL has shown the reduction in peak area compared to control. Further, the GC-MS analysis showed that, most of the compounds detected in control were diminished after bacterial treatment while, formic acid hydrazide, 4-cyclohexane-1,2-dicarboxylic acid, carbamic acid, 1,2-benzenedicarboxylic acid and erythropentanoic acid were found as new metabolites. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized BL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Synthesis and Crystal Structure of a Three—dimensionla Manganese(Ⅱ)Complex COnstructed via Covalent and Hydrogen Bonds

    Institute of Scientific and Technical Information of China (English)

    WANGRui-Hu; ChenLi-Hua; 等

    2003-01-01

    The assembly of 1,4-benzenedicarboxylic acid (H2bdc),4,4′-bipyridine (4,4′-bipy),trimethyltin chloride and MnBr2.4H2O in hydrothermal conditions gave rise to a hydrogen-bonded three-dimensional complex {Mn(4,4′-bipy).4H2O](bdc}nwhich has been characterized by single-crystal X-ray diffraction.The complex crystallizes in the monoclinic system,space group,P2/n with a=7.0001(2),b=11.5540(3),c=11.4192(1)°↑A,β=101.754(2)°,V=904.21(4)°↑A3,Z=2,C18H20MnN2O8,Mr=447.30,Dc=1.643 g/cm3,F(000)=462 and μ(Mokα)=0.783mm1,The final R and wR are 0.0499 and 0.1301,respectively for 1335 observed reflctions with I≥2σ(I).The Mn(Ⅱ)is six-coordinated in a distorted octahedral geometry,4,4′-Bipyridine in a μ-bridge mode links [Mn(H2O)4]2+ into a linear cation chain.bdc acts as a counter anion and links the linear chains into a three-dimensional structure through hydrogen bonds.

  4. Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5

    KAUST Repository

    Khan, Inayatali

    2014-01-12

    Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc=1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M=Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts. © Springer-Verlag Berlin Heidelberg 2014.

  5. Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery

    Science.gov (United States)

    Nadizadeh, Zahra; Naimi-Jamal, M. Reza; Panahi, Leila

    2018-03-01

    In the present study, ibuprofen-loaded nano metal-organic frameworks (NMOFs) {Cu2(1,4-bdc)2(dabco)}n and {Cu2(1,4-bdc-NH2)2(dabco)}n (bdc=benzenedicarboxylic acid, and dabco=diazabicyclooctane) were synthesized by ball-milling at room temperature in 2 h. The produced drug-loaded Cu-NMOFs were studied as ibuprofen drug delivery system and exhibited well-defined drug release behavior, exceptionally high drug loading capacities and the ability to entrap the model drug. The loading efficiency for ibuprofen was determined about 50.54% and 50.27%, respectively. The drug release of NMOFs was also monitored, and all of the loaded drug was released in 1 day. The NMOFs were characterized by FT-IR spectroscopy, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), SEM (scanning electron microscopy), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), UV-vis spectroscopy and N2 adsorption porosimetry (BET&BJH).

  6. Occurrence and spatial distribution of microplastics in sediments from Norderney

    International Nuclear Information System (INIS)

    Dekiff, Jens H.; Remy, Dominique; Klasmeier, Jörg; Fries, Elke

    2014-01-01

    The spatial distribution of small potential microplastics (SPM) ( 1 mm) was also examined. Small microparticles were extracted from 36 one kg sediment samples and analysed by visual microscopic inspection and partly by thermal desorption pyrolysis gas chromatography/mass spectrometry. The smallest particle size that could be analysed with this method was estimated to be 100 μm. The mean number of SPM at the three sampling sites (n = 12) was 1.7, 1.3 and 2.3 particles per kg dry sediment, respectively. SPM were identified as polypropylene, polyethylene, polyethylene terephthalate, polyvinylchloride, polystyrene and polyamide. The organic plastic additives found were benzophenone, 1,2-benzenedicarboxylic acid, dimethyl phthalate, diethylhexyl phthalate, dibutyl phthalate, diethyl phthalate, phenol and 2,4-di-tert-butylphenol. Particles were distributed rather homogenously and the occurrence of SPM did not correlate with that of VPD. -- Highlights: • The small-scale variability of small potential microplastics (<1 mm) occurrence in beach sediments was studied. • Within 500 m, small potential microplastics (<1 mm) were distributed rather homogeneously in investigated beach sediments. • The occurrence of small potential microplastics (<1 mm) did not correlate with that of visible plastic debris. • Procedural contamination of sediments by fibres (blank) constitutes an analytical problem. • These findings must be considered when setting up standardized monitoring protocols. -- On a small scale within 500 m, small microplastics are distributed rather homogeneously in sediments from the North Sea island of Norderney

  7. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  8. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    International Nuclear Information System (INIS)

    Poirier, Eric; Dailly, Anne

    2009-01-01

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn 4 O(1,3,5-benzenetribenzoate) 2 , MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g -1 . An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g -1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol -1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn 4 O(1,4-benzenedicarboxylate) 3 , IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  9. Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.

    Science.gov (United States)

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-10-03

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.

  10. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets

    KAUST Repository

    Schoedel, Alexander

    2013-09-25

    A new and versatile class of metal-organic materials (MOMs) with augmented lonsdaleite-e (lon-e-a) topology is presented herein. This family of lon-e nets are built by pillaring of hexagonal two-dimensional kagomé (kag) lattices constructed from well-known [Zn2(CO2R)4] paddlewheel molecular building blocks (MBBs) connected by 1,3- benzenedicarboxylate (bdc2-) linkers. The pillars are [Cr 3(μ3-O)(RCO2)]6 trigonal prismatic primary MBBs decorated by six pyridyl moieties (tp-PMBB-1). The three-fold symmetry (D3h) of tp-PMBB-1 is complementary with the alternating orientation of the axial sites of the paddlewheel MBBs and enables triple cross-linking of the kag layers by each pillar. These MOMs represent the first examples of axial-to-axial pillared undulating kag layers, and they are readily fine-tuned because the bdc2- moieties can be varied at their 5-position without changing the overall structure. This lon-e platform possesses functionalized hexagonal channels since the kag lattices are necessarily eclipsed. The effects of the substituent at the 5-positions of the bdc 2- linkers upon gas adsorption, particularly the heats of adsorption of carbon dioxide and methane, were studied. © 2013 American Chemical Society.

  11. Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH).{O2C-C6(CH3)4-CO2}.nH2O

    International Nuclear Information System (INIS)

    Serre, Christian; Millange, Franck; Devic, Thomas; Audebrand, Nathalie; Van Beek, Wouter

    2006-01-01

    Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or Cr III (OH).{O 2 C-C 6 (CH 3 ) 4 -CO 2 }.nH 2 O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO 4 (OH) 2 octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally give MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) A, b = 9.984(1) A, c = 6.970(1) A, β = 110.67(1) o and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) A, b = 11.165(1) A, c = 6.916(1) A and Z = 4

  12. Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5

    KAUST Repository

    Khan, Inayatali; Badshah, Amin; Haider, Naghma; Ullah, Shafiq; Anjum, Dalaver H.; Nadeem, Muhammad Arif

    2014-01-01

    Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc=1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M=Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts. © Springer-Verlag Berlin Heidelberg 2014.

  13. Review of Phthalates Exposure and Toxicity

    Directory of Open Access Journals (Sweden)

    Samaneh Taghilou

    2015-12-01

    Full Text Available The dialkyl- or alkyl/aryl esters of 1, 2-benzenedicarboxylic acid, which are known as Phthalates, are high-production volume synthetic chemicals and considered as environmental pollutants, due to high production and uses in community, plastics industry and common consuming products. Di-(2-ethylhexyl phthalate (DEHP is the most abundant phthalate in the environment. Human exposure with DEHP could be done via different chemical compounds including food packaging, household furnishings, nutritional supplements, cleaning materials and insecticides. Besides, exposure of human with phthalates occurs through different pathways such as direct contact and using Phthalate-containing products, and indirectly through leaching into other products, or general environmental contaminations. Historically, the diet has been considered the major source of phthalate exposure in the general population, but in all sources, pathways, and their relative contributions to human exposures are not well understood. Medical devices are other source of significant exposure in human. Furthermore, cosmetics, personal care products, pharmaceuticals, nutritional supplements, herbal remedies and insecticides, may result in significant but poorly quantified human exposure with this compounds. In the present review article, we tried to discuss about metabolism of phthalates in human, toxicity, monitoring of phthalates in foods, environment, and cosmetic products and then metabolites of phthalates. Finally, evaluation of human exposure through biological control is discussed.

  14. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study

    Science.gov (United States)

    Li, Yi; Fu, Yuqing; Ni, Bilian; Ding, Kaining; Chen, Wenkai; Wu, Kechen; Huang, Xin; Zhang, Yongfan

    2018-03-01

    The first principle calculations have been performed to investigate the geometries, band structures and optical absorptions of a series of MIL-125 MOFs, in which the 1,4-benzenedicarboxylate (BDC) linkers are modified by different types and amounts of chemical groups, including NH2, OH, and NO2. Our results indicate that new energy bands will appear in the band gap of pristine MIL-125 after introducing new group into BDC linker, but the components of these band gap states and the valence band edge position are sensitive to the type of functional group as well as the corresponding amount. Especially, only the incorporation of amino group can obviously decrease the band gap of MIL-125, and the further reduction of the band gap can be observed if the amount of NH2 is increased. Although MIL-125 functionalized by NH2 group exhibits relatively weak or no activity for the photocatalytic O2 evolution by splitting water, such ligand modification can effectively improve the efficiency in H2 production because now the optical absorption in the visible light region is significantly enhanced. Furthermore, the adsorption of water molecule becomes more favorable after introducing of amino group, which is also beneficial for the water-splitting reaction. The present study can provide theoretical insights to design new photocatalysts based on MIL-125.

  15. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    concentrations of 1,2-benzenedicarboxylic acid in the atmospheric fine particle mass, indicating that aromatic diacids may be useful in the quantification of certain sources of secondary organic aerosol in the atmosphere.

  16. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  17. White light emission and second harmonic generation from secondary group participation (SGP) in a coordination network.

    Science.gov (United States)

    He, Jun; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2012-01-25

    We describe a white emitting coordination network solid that can be conveniently applied as a thin film onto a commercial UV-LED lamp for practical white lighting applications. The solid state material was discovered in an exercise of exploring molecular building blocks equipped with secondary groups for fine-tuning the structures and properties of coordination nets. Specifically, CH(3)SCH(2)CH(2)S- and (S)-CH(3)(OH)CHCH(2)S- (2-hydroxylpropyl) were each attached as secondary groups to the 2,5- positions of 1,4-benzenedicarboxylic acid (bdc), and the resultant molecules (L1 and L2, respectively) were crystallized with Pb(II) into the topologically similar 3D nets of PbL1 and PbL2, both consisting of interlinked Pb-carboxyl chains. While the CH(3)S- groups in PbL1 are not bonded to the Pb(II) centers, the hydroxy groups in PbL2 participate in coordinating to Pb(II) and thus modify the bonding features around the Pb(II), but only to a slight and subtle degree (e.g., Pb-O distances 2.941-3.116 Å). Interestingly, the subtle change in structure significantly impacts the properties, i.e., while the photoluminescence of PbL1 is yellowish green, PbL2 features bright white emission. Also, the homochiral side group in PbL2 imparts significant second harmonic generation, in spite of its seemingly weak association with the main framework (the NLO-phore). In a broad perspective, this work showcases the idea of secondary group participation (SGP) in the construction of coordination networks, an idea that parallels that of hemilabile ligands in organometallics and points to an effective strategy in developing advanced functions in solid state framework materials. © 2011 American Chemical Society

  18. Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan.

    Science.gov (United States)

    Turgumbayeva, Aknur Amanbekovna; Ustenova, Gulbaram Omargazieva; Yeskalieva, Balakyz Kymyzgalievna; Ramazanova, Bakyt Amanullovna; Rahimov, Kairolla Duysenbayevich; Aisa, Hajiakbar; Juszkiewicz, Konrad T

    2018-03-14

    Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.

  19. Three new Ag(I) coordination architectures based on mixed ligands: Syntheses, structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yamin, E-mail: liyamin@henu.edu.cn [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Xiao, Changyu; Li, Shu; Chen, Qi; Li, Beibei; Liao, Qian; Niu, Jingyang [Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2013-04-15

    Three new silver (I) coordination complexes, [Ag{sub 2}(1,2-bdc)(phdat)]{sub n} (1), [Ag{sub 2}(NO{sub 2}-bdc)(phdat)]{sub n} (2), [Ag{sub 4}(nta){sub 3}(phdat)NO{sub 3}]{sub n} (3) (1,2-bdc=phthalic acid dianion, NO{sub 2}-bdc=5-nitro-1,3-benzenedicarboxylic acid dianion, nta=nicotinic acid anion, phdat=2,4-diamine-6-phenyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of silver nitrate and phdat with the homologous ligands 1,2-H{sub 2}bdc, NO{sub 2}-H{sub 2}bdc, and Hnta, respectively, and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses thermogravimetric analyses (TGA). The compound 1 exhibits a chiral 3D network with cbs/CrB self-dual topological net, which contains two kinds of single helical chains. For compound 2, the 3D network is comprised of two kinds of similar 2D sheets with the topological symbol of sql-type packed in AABBAA mode by Ag–N/O weakly contacts. And compound 3 has 2D double layer architecture, consisting of the 2D plane with hcb-type topological symbol connected by Ag–O weakly coordinations. The photoluminescent properties associated with the crystal structures of three compounds have also been measured. - Graphical abstract: Three new silver(I) coordination complexes 1–3 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA) and photoluminescent spectra. Highlights: ► The compound 1 exhibits a novel chiral 3D network with two kinds of single helical chains. ► 3D or 2D new Ag coordination complexes. ► The photoluminescent properties have been measured.

  20. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  1. Growth, Fatty Acid, and Lipid Composition of Marine Microalgae Skeletonema costatum Available in Bangladesh Coast: Consideration as Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Tania Sharmin

    2016-01-01

    Full Text Available Among the various potential sources of renewable energy, biofuels are of most interest. Marine microalgae are the most promising oil sources for making biofuels, which can grow very rapidly and convert solar energy to chemical energy via CO2 fixation. The fatty acid profile of almost all the microalgal oil is suitable for the synthesis of biofuel. In this research, fatty acid and lipid contents of Bangladeshi strains of marine microalgae Skeletonema costatum were performed. For this, the crude oil was extracted by Soxhlet extraction method, using three most common solvent systems, pure hexane and mixture of CHCl3 : MeOH (2 : 1 and hexane : EtOH (3 : 1 one by one. Highest oil recovery (15.37% came from CHCl3 : MeOH (2 : 1 solvent system from dry biomass whereas the lowest (2.49% came from n-hexane from wet biomass. The qualitative analysis of the extracted oil by GC/MS analysis revealed that it contained significant amount of myristic acid (C14:0, palmitic acid (C16:0, stearic acid (C18:0, and palmitoleic acid (C16:1. It also indicated presence of hexadecatrienoic acid, benzenedicarboxylic acid, oleic acid, arachidonic acid, eicosapentaenoic acid (EPA, 9-Octadecenoic acid methyl ester (C19H36O2, and so forth. The obtained fatty acid profile indicates high potentiality of S. costatum species to be used as promising biofuel feedstock a little improvisation and substantially it can replace diesel in near future.

  2. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2006-10-01

    Full Text Available Abstract Background Evaluation of microbicides for prevention of HIV-1 infection in macaque models for vaginal infection has indicated that the concentrations of active compounds needed for protection by far exceed levels sufficient for complete inhibition of infection in vitro. These experiments were done in the absence of seminal plasma (SP, a vehicle for sexual transmission of the virus. To gain insight into the possible effect of SP on the performance of selected microbicides, their anti-HIV-1 activity in the presence, and absence of SP, was determined. Methods The inhibitory activity of compounds against the X4 virus, HIV-1 IIIB, and the R5 virus, HIV-1 BaL was determined using TZM-bl indicator cells and quantitated by measuring β-galactosidase induced by infection. The virucidal properties of cellulose acetate 1,2-benzene-dicarboxylate (CAP, the only microbicide provided in water insoluble, micronized form, in the presence of SP was measured. Results The HIV-1 inhibitory activity of the polymeric microbicides, poly(naphthalene sulfonate, cellulose sulfate, carrageenan, CAP (in soluble form and polystyrene sulfonate, respectively, was considerably (range ≈ 4 to ≈ 73-fold diminished in the presence of SP (33.3%. Formulations of micronized CAP, providing an acidic buffering system even in the presence of an SP volume excess, effectively inactivated HIV-1 infectivity. Conclusion The data presented here suggest that the in vivo efficacy of polymeric microbicides, acting as HIV-1 entry inhibitors, might become at least partly compromised by the inevitable presence of SP. These possible disadvantages could be overcome by combining the respective polymers with acidic pH buffering systems (built-in for formulations of micronized CAP or with other anti-HIV-1 compounds, the activity of which is not affected by SP, e.g. reverse transcriptase and zinc finger inhibitors.

  3. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao; Wang, Ying; Liu, Shuqin; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2017-01-01

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L"−"1), low limits of quantification (LOQs, 0.36–6.99 ng L"−"1) and wide linear ranges (20–5000 ng L"−"1). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  4. Structural characterization of framework–gas interactions in the metal–organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction† †Electronic supplementary information (ESI) available: Supplementary figures, crystallographic information, adsorption isotherms and fits, CCDC 1530119–1530126. For ESI and crystallographic data in CIF or other electronic format. See DOI: 10.1039/c7sc00449d Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Gonzalez, Miguel I.; Mason, Jarad A.; Bloch, Eric D.; Teat, Simon J.; Gagnon, Kevin J.; Morrison, Gregory Y.; Queen, Wendy L.

    2017-01-01

    The crystallographic characterization of framework–guest interactions in metal–organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH4, N2, O2, Ar, and P4 adsorption in Co2(dobdc) (dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate), a metal–organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal–organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co–CH4 and Co–Ar interactions observed in Co2(dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal–CH4 interaction and the first crystallographically characterized metal–Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co2(dobdc), with differential enthalpies of adsorption as weak as –17(1) kJ mol–1 (for Ar). Moreover, the structures of Co2(dobdc)·3.8N2, Co2(dobdc)·5.9O2, and Co2(dobdc)·2.0Ar reveal the location of secondary (N2, O2, and Ar) and tertiary (O2) binding sites in Co2(dobdc), while high-pressure CO2, CO, CH4, N2, and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures. PMID:28966783

  5. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    Science.gov (United States)

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  6. "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor.

    Science.gov (United States)

    Qu, Chong; Liang, Zibin; Jiao, Yang; Zhao, Bote; Zhu, Bingjun; Dang, Dai; Dai, Shuge; Chen, Yu; Zou, Ruqiang; Liu, Meilin

    2018-05-02

    Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO) 0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Insecticidal Compound Produced by an Insect-Pathogenic Bacterium Suppresses Host Defenses through Phenoloxidase Inhibition

    Directory of Open Access Journals (Sweden)

    Ihsan Ullah

    2014-12-01

    Full Text Available A bioassay-guided column chromatographic strategy was adopted in the present study to fractionate the culture extract of Photorhabdus temperata M1021 to identify potential insecticidal and antimicrobial compounds. An ethyl acetate (EtOAc culture extract of P. temperata was assayed against Galleria mellonella larvae through intra-hemocoel injection and exhibited 100% insect mortality within 60 h. The EtOAc fraction and an isolated compound exhibited phenoloxidase (PO inhibition of up to 60% and 63%, respectively. The compound was identified as 1,2-benzenedicarboxylic acid (phthalic acid, PA by gas chromatography-mass spectrometry and nuclear magnetic resonance. PA exhibited insecticidal activity against G. mellonella in a dose-dependent manner, and 100% insect mortality was observed at 108 h after injection of 1 M PA. In a PO inhibition assay, 0.5 and 1 M concentrations of PA were found to inhibit PO activity by 74% and 82%, respectively; and in a melanotic nodule formation assay, nodule formation was significantly inhibited (27 and 10 nodules by PA (0.5 and 1 M, respectively. PA was furthermore found to have substantial antioxidant activity and maximum antioxidant activity was 64.7% for 0.5 M PA as compare to control. Antibacterial activity was assessed by The MIC values ranged from 0.1 M to 0.5 M of PA. This study reports a multifunctional PA, a potential insecticidal agent, could a factor of insect mortality along with other toxins produced by P. temperata M1021.

  8. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Imteaz; Jhung, Sung Hwa, E-mail: sung@knu.ac.kr

    2016-08-15

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  9. Isolation and characterization of an n-hexadecane degrading Acinetobacter baumannii KSS1060 from a petrochemical wastewater treatment plant

    International Nuclear Information System (INIS)

    Shiri, Z.; Kermanshahi, R. K.; Soudi, M. R.; Farajzadeh, D.

    2015-01-01

    Hydrocarbons are widespread in the environment, but because of the massive utilization of petroleum products, they are nowadays strongly involved in environmental pollution. Bioremediation is the obliging technology for the treatment of hydrocarbon-contaminated sites. Therefore, to investigate the potential of petrochemical hydrocarbon (HC)-degrading indigenous microorganisms in wastewater samples collected from Fajr petrochemical wastewater treatment plants, a strain of Acinetobacter baumannii was isolated from this hydrocarbon-contaminated wastewater and examined for its ability to utilize hexadecane. This strain was capable to grow on n-hexadecane as the sole source of carbon and energy. The ability of the isolate to degrade n-hexadecane was assessed by growth assays and gas chromatography/mass spectrometry analysis. Using GC analysis, it was shown that the strain KSS1060 was able to degrade 62 % of n-hexadecane within 6 days, which mostly (51.6 %) occurred within the first 24 h. Identification of this hexadecane-degrader bacterium was carried out using 16S rDNA sequence analysis. Additionally, characterization of chemical composition of wastewater samples by the use of gas chromatography/mass spectrometry analysis indicated the presence of Hexanal, Benzene methanol, Indanol, 1,2-benzenedicarboxylic acid diethyl ester, diisobutyl phthalate, and Phenol,4,4′-(1-methylethylidene) in the major constituents of wastewater. In conclusion, this study can focus on more cost-efficient applications of native bacterial strains for the large-scale biodegradation of wastewater samples from petrochemical plant in industry, where it causes disturbing problems due to its harmful effects on different organisms and human beings.

  10. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation

    KAUST Repository

    Luo, Feng

    2016-04-26

    A new metal-organic framework Zn2(H2O)-(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the wellestablished MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn2+ sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm3/cm3) to Zn-MOF-74. Interestingly, the accessible Zn2+ sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm3/cm3) than Zn-MOF-74 (146 cm3/cm3) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result. © 2016 American Chemical Society.

  11. A novel photo-active Cd:1,4-benzene dicarboxylate metal organic framework templated using [Ru(ii)(2,2'-bipyridine)3]2+: synthesis and photophysics of RWLC-5.

    Science.gov (United States)

    Larsen, Randy W; Mayers, Jacob M; Wojtas, Lukasz

    2017-09-26

    The development of photoactive porous materials is of significant importance for applications ranging from sustainable energy to pharmaceutical development and catalysis. A particularly attractive class of photo-active materials is the metal-organic framework (MOF)-based platform in which the photo-active elements are components of the framework itself or photo-active guests encapsulated within the MOF cavities. It has now been demonstrated that the photo-active [Ru(2,2'-bipyridine) 3 ] 2+ (RuBpy) complex can template the formation of MOFs with varying three dimensional structures. Here we report the synthesis and structural and photo-physical characterization of a new RuBpy-templated MOF composed of Cd 2+ ions with 1,4-benzenedicarboxylate ligands (RWLC-5) that contains crystallographically resolved RuBpy complexes. The new material displays a biphasic emission decay (130 ns and 1180 ns, T = 20 °C) and a bathochromically shifted emission maximum, relative to RuBpy in solution (603 nm for RuBpy in ethanol vs. 630 nm for RWLC-5). The emission lifetimes also do not display temperature-dependent decays which are characteristic of RuBpy type complexes as well as other RuBpy templated MOFs. The lack of temperature dependence is consistent with the complete deactivation of the 3 LF state of the encapsulated RuBpy complex due to a constrained environment. The fast phase decay is attributed to a water molecule hydrogen bonded to a bipyridine ligand associated with ∼38% of the encapsulated RuBpy complexes resulting in the nonradiative deactivation of the 3 MLCT state.

  12. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography.

    Science.gov (United States)

    Xie, Sheng-Ming; Zhang, Xin-Huan; Zhang, Ze-Jun; Zhang, Mei; Jia, Jia; Yuan, Li-Ming

    2013-04-01

    Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam = D-camphoric acid; bdc = 1,4-benzenedicarboxylate; tmdpy = 4,4'-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(D-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m × 530 μm i.d.) and column B (2 m × 75 μm i.d.), were prepared by a dynamic coating method using Co-(D-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal-organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n = 6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.

  13. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-05-01

    Full Text Available D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100% D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  14. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution.

    Science.gov (United States)

    Zhao, Li; Dong, Biliang; Li, Shaozhou; Zhou, Lijun; Lai, Linfei; Wang, Zhiwei; Zhao, Shulin; Han, Min; Gao, Kai; Lu, Min; Xie, Xiaoji; Chen, Bo; Liu, Zhengdong; Wang, Xiangjing; Zhang, Hao; Li, Hai; Liu, Juqing; Zhang, Hua; Huang, Xiao; Huang, Wei

    2017-06-27

    Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been recently regarded as the model electrocatalysts due to their porous structure, fast mass and ion transfer through the thickness, and large portion of exposed active metal centers. Combining them with electrically conductive 2D nanosheets is anticipated to achieve further improved performance in electrocatalysis. In this work, we in situ hybridized 2D cobalt 1,4-benzenedicarboxylate (CoBDC) with Ti 3 C 2 T x (the MXene phase) nanosheets via an interdiffusion reaction-assisted process. The resulting hybrid material was applied in the oxygen evolution reaction and achieved a current density of 10 mA cm -2 at a potential of 1.64 V vs reversible hydrogen electrode and a Tafel slope of 48.2 mV dec -1 in 0.1 M KOH. These results outperform those obtained by the standard IrO 2 -based catalyst and are comparable with or even better than those achieved by the previously reported state-of-the-art transition-metal-based catalysts. While the CoBDC layer provided the highly porous structure and large active surface area, the electrically conductive and hydrophilic Ti 3 C 2 T x nanosheets enabled the rapid charge and ion transfer across the well-defined Ti 3 C 2 T x -CoBDC interface and facilitated the access of aqueous electrolyte to the catalytically active CoBDC surfaces. The hybrid nanosheets were further fabricated into an air cathode for a rechargeable zinc-air battery, which was successfully used to power a light-emitting diode. We believe that the in situ hybridization of MXenes and 2D MOFs with interface control will provide more opportunities for their use in energy-based applications.

  15. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Ying [School of Pharmacy, Guiyang Medical University, Guiyang 550004 (China); Liu, Shuqin; Zhu, Fang [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yuan, E-mail: yliu@shou.edu.cn [College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306 (China); Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-08

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L{sup −1}), low limits of quantification (LOQs, 0.36–6.99 ng L{sup −1}) and wide linear ranges (20–5000 ng L{sup −1}). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  16. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    Science.gov (United States)

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  17. Four Mixed-Ligand Zn(II Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-11-01

    Full Text Available Assemblies of four three-dimensional (3D mixed-ligand coordination polymers (CPs having formulas, {[Zn2(bdc2(4-bpdh]·C2H5OH·2H2O}n (1, [Zn(bdc(4-bpdh]n (2, {[Zn2(bdc2(4-bpdh2]·(4-bpdh}n (3, and {[Zn(bdc(4-bpdh]·C2H5OH}n (4 (bdc2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl-3,4-diaza-2,4-hexadiene have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry of Zn(II ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP, six (distorted octahedral (Oh, five (trigonal-bipyramidal (TBP, and four (tetrahedral (Td, respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II ions, coordination modes of bdc2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 1–4 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature.

  18. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding

    International Nuclear Information System (INIS)

    Ahmed, Imteaz; Jhung, Sung Hwa

    2016-01-01

    Highlights: • Metal-organic frameworks (MIL-101) were composed with graphene oxide (GnO). • GnO/MIL-101 showed the highest adsorption capacity for indole and quinoline. • Adsorption mechanism was clearly shown based on adsorption results and FTIR. • GnO/MIL-101 might be applied commercially considering capacity and reusability. - Abstract: A composite was prepared by combining a highly porous metal-organic framework (MOF), MIL-101 (Cr-benzenedicarboxylate), and graphene oxide (GnO). The porosity of the composite increased appreciably by the addition of GnO up to a specific amount in the MOF, though further increases in the quantity of GnO was detrimental to porosity. The improved porosity of the GnO/MIL-101 composite was utilized for adsorptive denitrogenation (ADN) of a model fuel where indole (IND) and quinoline (QUI) were used as nitrogen-containing compounds (NCCs). It was found that both IND and QUI showed improved adsorption on the composite compared with pristine MIL-101 or GnO due to the improved porosity of the composite. Interestingly, the improvement in adsorption of IND was much higher than the quantity estimated for the porosity. Importantly, GnO/MIL-101 showed the highest adsorption capacities for NCCs. Irrespective of the studied solvents and co-presence of IND and QUI, the composite adsorbent performed ADN most effectively. This remarkable improvement is explained by the additional mechanism of hydrogen bonding between the surface functional groups of GnO and the hydrogen attached to the nitrogen atom of IND. This hydrogen bonding mechanism is also supported by the results of the adsorption of pyrrole and methylpyrrole. On the other hand, QUI does not show hydrogen-bonding capability, and therefore, its enhanced adsorption originates from only the increased porosity of the adsorbents.

  19. The flexibility of modified-linker MIL-53 materials.

    Science.gov (United States)

    Munn, Alexis S; Pillai, Renjith S; Biswas, Shyam; Stock, Norbert; Maurin, Guillaume; Walton, Richard I

    2016-03-14

    The flexibility of eight aluminium hydroxo terephthalates [Al(OH)(BDC-X)]·n(guest) (BDC = 1,4-benzene-dicarboxylate; X = -H, -CH3, -Cl, -Br, -NH2, -NO2, -(OH)2, -CO2H) crystallising in the MIL-53-type structure was investigated upon thermal dehydration of as-made samples, superhydration and methanol adsorption/desorption using in situ powder X-ray diffraction (PXRD). Profile fitting was used to determine lattice parameters as a function of time and/or temperature to describe their structural evolution. It has thus been shown that while methanol vapour adsorption induces an opening of all the modified frameworks, except the -NH2 material, superhydration only leads to open structures for Al-MIL-53-NO2, -Br and -(OH)2. All the MIL-53 solids, except Al-MIL-53-(OH)2 are present in the open structures upon thermal dehydration. In addition to the exploration of the breathing behavior of this MIL-53 series, the issue of disorder in the distribution of the functional groups between the organic linkers was explored. As a typical illustration, density functional theory calculations were carried out on different structures of Al-MIL-53-Cl, in which the distribution of -Cl within two adjacent BDC linkers is varied. The results show that the most energetically stable configuration leads to the best agreement with the experimental PXRD pattern. This observation supports that the distribution of the selected linker substituent in the functionalised solid is governed by energetics and that there is a preference for an ordering of this arrangement.

  20. Photo- and thermochromic and adsorption properties of porous coordination polymers based on bipyridinium carboxylate ligands.

    Science.gov (United States)

    Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2015-09-21

    The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions.

  1. Davisson-Germer Prize Talk: Hydrogen storage in nanoporous materials

    Science.gov (United States)

    Chabal, Yves

    2009-03-01

    To develop a hydrogen-based energy technology, several classes of materials are being considered to achieve the DOE targets for gravimetric and volumetric hydrogen densities for hydrogen storage, including liquids (e.g. ammonium borohydrides), clathrate structures, complex metal hydrides, nanostructured (e.g. carbon) an nanoporous materials. Fundamental studies are necessary to determine the ultimate hydrogen capacity of each system. Nanoporous Metal-organic Framework (MOF) materials are promising candidates for hydrogen storage because the chemical nature and size of their unit cell can be tailored to weakly attract and incorporate H2 molecules, with good volumetric and mass density. In this talk, we consider the structure M2(BDC)2(TED), where M is a metal atom (Zn, Ni, Cu), BDC is benzenedicarboxylate and TED triethylenediamine, to determine the location and interaction of H2 molecules within the MOF. These compounds are isostructural and crystallize in the tetragonal phase (space group P4/ncc), they construct 3D porous structures with relatively large pore size (˜7-8 A ), pore volume (˜0.63-0.84 cc/g) and BET surface area (˜1500-1900 m^2/g). At high pressures (300-800 psi), the perturbation of the H-H stretching mode can be measured with IR absorption spectroscopy, showing a 35 cm-1 redshift from the unperturbed ortho (4155 cm-1 ) and para (4161 cm-1 ) frequencies. Using a newly developed non empirical van der Waals DFT method vdW-DFT),ootnotetextJ.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Adv. Func. Mater. 17, 1255 (2007) it can be shown that the locus of the deepest H2 binding positions lies within to types of narrow channels. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms, and heat of adsorption) data.ootnotetextM. Dion, H. Ryberg, E. Schroder, D. C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). Importantly, the

  2. Adsorption and separation of CO{sub 2} on Fe(II)-MOF-74: Effect of the open metal coordination site

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Wolong; Yang, Jiangfeng; Li, Libo; Li, Jinping, E-mail: Jpli211@hotmail.com

    2014-05-01

    We describe the successful synthesis of Fe{sub 2}(dobdc) (dobdc{sup 4−}=2, 5-dioxido-1, 4-benzenedicarboxylate), which has an open metal coordination site Fe(II), and investigate the adsorption properties of three important molecules CO{sub 2}, CH{sub 4} and N{sub 2} on Fe{sub 2}(dobdc) and an oxidized analog, Fe{sub 2}(O{sub 2})(dobdc). We found that CO{sub 2} adsorption isotherm of Fe{sub 2}(dobdc) at 10 bar was very different from Fe{sub 2}(O{sub 2})(dobdc), with the capacities of 144.5 cm{sup 3} g{sup −1} and 98.1 cm{sup 3} g{sup −1}, respectively. The adsorption capacities for CH{sub 4} were 75.8 cm{sup 3} g{sup −1} and 36.8 cm{sup 3} g{sup −1}, respectively, at 10 bar in these materials. Using ideal adsorbed solution theory (IAST), we obtain the adsorption selectivity for CO{sub 2} using equimolar mixtures of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} with Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) as a function of pressure. Fe{sub 2}(dobdc) has a higher, more stable separation factor. - Graphical abstract: The selectivity of CO{sub 2}/CH{sub 4} mixture (50%/50%) on Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). - Highlights: • We explored the contrastive adsorption of CO{sub 2}, CH{sub 4}, and N{sub 2} in Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc) for the first time. • Through IAST, we obtain the adsorption selectivity for CO{sub 2} from the equimolar mixture of CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} for Fe{sub 2}(dobdc) and Fe{sub 2}(O{sub 2})(dobdc). • We determined that the open coordination site of Fe(II) is the main reason for different adsorption performances.

  3. A series of novel metal–organic coordination polymers constructed from the new 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole spacer and aromatic carboxylates: Synthesis, crystal structures, and luminescence properties

    International Nuclear Information System (INIS)

    Sun, Jiayin; Zhang, Daojun; Wang, Li; Zhang, Renchun; Wang, Junjie; Zeng, Ying; Zhan, Jinling; Xu, Jianing; Fan, Yong

    2013-01-01

    Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers, [Zn(L)(1,4-bdc) 0.5 ] (1), [Zn 1.5 (L)(2,5-pydc)] (2), [Zn(HL)(1,2,4,5-btec) 0.5 ] (3), and [Cd(HL)(1,2,4,5-btec) 0.5 ] (4) (1,4-bdc, 1,4-benzenedicarboxylate; 2,5-pydc, 2,5-pyridinedicarboxylate; 1,2,4,5-btec, 1,2,4,5-benzenetetracarboxylate) have been successfully synthesized and analyzed. Compound 1 features the 2D [Zn(L)] n layers built by μ 3 -L bridging ligands and Zn(II) ions, which are further linked by pillared 1,4-bdc 2− ligands to form a 2-fold interpenetrating dmc framework. The 3D network of compound 2 can be simplified as a rare 2-nodal (3,6)-connected rtl (rutile) topology. Compound 3 possesses a 2D layer structure which is accomplished by connecting ladder-chains to L ligands. Compound 4 exhibits 2D [Cd(1,2,4,5-btec)] layers with infinite Cd–O–Cd rods and the adjacent 2D networks are further pillared by L with terminal bidentate coordination mode to generate the final 3D structure. The solid-state luminescent studies show that compounds 1–4 display intense fluorescent emissions. - Graphical abstract: Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers have been obtained. All compounds show good luminescence properties at room temperature. Display Omitted - Highlights: • Four Zn(II)/Cd(II)-MOCPs have been successfully prepared with the rigid bifunctional ligand 5-(4-imidazol -1-yl-phenyl) -2H-tetrazole and different aromatic carboxylates mixed ligands. • Compound 2 is a 2-nodal rtl (rutile) net and compound 4 is a binodal (5, 6)-connected net with yav topology. • Compounds 1-4 display intense fluorescent emissions at room temperature

  4. Understanding Hydrogen Sorption in In- soc -MOF: A Charged Metal-Organic Framework with Open-Metal Sites, Narrow Channels, and Counterions

    KAUST Repository

    Pham, Tony

    2015-03-04

    © 2015 American Chemical Society. Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in In-soc-MOF, a charged metal-organic framework (MOF) that contains In3O trimers coordinated to 5,5′-azobis(1,3-benzenedicarboxylate) linkers. The MOF contains nitrate counterions that are located in carcerand-like capsules of the framework. This MOF was shown to have a high hydrogen uptake at 77 K and 1.0 atm. The simulations were performed with a potential that includes explicit many-body polarization interactions, which were important for modeling gas sorption in a charged/polar MOF such as In-soc-MOF. The simulated hydrogen sorption isotherms were in good agreement with experiment in this challenging platform for modeling. The simulations predict a high initial isosteric heat of adsorption, Qst, value of about 8.5 kJ mol-1, which is in contrast to the experimental value of 6.5 kJ mol-1 for all loadings. The difference in the Qst behavior between experiment and simulation is attributed to the fact that, in experimental measurements, the sorbate molecules cannot access the isolated cages containing the nitrate ions, the most energetically favorable site in the MOF, at low pressures due to an observed diffusion barrier. In contrast, the simulations were able to capture the sorption of hydrogen onto the nitrate ions at low loading due to the equilibrium nature of GCMC simulations. The experimental Qst values were reproduced in simulation by blocking access to all of the nitrate ions in the MOF. Furthermore, at 77 K, the sorbed hydrogen molecules were reminiscent of a dense fluid in In-soc-MOF starting at approximately 5.0 atm, and this was verified by monitoring the isothermal compressibility, βT, values. The favorable sites for hydrogen sorption were identified from the polarization distribution as the nitrate ions, the In3O trimers, and the azobenzene nitrogen atoms. Lastly, the two-dimensional quantum rotational levels

  5. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  6. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.

    Science.gov (United States)

    Bloch, Eric D; Hudson, Matthew R; Mason, Jarad A; Chavan, Sachin; Crocellà, Valentina; Howe, Joshua D; Lee, Kyuho; Dzubak, Allison L; Queen, Wendy L; Zadrozny, Joseph M; Geier, Stephen J; Lin, Li-Chiang; Gagliardi, Laura; Smit, Berend; Neaton, Jeffrey B; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2014-07-30

    Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.

  7. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    International Nuclear Information System (INIS)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-01-01

    Five zinc(II) metal–organic frameworks, [Zn 3 (344-pytpy) 2 Cl 6 ] n ·n(H 2 O) (1), [Zn(344-pytpy)(ox)] n (2), [Zn 2 (344-pytpy)(bdc) 2 ] n ·1.5n(H 2 O) (3), [Zn 2 (344-pytpy) 2 (sfdb) 2 ] n ·1.5n(H 2 O) (4) and [Zn 3 (344-pytpy) 2 (btc) 2 ] n ·2n(H 2 O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H 2 ox=oxalic acid, H 2 bdc=1,4-benzenedi-carboxylic acid, H 2 sfdb=4,4′-sulfonyldibenzoic acid and H 3 btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn II centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6 6 . Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8 2 )(4.8 5 )(8 3 ). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4 4 .6 2 ). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8 2 ) 2 (6 2 .8 2 .10.12)(6 2 .8 3 .10) 2 (6 2 .8) 2 . The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to

  8. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.

    Science.gov (United States)

    Henke, Sebastian; Schneemann, Andreas; Wütscher, Annika; Fischer, Roland A

    2012-06-06

    Flexible metal-organic frameworks (MOFs), also referred to as soft porous crystals (SPCs), show reversible structural transitions dependent on the nature and quantity of adsorbed guest molecules. In recent studies it has been reported that covalent functionalization of the organic linker can influence or even integrate framework flexibility ("breathing") in MOFs. However, rational fine-tuning of such responsive properties is very desirable but challenging as well. Here we present a powerful approach for the targeted manipulation of responsiveness and framework flexibility of an important family of pillared-layered MOFs based on the parent structure [Zn(2)(bdc)(2)(dabco)](n) (bdc = 1,4-benzenedicarboxylate; dabco = 1,4-diazabicyclo[2.2.2]octane). A library of functionalized bdc-type linkers (fu-bdc), which bear additional dangling side groups at different positions of the benzene core (alkoxy groups of varying chain length with diverse functionalities and polarity), was generated. Synthesis of the materials [Zn(2)(fu-bdc)(2)(dabco)](n) yields the respective collection of highly responsive MOFs. The parent MOF is only weakly flexible; however, the substituted frameworks of [Zn(2)(fu-bdc)(2)(dabco)](n) contract drastically upon guest removal and expand again upon adsorption of DMF (N,N-dimethylformamide), EtOH, or CO(2), etc., while N(2) is hardly adsorbed and does not open the narrow-pored form. These "breathing" dynamics are attributed to the dangling side chains that act as immobilized "guests", which interact with mobile guest molecules as well as with themselves and with the framework backbone. The structural details of the guest-free, contracted form and the gas sorption behavior (phase transition pressure, hysteresis loop) are highly dependent on the nature of the substituent at the linker and can therefore be adjusted using our approach. Combining our library of functionalized linkers with the concept of mixed-component MOFs (solid solutions) offers very rich

  9. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    Science.gov (United States)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  10. Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum

    Directory of Open Access Journals (Sweden)

    Jianglin Zhao

    2018-01-01

    Full Text Available The purpose of this study was to investigate the chemical composition and biological activity of the volatile oils (VOs from the flowers of three buckwheat species, Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. The VOs were obtained from the fresh buckwheat flowers by hydrodistillation, and were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS. Nonanoic acid (7.58%, (E-3-hexen-1-ol (6.52%, and benzothiazole (5.08% were the major constituents among the 28 identified components which accounted for 92.89% of the total oil of F. esculentum. 2-Pentadecanone (18.61%, eugenol (17.18%, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl ester (13.19%, and (E,E-farnesylacetone (7.15% were the major compounds among the 14 identified components which accounted for 88.48% of the total oil of F. tataricum. Eugenol (12.22%, (E-3-hexen-1-yl acetate (8.03%, linalool oxide (7.47%, 1-hexanol (7.07%, and benzothiazole (6.72% were the main compounds of the 20 identified components which accounted for 90.23% of the total oil of F. cymosum. The three VOs were screened to have broad spectrum antibacterial activity with minimum inhibitory concentration (MIC values ranged from 100.0 μg/mL to 800.0 μg/mL against the tested bacteria, and their median inhibitory concentration (IC50 values were from 68.32 μg/mL to 452.32 μg/mL. Xanthomonas vesicatoria was the most sensitive bacterium. Moreover, the flower VOs of F. esculentum, F. tataricum and F. cymosum also exhibited noteworthy antioxidant capacity with the IC50 value of 354.15 μg/mL, 210.63 μg/mL, and 264.92 μg/mL for the 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging assay, and the value of 242.06 μg/mL, 184.13 μg/mL, and 206.11 μg/mL respectively for the β-carotene-linoleic bleaching test. These results suggested the volatile oils of buckwheat flowers could be potential resource of natural antimicrobial and antioxidant agents.

  11. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng; Li, Qiao-Min; Lin, Hong-Yan; Wang, Xiang

    2017-05-15

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.

  12. Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution.

    Science.gov (United States)

    Amer Hamzah, Harina; Gee, William J; Raithby, Paul R; Teat, Simon J; Mahon, Mary F; Burrows, Andrew D

    2018-05-29

    The Mannich reaction of the zirconium MOF [Zr 6 O 4 (OH) 4 (bdc-NH 2 ) 6 ] (UiO-66-NH 2 , bdc-NH 2 =2-amino-1,4-benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2-mercaptoimidazole led to post-synthetic modification (PSM) through C-N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2-mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO-66-NH 2 , but the compounds show enhanced selectivity for adsorption of CO 2 over N 2 at 273 K. The thiol-containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn 4 O(bdc-NH 2 ) 3 ] (IRMOF-3), but a similar reaction on [Zn 2 (bdc-NH 2 ) 2 (dabco)] (dabco=1,4-diazabicyclo[2.2.2]octane) gave [Zn 3 (bdc-NH 2 ) 1.32 (bdc-NHCH 2 pyz) 1.68 (dabco)]⋅2 C 7 H 8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution-recrystallisation process that is triggered by the "free" pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the "free" nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc-NH 2 )] (MIL-68(In)-NH 2 ) stop after the first step, and the product was identified as [In(OH)(bdc-NH 2 ) 0.41 (bdc-NHCH 2 OCH 3 ) 0.30 (bdc-N=CH 2 ) 0.29 ], with addition of the heterocycle prevented by steric interactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  14. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH{sub 3}, –C{sub 6}H{sub 4}, –F{sub 2}, –(CH{sub 3}){sub 2}) materials

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Amlan [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India); Couck, Sarah [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Van Der Voort, Pascal [Department of Inorganic and Physical Chemistry, Ghent University, COMOC – Center for Ordered Materials, Organometallics and Catalysis, Krijgslaan 281-S3, 9000 Ghent (Belgium); Denayer, Joeri F.M. [Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Biswas, Shyam, E-mail: sbiswas@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam (India)

    2016-06-15

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2

  15. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.7–2.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.