WorldWideScience

Sample records for benzene metabolite hydroquinone

  1. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  2. Comparison of toxicity of benzene metabolite hydroquinone in hematopoietic stem cells derived from murine embryonic yolk sac and adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Benzene is an occupational toxicant and an environmental pollutant that potentially causes hematotoxicity and leukemia in exposed populations. Epidemiological studies suggest an association between an increased incidence of childhood leukemia and benzene exposure during the early stages of pregnancy. However, experimental evidence supporting the association is lacking at the present time. It is believed that benzene and its metabolites target hematopoietic stem cells (HSCs to cause toxicity and cancer in the hematopoietic system. In the current study, we compared the effects of hydroquinone (HQ, a major metabolite of benzene in humans and animals, on mouse embryonic yolk sac hematopoietic stem cells (YS-HSCs and adult bone marrow hematopoietic stem cells (BM-HSCs. YS-HSCs and BM-HSCs were isolated and enriched, and were exposed to HQ at increasing concentrations. HQ reduced the proliferation and the differentiation and colony formation, but increased the apoptosis of both YS-HSCs and BM-HSCs. However, the cytotoxic and apoptotic effects of HQ were more apparent and reduction of colony formation by HQ was more severe in YS-HSCs than in BM-HSCs. Differences in gene expression profiles were observed in HQ-treated YS-HSCs and BM-HSCs. Cyp4f18 was induced by HQ both in YS-HSCs and BM-HSCs, whereas DNA-PKcs was induced in BM-HSCs only. The results revealed differential effects of benzene metabolites on embryonic and adult HSCs. The study established an experimental system for comparison of the hematopoietic toxicity and leukemogenicity of benzene and metabolites during mouse embryonic development and adulthood.

  3. Induction of granulocytic differentiation in a mouse model by benzene and hydroquinone

    Energy Technology Data Exchange (ETDEWEB)

    Hazel, B.A.; O`Connor, A.; Niculescu, R.; Kalf, G.F. [Jefferson Medical College, Philadelphia, PA (United States)

    1996-12-01

    Chronic exposure of humans to benzene causes acute myelogenous leukemia (AML). The studies presented here were undertaken to determine whether benzene, or its reactive metabolite, hydroquinone (HQ), affects differentiation of myeloblasts. Benzene or HQ administered to C57BL/6J mice specifically induced granulocytic differentiation of myeloblasts. The ability of these compounds to induce differentiation of the myeloblast was tested directly using the murine interleukin 3 (IL-3)-dependent 32D.3 (G) myeloblastic cell line, and the human HL-60 promyelocytic leukemia cell line. 37 refs., 8 figs., 4 tabs.

  4. Benzene metabolites induce apoptosis in lymphocytes.

    Science.gov (United States)

    Martínez-Velázquez, M; Maldonado, V; Ortega, A; Meléndez-Zajgla, J; Albores, A

    2006-08-01

    Benzene is an important environmental pollutant with important health implications. Exposure to this aromatic hydrocarbon is associated with hematotoxicity, and bone marrow carcinogenic effects. It has been shown that benzene induces oxidative stress, cell cycle alterations, and programmed cell death in cultured cells. Hepatic metabolism of benzene is thought to be a prerequisite for its bone marrow toxicity. Nevertheless, there are no reports on the cellular effects of reactive intermediates derived from hepatic metabolism of benzene. Thus, the goal of this project was to determine the cellular alterations of benzene metabolites produced by the cultured hepatic cell line HepG2. Supernatants collected from these cells were applied to a culture of freshly isolated lymphocytes. A higher decrease in cell viability was found in cells exposed to these supernatants than to unmetabolized benzene. This viability decrease was due to apoptosis, as determined by Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay and internucleosomal fragmentation of DNA. When supernatants were analyzed by HPLC, we found that not all the hydrocarbon was biotransformed, since a 28 microM concentration (37%) remained. The only metabolite found in the culture medium was muconic acid. The present results show that muconic acid derived from benzene metabolism is able to cooperate with the pollutant for the induction of apoptosis in rat lymphocytes.

  5. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers

    Science.gov (United States)

    Leitão, Ana Lúcia

    2013-01-01

    Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of evidence showed that hydroquinone is able to enhance carcinogenic risk by generating DNA damage and also to compromise the general immune responses which may contribute to the impaired triggering of the host immune reaction. Hydroquinone bioremediation from natural and contaminated sources can be achieved by the use of a diverse group of microorganisms, ranging from bacteria to fungi, which harbor very complex enzymatic systems able to metabolize hydroquinone either under aerobic or anaerobic conditions. Due to the recent research development on hydroquinone, this review underscores not only the mechanisms of hydroquinone biotransformation and the role of microorganisms and their enzymes in this process, but also its toxicity. PMID:23936816

  6. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast.

    Directory of Open Access Journals (Sweden)

    Matthew North

    Full Text Available Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ, catechol (CAT and 1,2,4-benzenetriol (BT, in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(PH:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.

  7. Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R. [and others

    1995-12-01

    Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolites are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.

  8. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers

    Directory of Open Access Journals (Sweden)

    Francisco J. Enguita

    2013-01-01

    Full Text Available Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of evidence showed that hydroquinone is able to enhance carcinogenic risk by generating DNA damage and also to compromise the general immune responses which may contribute to the impaired triggering of the host immune reaction. Hydroquinone bioremediation from natural and contaminated sources can be achieved by the use of a diverse group of microorganisms, ranging from bacteria to fungi, which harbor very complex enzymatic systems able to metabolize hydroquinone either under aerobic or anaerobic conditions. Due to the recent research development on hydroquinone, this review underscores not only the mechanisms of hydroquinone biotransformation and the role of microorganisms and their enzymes in this process, but also its toxicity.

  9. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.; Siegel, D.; Schattenberg, D.G. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  10. Mechanistic considerations in benzene physiological model development

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  11. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.

    Science.gov (United States)

    Gut, I; Nedelcheva, V; Soucek, P; Stopka, P; Tichavská, B

    1996-12-01

    Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene (4 mg/liter of air) caused a rapid destruction of CYP2B1 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by alpha-tocopherol, suggesting that HQ was not toxic, whereas BQ and semiquinone radical (SQ) caused the effect. In the presence of nicotinamide adenine dinucleotide phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxidation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxidation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxidation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxidation.

  12. Recent advances in the metabolism and toxicity of benzene.

    Science.gov (United States)

    Kalf, G F

    1987-01-01

    Benzene is a heavily used industrial chemical, a petroleum byproduct, an additive in unleaded gas, and a ubiquitous environmental pollutant. Benzene is also a genotoxin, hematotoxin, and carcinogen. Chronic exposure causes aplastic anemia in humans and animals and is associated with increased incidence of leukemia in humans and lymphomas and certain solid tumors in rodents. Bioactivation of benzene is required for toxicity. In the liver, the major site of benzene metabolism, benzene is converted by a cytochrome P-450-mediated pathway to phenol, the major metabolite, and the secondary metabolites, hydroquinone and catechol. The target organ of benzene toxicity, the hematopoietically active bone marrow, metabolizes benzene to a very limited extent. Phenol is metabolized in the marrow cells by a peroxidase-mediated pathway to hydroquinone and catechol, and ultimately to quinones, the putative toxic metabolites. Benzene and its metabolites appear to be nonmutagenic, but they cause myeloclastogenic effects such as micronuclei, chromosome aberrations, and sister chromatid exchange. It is unknown whether these genomic changes, or the ability of the quinone metabolites to form adducts with DNA, are involved in benzene carcinogenicity. Benzene, through its active metabolites, appears to exert its hematological effects on the bone marrow stromal microenvironment by preventing stromal cells from supporting hemopoiesis of the various progenitor cells. Recent advances in our understanding of the mechanisms by which benzene exerts its genotoxic, hematotoxic, and carcinogenic effects are detailed in this review.

  13. Critical issues in benzene toxicity and metabolism: The effect of interactions with other organic chemicals on risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Schlosser, P.M.; Bond, J.A. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. 24 refs., 6 figs., 2 tabs.

  14. DNA damage induced by hydroquinone can be prevented by fungal detoxification

    Directory of Open Access Journals (Sweden)

    Pedro Pereira

    2014-01-01

    Full Text Available Hydroquinone is a benzene metabolite with a wide range of industrial applications, which has potential for widespread human exposure; however, the toxicity of hydroquinone on human cells remains unclear. The aims of this study are to investigate the cytotoxicity and genotoxicity of hydroquinone in human primary fibroblasts and human colon cancer cells (HCT116. Low doses of hydroquinone (227-454 μM reduce the viability of fibroblasts and HCT116 cells, determined by resazurin conversion, and induce genotoxic damage (DNA strand breaks, as assessed by alkaline comet assays. Bioremediation may provide an excellent alternative to promote the degradation of hydroquinone, however few microorganisms are known that efficiently degrade it. Here we also investigate the capacity of a halotolerant fungus, Penicillium chrysogenum var. halophenolicum, to remove hydroquinone toxicity under hypersaline condition. The fungus is able to tolerate high concentrations of hydroquinone and can reverse these noxious effects via degradation of hydroquinone to completion, even when the initial concentration of this compound is as high as 7265 μM. Our findings reveal that P. chrysogenum var. halophenolicum efficiently degrade hydroquinone under hypersaline conditions, placing this fungus among the best candidates for the detoxification of habitats contaminated with this aromatic compound.

  15. A physiological model for simulation of benzene metabolism by rats and mice.

    Science.gov (United States)

    Medinsky, M A; Sabourin, P J; Lucier, G; Birnbaum, L S; Henderson, R F

    1989-06-15

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice are more sensitive to the toxic effects of benzene than are F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice and to determine if the observed differences in toxic effects could be explained by differences in the pathways for metabolism of benzene or by differences in uptake of benzene. Major pathways for elimination of benzene included metabolism to hydroquinone glucuronide or hydroquinone sulfate, phenyl glucuronide or phenyl sulfate, muconic acid, and prephenyl mercapturic acid or phenyl mercapturic acid. Model simulations for total benzene metabolized and for profiles of benzene metabolites were conducted for oral or inhalation exposure and compared to data for urinary excretion of benzene metabolites after exposure of rats and mice to [14C]- or [3H]-benzene by inhalation or gavage. Results for total amount of benzene metabolized, expressed per kilogram body weight, indicated that for inhalation exposure concentrations up to 1000 ppm, mice metabolized at least two to three times as much benzene as did rats. Simulations of oral exposure to benzene resulted in more benzene metabolized per kilogram body weight by rats at oral exposures of greater than 50 mg/kg. Patterns of metabolites formed after either route of exposure were very different for F344/N rats and B6C3F1 mice. Rats primarily formed the detoxification metabolite, phenyl sulfate. Mice formed hydroquinone glucuronide and muconic acid in addition to phenyl sulfate. Hydroquinone and muconic acid are associated with pathways leading to the formation of the putative toxic metabolites of benzene. Metabolic rate parameters, Vmax and Km, were very different for hydroquinone conjugate and muconic acid formation compared to formation of phenyl conjugates and phenyl mercapturic acids. Putative toxication pathways could be characterized as

  16. Identification of 6-hydroxy-trans,trans-2,4-hexadienoic acid, a novel ring-opened urinary metabolite of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Kline, S.A.; Robertson, J.F.; Grotz, V.L.; Goldstein, B.D.; Witz, G. (Robert Wood Johnson Medical School, Piscataway, NJ (United States) Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States))

    1993-09-01

    The authors have studied the in vivo metabolism of benzene in mice to ring-opened compounds excreted in urine. Male CD-1 mice were treated intraperitoneally with benzene (110-440 mg/kg), [[sup 14]C] benzene (220 mg/kg) or trans,trans-muconaldehyde (MUC; 4 mg/kg), a microsomal, hematotoxic metabolite of benzene. Urine, collected over 24 hr, was extracted and analyzed by HPLC with a diode-array detector and by scintillation counting. In addition to trans,trans-muconic acid, previously the only known ring-opened urinary benzene metabolite, a new metabolite, 6-hydroxy-trans,trans-2,4-hexadienoic acid, was detected in urine of mice treated with either benzene or MUC. The authors identified the new metabolite based on coelution of metabolites and UV spectral comparison with authentic standards in unmethylated and methylated urine extracts. Results presented here are consistent with the intermediacy of the ring-opened metabolites.

  17. Mutagenicity of Ochratoxin A and Its Hydroquinone Metabolite in the SupF Gene of the Mutation Reporter Plasmid Ps189

    Directory of Open Access Journals (Sweden)

    Richard A. Manderville

    2012-04-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin that enhances renal tumor formation in the outer medulla of male rat kidney. Direct DNA damage and subsequent mutagenicity may contribute to these processes. In this study we have determined whether OTA in the absence or presence of activated rat liver microsomes (RLM or redox-active transition metals (Fe(III or Cu(II causes promutagenic DNA damage in the supF gene of the mutation reporter plasmid pS189 replicating in human Ad293 cells. In addition, we have assessed the mutagenicity of the hydroquinone metabolite (OTHQ of OTA in the absence or presence of cysteine without added cofactors. Our results show that oxidation of OTA, either by RLM or by transition metal ions, activates OTA to a directly genotoxic mutagen(s. The Fe(III/OTA system was the most potent mutagen in our experimental system, causing a 32-fold increase in mutant fraction (MF above the spontaneous control MF. The Cu(II/OTA system caused a 9-fold increase in MF, while a 6–10-fold increase in MF was observed for OTA in the presence of RLM. The OTHQ metabolite is also mutagenic, especially in the presence of cysteine, in which a 6-fold increase in MF was observed. Our data provide further insight into OTA bioactivation that may account for its in vivo mutagenicity in male rat kidney.

  18. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    Science.gov (United States)

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity.

  19. Genotoxicity of intermittent co-exposure to benzene and toluene in male CD-1 mice.

    Science.gov (United States)

    Wetmore, Barbara A; Struve, Melanie F; Gao, Pu; Sharma, Sheela; Allison, Neil; Roberts, Kay C; Letinski, Daniel J; Nicolich, Mark J; Bird, Michael G; Dorman, David C

    2008-06-17

    Benzene is an important industrial chemical. At certain levels, benzene has been found to produce aplastic anemia, pancytopenia, myeloblastic anemia and genotoxic effects in humans. Metabolism by cytochrome P450 monooxygenases and myeloperoxidase to hydroquinone, phenol, and other metabolites contributes to benzene toxicity. Other xenobiotic substrates for cytochrome P450 can alter benzene metabolism. At high concentrations, toluene has been shown to inhibit benzene metabolism and benzene-induced toxicities. The present study investigated the genotoxicity of exposure to benzene and toluene at lower and intermittent co-exposures. Mice were exposed via whole-body inhalation for 6h/day for 8 days (over a 15-day time period) to air, 50 ppm benzene, 100 ppm toluene, 50 ppm benzene and 50 ppm toluene, or 50 ppm benzene and 100 ppm toluene. Mice exposed to 50 ppm benzene exhibited an increased frequency (2.4-fold) of micronucleated polychromatic erythrocytes (PCE) and increased levels of urinary metabolites (t,t-muconic acid, hydroquinone, and s-phenylmercapturic acid) vs. air-exposed controls. Benzene co-exposure with 100 ppm toluene resulted in similar urinary metabolite levels but a 3.7-fold increase in frequency of micronucleated PCE. Benzene co-exposure with 50 ppm toluene resulted in a similar elevation of micronuclei frequency as with 100 ppm toluene which did not differ significantly from 50 ppm benzene exposure alone. Both co-exposures - 50 ppm benzene with 50 or 100 ppm toluene - resulted in significantly elevated CYP2E1 activities that did not occur following benzene or toluene exposure alone. Whole blood glutathione (GSH) levels were similarly decreased following exposure to 50 ppm benzene and/or 100 ppm toluene, while co-exposure to 50 ppm benzene and 100 ppm toluene significantly decreased GSSG levels and increased the GSH/GSSG ratio. The higher frequency of micronucleated PCE following benzene and toluene co-exposure when compared with mice exposed to

  20. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    Science.gov (United States)

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies.

  1. Induction of 8-hydroxy-2'-deoxyguanosine in CHO-K1 cells exposed to phenyl-hydroquinone, a metabolite of ortho-phenylphenol.

    Science.gov (United States)

    Nakagawa, Y; Tayama, S

    1996-03-29

    The induction of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an index of oxidative DNA modification, was investigated in CHO-K1 cells exposed to phenyl-hydroquinone (PHQ), a major metabolite of ortho-phenylphenol (OPP), an antimicrobial. Addition of PHQ at a concentration of 50 microM to CHO cell suspensions (10(6) cells/ml) induced slight elevation of intracellular 8-OHdG levels. Pretreatment of CHO cells with 3-amino-1,2,4-triazole (AT, 20 mM) enhanced PHQ-induced 8-OHdG formation which was accompanied by cell death. Pretreatment of CHO-K1 cells with AT (20 mM) and deferoxamine (DeFe, 20 mM) inhibited the formation of 8-OHdG as well as cell death caused by PHQ. Neither AT nor DeFe affected cell viability or the formation of 8-OHdG in untreated CHO cells during the incubation period. The loss of cellular glutathione induced by the addition of PHQ alone was enhanced by the pretreatment of CHO cells with AT or AT plus DeFe. When PHQ was added to AT-pretreated cell suspensions, the concentration of PHQ decreased with time. This decrease was accompanied by the formation of phenyl-benzoquinone (PBQ). These results suggest that the reactive oxygen species derived from autoxidation of PHQ which converts to PBQ via phenyl-semiquinone elicit DNA damage in CHO cells, especially when the activity of cellular catalase is inhibited.

  2. Interphase cytogenetics of workers exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wang, Yunxia; Venkatesh, P. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  3. Anaerobic digestion of linear alkyl benzene sulfonates: biodegradation kinetics and metabolite analysis.

    Science.gov (United States)

    García, M T; Campos, E; Ribosa, I; Latorre, A; Sánchez-Leal, J

    2005-09-01

    In the present work the effect of the alkyl chain length and the position of the sulfophenyl substituent of the linear alkylbenzene sulfonates (LAS) on their anaerobic biodegradability have been investigated. Degradation kinetics of the linear alkyl benzene sulfonates homologues, 2phiC10LAS, 2phiC12LAS and 2phiC14LAS, have been studied. It has been also investigated the effect of the isomer type on the degradation rate of the LAS molecule through the comparative study of the 2phiC10LAS and 5phiC10LAS isomers. Batch anaerobic biodegradation tests were performed using sludge from the anaerobic digester of a wastewater treatment plant as microorganisms source. Ultimate biodegradation was evaluated from the biogas production whereas primary biodegradation was determined by specific analysis of the surfactant. LAS homologues and isomers showed a negligible primary biodegradation under anaerobic conditions. Furthermore, analysis of sulfophenyl carboxilates (SPC) by LC-MS indicated a low and constant level of these LAS degradation metabolites over the test period. These data are consistent with a minimal transformation of the LAS parent molecule in the anaerobic digesters. On the other hand, the addition of the shortest alkyl chain length homologues, decyl and dodecylbenzene sulfonates, reduces the biogas production whereas the most hydrophobic homologue, the tetradecylbenzene sulfonate, enhances the biogas production. This LAS homologue seems to increase the availability of organic compounds sorbed on the anaerobic sludge promoting their biodegradation.

  4. Investigation into Variation of Endogenous Metabolites in Bone Marrow Cells and Plasma in C3H/He Mice Exposed to Benzene

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2014-03-01

    Full Text Available Benzene is identified as a carcinogen. Continued exposure of benzene may eventually lead to damage to the bone marrow, accompanied by pancytopenia, aplastic anemia or leukemia. This paper explores the variations of endogenous metabolites to provide possible clues for the molecular mechanism of benzene-induced hematotoxicity. Liquid chromatography coupled with time of flight-mass spectrometry (LC-TOF-MS and principal component analysis (PCA was applied to investigate the variation of endogenous metabolites in bone marrow cells and plasma of male C3H/He mice. The mice were injected subcutaneously with benzene (0, 300, 600 mg/day once daily for seven days. The body weights, relative organ weights, blood parameters and bone marrow smears were also analyzed. The results indicated that benzene caused disturbances in the metabolism of oxidation of fatty acids and essential amino acids (lysine, phenylalanine and tyrosine in bone marrow cells. Moreover, fatty acid oxidation was also disturbed in plasma and thus might be a common disturbed metabolic pathway induced by benzene in multiple organs. This study aims to investigate the underlying molecular mechanisms involved in benzene hematotoxicity, especially in bone marrow cells.

  5. Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility.

    Science.gov (United States)

    Neun, D J; Penn, A; Snyder, C A

    1992-01-01

    It has long been recognized that benzene exposure produces disparate toxic responses among different species or even among different strains within the same species. There is ample evidence that species- or strain-dependent differences in metabolic activity correlate with the disparate responses to benzene. However, bone marrow cells (the putative targets of benzene toxicity) may also exhibit species- or strain-dependent differences in susceptibility to the toxic effects of benzene. To investigate this hypothesis, two sets of companion experiments were performed. First, two strains of mice, Swiss Webster (SW) and C57B1/6J (C57), were exposed to 300 ppm benzene via inhalation and the effects of the exposures were determined on bone marrow cellularity and the development of bone marrow CFU-e (Colony Forming Unit-erythroid, an early red cell progenitor). Second, bone marrow cells from the same strains were exposed in vitro to five known benzene metabolites (1,4 benzoquinone, catechol, hydroquinone, muconic acid, and phenol) individually and in binary combinations. Benzene exposure, in vivo, reduced bone marrow cellularity and the development of CFU-e in both strains; however, reductions in both these endpoints were more severe in the SW strain. When bone marrow cells from the two strains were exposed in vitro to the five benzene metabolites individually, benzoquinone, hydroquinone, and catechol reduced the numbers of CFU-e in both strains in dose-dependent responses, phenol weakly reduced the numbers of the C57 CFU-e only and in a non-dose-dependent manner, and muconic acid was without effect on cells from either strain.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1{alpha} and -1{beta} to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1{beta} converting enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kalf, G.F.; Renz, J.F.; Niculescu, R. [Thomas Jefferson Univ., Philadelphia, PA (United States)

    1996-12-01

    Chronic exposure of humans to benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interieukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1{alpha}. The ability of benzene to interfere with the production and secretion of IL-1{alpha} was tested. Stromal macrophages from benzene-treated mice were capable of the transcription of the IL-1{alpha} gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1{alpha} precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1{alpha}. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1{alpha}. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1{beta} autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1{beta} to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1{beta} converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cylokines and deficient IL-1{alpha} production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. 34 refs., 8 figs.

  7. In vitro hydroquinone-induced instauration of histone bivalent mark on human retroelements (LINE-1) in HL60 cells.

    Science.gov (United States)

    Mancini, Monica; Mandruzzato, Martina; Garzia, Alba C; Sahnane, Nora; Magnani, Elena; Macchi, Filippo; Oulad-Abdelghani, Mustapha; Oudet, Pierre; Bollati, Valentina; Fustinoni, Silvia; Furlan, Daniela; Bonapace, Ian M

    2016-12-13

    Benzene is extensively used in industry despite its leukemogenic activity, representing a significant occupational hazard. We investigated if long-term treatment with low-doses hydroquinone (HQ), a benzene metabolite, might be sufficient to alter in vitro the epigenetic signature underlining LINE-1 sequences, a poorly explored step in health risks associated with benzene exposure. In HL-60 cell line, exploring the epigenetic events occurring in chromatin, we found the transient instauration of the distinctive signature combining the repressive H3Lys27 tri-methylation mark and the activating H3Lys4 tri-methylation mark (H3K27me3/H3K4me3), indicating a tendency toward a poised chromatin conformation. These alterations are lost in time after short-term treatments, while the long-term setting, performed using a concentration within the levels of total HQ in peripheral blood of benzene-exposed workers, showed a gradual increase in H3K4me3. We observed the absence of statistically significant variations in DNA methylation and expression levels of LINE-1, despite a decrease in protein levels of UHRF1, DNA methyl-transferases and histone methyl-transferases. In conclusion, in vitro treatment with low-dose HQ determined the instauration of a reversible poised state of chromatin in LINE-1 sequences, suggesting that prolonged exposure could cause persistent epigenetic alterations.

  8. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.

    Science.gov (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru

    2002-11-01

    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  9. Induction of micronuclei and aneuploidy by the quinone-forming agents benzene and o-phenylphenol.

    Science.gov (United States)

    Eastmond, D A

    1993-04-01

    A number of carcinogens appear to exert their tumorigenic effects through the formation of quinone metabolites. These quinone-forming carcinogens are generally inactive or weakly active in standard gene mutation assays. Accumulating evidence indicates that this class of compounds may exert their genotoxic and carcinogenic effects through the induction of large-scale gene alterations. This article presents an overview of work that has been performed using recently developed molecular cytogenic techniques to investigate the aneuploidy-inducing and clastogenic properties of the major quinone-forming metabolites of benzene, a widely used industrial chemical, and o-phenylphenol, a fungicide and disinfectant. These metabolites of benzene (hydroquinone, catechol, and benzenetriol) and o-phenylphenol (phenylhydroquinone) have each been shown to be capable of interfering with chromosome segregation and inducing chromosomal breakage. These results indicate that both numerical and structural chromosomal aberrations induced by the quinone metabolites of benzene and o-phenylphenol may play a role in the carcinogenic effects of these two agents.

  10. Biochemical toxicity of benzene.

    Science.gov (United States)

    Rana, S V S; Verma, Yeshvandra

    2005-04-01

    Human exposure to benzene in work environment is a global occupational health problem. After inhalation or absorption, benzene targets organs viz. liver, kidney, lung, heart and brain etc. It is metabolized mainly in the liver by cytochrome P450 multifunctional oxygenase system. Benzene causes haematotoxicity through its phenolic metabolites that act in concert to produce DNA strand breaks, chromosomal damage, sister chromatid exchange, inhibition of topoisomerase II and damage to mitotic spindle. The carcinogenic and myelotoxic effects of benzene are associated with free radical formation either as benzene metabolites or lipid peroxidation products. Benzene oxide and phenol have been considered as proheptons. Liver microsomes play an important role in biotransformation of benzene whereas in kidney, it produces degenerative intracellular changes. Cohort studies made in different countries suggest that benzene induces multiple myeloma in petrochemical workers. Though extensive studies have been performed on its toxicity, endocrinal disruption caused by benzene remains poorly known. Transgenic cytochrome P450 IIE1 mice may help in understanding further toxic manifestations of benzene.

  11. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1.

    Science.gov (United States)

    Siew, E L; Chan, K M; Williams, G T; Ross, D; Inayat-Hussain, S H

    2012-10-15

    The Fau gene (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified as a potential tumor suppressor gene using a forward genetics approach. Downregulation of Fau by overexpression of its reverse sequence has been shown to inhibit apoptosis induced by DNA-damaging agents. To address a potential role of Fau in benzene toxicity, we investigated the apoptotic effects of hydroquinone (HQ), a major benzene metabolite, in W7.2 mouse thymoma cells transfected with either a plasmid construct expressing the antisense sequence of Fau (rfau) or the empty vector (pcDNA3.1) as a control. HQ induced apoptosis via increased production of reactive oxygen species and DNA damage, measured using dihydroethidine (HE) staining and alkaline Comet assay, respectively, in W7.2 pcDNA3.1 cells. In contrast, when Fau was downregulated by the antisense sequence in W7.2 rfau cells, HQ treatment did not cause DNA damage and oxidative stress and these cells were markedly more resistant to HQ-induced apoptosis. Further investigation revealed that there was an upregulation of NAD(P)H: quinone oxidoreductase 1 (NQO1), a detoxification enzyme for benzene-derived quinones, in W7.2 rfau cells. Compromising cellular NQO1 by use of a specific mechanism-based inhibitor (MAC 220) and NQO1 siRNA resensitized W7.2 rfau cells to HQ-induced apoptosis. Silencing of Fau in W7.2 wild-type cells resulted in increased levels of NQO1, confirming that downregulation of Fau results in NQO1 upregulation which protects against HQ-induced apoptosis.

  12. Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model.

    Science.gov (United States)

    Medinsky, M A; Sabourin, P J; Henderson, R F; Lucier, G; Birnbaum, L S

    1989-07-01

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice were more sensitive to the carcinogenic effects of benzene than were F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice. Our objective was to determine if differences in toxic effects could be explained by differences in pathways for benzene metabolism or by differences in total uptake of benzene. Compartments incorporated into the model included liver, fat, a poorly perfused tissue group, a richly perfused tissue group, an alveolar or lung compartment and blood. Metabolism of benzene was assumed to take place only in the liver and to proceed by four major competing pathways. These included formation of hydroquinone conjugates (HQC), formation of phenyl conjugates (PHC), ring-breakage and formation of muconic acid (MUC), and conjugation with glutathione with subsequent mercapturic acid (PMA) formation. Values for parameters such as alveolar ventilation, cardiac output, organ volumes, blood flow, partition coefficients, and metabolic rate constants were taken from the literature. Model simulations confirmed that during and after 6-hr inhalation exposures mice metabolized more benzene on a mumole per kilogram body weight basis than did rats. After oral exposure, rats metabolized more benzene than mice at doses above 50 mg/kg because of the more rapid absorption and exhalation of benzene by mice. Model simulations for PHC and PMA, generally considered to be detoxification metabolites, were similar in shape and dose-response to those for total metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman

    2004-01-01

    the last shift of the week. Personal benzene exposure was 114 +/- 35 mug/m(3) in surface workers (n = 15) and 190 +/- 50 mug/m(3) in underground workers (n = 15) in measurements made prior to the study. We found t,t-MA excretion to be significantly higher in underground workers after the end of shifts 1...... and 2 compared with the corresponding surface workers. The same picture, although not significant, was seen for S-PMA excretion. Excretion of S-PMA and t,t-MA was found to increase significantly during the working week in underground workers but not in those employed on the surface. Both t,t-MA and S......-PMA excretion were significantly higher in smokers compared with nonsmokers. Subjects carrying the GSTT1 wild-type excreted higher concentrations of S-PMA than subjects carrying the null genotype, suggesting that it is a key enzyme in the glutathione conjugation that leads to S-PMA. The results support the use...

  14. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT

    Science.gov (United States)

    Rainbow trout (Oncorhynchus mykiss) liver microsomes were used to study the rate of ring-hydroxylation of phenol PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultra...

  15. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSDchromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.).

  16. The possible role of liver kinase B1 in hydroquinone-induced toxicity of murine fetal liver and bone marrow hematopoietic stem cells.

    Science.gov (United States)

    Li, Zhen; Wang, Chunhong; Zhu, Jie; Bai, YuE; Wang, Wei; Zhou, Yanfeng; Zhang, Shaozun; Liu, Xiangxiang; Zhou, Sheng; Huang, Wenting; Bi, Yongyi; Wang, Hong

    2016-07-01

    Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016.

  17. New high-performance liquid chromatography-dad method for analytical determination of arbutin and hydroquinone in rat plasma

    Directory of Open Access Journals (Sweden)

    F R Gallo

    2015-01-01

    Full Text Available Natural substances present in herbal preparations should be carefully used because they can give toxic or therapeutic effects despite of their amount or the way of administration. The safety of products of vegetable origin must be assessed before commercialisation by monitoring the active ingredients and their metabolites. This study was therefore designed to identify and quantify arbutin and its metabolite hydroquinone, naturally present in Arctostaphylos uva-ursi (L. Spreng plant in rat plasma, after an acute and subacute administration of aqueous arbutin solution in Wistar rats. For this purpose a reversed-phase high-performance liquid chromatography coupled with photodiode array detection was developed to assess the pharmacokinetic of arbutin and hydroquinone in plasma of female rats treated with aqueous arbutin solutions. The detection (arbutin: 0.0617 µg/ml and hydroquinone 0.0120 µg/ml and quantification (arbutin: 0.2060 µg/ml and hydroquinone: 0.0400 µg/ml limits were determined. At the arbutin concentration level of 10.7 µg/ml repeatability was 13.33% and its recovery 93.4±6.93%, while at the hydroquinone concentration level of 10.6 µg/ml repeatability was 11.66% and its recovery 92.9±7.75%. Furthermore the method was fully validated and the obtained data indicate that the new method provides good performances.

  18. New High-performance Liquid Chromatography-DAD Method for Analytical Determination of Arbutin and Hydroquinone in Rat Plasma.

    Science.gov (United States)

    Gallo, F R; Pagliuca, G; Multari, G; Panzini, G; D'amore, E; Altieri, I

    2015-01-01

    Natural substances present in herbal preparations should be carefully used because they can give toxic or therapeutic effects despite of their amount or the way of administration. The safety of products of vegetable origin must be assessed before commercialisation by monitoring the active ingredients and their metabolites. This study was therefore designed to identify and quantify arbutin and its metabolite hydroquinone, naturally present in Arctostaphylos uva-ursi (L.) Spreng plant in rat plasma, after an acute and subacute administration of aqueous arbutin solution in Wistar rats. For this purpose a reversed-phase high-performance liquid chromatography coupled with photodiode array detection was developed to assess the pharmacokinetic of arbutin and hydroquinone in plasma of female rats treated with aqueous arbutin solutions. The detection (arbutin: 0.0617 µg/ml and hydroquinone 0.0120 µg/ml) and quantification (arbutin: 0.2060 µg/ml and hydroquinone: 0.0400 µg/ml) limits were determined. At the arbutin concentration level of 10.7 µg/ml repeatability was 13.33% and its recovery 93.4±6.93%, while at the hydroquinone concentration level of 10.6 µg/ml repeatability was 11.66% and its recovery 92.9±7.75%. Furthermore the method was fully validated and the obtained data indicate that the new method provides good performances.

  19. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: Implications for benzene-induced hematotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Li, Yunbo; Trush, M.A. [Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States)

    1995-10-01

    benzene is a human carcinogen; exposure can result in aplastic anemia and leukemia. Data from animal models are frequently used in benzene risk assessment. In rodent studies, mice are more sensitive to benzene-induced hematotoxicity than rats. Bone marrow stromal cells from mice were significantly more susceptible to the cytotoxicity induced by the benzene metabolites hydroquinone (HQ) and benzoquinone (BQ) than cells from rats. Since cellular gluthathione (GSH) and quinone reductase (QR) are known to play critical roles in modulating HQ-induced cytotoxicity, the GSH content and the QR and glutathione S-transferase (GST) activity in stromal cells from both species was measured. In rat cells, the GSH content and the QR specific activity were 2 and 28 times as much as those from mice, respectively. GSH and QR in both mouse and rat stromal cells were inducible by 1,2-dithiole-3-thione (D3T). D3T pretreatment of both mouse and rat stromal cells resulted in a marked protection against HQ-induced toxicity. Pretreatment of both mouse and rat stromal cells with GSH ethyl ester also provided a dramatic protection against HQ-induced toxicity. Conversely, dicoumarol, an inhibitor of QR, enhanced the HQ-induced toxicity in stromal cells from both mice and rats, indicating an important role for QR in modulating HQ-induced stromal toxicity. Buthionine sulfoximine (BSO), which depleted GSH significantly in both species, potentiated the HQ-induced toxicity in mouse but not in rat stromal cells. Surprisingly, incubation of stromal cells with BSO resulted in a significant induction of QR, especially in rats. Overall, this study demonstrates that the differences in stromal cellular GSH content and QR activity between mice and rats contribute to their respective susceptibility to HQ-induced cytotoxicity in vitro, and may be involved in the greater in vivo sensitivity of mice to benzene-induced hematotoxicity. 51 refs., 9 figs., 1 tab.

  20. Clinical Observation on Treating 2 % Hydroquinone Cream with Chloasma

    Institute of Scientific and Technical Information of China (English)

    CHENBin; BIZhigang

    2005-01-01

    Hydroquinone exerts rather good discoloring effects in treatment of some pigmetary dermatosis. 2% hydroquinone cream developed by department of preparation in our hospital was applied in our department to treat pigmetary dermatosis like chloasma. The summary was as followed:

  1. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    Science.gov (United States)

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  2. 苯对外周血人淋巴细胞周期阻滞及凋亡影响%Effects of benzene on cell cycle and apoptosis of peripheral blood lymphocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    段鹏; 胡春卉; 刘颖; 杨益萍; 仇小强; 韦小敏

    2011-01-01

    目的 研究苯及其代谢产物氢醌对外周血人淋巴细胞周期阻滞与凋亡的影响,探讨苯的细胞毒性作用机制.方法 离体培养人淋巴细胞24h后加S9液,设置苯低、中、高浓度(0.25、3.5、50 μmol/L)和氢醌低、中、高浓度(50、150、450 μmol/L)的染毒组,另设空白对照组和溶剂对照组,采用四甲基偶氮唑蓝比色法检测细胞相对存活率,流式细胞术检测细胞周期和凋亡的分布状况,荧光检测细胞存活率的含量,单细胞凝胶电泳技术检测DNA断裂.结果 苯与氢醌剂量依赖性降低人淋巴细胞存活率,诱导人淋巴细胞阻滞于S+ G2/M期,并明显促凋亡且随着染毒浓度升高细胞内活性氧含量增加,与对照组比较,差异有统计学意义(P<0.05),苯与氢醌高浓度组彗星尾长分别为(26.45±7.96)、(30.28 ±6.07)μm,均明显高于对照组(P<0.01).结论 苯及其代谢物氢醌在体外可导致人淋巴细胞存活率降低,细胞周期紊乱,其机制与细胞内活性氧产生及DNA -蛋白质损伤有关.%Objective To study the effects of benzene and the benzene metabolite hydroquinone on the cell cycle and apoptosis of peripheral blood lymphocytes, and to explore the molecular mechanisms underlying benzene-induced cytoxicity damage. Methods Human lymphatic cells were isolated, cultivated and then divided into three groups including of low, moderate,and high benzene exposure(0. 25,3. 5,50 μmol/L) and three groups of low,moderate,and high hydroquinone exposure(50,150,450 μmol/L). One solvent control and one blank control group were also set up. After the treatment,we assayed the growth arrest of lymphocytes induced by benzene and hydroquinone by methyl thiazolyl tetrazolium( MTT) test. Row cytometry was applied to detect cell cycle and apoptosis rate. 2,7-dichlorodihydro fluorescein diacetate( DCFH-DA) assay was used to detect reactive oxygen species(ROS) contents. Lymphocytes'DNA fragment was detected with single cell

  3. Investigation of the DNA adducts formed in B6C3F1 mice treated with benzene: Implications for molecular dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bodell, W.J.; Pathak, D.N.; Levay, G. [Univ. of California, San Francisco, CA (United States)] [and others

    1996-12-01

    We have investigated the formation of DNA adducts in the bone marrow and white blood cells of male B6C3F1 mice treated with benzene using P1-enhanced {sup 32}P-postlabeling. No adducts were detected in the bone marrow of controls or mice treated with various doses of benzene once a day. After twice-daily treatment for 1 to 7 days with benzene, 440 mg/kg, one major (no. 1) and UP to two minor DNA adducts were detected in both the bone marrow and white blood cells. The relative adduct levels in these cells ranged from 0.06 to 1.46 x 10{sup -7}. A significant correlation (r 0.95) between levels of adducts in bone marrow and white blood cells was observed. After a 7-day treatment with benzene, 440 mg/kg twice a day, the number of cells per femur decreased from 1.6 x 10{sup 7} to 0.85 X 10{sup 7}, indicating myelotoxicity. In contrast, administration of benzene once a day produced only a small decrease in bone marrow cellularity. The observed induction of toxicity in bone marrow was paralleled by formation of DNA adducts. In vitro treatment of bone marrow with hydroquinone (HQ) for 24 hr produced the same DNA adducts as found after treatment of mice with benzene, suggesting that HQ is the principal metabolite of benzene leading to DNA adduct formation in vivo. Using {sup 32}P-postlabeling the principal DNA adduct formed in vivo was compared with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3-phosphate. The results of this comparison demonstrates that the DNA adduct formed in vivo co-chromatographs with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3{prime}-phosphate. These studies indicate that metabolic activation of benzene leads to the formation of DNA adducts in bone marrow and white blood cells and suggest that measurement of DNA adducts in white blood cells may be an indicator of biological effect following benzene exposure. 34 refs., 4 figs., 2 tabs.

  4. The Nitrite-Scavenging Properties of Catechol, Resorcinol, and Hydroquinone: A Comparative Study on Their Nitration and Nitrosation Reactions.

    Science.gov (United States)

    Lu, Yunhao; Dong, Yanzuo; Li, Xueli; He, Qiang

    2016-10-14

    The nitration and nitrosation reactions of catechol, resorcinol, and hydroquinone (0.05 mmol/L) with sodium nitrite (0.05 mmol/L) at pH 3 and 37 °C were studied by using liquid chromatography and mass spectrometry (LC-MS) and atom charge analysis, which was aimed to provide chemical insight into the nitrite-scavenging behavior of polyphenols. The 3 benzenediols showed different mechanisms to scavenge nitrite due to their differences in hydroxyl position. Catechol was nitrated with 1 NO2 group at the hydroxyl oxygen, and resorcinol was nitrosated with 2 NO groups at the C2 and C4 (or C6 ) positions of the benzene ring. Hydroquinone could scavenge nitrite through both nitration and nitrosation mechanisms. The nitrated hydroquinone had 1 NO2 group at the hydroxyl oxygen in the molecule, while the nitrosated 1 containing 2 NO groups at the benzene ring might have 3 structure probabilities. The results may provide a structure-activity understanding on the nitrite-scavenging property of polyphenols, so as to promote their application in the food industry for the removal of possibly toxic nitrites found in many vegetables and often in processed meat products.

  5. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  6. The First Total Synthesis of Triprenylquinone and Hydroquinones

    Institute of Scientific and Technical Information of China (English)

    Chun Hong LI; Xue Song CHEN; Guang Lian ZHOU; Zhi Xiang XIE; Ying LI

    2005-01-01

    First total synthesis of triprenylquinone and hydroquinones, three naturally occurring compound 1, 2 and (±) 3, have been achieved from readily available 2-bromo-5-methyl-1,4-dimethoxybenzene 4 and geranyl bromide. The triprenylquinone and hydroquinones precursor were readily prepared with use of a Julia reaction.

  7. Poly(ADP-ribosyl)ation enhances H-RAS protein stability and causes abnormal cell cycle progression in human TK6 lymphoblastoid cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Tang, Huanwen; Chen, Jialong; Wen, Qiaosheng; Zou, Fei

    2015-08-05

    Hydroquinone (HQ), one of the most important benzene-derived metabolites, can induce aberrant cell cycle progression; however, the mechanism of this induction remains unclear. Poly(ADP-ribosyl)ation (PARylation), which is catalysed primarily by poly(ADP-ribose) polymerase-1 (PARP-1), participates in various biological processes, including cell cycle control. The results of the present study show an accumulation in G1 phase versus S phase of TK6 human lymphoblast cells treated with HQ for 48h compared with PBS-treated cells; after 72h of HQ treatment, the cells transitioned from G1 arrest to S phase arrest. We examined the expression of six genes related to the cell cycle or leukaemia to further explore the reason for this phenomenon. Among these genes, H-RAS was found to be associated with this phenomenon because its mRNA and protein expression decreased at 48h and increased at 72h. Experiments for PARP activity induction and inhibition revealed that the observed PARylation was positively associated with H-RAS expression. Moreover, in cells treated with HQ in conjunction with PARP-1 knockdown, expression of the H-RAS protein decreased and the number of cells in G1 phase increased. The degree of poly(ADP-ribosyl) modification of the H-RAS protein increased in cells treated with HQ for 72h, further supporting that changes in PARylation contributed to the rapid alteration of H-RAS protein expression, followed by abnormal progression of the cell cycle. Co-immunoprecipitation (co-IP) assays were employed to determine whether protein complexes were formed by PARP-1 and H-RAS proteins, and the direct interaction between these proteins indicated that PARylation regulated H-RAS expression. As detected by confocal microscopy, the H-RAS protein was found in the nucleus and cytoplasm. To our knowledge, this study is the first to reveal that H-RAS protein can be modified by PARylation.

  8. Hydroquinone Based Synthesis of Gold Nanorods.

    Science.gov (United States)

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  9. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.;

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  10. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated usi...

  11. Successful treatment of hydroquinone-resistant melasma using topical methimazole.

    Science.gov (United States)

    Malek, Joelle; Chedraoui, Adele; Nikolic, Damian; Barouti, Neda; Ghosn, Samer; Abbas, Ossama

    2013-01-01

    Melasma is an acquired hyperpigmentation skin disorder in sun-exposed areas. It occurs almost exclusively over the face, and is most commonly seen in women. Several depigmenting agents have been used for the treatment of melasma among which hydroquinone has been the most widely used due to its efficacy and safety in short-term use. However, hydroquinone is recently reported to be a cytotoxic and mutagenic compound in mammalian cells and is thus banned in several countries. Hydroquinone ban has caused investigators to search for alternative depigmenting agents for the treatment of melasma in recent years. Methimazole is an antithyroid agent orally used in humans since several decades and has been shown that when applied topically, it inhibits melanin synthesis and causes skin depigmentation in lab animals as well as human subjects. Herein, we report two hydroquinone-resistant melasma patients who were successfully treated with methimazole cream. Application of 5% methimazole cream once daily resulted in significant improvement of melasma in both patients after 8 weeks. The efficacy of methimazole for melasma treatment as well as its advantages over other known depigmenting compounds (non-mutagenicity, non-cytotoxicity and high tolerability profile) suggests that topical methimazole should be added to the armamentarium of anti-melasma treatment.

  12. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene.

    OpenAIRE

    Li, G.; Wang, C.; Xin, W. (Weidong); Yin, S

    1996-01-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the 32P-postlabeling assay. LACA mice were dosed ip with benzene at 500 mg/kg bw twice for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling ...

  13. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  14. Risk factor benzene

    Energy Technology Data Exchange (ETDEWEB)

    Stobbe, H.

    1981-01-01

    Nearly one hundred years ago clinical and epidemiological studies have already assigned benzene as a markedly haematotoxic substance. Nowadays benzene is known as an important professional noxa, which is straight off directed against the haematopoietic system, essentially to a dose-time-effect. By this it can be taken as a model also for other noxious substances. Similar solvents often contain so-called 'hidden benzene', that means not declared benzene, so that the consumer doesn't know what dangerous substance are available for his personal use. Impairments caused by benzene mostly are manifested earliest after months, years or for tens of years, and the point is, that these haematopoietic disorders are irreversible disturbances of the haematopoietic stem cell compartment. The consequence of this fact is a deep involvement of the proliferation of the erythro-, mono-, granulo- and thrombopoietic cell lines, mostly with predominance of one of these myeloproliferative cell systems. In the further progression of the impairments due to benzene three different clinical pictures can be observed: the aplastic bone marrow syndrome (i.e. aplastic anemia), the haematopoietic dysplasia (i.e. preleukemia) and the acute leukemias (with the subtypes erythroleukosis, myeloblastic-promyelocytic or myelomonocytic from respectively). Also the transition from one clinical picture to another is possible.

  15. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  16. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

  17. Oxidation of phenol and hydroquinone by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wajon, J.E.; Rosenblatt, D.H.; Burrows, E.P.

    1982-07-01

    Rates of reaction of chlorine dioxide with phenol and with hydroquinone were determined with a stopped-flow spectrophotometer in the pH range 4-8. Second-order rate constants increase with increasing pH, consistent with a mechanism in which both the free phenol and the more reactive phenoxide anion react with ClO/sub 2/. Removal of an electron from the substrate by ClO/sub 2/ to form a phenoxyl radical and ClO/sub 2//sup -/ ion is the rate-determining step. Subsequently, in the case of hydroquinone, ClO/sub 2/ removes another electron from the radical, forming p-benzoquinone and another ClO/sub 2//sup -/ ion. In the case of phenol, ClO/sub 2/ adds to the phenoxyl radical para to the oxygen, and p-benzoquinone is formed with concomitant release of HOCl. The mechanism for phenol reaction accounts for (i) the immediate formation of p-benzoquinone without apparent intermediacy of hydroquinone, (ii) the chlorination observed in solutions containing excess phenol, and (iii) the production of only 0.5 mol of ClO/sub 2//sup -//mol of ClO/sub 2/ consumed.

  18. Benzene-derived N2-(4-hydroxyphenyl)-deoxyguanosine adduct: UvrABC incision and its conformation in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Bo; Rodriguez, Ben; Yang, Yanu; Guliaev, Anton B.; Chenna, Ahmed

    2010-06-14

    Benzene, a ubiquitous human carcinogen, forms DNA adducts through its metabolites such as p-benzoquinone (p-BQ) and hydroquinone (HQ). N(2)-(4-Hydroxyphenyl)-2'-deoxyguanosine (N(2)-4-HOPh-dG) is the principal adduct identified in vivo by (32)P-postlabeling in cells or animals treated with p-BQ or HQ. To study its effect on repair specificity and replication fidelity, we recently synthesized defined oligonucleotides containing a site-specific adduct using phosphoramidite chemistry. We here report the repair of this adduct by Escherichia coli UvrABC complex, which performs the initial damage recognition and incision steps in the nucleotide excision repair (NER) pathway. We first showed that the p-BQ-treated plasmid was efficiently cleaved by the complex, indicating the formation of DNA lesions that are substrates for NER. Using a 40-mer substrate, we found that UvrABC incises the DNA strand containing N(2)-4-HOPh-dG in a dose- and time-dependent manner. The specificity of such repair was also compared with that of DNA glycosylases and damage-specific endonucleases of E. coli, both of which were found to have no detectable activity toward N(2)-4-HOPh-dG. To understand why this adduct is specifically recognized and processed by UvrABC, molecular modeling studies were performed. Analysis of molecular dynamics trajectories showed that stable G:C-like hydrogen bonding patterns of all three Watson-Crick hydrogen bonds are present within the N(2)-4-HOPh-G:C base pair, with the hydroxyphenyl ring at an almost planar position. In addition, N(2)-4-HOPh-dG has a tendency to form more stable stacking interactions than a normal G in B-type DNA. These conformational properties may be critical in differential recognition of this adduct by specific repair enzymes.

  19. Case report: hydroquinone and/or glutaraldehyde induced acute myeloid leukaemia?

    Directory of Open Access Journals (Sweden)

    Alexopoulos Evangelos C

    2006-07-01

    Full Text Available Abstract Background Exposures to high doses of irradiation, to chemotherapy, benzene, petroleum products, paints, embalming fluids, ethylene oxide, herbicides, pesticides, and smoking have been associated with an increased risk of acute myelogenous leukemia (AML. Although there in no epidemiological evidence of relation between X-ray developer, fixer and replenisher liquids and AML, these included glutaraldehyde which has weakly associated with lymphocytic leukemia in rats and hydroquinone has been increasingly implicated in producing leukemia, causing DNA and chromosomal damage, inhibits topo-isomerase II, alter hematopoiesis and inhibit apoptosis of neoplastic cells. Case presentation Two white females (A and B hired in 1985 as medical radiation technologists in a primary care center, in Greece. In July 2001, woman A, 38-years-old, was diagnosed as having acute monocytic leukaemia (FAB M5. The patient did not respond to therapy and died threeweeks later. In August 2001, woman B, 35-year-old, was diagnosed with acute promyelocytic leukaemia (FAB M3. Since discharge, she is in continuous complete remission. Both women were non smokers without any medical history. Shortly after these incidents official inspectors and experts inspected workplace, examined equipment, archives of repairs, notes, interviewed and monitored employees. They concluded that shielding was inadequate for balcony's door but personal monitoring did not show any exceeding of TLV of 20 mSv yearly and cytogenetics analysis did not reveal findings considered to be characteristics of ionizing exposure. Equipment for developing photos had a long list of repairs, mainly leakages of liquids and increases of temperature. On several occasions the floor has been flooded especially during 1987–1993 and 1997–2001. Inspection confirmed a complete lack of ventilation and many spoiled medical x-ray films. Employees reported that an "osmic" level was continuously evident and frequently

  20. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  1. S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases.

    Science.gov (United States)

    Belchik, Sara M; Xun, Luying

    2011-05-01

    Glutathione transferases (GSTs) are best known for transferring glutathione (GSH) to hydrophobic organic compounds, making the conjugates more soluble. However, the omega-class GSTs of animals and the lambda-class GSTs and dehydroascorbate reductases (DHARs) of plants have little or no activity for GSH transfer. Instead, they catalyze GSH-dependent oxidoreductions. The lambda-class GSTs reduce disulfide bonds, the DHARs reduce the disulfide bonds and dehydroascorbate, and the omega-class GSTs can reduce more substrates, including disulfide bonds, dehydroascorbate, and dimethylarsinate. Glutathionyl-(chloro)hydroquinone reductases (GS-HQRs) are the newest class of GSTs that mainly catalyze oxidoreductions. Besides the activities of the other three classes, GS-HQRs also reduce GS-hydroquinones, including GS-trichloro-p-hydroquinone, GS-dichloro-p-hydroquinone, GS-2-hydroxy-p-hydroquinone, and GS-p-hydroquinone. They are conserved and widely distributed in bacteria, fungi, protozoa, and plants, but not in animals. The four classes are phylogenetically more related to each other than to other GSTs, and they share a Cys-Pro motif at the GSH-binding site. Hydroquinones are metabolic intermediates of certain aromatic compounds. They can be auto-oxidized by O(2) to benzoquinones, which spontaneously react with GSH to form GS-hydroquinones via Michael's addition. GS-HQRs are expected to channel GS-hydroquinones, formed spontaneously or enzymatically, back to hydroquinones. When the released hydroquinones are intermediates of metabolic pathways, GS-HQRs play a maintenance role for the pathways. Further, the common presence of GS-HQRs in plants, green algae, cyanobacteria, and halobacteria suggest a beneficial role in the light-using organisms.

  2. Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene.

    Science.gov (United States)

    Wells, M S; Nerland, D E

    1991-04-01

    Benzene is metabolized to one or more hematotoxic species. Saturation of benzene metabolism could limit the production of toxic species. Saturation of phase II enzymes involved in the conjugation of the phenolic metabolites of benzene also could affect the hematotoxicity of benzene. To investigate the latter possibility, we exposed male Swiss mice, via the inhalation route, to various concentrations of benzene for 6 h per day for 5 days. Following termination of the final exposure the mice were killed and the levels of phenylsulfate and phenylglucuronide in the blood determined. Spleen weights were recorded and the number of white blood cells counted. At low benzene exposure concentrations phenylsulfate is the major conjugated form of phenol in the blood. At high exposure concentrations, phenylglucuronide is the predominant species. The reductions in spleen weight and white blood cell numbers correlated with the concentration of phenylsulfate in the blood, but are most probably not causally related.

  3. Carbo-quinoids: stability and reversible redox-proaromatic character towards carbo-benzenes.

    Science.gov (United States)

    Cocq, Kévin; Maraval, Valérie; Saffon-Merceron, Nathalie; Saquet, Alix; Poidevin, Corentin; Lepetit, Christine; Chauvin, Remi

    2015-02-23

    The carbo-mer of the para-quinodimethane core is stable within in a bis(9-fluorenylidene) derivative. Oxidation of this carbo-quinoid with MnO2 in the presence of SnCl2 and ethanol affords the corresponding p-bis(9-ethoxy-fluoren-9-yl)-carbo-benzene. The latter can be in turn converted back into the carbo-quinoid by reduction with SnCl2 , thus evidencing a chemical reversibility of the interconversion between a pro-aromatic carbo-quinoid and an aromatic carbo-benzene, and is reminiscent of the behavior of the benzoquinone/hydroquinone redox couple (in the red-ox opposite sense).

  4. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  5. The use of S-phenylmercapturic acid as a biomarker in molecular epidemiology studies of benzene.

    Science.gov (United States)

    Farmer, Peter B; Kaur, Balvinder; Roach, Jonathan; Levy, Len; Consonni, Dario; Bertazzi, Pietro A; Pesatori, Angela; Fustinoni, Silvia; Buratti, Marina; Bonzini, Matteo; Colombi, Antonio; Popov, Todor; Cavallo, Domenico; Desideri, Arianna; Valerio, Federico; Pala, Mauro; Bolognesi, Claudia; Merlo, Franco

    2005-05-30

    S-Phenylmercapturic acid (S-PMA), is a urinary metabolite of benzene, thought to be derived from the condensation product of benzene oxide with glutathione. S-PMA may be determined by GC, HPLC (UV or fluorescence detection), GC-MS, LC-MS/MS or immunoassays. The limit of sensitivities of most of these techniques is 1 microg/l urine or below. It has been suggested that S-PMA may have value as a biomarker for low level human exposure to benzene, in view of the facts that urinary excretion of S-PMA has been found to be related to airborne benzene in occupationally exposed workers, and that only low background levels of S-PMA have been found in control subjects. We have evaluated the use of S-PMA as a biomarker, using a commercially available analytical service, in a multicentre European study of populations exposed to varying levels of benzene, in Italy (Milan, Genoa) and in Bulgaria (Sofia). These were filling station attendants, urban policemen, bus drivers, petrochemical workers and referents (a total of 623 subjects). S-PMA was measured at the end of the work shift by an immunoassay procedure. Urinary benzene (in Milan only) and the benzene metabolite trans,trans-muconic acid (t,t-MA) were measured before and after the work shift. Air-borne benzene was measured as a monitor of exposure. Urinary benzene was the most discriminatory biomarker and showed a relationship with airborne benzene at all levels of exposure studied (including groups exposed to <0.1 ppm benzene), whereas t,t-MA and S-PMA, as determined by immunoassay, were suitable only in the highest exposed workers (petrochemical industry, geometric mean 1765 microg/m3 (0.55 ppm) benzene). All three biomarkers were positively correlated with smoking as measured by urinary cotinine).

  6. Modulation of the immune response to Listeria monocytogenes by benzene inhalation.

    Science.gov (United States)

    Rosenthal, G J; Snyder, C A

    1985-09-30

    Benzene is a potent bone marrow toxicant. While all blood cell types are targets for benzene poisoning, lymphocytes are particularly sensitive. The immunotoxic consequences of benzene or its metabolites have been demonstrated in a number of in vitro studies; however, little data exist regarding the effects of benzene on host resistance to infectious agents. This investigation examined the effects of benzene on murine resistance to an infectious agent, Listeria monocytogenes. Four concentrations of benzene were employed, 10, 30, 100, and 300 ppm. To determine recovery from the effects of benzene, two exposure regimens were employed: 5 days prior to infection (preexposure), or 5 days prior to and 7 days during infection (continuous exposure). Appropriate air controls were maintained. Splenic bacterial counts and immune responsive cell populations were determined from mice killed at Days 1, 4, and 7 of infection. Preexposure to benzene produced increased bacterial numbers at Day 4 of the infection only at the highest benzene concentration (300 ppm). In contrast, continuous exposure produced increased bacterial numbers at Day 4 of infection at all but the lowest benzene concentration (10 ppm). Bacteria counts were not increased in any benzene-treated group at Day 1 or Day 7 of infection. The increased bacterial numbers at Day 4 suggest an effect on cell-mediated immune responses. Both T and B lymphocytes were particularly sensitive to benzene exhibiting reductions at all concentrations greater than or equal to 30 ppm for both exposure regimens. Esterase-positive cells, however, were relatively resistant to benzenes effects. The results point to a benzene-induced delay in the immune response to L. monocytogenes.

  7. Treating epidermal melasma with a 4% hydroquinone skin care system plus tretinoin cream 0.025%.

    Science.gov (United States)

    Grimes, Pearl; Watson, JoAnne

    2013-01-01

    We sought to evaluate the efficacy and tolerability of treating melasma using a 4% hydroquinone skin care system, including a proprietary cleanser, toner, 4% hydroquinone, exfoliation enhancer, and sunscreen, plus tretinoin cream 0.025%. Together these products offer not only treatment of melasma but also a complete skin care regimen. Twenty participants with mild or moderate epidermal melasma with Fitzpatrick skin types III to VI were instructed to use the hydroquinone skin care system and tretinoin cream for 12 weeks. Melasma severity, melasma pigmentation intensity, and melasma area and severity index (MASI) score were significantly reduced from week 4 onward relative to baseline (P melasma.

  8. Tissue distribution of DNA adducts and their persistence in blood of mice exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Guilan Li; Wang Chunguang; Songnian Yin [Institute of Occupational Medicine Chinese Academy of Preventive Medicine, Beijing (China); Weidong Xin [Medical College of Qingdao, Shandong Province (China)

    1996-12-01

    Chemicals combine with DNA, resulting in DNA damage, which could initiate carcinogenesis. To study whether benzene or benzene metabolites bind to DNA, DNA adducts in various tissues and their persistence in leukocytes were examined using the {sup 32}P-postlabeling assay. LACA mice were dosed in with benzene at 500 mg/kg bw twice daily for 5 days. Two additional spots of DNA adducts are formed in bone marrow cells, liver cells, and peripheral blood compared with control mice. The relative adduct labeling values are 10.39, 11.32, and 13.77 adducts; x 10{sup -8} nucleotides in these tissues, respectively. DNA adducts in blood leukocytes were observed at 1, 4, 7, 14, and 21 days after exposure to benzene, but adduct levels decreased as a function of time. Relative adduct labeling of {open_quotes}adduct B{close_quotes} declined linearly but mildly, while {open_quotes}adduct C{close_quotes} displayed a stepwise decrease. The relative adduct labeling values of both these adducts at day 14 were 50% of those at day 1 after the last treatment. Both adducts were still detectable at day 21 after benzene exposure. These studies demonstrate that benzene could induce DNA adducts; in bone marrow, liver, and white blood cells of mice dosed with benzene and that measurement of adducts in white blood cells may be useful as a biomarker to predict carcinogenic risk of benzene to workers exposed to benzene. 9 refs., 3 figs.

  9. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression.

    Science.gov (United States)

    Valentine, J L; Lee, S S; Seaton, M J; Asgharian, B; Farris, G; Corton, J C; Gonzalez, F J; Medinsky, M A

    1996-11-01

    Transgenic CYP2E1 knockout mice (cyp2e1-/-) were used to investigate the involvement of CYP2E1 in the in vivo metabolism of benzene and in the development of benzene-induced toxicity. After benzene exposure, absence of CYP2E1 protein was confirmed by Western blot analysis of mouse liver samples. For the metabolism studies, male cyp2e1-/- and wild-type control mice were exposed to 200 ppm benzene, along with a radiolabeled tracer dose of [14C]benzene (1.0 Ci/mol) by nose-only inhalation for 6 hr. Total urinary radioactivity and all radiolabeled individual metabolites were reduced in urine of cyp2e1-/- mice compared to wild-type controls during the 48-hr period after benzene exposure. In addition, a significantly greater percentage of total urinary radioactivity could be accounted for as phenylsulfate conjugates in cyp2e1-/- mice compared to wild-type mice, indicating the importance of CYP2E1 in oxidation of phenol following benzene exposure in normal mice. For the toxicity studies, male cyp2e1-/-, wild-type, and B6C3F1 mice were exposed by whole-body inhalation to 0 ppm (control) or 200 ppm benzene, 6 hr/day for 5 days. On Day 5, blood, bone marrow, thymus, and spleen were removed for evaluation of micronuclei frequencies and tissue cellularities. No benzene-induced cytotoxicity or genotoxicity was observed in cyp2e1-/- mice. In contrast, benzene exposure resulted in severe genotoxicity and cytotoxicity in both wild-type and B6C3F1 mice. These studies conclusively demonstrate that CYP2E1 is the major determinant of in vivo benzene metabolism and benzene-induced myelotoxicity in mice.

  10. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Drazenka; Jobelius, Carsten; Meckenstock, Rainer U

    2009-06-01

    Despite its high chemical stability, benzene is known to be biodegradable with various electron acceptors under anaerobic conditions. However, our understanding of the initial activation reaction and the responsible prokaryotes is limited. In the present study, we enriched a bacterial culture that oxidizes benzene to carbon dioxide under sulfate-reducing conditions. Community analysis using terminal restriction fragment length polymorphism, 16S rRNA gene sequencing and FISH revealed 95% dominance of one phylotype that is affiliated to the Gram-positive bacterial genus Pelotomaculum showing that sulfate-reducing Gram-positive bacteria are involved in anaerobic benzene degradation. In order to get indications of the initial activation mechanism, we tested the substrate utilization, performed cometabolism tests and screened for putative metabolites. Phenol, toluene, and benzoate could not be utilized as alternative carbon sources by the benzene-degrading culture. Cometabolic degradation experiments resulted in retarded rates of benzene degradation in the presence of phenol whereas toluene had no effect on benzene metabolism. Phenol, 2-hydroxybenzoate, 4-hydroxybenzoate, and benzoate were identified as putative metabolites in the enrichment culture. However, hydroxylated aromatics were shown to be formed abiotically. Thus, the finding of benzoate as an intermediate compound supports a direct carboxylation of benzene as the initial activation mechanism but additional reactions leading to its formation cannot be excluded definitely.

  11. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin

    OpenAIRE

    Zahra Tofighi, Mohsen Amini, Mahzad Shirzadi, Hamideh Mirhabibi, Negar Ghazi Saeedi, Narguess Yassa

    2016-01-01

    Background: The suspension culture of Vigna radiata was selected for biotransformation of hydroquinone to its β-D-glucoside form (arbutin) as an important therapeutic and cosmetic compound. Methods: The biotransformation efficiency of a Vigna radiata cell culture in addition to different concentrations of hydroquinone (6-20 mg/100 ml) was investigated after 24 hours in comparison to an Echinacea purpurea cell culture and attempts were made to increase the efficacy of the process by adding eli...

  12. Fuel Dependence of Benzene Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  13. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    Institute of Scientific and Technical Information of China (English)

    YAO Risheng; YOU Qidong; HE Weijing; ZHU Huixia

    2009-01-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hy-droquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  14. Exposure of hematopoietic stem cells to benzene or 1,4-benzoquinone induces gender-specific gene expression.

    Science.gov (United States)

    Faiola, Brenda; Fuller, Elizabeth S; Wong, Victoria A; Pluta, Linda; Abernethy, Diane J; Rose, Jason; Recio, Leslie

    2004-01-01

    Chronic exposure to benzene results in progressive decline of hematopoietic function and may lead to the onset of various disorders, including aplastic anemia, myelodysplastic syndrome, and leukemia. Damage to macromolecules resulting from benzene metabolites and misrepair of DNA lesions may lead to changes in hematopoietic stem cells (HSCs) that give rise to leukemic clones. We have shown previously that male mice exposed to benzene by inhalation were significantly more susceptible to benzene-induced toxicities than females. Because HSCs are targets for benzene-induced cytotoxicity and genotoxicity, we investigated DNA damage responses in HSC from both genders of 129/SvJ mice after exposure to 1,4-benzoquinone (BQ) in vitro or benzene in vivo. 1,4-BQ is a highly reactive metabolite of benzene that can cause cellular damage by forming protein and DNA adducts and producing reactive oxygen species. HSCs cultured in the presence of 1,4-BQ for 24 hours showed a gender-independent, dose-dependent cytotoxic response. RNA isolated from 1,4-BQ-treated HSCs and HSCs from mice exposed to 100 ppm benzene by inhalation showed altered expression of apoptosis, DNA repair, cell cycle, and growth control genes compared with unexposed HSCs. Rad51, xpc, and mdm-2 transcript levels were increased in male but not female HSCs exposed to 1,4-BQ. Males exposed to benzene exhibited higher mRNA levels for xpc, ku80, ccng, and wig1. These gene expression differences may partially explain the gender disparity in benzene susceptibility. HSC culture systems such as the one used here will be useful for testing the hematotoxicity of various substances, including other benzene metabolites.

  15. Carbon dots based fluorescent sensor for sensitive determination of hydroquinone.

    Science.gov (United States)

    Ni, Pengjuan; Dai, Haichao; Li, Zhen; Sun, Yujing; Hu, Jingting; Jiang, Shu; Wang, Yilin; Li, Zhuang

    2015-11-01

    In this paper, a novel biosensor based on Carbon dots (C-dots) for sensitive detection of hydroquinone (H2Q) is reported. It is interesting to find that the fluorescence of the C-dots could be quenched by H2Q directly. The possible quenching mechanism is proposed, which shows that the quenching effect may be caused by the electron transfer from C-dots to oxidized H2Q-quinone. Based on the above principle, a novel C-dots based fluorescent probe has been successfully applied to detect H2Q. Under the optimal condition, detection limit down to 0.1 μM is obtained, which is far below U.S. Environmental Protection Agency estimated wastewater discharge limit of 0.5 mg/L. Moreover, the proposed method shows high selectivity for H2Q over a number of potential interfering species. Finally, several water samples spiked with H2Q are analyzed utilizing the sensing method with satisfactory recovery. The proposed method is simple with high sensitivity and excellent selectivity, which provides a new approach for the detection of various analytes that can be transformed into quinone.

  16. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    Science.gov (United States)

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  17. Electronic noses for monitoring benzene occupational exposure in biological samples of Egyptian workers

    Directory of Open Access Journals (Sweden)

    Ehab I. Mohamed

    2013-02-01

    Full Text Available Objectives: Benzene is commonly emitted in several industries, leading to widespread environmental and occupational exposure hazards. While less toxic solvents have been substituted for benzene, it is still a component of petroleum products and is a trace impurity in industrial products resulting in continued higher occupational exposures in industrial settings in developing countries. Materials and Methods: We investigated the potential use of an electronic nose (e-nose to monitor the headspace volatiles in biological samples from benzene-exposed Egyptian workers and non-exposed controls. The study population comprised 150 non-smoking male workers exposed to benzene and an equal number of matching non-exposed controls. We determined biomarkers of benzene used to estimate exposure and risk including: benzene in exhaled air and blood; and its urinary metabolites such as phenol and muconic acid using gas chromatography technique and a portable e-nose. Results: The average benzene concentration measured in the ambient air of the workplace of all studied industrial settings in Alexandria, Egypt; was 97.56±88.12 μg/m3 (range: 4.69–260.86 μg/m3. Levels of phenol and muconic acid were signifi cantly (p < 0.001 higher in both blood and urine of benzene-exposed workers as compared to non-exposed controls. Conclusions: The e-nose technology has successfully classifi ed and distinguished benzene-exposed workers from non-exposed controls for all measured samples of blood, urine and the exhaled air with a very high degree of precision. Thus, it will be a very useful tool for the low-cost mass screening and early detection of health hazards associated with the exposure to benzene in the industry.

  18. Intramolecular Hydrogen Bond in Biologically Active o-Carbonyl Hydroquinones

    Directory of Open Access Journals (Sweden)

    Maximiliano Martínez-Cifuentes

    2014-07-01

    Full Text Available Intramolecular hydrogen bonds (IHBs play a central role in the molecular structure, chemical reactivity and interactions of biologically active molecules. Here, we study the IHBs of seven related o-carbonyl hydroquinones and one structurally-related aromatic lactone, some of which have shown anticancer and antioxidant activity. Experimental NMR data were correlated with theoretical calculations at the DFT and ab initio levels. Natural bond orbital (NBO and molecular electrostatic potential (MEP calculations were used to study the electronic characteristics of these IHB. As expected, our results show that NBO calculations are better than MEP to describe the strength of the IHBs. NBO energies (∆Eij(2 show that the main contributions to energy stabilization correspond to LPàσ* interactions for IHBs, O1…O2-H2 and the delocalization LPàπ* for O2-C2 = Cα(β. For the O1…O2-H2 interaction, the values of ∆Eij(2 can be attributed to the difference in the overlap ability between orbitals i and j (Fij, instead of the energy difference between them. The large energy for the LP O2àπ* C2 = Cα(β interaction in the compounds 9-Hydroxy-5-oxo-4,8, 8-trimethyl-l,9(8H-anthracenecarbolactone (VIII and 9,10-dihydroxy-4,4-dimethylanthracen-1(4H-one (VII (55.49 and 60.70 kcal/mol, respectively when compared with the remaining molecules (all less than 50 kcal/mol, suggests that the IHBs in VIII and VII are strongly resonance assisted.

  19. Ocronose exógena induzida por hidroquinona: relato de quatro casos Exogenous ochronosis hydroquinone induced: a report of four cases

    Directory of Open Access Journals (Sweden)

    Jonas Ribas

    2010-10-01

    Full Text Available A ocronose exógena é uma dermatose, aparentemente pouco frequente, caracterizada por hiperpigmentação negro-azulada fuliginosa, localizada na região onde foi aplicado o agente causador. Pode ser causada por uso de medicamentos sistêmicos, os antimaláricos e de uso tópico, como fenol, resorcinol, benzeno, ácido pícrico e a hidroquinona - que é um composto fenólico, com propriedade despigmentante, muito utilizado em formulações dermatológicas para o tratamento de melasma e outras hiperpigmentações. A fisiopatogenia deste processo ainda não está esclarecida e as abordagens terapêuticas são insatisfatórias. Relatam-se quatro casos de pacientes do sexo feminino que, após uso de preparados contendo hidroquinona, desenvolveram hiperpigmentação acentuada na face, caracterizadas no exame dermatológico e histopatológico como ocronose. Enfatiza-se a possibilidade de casos de ocronose exógena estarem sendo diagnosticados erroneamente, como falha de tratamento de melasma, e também para os riscos do uso indiscriminado de formulações, contendo hidroquinona, muitas vezes, sem acompanhamento médico.Exogenous ochronosis is an infrequent dermatosis characterized as a dark blue hyperpigmentation localized where the causing agent was applied. It may be caused by the use of systemic medication such as antimalarials and by the use of topic substances such as phenol, resorcinol, benzene, or hydroquinone, which is a fenolic compound with depigmentation action, largely used in the treatment of melasma and other hyperpigmentation. The physiopathology of this process is not well clear up to this moment, and the therapeutic measures are not satisfactory either. Here we present four cases of female patients that developed hyperpigmentation on their faces after the use of hydroquinone containing compounds, characterized clinically and histological as ochronosi. We emphasize the possibility of exogenous ochronosis cases being misdiagnosed as a

  20. Electrochemistry of Hydroquinone Derivatives at Metal and Iodine-modified Metal Electrodes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The difference in the electrochemical behavior of hydroquinone and pyrocatechol at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and electron transfer of redox species.

  1. Biomarkers of environmental benzene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weisel, C.; Yu, R.; Roy, A.; Georgopoulos, P. [Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States)

    1996-12-01

    Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine differences in metabolism. Biomarkers in humans have shown that the percentage of benzene metabolized by the ring-opening pathway is greater at environmental exposures than that at higher occupational exposures, a trend similar to that found in animal studies. This suggests that the dose-response curve is nonlinear; that potential different metabolic mechanisms exist at high and low doses; and that the validity of a linear extrapolation of adverse effects measured at high doses to a population exposed to lower, environmental levels of benzene is uncertain. Time-series measurements of the biomarker, exhaled breath, were used to evaluate a physiologically based pharmacokinetic (PBPK) model. Biases were identified between the PBPK model predictions and experimental data that were adequately described using an empirical compartmental model. It is suggested that a mapping of the PBPK model to a compartmental model can be done to optimize the parameters in the PBPK model to provide a future framework for developing a population physiologically based pharmacokinetic model. 44 refs., 3 figs., 1 tab.

  2. Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products.

    Science.gov (United States)

    Thogchai, W; Liawruangrath, B

    2013-06-01

    A simple micellar liquid chromatographic (MLC) procedure for simultaneous determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products was proposed. This method was developed and validated. The chromatographic conditions were also optimized. All analyses were performed at room temperature in an isocratic mode, using a mixture of 1% (v/v) acetonitrile and 0.006 mol L⁻¹ Brij 35 (pH 6.0) as a mobile phase. The flow rate was set at 1.0 mL min⁻¹. The analytical column was a 150 × 3.9 mm Nova-Pak C-18 column. The effluent from the analytical column was monitored by UV detection at 280 nm. Under the optimum conditions, arbutin and hydroquinone could be determined within a concentration range of 2-50 μg mL⁻¹ of arbutin, and hydroquinone was obtained with the regression equations; y = 0.045x + 0.042 (r² = 0.9923) and y = 0.091x + 0.050 (r² = 0.9930) respectively. The limits of detection were found to be 0.51 μg mL⁻¹ and 0.37 μg mL⁻¹ for arbutin and hydroquinone respectively. The proposed MLC method was applied for the determination of arbutin and hydroquinone contents in medicinal plant extracts and commercial cosmetic products. This proposed MLC method is thus suitable for routine analysis of arbutin and hydroquinone in the pharmaceutical formulations, cosmetic products and raw medicinal plant extracts.

  3. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin

    Directory of Open Access Journals (Sweden)

    Zahra Tofighi, Mohsen Amini, Mahzad Shirzadi, Hamideh Mirhabibi, Negar Ghazi Saeedi, Narguess Yassa

    2016-06-01

    Full Text Available Background: The suspension culture of Vigna radiata was selected for biotransformation of hydroquinone to its β-D-glucoside form (arbutin as an important therapeutic and cosmetic compound. Methods: The biotransformation efficiency of a Vigna radiata cell culture in addition to different concentrations of hydroquinone (6-20 mg/100 ml was investigated after 24 hours in comparison to an Echinacea purpurea cell culture and attempts were made to increase the efficacy of the process by adding elicitors. Results: Arbutin was accumulated in cells and found in the media only in insignificant amounts. The arbutin content of the biomass extracts of V. radiata and E. purpurea was different, ranging from 0.78 to 1.89% and 2.00 to 3.55% of dry weight, respectively. V. radiata demonstrated a bioconversion efficiency of 55.82% after adding 8 mg/100 ml precursor, which was comparable with result of 69.53% for E. purpurea cells after adding 10 mg/100 ml hydroquinone (P>0.05. In both cultures, adding hydroquinone in two portions with a 24-hour interval increased the biotransformation efficiency. Different concentrations of methyl jasmonate (25, 50, and 100 µM and chitosan (50 and 100 µg/ml as elicitors increased the bio-efficiency percentage of the V. radiata culture in comparison with the flask containing only hydroquinone. Conclusion: This is the first report of the biotransformation possibility of V. radiata cultures. It was observed the bioconversion capacity increased by adding hydroquinone in two portions, which was comparable to adding an elicitor.

  4. A proposed role played by benzene itself in the induction of acute cytopenia: inhibition of DNA synthesis.

    Science.gov (United States)

    Lee, E W; Garner, C D; Johnson, J T

    1988-04-01

    A single intraperitoneal dose of benzene (880 mg/kg) in mice inhibited DNA synthesis of bone marrow cells within one hour postinjection. However, there was no inhibitory effect on the synthesis of heme and protein at that dosage. Dose-dependent inhibition of DNA synthesis by benzene was observed over the range of 440 to 1760 mg/kg, supporting the idea that cytopenia which was observed by others following multiple doses of benzene (e.g., 440 or 880 mg/kg) might be due to the inhibitory effect of benzene on DNA synthesis. In our studies, benzene concentrations above 81 micrograms/g wet bone marrow resulted in inhibition of DNA synthesis, regardless of whether it was given ip or by inhalation. The effect of benzene itself, rather than its toxic metabolites, on DNA synthesis was further seen in experiments using a bone marrow cell culture system and cell-free DNA synthetic system. Experimental results demonstrated that benzene alone was capable of inhibiting the DNA synthesis of bone marrow cells and that the reduced DNA synthesis resulted from the inhibitory effect of benzene on DNA polymerase alpha, the enzyme that catalyzes the last step of the DNA synthetic pathway. Thus, benzene itself could play a significant role in inducing myelotoxicity in the case of acute or subacute toxicity by exerting its inhibitory effect on DNA synthesis.

  5. HPLC-UV Method for the Identification and Screening of Hydroquinone, Ethers of Hydroquinone and Corticosteroids Possibly Used as Skin-Whitening Agents in Illicit Cosmetic Products.

    Science.gov (United States)

    Gimeno, Pascal; Maggio, Annie-Françoise; Bancilhon, Marjorie; Lassu, Nelly; Gornes, Hervé; Brenier, Charlotte; Lempereur, Laurent

    2016-03-01

    Corticosteroids, hydroquinone and its ethers are regulated in cosmetics by the Regulation 1223/2009. As corticosteroids are forbidden to be used in cosmetics and cannot be present as contaminants or impurities, an identification of one of these illicit compounds deliberately introduced in these types of cosmetics is enough for market survey control. In order to quickly identify skin-whitening agents present in illegal cosmetics, this article proposes an HPLC-UV method for the identification and screening of hydroquinone, 3 ethers of hydroquinone and 39 corticosteroids that may be found in skin-whitening products. Two elution gradients were developed to separate all compounds. The main solvent gradient (A) allows the separation of 39 compounds among the 43 compounds considered in 50 min. Limits of detection on skin-whitening cosmetics are given. For compounds not separated, a complementary gradient elution (B) using the same solvents is proposed. Between 2004 and 2009, a market survey on "skin-whitening cosmetic" was performed on 150 samples and highlights that more than half of the products tested do not comply with the Cosmetic Regulation 1223/2009 (amending the Council Directive 76/768/EEC).

  6. Subclinical effects of groundwater contaminants. Pt. 4. Effects of repeated oral exposure to combinations of benzene and toluene on regional brain monoamine metabolism in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.C.; Parker, R.D.R. (Utah State Univ., Logan, UT (USA). Dept. of Biology); Sharma, R.P. (Utah State Univ., Logan, UT (USA). Dept. of Animal, Dairy and Veterinary Sciences)

    1990-11-01

    The effect of combined treatment with benzene and toluene on the endogenous concentrations of the catecholamines norepinephrine (NE) and dopamine (DA), the catecholamine metabolites vanillylmandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the indoleamine serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), were investigated in six discrete brain regions of CD-1 mice. Groups of male, adult mice were continuously exposed to benzene (166 mg/l), toluene (80 and 325 mg/l), and combinations of benzene + toluene (80 or 325 mg/l) in drinking water for 4 weeks. Benzene produced increases of NE in the hypothalamus, cortex, midbrain and medulla oblongata, DA in the hypothalamus and corpus striatum, and 5-HT in all dissected brain regions except cerebellum. Elevated levels of various monoamine metabolites were also observed in these brain areas. Toluene ingestion alone also significantly increased the concentrations of NE, DA, 5-HT, and their metabolites in several brain regions. Mice given the combined treatments exhibited raised regional neurochemical levels when compared to the untreated controls. Increased concentrations of biogenic amine metabolites in several brain regions were greater in the combined exposures of benzene and toluene than when either chemical was used alone. The findings were different from those observed on immune parameters using similar treatment protocols, where simultaneous exposure to toluene prevented the immunotoxic effects of benzene. (orig./MG).

  7. Adsorptive Stripping Voltammetric Determination of Hydroquinone using an Electrochemically Pretreated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abdul Niaz1,

    2008-12-01

    Full Text Available A simple and efficient adsorptive stripping voltammetric (AdSV method was developed for the determination of hydroquinone at an electrochemically pretreated glassy carbon (GC electrode in waste water. Various parameters such as solvent system, accumulation potential, accumulation time and scan rate were optimized. The electrochemically pretreated GC electrode showed good response towards hydroquinone determination by using AdSV. Under the optimized conditions the peak current showed good linear relationship with the hydroquinone concentration in the range of 0.5-4.0mg L-1 and 5-30mg L-1. The 60/40 methanol/water composition was found to be the best solvent system and 0.05mol L-1 H2SO4 was found as useful supporting electrolyte concentration. The accumulation time was 60 s and the detection limit was 50µg L-1. The developed method was successfully applied for the determination of hydroquinone in polymeric industrial discharge samples waste photographic developer solution and cream sample without any significant effect of surface fouling.

  8. Quantitative Determination of Arbutin and Hydroquinone in Different Plant Materials by HPLC

    Directory of Open Access Journals (Sweden)

    Izabela RYCHLINSKA

    2012-11-01

    Full Text Available A simple, fast method of high-performance liquid chromatography for the determination and quantification of arbutin and hydroquinone in many different raw materials was developed and validated. The optimum conditions for the separation and detection of these two constituents were achieved on a LiChro-CARD 125-4 Superspher®100 RP-18 column with the water-methanol (gradient elution mobile phase and recorded at 289 nm. The purities of peaks were verified by PDA analysis of impurities. The results of validation have shown that the HPLC method is stable and accurate for the simultaneous determination of arbutin and hydroquinone in extracts from various plants. The developed method gave a good sensitivity (LOD 1µg/ml for arbutin and 0.49 µg/ml for hydroquinone with linearity R2 >0.9993 (for both. The relative standard deviation of the method was less than 2.53% for intra-day assays and 3.23% for inter-day assay, the accuracy of the recovery test ranged from 98.96% to 106.4%. This method was used in comparative qualitative analysis of arbutin and hydroquinone in 16 different raw materials from families Lamiaceae, Ericacaeae, Saxifragaceae, Rosaceae. The content of arbutin in B. ciliata, B. cordifolia and Ledum palustre was examined for the first time.

  9. Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates.

    Science.gov (United States)

    Conde, M M; Torré, J P; Miqueu, C

    2016-04-21

    Under specific pressure and temperature conditions, certain gaseous species can be engaged in a host lattice of hydroquinone molecules, forming a supramolecular entity called a gas hydroquinone clathrate. This study is devoted to the thermodynamic modelling of type I hydroquinone clathrates. The gases considered in this work are argon, krypton, xenon, methane, nitrogen, oxygen and hydrogen sulphide. The basic van der Waals and Platteeuw model, which is, for example, not able to predict well the phase equilibrium properties of such clathrates at high temperature, is modified and extended by considering first the solubility of the guest in solid HQ and then the mutual interactions between the gaseous molecules inside the clathrate structure (i.e. guest-guest interactions). Other improvements of the basic theory, such as the choice of the reference state, are proposed, and a unique set of thermodynamic parameters valid for all the studied guests are finally calculated. Very good agreement is obtained between the model predictions and the experimental data available in the literature. Our results clearly demonstrate that the highest level of theory is necessary to describe well both the triphasic equilibrium line (where the HQ clathrate, the native hydroquinone HQα and the gas coexist), the occupancy of the guest in the clathrate, and the intercalation enthalpy.

  10. Lack of clastogenic effects in cultured human lymphocytes treated with hydroquinone

    NARCIS (Netherlands)

    Roza, L.; Vogel, N. de; Delft, J.H.M. van

    2003-01-01

    Hydroquinone (HQ) occurs in the environment as a result of manmade processes as well as in natural products from plants and animals. The compound has been reported to produce chromosomal effects in some in vivo and in vitro animal models. However, its potential to produce similar effects in human ly

  11. Hydroquinone-induced exogenous ochronosis: a report of four cases and usefulness of dermoscopy.

    Science.gov (United States)

    Charlín, Raúl; Barcaui, Carlos B; Kac, Bernard Kawa; Soares, Deborah Brazuna; Rabello-Fonseca, Rosa; Azulay-Abulafia, Luna

    2008-01-01

    Hydroquinone is the first choice of topical bleaching agents used in treatment of melasma. In Brazil, hydroquinone is widely prescribed by physicians and often used by patients without a prescription. The principal adverse effects of its chronic use are confetti-like depigmentation and exogenous ochronosis. The latter manifests clinically with gray-brown or blue-black hyperpigmentation, as well as pinpoint hyperchromic papules that look like caviar, and therefore called caviar-like. On histopathology, curved ochre-colored structures, 'banana-shaped' fibers, appear in the papillary dermis. No description of dermoscopy in ochronosis is found in the literature. We report four cases of hydroquinone-induced exogenous ochronosis. Dermoscopy was performed in two patients on the areas with ochronosis, and in addition to the melasma findings, amorphous densely pigmented structures obliterating some follicular openings were observed. Exogenous ochronosis is an avoidable dermatosis that is difficult to treat. Dermatologists should be able to differentiate it from melasma and immediately discontinue hydroquinone. Dermoscopy might become a valuable resource in approaching exogenous ochronosis.

  12. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...

  13. Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott.

    Science.gov (United States)

    Kwiecień, Inga; Szopa, Agnieszka; Madej, Kornelia; Ekiert, Halina

    2013-01-01

    Arbutin (hydroquinone β-D-glucoside) is a compound of plant origin possessing valuable therapeutic (urinary tract disinfection) and cosmetic (skin whitening) properties, which can be obtained from in vitro cultures of plants belonging to different taxa via biotransformation of exogenously supplemented hydroquinone. Agitating cultures of Aronia melanocarpa were maintained on the Murashige and Skoog medium containing growth regulators: the cytokinin - BAP (6-benzylaminopurine), 2 mg/l and the auxin NAA (α-naphthaleneacetic acid), 2 mg/l. The biomass was cultured for 2 weeks and then hydroquinone was supplemented at the following doses: 96, 144, 192, 288 and 384 mg/l either undivided or divided into two or three portions added at 24-hour intervals. The content of the reaction product - arbutin, was determined using an HPLC method in methanolic extracts from biomass and lyophilized medium samples collected 24 hours after the addition of the last precursor dose. The total amounts of arbutin were very diverse, from 2.71 to 8.27 g/100g d.w. The production of arbutin rose with increasing hydroquinone concentration. The maximum content of the product was observed after hydroquinone addition at 384 mg/l divided into two portions. Biotransformation efficiency also varied widely, ranging from 37.04% do 73.80%. The identity of the product - arbutin, after its isolation and purification was confirmed by spectral analysis ((1)H-NMR spectrum). The maximum amount of arbutin obtained was higher than that required by the latest 9(th) Edition of the Polish Pharmacopoeia and by the newest 8th Edithion of European Pharmacopoeia for Uvae ursi folium (7.0 g/100g d.w.), and is interesting from practical point of view.

  14. Modifications of benzene myelotoxicity and metabolism by phenobarbital, SKF-252A and 3-methylcholanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.P.; Kempen, R.R.; Nash, J.B.; Ellis, S.

    1979-11-05

    It has recently been suggested that the primary myelotoxic species generated from benzene is not produced directly from the parent compound, but from phenol or an even later metabolite. Several compounds that alter the activities of microsomal oxidative and conjugating enzymes were studied for their effects on benzene's myelotoxicity and metabolism. Phenobarbital (PB) protected animals from leucopnia and increased both to total amount of phenol as well as the amount of unconjugated phenol excreted in the urine. SKF-525A had no effect on the leucopenia, whereas it reduced the conversion of benzene to phenol without changing the excretion of unconjugated phenol. 3-Methylcholanthrene also did not prevent the leucopenia, but it did increase the conversion of benzene to phenol and the amount of unconjugated phenol excreted during the first days of the experiment. These data indicate that the early phases of benzene's metabolism may be modulated by the drug pretreatments employed, but myelotoxicity was abated only by PB. We conclude that the marrow effect of benzene is due to a metabolic product other than phenol and, furthermore that the formation of this toxic principle is not strictly dependent on the rate of phenol production.

  15. Double photoionization of halogenated benzene

    Energy Technology Data Exchange (ETDEWEB)

    AlKhaldi, Mashaal Q. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Wehlitz, Ralf, E-mail: rwehlitz@gmail.com [Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, Wisconsin 53589 (United States)

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  16. Functionalization of benzene by superhalogens

    Science.gov (United States)

    Srivastava, Ambrish Kumar; Kumar, Abhishek; Misra, Neeraj

    2017-03-01

    We perform ab initio MP2/6-311++G(d,p) calculations to analyze the molecular properties and aromaticity of NO3, BO2 as well as BF4 superhalogen substituted benzene and compare them with well known electron withdrawing group substituted benzene such as C6H5F and C6H5CN in neutral and ionic forms. It has been noticed that the properties (including aromaticity) of C6H5BO2 closely resemble those of C6H5F and C6H5CN. On the contrary, C6H5NO3 possesses some quite different properties such as high electron affinity, small frontier orbital energy gap and enhanced aromaticity. It is also revealed that C6H5BF4 exists only in the form of C6H5F⋯BF3 complex.

  17. Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.

    Science.gov (United States)

    Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2016-09-30

    Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS.

  18. Metabolism of carbon-14-labeled benzene and toluene in avocado fruit

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, E.F.; Olson, A.C.

    1969-01-01

    The method of exposing avocado fruit to /sup 14/C labeled benzene or toluene was as follows. Fuerte variety avocado fruit was used. It was exposed to the vapor of the hydrocarbons which were circulated in a container. Three mature preclimacteric fruit were used in each experiment. The nonvolatile metabolites from both hydrocarbons were separated into classes of compounds by their solution in water, separation of lipids, and passage of the aqueous solution through ion exchange columns. The results indicate that in avocados the relatively inert hydrocarbons benzene and toluene are metabolized to a series of compounds, toluene to a greater extent than benzene. Both are metabolized to a small but significant extent to CO/sub 2/. 7 references, 2 tables.

  19. Kinetic and thermodynamic properties of the aerial oxidation of hydroquinone in developer solutions

    Institute of Scientific and Technical Information of China (English)

    NASEHZADEH, Asadollah; RESA, Sayyed Hossain; KHOSRAVAN, Azita

    2000-01-01

    The aerial oxidation kinetics of hydroquinone in a freshly prepared developer solution at different temperatures and pHs has been studied. The activation parameters, Ea, △G#,△S# , △H# and enthalpy of formation of activated complex,△Hof(X# ), are determined. The large negative value of free energy of activation △G# proves that hydroquinone extremely tends to be oxidized by air at optimum temperature (20℃)and optimum pH (10.5) and converts to the activated complex semiquinone. It was also found that if the pH of the developer solution is increased from 9.3 to 10.5 the reaction rate will increase by a factor of 2.

  20. Secondary metabolites from three Florida sponges with antidepressant activity.

    Science.gov (United States)

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  1. Nitration of phenolic compounds and oxidation of hydroquinones using tetrabutylammonium chromate and dichromate under aprotic conditions

    Indian Academy of Sciences (India)

    Ali Reza Pourali; Arezou Goli

    2011-01-01

    In this work, we have reported a mild, efficient and selective method for the mononitration of phenolic compounds using sodium nitrite in the presence of tetrabutylammonium dichromate (TBAD) and oxidation of hydroquinones to quinones with TBAD in CH2Cl2. Using this method, high yields of nitrophenols and quinones were obtained under neutral aprotic conditions. Tetrabutylammonium chromate (TBAC) can also be used as oxidant at same conditions.

  2. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  3. Carcinogenic effects of benzene: Cesare Maltoni's contributions.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Cesare Maltoni's contributions to understanding, identifying, and characterizing widely used commercial chemicals in experimental animals are among the most important methods developed in the history of toxicology and serve to protect working men and women, the general population, and our environment from hazardous substances. Maltoni developed experimental methods that have reached the "platinum standard" for protection of public health. Benzene was among the 400 or more chemicals that Maltoni and his associates tested for carcinogenicity. In 1976, Maltoni reported that benzene is a potent experimental carcinogen. Maltoni's experiments clearly demonstrated that benzene is carcinogenic in Sprague-Dawley rats, Wistar rats, Swiss mice, and RF/J mice when administered by inhalation or ingestion. Benzene caused carcinomas of the Zymbal gland, oral cavity, nasal cavities; cancers of the skin, forestomach, mammary glands, and lungs; angiosarcomas and hepatomas of the liver; and hemolymphoreticular cancers. Thus, benzene was shown to be a multipotential carcinogen that produced cancers in several species of animals by various routes of administration. On November 2, 1977, Chemical Week reported that Maltoni provided a "bombshell" when he demonstrated the "first direct link" between benzene and cancer. In this paper, I shall summarize early experiments and human studies and reports; Maltoni's experimental contribution to understanding the carcinogenicity of benzene in humans and animals; earlier knowledge concerning benzene toxicity; and benzene standards and permissible exposure levels.

  4. Production of Phenol from Benzene via Cumene

    Science.gov (United States)

    Daniels, D. J.; And Others

    1976-01-01

    Describes an undergraduate chemistry laboratory experiment involving the production of phenol from benzene with the intermediate production of isopropylbenzene and isopropylbenzene hydroperoxide. (SL)

  5. Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaojuan, E-mail: fengxiaojuan820@yahoo.cn [Chemistry Department of HeXi University, Zhangye 734000 (China); Shi Yanlong [Chemistry Department of HeXi University, Zhangye 734000 (China); Hu Zhongai [Key Laboratory of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We prepared a composite film which has bi-layers with asymmetric microstructure and relatively rich porosity which provides larger surface area for electrochemical reaction. Black-Right-Pointing-Pointer The outer polysulfone layer is propitious for the organic molecules to enrich on the composite film, which brings great enhancement in electron transfer kinetics. Black-Right-Pointing-Pointer The composite film electrode can be used to detect qualitatively or quantitatively hydroquinone and catechol in the single solute or mixed systems. - Abstract: Polyaniline (PAN)/polysulfone (PSF) composite film electrodes were successfully prepared by electropolymerization using cyclic votammetry technique. The composite film electrodes show a great enhancement in electron transfer kinetics, and the separation between oxidation and reduction peaks ({Delta}E{sub p}) decreases from 200 to 35 mV for hydroquinone (H{sub 2}Q) and from 275 to 42 mV for catechol (CC) at bare Pt and composite film electrodes respectively. In their mixed systems, the redox peak of H{sub 2}Q and two pairs of redox peaks of CC on this composite film electrode could be obviously distinguished which indicates the composite film electrodes have excellent electrocatalytic activity and reversibility towards the oxidation of two diphenols (hydroquinone and catechol). The linear relationships between the peak current and concentration are observed for single solute and mixed systems within the certain concentration range, implying that the composite film electrodes have potential application in the qualitative or quantitative analysis of diphenol.

  6. The effects of galangin on a mouse model of vitiligo induced by hydroquinone.

    Science.gov (United States)

    Huo, Shi-Xia; Liu, Xin-Ming; Ge, Chun-Hui; Gao, Li; Peng, Xiao-Ming; Zhao, Ping-Ping; Yan, Ming

    2014-10-01

    Galangin, the main active component of Alpinia officinarum Hance, was tested in a mouse model of vitiligo induced in C57BL/6 mice by the topical application of 2 mL of 2.5% hydroquinone daily to shaved areas (2 × 2 cm) of dorsal skin for 60 days. Thirty days after the final application of hydroquinone, galangin (0.425, and 4.25 mg/kg) was administered orally for 30 days. The hair colour darkened when it grew back after treatment, and histological analysis showed that the number of melanin-containing hair follicles had increased after treatment with all doses of galangin groups and 8-methoxypsoralen (8-MOP, the positive control) compared with the untreated vitiligo group (p vitiligo induced by hydroquinone in mice, with the activity related to concentrations of TYR, expression of TYR protein, activity of malondialdehyde and content of cholinesterase. Galangin may therefore be a potential candidate for the treatment of vitiligo, subject to further investigation.

  7. Comparative efficacy of 2% Hydroquinone and Melfade in Treatment of Melasma

    Directory of Open Access Journals (Sweden)

    R Yaghmaee

    2011-04-01

    Full Text Available Introduction & Objective: Melasma is an acquired hypermelanosis disease and can cause superficial problems in women if left untreated. The objective of this study was to compare the efficacy of 2% hydroquinone and Melfade in the treatment of Melasma. Materials & Methods: This is a randomized clinical trial study conducted at Kurdistan University of Medical Sciences in 2008. Sixty two women with Melasma disease were recruited and randomly assigned to two groups. Two percent hydroquinone was prescribed for the first group (n=31 and Melfade for the second group. After 12 weeks of daily drug consumption by the patients, they were examined by a dermatologist for assessment of recovery. The collected data was analyzed by the SPSS software. Results: Response to treatment with hydroquinone and Melfade- was the same and no significant differences were found between the two groups. (P>0.05 onclusion: Results of this study demonstrated that topical Melfade is as effective as 2% hydrquinone in treatment of Melasma, Therefore it can be considered as an alternative drug in the treatment of Melasma.

  8. Volatile Metabolites

    Directory of Open Access Journals (Sweden)

    Daryl D. Rowan

    2011-11-01

    Full Text Available Volatile organic compounds (volatiles comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.

  9. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  10. Chemical of current interest--benzene.

    Science.gov (United States)

    Marcus, W L

    1987-03-01

    Benzene is one of the world's major commodity chemicals. It is derived from petroleum and coal and is used both as a solvent and as a starting material in chemical syntheses. The numerous industrial uses of benzene over the last century need not be recounted here, but the most recent addition to the list of uses of benzene is as a component in a mixture of aromatic compounds added to gasoline for the purpose of replacing lead compounds as anti-knock ingredients. The best known and longest recognized toxic effect of benzene is the depression of bone marrow function seen in occupationally exposed individuals. These people have been found to display anemia, leucopenia, and/or thrombocytopenia. When pancytopenia, i.e., the simultaneous depression of all three cell types, occurs and is accompanied by bone marrow necrosis, the syndrome is called aplastic anemia. In addition to observing this decrease in humans and relating it to benzene exposure, it has been possible to establish animal models which mimic the human disease. The result has been considerable scientific investigation into the mechanism of benzene toxicity. Although the association between benzene exposure and aplastic anemia has been recognized and accepted throughout most of this century, it is only recently that leukemia, particularly of the acute myelogenous type, has been related to benzene. The acceptance of benzene as an etiological agent in aplastic anemia in large measure derives from our ability to reproduce the disease in most animals treated with sufficiently high doses of benzene over the necessary time period. Unfortunately, despite extensive efforts in several laboratories, it has not been possible to establish a reproducible, reliable model for the study of benzene-induced leukemia. The recent demonstration that several animals exposed to benzene either by inhalation or in the drinking water during studies by Drs. B. Goldstein and C. Maltoni suggests that such a model may be forthcoming

  11. Anaerobic benzene oxidation by Geobacter species.

    Science.gov (United States)

    Zhang, Tian; Bain, Timothy S; Nevin, Kelly P; Barlett, Melissa A; Lovley, Derek R

    2012-12-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 10(9) and 8.4 × 10(9) cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 10(9) cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

  12. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.

    Science.gov (United States)

    Hsieh, Pei-Wen; Chen, Wei-Yu; Aljuffali, Ibrahim A; Chen, Chun-Che; Fang, Jia-You

    2013-01-01

    Hydroquinone and tranexamic acids (TXA) are skin-lightening agents with a hydrophilic nature and low skin absorption. A high dose is needed for clinical use, resulting in a high incidence of skin irritation. Co-drugs formed by conjugating hydroquinone and TXA were synthesized and their in vitro and in vivo skin absorption characteristics were evaluated. The two synthesized co-drugs were 4-hydroxyphenyl 4-(aminomethyl)cyclohexanecarboxylate (HAC) and 1,4- phenylene bis(aminomethyl)cyclohexanecarboxylate (BAC). The co-drugs were chemically stable in aqueous solution, but rapidly degraded to the respective parent drug in esterases and skin homogenates. Compared to hydroquinone application, 7.2- and 2.4-fold increments in the hydroquinone skin deposition were obtained with the in vitro application of HAC and BAC. HAC and BAC led to 3- and 2-fold enhancements of equivalent TXA deposition compared to TXA administration. The in vivo experiment showed a further enhancement of co-drugs compared to the in vitro setup. The transdermal penetration of co-drugs, especially BAC, was much lower than that of hydroquinone and TXA. This indicated high-level skin targeting by the co-drugs. HAC and BAC revealed strong affinities for the viable epidermis/dermis. Hair follicles are important reservoirs for co-drug delivery. Daily administration of co-drugs to the skin did not generate irritation for up to 7 days. Both co-drugs are superior candidates for treating skin hyperpigmentation.

  13. Reduction of benzene toxicity by toluene.

    Science.gov (United States)

    Plappert, U; Barthel, E; Seidel, H J

    1994-01-01

    BDF1 mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene.

  14. Excited state of protonated benzene and toluene

    Energy Technology Data Exchange (ETDEWEB)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr [Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille (France)

    2015-08-21

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  15. Quantitative Determination of Arbutin and Hydroquinone in Different Plant Materials by HPLC

    OpenAIRE

    Izabela RYCHLINSKA; Slawomira NOWAK

    2012-01-01

    A simple, fast method of high-performance liquid chromatography for the determination and quantification of arbutin and hydroquinone in many different raw materials was developed and validated. The optimum conditions for the separation and detection of these two constituents were achieved on a LiChro-CARD 125-4 Superspher®100 RP-18 column with the water-methanol (gradient elution) mobile phase and recorded at 289 nm. The purities of peaks were verified by PDA analysis of impurities. The resul...

  16. S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases.

    Science.gov (United States)

    Xun, Luying; Belchik, Sara M; Xun, Randy; Huang, Yan; Zhou, Huina; Sanchez, Emiliano; Kang, Chulhee; Board, Philip G

    2010-05-27

    Sphingobium chlorophenolicum completely mineralizes PCP (pentachlorophenol). Two GSTs (glutathione transferases), PcpC and PcpF, are involved in the degradation. PcpC uses GSH to reduce TeCH (tetrachloro-p-hydroquinone) to TriCH (trichloro-p-hydroquinone) and then to DiCH (dichloro-p-hydroquinone) during PCP degradation. However, oxidatively damaged PcpC produces GS-TriCH (S-glutathionyl-TriCH) and GS-DiCH (S-glutathionyl-TriCH) conjugates. PcpF converts the conjugates into TriCH and DiCH, re-entering the degradation pathway. PcpF was further characterized in the present study. It catalysed GSH-dependent reduction of GS-TriCH via a Ping Pong mechanism. First, PcpF reacted with GS-TriCH to release TriCH and formed disulfide bond between its Cys53 residue and the GS moiety. Then, a GSH came in to regenerate PcpF and release GS-SG. A TBLASTN search revealed that PcpF homologues were widely distributed in bacteria, halobacteria (archaea), fungi and plants, and they belonged to ECM4 (extracellular mutant 4) group COG0435 in the conserved domain database. Phylogenetic analysis grouped PcpF and homologues into a distinct group, separated from Omega class GSTs. The two groups shared conserved amino acid residues, for GSH binding, but had different residues for the binding of the second substrate. Several recombinant PcpF homologues and two human Omega class GSTs were produced in Escherichia coli and purified. They had zero or low activities for transferring GSH to standard substrates, but all had reasonable activities for GSH-dependent reduction of disulfide bond (thiol transfer), dehydroascorbate and dimethylarsinate. All the tested PcpF homologues reduced GS-TriCH, but the two Omega class GSTs did not. Thus PcpF homologues were tentatively named S-glutathionyl-(chloro)hydroquinone reductases for catalysing the GSH-dependent reduction of GS-TriCH.

  17. Investigation of the oxidation of hydroquinone at the liquid/liquid interface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The oxidation of hydroquinone(QH_2) was investigated for the first time at liquid/liquid(L/L) interface by scanning electrochemical microscopy(SECM).In this study,electron transfer(ET) from QH_2 in aqueous to ferrocene(Fc) in nitrobenzene (NB) was probed.The apparent heterogeneous rate constants for ET reactions were obtained by fitting the experimental approach curves to the theoretical values.The results showed that the rate constants for oxidation reaction of QH_2 were sensitive to the changes of the ...

  18. Comparative Study of Thrapeutic Effcts of%20 Azelaic Acid and %4 Hydroquinone Cream in Treatment of Melasma

    Directory of Open Access Journals (Sweden)

    Bahadori M

    2017-03-01

    Full Text Available Introduction: Melasma is a recurrent, symmetric, and chronic acquired hyperpimentation that presents gray-brown macules and patches with determined margins in areas exposed to light. Thre are many treatment options with diffrent efficies and side effcts. In this study the therapeutic effct of 20% azelaic acid and 4% hydroquinone in treatment of melasma was assessed. Methods: In this clinical trial, the study population consisted of all patients with clinical diagnosis of melasma, who referred to the outpatient clinic of dermatology of Hamadan, Farshchian Hospital from December 2013 to July 2014. A total of 44 patients were recruited. Patients were randomly divided to two groups and each group was treated with either azelaic acid or hydroquinone for four months. Th MASI score was used to evaluate the improvement. P values of ≤ 0.05 were considered signifiant. Results: Of 44 patients, 21 received 4% hydroquinone and 23 received 20% azelaic acid, with random allocation. Both groups were similar with respect to gender and age, and there were no signifiant diffrences between the two groups. Th MASI score in both groups had a decreasing trend over time, and at the end of the fourth month, a signifiant diffrence was found between the two groups P = 0.006(. Th overall mean MASI score in both groups had a signifiant diffrence at diffrent times and during the entire trial period, mean MASI score of 20% azelaic acid was lower than 4% hydroquinone P = 0.001(. Conclusion: Based on this study, we could conclude that 20% azelaic acid in comparison with 4% hydroquinone had bettr effcts on treatment of melasma. Threfore, 20% azelaic acid is a good alternative for 4% hydroquinone in treatment of melasma.

  19. [Epigenic modifications associated with low benzene exposure].

    Science.gov (United States)

    Fustinoni, Silvia; Bollati, Valentina; Bertazzi, Pier Alberto

    2013-01-01

    DNA methylation, mitochondrial DNA copy number and telomeres shortening are cellular modifications associated with an increasing number of tumors, cardiovascular and aging diseases. In our studies these modifications were evaluated in subjects occupationally exposed to low levels of benzene and in the general population. In peripheral blood lymphocytes a decrease of DNA methylation with the increase of personal benzene exposure was found, both in Alu and LINE-1 repetitive elements, and in the global DNA. Telomere length shortening in subjects exposed to traffic exhausts and an increase in mitochondrial DNA copy number correlated to benzene exposure was also found. DNA methylation measured in specimen repeats collected at intervals of 8 years decreased more markedly in exposed subjects than in controls. Our studies highlighted the association of epigenetic modifications of DNA with low benzene exposure.

  20. Biomonitoring of benzene and 1,3-butadiene exposure and early biological effects in traffic policemen.

    Science.gov (United States)

    Arayasiri, Manaswee; Mahidol, Chulabhorn; Navasumrit, Panida; Autrup, Herman; Ruchirawat, Mathuros

    2010-09-15

    The objective of this study was to determine benzene and 1,3-butadiene exposure through ambient air and personal air monitoring, as well as through biomarkers of exposure, and to evaluate the potential health risk of exposure through the use of biomarkers of early biological effects in central Bangkok traffic policemen. Ambient air concentrations of benzene and 1,3-butadiene at the roadsides were significantly higher than in police offices used as control sites (pbutadiene (median 3.08 microg/m(3)) than office policemen (median 6.17 microg/m(3) for benzene and 0.37 microg/m(3) for 1,3-butadiene) (pbutadiene metabolite, monohydroxy-butenyl mercapturic acid. Biomarkers of early biological effects, 8-hydroxy-2'-deoxyguanosine in leukocytes (8-OHdG), DNA-strand breaks, and DNA-repair capacity, measured as an increase in gamma ray-induced chromosome aberrations were significantly higher in traffic policemen than controls (pbutadiene exposure were significantly associated with 8-OHdG and olive tail moment at pbutadiene on DNA damage. These results indicated that traffic policemen, who are exposed to benzene and 1,3-butadiene at the roadside in central Bangkok, are potentially at a higher risk for development of diseases such as cancer than office policemen.

  1. Exposição a hidroquinona e ao fenol sobre a resposta inflamatória pulmonar induzida por bactéria Hydroquinone and phenol exposure on pulmonary inflammatory response induced by bacteria

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira

    2007-09-01

    Full Text Available A gravidade dos efeitos causados pela exposição ambiental e ocupacional ao benzeno determinou o controle de sua utilização. No entanto, mesmo nestas condições, toxicidade ao sistema imune e nervoso tem sido descrita. A toxicidade do benzeno é determinada pelos seus produtos de biotransformação, em que fenol (FE e hidroquinona (HQ têm papel relevante na imunotoxicidade. Neste contexto, o presente trabalho mostra que a exposição de ratos Wistar, machos, a doses de 5 ou 10 mg/kg de HQ (via i.p., uma vez ao dia, 13 doses consecutivas, com intervalos de 2 dias a cada 5 doses provocou reduções acentuadas no influxo de leucócitos polimorfonucleares (PMN e mononucleares (MN para o pulmão 24 horas após inalação de Lipopolissacarídeo (LPS de Salmonella abortus. Diferentemente, a migração de leucócitos em animais expostos ao FE não foi alterada. A exposição a ambos os agentes químicos simultaneamente (dose de 5 mg/kg cada manteve a redução na migração de MN detectada em animais expostos à HQ e potencializou o efeito inibitório da HQ sobre a migração de leucócitos PMN. Os prejuízos nas migrações de leucócitos não foram decorrentes de modificações no número destas células na circulação. É importante ressaltar que os efeitos foram induzidos por doses dos agentes químicos que não causaram prejuízo à função hepática ou renal, determinados pela atividade das transaminases hepáticas e a concentração de creatinina no soro. Em conjunto, os dados obtidos mostram a exposição a baixas doses de HQ não provoca alterações nos parâmetros empregados como indicadores de toxicidade. No entanto, os efeitos tóxicos são manifestados resposta do organismo ao trauma.The high toxicity induced by occupational and environmental benzene exposure lead to its use restriction. However, at these conditions, neuronal and immune toxicity has been described. It is well known that benzene metabolites, such as hydroxyl

  2. Nephrotoxicity of 2-bromo-(cystein-S-yl) hydroquinone and 2-bromo-(N-acetyl-L-cystein-S-yl) hydroquinone thioethers.

    Science.gov (United States)

    Monks, T J; Jones, T W; Hill, B A; Lau, S S

    1991-11-01

    The in vivo toxicity of isomeric cystein-S-yl and N-acetylcystein-S-yl conjugates of 2-bromohydroquinone was determined in male Sprague-Dawley rats. 2-Bromo-(dicystein-S-yl)hydroquinone [2-Br-(diCYS)HQ] and 2-bromo-(di-N-acetyl-L-cystein-S-yl)hydroquinone [2-Br-(diNAC)HQ] were considerably more nephrotoxic than their corresponding monosubstituted thioethers and 2-Br-(diCYS)HQ was more nephrotoxic than 2-Br-(diNAC)HQ. 2-Br-(diCYS)HQ caused elevations in blood urea nitrogen (BUN) concentrations and increases in the urinary excretion of glucose, lactate dehydrogenase (LDH), and gamma-glutamyl transpeptidase (gamma-GT) at a dose of 25 mumol/kg (iv). In contrast, 2-Br-(diNAC)HQ caused significant elevations in BUN at 100 mumol/kg and glucosuria and enzymuria at 50 mumol/kg. 2-Br-3-(CYS)HQ and 2-Br-5&6-(CYS)HQ caused increases in the biochemical indices of nephrotoxicity at doses between 50 and 150 mumol/kg whereas 2-Br-5-(NAC)HQ and 2-Br-6-(NAC)HQ required doses of 150-200 mumol/kg to cause smaller, though significant increases in urinary glucose, gamma-GT, and LDH excretion. The histological alterations caused by each thioether were qualitatively similar; only differences in the extent of the renal proximal tubular damage were observed. The initial lesion appears to involve the cells of the medullary ray and the S3M within the outer stripe of the outer medulla. The in vivo nephrotoxicity of 2-Br-(DiCYS)HQ, 2-Br-(diNAC)HQ, and the most potent monosubstituted thioethers, 2-Br-5&6-(CYS)HQ and 2-Br-6-(NAC)HQ, was investigated further. Pretreatment of animals with aminooxyacetic acid, an inhibitor of cysteine conjugate beta-lyase (beta-lyase), had no effect on the toxicity of 2-Br-(diCYS)HQ, partially inhibited the toxicity of 2-Br-5&6-(CYS)HQ, and almost completely protected against the toxicity of both 2-Br-6-(NAC)HQ and 2-Br-(diNAC)HQ. Thus, the nephrotoxicity of 2-Br-5&6-(CYS)HQ, 2-Br-6-(NAC)HQ, and 2-Br-(diNAC)HQ may be mediated, in part, via their processing by beta

  3. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(Ⅱ)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; YAN Yongsheng; XU Wanzhen

    2008-01-01

    Catalysts based on Co(Ⅱ) supported on active carbon were prepared and loaded in static bed.The hydroquinone wouid be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(Ⅱ)/active carbon catalyst.After activate treatment, the active carbon was immerged in cobaltoas nitrate solution, then put into a drying oven, Co(Ⅱ) could be loaded on the micro-surface of carbon.Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(Ⅱ) was used to reduce activation energy of hydroquinone.Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard.Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(Ⅱ).The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃, pH 5 and reaction time 2.5h.

  4. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  5. Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes

    DEFF Research Database (Denmark)

    Holm, A.H.; Vase, K.H.; Winther-Jensen, Bjørn;

    2007-01-01

    The hydroquinone/quinone (H(2)Q/Q) redox system was tethered to glassy carbon surfaces using first an electrochemical pre-oxidation treatment to afford carboxylic acid functionalities followed by immobilizing the H(2)Q Precursor, n-(2,5-dimethoxyphenyl)alkan-1-amine (general structure: H2N-(CH2)(...

  6. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Anson, Colin W.; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S.

    2016-03-30

    Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a CoII(salophen) complex, a CoIII-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the CoIII–O2 species. The kinetic data, together with density functional theory data, suggest that the turnover-limiting step features proton-coupled electron transfer from a semi-hydroquinone species and a CoIII-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The NSF provided partial support for the EPR instrumentation (NSF CHE-0741901).

  7. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  8. Benzene toxicity of the occurrence of benzene in the ambient air of the Houston area

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C.

    1980-01-01

    This study was conducted by either literature review or actual field survey. Results are summarized as follows: (1) long-term occupational exposure of workers to benzene vapor at levels of 3 to 7 ppM, 2 to 3 ppM and 1.6 ppM may result in a decreased level of leucocyte alkaline phosphates, an increased incidence of chromosome aberrations and an increased level of ALA in erythrocytes, respectively; (2) benzene is capable of causing fetotoxic effects in animals at levels as low as 10 ppM by volume; (3) exposure of animals to or less than 1 ppM benzene vapor may result in leucopenia, an inverse ratio of muscle antagonist chronaxy and a decreased level of ascorbic acid in fetus's and mother's liver as well as whole embryo; (4) benzene is causally associated with the increased incidence of pancytopenia, including unicytopenia, bicytopenia and aplastic anemia, and chromosome aberrations in occupational exposure population, and at best benzene must also be considered as a leukemogen; (5) since it can be emitted into the atmosphere from both man-made and natural sources, benzene in some concentrations is presented everywhere in the various compartments of the environment; (6) the findings of the emission of benzene from certain natural sources indicate that reducing benzene to a zero-level of exposure is theoretically impossible; (7) the annual average of benzene concentration detected in the Houston ambient air is 2.50 ppB, which is about 2.4 times higher than the nation-wide annual average exposure level and may have some health implications to the general public; and (8) in the Houston area, stationary sources are more important than mobile sources in contributing to benzene in the ambient air.

  9. Ionic Liquid Catalyst Used in Deep Desulfuration of the Coking Benzene for Producing Sulfurless Benzene

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia-Ping; WANG Yan-Liang; MENG Fan-Wei; FAN Xing-Ming; QIN Song-Bo

    2008-01-01

    For the widening need of benzene used in organic synthesis, ionic liquid catalyst was prepared to study the process of deep desulfuration in the coking benzene. The result shows that the effect of de-thiophene by the ionic liquid catalyst (N-methyl imidazolium hydrogen sulfate [Hmim][HSO4]) is related to its acid function value.Hammett indicator was used to determine the acid function value H0 of the ionic liquid. It can be concluded that while the acid function value is in the range from -4 to -12, the ionic liquid catalyst can make the concentration certain acid quantity and strength, the ionic liquid catalyst helps to form alkyl thiophene through Friedel-Crafts reaction, which differs from the character of benzene and it is absolutely necessary for the separation and refinement of benzene. But overabundant quantity and higher acid value of [Hmim][HSO4] are more suitable for the side copolymerization of benzene, thiophene and alkene, thereby affecting repeated use of the ionic liquid catalyst([Hmim][HSO4]). In our research, thiophene derivant produced by desulfurization in the coking benzene was used as the polymer to provide the passing channel of the charges. The ionic liquid composition in poor performance after repeated use was made to prepare conductive material (resisting to static electricity) as an "electron-receiving" and "electron-giving" doping agent. The result shows that thiophene derivant after desulfuration in the coking benzene can be used to prepare doping conductive materials.

  10. High-performance Liquid Chromatographic Determination of Urinary Trans, Trans-Muconic Acid Excreted by Workers Occupationally Exposed to Benzene

    Institute of Scientific and Technical Information of China (English)

    XIA-MIN HU; SHI-ZHEN SONG; FANG-LI YE; LI-WEN LIU

    2006-01-01

    To investigate the relationship between trans, trans-muconic acid (ttMA) as benzene metabolite of occupational workers and benzene concentration in air. Methods A rapid and sensitive high-performance liquid chromatography was developed to determine the level of urinary ttMA. ttMA was extrated from urinary samples in liquid-liquid phase a ODS (2) (5u) column (Φ4.6 mm× 150 mm) and detected at wavelength 264 nm in a UV detector using vanillic acid as an internal standard. The mobile phase was acetaticacid/tetrahydrofuran/methanol/water (v/v, 1:2:10:87). The method was validated with 56 urine samples collected from occupationally benzene-exposed individuals. Results A correlation coefficient (r = 0.9963 ) was found for ttMA ranging 0.10-10.00 μg/mL. The limit of detection was 0.10 μg/mL. The recovery and reproducibility were generally over 90%. There was a positive correlation between ttMA and benzene level in air. The equation was Y=0.859+0.108C (before work, r=-0.6200) or Y=1.980+0.179C (after work, r=0.7930). Conclusion This method can be used to determine and control the level of urinary ttMA in those who are occupationally exposed to benzene.

  11. Effects of Secondary Metabolites from the Fungus Septofusidium berolinense on DNA Cleavage Mediated by Human Topoisomerase IIα.

    Science.gov (United States)

    Vann, Kendra R; Ekiz, Güner; Zencir, Sevil; Bedir, Erdal; Topcu, Zeki; Osheroff, Neil

    2016-03-21

    Two metabolites from the ascomycete fungus Septofusidium berolinense were recently identified as having antineoplastic activity [Ekiz et al. (2015) J. Antibiot. , DOI: 10.1038/ja.2015.84]. However, the basis for this activity is not known. One of the compounds [3,6-dihydroxy-2-propylbenzaldehyde (GE-1)] is a hydroquinone, and the other [2-hydroxymethyl-3-propylcyclohexa-2,5-diene-1,4-dione (GE-2)] is a quinone. Because some hydroquinones and quinones act as topoisomerase II poisons, the effects of GE-1 and GE-2 on DNA cleavage mediated by human topoisomerase IIα were assessed. GE-2 enhanced DNA cleavage ∼4-fold and induced scission with a site specificity similar to that of the anticancer drug etoposide. Similar to other quinone-based topoisomerase II poisons, GE-2 displayed several hallmark characteristics of covalent topoisomerase II poisons, including (1) the inability to poison a topoisomerase IIα construct that lacks the N-terminal domain, (2) the inhibition of DNA cleavage when the compound was incubated with the enzyme prior to the addition of plasmid, and (3) the loss of poisoning activity in the presence of a reducing agent. In contrast to GE-2, GE-1 did not enhance DNA cleavage mediated by topoisomerase IIα except at very high concentrations. However, the activity and potency of the metabolite were dramatically enhanced under oxidizing conditions. These results suggest that topoisomerase IIα may play a role in mediating the cytotoxic effects of these fungal metabolites.

  12. The first clinical experience on efficacy of topical flutamide on melasma compared with topical hydroquinone: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Adalatkhah H

    2015-08-01

    Full Text Available Hassan Adalatkhah,1 Homayoun Sadeghi-Bazargani2,3 1Department of Dermatology, Ardabil University of Medical Sciences, Ardabil, Iran; 2Road Traffic Injury Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden Background: Treatment of melasma is unsatisfactory most of the times. Hormonal role is shown to exist in pathogenesis of the melasma, and sex-hormone related drugs may have an effect on melasma.Aim: To investigate efficacy of 1% flutamide cream versus 4% hydroquinone cream on melasma.Methods: In a parallel randomized clinical trial, 74 women with melasma were allocated to receive a sunscreen along with 4% hydroquinone cream or 1% flutamide cream. Melasma Area and Severity Index (MASI, mexameter melanin assay, and patient satisfaction were investigated.Results: Mean age of the participants was 33.8 years. Mean length of time suffering from Melasma was 96.3 months. The subjects reported in average 1.1 hours per day of exposure to sunlight. Mean standardized total patient satisfaction score was 28.8 (standard deviation [SD] 17.2 in flutamide group patients versus 18 (SD 15.5 in control group (P<0.01. Regardless of treatment group, the skin darkness assessed upon MASI scales was reduced over the treatment course (P<0.001. Using mixed effects, longitudinal modeling showed better treatment efficacy based on MASI scale for flutamide group compared to the hydroquinone group (P<0.05. However, longitudinal analysis of mexameter scores did not reveal any significant difference in melanin measurements between flutamide and hydroquinone.Conclusion: Topical flutamide appeared as effective as topical hydroquinone in treating melasma using mexameter assessment but with a better MASI improvement trend and higher patient satisfaction in flutamide treatment versus topical hydroquinone. As the present study is possibly the

  13. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid) in the Presence of Copper (II)

    OpenAIRE

    Nabila Bensacia; Saâd Moulay; François Garin; Ioana Fechete; Anne Boos

    2015-01-01

    Potentiometric titration of poly(acrylic acid) and hydroquinone-functionalized poly(acrylic acid) was conducted in the presence of copper (II). The effects of hydroquinone functionalizing and copper (II) complexing on the potentiometric titration of poly(acrylic acid) were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-)complexed polymer...

  14. Behavioral changes in mice following benzene inhalation.

    Science.gov (United States)

    Evans, H L; Dempster, A M; Snyder, C A

    1981-01-01

    Although benzene is an important occupational health hazard and a carcinogen, the possibility that behavioral changes may forewarn of the later-occurring hematological changes has not been investigated. A time-sampling protocol was used to quantify the occurrence of 7 categories of behavior in the homecage following daily 6-hr exposures to two strains of adult mice (CD1 and C57BL/6J). The behavioral categories were stereotypic behavior, sleeping, resting, eating, grooming, locomotion, and fighting. The inhalation exposures were designed to reflect occupational exposure. Dynamic vapor exposure techniques in standard inhalation chambers were employed. Exposure to 300 or 900 ppm benzene increased the occurrence of eating and grooming and reduced the number of mice that were sleeping or resting. The responses to benzene of both the CD1 and the C57 strains were similar. The positive findings with benzene inhalation indicate the utility of behavioral investigations into the toxicology of inhaled organic solvents. The methods described herein illustrate an objective observation of animal behavior that is capable of documenting toxicity and of guiding detailed follow-up studies aimed at mechanism of action.

  15. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  16. Alkylation of Hydroquinone with tert-Butyl Alcohol over Bis[(perfluoroalkyl)sulfonyl]imides Supported on MCM-41

    Institute of Scientific and Technical Information of China (English)

    YUAN, Yu-Bin; NIE, Jin; ZHANG, Zheng-Bo; ZHOU, San-Yi

    2006-01-01

    Bis[(perfluoroalkyl)sulfonyl]imides [HN(SO2Rf)2, and Rf represents the perfluorinated alkyl group] supported on MCM-41 were synthesized and characterized by XRD, FTIR, SEM, TGA and N2-adsorption techniques. The supported catalysts, HN(SO2Rf)2/MCM-41, were used as the catalysts for the tert-butylation of hydroquinone (HQ)with tert-butyl alcohol (TBA) in the liquid phase. A high yield (52.0%) of 2-tert-butyl hydroquinone (TBHQ) could be obtained in the presence of 5 mol% HN(SO2C4F9)2/MCM-41 under the optimized reaction conditions and the heterogeneous catalyst could be recycled at least 6 times without substantial loss of activity.

  17. Phytotoxicity of chlorinated benzenes to Typha angustifolia and Phragmites communis.

    Science.gov (United States)

    Ma, Xingmao; Havelka, Megan M

    2009-02-01

    Healthy growth of plants is a prerequisite for successful application of phytoremediation technologies. Typha angustifolia and Phragmites communis are common wetland plants and have shown potential for phytoremediation of hexachlorobenzene (HCB). However, the lack of phytotoxicity data impedes their application in field sites. This study investigated the phytotoxicity of HCB, and its two metabolites: 1,3,5-trichlorobenzene (1,3,5-TCB) and 1,4-dichlorobenzene (1,4-DCB) to Typha and the phytotoxicity of 1,3,5-TCB to Phragmites. The phytotoxicity of 1,3,5-TCB is species-dependent, with Typha demonstrating significantly higher tolerance than Phragmites. The concentration of 1,3,5-TCB causing zero growth of Phragmites was determined to be 1575 mg TCB/kg dry sediment. The concentration has to be doubled to completely inhibit the growth of Typha. Adverse effects of chlorinated benzenes in sediments on Typha increased with decreasing chlorine atoms. The concentrations causing zero growth of Typha are 5765 mg HCB/kg dry soil, 3157 mg 1,3,5-TCB/kg dry soil, and 1325 mg 1,4-DCB/kg dry soil. The higher toxicity of 1,4-DCB than 1,3,5-TCB and HCB in sediment was ascribed to its higher availability and easiness to be taken up by plants. The conclusion was supported by both growth rate calculations and plant height measurements. (c) 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009.

  18. [Effect of metals, benzene, pesticides and ethylene oxide on the haematopoietic system].

    Science.gov (United States)

    Pyszel, Angelika; Wróbel, Tomasz; Szuba, Andrzej; Andrzejak, Ryszard

    2005-01-01

    The hematopoietic system, due to intensive cells proliferation, is very sensitive to toxic substances. Many chemicals, including benzene, pesticides (dithiocarbamines), ethylene oxide and metals (mercury, cadmium, chrome, cobalt, lead, aluminum) exert their toxic effect on the hematopoietic system. Exposure to each of these substances may occur in the work place due to environmental pollution and in municipal or residential areas. Exposure to lead, aluminum, cadmium, and benzene results in the incidence of anemia. In addition, exposure to benzene and its metabolites leads to myelodysplastic syndromes, leukemia, lymphomas and bone marrow aplasia. Ethylene oxide induces neoplasm of the hematopoietic system and lymphomas, especially non-Hodgkin lymphoma. Arsenic compounds act like immunosuppressants. Mercury and chrome affect the immune system by immunosuppression and by evoking autoimmune reactions. Dithiocarbamates are suspected to induce leukemia. An analysis of the pathophysiology of individual substances reveal universal toxic mechanisms. In this paper, the authors discuss the pathomechanism of toxic effects of the aforesaid chemicals on the haematopoietic system and peripheral blood cells from the viewpoint of mutagenesis, apoptosis, myelotoxicity, anemia, immunomodulation, and individual sensitivity.

  19. Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone.

    Science.gov (United States)

    Contento, Nicholas M; Bohn, Paul W

    2014-07-01

    Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel.

  20. Structural basis of enzymatic benzene ring reduction.

    Science.gov (United States)

    Weinert, Tobias; Huwiler, Simona G; Kung, Johannes W; Weidenweber, Sina; Hellwig, Petra; Stärk, Hans-Joachim; Biskup, Till; Weber, Stefan; Cotelesage, Julien J H; George, Graham N; Ermler, Ulrich; Boll, Matthias

    2015-08-01

    In chemical synthesis, the widely used Birch reduction of aromatic compounds to cyclic dienes requires alkali metals in ammonia as extremely low-potential electron donors. An analogous reaction is catalyzed by benzoyl-coenzyme A reductases (BCRs) that have a key role in the globally important bacterial degradation of aromatic compounds at anoxic sites. Because of the lack of structural information, the catalytic mechanism of enzymatic benzene ring reduction remained obscure. Here, we present the structural characterization of a dearomatizing BCR containing an unprecedented tungsten cofactor that transfers electrons to the benzene ring in an aprotic cavity. Substrate binding induces proton transfer from the bulk solvent to the active site by expelling a Zn(2+) that is crucial for active site encapsulation. Our results shed light on the structural basis of an electron transfer process at the negative redox potential limit in biology. They open the door for biological or biomimetic alternatives to a basic chemical synthetic tool.

  1. Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol.

    Science.gov (United States)

    Velmurugan, Murugan; Karikalan, Natarajan; Chen, Shen-Ming; Cheng, Yi-Hui; Karuppiah, Chelladurai

    2017-03-31

    This paper describes the electrochemical preparation of highly electrochemically active and conductive activated graphene oxide (aGO). Afterwards, the electrochemical properties of aGO was studied towards the simultaneous determination of hydroquinone (HQ) and catechol (CC). This aGO is prepared by the electrochemical activation of GO by various potential treatments. The resultant aGOs are examined by various physical and electrochemical characterizations. The high potential activation (1.4 to -1.5) process results a highly active GO (aGO1), which manifest a good electrochemical behavior towards the determination of HQ and CC. This aGO1 modified screen printed carbon electrode (SPCE) was furnished the sensitive detection of HQ and CC with linear concentration range from 1 to 312μM and 1 to 350μM. The aGO1 modified SPCE shows the lowest detection limit of 0.27μM and 0.182μM for the HQ and CC, respectively. The aGO1 modified SPCE reveals an excellent selectivity towards the determination of HQ and CC in the presence of 100 fold of potential interferents. Moreover, the fabricated disposable aGO1/SPCE sensor was demonstrated the determination of HQ and CC in tap water and industrial waste water.

  2. Simultaneous Determination of Hydroquinone, Catechol and Resorcinol at Graphene Doped Carbon Ionic Liquid Electrode

    Directory of Open Access Journals (Sweden)

    Li Ma

    2012-01-01

    Full Text Available A new composite electrode has been prepared with doping graphene into the paste consisting graphite and ionic liquid, n-octyl-pyridinum hexafluorophosphate (OPFP. This electrode shows an excellent electrochemical activity for the redox of hydroquinone (HQ, catechol (CC, and resorcinol (RS. In comparison with bare paste electrode, the redox peaks of three isomers of dihydroxybenzene can be obviously, simultaneously observed at graphene doping paste electrode. Under the optimized condition, the simultaneous determination of HQ, CC, and RS in their ternary mixture can be carried out with a differential pulse voltammetric technique. The peak currents are linear to the concentration of HQ, CC, and RS in the range form 1×10−5 to 4×10−4, 1×10−5 to 3×10−4, and 1×10−6 to 1.7×10−4 mol L−1, respectively. The limits of detection are 1.8×10−6 mol L−1 for HQ, 7.4×10−7 mol L−1 for CC, and 3.6×10−7 M for RS, respectively.

  3. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

    Science.gov (United States)

    Morasso, Carlo; Picciolini, Silvia; Schiumarini, Domitilla; Mehn, Dora; Ojea-Jiménez, Isaac; Zanchetta, Giuliano; Vanna, Renzo; Bedoni, Marzia; Prosperi, Davide; Gramatica, Furio

    2015-08-01

    In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the "seed-growth" solution. Our approach not only allows us to prepare nanorods with a four times increased Au3+ reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50-60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag+ ions in the seed-growth solution and the stability of the obtained particles has also been investigated.

  4. Fabrication of Graphene/polydopamine Modified Electrode and Simultaneous Determination of Hydroquinone, Catechol and Resorcinol

    Institute of Scientific and Technical Information of China (English)

    QI; Ya’e; SONG; Hai; REN; Xuefeng; XU; Li

    2015-01-01

    Graphite oxide(GO) prepared by an improved Hummers method was reduced to graphene(Gr) by a hydrothermal method with Na BH4 as a reductant. Gr sample was characterized by scanning electron microscopy, X-ray diffraction and BET specific surface area analysis, respectively. The Gr-PDA modified glass carbon electrode(Gr-PDA/GCE) was designed and constructed for the simultaneous determination of hydroquinone(HQ), catechol(CC) and resorcinol(RC). The electrochemical behaviors of HQ, CC and RC on the Gr-PDA/GCE were investigated by cyclic voltammetry(CV) and differential pulse voltammetry(DPV) techniques. The results show that there are the three detections with a high peak current on the modified electrode duo to the synergetic effects of Gr and PDA, the linear response ranges for HQ and CC are 40.2–1559.6 and 24.7–1105.0 μM and the detection limits(S/N=3) are 13.4 and 8.2 μM, respectively.

  5. Direct and Simultaneous Determination of Phenol, Hydroquinone and Nitrophenol at Boron-Doped Diamond Film Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Guo-Hua; TANG, Yi-Ting; LIU, Mei-Chuan; LEI, Yan-Zhu; XIAO, Xiao-E

    2007-01-01

    The electrochemical characteristics of multi-component phenolic pollutants, such as phenol (Ph), hydroquinone (HQ) and 4-nitrophenol (4-NP), were investigated on boron-doped diamond (BDD) film electrode by differential pulse voltammetry (DPV) technique. A simple and feasible platform was accordingly established for the direct and simultaneous determination of these three phenolic pollutants. Results showed that, Ph, HQ and 4-NP gave obvious oxidation peaks on BDD electrode at the potential of 1.24, 0.76 and 1.52 V, respectively. Each of them displayed good linear relationship between their oxidation peak currents and their corresponding concentrations in a rather wide range coexisting with one or two of the other phenolic pollutants. The detection limits of Ph, HQ and 4-NP were estimated to be as low as 1.82×10-6, 1.67×10-6 and 1.44×10-6mol·L-1, respectively. Therefore, a promising direct and simultaneous electrochemical determination method of multi-component phenolic pollutants in wastewater samples was constructed successfully on BDD electrode with advantages being rapid, simple, convenient, sensitive, in situ and inexpensive.

  6. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  7. Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes.

    Science.gov (United States)

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2013-01-01

    Hydroquinone (HQ) is a chemical compound that inhibits the functions of melanocytes and has long been known for its skin-whitening effect. According to previous studies, the Tyrosinase (Tyr) activity inhibitory effect and melanocyte-specific cell toxicity are known depigmenting mechanisms; however, details of the underlying mechanisms are unknown. Arbutin (Arb) is also known for its Tyr activity inhibitory effect and is commonly used as a skin-whitening agent. However, the detailed depigmenting mechanism of Arb is also not yet fully understood. Few studies have attempted to elucidate the effects of HQ and Arb on undifferentiated melanocytes. In this study, we examined the effects of HQ and Arb throughout each stage of differentiation of melanocytes using a mouse embryonic stem cell (ESC) culture system to induce melanocytes. The results showed that HQ in particular downregulated the early stage of differentiation, in which neural crest cells were generated, and the late stage of differentiation, in which melanogenesis became active. On the other hand, Arb had no effect on the differentiation of melanocytes, and only suppressed melanogenesis by specifically suppressing elevations in Tyr expression in the late stage of differentiation.

  8. Enhancement of the depigmenting effect of hydroquinone by cystamine and buthionine sulfoximine.

    Science.gov (United States)

    Bolognia, J L; Sodi, S A; Osber, M P; Pawelek, J M

    1995-09-01

    Glutathione (GSH) performs several important biological functions, including quenching of reactive oxygen species, and protection of cells from toxic compounds such as quinones. The first step in the synthesis of GSH is catalysed by gamma-glutamylcysteine synthetase, an enzyme which is inhibited by cystamine and buthionine sulfoximine (BSO). In this study, we examined the possibility that the effect of hydroquinone (HQ) on pigmentation could be potentiated by inhibiting the production of GSH. In vitro studies using melanoma cell lines demonstrated that both cystamine and BSO could potentiate the inhibitory effects of HQ on tyrosinase activity and melanin content. A synergistic decrease in hair pigmentation was observed when a combination of HQ (2 or 4%) and BSO (5%) was applied to the dorsal skin of C57BL mice. In black hairless guinea-pigs, the application of HQ plus either BSO or cystamine resulted in a significant decrease in epidermal pigmentation when compared with any of the agents alone. The possibility exists that in the future a combination of HQ plus cystamine or BSO could be used to treat disorders such as melasma and post-inflammatory hyperpigmentation.

  9. The Effect of Tertiary Butyl Hydroquinone on the Biodegradability of Palm Olein

    Directory of Open Access Journals (Sweden)

    Emmanuel ALUYOR

    2009-07-01

    Full Text Available Poor oxidative stability is demonstrated by most vegetable oils especially in industrial situations. Antioxidants are widely used for overcoming poor oxidative stability in vegetable oils. The adverse effect of additives on the overall biodegradability of vegetable oil based industrial fluids could however be a concern. Biodegradability provides an indication of the persistence of any particular substance in the environment. The superior biodegradation of vegetable oils in comparison with mineral based oils has been demonstrated severally, leaving scientists with the lone challenge of finding economic and safe means to improve their working efficiency in terms of their poor oxidative stability. This study investigated the extent to which the use of the antioxidant Tertiary butyl hydroquinone (TBHQ in palm olein impaired biodegradability, and described the relationship between antioxidant loading and biodegradability. Increased antioxidant loading resulted in a matching decrease in biodegradability. Using the total cumulative oxygen depletion value of pure refined palm olein at the end of the 28 day period as a standard of comparison, a 0.02% concentration of TBHQ in palm olein resulted in a 25% loss in biodegradability; a 2% concentration of TBHQ resulted in a 56.5% loss in biodegradability. At 6% TBHQ concentration, no biodegradation was observed in the palm olein sample studied.

  10. Effects of various storage conditions and alterations of antioxidant contents on chromatic aberration of hydroquinone ointment.

    Science.gov (United States)

    Matsubayashi, Teruhisa; Sakaeda, Toshiyuki; Kita, Tomoko; Nakamura, Tsutomu; Kakumoto, Mikio; Funasaka, Yoko; Ichihashi, Masamitsu; Fujita, Takuya; Kamiyama, Fumio; Yamamoto, Akira; Nordlund, James J; Kaneko, Masafumi; Iida, Akira; Okumura, Katsuhiko

    2003-01-01

    Ointments of the skin depigmentation agent hydroquinone (HQ) have been prepared by extemporaneous nonsterile compounding in our hospital. The HQ ointments were highly effective in the treatment of various types of skin pigmentations; however, various problems have emerged including chromatic aberration of the ointments, a relatively large variability of efficacy, and mild side effects. Chromatic aberration is expected to induce non-compliance, and this may be the reason for the relatively large variability in efficacy. In this paper, the effects of various storage conditions on the chromatic aberration and HQ content of HQ ointments were evaluated, and it was suggested that the chromatic aberration was accelerated by exposure to high temperature, air and light, although these had no effect on the HQ content. In addition, various types of HQ ointments were prepared to find a formulation to minimize chromatic aberration, and it was found that the concentrations of antioxidants, Na(2)SO(3) and L(+)-ascorbic acid (AsA), seemed to be too high, and that the protective effect of AsA on chromatic aberration was mainly due to its acidifying effect.

  11. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Morasso, Carlo, E-mail: cmorasso@dongnocchi.it; Picciolini, Silvia; Schiumarini, Domitilla [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy); Mehn, Dora; Ojea-Jiménez, Isaac [European Commission Joint Research Centre, Institute for Health and Consumer Protection (IHCP) (Italy); Zanchetta, Giuliano [Universitá degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (Italy); Vanna, Renzo; Bedoni, Marzia [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy); Prosperi, Davide [Università degli Studi di Milano Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze (Italy); Gramatica, Furio [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy)

    2015-08-15

    In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the “seed-growth” solution. Our approach not only allows us to prepare nanorods with a four times increased Au{sup 3+} reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50–60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag{sup +} ions in the seed-growth solution and the stability of the obtained particles has also been investigated.

  12. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    Science.gov (United States)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  13. [Materials for the substantiation of the biological MAC of benzene].

    Science.gov (United States)

    Ulanova, I P; Avilova, G G; Karpukhina, E A; Karimova, L K; Boĭko, V I; Makar'eva, L M

    1990-09-01

    Relatively great amount of benzene-originated phenol, the presence of a definite relationship between phenol amount in the urine and benzene content in the air indicate that it is reasonable to use a phenol sample as an exposure test. To determine the intensity of benzene exposure, data on phenol content in the urine of people working at some big-tonnage enterprises has been analyzed. On the basis of the national and foreign literature data on the correlation between the phenol urine concentration and the level of benzene exposure a regression equation was deduced, which has made it possible to calculate phenol content in the urine on the level of average working day benzene concentration adopted in the USSR. This value equals 15 mg/l, which was proposed as a biological benzene MAC.

  14. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  15. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles.

    Science.gov (United States)

    Ghanbarzadeh, Saeed; Hariri, Reza; Kouhsoltani, Maryam; Shokri, Javad; Javadzadeh, Yousef; Hamishehkar, Hamed

    2015-12-01

    Hydroquinone (HQ), a well-known anti-hyperpigmentation agent suffers from (a) instability due to rapid oxidation, (b) insufficient skin penetration because of hydrophilic structure, and (c) severe side effects as a results of systemic absorption. This study aimed to load HQ into solid lipid nanoparticles (SLNs) to overcome the mentioned drawbacks for the efficient treatment of hyperpigmentation. The optimized SLN formulation was prepared by hot melt homogenization method and fully characterized by various techniques. The ability of SLNs in dermal delivery of HQ was assessed through the excised rat skin. The optimized HQ-loaded SLNs (particle size of 86 nm, encapsulation efficiency% of 89.5% and loading capacity% of 11.2%) exhibited a good physicochemical stability during a period of five months. XRD and DSC results showed that HQ was dispersed in an amorphous state, confirming uniform drug dispersion in the SLNs structure and embedment of drug in the solid lipid matrix. In vitro penetration studies showed almost 3 times higher drug accumulation in the skin and 6.5 times lower drug entrance to receiving compartment of Franz diffusion cell from HQ-loaded SLN hydrogel compared with HQ Carbopol made hydrogel. These results indicated the better HQ localization in the skin and its lower systemic absorption. It was concluded that SLN is a promising colloidal drug carrier for topical administration of HQ in the treatment of hyperpigmentation due to suitable HQ loading value in spite of its hydrophilic structure, high stability against oxidation and appropriate skin penetration along with the low systemic absorption.

  16. Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase.

    Science.gov (United States)

    Kim, Go-Eun; Lee, Jin-Ha; Jung, Sun-Hwa; Seo, Eun-Seong; Jin, Sheng-De; Kim, Ghahyun J; Cha, Jaeho; Kim, Eui-Joong; Park, Ki-Deok; Kim, Doman

    2010-09-08

    Hydroquinone galactoside (HQ-Gal) as a potential skin whitening agent was synthesized by the reaction of lactase (beta-galactosidase) from Kluyveromyces lactis, Aspergillus oryzae, Bacillus circulans, and Thermus sp. with lactose as a donor and HQ as an acceptor. Among these lactases, the acceptor reaction involving HQ and lactose with K. lactis lactase showed a higher conversion ratio to HQ-Gal (60.27%). HQ-Gal was purified using butanol partitioning and silica gel column chromatography. The structure of the purified HQ-Gal was determined by nuclear magnetic resonance, and the ionic product was observed at m/z 295 (C12H16O7Na)+ using matrix assisted laser desorption ionization time-of-flight mass spectrometry. HQ-Gal was identified as 4-hydroxyphenyl-beta-d-galactopyranoside. The optimum conditions for HQ-Gal synthesis by K. lactis determined using response surface methodology were 50 mM HQ, 60 mM lactose, and 20 U mL(-1) lactase. These conditions produced a yield of 2.01 g L(-1) HQ-Gal. The half maximal inhibitory concentration (IC50) of diphenylpicrylhydrazyl scavenging activity was 3.31 mM, indicating a similar antioxidant activity compared to beta-arbutin (IC50=3.95 mM). The Ki value of HQ-Gal (0.75 mM) against tyrosinase was smaller than that of beta-arbutin (Ki=1.97 mM), indicating its superiority as an inhibitor. HQ-Gal inhibited (23%) melanin synthesis without being significantly toxic to the cells, while beta-arbutin exhibited only 8% reduction of melanin synthesis in B16 melanoma cells compared with the control. These results indicate that HQ-Gal may be a suitable functional component in the cosmetics industry.

  17. Physiological and phylogenetic characterization of a stable chlorate-reducing benzene-degrading microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, ten H.; Doesburg, van W.C.J.; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20¿1650 times higher than reported for anaerobic benzene degradation

  18. Assessment of toxicological interactions of benzene and its primary degradation products (catechol and phenol) using a lux-modified bacterial bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, E.M. [Inst. of Terrestrial Ecology, Huntingdon (United Kingdom)]|[Univ. of Aberdeen (United Kingdom). Dept. of Plant and Soil Science; Meharg, A.A.; Wright, J. [Inst. of Terrestrial Ecology, Huntingdon (United Kingdom); Killham, K. [Univ. of Aberdeen (United Kingdom). Dept. of Plant and Soil Science

    1997-05-01

    A bacterial bioassay has been developed to assess the relative toxicities of xenobiotics commonly found in contaminated soils, river waters, and ground waters. The assay utilized decline in luminescence of lux-marked Pseudomonas fluorescens on exposure to xenobiotics. Pseudomonas fluorescens is a common bacterium in the terrestrial environment, providing environmental relevance to soil, river, and ground water systems. Three principal environmental contaminants associated with benzene degradation were exposed to the luminescence-marked bacterial biosensor to assess their toxicity individually and in combination. Median effective concentration (EC50) values for decline in luminescence were determined for benzene, catechol, and phenol and were found to be 39.9, 0.77, and 458.6 mg/L, respectively. Catechol, a fungal and bacterial metabolite of benzene, was found to be significantly more toxic to the biosensor than was the parent compound benzene, showing that products of xenobiotic biodegradation may be more toxic than the parent compounds. Combinations of parent compounds and metabolites were found to be significantly more toxic to the bioassay than were the individual compounds themselves. Development of this bioassay has provided a rapid screening system suitable for assessing the toxicity of xenobiotics commonly found in contaminated soil, river, and ground-water environments. The assay can be utilized over a wide pH range is therefore more applicable to such environmental systems than bioluminescence-based bioassays that utilize marine organisms and can only be applied over a limited pH and salinity range.

  19. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Md. Uzzal Hossain

    2015-01-01

    Full Text Available Cyclic voltammetry (CV and differential pulse voltammetry (DPV were performed with a glassy carbon electrode (GCE modified with polyglutamic acid (PGA on the three dihydroxybenzene isomers, catechol (CT, hydroquinone (HQ, and resorcinol (RS. At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  20. Effect of antioxidant tertiary butyl hydroquinone on the thermal and oxidative stability of sesame oil (sesamum indicum) by ultrasonic studies

    OpenAIRE

    Prasad, N; Siddaramaiah, Basavarajaiah; Banu, Mujeeda

    2014-01-01

    The aim of the current investigation is to evaluate the efficiency of tertiary butyl hydroquinone (TBHQ) as an antioxidant in sesame oil (sesamum indicum) by density, viscosity and ultrasonic velocity. The effects of varying amounts of TBHQ on the oxidation stability of sesame oil have been investigated. The antioxidant incorporated sesame oil system and control edible oil were subjected to heating at 180 ± 5 °C continuously for a period of 4 h per day for consecutive 4 days. The parameters u...

  1. Exogenous ochronosis after prolonged use of topical hydroquinone (2% in a 50-year-old Indian female

    Directory of Open Access Journals (Sweden)

    Vijay Gandhi

    2012-01-01

    Full Text Available Ochronosis is a rare disease characterized by speckled and diffuse pigmentation symmetrically over the face, neck, and photo-exposed areas. It is characterized histologically by banana-shaped ochre-colored deposits in the dermis. It can present in exogenous or endogenous form. We report a case of exogenous ochronosis in a 50-year-old Indian woman after prolonged use of topical hydroquinone which is a rare complication with a commonly used drug which is available over the counter.

  2. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques.

    Science.gov (United States)

    Hossain, Md Uzzal; Rahman, Md Toufiqur; Ehsan, Md Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  3. A comparative study of the efficacy of 4% hydroquinone vs 0.75% Kojic acid cream in the treatment of facial melasma

    Directory of Open Access Journals (Sweden)

    Rochelle C Monteiro

    2013-01-01

    Full Text Available Background: Melasma is a common acquired cause of facial hyperpigmentation seen predominantly among females with significant psychological and social impact. It is often recalcitrant to treatment. Several topical hypopigmenting agents have been used to combat melasma. Hydroquinone and Kojic Acid are well established monotherapeutic agents for treating melasma. Objectives: This study focuses mainly on the efficacy of once daily application of 4% Hydroquinone and 0.75% Kojic Acid cream (containing 0.75% Kojic acid and 2.5% vitamin C so as to determine an effective modality of treatment for facial melasma. Materials and Methods: A total number of 60 patients with facial melasma attending the Out-patient department of Dermatology, Venerology and Leprosy, Fr. Muller Medical College Hospital, Mangalore from Oct 2008-April 2010 were studied. Patients were allocated alternately to group A and group B. Group A patients received 4% Hydroquinone cream and group B patient received a Kojic Acid cream (which contained 0.75% Kojic acid and 2.5% vitamin C and were advised to apply topically once daily at night. Patients were followed up on 4 th , 8 th and 12 th week. At each visit side effects were noted and clinical response to treatment was calculated using the MASI score. Statistical Methods: Chi square test, student ′t′ test. Results: At the 4 th week post treatment evaluation, facial hyperpigmentation responded early to 4% Hydroquinone cream than to 0.75% Kojic Acid cream. At the end of 12 week treatment period, 4% Hydroquinone cream had an overall superiority to 0.75% Kojic Acid cream as a topical hypopigmenting agent. Conclusion: The results of the study show that 4% Hydroquinone cream is a better topical hypopigmenting agent with rapid rate of clinical improvement when compared to 0.75% Kojic Acid cream.

  4. A Comparative Study of the Efficacy of 4% Hydroquinone vs 0.75% Kojic Acid Cream in the Treatment of Facial Melasma

    Science.gov (United States)

    Monteiro, Rochelle C; Kishore, B Nanda; Bhat, Ramesh M; Sukumar, D; Martis, Jacintha; Ganesh, H Kamath

    2013-01-01

    Background: Melasma is a common acquired cause of facial hyperpigmentation seen predominantly among females with significant psychological and social impact. It is often recalcitrant to treatment. Several topical hypopigmenting agents have been used to combat melasma. Hydroquinone and Kojic Acid are well established monotherapeutic agents for treating melasma. Objectives: This study focuses mainly on the efficacy of once daily application of 4% Hydroquinone and 0.75% Kojic Acid cream (containing 0.75% Kojic acid and 2.5% vitamin C) so as to determine an effective modality of treatment for facial melasma. Materials and Methods: A total number of 60 patients with facial melasma attending the Out-patient department of Dermatology, Venerology and Leprosy, Fr. Muller Medical College Hospital, Mangalore from Oct 2008-April 2010 were studied. Patients were allocated alternately to group A and group B. Group A patients received 4% Hydroquinone cream and group B patient received a Kojic Acid cream (which contained 0.75% Kojic acid and 2.5% vitamin C) and were advised to apply topically once daily at night. Patients were followed up on 4th, 8th and 12th week. At each visit side effects were noted and clinical response to treatment was calculated using the MASI score. Statistical Methods: Chi square test, student ‘t’ test. Results: At the 4th week post treatment evaluation, facial hyperpigmentation responded early to 4% Hydroquinone cream than to 0.75% Kojic Acid cream. At the end of 12 week treatment period, 4% Hydroquinone cream had an overall superiority to 0.75% Kojic Acid cream as a topical hypopigmenting agent. Conclusion: The results of the study show that 4% Hydroquinone cream is a better topical hypopigmenting agent with rapid rate of clinical improvement when compared to 0.75% Kojic Acid cream. PMID:23716817

  5. Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones.

    Science.gov (United States)

    Hahn, V; Mikolasch, A; Manda, K; Gördes, D; Thurow, K; Schauer, F

    2009-07-01

    Unprotected L-phenylalanine was derivatized by an innovative enzymatic method by means of laccases from Pycnoporus cinnabarinus and Myceliophthora thermophila. During the incubation of L-phenylalanine with para-hydroquinones using laccase as biocatalyst, one or two main products were formed. Dependent on the substitution grade of the hydroquinones mono- and diaminated products were detected. Differences of the used laccases are discussed. The described reactions are of interest for the derivatization of amino acids and a synthesis of pharmacological-active amino acid structures in the field of white biotechnology.

  6. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  7. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU Peter C; WANG Dei-Haw; LU Kaitao; MANI Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis (dibromomethyl) benzenes with fuming sulfuric acid, followed by hydrolysis, The yields were significantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  8. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Peter; C; WANG; Der-Haw; MANI; Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis(dibromomethyl) benzenes with fuming sulfuric acid,followed by hydrolysis. The yields were signifi-cantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  9. Benzene as a Chemical Hazard in Processed Foods

    Science.gov (United States)

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  10. Benzene as a Chemical Hazard in Processed Foods

    Directory of Open Access Journals (Sweden)

    Vânia Paula Salviano dos Santos

    2015-01-01

    Full Text Available This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  11. [Benzene in soft drinks: a study in Florence (Italy)].

    Science.gov (United States)

    Bonaccorsi, Guglielmo; Perico, Andrea; Colzi, Alessio; Bavazzano, Paolo; Di Giusto, Maurizio; Lamberti, Ilaria; Martino, Gianrocco; Puggelli, Francesco; Lorini, Chiara

    2012-01-01

    The aim of this study was to determine the amount of benzene present in soft drinks sold in Florence (Italy). We analyzed 28 different types of soft drinks, by measuring concentrations of benzoic acid, sorbic acid, ascorbic acid (using high performance liquid chromatography with UV detection) and benzene (using gas chromatography and mass spectrometry). Data was analysed by using SPSS 18.0.Traces of benzene were detected in all analyzed beverages, with a mean concentration of 0.45 µg/L (range: 0.15-2.36 µg/L). Statistically significant differences in mean benzene concentrations were found between beverages according to the type of additive indicated on the drink label, with higher concentrations found in beverages containing both ascorbic acid and sodium benzoate. Two citrus fruit-based drinks were found to have benzene levels above the European limit for benzene in drinking water of 1 µg /L. Sodium benzoate and ascorbic acid were also detected in the two drinks.In conclusion, not all soft drink producers have taken steps to eliminate benzoic acid from their soft drinks and thereby reduce the risk of formation of benzene, as recommended by the European Commission. Furthermore, the presence of benzene in trace amounts in all beverages suggests that migration of constituents of plastic packaging materials or air-borne contamination may be occurring.

  12. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase.

    Science.gov (United States)

    Seo, Dong-Ho; Jung, Jong-Hyun; Ha, Suk-Jin; Cho, Hyun-Kug; Jung, Dong-Hyun; Kim, Tae-Jip; Baek, Nam-In; Yoo, Sang-Ho; Park, Cheon-Seok

    2012-06-01

    α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.

  13. Studies on the Electrochemical Behaviour of Hydroquinone at L-cysteine Self-Assembled Monolayers Modified Gold Electrode

    Directory of Open Access Journals (Sweden)

    Dan Du

    2002-02-01

    Full Text Available L-Cysteine is combined onto gold electrode to form a self-assembled monolayers modified electrode (L-Cys/Au SAMs by taking advantage of strong sulfur-gold interaction. ATR-FTIR, SEM, cyclic voltammetry (CV and impedance were used for the characterization of the film. It shows excellent stability upon voltametric scanning and a good voltametric response towards hydroquinone with the potential ranged from 0.8 to –0.2 V (vs.SCE in 0.5M HAc-NaAc buffer solution (pH 4.8. The oxidation potential of hydroquinone on the modified electrode shifted negatively about 330 mV as compared with the bare gold electrode. The plot of catalytic current vs.its concentration has a good linear relation in the range of 2.0×10-6~2.0×10-4M with the correlation coefficient of 0.9986 and the detection limit of 4.0×10-7M by different pulse voltammetry (DPV. Mechanism for the electrocatalytical process has been studied.

  14. Glutathione transferases of Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class.

    Science.gov (United States)

    Meux, Edgar; Prosper, Pascalita; Ngadin, Andrew; Didierjean, Claude; Morel, Mélanie; Dumarçay, Stéphane; Lamant, Tiphaine; Jacquot, Jean-Pierre; Favier, Frédérique; Gelhaye, Eric

    2011-03-18

    The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.

  15. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    Science.gov (United States)

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  16. p53-dependent gene profiling for reactive oxygen species after benzene inhalation: special reference to genes associated with cell cycle regulation.

    Science.gov (United States)

    Hirabayashi, Yoko

    2005-05-30

    Benzene toxicity has long been thought to be due to its metabolites including reactive oxygen species (ROS). However, the major toxicological effect of benzene in wild-type mice carrying normal alleles of the p53 gene appears to be the significant perturbation of cell cycle regulation, possibly via an indirect signaling pathway. Other prominent genotoxic cellular damage can occur in the absence of cell cycle arrest in p53 gene deficiency. The suppression of cell cycle is clearly detected using a tool for stem-cell-specific cell cycle observation by the BU-UV method. Cells (including hemopoietic progenitor cells) in S-phase are labeled in vivo with bromodeoxyuridine (BrdU) and then exposed to near-ultraviolet (UV) light to kill cells that incorporated BrdU. The target fraction, the S-phase, is then evaluated on the basis of decreased numbers of hemopoietic colonies formed in assays such as for granulomacrophage colony-forming units (CFU-GM). Benzene toxicity was found to be more prominent in the primitive stem-cell compartment, as first suggested more than 20 years ago. Interestingly, when one examines the stem-cell-specific steady-state gene expression profiling, several key genes associated with benzene exposure are specifically identified, including CYP2E1. Benzene toxicity was found to be mediated by aryl hydrocarbon receptor (AhR) at an expression level; thus, the effect of benzene can be detected in nature at lower levels in the stem-cell compartment than expected. Alterations in gene expression profiles compared with those in steady-state gene expression profiles in the stem-cell compartment may elucidate the mechanism underlying benzene toxicity. Functional gene expressions after benzene exposure are not always detected, because their phenotypic expressions are often masked by the balance of expression of genes participating in various pathways of homeostasis, for example, p53. Thus, the actual expressions of the above-mentioned cell cycle-related genes may

  17. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  18. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  19. Urinary t,t-muconic acid, S-phenylmercapturic acid and benzene as biomarkers of low benzene exposure.

    Science.gov (United States)

    Fustinoni, Silvia; Buratti, Marina; Campo, Laura; Colombi, Antonio; Consonni, Dario; Pesatori, Angela C; Bonzini, Matteo; Farmer, Peter; Garte, Seymour; Valerio, Federico; Merlo, Domenico F; Bertazzi, Pier A

    2005-05-30

    This research compared the capability of urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA) and benzene excreted in urine (U-benzene) to monitor low benzene exposure and evaluated the influence of smoking habit on these indices. Gasoline attendants, urban policemen, bus drivers and two groups of referents working in two large Italian cities (415 people) were studied. Median benzene exposure was 61, 22, 21, 9 and 6 microg/m3, respectively, with higher levels in workers than in referents. U-benzene, but not t,t-MA and S-PMA, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to five-fold higher in smokers compared to non-smokers. In conclusion, in the range of investigated benzene exposure (<478 microg/m3 or <0.15 ppm), the smoking habit may be regarded as a major source of benzene intake; among the study indices, U-benzene is the marker of choice for the biological monitoring of occupational and environmental exposure.

  20. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    Science.gov (United States)

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  1. A Quantum Monte Carlo Study of mono(benzene)TM and bis(benzene)TM Systems

    CERN Document Server

    Bennett, M Chandler; Mitas, Lubos

    2016-01-01

    We present a study of mono(benzene)TM and bis(benzene)TM systems, where TM={Mo,W}. We calculate the binding energies by quantum Monte Carlo (QMC) approaches and compare the results with other methods and available experiments. The orbitals for the determinantal part of each trial wave function were generated from several types of DFT in order to optimize for fixed-node errors. We estimate and compare the size of the fixed-node errors for both the Mo and W systems with regard to the electron density and degree of localization in these systems. For the W systems we provide benchmarking results of the binding energies, given that experimental data is not available.

  2. A quantum Monte Carlo study of mono(benzene) TM and bis(benzene) TM systems

    Science.gov (United States)

    Bennett, M. Chandler; Kulahlioglu, A. H.; Mitas, L.

    2017-01-01

    We present a study of mono(benzene) TM and bis(benzene) TM systems, where TM = {Mo, W}. We calculate the binding energies by quantum Monte Carlo (QMC) approaches and compare the results with other methods and available experiments. The orbitals for the determinantal part of each trial wave function were generated from several types of DFT functionals in order to optimize for fixed-node errors. We estimate and compare the size of the fixed-node errors for both the Mo and W systems with regard to the electron density and degree of localization in these systems. For the W systems we provide benchmarking results of the binding energies, given that experimental data is not available.

  3. New routes lead to benzene, propanal

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Haggin

    1993-05-10

    An ongoing research program at Oxford University in England has resulted in two new schemes for direct catalytic conversion of methane. One scheme produces aromatics, principally benzene, by oligomerization. The second scheme produces propanal in high yield by the judicious combination of three catalytic processes that have all been used before. One of the most active research areas is the catalytic conversion of methane to methanol, but so far the best yield has been about 8%, much too low for commercial interest. Likewise, the direct catalytic conversion of methane to ethane and/or ethylene has yet to produce either yields or selectivities high enough to compete with these products from crude oil. The paper describes these two new processes and their improved yields.

  4. Benzene conversion by manganese dioxide assisted silent discharge plasma

    Institute of Scientific and Technical Information of China (English)

    LU Bin; JI Min; YU Xin; FENG Tao; YAO Shuiliang

    2007-01-01

    Non-thermal plasma technologies have shown their promising potential specially for the low concentration of volatile organic compound control in indoor air in recent years.But it is also high energy consuming.So,to improve the energy efficiency,adding catalysts which enhance the plasma chemical reactions to plasma reactors may be a good selection.Therefore,in this study the manganese dioxide assisted silent discharge plasma was developed for benzene conversion at a relatively high energy efficiency.The results show that MnO2 could promote complete oxidation of benzene with O2 and O3 produced in the plasma discharge zone.The energy efficiency of benzene conversion with MnO2 was two folds as much as that without catalysts.It was also found that the site of MnO2 in the reactor and the energy density had effects on benzene conversion.While the energy density was lower than 48 J/L,benzene conversion decreased with the increase in the distance between MnO2 bed and the plasma discharge zone.Whereas when the energy density was higher than 104 J/L,benzene conversion had an optimal value that was governed by the distance between MnO2 bed and the plasma discharge zone.The mechanism of benzene oxidation in plasma discharges and over MnO2 is discussed in detail.

  5. Benzene removal by a novel modification of enhanced anaerobic biostimulation.

    Science.gov (United States)

    Xiong, Wenhui; Mathies, Chris; Bradshaw, Kris; Carlson, Trevor; Tang, Kimberley; Wang, Yi

    2012-10-01

    A novel modification of enhanced anaerobic bioremediation techniques was developed by using non-activated persulfate to accelerate the organic phosphorus breakdown and then stimulate benzene biodegradation by nitrate and sulfate reduction. Benzene concentrations in groundwater where nitrate, triethyl phosphate and persulfate were successfully injected were reduced at removal efficiencies greater than 77% to the levels below the applicable guideline. Soil benzene was removed effectively by the modification of the enhanced anaerobic bioremediation with removal efficiencies ranging between 75.9% and 92.8%. Geochemical analytical results indicated that persulfate effectively breaks down triethyl phosphate into orthophosphate, thereby promoting nitrate and sulfate utilization. Microbial analyses (quantitative polymerase chain reaction, denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that benzene was primarily biodegraded by nitrate reduction while sulfate reduction played an important role in benzene removal at some portions of the study site. Enrichment in the heavier carbon isotope ¹³C of residual benzene with the increased removal efficiency provided direct evidence for benzene biodegradation. Nitrogen, sulfur and oxygen isotope analyses indicated that both nitrate reduction and sulfate reduction were occurring as bioremediation mechanisms.

  6. Understanding and classifying metabolite space and metabolite-likeness.

    Directory of Open Access Journals (Sweden)

    Julio E Peironcely

    Full Text Available While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63 and 10(200 'small molecules', distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA, hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite

  7. Improving a self-curing dental resin by eliminating oxygen, hydroquinone and water from its curing process.

    Science.gov (United States)

    Keh, En-Sheng; Hayakawa, Iwao; Takahashi, Hidekazu; Watanabe, Akihiko; Iwasaki, Yasuhiko; Akiyoshi, Kazunari; Nakabayashi, Nobuo

    2002-12-01

    Self-curing dental resins are always manipulated in the presence of curing inhibitory factors such as oxygen, hydroquinone, water and another contaminants such as saliva and blood. The purpose of this study was to elucidate the effects of eliminating these curing inhibitory factors on resin properties. Several clinically relevant characteristics of an experimental resin cured in the absence of inhibitory factors (purified group) were determined and compared with the resin cured conventionally (control group). The purified group showed a significantly shorter induction period and higher reaction exotherm. It also showed significantly higher tensile strength and lower strain to failure. With regard to the amount of residual monomer, fracture toughness and fatigue strength the improvements were not significant. These findings suggest that the polymerization outcomes and mechanical properties of the purified group resin can be improved in general. Dental clinicians should pay attention to the storage and curing environments while manipulating the self-curing resin.

  8. Screening for occupational vitiligo in workers exposed to hydroquinone monomethyl ether and to paratertiary-amyl-phenol

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, J.J.; Stevenson, C.J.

    1981-11-01

    Two men reported previously with vitiligo after occupational exposure to hydroquinone monomethyl ether (HMME) have been reviewed after eight years. Repigmentation of significant degree was found in one man and of limited degree in the other. One hundred and sixty-nine men in the same works have been screened with Wood's light for evidence of vitiligo. No cases were found in the 148 men exposed to HMME (colleagues who screened 100 men exposed to HMME in two other factories also found no case) or in the 129 who had been exposed to paratertiary-amyl-phenol. Loss of light reflection on Wood's light examination was observed in 13 men due to scars or to other skin disorders.

  9. INHIBITION KINETICS DURING THE OXIDATION OF BINARY MIXTURES OF PHENOL WITH CATECHOL, RESORCINOL AND HYDROQUINONE BY PHENOL ACCLIMATED ACTIVATED SLUDGE

    Directory of Open Access Journals (Sweden)

    C. C. Lobo

    Full Text Available Abstract In this work the aerobic degradation of phenol (PH, catechol (CA, resorcinol (RE, hydroquinone (HY and of the binary mixtures PH+CA, PH+RE, PH+HY by phenol-acclimated activated sludge was studied. Single substrate experiments show a Haldane-type dependence of the respiration rate on PH, RE and HY, while CA corresponded to the Monod model. Binary substrate experiments demonstrated that the presence of a second substrate only affected the kinetics, but not the stoichiometry of the oxidation of the compounds tested. While CA inhibited the oxidation of PH, PH inhibited the oxidation of RE and HY. A mathematical model was developed to represent the aerobic biodegradation of the phenolic compounds tested. The agreement between the proposed model and the experimental data indicates that the proposed model can be useful for predicting substrate and dissolved oxygen concentrations in bioreactors treating phenolic wastewaters.

  10. Adlayer of hydroquinone on Pt(111) in solution and in a vacuum studied by STM and LEED.

    Science.gov (United States)

    Inukai, Junji; Wakisaka, Mitsuru; Yamagishi, Masaoki; Itaya, Kingo

    2004-08-31

    Hydroquinone (HQ) adlayers were formed on Pt(111) in HF solution and in a vacuum. By using scanning tunneling microscopy (STM) in solution, it was revealed that HQ formed an ordered structure on Pt(111) with a strong attractive interaction between two adjacent hydroxyl groups in neighboring HQ molecules. After the sample was transferred into a vacuum, low-energy electron diffraction (LEED) measurement was performed, which showed that the (2.56 x 2.56)R16 degrees incommensurate structure of the HQ adlayer was formed in solution. The HQ adlayer on Pt(111) was formed also by vapor deposition, and the identical (2.56 x 2.56)R16 degrees adlayer structure was found by LEED and STM in a vacuum.

  11. Stable isotope dilution analysis of salicylic acid and hydroquinone in human skin samples by gas chromatography with mass spectrometric detection.

    Science.gov (United States)

    Judefeind, Anja; van Rensburg, Peet Jansen; Langelaar, Stephan; du Plessis, Jeanetta

    2007-06-01

    A sensitive and accurate gas chromatographic-mass spectrometric (GC-MS) method has been developed for the quantitative determination of salicylic acid (SA) and hydroquinone (HQ) from human skin samples and cosmetic emulsions. Deuterium labeled SA-d(6) and HQ-d(6) were used as internal standards (IS). The samples were extracted with methanol, dried under nitrogen and derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)+1% trimethylchlorosilane (TMCS). Quantification was performed in SIM mode with a limit of quantification (LOQ) of 50 ng ml(-1) for SA and 10 ng ml(-1) for HQ. The inter-day variation (R.S.D.) was less than 5% and the accuracy was better than 13.3% for both compounds. The recoveries from the different matrices ranged between 93.1 and 103.3% for SA, and 97.3 and 100.8% for HQ.

  12. Association between genetic variants in VEGF, ERCC3 and occupational benzene haematotoxicity.

    NARCIS (Netherlands)

    Hosgood 3rd, H.D.; Zhang, L.; Shen, M.; Berndt, S.I.; Vermeulen, R.; Li, G.; Yin, S.; Yeager, M.; Yuenger, J.; Rothman, N.; Chanock, S.; Smith, M.; Lan, Q.

    2009-01-01

    INTRODUCTION: Benzene is an established human haematotoxin, with substantial interindividual variation in benzene-induced toxicity. METHODS: To further examine if genetic variation contributes to benzene haematotoxicity, we analysed 1023 tagSNPs in 121 gene regions important for benzene metabolism,

  13. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  14. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives.

    Science.gov (United States)

    Gao, Wenhui; Legido-Quigley, Cristina

    2011-07-15

    A fast and sensitive HPLC method for analysis of cosmetic creams for hydroquinone, phenol and six preservatives has been developed. The influence of sample preparation conditions and the composition of the mobile phase and elution mode were investigated to optimize the separation of the eight studied components. Final conditions were 60% methanol and 40% water (v/v) extraction of the cosmetic creams. A C18 column (100 mm × 2.1 mm) was used as the separation column and the mobile phase consisted of methanol and 0.05 mol/L ammonium formate in water (pH=3.0) with gradient elution. The results showed that complete separation of the eight studied components was achieved within 10 min, the linear ranges were 1.0-200 μg/mL for phenol, 0.1-150 μg/mL for sorbic acid, 2.0-200 μg/mL for benzoic acid, 0.5-200 μg/mL for hydroquinone, methyl paraben, ethyl paraben and propyl paraben, butyl paraben, and good linear correlation coefficient (≥0.9997) were obtained, the detection limit was in the range of 0.05-1.0 μg/mL, the average recovery was between 86.5% and 116.3%, and the relative standard deviation (RSD) was less than 5.0% (n=6). The method is easy, fast and sensitive, it can be employed to analyze component residues in cosmetic creams especially in a quality control setting.

  15. Intrinsic and enhanced biodegradation of benzene in strongly reduced aquifers

    NARCIS (Netherlands)

    Heiningen, W.N.M. van; Rijnaarts, H.H.M; Langenhoff, A.A.M.

    1999-01-01

    Laboratory microcosm studies were performed to examine intrinsic and enhanced benzene bioremediation using five different sediment and groundwater samples from three deeply anaerobic aquifers sited in northern Netherlands. The influence of addition of nitrate, sulfate, limited amounts of oxygen, and

  16. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  17. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  18. Non-Collinearity in Small Magnetic Cobalt-Benzene Molecules

    CERN Document Server

    González, J W; Delgado, F; Aguilera-Granja, F; Ayuela, A

    2016-01-01

    Cobalt clusters covered with benzene in the form of rice-ball structures have recently been synthesized using laser ablation. Here, we investigate the types of magnetic order such clusters have, and whether they retain any magnetic order at all. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings. We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. This is surprising because nanostructures and small clusters based on pure cobalt typically have a predominantly ferromagnetic order, and additional organic ligands such as benzene tend to remove the magnetization. We analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. Moreover, we propose electron paramagnetic resonance as ...

  19. Enhanced π-frustration in carbo-benzenic chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; Maraval, Valérie; Bijani, Christian; Saffon-Merceron, Nathalie; Voitenko, Zoia; Volovenko, Yulian M; Chauvin, Remi

    2013-09-28

    The synthesis, structure, and absorption spectra of highly π-frustrated carbo-benzenes with indolic enamine substituents more or less directly conjugated to the C18 macro-aromatic core are described, and their peculiar reactivity is analyzed.

  20. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  1. Which ornamental plant species effectively remove benzene from indoor air?

    Science.gov (United States)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  2. Organometallic chemistry using partially fluorinated benzenes.

    Science.gov (United States)

    Pike, Sebastian D; Crimmin, Mark R; Chaplin, Adrian B

    2017-03-28

    Fluorobenzenes, in particular fluorobenzene (FB) and 1,2-difluorobenzene (1,2-DiFB), are increasingly becoming recognised as versatile solvents for conducting organometallic chemistry and transition-metal-based catalysis. The presence of fluorine substituents reduces the ability to donate π-electron density from the arene and consequently fluorobenzenes generally bind weakly to metal centres, allowing them to be used as essentially non-coordinating solvents or as readily displaced ligands. In this context, examples of well-defined complexes of fluorobenzenes are discussed, including trends in binding strength with increasing fluorination and different substitution patterns. Compared to more highly fluorinated benzenes, FB and 1,2-DiFB typically demonstrate greater chemical inertness, however, C-H and C-F bond activation reactions can be induced using appropriately reactive transition metal complexes. Such reactions are surveyed, including catalytic examples, not only to provide perspective for the use of FB and 1,2-DiFB as innocent solvent media, but also to highlight opportunities for their exploitation in contemporary organic synthesis.

  3. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-09-01

    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  4. Can Cooper pairs in benzene lead to Efimov states?

    Science.gov (United States)

    Squire, R. H.; March, N. H.; Rubio, A.

    2015-02-01

    Cooper pairs have been experimentally verified in benzene at 38.3 eV. We have proposed previously that the six most loosely bound electrons in benzene form three equivalent Cooper pairs. We further propose in this manuscript that these three weakly interacting bosons (Cooper pairs) should form an infinite number of Efimov states (possibly Booromean rings) which is what a photon of high energy will then encounter.

  5. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    OpenAIRE

    Azadi, Sam; Cohen, R. E

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and fin...

  6. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1).

  7. Pyridine-H5PMo10V2O40 hybrid catalysts for liquid-phase hydroxylation of benzene to phenol with molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    GE HanQing; LENG Yan; ZHANG FuMin; PIAO JiaRui; ZHOU ChangJiang; WANG Jun

    2009-01-01

    Pyridine(Py)-modified Keggin-type vanadium-substituted heteropoly acids (PynPMo10V2O40,n=1 to 5) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were detected by FT-IR.Among various catalysts,Py3PMo10V2O40 exhibits the highest catalytic activity (yield of phenol,11.5%),without observing the formation of catechol,hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid,molecular oxygen and ascorbic acid used as the solvent,oxidant and reducing reagent,respectively.Influences of reaction temperature,reaction time,oxygen pressure,amount of ascorbic acid and catalyst on yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation.Pyridine can greatly promote the catalytic activity of the Py-free catalyst (H5PMo10V2O40),mostly because the organic π electrons in the hybrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and dramatically modify the redox properties,at the same time,pyridine adsorbed on heteropoly acids can promote the effect of "pseudo-liquid phase",thus accounting for the enhancement of phenol yield.

  8. Pyridine-H5PMo10V2O40 hybrid catalysts for liquid-phase hydroxylation of benzene to phenol with molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Pyridine(Py)-modified Keggin-type vanadium-substituted heteropoly acids(PynPMo10V2O40,n=1 to 5) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were detected by FT-IR.Among various catalysts,Py3PMo10V2O40 exhibits the highest catalytic activity(yield of phenol,11.5%),without observing the formation of catechol,hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid,molecular oxygen and ascorbic acid used as the solvent,oxidant and reducing reagent,respectively.Influences of reaction temperature,reaction time,oxygen pressure,amount of ascorbic acid and catalyst on yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation.Pyridine can greatly promote the catalytic activity of the Py-free catalyst(H5PMo10V2O40),mostly because the organic π electrons in the hybrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and dramatically modify the redox properties,at the same time,pyridine adsorbed on heteropoly acids can promote the effect of "pseudo-liquid phase",thus accounting for the enhancement of phenol yield.

  9. Crude oil metabolites in groundwater at two spill sites

    Science.gov (United States)

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Erickson, Melinda L.; Steenson, Ross; Thorn, Kevin A.

    2016-01-01

    Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.

  10. Production of Metabolites

    DEFF Research Database (Denmark)

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  11. Effect of CYP2E1 induction by ethanol on the immunotoxicity and genotoxicity of extended low-level benzene exposure.

    Science.gov (United States)

    Daiker, D H; Shipp, B K; Schoenfeld, H A; Klimpel, G R; Witz, G; Moslen, M T; Ward, J B

    2000-02-11

    Potential additive effects of ethanol consumption, a common life-style factor, and low-level benzene exposure, a ubiquitous environmental pollutant, were investigated. Ethanol is a potent inducer of the cytochrome P-450 2E1 (CYP2E1) enzyme, which bioactivates benzene to metabolites with known genotoxicity and immunotoxicity. A liquid diet containing 4.1% ethanol was used to induce hepatic CYP2E1 activity by 4-fold in female CD-1 mice. Groups of ethanol-treated or pair-fed control mice were exposed to benzene or filtered air in inhalation chambers for 7 h/d, 5 d/wk for 6 or 11 wk. The initial experiment focused on immunotoxicity endpoints based on literature reports that ethanol enhances high-dose benzene effects on spleen, thymus, and bone marrow cellularity and on peripheral red blood cell (RBC) and white blood cell (WBC) counts. No statistically significant alterations were found in spleen lymphocyte cellularity, subtype profile, or function (mitogen-induced proliferation, cytokine production, or natural killer cell lytic activity) after 6 wk of ethanol diet, 0.44 ppm benzene exposure, or both. This observed absence of immunomodulation by ethanol alone, a potential confounding factor, further validates our previously established murine model of sustained CYP2E1 induction by dietary ethanol. Subsequent experiments involved a 10-fold higher benzene level for a longer time of 11 wk and focused on genotoxic endpoints in known target tissues. Bone marrow and spleen cells were evaluated for DNA-protein cross-links, a sensitive transient index of genetic damage, and spleen lymphocytes were monitored for hprt-mutant frequency, a biomarker of cumulative genetic insult. No treatment-associated changes in either genotoxic endpoint were detected in animals exposed to 4.4 ppm benzene for 6 or 11 wk with or without coexposure to ethanol. Thus, our observations suggest an absence of genetic toxicity in CD-1 mice exposed to environmentally relevant levels of benzene with or

  12. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  13. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers.

  14. Coulometric titrations of bases in propylene carbonate and g-butyrolactone using hydroquinone as the depolarizer and a quinhydrone indicator electrode

    Directory of Open Access Journals (Sweden)

    Z. D. STANIC

    2000-08-01

    Full Text Available The application of hydroquinone for the coulometric generation of hydrogen ions in propylene carbonate (PC and g-butyrolactone (GBL is described. The current-potential curves recorded for theid sepolarizer, titrated bases, indicator and the solvents used showed that the investigated depolarizer is oxidized at lower potentials than the oxidation potentials of other components in the solution. the hydrogen ions generated by the oxidation of hydroquinone were used for the titration of organic bases (triethylamine, n-butylamine, pyridine, quinoline, aniline, N,N’-diphenylguanidine, piperidine, and 2,2’-bipiridine in PC and GBL with visual (Crystal Violet as indicator and potentiometric end-point detection using a quinhydrone electrode as the indicator electrode. The quinhydrone added to the to be analyzed solution served both as a source of hydrogen ions and, together with the immersed platinum electrode, as a quinhydrone electrode. The relative error of the determination of the bases was about 1 %.

  15. 苯酚双氧水氧化法制邻、对苯二酚%CATECHOL AND HYDROQUINONE FROM HYDROXYLATION OF PHENOL BY HYDROGEN PEROXIDE

    Institute of Scientific and Technical Information of China (English)

    崔咪芬; 乔旭

    2001-01-01

    For the preparation of catechol and hydroquinone from catalytic hydroxylation of phenol by lower concentration aqueous hydrogen peroxide. In the experiment, aqueous phenol solution was added to the reactor in batch to hydrogen peroxide drop by drop. Effects of different molar ratio of phenol and hydrogen peroxide、initial concentration of phenol、reactive temperature etc. on conversion of phenol and selectivity of catechol and hydroquinone were investigated. Under the suitable conditions, the mixture gave 40% conversion of phenol and 90% selectivity of catechol and hydroquinone. The molar ratio of catechol and hydroquinone was 1.6~1.8.%对苯酚、双氧水合成邻、对苯二酚的反应体系,采用苯酚溶液一次性加入反应器、双氧水连续滴加的半间歇操作方式,研究了苯酚与双氧水的摩尔配比、苯酚初浓度、双氧水滴加速率、反应温度等因素对苯酚转化率和邻、对苯二酚选择性的影响。在适宜的工艺条件下,苯酚的转化率可达到40%左右,苯二酚的总选择性可达到90%左右,邻/对比为1.6~1.8。

  16. Effect of Hydroquinone Plus Neodymium-Doped Yttrium Aluminium Garnet Laser With and Without CO2 Fractional Laser on Resistant Dermal Melasma

    Directory of Open Access Journals (Sweden)

    Zamanian

    2015-06-01

    Full Text Available Background The use of different types of lasers in the treatment of refractory melasma is still controversial. The present study was designed according to previous studies and used a combination of treatments. Objectives The purpose of this study was to compare Q-switched (QS neodymium-doped yttrium aluminium garnet (Nd: YAG laser and hydroquinone with or without CO2 fractional laser in refractory melasma. Patients and Methods Seventeen patients with refractory melasma, in a split-face randomized trial, received topical hydroquinone and Nd: YAG laser treatment on one half of their face and topical hydroquinone, Nd: YAG laser and CO2 fractional laser on the other half of their face. The patients were then assessed by Melasma area and severity index (MASI over 12 weeks in three treatment sessions with an interval of three to four weeks. Results Seventeen patients with melasma (14 females and three males with mean (± SD age of 38.47 (± 6.29 years (range 29 - 53 were included in this study. The only side effect for the Nd: YAG treatment was erythema observed in two cases (11.8%. The mean MASI scores decreased significantly after six weeks for both therapies. Also, a significant reduction was observed in the mean MASI scores from week six till the end of the study. Controlling for the effect of “MASI score at baseline”, the mean MASI score was significantly lower on the side treated with Nd:YAG + CO2 fractional laser in comparison with the Nd: YAG laser. Conclusions Our study showed that the triple therapy of ND: YAG and ND: YAG + CO2 fractional and hydroquinone cream had high efficiency and low morbidity compared to twofold treatment with ND: YAG and ND: YAG + CO2 fractional.

  17. Kojic Acid vis-a-vis its Combinations with Hydroquinone and Betamethasone Valerate in Melasma: A Randomized, Single Blind, Comparative Study of Efficacy and Safety

    Science.gov (United States)

    Deo, Kirti S.; Dash, Kedar N.; Sharma, Yugal K.; Virmani, Neha C.; Oberai, Chetan

    2013-01-01

    Background: Melasma is a relatively common, acquired symmetric hypermelanosis characterized by irregular light to gray-brown macules involving sun-exposed areas. Kojic acid, with its depigmenting potential due to tyrosinase inhibition and suppression of melanogenesis, has become a vital component of the dermatologists’ armamentarium against melasma. Aim: To study and compare the efficacy of kojic acid 1% alone, vis-a-vis its separate combinations with 2% hydroquinone or 0.1% betamethasone valerate and a combination of all these three agents with respect to the duration of symptoms and level of pigmentation in the therapy of melasma. Materials and Methods: Eighty patients from a single tertiary care center objectively assessed by calculating the melasma area severity index (MASI) and randomized (simple randomization) into four parallel groups (A, B, C, and D) of 20 each were prescribed once daily local application at night, (participants blinded regarding the difference in identity of interventions), as follows: Group A – kojic acid 1% cream. Group B – kojic acid 1% and hydroquinone 2% cream. Group C – kojic acid 1% and betamethasone valerate 0.1% cream. Group D – kojic acid 1%, hydroquinone 2%, and betamethasone valerate 0.1% cream. Strict photoprotection and use of a SPF 15 sunscreen was advised during the day. Patients were evaluated every 2 weeks and a fall in MASI score was calculated at the end of the study period of 12 weeks by the same investigator. Results: The response was compared according to percentage decrease in MASI score. Efficacy was evaluated among the groups at the end of 3 months using bivariate analysis and calculated by using the paired ‘t’ test. The clinical efficacy of group B was the highest followed closely by group D and group A, that of group C being the lowest. Conclusion: Kojic acid in synergy with hydroquinone is a superior depigmenting agent as compared with other combinations. PMID:23918998

  18. Products of the Benzene + O(3P) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  19. Effect of cobalt doping level of ferrites in enhancing sensitivity of analytical performances of carbon paste electrode for simultaneous determination of catechol and hydroquinone.

    Science.gov (United States)

    Lakić, Mladen; Vukadinović, Aleksandar; Kalcher, Kurt; Nikolić, Aleksandar S; Stanković, Dalibor M

    2016-12-01

    This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ. It was shown that this modification strongly increases electrochemical characteristics of the CPE. Also, electrocatalytic activity of such materials strongly depends on the level of substituted Co in the ferrite nanoparticles. The modified electrodes, labeled as CoFerrite/CPE, showed two pairs of well-defined redox peaks for the electrochemical processes of catechol and hydroquinone. Involving of ferrite material in the structure of CPE, cause increase in the potentials differences between redox couples of the investigated compounds, accompanied with increases in peaks currents. Several important parameters were optimized and calibration curves, with limits of detection (LOD) of 0.15 and 0.3µM for catechol and hydroquinone, respectively, were constructed by employing amperometric detection. Effect of possible interfering compounds was also studied, and proposed method was successfully applied for CC and HQ quantification in real samples.

  20. [Preparation of OMC-Au/L-Lysine/Au modified glassy carbon electrode and the study on its detection response to hydroquinone and catechol].

    Science.gov (United States)

    Zhou, Yao-Yu; Tang, Lin; Li, Zhen; Liu, Yuan-Yuan; Yang, Gui-De; Wu, Meng-Shi; Lei, Xiao-Xia; Zheng, Guang-Ming

    2013-03-01

    Ordered mesoporous carbon-Au nanoparticles (OMC-Au) nanocomposites were synthesized by a one-step chemical reduction route, and an OMC-Au/L-Lysine/Au composite film-modified glassy carbon electrode (GCE) was constructed. The microstructure of OMC and OMC-Au/L-Lysine/Au composite films were characterized by SEM, and the preparation process of OMC-Au/L-Lysine/Au modified glassy carbon electrode was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic oxidation of hydroquinone and catechol on the modified electrode was discussed by differential pulse voltammetry in this study, and a sensor for separate determination of hydroquinone and catechol based on OMC-Au/L-Lysine/Au modified glassy carbon electrode was developed. Under the optimal conditions, the cathodic peak current was linearly related to hydroquinone concentration over ranges from 1.0 x 10(-6) mol x L(-1) to 8.0 x 10(-4) mol x L(-1) with a detection limit of 3.0 x 10(-7) mol x L(-1), and linearly related to catechol concentration from 1.0 x 10(-7) mol x L(-1) to 8.0 x 10(-5) mol x L(-1) with a detection limit of 8.0 x 10(-7) mol x L(-1).

  1. 1-[(3-Benzyloxy-2-nitrophenoxymethyl]benzene

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2012-08-01

    Full Text Available The asymmetric unit of the title compound, C20H17NO4, consists of two crystallographically independent molecules. In one of the molecules, the central benzene ring forms dihedral angles of 2.26 (6 and 58.68 (6° with the terminal benzene rings and the dihedral angle between the terminal benzene rings is 56.45 (6°. The corresponding values for the other molecule are 35.17 (6, 70.97 (6 and 69.62 (6°, respectively. In the crystal, an inversion dimer linked by a pair of C—H...O hydrogen bonds occurs for one of the unique molecules. C—H...π and π–π [centroid–centroid distances = 3.7113 (8 and 3.7216 (7 Å] interactions link the components into a three-dimensional network.

  2. Retrospective exposure assessment for benzene in the Australian petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Glass, D.C. [Deakin Univ., Occupational Hygiene Unit, Geelong, VIC (Australia); Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia); Adams, G.G.; Manuell, R.W.; Bisby, J.A. [Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia)

    2000-07-01

    An excess of lympho-haematopoietic (LH) cancers has been identified in the Australian petroleum industry through the Health Watch surveillance programme. A nested case-control study is being conducted to investigate this excess. This paper describes the methods used to provide quantitative estimates of benzene exposure for each of the subjects in the case-control study. Job histories were compiled for each subject from interviews and company employment records. Site visits and telephone interviews were used to identify the tasks included in each job title. Details about the tasks such as their frequency, the technology in use and about changes that had taken place over the years were also gathered. Exposure dated back to the late 1940s for a few subjects. Collaborating petroleum companies provided recent benzene exposure monitoring data. These were used to generate Base Estimates of exposure for each task, augmented with data from the literature where necessary. Past exposures were estimated from the Base Estimates by means of an exposure algorithm. The modifying effects of technological changes and changes to the product were used in the algorithm. The algorithm was then computed to give, for each job, for each subject, an estimate of average benzene exposure in ppm in the workplace atmosphere (Workplace Estimate). This value was multiplied by the years for which the job was held and these values summed to give an estimate of Cumulative Estimate of benzene in ppm-years. The occupational hygienists performing the exposure assessment did so without knowledge of the case or control status of subjects. Overall exposures to benzene in the Australian petroleum industry were low, and virtually all activities and jobs were below a time-weighted average of 5 ppm. Exposures in terminals were generally higher than at refineries. Exposures in upstream areas were extremely low. Estimates of Cumulative Estimate to benzene ranged from 0.005 to 50.9 ppm-years. (Author)

  3. Solubilization of benzene and cyclohexane by sodium deoxycholate micelles

    Energy Technology Data Exchange (ETDEWEB)

    Christian, S.D.; Smith, L.S.; Bushong, D.S.; Tucker, E.E.

    1982-10-01

    Vapor pressure-solubility data were obtained for the aqueous systems benzene-sodium deoxycholate and cyclohexane- sodium deoxycholate at 25/sup 0/C. The results are consistent with a mass action model similar to the BET equation. Equilibrium constants are inferred to characterize interactions of hydrocarbons with solubilization sites assumed to consist of units of four deoxycholate anions. Although addition of sodium chloride increases the middle aggregation number, solubilization results are affected very little by variation in salt concentration. When pure liquid hydrocarbon standard states are employed, solubilization results for benzene and cyclohexane (at varying salt concentrations) are quite similar. 26 references.

  4. Comparison between the efficacy of 10% zinc sulfate solution with 4% hydroquinone cream on improvement of melasma

    Directory of Open Access Journals (Sweden)

    Fariba Iraji

    2012-01-01

    Full Text Available Background: Melasma, a common disorder of hyperpigmentation, is often difficult to treat. Although 10% zinc sulfate solution has been reported to be useful for patients with melasma, controlled trials are lacking. Materials and Methods: 72 women with moderate to severe melasma were divided randomly into 2 groups. Group A were treated with 10% zinc sulfate solution and group B with 4% hydroquinone cream twice-daily. The results were evaluated by photoevaluation by patients based on subjective satisfaction and a blinded dermatologist using MASI score. Assessments were obtained at baseline and at 2 and 6 months after starting treatment. Results: According to MASI score changes during treatment, there was a reduction in both groups at 2 months, however, the reduction in group B was more significant (the reduction in mean ± SD MASI was 0.7 ± 0.7 in group A vs. 2.7 ± 1.6 in group B. In addition, the patients in group B continued to decrease MASI score for the remainder of the study period at 6 months follow-up (0.3 ± 0.5 in comparison with patients in group A who did not show more reduction in MASI score. Conclusions: The study indicates that topical zinc sulfate is not as effective in treating disease as was observed in the previous open study. A comparative study with sunscreen and placebo is necessary to determine if topical zinc sulfate is truly superior to sunscreen and placebo in this respect.

  5. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration.

    Science.gov (United States)

    Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-11-01

    Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water.

  6. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol.

    Science.gov (United States)

    Jiang, Hongmei; Wang, Shuqin; Deng, Wenfang; Zhang, Youming; Tan, Yueming; Xie, Qingji; Ma, Ming

    2017-03-01

    We report here graphene-like carbon nanosheets (GCN) as a new electrode material for the electrochemical determination of hydroquinone (HQ) and catechol (CC). The GCN were prepared from maltose using ammonia chloride as a blowing agent and cobalt nitrate as a graphitization catalyst precursor. The as-prepared GCN material shows high graphitization degree, abundant porosity, and large specific surface area. Two well-separated anodic peaks for HQ and CC are obtained at GCN modified glassy carbon electrode (GCE) with a peak-to-peak separation of 118mV. The redox peak currents of HQ and CC at GCN/GCE were much higher than those at bare GCE and reduced graphene oxide modified GCE. For differential pulse voltammetric detection of HQ and CC, the GCN/GCE shows linear response ranges of 1×10(-7) ̶ 3×10(-5)M for HQ and 5×10(-7) ̶ 5×10(-5)M for CC, with detection limits of 2×10(-8)M for HQ, and 5×10(-8) M for CC. Satisfactory recoveries were achieved for the determination of HQ and CC in real water samples.

  7. Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics.

    Science.gov (United States)

    Tidjarat, Siripran; Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2014-11-01

    Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography.

  8. A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma.

    Science.gov (United States)

    Navarrete-Solís, Josefina; Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Oros-Ovalle, Cuauhtemoc; Fuentes-Ahumada, Cornelia; González, Francisco Javier; Martínez-Ramírez, Juan David; Moncada, Benjamin

    2011-01-01

    Background. Multiple modalities have been used in the treatment of melasma with variable success. Niacinamide has anti-inflammatory properties and is able to decrease the transfer of melanosomes. Objective. To evaluate the therapeutic effect of topical niacinamide versus hydroquinone (HQ) in melasma patients. Patients and Methods. Twenty-seven melasma patients were randomized to receive for eight weeks 4% niacinamide cream on one side of the face, and 4% HQ cream on the other. Sunscreen was applied along the observation period. They were assessed by noninvasive techniques for the evaluation of skin color, as well as subjective scales and histological sections initially and after the treatment with niacinamide. Results. All patients showed pigment improvement with both treatments. Colorimetric measures did not show statistical differences between both sides. However, good to excellent improvement was observed with niacinamide in 44% of patients, compared to 55% with HQ. Niacinamide reduced importantly the mast cell infiltrate and showed improvement of solar elastosis in melasma skin. Side effects were present in 18% with niacinamide versus 29% with HQ. Conclusion. Niacinamide induces a decrease in pigmentation, inflammatory infiltrate, and solar elastosis. Niacinamide is a safe and effective therapeutic agent for this condition.

  9. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    Science.gov (United States)

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-03

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells.

  10. Comparison between the efficacy of 10% zinc sulfate solution with 4% hydroquinone cream on improvement of melasma

    Science.gov (United States)

    Iraji, Fariba; Tagmirriahi, Nabet; Gavidnia, Keyvan

    2012-01-01

    Background: Melasma, a common disorder of hyperpigmentation, is often difficult to treat. Although 10% zinc sulfate solution has been reported to be useful for patients with melasma, controlled trials are lacking. Materials and Methods: 72 women with moderate to severe melasma were divided randomly into 2 groups. Group A were treated with 10% zinc sulfate solution and group B with 4% hydroquinone cream twice-daily. The results were evaluated by photoevaluation by patients based on subjective satisfaction and a blinded dermatologist using MASI score. Assessments were obtained at baseline and at 2 and 6 months after starting treatment. Results: According to MASI score changes during treatment, there was a reduction in both groups at 2 months, however, the reduction in group B was more significant (the reduction in mean ± SD MASI was 0.7 ± 0.7 in group A vs. 2.7 ± 1.6 in group B). In addition, the patients in group B continued to decrease MASI score for the remainder of the study period at 6 months follow-up (0.3 ± 0.5) in comparison with patients in group A who did not show more reduction in MASI score. Conclusions: The study indicates that topical zinc sulfate is not as effective in treating disease as was observed in the previous open study. A comparative study with sunscreen and placebo is necessary to determine if topical zinc sulfate is truly superior to sunscreen and placebo in this respect. PMID:23326770

  11. A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma

    Directory of Open Access Journals (Sweden)

    Josefina Navarrete-Solís

    2011-01-01

    Full Text Available Background. Multiple modalities have been used in the treatment of melasma with variable success. Niacinamide has anti-inflammatory properties and is able to decrease the transfer of melanosomes. Objective. To evaluate the therapeutic effect of topical niacinamide versus hydroquinone (HQ in melasma patients. Patients and Methods. Twenty-seven melasma patients were randomized to receive for eight weeks 4% niacinamide cream on one side of the face, and 4% HQ cream on the other. Sunscreen was applied along the observation period. They were assessed by noninvasive techniques for the evaluation of skin color, as well as subjective scales and histological sections initially and after the treatment with niacinamide. Results. All patients showed pigment improvement with both treatments. Colorimetric measures did not show statistical differences between both sides. However, good to excellent improvement was observed with niacinamide in 44% of patients, compared to 55% with HQ. Niacinamide reduced importantly the mast cell infiltrate and showed improvement of solar elastosis in melasma skin. Side effects were present in 18% with niacinamide versus 29% with HQ. Conclusion. Niacinamide induces a decrease in pigmentation, inflammatory infiltrate, and solar elastosis. Niacinamide is a safe and effective therapeutic agent for this condition.

  12. A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma

    Science.gov (United States)

    Navarrete-Solís, Josefina; Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Oros-Ovalle, Cuauhtemoc; Fuentes-Ahumada, Cornelia; González, Francisco Javier; Martínez-Ramírez, Juan David; Moncada, Benjamin

    2011-01-01

    Background. Multiple modalities have been used in the treatment of melasma with variable success. Niacinamide has anti-inflammatory properties and is able to decrease the transfer of melanosomes. Objective. To evaluate the therapeutic effect of topical niacinamide versus hydroquinone (HQ) in melasma patients. Patients and Methods. Twenty-seven melasma patients were randomized to receive for eight weeks 4% niacinamide cream on one side of the face, and 4% HQ cream on the other. Sunscreen was applied along the observation period. They were assessed by noninvasive techniques for the evaluation of skin color, as well as subjective scales and histological sections initially and after the treatment with niacinamide. Results. All patients showed pigment improvement with both treatments. Colorimetric measures did not show statistical differences between both sides. However, good to excellent improvement was observed with niacinamide in 44% of patients, compared to 55% with HQ. Niacinamide reduced importantly the mast cell infiltrate and showed improvement of solar elastosis in melasma skin. Side effects were present in 18% with niacinamide versus 29% with HQ. Conclusion. Niacinamide induces a decrease in pigmentation, inflammatory infiltrate, and solar elastosis. Niacinamide is a safe and effective therapeutic agent for this condition. PMID:21822427

  13. Structure-activity relationships for the fluorescence of ochratoxin A: Insight for detection of ochratoxin A metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Frenette, Christine; Paugh, Robert J. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Tozlovanu, Mariana; Juzio, Maud [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France); Pfohl-Leszkowicz, Annie [ENSAT, UMR CNRS 5503, 1 Avenue Agrobiopole 31326 Auzeville-Tolosane (France)], E-mail: leszkowicz@ensat.fr; Manderville, Richard A. [Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: rmanderv@uoguelph.ca

    2008-06-09

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that is widely found as a contaminant of food products. The toxin is a renal carcinogen in male rats, the cause of mycotoxicoses in pigs and has been associated with chronic human kidney diseases. Bioactivation has been implicated in OTA-mediated toxicity, although inconsistent results have been reported, due, in part, to the difficulty in detecting OTA metabolites in vivo. Liquid chromatography (LC) coupled with fluorescence detection (FLD) is the most widely used analytical detection method for OTA. Under acidic conditions the toxin generates blue fluorescence (465 nm) that is due to an excited state intramolecular proton transfer (ESIPT) process that generates an emissive keto tautomer. Disruption of this ESIPT process quenches fluorescence intensity and causes a blue shift in emission maxima. The aim of the present study was to determine the impact of the C5-chlorine atom, the lactone moiety and the amide bond on OTA fluorescence and derive optical parameters for OTA metabolites that have been detected in vitro. Our results highlight the limitations of LC/FLD for OTA metabolites that do not undergo ESIPT. For emissive derivatives, our absorption and emission data improves the sensitivity of LC/FLD (3-4-fold increase in the limit of detection (LOD)) for OTA analogues bearing a C5-OH group, such as the hydroquinone (OTHQ) metabolite and the glutathione conjugate of OTA (OTA-GSH). This increased sensitivity may facilitate the detection of OTA metabolites bearing a C5-OH group in biological fluids and enhance our understanding of OTA-mediated toxicity.

  14. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  15. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  16. Are there Efimov trimers in hexafluorobenzene rather than in benzene vapor itself?

    Energy Technology Data Exchange (ETDEWEB)

    Squire, R.H., E-mail: richard.squire@mail.wvu.edu [Department of Natural Sciences, West Virginia University – Institute of Technology, Montgomery, WV 25136 (United States); March, N.H. [Department of Physics, University of Antwerp, Groenborgerlaan 171, B-2020, Antwerp (Belgium); Oxford University, Oxford, England (United Kingdom); Abdus Salam International Center for Theoretical Physics, Trieste (Italy)

    2014-08-22

    Is there a spectroscopic method to detect an Efimov state? Following our proposal of an Efimov state arising from three pseudo bosons (generalized Cooper pairs) in benzene, our spectroscopic studies have found no evidence of Efimov trimers (ET) in h{sub 6}- or d{sub 6}-benzene. However, hexafluoro-benzene has shown peaks that we attributed to ET and the pseudo bosons. The experimental evidence suggests that benzene pseudo bosons and subsequently ET are quite sensitive to the surroundings.

  17. Theoretical study of the solvent effect on the aromaticity of benzene: a NICS analysis.

    Science.gov (United States)

    Junqueira, Georgia M A; Dos Santos, Hélio F

    2014-03-01

    Nucleus-independent chemical shift (NICS) quantities for benzene-benzene and benzene-water species were obtained and are discussed in gas phase and in solution. Besides standard polarizable continuum model (PCM) calculations, sequential Monte Carlo/quantum mechanics (S-MC/QM) were also performed. Benzene was shown to be slightly more aromatic in condensate phase when we considered the average solvent configuration (ASEC) approach with explicit molecules.

  18. Proposed mode of action of benzene-induced leukemia: Interpreting available data and identifying critical data gaps for risk assessment.

    Science.gov (United States)

    Meek, M E Bette; Klaunig, James E

    2010-03-19

    Mode of action is defined as a series of key biological events leading to an observed toxicological effect (for example, metabolism to a toxic entity, cell death, regenerative repair and tumors). It contrasts with mechanism of action, which generally involves a detailed understanding of the molecular basis for an effect. A framework to consider the weight of evidence for hypothesized modes of action in animals and their relevance to humans, has been widely adopted and used by government agencies and international organizations. The framework, developed and refined through its application in case studies for principally non-DNA-reactive carcinogens, has more recently been extended to DNA-reactive carcinogens, non-cancer endpoints and different life stages. In addition to increasing transparency, use of the framework promotes consistency in decision-making concerning adequacy of weight of evidence, facilitates peer input and review and identifies critical research needs. The framework provides an effective tool to facilitate discussion between the research and risk assessment communities on critical data gaps, which if filled, would permit more refined estimates of risk. As a basis for additionally coordinating and focusing research on critical data gaps in a risk assessment context, five key events in the mode of action for benzene-induced leukemia are proposed: (1) benzene metabolism via Cytochrome P450, (2) the interaction of benzene metabolites with target cells in the bone marrow, (3) formation of initiated, mutated target cells, (4) selective proliferation of the mutated cells and (5) production of leukemia. These key events are considered in a framework analysis of human relevance as a basis to consider appropriate next steps in developing research strategies.

  19. Instrument for benzene and toluene emission measurements of glycol regenerators

    Science.gov (United States)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2013-11-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m-3 for benzene, 3 mg m-3 for toluene in natural gas, and 5 g m-3 for benzene and 6 g m-3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature.

  20. Spectroscopic studies of cryogenic fluids: Benzene in nitrogen

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-05-01

    Energy shifts and bandwidths for the 1B2u←1A1g optical absorption of benzene in supercritical nitrogen are presented as a function of pressure, temperature, and density. The pressure and density dependence of energy shifts of room temperature emission of benzene in nitrogen fluid is also reported. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas almost no spectral shifts are observed if the density is kept constant and temperature and pressure varied simultaneously. Thus, density is the fundamental microscopic parameter for energy shifts of optical transitions in supercritical nitrogen. This result is analogous to the findings for the liquid benzene/propane system and can be interpreted qualitatively in terms of changes occurring in the intermolecular potential; however, in the benzene/supercritical nitrogen system an additional small density independent temperature effect on the transition energy has been identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra. Reasonably good agreement between experiment and theory is found. The results demonstrate that liquid state theory can be used to describe the supercritical nitrogen fluid.

  1. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  2. 1,4-Bis[3-chloro-2-(chloromethylpropyl]benzene

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title molecule, C14H18Cl4, possesses a crystallographically imposed inversion centre, which coincides with the centre of benzene ring. In the absence of classical intermolecular interactions, van der Waals forces help the molecules to pack in the crystal.

  3. Effects of benzene inhalation on murine pluripotent stem cells.

    Science.gov (United States)

    Cronkite, E P; Inoue, T; Carsten, A L; Miller, M E; Bullis, J E; Drew, R T

    1982-03-01

    Effects of benzene inhalation on mouse pluripotent hematopoietic stem cells have been evaluated. Male mice 8--12 wk old were exposed to 400 ppm benzene for 6 h/d, 5 d/wk, for up to 9 1/2 wk. At various time intervals exposed and control animals were killed, and cardiac blood was evaluated for changes in white blood cell (WBC) and red blood cell (RBC) content. In addition, femora and tibiae were evaluated for total marrow cellularity, stem cell content (as measured by the spleen colony technique), and the percent of stem cells in DNA synthesis (as determined by the tritiated thymidine cytocide technique). Exogenous spleen colonies grown from marrow of exposed animals were counted, identified, and scored by histological type. Exposure to benzene caused significant depressions of RBCs and WBCs throughout the exposure period, which continued for at least 14 d after exposure. Bone marrow cellularity and stem cell content were also depressed in exposed animals throughout the study. Tritiated thymidine cytocide of spleen colony-forming cells was generally increased in exposed animals, perhaps indicating a compensatory response to the reduction of circulating cells. Spleen colonies of all types were depressed after exposure to benzene. The significance of the reduction in cellularity, stem cell content, and changes in morphology of spleen colonies is discussed in relation to cellular toxicity and residual injury.

  4. The ototoxic effects of ethyl benzene in rats

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Groot, J.C.M.J. de; Kulig, B.M.; Smoorenburg, G.F.

    1999-01-01

    Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using thre

  5. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  6. Biotransformation of toluene, benzene and naphthalene under anaerobic conditions.

    NARCIS (Netherlands)

    Langenhoff, A.A.M.

    1997-01-01

    Aromatic hydrocarbons are widespread in nature, due to increasing industrial activity, and often contribute to polluted soils, sediments, and groundwater. Most of these compounds are toxic at relatively high concentrations, but some are already carcinogenic at very low concentrations, e.g. benzene.

  7. Electronic states of 1,4-bis(phenylethynyl)benzene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola; Hoffmann, Søren Vrønning

    2012-01-01

    The electronic transitions of 1,4-bis(phenylethynyl)benzene (BPEB) were investigated by UV synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 25,000 – 58,000 cm–1 (400 – 170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable...

  8. Rethinking cycad metabolite research.

    Science.gov (United States)

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research.

  9. Synthesis Of Labeled Metabolites

    Science.gov (United States)

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  10. Development of microbial engineered whole-cell systems for environmental benzene determination.

    Science.gov (United States)

    Di Gennaro, P; Bruzzese, N; Anderlini, D; Aiossa, M; Papacchini, M; Campanella, L; Bestetti, G

    2011-03-01

    This paper reports the development of two recombinant bacterial systems that can be used to monitor environmental benzene contamination based on Escherichia coli, which carry genes coding for benzene dioxygenase and benzene dihydrodiol dehydrogenase from Pseudomonas putida MST. E. coli strains express these two enzymes under the control of the Ptac promoter or without any induction. These activities can be detected electrochemically or colorimetrically and used to monitor benzene pollution in environmental air samples collected from an oil refinery assessing benzene by different laboratory experimental procedures. The procedures involving whole-cell bioassays determine the concentration of benzene through benzene dioxygenase activity, which allows for direct correlation of oxygen consumption, and through the benzene dihydrodiol dehydrogenase that causes catechol accumulation and restores NADH necessary for the activity of the first enzyme. Oxygen consumption and catechol production deriving from both enzymatic activities are related to benzene concentration and their measurements determined the sensitivity of the system. The results indicated that the sensitivity was enough to detect the benzene vapor at a lower concentration level of 0.01 mM in about 30 min. The possibility for on-line monitoring of benzene concentration by our new recombinant cells results from the fact that no particular treatment of environmental samples is required. This is a major advantage over other biosensors or assays. Moreover, the development of microbial cells that did not require any addition or effectors for the transcription of the specific enzymes, allowed these systems to be more versatile in automated environmental benzene monitoring.

  11. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure

    NARCIS (Netherlands)

    Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, B. van; Groten, J.P.

    2005-01-01

    Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver

  12. Quantum Monte Carlo Study of π-Bonded Transition Metal Organometallics: Neutral and Cationic Vanadium-Benzene and Cobalt-Benzene Half Sandwiches.

    Science.gov (United States)

    Horváthová, L; Dubecký, M; Mitas, L; Štich, I

    2013-01-08

    We present accurate quantum Monte Carlo (QMC) calculations that enabled us to determine the structure, spin multiplicity, ionization energy, dissociation energy, and spin-dependent electronic gaps of neutral and positively charged vanadium-benzene and cobalt-benzene systems. From total/ionization energy, we deduce a sextet (quintet) state of neutral (cationic) vanadium-benzene systems and quartet (triplet) state of the neutral (cationic) cobalt-benzene systems. Vastly different energy gaps for the two spin channels are predicted for the vanadium-benzene system and broadly similar energy gaps for the cobalt-benzene system. For this purpose, we have used a multistage combination of techniques with consecutive elimination of systematic biases except for the fixed-node approximation in QMC. Our results significantly differ from the established picture based on previous less accurate calculations and point out the importance of high-level many-body methods for predictive calculations of similar transition metal-based organometallic systems.

  13. Metabolite Space of Rheumatoid Arthritis

    OpenAIRE

    van Wietmarschen, Herman; van der Greef, Jan

    2012-01-01

    Metabolites play numerous roles in the healthy and diseased body, ranging from regulating physiological processes to providing building blocks for the body. Therefore, understanding the role of metabolites is important in elucidating the etiology and pathology of diseases and finding targets for new treatment options. Rheumatoid arthritis is a complex chronic disease for which new disease management strategies are needed. The aim of this review is to bring together and integrate information a...

  14. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  15. Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide.

    Science.gov (United States)

    Huang, Hui; Xu, Min; Gao, Yuan; Wang, Guannan; Su, Xingguang

    2011-10-30

    In this paper, a sensitive and simple detecting system was developed for quantitative analysis of both hydroquinone (H(2)Q) and hydrogen peroxide (H(2)O(2)), based on the successful combination of horse radish peroxidase (HRP) and water-soluble conjugate fluorescence polymers PPESO(3). In the presence of HRP and H(2)O(2), H(2)Q could be oxidized to 1,4-benzoquinone (BQ), an intermediate, which plays the main role in the enhanced quenching of the photoluminescence (PL) intensity of PPESO(3). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of H(2)Q and H(2)O(2) in the range of 1.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.996) and 6.0 × 10(-6) to 2.0 × 10(-3)mol/L (R(2)=0.999), respectively. The detection limit for H(2)Q and H(2)O(2) was 5.0 × 10(-7)mol/L and 1.0 × 10(-6)mol/L, respectively. The present fluorescence quenching method was successfully applied for the determination of H(2)Q in the lake water, rainwater, tap-water and chemical plant wastewater samples. Compared with previous reports, the fluorescence quenching approach described in this work is simple and rapid with high sensitivity, which has a potential application for detecting various analytes which can be translated into quinone.

  16. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field.

    Science.gov (United States)

    Li, Xianglan; Zhang, Guangbin; Xu, Hua; Cai, Zucong; Yagi, Kazuyuki

    2009-06-01

    A field experiment was conducted to study the effect of timing of joint application of urease inhibitor hydroquinone (HQ) and nitrification inhibitor dicyandiamide (DCD) on N(2)O emission from irrigated lowland rice paddy field. Four treatments including Treatment CK (the control with urea alone), HQ/DCD-1 (application of HQ and DCD together with fertilizer before transplanting), HQ/DCD-2 (HQ and DCD with fertilizer at tillering stage) and HQ/DCD-3 (HQ and DCD with fertilizer at panicle initiation stage) were designed and implemented separately during rice growth period. Seasonal peaks of N(2)O flux occurred during midseason drainage and significant negative correlation between N(2)O flux and water layer depth was observed (r=-0.69 to -0.75, P<0.01). Mean N(2)O flux was the highest in the control with urea alone, while joint addition of HQ and DCD with urea lowered mean N(2)O flux considerably (P<0.05). Total N(2)O emission during rice growth season in Treatment CK, HQ/DCD-1, HQ/DCD-2 and HQ/DCD-3 was 3.90, 2.98, 1.73 and 3.23kgN(2)O-N ha(-1), respectively. Application of HQ and DCD together with basal fertilizer, tillering fertilizer and panicle initiation fertilizer decreased the total N(2)O emission by 24%, 56% and 17%, respectively, while increased grain yield by 10%, 18% and 6%, respectively. Effect of application of inhibitors on N(2)O emission during the continuous period from incorporation of HQ and DCD to rice harvest was also studied, where results indicating that the highest inhibiting efficiency of inhibitors on N(2)O emission was recorded when HQ and DCD applied with fertilizer at tillering stage.

  17. Effect of antioxidant tertiary butyl hydroquinone on the thermal and oxidative stability of sesame oil (sesamum indicum) by ultrasonic studies.

    Science.gov (United States)

    Prasad, N; Siddaramaiah, Basavarajaiah; Banu, Mujeeda

    2015-04-01

    The aim of the current investigation is to evaluate the efficiency of tertiary butyl hydroquinone (TBHQ) as an antioxidant in sesame oil (sesamum indicum) by density, viscosity and ultrasonic velocity. The effects of varying amounts of TBHQ on the oxidation stability of sesame oil have been investigated. The antioxidant incorporated sesame oil system and control edible oil were subjected to heating at 180 ± 5 °C continuously for a period of 4 h per day for consecutive 4 days. The parameters used to assess the thermal degradation and oxidation properties of the oils include ultrasonic velocity, viscosity, density and peroxide value. The fatty acid compositions of the oils were measured by gas chromatography. Adiabatic compressibility, intermolecular free length, relaxation time and acoustic impedance have been calculated from experimental data. Viscosity, density and ultrasonic velocity change in control oil is from 3.6553 × 10(-2) to 11.1729 × 10(-2) Nsm(-2), 912.59 to 940.31 kg/m(3) and 1,421 to 1,452 m/s respectively and in sesame oil with 200 ppm TBHQ is from 3.6793 × 10(-2) to 6.4842 × 10(-2) Nsm(-2), 913.78 to 922.45 kg/m(3) and 1,421 to 1,431 m/s respectively for 16 h of heat treated oil. The ultrasonic results obtained have shown reduction in thermal degradation and improvement in oxidation stability of antioxidant loaded oil in comparison to base oil. Hence, it can be recommended that sesame oil with 200 ppm TBHQ can be used for frying without adverse effect on physical properties. The ultrasonic velocity can be used for assessment of stability of frying oil.

  18. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  19. Transport and phase equilibria of benzene in FAU type zeolites

    Science.gov (United States)

    Saravanan, Chandra

    We have studied lattice models for self-diffusion of benzene in FAU type zeolites, to explore the effect of the thermodynamics of confined fluids on the transport properties of molecules in zeolites. Our model assumes that benzene molecules are located near Na+ ions in supercages, and in 12-ring windows separating adjacent supercages, respectively. The study was performed in three stages. First, to disentangle the effect of a vapor-liquid phase equilibria on diffusion in zeolites, the transport of benzene in Na-Y is modeled in the absence of attractive guest-guest interactions. The loading dependence of diffusion coefficient, Dtheta, at a constant temperature, referred to as a diffusion isotherm, is modeled with site-blocking effects using a mean field theory (MFT) that yields, Dq=16kq a2q, where atheta ≅ 11 A is the mean intercage jump length and 1/ktheta is the mean supercage residence time. A completely analytical expression is derived to calculate ktheta. The MFT is tested using a mean field approximation (MFA) where ktheta and atheta are calculated from kinetic Monte Carlo simulations yielding excellent qualitative agreement. Further calculations are performed to test MFA by calculating "exact" diffusion coefficients from mean square displacement (MSD) calculations also yielding excellent qualitative agreement. Next, by including guest-guest attractive interactions, we have performed lattice grand canonical Monte Carlo simulations of benzene adsorption in Na-X zeolite to determine whether strongly confined benzene molecules exhibit subcritical properties. We observe a phase transition from low to high density of adsorbed benzene, analogous to vapor-liquid equilibrium, at temperatures as high as 300 K and above. By performing thermodynamic integration to construct the coexistence curve, we obtain a critical point for benzene in Na-X at Tc = 370 +/- 20 K, thetac = 0.45 +/- 0.05 fractional coverage. We suggest that careful adsorption experiments should be

  20. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    DEFF Research Database (Denmark)

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik

    2003-01-01

    The influence of benzene as a growth substrate on the cometabolic conversion of thiophene was investigated in batch systems with microorganisms originating from an creosote contaminated site. Benzene was shown to stimulate the conversion of thiophene with a first-order rate, during the initial...... phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...

  1. The Grand Canonical Monte Carlo Simulations of Benzene and Propylene in ITQ-1 Zeolite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grand Canonical Monte Carlo (GCMC) simulations have been performed to study the localization and adsorption behavior of benzene and propylene, in purely siliceous MWW zeolite (ITQ-1). By analyzing the locations of benzene and propylene in ITQ-1, it can be deduced that the alkylation of benzene and propylene will mainly happen in 12-MR supercages at the external surface or close to the external surface. The adsorption isotherms of benzene and propylene at 315K and 0~3.5kPa are predicted, and the results for benzene generally coincide with the trend from the experiments of a series of aromatic compounds.

  2. Mercapturic acids in urine as an index for indoor air exposition to benzene and toluene; Merkaptursaeuren im Urin als Index fuer Innenraum-Expositionen von Benzol und Toluol

    Energy Technology Data Exchange (ETDEWEB)

    Rolle-Kampczyk, U.; Rehwagen, M.; Herbarth, O. [UFZ-Umweltforschungzentrum Leipzig-Halle GmbH, Leipzig (Germany). Sektion Expositionsforschung und Epidemiologie

    1998-10-01

    Benzene toxicity and the relatively high toluene burden of indoor air necessitate the examination of urine for specific metabolites as a verification for the internal exposure and dose. Selected were S-phenyl- and S-benzyl-mercapturic acid (SPMA and SBMA), and their concentrations determined in the urine samples of children from Leipzig. The results were correlated with the benzene and toluene concentrations of indoor air. Whereas a weak correlation was found between benzene and SPMA, no relationship was found between toluene and SBMA. (orig.) [Deutsch] Auf Grund der toxikologischen Bedenklichkeit von Benzol und der relativ hohen Toluolbelastung von Innenraeumen sollen spezifische Metaboliten fuer diese Stoffe im Urin als Nachweis fuer die tatsaechlich aufgenommenen Schadstoffmengen untersucht werden. Es wurden S-Phenyl- und S-Benzyl-Merkaptursaeure (SPMA und SBMA) ausgewaehlt und deren Konzentrationen im Urin Leipziger Kinder bestimmt. Die Ergebnisse wurden mit den Raumluftkonzentrationen von Benzol und Toluol korreliert. Waehrend sich zwischen Benzol und SPMA ein schwacher korrelativer Zusammenhang herausstellte, ergab sich zwischen Toluol und SBMA keine Korrelation. (orig.)

  3. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  4. In-situ Investigation of BBr_3/benzene Solution by Fourier Transformation Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YU Li-li; GAI Li-gang; CUI De-Hang; WANG Qi-long

    2009-01-01

    By means of the in-situ Fourier transformation infrared spectroscopy(FTIR), the properties of BBr_3/ benzene solution, which is usually used as the reactant and solution to synthesize BN by benzene-thermal method, have been investigated. The results show that there are some side reactions between BBr_3 and benzene: (1) BBr_3 as an electron-deficient molecule reacts with benzene at room temperature; (2) below 100℃, substitution of Br atom for H atom of benzene(ring-H) dominates in BBr_3/benzene solution; (3) cracking of benzene ring occurs at a temperature above 100℃; (4) decomposition of benzene molecules and formation of long-chain aliphatic compounds feature the spectra of BBr_3/benzene solution collected at above 160℃. They are unfavor for BN to form when BBr_3 is excessive in the synthesis of BN by benzene-thermal route. On the basis of the experimental results, a coordination reaction mechanism via a η~2-C_6H_6 binding mode in BBr_3/benzene solution is suggested.

  5. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, H.; Hansen, A.B.; Andersen, H.V.; Loefstroem, P.; Christensen, C.S. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Atmospheric Environment; Lorenzen, G. [Environmental Protection Agency, Copenhagen (Denmark)

    2001-05-01

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90{mu}gm{sup -3} for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene. (Author)

  6. Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice.

    Science.gov (United States)

    Farris, G M; Robinson, S N; Gaido, K W; Wong, B A; Wong, V A; Hahn, W P; Shah, R S

    1997-04-01

    Long-term inhalation exposure of benzene has been shown to cause hematotoxicity and an increased incidence of acute myelogenous leukemia in humans. The progression of benzene-induced hematotoxicity and the features of the toxicity that may play a major role in the leukemogenesis are not known. We report the hematological consequences of benzene inhalation in B6C3F1 mice exposed to 1, 5, 10, 100, and 200 ppm benzene for 6 hr/day, 5 days/week for 1, 2, 4, or 8 weeks and a recovery group. There were no significant effects on hematopoietic parameters from exposure to 10 ppm benzene or less. Exposure of mice to 100 and 200 ppm benzene reduced the number of total bone marrow cells, progenitor cells, differentiating hematopoietic cells, and most blood parameters. Replication of primitive progenitor cells in the bone marrow was increased during the exposure period as a compensation for the cytotoxicity induced by 100 and 200 ppm benzene. In mice exposed to 200 ppm benzene, the primitive progenitor cells maintained an increased percentage of cells in S-phase through 25 days of recovery compared with controls. The increased replication of primitive progenitor cells in concert with the reported genotoxicity induced by benzene provides the components necessary for producing an increased incidence of lymphoma in mice. Furthermore, we propose this mode of action as a biologically plausible mechanism for benzene-induced leukemia in humans exposed to high concentrations of benzene.

  7. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Science.gov (United States)

    Skov, Henrik; Hansen, Asger B.; Lorenzen, Gitte; Andersen, Helle Vibeke; Løfstrøm, Per; Christensen, Carsten S.

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90 μg m -3 for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene.

  8. CONTENT OF SECONDARY METABOLITES WITH INSECTICIDAL AND REPELLENT ACTIVITY IN THE ALCOHOLIC EXTRACT AND ESSENTIAL OIL OF CHAEROPHYLLUM AROMATICUM L.

    Directory of Open Access Journals (Sweden)

    N. V. VORONOVA

    2014-06-01

    Full Text Available The most of plant secondary metaboliteshave a safety function to protect plants from pathogens and herbivorous. The important role in the protection of plants from insect pests plays terpenoids and their derivatives.We studied the Chaerophyllumaromaticumessential oil composition in order toreveal the substances which have an insecticidal and repellent activity. This knowledge can make us closer to understand the biochemical basis of host choice in phytophagous, such as close related species of aphids that feed and not feed on Ch.aromaticum.An alcoholic extract and essential oil of Ch.aromaticum were prepared and analyzed with gas chromatography. The alcoholic extract of Ch.aromaticumcontained 39 individual substances.Aninsecticidal and repellent activityis known for14 of them. The average content of sabinenduring the growing season was 15.8 per cent(3.06 and 23.68 per cent at the beginning and at the end of season respectfully.Pinene (13.87%, limonene (1%,γ-terpinene (9.32%, germacrene (6.27%, catechol (3.12%, hydroquinone (3.21% were also presented in the high concentration. Thymol (0.52%, hydrocoumarin (0.71%, β-caryophyllene (0.87%, trans-β-farnesene (4.91%, carotol (3.82% were rarely detected during the growing season. 3-hexen-1-ol which is the phytophagous predator attractant,was only found at the end of the spring in a concentration near 1.5 percent.The total concentrationof metabolites with insecticidal and repellent activity in the Ch. aromaticumessential oil was 6.49 per cent in May, 24.35 per cent in June, and 37.37 per cent in July.The component composition of theessential oil varied during the period of observation. Except of sabinen, catechol and hydroquinone were only presented at the beginning of May.In June the number of toxic componentsincreases to 10 substances, but in July decreases to 8 ones.

  9. Biomarkers of internal dose for the assessment of environmental exposure to benzene.

    Science.gov (United States)

    Lovreglio, Piero; D'Errico, Maria Nicolà; Fustinoni, Silvia; Drago, Ignazio; Barbieri, Anna; Sabatini, Laura; Carrieri, Mariella; Apostoli, Pietro; Soleo, Leonardo

    2011-10-01

    The urinary excretion of t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (SPMA) and urinary benzene and the influence of a smoking habit and of exposure to urban traffic on the urinary excretion of these biomarkers were investigated in 137 male adults from the general population. All subjects were not occupationally exposed to benzene and resident in two cities in Puglia (Southern-Italy). Environmental exposure to benzene was measured using passive personal samplers. The biomarkers t,t-MA, SPMA and urinary benzene were determined in urine samples collected from each subject at the end of the environmental sampling. The percentage of cases above the limit of detection was higher for SPMA and urinary benzene in smokers than in non-smokers, and for airborne benzene and urinary benzene in subjects exposed to urban traffic. Airborne benzene was correlated with the time spent in urban traffic during the environmental sampling. Among the biomarkers, urinary benzene was found to be correlated with airborne benzene only in non-smokers, and with the time spent in urban traffic, both in smokers and non-smokers considered together, and in non-smokers only. Finally, multiple regression analysis showed that the urinary excretion of all the biomarkers was dependent on the number of cigarettes smoked per day and, for urinary benzene, also on the time spent in urban traffic. In conclusion, urinary benzene seems to be a more valid biomarker than t,t-MA and SPMA to assess environmental exposure to extremely low concentrations of benzene. Cigarette smoking prevailed over traffic exhaust fumes in determining the internal dose of benzene.

  10. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  11. Molecular Dynamics Investigation of Benzene in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.

  12. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...... dodecyl isomers (with the benzene group at positions 1, 2 and 6). The conductivity was measured both by van der Pauw measurements on PPy-DBS in the oxidized, dry state as function of temperature, and by electrochemical impedance spectroscopy as function of potential in 0.1 M NaCl aqueous electrolyte...... carriers is at a minimum. The conductivity is further reduced because of the uptake of water at low potentials, creating electrolytic domains that separate the electronic domains and inhibit hopping. There is a pronounced hysteresis in the conductivity as a function of potential. However, the major part...

  13. Overtone spectroscopy of benzene derivatives using thermal lensing

    Science.gov (United States)

    Vipin Prasad, J.; Rai, S. B.; Thakur, S. N.

    1989-12-01

    The vibrational overtones of CH stretching oscillators are reported as observed by conventional IR spectroscopy and dual-beam thermal lensing spectroscopy for benzene, fluorobenzene, chlorobenzene, bromobenzene and benzonitrile in the liquid phase at room temperature. The stretching frequency ω e, the anharmonicity constant ω eχ e and the change in CH bond length on substitution in benzene have been determined for all these molecules under the local-mode approximation. Effects of substitution on the change in CH stretching frequency have been discussed in terms of the electronegativity of the substituents as well as the inductive part of the Hammett σ. Variation of thermal lensing signal with chopping frequency and laser power has also been studied.

  14. Comparison of measurement methods for benzene and toluene

    Science.gov (United States)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorström-Lundén, E.; Sjöberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.80±1.6) μg m -3 for diffusive sampling and (11.3±1.6) μg m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.91±0.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  15. Pure Benzene Will Be Serous Short of Supply

    Institute of Scientific and Technical Information of China (English)

    John Zheng

    2007-01-01

    @@ Benzene is one of the important ba-sic raw materials for petrochemicals.It can be used to synthesize a seriesof important chemical products suchas synthetic rubbers, synthetic resins,synthetic fibers, pharmaceuticals,pesticides, explosives and dyestuffs.It can also be used as a solvent forcoatings and rubbers and as a blend-ing agent to increase gasoline's oc-tane number in the refining sector.

  16. Adsorption isotherms for benzene on diatomites from China

    Institute of Scientific and Technical Information of China (English)

    YANG, Yu-Xianga; WU, Jie-Da; JIANG, Zhong-Liang; HUANG, Meng-Jian; CHEN, Rong-San; DAI, An-Bang

    2000-01-01

    In this paper, benzene adsorption isotherm and their hysteresis on two important local diatomites were determined at 25℃, ani their silicon hydroxyl group (SiOH) nunber was determined, their properties were reported, and the relationship between surface structure, surface SiOH number per nm2and adsorption isotherm with hysteresis was discussed. The specific surface was also calculated from the isotherms, and pore-size distribution was determined.

  17. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  18. 2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Zhang

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4−·H2O, contains one 2-phenylimidazolium cation, half a benzene-1,3-dicarboxylate anion and one water molecule. In the crystal, components are connected by N—H...O and O—H...O hydrogen-bonding interactions into a three-dimensional network.

  19. LED Irradiation of a Photocatalyst for Benzene, Toluene, Ethyl Benzene,and Xylene Decomposition%LED Irradiation of a Photocatalyst for Benzene,Toluene,Ethyl Benzene,and Xylene Decomposition

    Institute of Scientific and Technical Information of China (English)

    JO Wan-Kuen; KANG Hyun-Jung

    2012-01-01

    Studies on the use of gas phase applications of light emitting diodes (LEDs) in photocatalysis are scarce although their photocatalytic decomposition kinetics of environmental pollutants are likely different from those in aqueous solutions.The present study evaluated the use of chips of visible light LEDs to irradiate nitrogen doped titania (N-TiO2) prepared by hydrolysis to decompose gaseous benzene,toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene.Photocatalysts calcined at different temperatures were characterized by various analytical instruments.The degradation efficiency of benzene was close to zero for all conditions.For the other compounds,a conventional 8 W daylight lamp/N-TiO2 unit gave a higher photocatalytic degradation efficiency as compared with that of visible-LED/N-TiO2 units.However,the ratios of degradation efficiency to electric power consumption were higher for the photocatalytic units that used two types of visible-LED lamps (blue and white LEDs).The highest degradation efficiency was observed with the use of a calcination temperature of 350 ℃.The average degradation efficiencies for toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene were 35%,68%,94%,and 93%,respectively.The use of blue-and white-LEDs,high light intensity,and low initial concentrations gave high photocatalytic activities for the photocatalytic units using visible-LEDs.The morphological and optical properties of the photocatalysts were correlated to explain the dependence of photocatalytic activity on calcination temperature.The results suggest that visible-LEDs are energy efficient light source for photocatalytic gas phase applications,but the activity depends on the operational conditions.

  20. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    Full Text Available Research from the Multiethnic Cohort (MEC demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA, a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005 SPMA/ml urine than Whites (2.67 [0.13] while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005. SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1 deletion explained between 14.2-31.6% (p = 5.4x10-157 and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9 of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.

  1. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    Science.gov (United States)

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  2. Alkylation reaction by propene of benzene on the high-temperature chlorination alumina catalyst; Koonensoshori arumina shokubaijo deno benzen no puropen nioru arukiruka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Kazuhiro; Inui, Kanichiro; Honda, Kazuki; Shobu, Akinori

    1999-09-01

    Alkylation reaction by propene of benzene on alumina catalyst (AmLSA) chlorinated at 1073K was carried out using semibatch reactor (liquid phase catalytic reaction) and fixed bed flow reactor (vapor phase catalytic reaction) at atmospheric pressure 303K and 303-623K respectively. Products in liquid phase catalytic reaction were isopropyl benzene (IPB), diisopropyl benzene (di-IPB), triisopropyl benzene (tri-IPB), and the dissolution of the catalytic activity kind to the organic solvent was not observed. It was estimated, when propene was made to adsorb on Am LSA, because the generation of isopropylidene and 2 - propylene cation which coordinated in a strong Lewis acid point was observed, isopropyl reaction these cation benzene - complex. The generation of the high order substitute was promoted, when sodium was added to the catalyst, and the meta/para ratio of di-IPB increased. In vapor phase catalytic reaction, tetraisopropyl benzene (tetra-IPB) was also formed, and in the temperature of 473K or less, it was promoted further than the case in which the generation of tetra-IPB and di, tri was liquid phase catalytic reaction. IPB selectivity and selectivity of total replacement arthroplasty benzenes of consumed propene standard increased, when benzene/propene ratio in the raw material gas increased. In addition, at all reaction temperatures, the oligomerization of propene was generated, and the deactivation of the catalyst was caused. (translated by NEDO)

  3. Molecular, spectroscopic and thermal studies on catechol, 4,5-dibromocatechol, resorcinol, hydroquinone and 4-4‧-dihydroxybiphenyl derivatives armed with benzothiazole moieties

    Science.gov (United States)

    Alshargabi, Arwa; Yeap, Guan-Yeow; Mahmood, Wan Ahmad Kamil; Samikannu, Rakesh

    2013-05-01

    A new series of catechol, 4,5-dibromocatechol, resorcinol, hydroquinone and 4-4'-dihydroxybiphenyl derivatives possessing two benzothiazole moieties at respective positions of 1,2, 1,3, 1,4 and/or 4,4' has successfully been synthesized. The molecular structures were fully elucidated by spectroscopic techniques (1H NMR, 13C NMR and two dimensional COSY, HMBC, HMQC, DEPT-135 and DEPT-90). The connectivity study between the cause of using different core systems in the target compounds and the anisotropic behavior as inferred from phase transition temperature and relevant morphology studies has led to some unique features arising from this series. Compounds with ortho substituent exhibit enantiotropic N and SmA phases. The analogues containing resorcinol and 4,4'-disubstituentbiphenyl show enanotiotropic nematic behavior while the hydroquinone derivative induces the formation of monotropic nematogen. An extensive study to further substantiate the relationship between the stability of the nematic phase and associated transition temperatures due to different core systems is also reported.

  4. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    Science.gov (United States)

    Krueger, Martin C; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar

    2015-01-01

    Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  5. Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds.

    Science.gov (United States)

    Sulistyaningdyah, Woro Triarsi; Ogawa, Jun; Li, Qing-Shan; Maeda, Chiharu; Yano, Yuki; Schmid, Rolf D; Shimizu, Sakayu

    2005-06-01

    Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12-20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min(-1) nmol(-1) P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml(-1) 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml(-1) 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.

  6. Clinical Evaluation of a 4% Hydroquinone + 1% Retinol Treatment Regimen for Improving Melasma and Photodamage in Fitzpatrick Skin Types III-VI.

    Science.gov (United States)

    Rendon, Marta I; Barkovic, Sylvia

    2016-11-01

    The bene ts of monotherapy with hydroquinone for melasma and retinoids for photodamaged skin is well established. Here we report results of a hydroquinone skincare regimen designed for melasma treatment combined with a cosmetic retinol cream on subjects presenting with both melasma and facial photodamage in a 24-week study. Improvement in melasma and photodamage ef cacy pa- rameters of melasma pigmentation intensity and melasma area and severity index (MASI), as well as overall photodamage and mottled hyperpigmentation were found by week 4, the rst post-baseline time point. By week 8 signi cant improvements were also found in melasma disease severity assessment, tactile roughness, ne wrinkles, crepiness, actinic lentigines, and laxity. By week 18 signi cant reduction in coarse wrinkles was evident. Bene ts persisted through the study end on the panel of 31 subjects, with over 3⁄4 of par- ticipants demonstrating improvements in 10 of the 11 graded attributes. For the remaining attribute, coarse wrinkling, approximately 50% of the panel showed improvement. The regimen produced an average of "marked improvement" in melasma severity (51-75% improvement). Results of tolerance evaluations documented overall treatment mildness for a majority of the study participants. Subject questionnaires concur with high ratings of the study regimen for tolerability, ef cacy perception, product aesthetics and overall treat- ment satisfaction in subjects of Fitzpatrick Skin Type III-VI classi cation with melasma and photodamage in mild-to-moderate severity. J Drugs Dermatol. 2016;15(11):1435-1441..

  7. Benzene exposure on a crude oil production vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kirkeleit, J; Riise, T.; Bratveit, M.; Moen, B.E. [University of Bergen (Norway). Dept. of Public Health and Primary Health Care

    2006-07-01

    Objectives: The aim was to describe the personal exposure to benzene on a typical crude oil production vessel and to identify factors influencing the exposure level. Methods: The study population included process operators, deck workers, mechanics and contractors on a production vessel in the Norwegian sector of the North Sea. The personal exposure to benzene during ordinary activity, during a short shutdown and during tank work was monitored using organic vapour passive dosimeter badges (3MTM3500). Information on the tasks performed on the day of sampling was recorded. Exposure was assessed by grouping the measurements according to job category, mode of operation and the tasks performed on the sampling day. Univariate analysis of variance was used to test the differences between the groups. Results: Forty-two workers participated in the exposure assessment, comprising a total of 139 measurements. The arithmetic and geometric mean of benzene exposure for all measurements was 0.43 and 0.02 p.p.m., respectively. Twenty-five measurements (18%) were below the limit of detection (0.001 p.p.m.), while ten samples (7%) exceeded the occupational exposure limit of 0.6 p.p.m. The geometric mean exposure was 0.004 p.p.m. (95% CI 0.003-0.006) during ordinary activity, 0.01 p.p.m. (95% CI 0.005-0.02) during shutdown and 0.28 p.p.m. (95% CI 0.16-0.49) during tank work. Workers performing annual cleaning and maintenance of tanks containing crude oil or residues of crude oil had higher levels of exposure than workers performing other tasks, including work near open hydrocarbon-transport systems (all P < 0.001). However, because of the mandatory use of respirators, the actual personal benzene exposure was lower. The job categories explained only 5% of the variance in exposure, whereas grouping by mode of operation explained 54% of the variance and grouping by task 68%. Conclusion: The results show that, although benzene exposure during ordinary and high activity seems to be low in

  8. Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene.

    Science.gov (United States)

    Fan, Ruifang; Li, Junnan; Chen, Laiguo; Xu, Zhencheng; He, Dechun; Zhou, Yuanxiu; Zhu, Yuanyuan; Wei, Fusheng; Li, Jihua

    2014-11-01

    Large amounts of carcinogenic polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) might be emitted from incomplete combustion reactions in both coal tar factories and biomass fuels in rural China. The health effects arising from exposure to PAHs and BT are a concern for residents of rural areas close to coal tar plants. To assess the environmental risk and major exposure sources, 100 coke plant workers and 25 farmers in Qujing, China were recruited. The levels of 10 mono-hydroxylated PAHs (OH-PAHs), four BT metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine collected from the subjects were measured. The 8-OHdG levels in the urine were determined to evaluate the oxidative DNA damage induced by the PAHs and BT. The results showed that the levels of the OH-PAHs, particularly those of 1-hydroxynathalene and 1-hydroxypyrene, in the farmers were 1-7 times higher than those in the workers. The concentrations of the BT metabolites were comparable between the workers and farmers. Although the exact work location within a coke oven plant might affect the levels of the OH-PAHs, one-way ANOVA revealed no significant differences for either the OH-PAHs levels or the BT concentrations among the three groups working at different work sites. The geometric mean concentration (9.17 µg/g creatinine) of 8-OHdG was significantly higher in the farmers than in the plant workers (6.27 µg/g creatinine). The levels of 8-OHdG did not correlate with the total concentrations of OH-PAHs and the total levels of BT metabolites. Incompletely combusted biomass fuels might be the major exposure source, contributing more PAHs and BT to the local residents of Qujing. The estimated daily intakes (EDIs) of naphthalene and fluorene for all of the workers and most of the farmers were below the reference doses (RfDs) recommended by the U.S. Environmental Protection Agency (EPA), except for the pyrene levels in two farmers. However, the EDIs of benzene in the workers and local

  9. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Tian eZhang

    2014-05-01

    Full Text Available Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

  10. Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms.

    Science.gov (United States)

    Fustinoni, Silvia; Consonni, Dario; Campo, Laura; Buratti, Marina; Colombi, Antonio; Pesatori, Angela C; Bonzini, Matteo; Bertazzi, Pier A; Foà, Vito; Garte, Seymour; Farmer, Peter B; Levy, Leonard S; Pala, Mauro; Valerio, Federico; Fontana, Vincenzo; Desideri, Arianna; Merlo, Domenico F

    2005-09-01

    Benzene is a human carcinogen and an ubiquitous environmental pollutant. Identification of specific and sensitive biological markers is critical for the definition of exposure to low benzene level and the evaluation of the health risk posed by this exposure. This investigation compared urinary trans,trans-muconic acid (t,t-MA), S-phenylmercapturic acid, and benzene (U-benzene) as biomarkers to assess benzene exposure and evaluated the influence of smoking and the genetic polymorphisms CYP2E1 (RsaI and DraI) and NADPH quinone oxidoreductase-1 on these indices. Gas station attendants, urban policemen, bus drivers, and two groups of controls were studied (415 subjects). Median benzene exposure was 61, 22, 21, 9 and 6 microg/m(3), respectively, with higher levels in workers than in controls. U-benzene, but not t,t-MA and S-phenylmercapturic acid, showed an exposure-related increase. All the biomarkers were strongly influenced by cigarette smoking, with values up to 8-fold higher in smokers compared with nonsmokers. Significant correlations of the biomarkers with each other and with urinary cotinine were found. A possible influence of genetic polymorphism of CYP2E1 (RsaI and/or DraI) on t,t-MA and U-benzene in subjects with a variant allele was found. Multiple linear regression analysis correlated the urinary markers with exposure, smoking status, and CYP2E1 (RsaI; R(2) up to 0.55 for U-benzene). In conclusion, in the range of investigated benzene levels (<478 micro/m(3) or <0.15 ppm), smoking may be regarded as the major source of benzene intake; among the study indices, U-benzene is the marker of choice for biomonitoring low-level occupational and environmental benzene exposure.

  11. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  12. Anticancer properties of Monascus metabolites.

    Science.gov (United States)

    Yang, Tao; Liu, Junwen; Luo, Feijun; Lin, Qinlu; Rosol, Thomas J; Deng, Xiyun

    2014-08-01

    This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans.

  13. Understanding and classifying metabolite space and Metabolite-Likeness

    NARCIS (Netherlands)

    Peironcely, J.E.; Reijmers, T.; Coulier, L.; Bender, A.; Hankemeier, T.

    2011-01-01

    While the entirety of 'Chemical Space' is huge (and assumed to contain between 1063 and 10200 'small molecules'), distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolite

  14. The secondary metabolite bioinformatics portal

    DEFF Research Database (Denmark)

    Weber, Tilmann; Kim, Hyun Uk

    2016-01-01

    . In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http...

  15. Primary expectations of secondary metabolites

    Science.gov (United States)

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  16. Real-time diode laser measurements of vapor-phase benzene.

    Science.gov (United States)

    Jeffers, J D; Roller, C B; Namjou, K; Evans, M A; McSpadden, L; Grego, J; McCann, P J

    2004-01-15

    An absorption spectrometer equipped with a IV-VI semiconductor tunable mid-IR diode laser was used to make sensitive measurements of benzene (C(6)H(6)) gas in the 5.1-microm spectral range. Wavelength modulation coupled with second-harmonic detection achieved accurate real-time quantification of benzene concentrations down to a minimum detection limit of 1 ppmv with an integration time of 4 s. A variety of calibrated benzene-sensing measurements were made, including the determination of the benzene concentrations in vehicle exhaust and headspace vapors from unleaded gasoline and other liquids. Kinetic phenomena, including the monitoring of benzene evaporation and absorption/desorption by granulated activated carbon were observed with the instrument. Measurements were performed that allowed experimental determination of the activation energy for desorption of benzene from activated carbon, which was found to be 198 meV/molecule (19.0 kJ/mol).

  17. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  18. ANALYSES OF CHROMOSOME ABERRATIONS IN LYMPHOCYTES AND BONE MARROW CELLS INDUCED BY RADIATION OR BENZENE

    Institute of Scientific and Technical Information of China (English)

    张鸿源; 王兰金; 等

    1995-01-01

    The chromosomoe and chromatid type aberration can be induced by benzene and the dicentric and ring ones were not observed in vitro experiment but observed in vivo one.In vitro experiment a good linear reression can be given between benzene concentrations and total aberration cells while power regression for radiation dose.The chromosome aberrations induced by benzene combined with radiation in rabbit blood lymphocytes are higher than in bone marryow cells.

  19. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    Science.gov (United States)

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 μM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.

  20. Benzene inhalation effects upon tetanus antitoxin. Responses and leukemogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Stoner, R D; Drew, R T; Bernstein, D M

    1980-01-01

    The effects of inhaled benzene on primary and secondary antibody responses and the incidence of leukemia in mice are reported. Young adult mice were given 5, 12, or 22 exposures to 400 ppM benzene for 6 hrs/day 5 days/week. After the exposure periods, the mice were immunized with absorbed tetanus toxoid (APTT) and/or fluid tetanus toxid (FTT). Exposure to benzene increasingly suppressed primary antibody responses to both antigens. Secondary antibody responses to FTT were nearly normal in animals given 10, 15, or 20 exposures to 400 ppM benzene. Other groups of mice were exposed to either 200 ppM or 50 ppM benzene. Primary antibody responses elicited with FTT and/or APTT were nearly normal in all mice exposed to 50 ppM benzene and in mice exposed to 200 ppM benzene for 5 days. However, 10 and 20 exposures to 200 ppM benzene inhibited antibody production. The effects of chronically inhaled 300 ppM benzene on the time of onset and incidence of leukemia in 400 7-month-old female HRS/J mice were also studied. Two genotypes were used; the (hr/hr) hairless mice are leukemia-prone, whereas the (hr/+) haired mice are more resistant to leukemia. The exposure continued for a period of 6 months. Lymphoid, myeloid, and mixed (lymphoid and myeloid) leukemias were observed. Ninety percent of the (hr/hr) mice exposed to benzene died from leukemia as compared with 91% for the (hr/hr) air control group. Eighty-five percent of the (hr/+) mice exposed to benzene died from leukemia as compared with 81% for the (hr/+) air control group. Exposures to 300 ppM benzene did not alter the time of onset or the incidence of leukemia commonly expected in HRS/J mice.

  1. Metabolite profiles of common Stemphylium species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Solfrizzo, Michelle; Visconti, Angelo

    1995-01-01

    Thirty-three isolates of Stemphylium spp. have been analysed for their metabolite profiles. Five metabolites, stemphylin, stemphyloxin II, stemphyperylenol, stemphol and a stemphol related compound, have been detected by high-performance liquid chromatography and thin-layer chromatography...

  2. Pharmacokinetics of Tyrosol Metabolites in Rats

    OpenAIRE

    Da-Hye Lee; Yang-Ji Kim; Min Jung Kim; Jiyun Ahn; Tae-Youl Ha; Sang Hee Lee; Young Jin Jang; Chang Hwa Jung

    2016-01-01

    Tyrosol is considered a potential antioxidant; however, little is known regarding the pharmacokinetics of its metabolites. To study the pharmacokinetics of tyrosol-derived metabolites after oral administration of a single dose of tyrosol, we attempted to identify tyrosol metabolites in rat plasma by using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Two tyrosol metabolites (M1 and M2) were detected in the plasma. M1 was identified as...

  3. Modeling of Pervaporation Separation Benzene from Dilute Aqueous Solutions Through Polydimethylsiloxane Membranes

    Institute of Scientific and Technical Information of China (English)

    彭福兵; 姜忠义

    2005-01-01

    A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.

  4. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    Science.gov (United States)

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  5. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Vinci, Raquel [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Canfyn, Michael [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); De Meulenaer, Bruno [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Schaetzen, Thibault de; Van Overmeire, Ilse; De Beer, Jacques [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Van Loco, Joris, E-mail: Joris.VanLoco@iph.fgov.BE [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium)

    2010-07-05

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 {mu}g L{sup -1}).

  6. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS.

    Science.gov (United States)

    Vinci, Raquel Medeiros; Canfyn, Michael; De Meulenaer, Bruno; de Schaetzen, Thibault; Van Overmeire, Ilse; De Beer, Jacques; Van Loco, Joris

    2010-07-01

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 microg L(-1)).

  7. Pressure Dependence of Molar Volume near the Melting Point in Benzene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pressure dependence of the molar volume was at constant temperatures close to the melting point in benzene. The molar volume of benzene was calculated using experimental data for the thermal expansivity for constant temperatures of 25℃, 28.5℃, 40℃, and 51℃ at various pressures for both the solid and liquid phases. The predictions are in good agreement with the observed volumes in both the solid and liquid phases of benzene. The predicted values of the molar volume for a constant temperature of 28.5℃ in the liquid phase of benzene agree well with experimental data in the literature.

  8. Electrostatic-field-enhanced photoexfoliation of bilayer benzene: A first-principles study

    Science.gov (United States)

    Uchida, Kazuki; Silaeva, Elena P.; Watanabe, Kazuyuki

    2016-06-01

    Photoexfoliation of bilayer benzene in an external electrostatic (dc) field is studied using time-dependent density functional theory combined with molecular dynamics. We find that the dc-field-induced force on the upper benzene in addition to the repulsive interaction between the positively charged benzene molecules induced by the laser field leads to fast athermal exfoliation. Thus, we conclude that the dc field enhances the photoexfoliation due to dc-field emission in addition to laser-assisted photoemission. The athermal exfoliation process is shown to depend crucially on the charge state of benzene molecules rather than on the excitation energy supplied by the laser.

  9. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  10. trans-Dichloridobis(triphenylphosphane-κPpalladium(II benzene hemisolvate

    Directory of Open Access Journals (Sweden)

    Frank Meyer-Wegner

    2012-04-01

    Full Text Available The title complex, [PdCl2(C18H15P2]·0.5C6H6, has the PdII ion in a square-planar coordination mode (r.m.s. deviation for Pd, P and Cl atoms = 0.024 Å with the PPh3 and Cl ligands mutually trans. The benzene solvent molecule is located about a crystallographic inversion centre. The title complex is isostructural with trans-dichloridobis(triphenylphosphanepalladium(II 1,4-dichlorobenzene sesquisolvate [Kitano et al. (1983. Acta Cryst. C39, 1015–1017].

  11. Bis[diethyl(hydroxyammonium] benzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    De-Ming Xie

    2010-08-01

    Full Text Available In the centrosymmetric title compound, 2C4H12NO+·C8H4O42−, two N,N-diethyl(hydroxyammonium cations are linked to a benzene-1,4-dicarboxylate dianion by a combination of O—H...O and N—H...O hydrogen bonds, which can be described in graph-set terminology as R22(7. The crystal structure is further stabilized by C—H...O hydrogen bonds, leading to the fomation of a ribbon-like network.

  12. 氢醌对DNA甲基转移酶表达的影响%Effects of Hydroquinone on the Expression of DNA Methyltransferase

    Institute of Scientific and Technical Information of China (English)

    凌晓璇; 梁海荣; 黄明元; 杨慧; 唐焕文

    2012-01-01

    Objective To explore the molecular mechanisms of global DNA hypomethylation induced by hydroquinone (HQ). Methods TK6 cells were exposed to 2.5, 5.0, 10.0 and 20.0 μmol/L HQ prepared by PBS buffer, and TK6 cells treated with PBS served as the control. Expressions of DNA methyltransferase (DNMT), DNMT1 , DNMT3a and DNMT3b, were tested by real - time fluorescence quantitive PCR. Results Expressions of DNMTI, DNMT3a and DNMT3b mRNA in the HQ- treated cells were severely inhibited as compared to those in the control cells, with the most remarkable inhibition at 20 μmol/L, showing a decrease by 46%, 83% and 48% respectively (all P<0.05). The expressions of DNMT1 and DNMT3a showed more decrease with the increase of HQ dose. Conclusions Global DNA hypomethylation induced by hydroquinone may be associated with the deregulated expressions of DNMT1, DNMT3a and DNMT3b.%目的 探索氢醌(hydroquinone,HQ)致DNA整体低甲基化的分子机制.方法 以磷酸盐缓冲液(PBS)溶解HQ,以PBS处理组为对照组,分别以2.5、5.0、10.0和20.0μmol/L HQ染毒TK6细胞为处理组.应用实时荧光定量-聚合酶链反应检测DNA甲基转移酶DNMT1、DNMT3a和DNMT3b的表达水平. 结果 与对照组相比,DNMT1、DNMT3a和DNMT3b的mRNA表达量在各HQ处理组细胞中均下降,其中以20.0 μmol/L组细胞的下降最为明显,分别下降46%(P<0.05)、83% (P<0.05)和48% (P<0.05),且DNMT1和DNMT3a的表达量随着HQ剂量的增加而下降. 结论 HQ致DNA整体低甲基化下调机制可能与DNMT1、DNMT3a和DNMT3b表达异常有关.

  13. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  14. 10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.

    Science.gov (United States)

    2010-01-01

    ... metabolites Cutoff level Marijuana metabolites 50 Cocaine metabolites 300 Opiate metabolites 2000... Levels for Drugs and Drug Metabolites Drug or metabolites Cutoff level(ng/mL) Marijuana metabolite 1...

  15. Fungal metabolites with anticancer activity.

    Science.gov (United States)

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  16. Secondary metabolites from Eremostachys laciniata

    DEFF Research Database (Denmark)

    Calis, Ihsan; Güvenc, Aysegül; Armagan, Metin;

    2008-01-01

    From the aerial parts of Eremostachys laciniata (Lamiaceae), a new acidic iridoid glucoside, 5-desoxysesamosidic acid (1) was isolated in addition to thirteen known iridoid glucosides, 5-desoxysesamoside (2), sesamoside (3), 6β-hydroxy-7-epi-loganin (4), chlorotuberoside (5), 5-deoxypulchelloside...... elucidated from spectroscopic (UV, IR, 1D- and 2D-NMR) and ESI-MS evidence, as well as from their specific optical rotation. The presence of these metabolites of three different classes strongly supports the close relationship of the genera Eremostachys and Phlomis.......), and forsythoside B (18), and five flavone derivatives, luteolin (19), luteolin 7-O-β-D-glucopyranoside (20), luteolin 7-O-(6''-O-β-D-apiofuranosyl)-β-D-glucopyranoside (21), apigenin 7-O-β-D-glucopyranoside (22), and apigenin 7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (23). The structures of the metabolites were...

  17. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    Science.gov (United States)

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  18. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  19. Alkylation of Benzene with Propylene Catalyzed by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Sun Xuewen; Zhao Suoqi

    2006-01-01

    The alkylation of benzene with propylene catalyzed by ionic liquids to obtain cumene was investigated. Propylene conversion and cumene selectivity under mild reaction conditions were improved greatly after the ionic liquid was modified with HCl. Under the conditions of 20 oC, 0.1MPa, 5 min of reaction time, and a molar ratio of benzene to propylene of 10:1, propylene conversion increased from 83.6% to 100%, and cumene selectivity increased from 90.86% to 98.47%. In addition, it was found that the reaction could be carried out in two different stages so as to obtain a better result. At the first stage, the key reaction was alkylation and a higher propylene conversion was obtained at a lower temperature;At the second stage, the key reaction was transalkylation and a higher temperature was used to improve cumene selectivity. The reaction temperature, pressure and the amount of catalyst used in this work were lower than those used in traditional alkylation processes.

  20. Catalytic oxidation of benzene using DBD corona discharges.

    Science.gov (United States)

    Lu, B; Zhang, X; Yu, X; Feng, T; Yao, S

    2006-09-01

    Plasma oxidation of benzene (C(6)H(6)) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO2 or TiO2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C(6)H(6) was oxidized to carbon monoxide (CO) and dioxide (CO(2)). Typically, the energy efficiency at an energy density of 92J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO2, TiO2, and without MnO2 and TiO2, respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given.

  1. Benzene oxide is a substrate for glutathione S-transferases.

    Science.gov (United States)

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important.

  2. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  3. Separation of Benzene and Cyclohexane by Batch Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    XU Jiao; ZHANG Weijiang; GUI Xia

    2007-01-01

    Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dimethyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameterssuch as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyclohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mL/min, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.

  4. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  5. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.

    Science.gov (United States)

    Li, Yan; Deng, Haiqiang; Dick, Jeffrey E; Bard, Allen J

    2015-11-03

    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ε of 2.27, or cyclohexane, ε of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each i-t response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, i-t decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window.

  6. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O

    Science.gov (United States)

    Kharlamov, Alexey; Bondarenko, Marina; Kharlamova, Ganna; Fomenko, Veniamin

    2016-09-01

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C3N4. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets.

  7. Kojic acid vis-a-vis its combinations with hydroquinone and betamethasone valerate in melasma: A randomized, single blind, comparative study of efficacy and safety

    Directory of Open Access Journals (Sweden)

    Kirti S Deo

    2013-01-01

    Strict photoprotection and use of a SPF 15 sunscreen was advised during the day. Patients were evaluated every 2 weeks and a fall in MASI score was calculated at the end of the study period of 12 weeks by the same investigator. Results: The response was compared according to percentage decrease in MASI score. Efficacy was evaluated among the groups at the end of 3 months using bivariate analysis and calculated by using the paired ′t′ test. The clinical efficacy of group B was the highest followed closely by group D and group A, that of group C being the lowest. Conclusion: Kojic acid in synergy with hydroquinone is a superior depigmenting agent as compared with other combinations.

  8. The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE.

    Science.gov (United States)

    Alshahrani, Lina Abdullah; Li, Xi; Luo, Hui; Yang, Linlin; Wang, Mengmeng; Yan, Songling; Liu, Peng; Yang, Yuqin; Li, Quanhua

    2014-11-25

    A glassy carbon electrode was modified with a copper(II) complex [Cu(Sal-β-Ala) (3,5-DMPz)2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole) and single-walled carbon nanotubes (SWCNTs). The modified electrode was used to detect catechol (CT) and hydroquinone (HQ) and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5-215 μmol·L(-1) and 5-370 μmol·L(-1) with corresponding detection limits of 3.5 μmol·L(-1) and 1.46 μmol·L(-1) (S/N = 3) respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis.

  9. 紫外光谱法测定乙酸乙烯酯中的对苯二酚%Determination of hydroquinone in vinyl acetate with UV spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    李彬; 杨晓兰; 游世文

    2013-01-01

    采用紫外光谱法测定乙酸乙烯酯中对苯二酚含量时,乙酸乙烯酯中的有机杂质会对测试结果产生影响.其中乙醛、丙酮对测试结果的影响程度基本呈线性递增关系,而醋酸甲酯、醋酸乙酯对测试结果不会产生影响.%When UV spectrophotometry was used to determine the content of hydroquinone in vinyl acetate, the organic impurities contained in vinyl acetate will affect the test results. The effects of acetaldehyde and acetone on the test results linearly increase with increasing the amounts of acetaldehyde and acetone. Whereas, the methyl acetate and ethyl acetate do not affect the test results.

  10. Discrimination and simultaneous determination of hydroquinone and catechol by tunable polymerization of imidazolium-based ionic liquid on multi-walled carbon nanotube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun; Gao, Weiwei; Zhou, Shenghai; Shi, Hongyan; Huang, Hao; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2013-12-17

    Graphical abstract: -- Highlights: •Tunable free radical polymerization of ionic liquid on MWCNT surfaces. •Discrimination of hydroquinone and catechol at functional electrochemical interface. •Excellent performances in simultaneous determination based on cation-π interaction. -- Abstract: Tunable polymerization of ionic liquid on the surfaces of multi-walled carbon nanotubes (MWCNTs) was achieved by a mild thermal-initiation-free radical reaction of 3-ethy-1-vinylimidazolium tetrafluoroborate in the presence of MWCNTs. Successful modification of polymeric ionic liquid (PIL) on MWCNTs surfaces (PIL-MWCNTs) was demonstrated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The resulting PIL-MWCNTs possessed unique features of high dispersity in aqueous solution and tunable thickness of PIL layer, due to positive imidazole groups along PIL chains and controllable ionic liquid polymerization by tuning the ratio of precursor. Based on cation-π interaction between the positive imidazole groups on PIL-MWCNTs surface and hydroquinone (HQ) or catechol (CC), excellent discrimination ability toward HQ and CC and improved simultaneous detection performance were achieved. The linear range for HQ and CC were 1.0 × 10{sup −6} to 5.0 × 10{sup −4} M and 1.0 × 10{sup −6} to 4.0 × 10{sup −4} M, respectively. The detection limit for HQ was 4.0 × 10{sup −7} M and for CC 1.7 × 10{sup −7} M (S/N = 3), correspondingly.

  11. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry

    Science.gov (United States)

    Krueger, Martin C.; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar

    2015-01-01

    Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants. PMID:26147966

  12. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    Directory of Open Access Journals (Sweden)

    Martin C Krueger

    Full Text Available Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS. Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ, which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  13. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  14. Detection of Hydroquinone by Graphene Quantum Dots%石墨烯量子点对对苯二酚的检测

    Institute of Scientific and Technical Information of China (English)

    刘鹏超; 孙向英; 杨传孝

    2014-01-01

    以柠檬酸为碳源,采用一步熔融法制备了石墨烯量子点,通过红外光谱、紫外?可见吸收光谱、荧光光谱对其光学性能进行表征,同时考察了石墨烯量子点耐光漂白能力和抗盐性.该石墨烯量子点可应用于对苯二酚的检测,其荧光强度与对苯二酚浓度成良好的线性关系(R2=0.979),方法的检测限为3.1 nmol·L-1,线性范围为1.0×10-7~5.0×10-6 mol·L-1.%With citric acid as carbon source,graphene quantum dots was prepared by one?step melting method.The spectral properties of the graphene quantum dots was characterized by FTIR,UV?visible absorption spectra and fluores-cence spectra.In addition,its ability of light bleaching and salt resistance were investigated.Then,the graphene quantum dots was used for the detection of hydroquinone by a fluorescent sensor.The fluorescence intensity of graphene quantum dots and the concentration of hydroquinone exhibited a good linear relationship (R2=0.979)with a wide concentrations range of 1.0×10-7~5.0×10-6 mol·L-1 as well as the limit of detection was calculated to be 3.1 nmol·L-1 .

  15. Open-Label Treatment of Moderate or Marked Melasma with a 4% Hydroquinone Skin Care System Plus 0.05% Tretinoin Cream

    Science.gov (United States)

    Rendon, Marta; Dibernardo, Barry; Bruce, Suzanne; Lucas-Anthony, Chere; Watson, Joanne

    2013-01-01

    Objective: To evaluate treating epidermal melasma using a 4% hydroquinone skin care system plus tretinoin 0.05% cream. Design: Multicenter open-label study with all patients receiving above-mentioned treatment for up to 24 weeks. Setting: Private dermatology and plastic surgery clinics and clinical research facilities. Participants: Thirty-seven adult females with moderate or marked epidermal melasma, melasma pigmentation of mild-to-marked intensity and Fitzpatrick skin type III to VI. Measurements: Melasma severity melasma pigmentation intensity melasma improvement, patient satisfaction, quality-of-life measures, erythema, dryness, peeling, burning/stinging. Results: No patient discontinued due to lack of efficacy or treatment-related adverse events. Treatment was associated with a significant reduction from baseline in melasma severity and melasma pigmentation intensity from Week 4 onward (P≤0.001), and 100 percent of patients showed improvement from Week 8 onward. At Week 24, 100 percent of patients were “satisfied” or “very satisfied” with the overall effectiveness of their treatment. Patients’ quality of life also improved (e.g., the proportion of patients feeling embarrassed or self-conscious about their skin “a lot” or “very much” declined from 78 percent at baseline to four percent at Week 24). Mean and median scores for erythema, dryness, peeling, and burning/stinging did not exceed trace levels. Conclusion: Treating moderate-to-severe melasma using the 4% hydroquinone skin care system plus 0.05% tretinoin can significantly reduce the severity of melasma and the intensity of melasma pigmentation within four weeks. Treatment was generally well tolerated and associated with an improved quality of life and high levels of patient satisfaction. PMID:24307923

  16. Variability of benzene exposure among filling station attendants; Variabilita` dell`esposizione a benzene tra gli addetti all`erogazione di carburanti

    Energy Technology Data Exchange (ETDEWEB)

    Carere, A.; Iacovella, N.; Turrio Baldassarri, L. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia; Fuselli, S.; Iavarone, I.; Lagorio, S.; Proietto, A.R. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale

    1996-12-01

    A monitoring survey of filling station attendants aimed at identifying sources of variability of exposure to benzene and other aromatics was carried out. Concurrent samples of the worker`s breathing zone air, atmospheric air in the service station proximity, and gasoline were collected, along with information about daily workloads and other exposure-related factors. Benzene personal exposure was characterised by a small between-worker variability and a predominant within-worker variance component. Such elevated day-to-day variability yields to imprecise estimates of mean personal exposure. Almost 70% of the overall personal exposure variance was explained by a model including daily benzene from dispensed fuel, presence of a shelter over the refueling area, amount of fuel supplied to the station if a delivery occurred, and background atmospheric benzene concentration.

  17. Hydrogenation of Benzene over Mo2C/Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Wu Weicheng

    2008-01-01

    The process of benzene hydrogenation over Mo2C catalyst has been studied.Mo2C was the active phase in benzene hydrogenation.The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.

  18. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    Science.gov (United States)

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.

  19. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, NLM; Klis, SFL; Muijser, H; Kulig, BM; Ravensberg, LC; Smoorenburg, GF

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was foun

  20. Multiphoton Ionization of Mixed Benzene-Water-Metanol Clusters. Competitive Microscopic Solvation

    Science.gov (United States)

    Börnsen, K. O.; Selzle, H. L.; Schlag, E. W.

    1990-10-01

    Clusters of benzene with polar molecules are observed from a supersonic jet expansion of a ternary mixture of benzene, water and methanol seeded in Helium. It is found that complex formation with methanol is strongly enhanced when a single water molecule is preadsorbed.

  1. Assessment of human exposure to benzene through foods from the Belgian market.

    Science.gov (United States)

    Medeiros Vinci, Raquel; Jacxsens, Liesbeth; Van Loco, Joris; Matsiko, Eric; Lachat, Carl; de Schaetzen, Thibault; Canfyn, Michael; Van Overmeire, Ilse; Kolsteren, Patrick; De Meulenaer, Bruno

    2012-08-01

    Benzene is a volatile organic compound known to be carcinogenic to humans (Group 1) and may be present in food. In the present study, 455 food samples from the Belgian market were analyzed for benzene contents and some possible sources of its occurrence in the foodstuffs were evaluated. Benzene was found above the level of detection in 58% of analyzed samples with the highest contents found in processed foods such as smoked and canned fish, and foods which contained these as ingredients (up to 76.21 μg kg(-1)). Unprocessed foods such as raw meat, fish, and eggs contained much lower concentrations of benzene. Using the benzene concentrations in food, a quantitative dietary exposure assessment of benzene intake was conducted on a national representative sample of the Belgian population over 15 years of age. The mean benzene intake for all foods was 0.020 μg kg bw d(-1) according to a probabilistic analysis. These values are below the minimum risk level for oral chronic exposure to benzene (0.5 μg kg bw d(-1)).

  2. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dipty [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India); Fulekar, M.H., E-mail: mhfulekar@yahoo.com [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India)

    2010-03-15

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  3. Effects of benzene inhalation on lymphocyte subpopulations and immune response in mice.

    Science.gov (United States)

    Aoyama, K

    1986-08-01

    To clarify the immunotoxicity of benzene, the effects of benzene inhalation on T and B lymphocytes and immune responses in mice were examined. BALB/c male mice were exposed to 50 or 200 ppm benzene vapor, 6 hr/day for 7 or 14 consecutive days. T and B lymphocytes, in blood and spleen, were detected by the cytotoxicity assay with anti-Thy-1.2 monoclonal antibody and the membrane immunofluorescence test with anti-immunoglobulin antibody, respectively. Humoral immune response to sheep red blood cells was determined by the hemolytic plaque-forming cell assay. Cell-mediated immune response was measured by contact sensitivity (CS) to picryl chloride. The activity of suppressor cells was evaluated in spleen by the suppressive effect on passive transfer of CS. The ratio and absolute number of T and B lymphocytes in blood and spleen were depressed after a 7-day exposure at 50 ppm benzene. The depression of B lymphocytes was dose dependent and more intense than that of T lymphocytes. The ability to form antibodies was suppressed by benzene at all exposure levels, but the CS response was resistant to benzene inhalation and rather enhanced at 200 ppm exposure for 14 days. The activity of suppressor cells could not be detected at this dose level. These data show that benzene inhalation effects on humoral and cell-mediated immune responses are a result of the selective toxicity of benzene to B lymphocytes and suppressor T cells.

  4. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    Science.gov (United States)

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  5. 11. USING BIOMARKERS TO IMPROVE BENZENE RISK ASSESSMENT AND FIND THE CAUSES OF LEUKAEMIA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Benzene is an established cause of leukemia at high doses, but the risk it poses at exposures of ≤1ppm in air is diffcult to quantify. Molecular biomarkers may improve the accuracy of this risk assessment. We have therefore attempted to develop and validate biomarkers of exposure, early effect and susceptibility to benzene. We have shown

  6. 优化苯塔流程减少石油苯损失%To Optimize the Benzene Tower Process and Reduce Oil Benzene Loss

    Institute of Scientific and Technical Information of China (English)

    聂玉萍; 佟文媛

    2015-01-01

    歧化装置包括歧化和烷基化转移部分及苯-甲苯分馏部分,通过探讨歧化装置各部分操作及石油苯产量状况,围绕如何减少石油苯损失,提高石油苯产量展开讨论,最终得出结论并制定对策以期能够减少石油苯损失,提高石油苯产量,从而提高经济效益。%Disproportionation unit includes disproportionation and alkylation transfer part and the benzene-toluene fractionation part, this paper discussed how to reduce oil benzene loss and improve oil benzene production through the discussion of the operation of each part of disproportionation unit and the status of oil benzene production, and eventually reached a conclusion and developed countermeasures to reduce oil benzene loss and improve oil benzene production, thus enhancing economic efficiency.

  7. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  8. Structural elucidation of metabolites of ginkgolic acid in rat liver microsomes by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry and hydrogen/deuterium exchange.

    Science.gov (United States)

    Liu, Z H; Chen, J; Yu, L S; Jiang, H D; Yao, T W; Zeng, S

    2009-07-01

    Ginkgolic acids have been shown to possess allergenic as well as genotoxic and cytotoxic properties. The question arises whether the metabolism of ginkgolic acids in the liver could decrease or increase their toxicity. In this study, the in vitro metabolism of ginkgolic acid (15:1, GA), one component of ginkgo acids, was investigated as a model compound in Sprague-Dawley rat liver microsomes. The metabolites were analyzed by ultra-performance liquid chromatography coupled with photodiode array detector/negative-ion electrospray ionization tandem mass spectrometry (UPLC-PDA/ESI-MS/MS) and hydrogen/deuterium (H/D) exchange. The result showed that the benzene ring remained unchanged and the oxidations occurred at the side alkyl chain in rat liver microsomes. At least eight metabolites were found. Among them, six phase I metabolites were tentatively identified. This study might be useful for the investigation of toxicological mechanism of ginkgolic acids.

  9. Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing-Yun; LIANG Qi-Min; SONG Chen; XIA Yue-Yuan; ZHAO Ming-wen; LIU Xiang-Dong; ZHANG Hong-Yu

    2006-01-01

    The hydrogen storage capacity of(5,5)single-walled carbon nanotubes(SWNTs)decorated chemically with benzene moieties is studied by using molecular dynamics simulations(MDSs)and density functional theory(DFT) calculations.It is found that benzene molecules colliding on (5,5) SWNTs at incident energy of 50 eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs.The MDSs indicate that when the benzene moiety decorated(5,5)SWNTs and a pristine(5,5)SWNT are put in a box in which hydrogen molecules are filled to a pressure of~26 atm,the hydrogen storage capacity of the benzene moiety decorated(5,5)SWNT is about 4.7wt.% and that of the pristine (5,5) SwNT is nearly 3.9 wt.%.

  10. The influence of ethanol on the stem cell toxicity of benzene in mice.

    Science.gov (United States)

    Seidel, H J; Bader, R; Weber, L; Barthel, E

    1990-08-01

    BDF1 mice were exposed to 100, 300, and 900 ppm benzene vapor, and the numbers of hematopoietic progenitor cells, early and late erythroid progenitors (BFU-E and CFU-E) and granuloid progenitors (CFU-C), were determined with and without additional exposure to ethanol (5, 10, 15 vol%) in the drinking water. The duration of benzene inhalation was up to 4 weeks, 6 hr per day, 5 days per week. It was shown that the number of CFU-E per femur was depressed in a dose-dependent manner by benzene alone and also by ethanol combined with a given benzene concentration. CFU-E showed rapid regeneration after the end of the exposure, but not BFU-E and CFU-C. Prolongation of the ethanol exposure after withdrawal of benzene had only a marginal effect on progenitor cell regeneration.

  11. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    Science.gov (United States)

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ.

  12. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    Science.gov (United States)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling.

  13. Metabolite

    Science.gov (United States)

    Kumar V, Abbas AK, Aster JC. Cellular responses to stress and toxic insults: Adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and Cotran Pathologic Basis of Disease . 9th ed. Philadelphia, PA: ...

  14. Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions.

    Science.gov (United States)

    Rakoczy, Jana; Schleinitz, Kathleen M; Müller, Nicolai; Richnow, Hans H; Vogt, Carsten

    2011-08-01

    Syntrophic mineralisation of benzene, as recently proposed for a sulphate-reducing enrichment culture, was tested in product inhibition experiments with acetate and hydrogen, both putative intermediates of anaerobic benzene fermentation. Using [(13)C(6)]-benzene enabled tracking the inhibition of benzene mineralisation sensitively by analysis of (13)CO(2). In noninhibited cultures, hydrogen was detected at partial pressures of 2.4 × 10(-6) ± 1.5 × 10(-6) atm. Acetate was detected at concentrations of 17 ± 2 μM. Spiking with 0.1 atm hydrogen produced a transient inhibitory effect on (13)CO(2) formation. In cultures spiked with higher amounts of hydrogen, benzene mineralisation did not restart after hydrogen consumption, possibly due to the toxic effects of the sulphide produced. An inhibitory effect was also observed when acetate was added to the cultures (0.3, 3.5 and 30 mM). Benzene mineralisation resumed after acetate was degraded to concentrations found in noninhibited cultures, indicating that acetate is another key intermediate in anaerobic benzene mineralisation. Although benzene mineralisation by a single sulphate reducer cannot be ruled out, our results strongly point to an involvement of syntrophic interactions in the process. Thermodynamic calculations revealed that, under in situ conditions, benzene fermentation to hydrogen and acetate yielded a free energy change of ΔG'=-83.1 ± 5.6 kJ mol(-1). Benzene mineralisation ceased when ΔG' values declined below -61.3 ± 5.3 kJ mol(-1) in the presence of acetate, indicating that ATP-consuming reactions are involved in the pathway.

  15. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  16. In situ FTIR Investigation of Magnetic Field Effect on Heterogeneous Photocatalytic Degradation of Benzene over Pt/TiO2

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In situ FTIR spectroscopy was utlized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.

  17. Nonthermal plasma assisted photocatalytic oxidation of dilute benzene

    Indian Academy of Sciences (India)

    J Karuppiah; E Linga Reddy; L Sivachandiran; R Karvembu; Ch Subrahmanyam

    2012-07-01

    Oxidative decomposition of low concentrations (50-1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor with the inner electrode made up of stainless steel fibres (SMF) modified with transition metal oxides in such a way to integrate the catalyst in discharge zone. Typical results indicate the better performance of MnO and TiO2/MnO modified systems, which may be attributed to the in situ decomposition of ozone on the surface of MnO that may lead to the formation of atomic oxygen; whereas ultraviolet light induced photocatalytic oxidation may be taking place with TiO2 modified systems. Water vapour improved the selectivity to total oxidation.

  18. Assessment of population exposure to air pollution by benzene.

    Science.gov (United States)

    Tchepel, Oxana; Penedo, Ana; Gomes, Madalena

    2007-05-01

    Biomonitoring is one of the methods that allow to identify population groups that have significantly higher exposures to a particular chemical than the general population. However, use of biomonitoring is particularly useful when applied in combination with other methods of pollution exposure assessment. The current study is focused on the developing of the modelling approach to estimate population exposure to benzene through inhalation. The model is based on a microenvironment approach and is adapted to be applied in urban areas where the pattern of exposure is complex. The results provided by the model may be used in combination with human biomonitoring in order to select who and where should monitoring be done, as well as for interpretation and extrapolation of biomonitoring results.

  19. Localized helium excitations in 4He_N-benzene clusters

    CERN Document Server

    Huang, P; Huang, Patrick

    2003-01-01

    We compute ground and excited state properties of small helium clusters 4He_N containing a single benzene impurity molecule. Ground-state structures and energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational motion near the molecule surface are evaluated using the projection operator, imaginary time spectral evolution (POITSE) method. We find excitation energies of up to ~23 K above the ground state. These states all possess vibrational character of helium atoms in a highly anisotropic potential due to the aromatic molecule, and can be categorized in terms of localized and collective vibrational modes. These results appear to provide precursors for a transition from localized to collective helium excitations at molecular nanosubstrates of increasing size. We discuss the implications of these results for analysis of anomalous spectral features in recent spectroscopic studies of large aromatic molecules in helium clu...

  20. Benzene ring chains with lithium adsorption: Vibrations and their implications

    CERN Document Server

    Stegmann, Thomas; Seligman, Thomas H

    2016-01-01

    Lithium adsorption on aromatic molecules and polyacenes have been found to produce strong distortions associated to spontaneous symmetry breaking and lesser ones in more general cases. For polyphenyls we find similar, but more varied behaviour; an important feature is the fact that adsorption largely suppresses the torsion present in naked polyphenyl. The spectra of the vibrational modes distinguish the different structures of skeletons and adsorbates. In the more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essential followed by the adsorbate. Based on this we propose the possible use of such a chain of adsorbates on a chain of benzene rings as a quantum register with the lowest vibrations transmitting qubits for control gates. To strengthen this view and to show the effect of heavier alkalines we also present the very symmetric adsorption of ten rubidium atoms on pentaphenyl.

  1. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  2. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.

  3. 3-[(E-(4-Ethylphenyliminomethyl]benzene-1,2-diol

    Directory of Open Access Journals (Sweden)

    Zeynep Keleşoğlu

    2009-08-01

    Full Text Available The title compound, C15H15NO2, adopts the enol–imine tautomeric form. The dihedral angle between the two benzene rings is 48.1 (1°. Intramolecular O—H...N and O—H...O hydrogen bonds generate S(6 and S(5 ring motifs, respectively. In the crystal, molecules are linked into centrosymmetric R22(10 dimers via pairs of O—H...O hydrogen bonds and the dimers may interact through very weak by π–π interactions [centroid–centroid distance = 4.150 (1 Å]. The ethyl group is disordered over two orientations, with occupancies of 0.587 (11 and 0.413 (11.

  4. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  5. Pre-commissioning of 120 kt/a Unit for Hydrotreating Crude Coke Oven Benzene Implemented at Baoyuan Chemical Company

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Baoyuan Chemical Company, Ltd. in Taiyuan has per-formed the precommissioning of a 120 kt/a unit for hydrotreating crude coke oven benzene. This unit is the phase II construction of the 300 kt/a crude benzene hydrotreating project, which adopts the process technology for hydrotreating crude coke oven benzene developed indepen-dently by our own efforts.

  6. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  7. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Majcher, Emily H.; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2014-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  8. Metabolites from Alternaria Fungi and Their Bioactivities

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2013-05-01

    Full Text Available Alternaria is a cosmopolitan fungal genus widely distributing in soil and organic matter. It includes saprophytic, endophytic and pathogenic species. At least 268 metabolites from Alternaria fungi have been reported in the past few decades. They mainly include nitrogen-containing metabolites, steroids, terpenoids, pyranones, quinones, and phenolics. This review aims to briefly summarize the structurally different metabolites produced by Alternaria fungi, as well as their occurrences, biological activities and functions. Some considerations related to synthesis, biosynthesis, production and applications of the metabolites from Alternaria fungi are also discussed.

  9. 草鱼鱼鳞对对苯二酚的吸附特性及其机理%Adsorption Characteristics and Mechanism of Grass Carp Scales towards Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    熊进; 汪海波; 欧其语; 李彦; 刘良忠; 张寒俊

    2011-01-01

    In the present study,grass carp scales were used to remove hydroquinone from aqueous solutions under different experimental conditions.The effects of pH,adsorbent dose,adsorption time,adsorption temperature and initial hydroquinone concentration on adsorption efficiency were systematically investigated to explore the optimal conditions for the removal of hydroquinone.Meanwhile,its adsorption mechanism was also elucidated.The results showed that the adsorbent grass scrap scales revealed good adsorption capacity towards hydroquinone and the optimal adsorption conditions were pH 7,25 ℃ adsorption temperature,0.5 g/L adsorbent dose,100 mg/L initial hydroquinone concentration and 8 h adsorption time.Under the optimal adsorption conditions,the adsorption amount of hydroquinone was 76.71 mg/g.Further,kinetic and thermodynamic analyses indicated that the adsorption of hydroquinone by grass carp scales was mostly a physical adsorption process,which was a multilayer adsorption and fitted well with a pseudo-second order kinetic model.Moreover,the Freundlich isotherm model could well describe the isothermal adsorption of hydroquinone onto grass carp scales.%以草鱼鱼鳞为原料制备生物吸附剂,通过静态吸附实验研究其对水溶液中对苯二酚的吸附性能,系统地考察pH值、吸附剂用量、对苯二酚初始质量浓度、吸附时间、吸附温度对鱼鳞吸附效果的影响,并通过吸附动力学和热力学分析,探讨鱼鳞吸附对苯二酚的吸附机理。结果表明,鱼鳞吸附剂对对苯二酚具良好的吸附效果,其最佳吸附条件为:当温度为25℃、吸附剂用量0.5g/L、对苯二酚溶液初始质量浓度为100mg/L、溶液体系pH7、吸附时间8h时,鱼鳞吸附剂的吸附容量可达到76.71mg/g。吸附热力学和动力学分析表明,鱼鳞对对苯二酚的吸附是以物理吸附为主的多层吸附,准二级动力学模型可以较好地反映这种吸附动力学行为,Freundlich等温吸附方程

  10. Modification of the structural and electronic properties of graphene by the benzene molecule adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Krasnenko, Veera, E-mail: veera.krasnenko@ut.ee [University of Tartu, Institute of Physics, Riia 142, Tartu (Estonia); Kikas, Jaak; Brik, Mikhail G. [University of Tartu, Institute of Physics, Riia 142, Tartu (Estonia)

    2012-12-01

    A survey of the literature data on the adsorption of benzene on graphene or carbon nanotubes indicates that the distance between the graphene sheet and benzene molecule is determined from weak van der Waals forces ({approx}3.40 Angstrom-Sign ). In our theoretical study, it was found that the benzene/graphene structure (in a specific configuration with carbon atoms located at the atop positions, stacked directly on the top of each other) forms strong covalent bonds, if the distance between the graphene and benzene is about 1.60 Angstrom-Sign . Such a short distance corresponds to about a half of the usual separation between the graphite layers. It was also shown that at such a short distance the carbon atoms of the benzene molecule move towards the graphene sheet, whereas the hydrogen atoms move in a different direction, thus breaking the benzene planar structure. In addition to the structural optimization, the calculated electronic and optical properties (significantly modified by the adsorbed benzene molecule) are presented as well.

  11. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  12. The role of C-H$\\ldots$ interaction in the stabilization of benzene and adamantane clusters

    Indian Academy of Sciences (India)

    R Mahesh Kumar; M Elango; R Parthasarathi; Dolly Vijay; V Subramanian

    2012-01-01

    In this investigation, a systematic attempt has been made to understand the interaction between adamantane and benzene using both ab initio and density functional theory methods. C-H$\\ldots$ type of interaction between C-H groups of adamantane and cloud of benzene is found as the important attraction for complex formation. The study also reveals that the methylene (-CH2) and methine (-CH) groups of adamantane interact with benzene resulting in different geometrical structures. And it is found that the former complex is stronger than the later. The diamondoid structure of adamantane enables it to interact with a maximum of four benzene molecules, each one along the four faces. The stability of the complex increases with increase in the number of benzene molecules. The energy decomposition analysis of adamantane-benzene complexes using DMA approach shows that the origin of the stability primarily arises from the dispersive interaction. The theory of atoms in molecules (AIM) supports the existence of weak interaction between the two systems. The electrostatic topography features provide clues for the mode of interaction of adamantane with benzene.

  13. Endohedral and exohedral complexes of substituted benzenes with carbon nanotubes and graphene

    Science.gov (United States)

    Munusamy, Elango; Wheeler, Steven E.

    2013-09-01

    Non-covalent complexes of cyclohexane and a series of substituted benzenes with short carbon nanotube (CNT) models are investigated primarily at the B97-D3/TZV(2d,2p) level of theory. Understanding non-covalent interactions of arenes with CNTs is vital for the development of next-generation organic electronic materials and for harnessing CNTs as nano-reactors and vehicles for drug delivery. The interaction of benzene and cyclohexane with the interior and exterior of CNTs depends on the nanotube diameter, particularly for endohedral complexes. Both benzene and cyclohexane interact more strongly with the interior of CNTs than the outside, with benzene exhibiting stronger interactions than cyclohexane for CNTs larger than (8,8). Studies of two benzenes inside of CNTs predict the formation of one-dimensional sandwich and parallel-displaced stacks of benzenes within certain sized CNTs, which could have interesting optoelectronic properties. Concerning the impact of substituents on the interaction of benzene with CNTs, we find that electrostatic interactions do not control substituent effects. That is, the electron-donating or -withdrawing character of the substituents is not correlated with the predicted interaction energies. Moreover, substituent effects are the same for both endohedral and exohedral complexes, despite the different electronic character of the interior and exterior CNT walls. Ultimately, substituent effects in π-stacking interactions with CNTs and graphene are explained by differences in dispersion interactions between the substituents and CNT walls or graphene surface.

  14. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  15. An Improved Analysis of the Sevoflurane-Benzene Structure by Chirped Pulse Ftmw Spectroscopy

    Science.gov (United States)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando; Kleiner, Isabelle

    2013-06-01

    Recent improvements to the 2-8 GHz CP-FTMW spectrometer at University of Virginia have improved the structural and spectroscopic analysis of the sevoflurane-benzene cluster. Previously reported results, although robust, were limited to a fit of the a-type transitions of the normal species in the determination of the six-fold barrier to benzene internal rotation. Structural analysis was limited to the benzene hydrogen atom positions using benzene-d_{1}. The increased sensitivity of the new 2-8 GHz setup allows for a full internal rotation analysis of the a- and c-type transitions of the normal species, which was performed with BELGI. A fit value for V_{6} of 32.868(11) cm^{-1} is determined. Additionally, a full substitution structure of the benzene carbon atom positions was determined in natural abundance. Also, new measurements of a sevoflurane/benzene-d_{1} mixture enabled detection of 33 of the 60 possible ^{2}D / ^{13}C double isotopologues. This abundance of isotopic data, a total of 45 isotopologues, enabled a full heavy atom least-squares r_{0} structure fit for the complex, including positions for all seven fluorines in sevoflurane. N. A. Seifert, D. P. Zaleski, J. L. Neill, B. H. Pate, A. Lesarri, M. Vallejo, E. J. Cocinero, F. Castańo. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  16. The IARC october 2009 evaluation of benzene carcinogenicity was incomplete and needs to be reconsidered.

    Science.gov (United States)

    Infante, Peter F

    2011-02-01

    I have been familiar with the toxicological and epidemiological literature on benzene since I was a member of the NIOSH Benzene Task Force in 1975. I also am familiar with the procedures of IARC Monographs meetings from past participation, and as observer I applied this experience to the Monograph 100 F review. In October of 2009, a Working Group (WG) of the International Agency for Research on Cancer (IARC) met in Lyon, France to evaluate the available evidence for site-specific cancer to humans for 33 chemical agents and related occupations previously categorized by IARC as human carcinogens. Generally, review and discussion of the epidemiological cancer literature related to benzene was limited due to the enormous amount of material needing to be covered since the last full monograph meeting on benzene in 1981, and because 32 other chemicals and occupations were also being evaluated. Moreover, among the 33 chemicals and occupations reviewed, there was some inconsistency in the use of studies for evaluating various cancers. In some situations, consideration could have been given to the inclusion of relevant unpublished, but readily available study results. Discussion and synthesis of the animal cancer studies and mechanistic data related to specific cancers also were limited. IARC's conclusion that there is sufficient evidence for benzene to cause acute non-lymphocytic leukemia only was based on an incomplete review. IARC should schedule another monographs meeting dedicated to a complete and full review and discussion of all potential cancers related to exposure to benzene and to benzene-containing mixtures.

  17. Comparison determinations of gold in ore between atomic absorption spectrophotometry and hydroquinone volumetric method%原子吸收分光光度法与氢醌容量法测定矿石中金的比对

    Institute of Scientific and Technical Information of China (English)

    李玲

    2013-01-01

    Two kinds of analysis methods of gold in the ores are compared. The results show that, the atomic absorption spectrophotometry is better than the hydroquinone volumetric method.%本文对矿石中金的两种分析方法进行了比对。结果表明原子吸收分光光度法要优于氢醌容量法。

  18. Effect of benzene on the cerebellar structure and behavioral characteristics in rats

    Institute of Scientific and Technical Information of China (English)

    Ali Rafati; Mahboobeh Erfanizadeh; Ali Noorafshan; Saied Karbalay-Doust

    2015-01-01

    Objective:To investigate the effects of benzene on rat’s cerebellum structure and behavioral characteristics, including anxiety and motor impairment. Methods:Twenty rats were randomly allocated into two groups orally receiving distilled water and benzene (200 mg/kg/day). A total of 10 rats were used at the beginning of benzene exposure. Two rats died during benzene treatment and 8 rats remained for evaluation of the behavioral test and finally 6 rats underwent histological assessment. At the end of the 4th week, motor function and anxiety were evaluated in rotarod test and elevated plus maze, respectively. Besides, the cerebellum was dissected for structural assessment using stereological methods. Results:Performance of the benzene-treated rats in fixed and accelerating speed rotarod was impaired and their riding time (endurance) was lower compared to the control group (P=0.02). The benzene-treated rats also spent less time in the open arms and had fewer entrances to the open arms in comparison to the control group, indicating anxiety (P=0.01). The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei, total number of the Purkinje, Bergmann, Golgi, granule, neurons and glial cells of the molecular layer, and neurons and glial cells of the intracerebellar nuclei were reduced by 34%-76%in the benzene-treated rats in comparison to the distilled water group (P=0.003). The most cell loss was seen in Bergmann glia. Conclusions:The structure of cerebellum altered after benzene treatment. In addition, motor impairment and anxiety could be seen in benzene-treated rats.

  19. Effect of benzene on the cerebellar structure and behavioral characteristics in rats

    Institute of Scientific and Technical Information of China (English)

    Ali; Rafati; Mahboobeh; Erfanizadeh; Ali; Noorafshan; Saied; Karbalay-Doust

    2015-01-01

    Objective: To investigate the effects of benzene on rat’s cerebellum structure and behavioral characteristics, including anxiety and motor impairment.Methods: Twenty rats were randomly allocated into two groups orally receiving distilled water and benzene(200 mg/kg/day). A total of 10 rats were used at the beginning of benzene exposure. Two rats died during benzene treatment and 8 rats remained for evaluation of the behavioral test and finally 6 rats underwent histological assessment. At the end of the 4th week, motor function and anxiety were evaluated in rotarod test and elevated plus maze, respectively. Besides, the cerebellum was dissected for structural assessment using stereological methods.Results: Performance of the benzene-treated rats in fixed and accelerating speed rotarod was impaired and their riding time(endurance) was lower compared to the control group(P = 0.02). The benzene-treated rats also spent less time in the open arms and had fewer entrances to the open arms in comparison to the control group, indicating anxiety(P = 0.01). The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei, total number of the Purkinje, Bergmann, Golgi, granule, neurons and glial cells of the molecular layer, and neurons and glial cells of the intracerebellar nuclei were reduced by 34%-76% in the benzene-treated rats in comparison to the distilled water group(P = 0.003). The most cell loss was seen in Bergmann glia. Conclusions: The structure of cerebellum altered after benzene treatment. In addition, motor impairment and anxiety could be seen in benzene-treated rats.

  20. Research progress of methods for detecting catechol and hydroquinone in water%水体中邻苯二酚和对苯二酚检测方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    王勇; 张闪; 董莹; 屈建莹

    2015-01-01

    Catechol and hydroquinone are major pollutants in water and have serious damage to organisms .Therefore ,it is of special significance to establish fast ,facile ,sensitive and efficient methods to identify and quantify trace catechol and hydroquinone .A review is provided of the research progress of the major methods for detecting catechol and hydroquinone ,including chromatography ,spectrophotometry ,chemiluminescence and electrochemistry ,and the fea‐tures of various methods are briefed .Furthermore ,the development trend of the methods for the determination of catechol and hydroquninone is discussed .%邻苯二酚和对苯二酚是水体中重要的污染物,对生物体具有严重的危害作用,故实现邻苯二酚与对苯二酚的快速简便、灵敏高效的检测具有十分重要的意义。本文作者综述了近几十年来国内外检测邻苯二酚和对苯二酚的主要方法,如色谱法、分光光度法、化学发光法和电化学分析方法,阐述了各种检测方法的特点;并探讨了两种物质的检测方法的发展趋势。

  1. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  2. [Interaction between benzene and toluene in long term inhalation exposure in rats (author's transl)].

    Science.gov (United States)

    Gradiski, D; Bonnet, P; Duprat, P; Zissu, D; Magadur, J L; Guenier, J P

    1981-07-01

    Industrial chemicals are seldom used as pure substances; hazards resulting from exposure to mixtures have, however not been solved. Our study deals with chronic inhalation toxicity of a mixture of benzene and toluene; few studies have been completed on this subject. Our results show: - leucopenia with benzene alone, at a concentration of 50 p.p.m., that is not detectable in the presence of toluene; - metabolic variations consisting in: a decrease in the phenol urinary rate versus time with benzene alone; a sharp decrease of this rate from the third month of exposure on, in presence of toluene.

  3. Hydroxylation of benzene with hydrogen peroxide under phase-transfer conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karakhanov, E.A.; Narin, S.Yu.; Filippova, T.Yu.; Dedov, A.G.

    1987-09-01

    The authors developed a method for the selective hydroxylation of benzene to phenol with hydrogen peroxide in a two-phase water-benzene system in the presence of ions of transition metals and phase-transfer catalysts. As phase-transfer catalysts they used cetyltrimethylammonium bromide, tetrabutyl-ammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, benzyltriethylammonium chloride, dibenzo-18-crown-6, benzo-15-crown-5, N-cetylpyridinium bromide, potassium didodecylsebacinate ..cap alpha..-sulfonate, and polyethylene glycols of various molecular weight. They were able to find the optimal conditions for the selective hydroxylation of benzene with hydrogen peroxide under phase-transfer catalysis conditions.

  4. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    Science.gov (United States)

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  5. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  6. A lack of consensus in the literature findings on the removal of airborne benzene by houseplants: Effect of bacterial enrichment

    Science.gov (United States)

    Sriprapat, Wararat; Strand, Stuart E.

    2016-04-01

    Removal rates of benzene and formaldehyde gas by houseplants reported by several laboratories varied by several orders of magnitude. We hypothesized that these variations were caused by differential responses of soil microbial populations to the high levels of pollutant used in the studies, and tested responses to benzene by plants and soils separately. Five houseplant species and tobacco were exposed to benzene under hydroponic conditions and the uptake rates compared. Among the test plants, Syngonium podophyllum and Chlorophytum comosum and Epipremnum aureum had the highest benzene removal rates. The effects of benzene addition on populations of soil bacteria were determined using reverse transcription quantitative PCR (RT-qPCR) assays targeting microbial genes involved in benzene degradation. The total bacterial population increased as shown by increases in the levels of eubacteria 16S rRNA, which was significantly higher in the high benzene incubations than in the low benzene incubations. Transcripts (mRNA) of genes encoding phenol monooxygenases, catechol-2,3-dioxygenase and the housekeeping gene rpoB increased in all soils incubated with high benzene concentrations. Therefore the enrichment of soils with benzene gas levels typical of experiments with houseplants in the literature artificially increased the levels of total soil bacterial populations, and especially the levels and activities of benzene-degrading bacteria.

  7. Determination of benzene in soft drinks and other beverages by isotope dilution headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Cao, Xu-Liang; Casey, Valerie; Seaman, Steve; Tague, Brett; Becalski, Adam

    2007-01-01

    An automated, simple, and reproducible method was developed for the determination of benzene in soft drinks, based on isotope dilution headspace gas chromatography/mass spectrometry in the selected-ion monitoring mode. The method was used to assess benzene levels in samples of 124 soft drinks and beverages. Benzene was not detected in 60% of the 124 products. The average benzene levels in 6 products exceeded the Canadian maximum acceptable concentration of 5 microg/L for benzene in drinking water, and 2 of the 6 products had benzene levels above the World Health Organization guideline of 10 microg/L. The highest level of benzene, 23 microg/L, was found in a soft drink product specifically marketed to children.

  8. Benzene and MTBE Sorption in Fine Grain Sediments

    Science.gov (United States)

    Leal-Bautista, R. M.; Lenczewski, M. E.

    2003-12-01

    The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest

  9. Synthetic cannabinoids: analysis and metabolites.

    Science.gov (United States)

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  10. Subchronic inhalation toxicity of benzene in rats and mice.

    Science.gov (United States)

    Ward, C O; Kuna, R A; Snyder, N K; Alsaker, R D; Coate, W B; Craig, P H

    1985-01-01

    A subchronic inhalation toxicity study of benzene was conducted in CD-1 mice and Sprague-Dawley rats. Four groups of animals consisting of 150 mice and 50 rats/sex each were exposed to concentrations of 1, 10, 30, and 300 ppm benzene vapor, 6 hours/day, 5 days/week, for 13 weeks. Additional groups of mice and rats, of equal size, were exposed under similar conditions to filtered air and served as control groups. Thirty mice and 10 rats/sex in each group were sacrificed after 7, 14, 28, 56, and 91 days of treatment. Criteria used to evaluate exposure-related effects included behavior, body weights, organ weights, clinical pathology, gross pathology, and histopathology. Fifty animals per sex of each species were exposed concurrently for cytogenetic studies. In addition, blood serum was obtained for immunological assays. The results of these two studies will be reported separately. No consistent exposure-related trends were seen in the clinical observations and body weight data. Exposure-related clinical pathology changes were seen in the high-level (300 ppm) animals of both species. In the mice, these changes included decreases in hematocrit, total hemoglobin, erythrocyte count, leukocyte count, platelet count, myeloid/erythroid ratios, and percentage of lymphocytes. Mean cell volume, mean cell hemoglobin, glycerol lysis time, and the incidence and severity of red cell morphologic changes were increased in the mice. In the rats, decreased lymphocyte counts and a relative increase in neutrophil percentages were the only exposure-related clinical pathology alterations. Histopathologic changes were present in the thymus, bone marrow, lymph nodes, spleen, ovaries, and testes of mice exposed to 300 ppm and in most cases the incidence and severity of the lesions were greater in the males. These changes in the testes and ovaries at 300 ppm were also seen at lower concentrations, but they were of doubtful biological significance. In rats, the only exposure-related lesion

  11. Kinetics of Liquid-Phase Hydrogenation of Benzene in a Metal Hydride Slurry System Formed by M1Ni5 and Benzene

    Institute of Scientific and Technical Information of China (English)

    代世耀; 徐国华; 安越; 陈长聘; 陈立新; 王启东

    2003-01-01

    The kinetics of liquid-phase hydrogenation of benzene in misch metal nickel-five (M1Ni5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of M1Ni5-C6H6 slurry system is 42.16 kJ·mo1-1.

  12. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar;

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...

  13. Biomonitoring of benzene and toluene in human blood by headspace-solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Schimming, E.; Levsen, K. [Fraunhofer-Institut fuer Toxikologie und Aerosolforschung (ITA), Hannover (Germany); Koehme, C.; Schuermann, W. [Medizinische Hochschule Hannover (Germany). Abt. fuer Pneumologie

    1999-01-01

    A simple and rapid method for the determination of benzene and toluene in whole blood by headspace-solid-phase microextraction (HS-SPME) is described. Using SPME fibres coated with 65 {mu}m carboxene/polydimethylsiloxane, limits of quantification (LOQ) of 5 ng/L for benzene and 25 ng/L for toluene are achieved. As a result of its large linear range (i.e. 5-5000 ng/L for benzene) the method is suitable for biomonitoring of both occupationally and environmentally exposed people. The reproducibility of the determination of benzene is {<=} 8%. An interlaboratory comparison demonstrated that the method proposed here compares favorably with existing methods (dynamic headspace, purge and trap). (orig.) With 2 figs., 2 tabs., 10 refs.

  14. Further evidence of benzene carcinogenicity. Results on Wistar rats and Swiss mice treated by ingestion.

    Science.gov (United States)

    Maltoni, C; Conti, B; Perino, G; Di Maio, V

    1988-01-01

    Wistar rats and Swiss mice were treated by ingestion (stomach tube) with benzene in olive oil at a dose of 500 and 0 mg/kg b.w. once daily, 4-5 days weekly, for 104 weeks (rats) or for 78 weeks (mice). In Wistar rats, benzene caused Zymbal gland carcinomas, carcinomas of the oral cavity, and carcinomas of the nasal cavities, and an increase in the incidence of total malignant tumors. In Swiss mice, benzene produced Zymbal gland carcinomas and dysplasias and an increase in the incidence of mammary carcinomas (in females), lung tumors, and total malignant tumors. These experiments further confirm that benzene is a multipotential carcinogen as was shown before by long-term bioassays performed on Sprague-Dawley rats in the same Experimental Unit.

  15. EFFECT OF A FERROCENYL SUBSTITUTE ON THE FUNCTIONAL GROUPS IN THE BENZENE RING,

    Science.gov (United States)

    and ferrocenylphenol with phenol and p-hydroxydiphenyl (p- phenylphenol ), indicating that the ferrocenyl group introduced into the benzene ring behaves as a distinctly expressed substitute of the first order.

  16. Parallel interactions at large horizontal displacement in pyridine-pyridine and benzene-pyridine dimers.

    Science.gov (United States)

    Ninković, Dragan B; Andrić, Jelena M; Zarić, Snežana D

    2013-01-14

    A study of crystal structures from the Cambridge Structural Database (CSD) and DFT calculations reveals that parallel pyridine-pyridine and benzene-pyridine interactions at large horizontal displacements (offsets) can be important, similar to parallel benzene-benzene interactions. In the crystal structures from the CSD preferred parallel pyridine-pyridine interactions were observed at a large horizontal displacement (4.0-6.0 Å) and not at an offset of 1.5 Å with the lowest calculated energy. The calculated interaction energies for pyridine-pyridine and benzene-pyridine dimers at a large offset (4.5 Å) are about 2.2 and 2.1 kcal mol(-1), respectively. Substantial attraction at large offset values is a consequence of the balance between repulsion and dispersion. That is, dispersion at large offsets is reduced, however, repulsion is also reduced at large offsets, resulting in attractive interactions.

  17. Influence of temperature and humidity on the detection of benzene vapor by piezoelectric crystal sensor

    CERN Document Server

    Han, Chan-Hyon; Yun, Jong-Ho; Sin, Kye-Ryong

    2016-01-01

    The effects of temperature and humidity on the estimation of air pollution by benzene by using the piezoelectric crystal gas sensor were studied. Polyvinylchloride films were used as substrate for the immobilization of polymethylphenylsiloxane onto the electrode surface of the piezoelectric crystal. The sensing layer consisting of polymethylphenylsiloxane and polyvinylchloride was used for real-time monitoring of benzene, one of the atmospheric pollutants. According to the humidity from 35% to 75%, the upper limit of detection by this sensor was decreased and the response time and frequency recovery time for detecting benzene were long. On the other hand, as increasing the temperature, the response time and the frequency recovery time of the sensor were short, but its sensitivity got worse. The models for the correlation between the benzene concentration and temperature (or humidity) were presented.

  18. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pbenzaldehyde in combination with ascorbic acid should be avoided.

  19. Benzene Oxidation on Boron-Doped Diamond Electrode: Electrochemical-Impedance Study of Adsorption Effects

    Directory of Open Access Journals (Sweden)

    Yuri Pleskov

    2012-01-01

    Full Text Available Benzene oxidation at a boron-doped diamond anode in 0.5 M K2SO4 aqueous solution is studied by cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that in the ideal-polarizability potential region benzene either is not adsorbed at the diamond electrode or the benzene adsorption does not affect its capacitance. At more positive potentials, the adsorption of some intermediate of the benzene oxidation occurs at the electrode. The intermediate partially blocks the electrode surface and lowers the anodic current. The very fact of the electrode surface blocking is reflected in the complex-plane presentation of the impedance-potential plots.

  20. Symmetry forbidden vibronic spectra and internal conversion in benzene.

    Science.gov (United States)

    Li, Jun; Lin, Chih-Kai; Li, Xiang Yuan; Zhu, Chao Yuan; Lin, Sheng Hsien

    2010-12-01

    The spectra of symmetry-forbidden transitions and internal conversion were investigated in the present work. Temperature dependence was taken into account for the spectra simulation. The vibronic coupling, essential in the two processes, was calculated based on the Herzberg-Teller theory within the Born-Oppenheimer approximation. The approach was employed for the symmetry-forbidden absorption/fluorescence, and internal conversion between 1(1)A(1g) and 1(1)B(2u) states in benzene. Vibrational frequencies, normal coordinates, electronic transition dipole moments, and non-adiabatic coupling matrix elements were obtained by ab initio quantum chemical methods. The main peaks, along with the weak peaks, were in good agreement with the observed ones. The rate constant of the 1(1)A(1g)← 1(1)B(2u) internal conversion was estimated within the order of 10(3) s(-1). This could be regarded as the lower limit (about 4.8 × 10(3) s(-1)) of the internal conversion. It is stressed that the distortion effect was taken into account both in the symmetry-forbidden absorption/fluorescence, and the rate constants of internal conversion in the present work. The distortion effects complicate the spectra and increase the rate constants of internal conversion.

  1. (η6-Benzenedichlorido(dicyclohexylphenylphosphaneruthenium(II benzene sesquisolvate

    Directory of Open Access Journals (Sweden)

    Alfred Muller

    2012-12-01

    Full Text Available The asymmetric unit of the title compound, [RuCl2(C6H6(C18H27P]·1.5C6H6, contains one molecule of the RuII complex and one and a half solvent molecules as one of these is located about a centre of inversion. The RuII atom has a classical three-legged piano-stool environment being coordinated by an η6-benzene ligand [Ru—centroid = 1.6964 (6 Å], two chloride ligands with an average Ru—Cl bond length of 2.4138 (3 Å and a dicyclohexylphenylphosphane ligand [Ru—P = 2.3786 (3 Å]. The effective cone angle for the phosphane was calculated to be 158°. In the crystal, weak C—H...Cl hydrogen bonds link the RuII complexes into centrosymmetric dimers. The crystal packing exhibits intra- and intermolecular C—H...π interactions resulting in a zigzag pattern in the [101] direction.

  2. Spectroscopic studies of cryogenic fluids: Benzene in propane

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  3. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B., E-mail: bhala@prl.res.in [Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad (India)

    2015-01-10

    Propargyl alcohol (CHCCH{sub 2}OH) is a known stable isomer of the propenal (CH{sub 2}CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm{sup –1}. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C{sub 6}H{sub 6}) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C{sub 3}H{sub 3}) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C{sub 6}H{sub 6} in the interstellar icy mantles.

  4. Theoretical study of the adsorption of benzene on coinage metals

    Directory of Open Access Journals (Sweden)

    Werner Reckien

    2014-08-01

    Full Text Available The adsorption of benzene on the M(111, M(100 and M(110 surfaces of the coinage metals copper (M = Cu, silver (M = Ag and gold (M = Au is studied on the basis of density functional theory (DFT calculations with an empirical dispersion correction (D3. Variants of the Perdew–Burke–Ernzerhof functionals (PBE, RPBE and RevPBE in combination with different versions of the dispersion correction (D3 and D3(BJ are compared. PBE-D3, PBE-D3(BJ and RPBE-D3 give similar results which exhibit a good agreement with experimental data. RevPBE-D3 and RevPBE-D3(BJ tend to overestimate adsorption energies. The inclusion of three-center terms (PBE-D3(ABC leads to a slightly better agreement with the experiment in most cases. Vertical adsorbate–substrate distances are calculated and compared to previous theoretical results. The observed trends for the surfaces and metals are consistent with the calculated adsorption energies.

  5. Treatment Of Scabies With 1% Gamma Benzene Hexachloride

    Directory of Open Access Journals (Sweden)

    Srinivas C.R

    1996-01-01

    Full Text Available We assessed the efficacy of 3 different treatment modalities with gamma benzene hexachloride (GBH in an institutional outbreak of scabies. The 92 female inmates, between 5-18 years, in a state home with scabies and the supervisory staff were educated about the disease and treatment. As most inmates had secondary pyoderma, all were treated by a course of trimethoprim 80 mg; sulpha methoxazole 400 mg twice a day for 5 days. 250 lit of 1% GBH solution were prepared from 2.5 kg of GBH powder and were used for all the three treatment modalities. Forty-five girls were treated by GBH bath, each girl was allowed to soak in the tub for one minute and then allowed to dry; 34 girls were sprayed using a plastic hand spray and 23 were treated by paint brush application. Treatment was repeated after 1 week and reviewed after 2 and 6 weeks. On 1st visit, 4 girls of bath group showed few a symptomatic popular lesions over the hands and were retreated. All others were free of both symptoms and lesions. On second visit, all were free of lesions. All the three modes of drug delivery were effective. The bathtub offered privacy and it was quicker than both spraying and painting. However, the expense incurred per patient for bath was Rs.57 whereas it was only Rs.4 and Rs.5 for spray and paint brush application respectively.

  6. Experimental research on benzene detection using ion mobility spectrometer with a laser ionization source

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-yun; KONG Xiang-he; JI Ren-dong; ZHANG Shu-dong

    2006-01-01

    An ion mobility spectrometer equipped with a laser ionization source is used for the sensitive detection of benzene.Mobility spectra of the benzene are presented.We also discussed the mobility spectra at various concentrations and drift voltages.Detection limits are determined to be in the upper ppbv range.In the end,the advantages and possibilities of this technique are briefly discussed.

  7. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  8. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores.

    Science.gov (United States)

    Fomin, Yu D

    2013-11-15

    It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered-graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior.

  9. Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS

    OpenAIRE

    José A. Sousa; Domingues, Valentina F.; Rosas, Mónica S.; Ribeiro, Susana; Alvim-Ferraz, Maria da Conceição M.

    2011-01-01

    The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized ...

  10. Activated-sludge nitrification in the presence of linear and branched-chain alkyl benzene sulfonates.

    Science.gov (United States)

    Baillod, C R; Boyle, W C

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon.

  11. The quantification of hydroquinone, catechol, phenol, 3-methylcatechol, scopoletin, m+p-cresol and o-cresol in indoor air samples by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Risner, C.H. (R.J. Reynolds Tobacco Co., Winston-Salem, NC (United States). Bowman Gray Technical Center)

    1993-01-01

    A high performance liquid chromatography (HPLC) method was developed for the quantification of the phenolic compounds hydroquinone, catechol, phenol, 3-methylcatechol, scopoletin, m+p-cresol and o-cresol in indoor air samples. Samples are collected on an 0.8 [mu]m pore size mixed cellulose ester membrane (MCEM) followed by a silica gel Sep-Pak. The MCEM is extracted and the SiOHSP is eluted with 1% acetic acid. The phenolic compounds were analyzed on a reverse-phase column with fluorescence detection at selected excitation and emission wavelengths specific to the compounds of interest. A mobile phase gradient of 1% HAc and 99% acetonitrile + 1% HAc is used. The method is reproducible with percent relative standard deviations ranging from 2.0 to 9.2 for the seven phenolic compounds. Percent recoveries are acceptable with the exception of scopoletin and p-cresol. A comparison of tobacco versus wood smoke show that amounts of these seven phenolic compounds vary widely with their source. A relatively short sampling time is required and the procedure is capable of detecting <0.3 [mu]g m[sup [minus]3] for all compounds with the exception of 3-methylcatechol with a detection limit of < 4.0 [mu]g m[sup [minus]3].

  12. Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol.

    Science.gov (United States)

    Xiao, Lili; Yin, Jiao; Li, Yingchun; Yuan, Qunhui; Shen, Hangjia; Hu, Guangzhi; Gan, Wei

    2016-10-07

    Nitrogen (N) and sulfur (S) co-doped activated graphene (N,S-AGR) was prepared by the one-pot pyrolysis of a mixture of graphene oxide (GO), thiourea, and potassium hydroxide (KOH), where thiourea acts as the source of N and S dopants and KOH is the activator for porosity. N,S-AGR with a dopant abundance of 2.8 at% N and 2.3 at% S was then used as a high-activity electrocatalyst in the fabrication of an electrochemical sensor for simultaneous determination of dihydroxybenzene isomers, hydroquinone (HQ) and catechol (CC), in aqueous solution. Compared with the bare glassy carbon electrode (GCE), the electrodes modified with N,S-AGR showed enhanced electrochemical performance toward HQ and CC in both cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements because of their enlarged surface area, enhanced electron-transfer rate and increased active sites. Compared with some recently reported electrochemical sensors based on graphene composites, the N,S-AGR modified electrode exhibits higher sensitivity, a much lower detection limit and a comparable linear range for the simultaneous determination of HQ and CC. Moreover, the proposed sensor is promising in practical application for the satisfactory recoveries obtained in real water sample analyses.

  13. Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Wu, Liang; Zhang, Xiaohua; Chen, Jinhua [Hunan Univ., Changsha (China)

    2014-01-15

    The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 μM, 0.7-440 μM and 3.0-365 μM, respectively, and the detection limits (S/N = 3) are 0.03 μM, 0.11 μM and 0.38 μM, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

  14. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Yin Huanshun [College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018 Shandong (China); College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China); Zhang Qingming [College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China); College of Chemistry and Pharmaceutical Sciences, Qingdao Agriculture University, Qingdao 266109 (China); Zhou Yunlei [College of Life Science, Beijing Normal University, 100875 Beijing (China); Ma Qiang; Liu Tao [College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018 Shandong (China); Zhu Lusheng, E-mail: lushzhu@sdau.edu.c [College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.c [College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018 Shandong (China)

    2011-02-15

    Graphene-chitosan composite film modified glassy carbon electrode was prepared and characterized. The fabricated electrode showed excellent electrochemical catalytic activities towards the oxidation of catechol (CT), resorcinol (RS) and hydroquinone (HQ). The oxidation overpotentials of CT, RS and HQ decreased significantly and the corresponding oxidation currents increased remarkably compared with those obtained at the bare GCE and chitosan modified GCE. Some kinetic parameters, such as the electron transfer number (n), proton transfer number (m), charge transfer coefficient ({alpha}) and the apparent heterogeneous electron transfer rate constant (k{sub s}), were calculated. Differential pulse voltammetry was used for the simultaneous determination of CT, RS and HQ in their ternary mixture. The peak-to-peak potential separations between CT and RS, RS and HQ, and HQ and CT were 0.388, 0.484 and 0.096 V, respectively. The calibration curves for CT, RS and HQ were obtained in the range of 1 x 10{sup -6} to 4 x 10{sup -4}, 1 x 10{sup -6} to 5.5 x 10{sup -4} and 1 x 10{sup -6} to 3 x 10{sup -4} mol L{sup -1}, respectively. The detection limits were 7.5 x 10{sup -7} mol L{sup -1} (S/N = 3).

  15. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits.

    Science.gov (United States)

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results.

  16. Tolerance and efficacy of a product containing ellagic and salicylic acids in reducing hyperpigmentation and dark spots in comparison with 4% hydroquinone.

    Science.gov (United States)

    Dahl, Amanda; Yatskayer, Margarita; Raab, Susana; Oresajo, Christian

    2013-01-01

    Hydroquinone (HQ) is the benchmark prescription agent for skin lightening. However, HQ use is recently banned in Europe and in parts of Asia because of potential long-term consequences, including carcinogenesis when orally consumed. This has resulted in development of alternative skin-lightening agents with comparable efficacy to HQ, but better safety profiles. This study examined the skin-lightening ability of a topical product containing 0.5% ellagic acid and 0.1% salicylic acid and compared its efficacy with that of a prescription generic 4% HQ product. Fifty-four multiethnic subjects were randomly assigned to use the topical test formulation or generic 4% HQ twice daily for 12 weeks to evaluate product tolerability and efficacy. Under the conditions of this double-blinded clinical study, the test product demonstrated comparable tolerance and efficacy to that of a benchmark product 4% HQ, as assessed by clinical grading, physical measurement of spot size using image analysis, and questionnaire response analysis. This study suggests that this new product provided comparable skin depigmentation benefit to the benchmark product. In addition, the product appears to have better esthetics (texture, pleasantness to use, skin feel) than the 4% HQ product.

  17. Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system

    Energy Technology Data Exchange (ETDEWEB)

    Crevillen, Agustin G. [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Barrigas, Ines [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Blasco, Antonio Javier [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Gonzalez, Maria Cristina [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto [Dpto. Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)]. E-mail: alberto.escarpa@uah.es

    2006-03-15

    This work examines in deep the analytical performance of an example of 'first-generation' microdevices: capillary electrophoresis microchip (CE) with end-channel electrochemical detection (ED). A hydroquinone and arbutin separation strategically chosen as route involving pharmaceutical-clinical testing, public safety and food control scenes was carried out. The reproducibility of the unpinched electrokinetic protocol was carefully studied and the technical possibility of working indiscriminately and/or sequentially with both simple cross-injectors was also demonstrated using a real sample (R.S.D.'s less than 7%). The robustness of the injection protocol allowed checking the state of the microchip/detector coupling and following the extraction efficiency of the analyte from real sample. Separation variables such as pH, ionic strength and, separation voltage were also carefully assayed and optimized. Analyte screening was performed using borate buffer (pH 9, 60 mM) in less than 180 s in the samples studied improving dramatically the analysis times used for the same analytes on a conventional scale (15 min), with good precision (R.S.D.'s ranging 5-10%), accuracy (recoveries ranging 90-110%) and acceptable resolution (Rs {>=} 1.0). In addition, the excellent analytical performance of the overall analytical method indicated the quality of the whole analytical microsystem and allowed to introduce the definition of robustness for methodologies developed into the 'lab-on-a-chip' scene.

  18. Effect of emulsifiers and their liquid crystalline structures in emulsions on dermal and transdermal delivery of hydroquinone, salicylic acid and octadecenedioic acid.

    Science.gov (United States)

    Otto, A; Wiechers, J W; Kelly, C L; Dederen, J C; Hadgraft, J; du Plessis, J

    2010-01-01

    This study investigated the effect of emulsifiers and their liquid crystalline structures on the dermal and transdermal delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC). Emulsions containing liquid crystalline phases were compared with an emulsion without liquid crystals. Skin permeation experiments were performed using Franz-type diffusion cells and human abdominal skin dermatomed to a thickness of 400 mum. The results indicate that emulsifiers arranging in liquid crystalline structures in the water phase of the emulsion enhanced the skin penetration of the active ingredients with the exception of SA. SA showed a different pattern of percutaneous absorption, and no difference in dermal and transdermal delivery was observed between the emulsions with and without liquid crystalline phases. The increase in skin penetration of HQ and DIOIC could be attributed to an increased partitioning of the actives into the skin. It was hypothesized that the interaction between the different emulsifiers and active ingredients in the formulations varied and, therefore, the solubilization capacities of the various emulsifiers and their association structures.

  19. The Simultaneous Electrochemical Detection of Catechol and Hydroquinone with [Cu(Sal-β-Ala(3,5-DMPz2]/SWCNTs/GCE

    Directory of Open Access Journals (Sweden)

    Lina Abdullah Alshahrani

    2014-11-01

    Full Text Available A glassy carbon electrode was modified with a copper(II complex [Cu(Sal-β-Ala (3,5-DMPz2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole and single-walled carbon nanotubes (SWCNTs. The modified electrode was used to detect catechol (CT and hydroquinone (HQ and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5–215 μmol·L−1 and 5–370 μmol·L−1 with corresponding detection limits of 3.5 μmol·L−1 and 1.46 μmol·L−1 (S/N = 3 respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis.

  20. Synthesis and characterization of a noncytotoxic, X-ray opaque polyurethane containing iodinated hydroquinone bis(2-hydroxyethyl) ether as chain extender for biomedical applications.

    Science.gov (United States)

    Kiran, S; Joseph, Roy

    2014-09-01

    An iodinated urethane polymer that does not require addition of X-ray attenuating additives to impart X-ray opacity was synthesized and characterized for biomedical applications. A new X-ray opaque diiodo compound, namely, 2,2'-(2,5-diiodobenzene-1,4-diyl)bis(oxy)diethanol (DBD), was synthesized by iodinating hydroquinone bis(2-hydroxyethyl) ether and this compound was used as chain extender during polyurethane synthesis so that X-ray opacity could be imparted to the polymer formed. X-ray opaque polyurethane (XPU) was synthesized by reacting 1,6-diisocyanatohexane with poly(hexamethylene carbonate)diol and DBD. X-ray opacity of XPU was measured with a fluoroscopy machine using BaSO4 -filled polyurethane as controls. Radiographic images showed that XPU sample had X-ray opacity equivalent to 15 wt % BaSO4-filled polymer. In vivo imaging in a rabbit model showed that the material could be readily distinguishable from bones. XPU was found to be hemocompatible and noncytotoxic to L929 fibroblast cell lines. Optical transparency measurements using ultraviolet-visible spectrophotometer showed that XPU transmitted 85% of visible light.

  1. 石墨烯修饰电极同时测定邻苯二酚和对苯二酚%Simultaneous determination of catechol and hydroquinone in graphene modified electrode

    Institute of Scientific and Technical Information of China (English)

    万其进; 廖华玲; 刘义; 魏薇; 舒好; 杨年俊

    2013-01-01

    制备石墨烯玻碳修饰电极,进而采用循环伏安法、交流阻抗等电化学方法对该电极进行表征,研究该石墨烯修饰电极在邻苯二酚和对苯二酚上的电化学行为.结果表明,在石墨烯修饰电极上邻苯二酚的氧化峰电位和还原峰电位分别是270 mV和161 mV,对苯二酚氧化峰电位和还原峰电位分别是145mV和64 mV,由于邻苯二酚和对苯二酚的氧化峰电位大约相离125 mV,还原峰大约相离97 mV,因此适合同时检测邻苯二酚和对苯二酚.邻苯二酚和对苯二酚的浓度在5.0×10-6~1.0×10-4 mol/L范围内与峰电流分别呈良好的线性关系;且在8.0×10-5~1.0×10-3 mol/L范围能同时检测邻苯二酚和对苯二酚,邻苯二酚的检测限可达5.0×10-7 mol/L,对苯二酚的检测限可达1.0×10-7 mol/L.该石墨烯修饰电极可作为电化学传感器用于邻苯二酚和对苯二酚的含量同时测定及环境水体中实际样品的分析.%A novel graphene modified glassy carbon electrode was fabricated. The resulting substrates were characterized by Cyclic Voltammetry and EIS in [Fe (CN)6 ]3-/4- solution and showed the electrochemical behavior of catechol and hydroquinone on the graphene modified glassy carbon electrode. Experiment result shows that the catechol oxidation peak potential is 270 mV and reduction peak potential is 161 mV, and the hydroquinone oxidation peak potential is 145 mV and reduction peak potential is 64 mV on the graphene modified electrode, respectively. The oxidation peak potential distance is about 125 mV and the reduction peak potential distance is about 97 mV of catechol and hydroquinone which are suited for the simultaneous detection. Catechol and hydroquinone have good electrocatalytic activity on modified electrode and the peak currents of differential pulse voltammetry are liner to the catechol and hydroquinone over the range of 5. 0× 10-6 — 1. 0× 10~4 mol/L, respectively, and the graphene modified electrode can

  2. Investigation into adsorption and photocatalytic degradation of gaseous benzene in an annular fluidized bed photocatalytic reactor.

    Science.gov (United States)

    Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen

    2015-01-01

    The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.

  3. Volatilization of monoaromatic compounds (benzene, toluene, and xylenes; BTX) from gasoline: effect of the ethanol.

    Science.gov (United States)

    Cagliari, Jóice; Fedrizzi, Francieli; Rodrigues Finotti, Alexandra; Echevenguá Teixeira, Cláudia; do Nascimento Filho, Irajá

    2010-04-01

    The main objective of present study was to assess the evaporation profile of monoaromatic compounds, namely, benzene, toluene, and xylenes (BTX) from gasoline-ethanol-blend fuels. The vapors from two river sand columns contaminated with gasoline and gasoline-ethanol were monitored for 77 d. Standards mixtures (batch tests) of benzene, toluene, and xylenes with different ethanol contents were also analyzed for evaporation rates studies. The instrumental analysis was performed via gas chromatography. The concentration of benzene in the vapor phase of the gasoline-ethanol column was decreased by 89.09%, considering the entire experimental period, whereas the toluene and xylenes concentrations were increased by 239.34 and 251.78%, respectively. In the batch tests, the benzene concentration in the vapor phase varied from 0.4 to 0.9 mg/L for ethanol concentrations (v/v) of 5 and 10%, respectively. For ethanol concentrations higher than 10%, no important changes in the benzene concentration were observed. The toluene exponentially increases between 20 and 30% ethanol concentration. and the maximum concentration of xylenes was observed when the ethanol concentration was 20% (v/v). These results suggest that the benzene evaporation behavior is preferentially affected by the interactions among ethanol and other aromatic compounds rather than the ethanol concentration itself. The evaporation behaviors of toluene and xylenes are directly dependent on the ethanol content.

  4. Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.

    Science.gov (United States)

    Coudour, B; Chetehouna, K; Rudz, S; Gillard, P; Garo, J P

    2015-01-01

    Minimum ignition energies (MIE) of α-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1,064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of α-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Φ) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different α-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure α-pinene and pure benzene demonstrate that the presence of benzene in α-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the α-pinene/benzene proportion.

  5. Determination of benzene residues in recycled polyethylene terephthalate (PETE) by dynamic headspace-gas chromatography.

    Science.gov (United States)

    Komolprasert, V; Hargraves, W A; Armstrong, D J

    1994-01-01

    A dynamic headspace-gas chromatography (HS/GC) method was developed to quantitate benzene in recycled PETE material derived from 21 PETE beverage bottles. The analytical system consisted of a purge-and-trap apparatus which was interfaced directly with a gas chromatograph/flame ionization detector. Cryofocusing and non-cryofocusing GC systems were used. The technique was applied to spiked PETE test samples which were prepared at various benzene concentrations ranging from 100 ppb to 117 ppm. The initial spiked benzene concentration in the PETE test samples was determined gravimetrically. The HS/GC technique was limited by the slow desorption rate of benzene from the PETE matrix; as a result, multipurges were performed at 60 degrees C. Regression analysis was done on the multipurge data to develop a desorption model which would predict the total amount of benzene in the PETE. The calculated results agreed with the experimental recoveries within +/- 10%. Recovery depended on the initial benzene level in the PETE and ranged from 70 to 90% after the first five purges.

  6. Immunotoxicological effects of benzene inhalation in male Sprague-Dawley rats.

    Science.gov (United States)

    Robinson, S N; Shah, R; Wong, B A; Wong, V A; Farris, G M

    1997-05-16

    The inhalation of benzene is toxic to various components of the immunologic system in rodents. Spleen and thymus weights, total spleen and femur marrow cell counts, enumeration of spleen B- and T-lymphocytes, and an assessment of humoral immunocompetence, were used to evaluate the immunotoxicity of benzene in male Sprague-Dawley rats. Rats were exposed to 0, 30, 200 or 400 ppm benzene for 6 h/day, 5 days/week for 2 or 4 weeks. An early indicator of immunotoxicity was a reduction in the number of B-lymphocytes after 2 weeks of 400 ppm. After 4 weeks of 400 ppm, there was a reduction in thymus weight and spleen B-, CD4+/CD5+ and CD5+ T-lymphocytes. Rats exposed to 30, 200 or 400 ppm benzene for 2 or 4 weeks and challenged with sheep red blood cells developed a humoral response comparable to that of the control (0 ppm) animals. Enumeration of spleen T- and B-lymphocytes in rats exposed to benzene and challenged with SRBC showed only a transient reduction in spleen B-lymphocytes after 2 weeks of exposure to 400 ppm. These data suggest that there are no immunotoxicological effects of exposure to 200 ppm benzene or less, in rats exposed for 6 h/day, 5 days/week for 2 or 4 weeks.

  7. Geogenic sources of benzene in aquifers used for public supply, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium 1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth <30 m, and anoxic conditions. Evidence for geogenic sources of benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.

  8. Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents.

    Science.gov (United States)

    Osipovs, Sergejs

    2008-06-01

    Biomass tar mainly consists of stable aromatic compounds such as benzene and polyaromatic hydrocarbons, benzene being the biggest tar component in real biomass gasification gas. For the analysis of individual tar compounds, the solid-phase adsorption method was chosen. According to this method, tar samples are collected on a column with an amino-phase sorbent. With a high benzene concentration in biomass tar, some of the benzene will not be collected on the amino-phase sorbent. To get over this situation, we have installed another column with activated charcoal which is intended for collection of volatile organic compounds, including benzene, after the column with the amino-phase sorbent. The study of maximal adsorption amounts of various compounds on both adsorbents while testing different sampling volumes led to the conclusion that benzene is a limiting compound. The research proved that the use of two sorbents (500 mg + 100 mg) connected in series allows for assessment of tar in synthesis gas with a tar concentration up to 30-40 g m(-3), which corresponds to the requirements of most gasifiers.

  9. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    Science.gov (United States)

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB.

  10. Metabolism and metabolites of polychlorinated biphenyls.

    Science.gov (United States)

    Grimm, Fabian A; Hu, Dingfei; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Ludewig, Gabriele; Hornbuckle, Keri C; Duffel, Michael W; Bergman, Åke; Robertson, Larry W

    2015-03-01

    Abstract The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity, and thereby on the assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general, and in humans in particular. The aim of this document is to provide an overview of PCB metabolism, and to identify the metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed.

  11. Secondary Metabolites from Rubiaceae Species

    Directory of Open Access Journals (Sweden)

    Daiane Martins

    2015-07-01

    Full Text Available This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion.

  12. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  13. Single-molecule conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections.

    Science.gov (United States)

    Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald

    2011-02-23

    Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.

  14. Production of Arbutin through Biotransformation of Exogenous Hydroquinone by Datura stramonium Cell Suspension Cultures%白花曼陀罗细胞悬浮培养生物转化外源氢醌合成熊果苷的研究

    Institute of Scientific and Technical Information of China (English)

    彭春秀; 龚加顺

    2006-01-01

    研究了白花曼陀罗细胞悬浮培养对外源氢醌的糖基化.转化细胞来自白花曼陀罗嫩茎在LS固体培养基上诱导产生的愈伤组织.白花曼陀罗悬浮培养细胞不能分泌熊果苷,但能糖基化外源氢醌合成熊果苷.当氢醌添加量达240 μmol/100mL培养物时,约有93.4%的氢醌转化形成了熊果苷,并应用多种色谱技术进行分离纯化,进行了HPLC分析和结构鉴定.%To investigate the biotransformation of hydroquinone by cell suspension cultures of Datura stramonium. Cultured cells derived from stems of Datura stramonium were maintained in Linsmaiher and Skoog (LS) solid medium. Datura stramonium cells in suspension cultures did not accumulate arbutin (4-hydroxyphenyl-β-D-glucopyranoside) but were able to specifically o-glucosylate exogenous hydroquinone at position 1. In particular, Datura cultures glucosylated ca 93.4% of hydroquinone (240 μmol/100 mL cultures) within 8 days after hydroquinone administered. The arbutin obtained was extracted from the cultures and further purified by silicon Gel column chromatography. The exogenous hydroquinone and arbutin were analyzed by HPLC.

  15. Detecting beer intake by unique metabolite patterns

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde; Jensen, Morten Georg; Meier, Sebastian

    2016-01-01

    Evaluation of health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern...... representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1) 18 participants were given one at a time four different test beverages: strong, regular and non-alcoholic beers and a soft drink. Four participants were...... assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e. N-methyl tyramine sulfate and the sum...

  16. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  17. Penetration of benzene, toluene and xylenes contained in gasolines through human abdominal skin in vitro.

    Science.gov (United States)

    Adami, G; Larese, F; Venier, M; Barbieri, P; Lo Coco, F; Reisenhofer, E

    2006-12-01

    Few studies are available in literature on the risk for humans from skin exposure to gasolines. This work is focused on the in vitro skin penetration of benzene (carcinogenic substance), toluene and xylenes. We examined three commercial gasolines using the Franz diffusion cells and human abdominal full thickness skin. Gasoline composition was determined using a multi-dimensional gas chromatographic (MDGC) technique. Aromatic compounds into the receptor fluid, consisting of saline solution were quantitated by a gas chromatography technique equipped with a flame ionization detector (GC-FID) and coupled with a headspace-solid phase micro extraction system (HS-SPME). Among the three substances, benzene showed the highest average apparent permeability coefficient (K(p)=43.8x10(-5)cmh(-1)) compared to toluene (K(p)=6.48x10(-5)cmh(-1)) and xylenes (K(p)=0.84x10(-5)cmh(-1)). This value could be explained by the lower boiling point and higher water solubility of benzene. Lag times were about 1h for benzene and 2h for toluene and xylenes. Averaged total recoveries in the receptor fluid were 0.43% of dose for benzene, 0.06% for toluene and 0.008% for xylenes. A statistical significative difference (Student's t-test, Ptoluene between gasolines #1 (richer in aromatic compounds) and #3. The obtained apparent permeability coefficient are useful for determining the permeability of these aromatics components from gasolines of a different composition. Hands exposure risk, calculated using RfD and RfC as defined by US EPA, is critical for benzene. The risk of skin permeation of gasoline, and, in particular, of benzene, should be better evaluated for those workers who have a large potential for exposure. Adequate personal protective equipment should be used in the high exposure jobs, mainly for hands and forearms.

  18. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    Directory of Open Access Journals (Sweden)

    Reuben Thomas

    Full Text Available Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML. Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC, we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from 10 ppm compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  19. Assessment of Benzene Exposures in the Working Environment at Gasoline Stations

    Directory of Open Access Journals (Sweden)

    Sunisa Chaiklieng

    2015-07-01

    Full Text Available This study aimed to investigate benzene exposure in the working environment of workers at gasoline stations. Ambient air (n=20 and inhaled air samples (n=101 of benzene were collected in the city of Khon Kaen, Thailand and analyzed with gas chromatography (GC-FID. Data records were also kept of the amounts of various petroleum products sold. The results of inhaled air benzene indicated the range concentration from 0.03 ppb to 65.71 ppb and showed significant differences between concentrations of each zone (p<0.05. The highest mean concentration was found in suburban stations (35.55 ppb, followed by urban stations (18.19 ppb, and rural stations (2.52 ppb. The highest mean concentration of ambient air was found in urban stations (45.55 ppb. Regarding different job functions, the benzene concentration of fueling workers in the inhalation zone (27.29 ppb was significantly higher than that of cashiers (0.56 ppb. The amounts of petroleum products with high benzene content sold were relatively consistent with inhaled benzene concentration, indicated by the significant differences between suburban and rural zones (p<0.05. In conclusion, this study found the inhaled air benzene concentration ranged 0.03 to 65.71 ppb depending on locations and job functions of workers. Therefore, workers should be protected of adversely affected health from long-term exposure by training on safe working practice and awareness of the different risks associated with their job functions, locations of stations and daily amounts of petroleum products sold.

  20. Benzene and lead exposure assessment among occupational bus drivers in Bangkok traffic

    Institute of Scientific and Technical Information of China (English)

    SHING TET LEONG; PREECHA LAORTANAKUL

    2004-01-01

    Four environmental and biological monitoring sites were strategically established to evaluate benzene and lead exposure assessment at various traffic zones of Bangkok Metropolitan Region(BMR). Biological measurement of 48 non air-conditioned, male bus drivers was carried to study the relationship between individual exposure levels and exposure biomarkers. The study group was further subdivided into four age groups( 16-25, 26-35, 36-45 and 46-55 years old) to monitor the age-related exposure effects. A total of 12unexposed persons were deliberately chosen as the control group. Measurement of unmetobolized benzene in blood and analysis of urinary tt-Muconic acid urine and urinary creatinine are recommended as biomarkers of benzene exposure. Measurement of lead in blood and urine is also recommended for the biological monitoring of lead exposure.During the monitoring period, benzene and lead levels at Yaowarat Road was C6H6: 42.46 + 3.88 μg/m3 , Pb: 0.29 + 0.03 μg/m3 and decreased to C6 H6: 33.5 ± 1.35 μg/m3 , Pb: O. 13 + 0.01 μg/m3 at Phahonyothin Road. Significant difference was established between the nonsmoking exposed group and nonsmoking control group for blood benzene concentrations ( P < 0.001, two-tailed, Mann-Whiteney U test). Strong correlations were also found between trans-trans-Muconic acid concentrations in post shift samples and atmospheric benzene concentrations. Similarly, good correlation between all of biomarkers and lead level in air is established from automobile emissions.The analysis revealed that among the occupational population in the urban sites, the driver groups were found to have the highest risk of benzene and lead exposures derived from automobile emission.

  1. Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS.

    Science.gov (United States)

    Sousa, José A; Domingues, Valentina F; Rosas, Mónica S; Ribeiro, Susana O; Alvim-Ferraz, Conceiçao M; Delerue-Matos, Cristina F

    2011-01-01

    The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 μg m⁻³) and during the unloading of gasoline the achieved concentration was 8371 μg m⁻³; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 μg m⁻³ except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 μg m⁻³) than in coffee shops where this is forbidden (4 μg m⁻³). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.

  2. Liquid-phase benzene isopropylation using alumina solid lewis superacid-supported platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Honda, K.; Kitahara, D.; Miyamoto, M.; Shiga, M.; Ayame, A. [Muroran Inst. of Tech., Hokkaido (Japan)

    2000-03-01

    Supporting platinum on alumina solid Lewis superacid (AmLSA; J. C. S., Chem. Commun., 645 (1989)) was prepared by using of the in situ CVD technique at 773 K with Ar{sup +}-sputtered platinum fine particles and dry chlorine, followed by reduction with hydrogen at 673 K. The AmLSA-supported platinum catalyst (Pt/AmLSA) was applied to isopropylation of benzene with propene in the hydrogen stream at ambient temperature, using a semibatch reactor. Products were mono-, di-, tri-, and tetra-isopropylbenzenes. Conversion of propene to propane was below 1 %, and a trace amount of cyclohexane from benzene was also observed. Deactivation of AmLSA due to strong adsorption of poly-substituted benzenes and/or propene oligomers was remarkably depressed by supporting platinum and supplying hydrogen into the propene stream. Consequently, the activity of Pt/AmLSA catalyst had increased almost 1.5 times that of AmLSA. At the same level of benzene conversion, the product distribution f isopropyl-substituted benzenes obtained on Pt/AmLSA was identical to that on AmLSA, and had shifted slightly into the mono-substituted benzene side compared with the result on AmLSA in the absence of hydrogen. In the isopropylation of benzene with 2-chloropropane, the results quite similar to those described above were obtained. From the above observations, synergetic effects of platinum supporting and hydrogen supplying were considered to be due to the presence of hydrogen atoms spilled over from the platinum surface to the strong Lewis acid sites. (author)

  3. Synthesis of the major metabolites of Tolvaptan

    Institute of Scientific and Technical Information of China (English)

    Wei Li Wan; Jian Bo Wu; Fan Lei; Xiao Long Li; Li Hai; Yong Wu

    2012-01-01

    Tolvaptan is a nonpeptide arginine vasopressin (AVP) V2-receptor antagonist and used in the treatment of heart failure,cirrhosis,syndrome of inappropriate antidiuretic hormone secretion or other high-volume capacity of hyponatremia.The metabolites of tolvaptan are mainly produced by CYP3A4,including two major compounds named DM-4103 and DM-4107.Herein,the chemical synthesis of those two metabolites is described in this article for further study.

  4. Tailoring specialized metabolite production in streptomyces.

    Science.gov (United States)

    Hiltner, Jana K; Hunter, Iain S; Hoskisson, Paul A

    2015-01-01

    Streptomycetes are prolific producers of a plethora of medically useful metabolites. These compounds are made by complex secondary (specialized) metabolic pathways, which utilize primary metabolic intermediates as building blocks. In this review we discuss the evolution of specialized metabolites and how expansion of gene families in primary metabolism has lead to the evolution of diversity in these specialized metabolic pathways and how developing a better understanding of expanded primary metabolic pathways can help enhance synthetic biology approaches to industrial pathway engineering.

  5. Secondary metabolites in bryophytes: an ecological aspect.

    Science.gov (United States)

    Xie, Chun-Feng; Lou, Hong-Xiang

    2009-03-01

    Bryophytes frequently grow in an unfavorable environment as the earliest land plants, and inevitably biosynthesize secondary metabolites against biotic or abiotic stress. They not only defend against the plant competition, microbial attack, and insect or animal predation, but also function in UV protection, drought tolerance, and freezing survival. This review covers the ecological aspect of secondary metabolites in bryophytes and is taxonomically presented according to the ecological significances.

  6. Flux balance analysis accounting for metabolite dilution.

    Science.gov (United States)

    Benyamini, Tomer; Folger, Ori; Ruppin, Eytan; Shlomi, Tomer

    2010-01-01

    Flux balance analysis is a common method for predicting steady-state flux distributions within metabolic networks, accounting for the growth demand for the synthesis of a predefined set of essential biomass precursors. Ignoring the growth demand for the synthesis of intermediate metabolites required for balancing their dilution leads flux balance analysis to false predictions in some cases. Here, we present metabolite dilution flux balance analysis, which addresses this problem, resulting in improved metabolic phenotype predictions.

  7. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    Science.gov (United States)

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  8. Pharmacokinetics of Tyrosol Metabolites in Rats

    Directory of Open Access Journals (Sweden)

    Da-Hye Lee

    2016-01-01

    Full Text Available Tyrosol is considered a potential antioxidant; however, little is known regarding the pharmacokinetics of its metabolites. To study the pharmacokinetics of tyrosol-derived metabolites after oral administration of a single dose of tyrosol, we attempted to identify tyrosol metabolites in rat plasma by using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS. Two tyrosol metabolites (M1 and M2 were detected in the plasma. M1 was identified as tyrosol-4-sulfate (T4S with an [M − H]− ion at m/z 217. While M2 showed an [M − H]− ion at m/z 151.0, its metabolite was not identified. Pharmacokinetic analysis of T4S and M2 showed rapid uptake after oral administration of tyrosol within 1 h. The metabolites were rapidly distributed in most organs and tissues and eliminated within 4 h. The greatest T4S deposition by tissue weight was observed in the liver, followed by the kidney and spleen, while M2 was most concentrated in the kidney followed by the liver and spleen. These findings indicate that T4S and M2 were distributed mainly in tissues with an abundant blood supply and were rapidly excreted in urine.

  9. Pharmacokinetics of Tyrosol Metabolites in Rats.

    Science.gov (United States)

    Lee, Da-Hye; Kim, Yang-Ji; Kim, Min Jung; Ahn, Jiyun; Ha, Tae-Youl; Lee, Sang Hee; Jang, Young Jin; Jung, Chang Hwa

    2016-01-21

    Tyrosol is considered a potential antioxidant; however, little is known regarding the pharmacokinetics of its metabolites. To study the pharmacokinetics of tyrosol-derived metabolites after oral administration of a single dose of tyrosol, we attempted to identify tyrosol metabolites in rat plasma by using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Two tyrosol metabolites (M1 and M2) were detected in the plasma. M1 was identified as tyrosol-4-sulfate (T4S) with an [M - H](-) ion at m/z 217. While M2 showed an [M - H](-) ion at m/z 151.0, its metabolite was not identified. Pharmacokinetic analysis of T4S and M2 showed rapid uptake after oral administration of tyrosol within 1 h. The metabolites were rapidly distributed in most organs and tissues and eliminated within 4 h. The greatest T4S deposition by tissue weight was observed in the liver, followed by the kidney and spleen, while M2 was most concentrated in the kidney followed by the liver and spleen. These findings indicate that T4S and M2 were distributed mainly in tissues with an abundant blood supply and were rapidly excreted in urine.

  10. Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fangxin [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Shihong, E-mail: cshong@swu.edu.cn [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang Chengyan [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Dehua; Wang Cun [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-04-29

    Graphical abstract: In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO-MWNTs) were prepared and a novel strategy for the simultaneous determination of multiple environmental contaminations has been proposed on the basis of RGO-MWNTs hybrid materials modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N{sub 2} sorption-desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity, high surface area and porous structure of the RGO-MWNTs, the RGO-MWNTs/GCE achieved the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO{sub 2}{sup -}) with well-separate four peaks. Scheme 1a illuminated the preparation process of the RGO-MWNTs hybrid materials. Scheme 1b explains the electron mediating properties of RGO-MWNTs/GCE towards the oxidation of HQ, CC, PC and NO{sub 2}{sup -}. Scheme 1c presented the SEM image of RGO-MWNTs hybrid materials. Scheme 1d and e showed the 2D and 3D AFM images of RGO-MWNTs films, respectively. Highlights: Black-Right-Pointing-Pointer The novel RGO-MWNTs hybrid materials were synthesized. Black-Right-Pointing-Pointer The simultaneous detection of four environmental contaminations was achieved. Black-Right-Pointing-Pointer SEM, AFM, XPS was employed to characterize the RGO-MWNTs hybrid materials. - Abstract: In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO-MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO-MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N{sub 2} sorption-desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high

  11. Progress on Synthesis and Applications of Redox Poly (hydroquinone)%氧化还原活性的聚对苯二酚的研究进展

    Institute of Scientific and Technical Information of China (English)

    张爱娟; 张文静; 张拥军; 关英

    2011-01-01

    Polyhydroquione (PHQ) is a polymer that only contains quinone and hydroquinone groups in its main chain. PHQ retain the characters of quinones, such as redox activity and reversibility consisting of two electron transfer. Compared with monomer, the polymer PHQ has shown improved heat-resistance. As a redox polymer,PHQ has a low redox potential and a fast electron transfer rate, and has been used as an electron mediator for bio-sensors and as an antioxidant or a redox polymer agent since it can capture radicals quickly. The progress on the preparation of PHQ,and on the study of their structure and redox properties and applications is summarized.%聚对苯二酚是一类主链完全由醌和氢醌组成的氧化还原聚合物,保持了醌、酚的性质,具有良好的氧化还原可逆性,并能进行二电子的氧化还原;同时,与醌和酚相比,热稳定性高.该聚合物氧化还原电位低,电子转移速率快,可应用于生物传感器中的电子媒介体.此外,该聚合物还能快速捕获自由基,可做为抗氧化剂和高分子氧化还原试剂等.本文综述了聚对苯二酚的制备方法,结构特征,可逆氧化还原电化学性质及其在生物传感器、抗氧化剂等领域的应用.

  12. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian [School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Li, Xi, E-mail: chemlixi@whut.edu.cn [School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan [School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Chaocan, E-mail: polymers@whut.edu.cn [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu{sub 3}(BTC){sub 2} (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L{sup −1} (R{sub HQ} = 0.9999) for HQ and 0.1–1150 μmol L{sup −1} (R{sub CT} = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L{sup −1}, respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results. - Highlights: • Cu-MOF-199/SWCNTs/GCE was facilely fabricated by the electrodeposition on SWCNTs/GCE. • An electrochemical sensor for detecting HQ and CT was constructed based on this modified electrode. • The proposed electrochemical sensor showed an extended linear range and lower detection limits. • The proposed electrochemical sensor had an excellent stability and reproducibility.

  13. Metabolism of benzoquinone by yeast cells and oxidative characteristics of corresponding hydroquinone: application to highly sensitive measurement of yeast cell density by using benzoquinone and a chemiluminescent probe.

    Science.gov (United States)

    Tsukatani, Tadayuki; Ide, Seiji; Ukeda, Hiroyuki; Matsumoto, Kiyoshi

    2004-07-01

    The metabolic efficiency of seven derivatives of 1,4-benzoquinone (BQ) by yeast cells and the oxidative characteristics of the corresponding hydroquinones (HQs) were studied by electrochemical, spectrophotometric and chemiluminescent methods. The spectrophotometric method was based on the reduction of a tetrazolium salt to formazan dye during the autoxidation of HQs generated by yeast cells under alkaline conditions. The amounts of HQs detected directly by the electrochemical method did not agree with those calculated from the formazan dye obtained by the spectrophotometric method. A tetrazolium salt was reduced to a formazan dye by both the superoxide anion radical (O2-*) generated during the autoxidation of 2,3,5,6-tetramethyl-1,4-HQ and by HQ itself. Little formazan dye was formed, and hydrogen peroxide (H2O2) was then finally produced during the autoxidation of 1,4-HQ or 2-methyl-1,4-HQ. Formazan dye and H2O2 were generated at a certain ratio during the autoxidation of derivatives of dimethyl-1,4-HQ or 2,3,5-trimethyl-1,4-HQ. The analytical method based on chemiluminescence with lucigenin and 2,3,5,6-tetramethyl-1,4-BQ was applied to highly sensitive measurement of the yeast cell density. A linear relationship between the chemiluminescence intensity and viable cell density was obtained in the range of 1.2 x 10(3) - 4.8 x 10(4) cells/ml. The detection limit was 4.8 x 10(2) cells/ml.

  14. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation.

    Science.gov (United States)

    Rishavy, Mark A; Hallgren, Kevin W; Wilson, Lee A; Usubalieva, Aisulu; Runge, Kurt W; Berkner, Kathleen L

    2013-11-01

    The vitamin K oxidoreductase (VKORC1) recycles vitamin K to support the activation of vitamin K-dependent (VKD) proteins, which have diverse functions that include hemostasis and calcification. VKD proteins are activated by Glu carboxylation, which depends upon the oxygenation of vitamin K hydroquinone (KH2). The vitamin K epoxide (KO) product is recycled by two reactions, i.e. KO reduction to vitamin K quinone (K) and then to KH2, and recent studies have called into question whether VKORC1 reduces K to KH2. Analysis in insect cells lacking endogenous carboxylation components showed that r-VKORC1 reduces KO to efficiently drive carboxylation, indicating KH2 production. Direct detection of the vitamin K reaction products is confounded by KH2 oxidation, and we therefore developed a new assay that stabilized KH2 and allowed quantitation. Purified VKORC1 analyzed in this assay showed efficient KO to KH2 reduction. Studies in 293 cells expressing tagged r-VKORC1 revealed that VKORC1 is a multimer, most likely a dimer. A monomer can only perform one reaction, and a dimer is therefore interesting in explaining how VKORC1 accomplishes both reactions. An inactive mutant (VKORC1(C132A/C135A)) was dominant negative in heterodimers with wild type VKORC1, resulting in decreased KO reduction in cells and carboxylation in vitro. The results are significant regarding human VKORC1 mutations, as warfarin-resistant patients have mutant and wild type VKORC1 alleles. A VKORC1 dimer indicates a mixed population of homodimers and heterodimers that may have different functional properties, and VKORC1 reduction may therefore be more complex in these patients than appreciated previously.

  15. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  16. Spatial and Orientational Structure of the Hydration Shell of Benzene in Sub- and Supercritical Water.

    Science.gov (United States)

    Choudhary, Ashu; Chandra, Amalendu

    2015-07-09

    The spatial and orientational structure of the solvation shell of benzene in sub- and supercritical water are investigated by means of molecular dynamics simulations. The present study reveals different local organization of water molecules at different parts of the solute. The π-hydrogen-bonding between benzene and water along the axial direction is found to exist even at supercritical conditions although to a reduced extent. The coordination number of benzene decreases substantially on increase of temperature and decrease of density. While the π-hydrogen-bonded part in the axial region shows a slight expansion, the hydrophobically solvated part in the equatorial plane shows an opposite behavior as the temperature is increased from normal to the supercritical temperature. Two other distribution functions, namely the radial/angular and spatial orientational functions (SOFs) are calculated to explore the spatially resolved angular preferences of water molecules around the benzene solute. Water molecules located axial to the benzene are found to have strong inward orientation toward the solute, however an opposite behavior is found in the equatorial region. Although at supercritical conditions, the orientational distributions of water molecules are broadened, the preferential orientations in the axial and equatorial regions remain similar to that under ambient condition on average.

  17. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  18. Concentration dependence of the embryotoxic effects of benzene inhalation in CFY rats.

    Science.gov (United States)

    Tátrai, E; Ungváry, G; Hudák, A; Rodics, K; Lörincz, M; Barcza, G

    1980-01-01

    CFY rats were exposed to continuous benzene inhalation 24 h/day from day 7 to day 14 of gestation at 150, 450, 1500, or 3000 mg/m3 (50, 150, 500, or 1000 ppm) atmospheric concentrations. None of the benzene concentrations used proved to be teratogenic. There was no increase in the incidence of external, visceral, or skeletal malformations. Benzene inhalation at a 150 mg/m3 concentration brought about a slight toxic effect at a 450 mg/m3 concentration a more pronounced effect on both mothers and fetuses. The toxic effects were manifest as an increase in maternal mortality, circulatory damage, decreased gain in body weight, decrease in the weight of the placenta in the mothers and an increase in mortality (early and late), retardation of development (weight and skeleton) in the fetuses. No further change in the parameters was seen with further increases in benzene concentration. Avoidance of the risks of benzene exposure seems desirable before the commencement of planned pregnancy in the human.

  19. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels

    Directory of Open Access Journals (Sweden)

    Werner Tirler

    2015-03-01

    Full Text Available Introduction. The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and places of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. Aim. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC and benzene, produced by various incense sticks and sparklers. Results and discussion.The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 µg/m³ of benzene in the test room after the incense sticks had been tested.

  20. Detection of Sperm DNA Damage in Workers Exposed to Benzene by Modified Single Cell Gel Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bo SONG; Zhi-ming CAI; Xin LI; Li-xia DENG; Qiao ZHANG; Lu-kang ZHENG

    2005-01-01

    Objective To assess the effect of benzene on sperm DNA damageMethods Twenty-seven benzene-exposed workers were selected as exposed groupand 35 normal sperm donors as control group. Air concentration of benzene series inworkshop was determined by gas chromatography. As an internal exposure dose ofbenzene, the concentration of trans, trans-muconic acid (ttMA) was determined byhigh performance liquid chromatography. DNA was detected by modified single cellgel electrophoresis (SCGE).Results The air concentrations of benzene, toluene and xylene at the workplace were86.49 ± 2.83 mg/m3, 97.20 ±3.52 mg/m3 and 97.45 ±2.10 mg/m3, respectively.Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher thanthat of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determinedby modified SCGE method, significantly decreased in the exposed group (n=13, 70.18%± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P<0.001).Conclusion The modified SCGE method can be used to investigate the damage ofsperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cellsduring the spermatogenesiss.

  1. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Wang, Fang; Gong, Jingjing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-11-15

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: Black-Right-Pointing-Pointer The composites that Au nanoparticles supported on ZnO nanowires were synthesized. Black-Right-Pointing-Pointer Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. Black-Right-Pointing-Pointer Two operating mechanisms were proposed depending on excitation wavelength.

  2. A co-crystal between benzene and ethane: a potential evaporite material for Saturn's moon Titan

    Directory of Open Access Journals (Sweden)

    Helen E. Maynard-Casely

    2016-05-01

    Full Text Available Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H...π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group R\\bar 3 with a = 15.977 (1 Å and c = 5.581 (1 Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.

  3. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    Science.gov (United States)

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  4. Monomer and dimer radical cations of benzene, toluene, and naphthalene.

    Science.gov (United States)

    Das, Tomi Nath

    2009-06-11

    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  5. An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S.

    Science.gov (United States)

    Sherrill, C David; Takatani, Tait; Hohenstein, Edward G

    2009-09-24

    Large, correlation-consistent basis sets have been used to very closely approximate the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] complete basis set potential energy curves of several prototype nonbonded complexes, the sandwich, T-shaped, and parallel-displaced benzene dimers, the methane-benzene complex, the H2S-benzene complex, and the methane dimer. These benchmark potential energy curves are used to assess the performance of several methods for nonbonded interactions, including various spin-component-scaled second-order perturbation theory (SCS-MP2) methods, the spin-component-scaled coupled-cluster singles and doubles method (SCS-CCSD), density functional theory empirically corrected for dispersion (DFT-D), and the meta-generalized-gradient approximation functionals M05-2X and M06-2X. These approaches generally provide good results for the test set, with the SCS methods being somewhat more robust. M05-2X underbinds for the test cases considered, while the performances of DFT-D and M06-2X are similar. Density fitting, dual basis, and local correlation approximations all introduce only small errors in the interaction energies but can speed up the computations significantly, particulary when used in combination.

  6. Milk metabolites and their genetic variability.

    Science.gov (United States)

    Wittenburg, D; Melzer, N; Willmitzer, L; Lisec, J; Kesting, U; Reinsch, N; Repsilber, D

    2013-04-01

    The composition of milk is crucial to evaluate milk performance and quality measures. Milk components partly contribute to breeding scores, and they can be assessed to judge metabolic and energy status of the cow as well as to serve as predictive markers for diseases. In addition to the milk composition measures (e.g., fat, protein, lactose) traditionally recorded during milk performance test via infrared spectroscopy, novel techniques, such as gas chromatography-mass spectrometry, allow for a further analysis of milk into its metabolic components. Gas chromatography-mass spectrometry is suitable for measuring several hundred metabolites with high throughput, and thus it is applicable to study sources of genetic and nongenetic variation of milk metabolites in dairy cows. Heritability and mode of inheritance of metabolite measurements were studied in a linear mixed model approach including expected (pedigree) and realized (genomic) relationship between animals. The genetic variability of 190 milk metabolite intensities was analyzed from 1,295 cows held on 18 farms in Mecklenburg-Western Pomerania, Germany. Besides extensive pedigree information, genotypic data comprising 37,180 single nucleotide polymorphism markers were available. Goodness of fit and significance of genetic variance components based on likelihood ratio tests were investigated with a full model, including marker- and pedigree-based genetic effects. Broad-sense heritability varied from zero to 0.699, with a median of 0.125. Significant additive genetic variance was observed for highly heritable metabolites, but dominance variance was not significantly present. As some metabolites are particularly favorable for human nutrition, for instance, future research should address the identification of locus-specific genetic effects and investigate metabolites as the molecular basis of traditional milk performance test traits.

  7. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  8. Changes in DNA methylation patterns in subjects exposed to low-dose benzene.

    Science.gov (United States)

    Bollati, Valentina; Baccarelli, Andrea; Hou, Lifang; Bonzini, Matteo; Fustinoni, Silvia; Cavallo, Domenico; Byun, Hyang-Min; Jiang, Jiayi; Marinelli, Barbara; Pesatori, Angela C; Bertazzi, Pier A; Yang, Allen S

    2007-02-01

    Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.

  9. Solubility of toluene, benzene and TCE in high-microbial concentration systems.

    Science.gov (United States)

    Barton, John W; Vodraska, Chris D; Flanary, Sandie A; Davison, Brian H

    2008-12-01

    We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g mL(-1) for TCE and 0.25 g mL(-1) for benzene and toluene. The solubility limit increased from 21 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20mM. For TCE, the solubility increased from 8mM to more than 1000 mM. Solubility for TCE (trichloroethylene) was most heavily impacted by biomass levels, changing by two orders of magnitude as the microbial concentrations approach those in biofilms.

  10. Catalytic Synthesis of Isopropyl Benzene over SO42-/ZrO2 -MCM-41

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Super acid catalyst SO2-4-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques.The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO2-4/ZrO2-MCM-41 (SZM-41) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93%) for the isopropyl benzene.

  11. PERVAPORATION FOR SEPARATING BENZENE/CYCLOHEXANE MIXTURE BY P(AA-MA) COPOLYMER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Gao-fei Xu; Wei-pu Zhu

    2011-01-01

    P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.

  12. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours.

  13. 4-[(E-(5-tert-Butyl-2-hydroxyphenyldiazenyl]benzoic acid benzene hemisolvate

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2010-03-01

    Full Text Available The title benzene hemisolvate, C17H18N2O3·0.5C6H6, features an essentially planar (the r.m.s. deviation of the non-H atoms, excluding methyl-C, is 0.071 Å diazo molecule with an E conformation about the N=N bond, and a half-molecule of benzene disposed about a centre of inversion. The dihedral angle formed between the benzene rings of the diazo molecule is 7.69 (12°. In the crystal, centrosymmetrically related dimers associate via the eight-membered carboxylic acid dimer synthon, {...HOC(=O}2, and these are connected into a supramolecular chain along the b axis via C—H...O contacts.

  14. Vibrational studies of benzene, pyridine, pyridine-N-oxide and their cations.

    Science.gov (United States)

    Kumar, M; Srivastava, Mayuri; Yadav, R A

    2013-07-01

    IR and Raman spectra of pyridine and pyridine-N-oxide have been recorded and analyzed. The optimized molecular geometries, APT charges and vibrational characteristics for benzene, pyridine, pyridine-N-oxide and their cations have been computed using DFT method. Due to attachment of O atom at N site or removal of electron all the modes are affected in magnitudes. However, significant changes are noticed in their IR intensities, Raman activities and depolarization ratios of the Raman bands in going from pyridine to its N-oxide or in going from neutrals to their cations. It is interesting to note that in going from benzene to benzene cation charge redistribution takes place to reduce the symmetry from D6h to D2h. The calculated frequencies have been correlated with the experimental frequencies for the pyridine and pyridine-N-oxide molecules.

  15. Adsorption and diffusion of benzene in the nanoporous catalysts FAU, ZSM-5 and MCM-22: a molecular dynamics study.

    Science.gov (United States)

    Rungsirisakun, Ratana; Nanok, Tanin; Probst, Michael; Limtrakul, Jumras

    2006-03-01

    Molecular dynamics (MD) simulations of benzene in siliceous zeolites (FAU, ZSM-5, and MCM-22) were performed at loadings of 1, 2, 4, 8, and 16 molecules per supercell. The potential energy functions for these simulations were constructed in a semi-empirical way from existing potentials and experimental energetic data. The MD simulations were employed to analyze the dynamic properties of the benzene-zeolite systems. The adsorption energies of benzene/siliceous zeolite complexes increase with increasing loading number, due to the intermolecular attraction between benzene molecules. The self-diffusion coefficient of benzene in siliceous zeolites decreases with increasing loading due to the steric hindrance between the sorbates passing each other. From the zeolite-benzene radial distribution functions it was found that the benzene molecules are relatively far from each other, about 5.2A for siliceous FAU, 5.2A for siliceous ZSM-5, and 4.8A for siliceous MCM-22. In the case of FAU, the benzene molecules prefer to be adsorbed parallel to the surface of the sodalite cage above the six-membered-ring. In ZSM-5, we found a T-structure of the benzene molecules at loadings 2, 4, and 8 molecules per supercell. At loadings of 16 molecules per supercell, the molecules are lined up along the straight channel and their movement is highly correlated. For MCM-22 we found adjacent benzene molecules at a loading of 4 molecules with an orientation similar to the stacked conformation of benzene dimer in the gas phase.

  16. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of batch experiments were performed using mixed bacterial consortia to investigate biodegradation performance of benzene,toluene,ethylbenzene and three xylene isomers (BTEX) under nitrate,sulfate and ferric iron reducing conditions.The results showed that toluene,ethylbenzeoe,m-xylene and o-xylene could be degraded independently by the mixed cultures coupled to nitrate,sulfate and ferric iron reduction.Under ferric iron reducing conditions the biodegradation of benzene and p-xylene could be occurred only in the presence of other alkylbenzenes.Alkylbenzenes can serve as the primary substrates to stimulate the transformation of benzene and p-xylene under anaerobic conditions.Benzene and p-xylene are more toxic than toluene and ethylbenzene,under the three terminal electron acceptors conditions,the degradation rates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene.Nitrate was a more favorable electron acceptor compared to sulfate and ferric iron.The ratio between sulfate consumed and the loss of benzene,toluene,ethylbenzene,o-xylene,m-xylene,p-xylene was 4.44,4.51,4.42,4.32,4.37 and 4.23,respectively;the ratio between nitrate consumed and the loss of these substrates was 7.53,6.24,6.49,7.28,7.81,7.61,respectively;the ratio between the consumption of ferric iron and the loss of toluene,ethylbenzene,o-xylene,m-xylenewas 17.99,18.04,18.07,17.97,respectively.

  17. Qualitative evaluations of benzene in terminals and pipelines; Avaliacoes qualitativas de benzeno em terminais e oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Ferreira da; Baltar, Joao Luiz da Conceicao [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The benzene (C6H6) is a stable hydrocarbon, with pleasant smell, plenty toxic, being able to injure sanguine cells and to cause cancer. It is used as raw materials in the obtainment of several products (inks, waxes, lubricants, etc.), chemicals intermediate and, also, it is found in the petrochemical naphtha and in the gasoline. About 80% of the contaminations for benzene are attributed to the gasoline. In relation to the benzene contents present in the petrochemical processes produced in Brazil, the recent Portaria Interministerial no. 775 (Brazil,2004), of April 28, 2004, prohibits, in whole national territory, the commercialization of finished products that contain benzene in its composition. It is admitted, even so, the presence of this substance as contaminant agent in percentage non superior at 0,8% (in volume), from July 1st, 2004, 0,4% (in volume), from 1st of December of 2005 and 0,1% (in volume), from December 1st, 2007. The Brazilian Ministry of Labour regulation NR-15, P. 776, establish that the companies that produce, transport, store, use or manipulate benzene and its liquid mixtures contends 1% or more of volume, accomplish the registration in the SST - MTE and initiation the Programa de Prevencao de Exposicao Ocupacional ao Benzeno - PPEOB in TRANSPETRO. During the evaluations they had been carried through the recognition of the places, equipment and they had defined the homogeneous groups of exhibition - GHE. From these information, environmental and biological evaluations in the terminals and intermediary stations (TECAM, TEVOL, ESTAP, ESMAN, ESVOL and ESJAP), had been executed, including the accomplishment of essays to determine the presence of benzene in the liquid phase, through the infrared base equipment, GS 1000. With base in the results mitigation and remediation actions were implemented in order to guarantee the occupational health of the components of GHE. (author)

  18. Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The isotope exchange method was employed to investigate the catalytic mechanism of ionic liquid in alkylation of benzenes with olefins.It is proposed that alkylation was induced by the Lewis acid AlCl3 which attracted π electrons of 1-dodecene to shift toward 1-carbon,thus forming a carbonium ion.The carbonium ion further reacted with benzenes to form a complex.Due to unstabilit of the complex,a deuterated ring proton was transferred into an electronegative 1-carbon of the side chain to substitute for the AlCl3,accordingly 2-phenyldodecane was generated.

  19. RPBE-vdW Description of Benzene Adsorption on Au(111)

    DEFF Research Database (Denmark)

    Pedersen, Jess Wellendorff; Kelkkanen, Kari André; Mortensen, Jens Jørgen

    2010-01-01

    Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange-correlation functionals fail miserably. Particularly those systems where binding is due to van...... der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description...... of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional....

  20. Photocatalytic Oxidation of Gaseous Benzene under 185 nm UV Irradiation

    OpenAIRE

    Haibao Huang; Xinguo Ye; Huiling Huang; Peng Hu; Lu Zhang; Leung, Dennis Y. C.

    2013-01-01

    Benzene is a toxic air pollutant and causes great harm to human being. Photocatalytic oxidation (PCO) has been frequently studied for benzene removal, however, its PCO efficiency is still very low and the photocatalysts are easy to be deactivated. To improve the efficiency and stability of PCO, UV lamps with partial 185 nm UV irradiation were used to activate photocatalysts (denoted as 185-PCO). Cobalt modified TiO2 (Co-TiO2) was developed to improve the PCO activity and eliminate ozone gener...

  1. Oxides Catalysts of Rare Earth and Transient Metal for Catalytic Oxidation of Benzene

    Institute of Scientific and Technical Information of China (English)

    Liang Kun; Li Rong; Chen Jianjun; Ma Jiantai

    2004-01-01

    The catalysts of CeO2 and the mixture of CeO2 and CuO were prepared, and the activities of these catalysts for completely oxidizing benzene were studied.The results show that the optimal proportion of CeO2/CuO is 6: 4.The highest temperature at which benzene was completely oxidized on these catalysts at different airspeed was measured.Compared these catalysts with the noble metal used, our catalysts had superiority in the resources and the industrial cost besides good activities.

  2. Hydrodynamic influences of tidal fluctuations and beach slopes on benzene transport in unconfined, sandy costal aquifers

    Science.gov (United States)

    Ni, C.-F.; Wei, Y.-M.

    2012-04-01

    Oil spills in oceans have led to severe environment and ecosystem problems due to high toxicity substances, large spatial extents, and long temporal durations. The BTEX compounds are key indexes generally used for identifications of such contamination events and also for quantifications of residual substances after remediations. Benzene is one of the BTEX compounds, which is recognized to be high toxicity and may threat near-shore ecosystem and human safety. Therefore, the understanding of benzene transport in costal aquifers is critical for predictions of contaminated zones and managements and organizations of remediation plans. In this study a numerical investigation was conducted to quantify the influence of tidal fluctuations and beach slopes on benzene transport in an unconfined coastal aquifer. More specifically, three different tidal amplitudes and three beach slopes were considered in the two-dimensional HYDROGEOCHEM model to characterize the spatial and temporal behavior of the benzene transport. Simulation results show that tidal fluctuations will lead to shallow seawater circulations near the ground surface where the high tides can reach periodically. Such local circulation flows will trap benzene plume and the plume may migrate to the deeper aquifer, depending on the amplitudes of tides and the surface slopes of the coastal lines. The sine curve tides with 0.5 m amplitudes will create circulation plume sizes of about 50m in length and 20m in depth, while the circulation plume sizes for tides with 1.0 m amplitudes will significantly increase to approximately 150 m in length and 60 m in depth. Additionally, double the beach slopes and keep the same tidal amplitude will lead to 40 m plume movement toward the land. The amplitude of tidal fluctuation is the key factor to decide when and where a benzene plume reaches a largest depth. In general, the plume with tidal amplitude of 0.5 m requires 50 days to reach 90% of the largest depth. However, the plume with

  3. Advances in Study on Catalysts for Phenol Synthesis via Catalytic Hydroxylation of Benzene in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhaohui

    2004-01-01

    Synthesis of phenol via direct hydroxylation of benzene as a typical reaction of atomic economy has attracted extensive attention worldwide and has also become an actively investigated domain in China. This article refers to the recent domestic advances in study on phenol synthesis via hydroxylation of benzene from the viewpoint of catalysts, and considers the TS-1/H2O2 and FeZSM-5/N2O catalytic systems to be promising ones with good prospects for commercialization along with some suggestions on future research work.

  4. Reactions of the radical cations of methylated benzene derivatives in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, K.; Holcman, J.

    1978-03-23

    The radical cations of methylated benzene decompose in acid solution into the corresponding methylbenzyl radical and a proton. The rate constant for this reaction decreases by three orders of magnitude as the number of methyl groups increases from one to five. The rate constants can be correlated with the ionization potential of the parent compound. In neutral solution the reverse reaction to the acid-catalyzed OH adduct conversion occurs and the radical cations react with water to form the OH adduct. In slightly alkaline solution the radical cations of the higher methylated benzenes (n greater than or equal to 3) react with hydroxide ions forming the OH adduct.

  5. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  6. Ultrafast Photophysics of Star-Like Molecules with Benzene and Triazine Core

    Institute of Scientific and Technical Information of China (English)

    FENG Wen-Ke; KONG sheng; XIAO Li-Xin; MENG Kang; WANG Shu-Feng; GONG Qi-Huang

    2009-01-01

    Static and transient spectroscopic characters of newly synthesized start-like molecules,1,3,5-tri(10-butyl-3-propenyl-10H-phenothiazine)-benzene(TP3B)and 2,4,6-tri(10-butyl-3-propenyl-10H-phenothiazine)-[1,3,5]triazine(TP3T),are studied using static,picosecond fluorescence and femtosecond transient absorption spectroscopy.The results show that when the benzene group is in the center,a large conjugation system is formed,while a fast electron transfer process happens when the center group is triazine.

  7. Fullerene-Benzene purple and yellow clusters: Theoretical and experimental studies

    Science.gov (United States)

    Lundgren, Megan P.; Khan, Sakiba; Baytak, Aysegul K.; Khan, Arshad

    2016-11-01

    Fullerene (FR, C60) gives a purple colored solution almost instantly when benzene is added to it. Interestingly, this purple solution turns yellow in about 7 weeks and remains yellow afterwards. The concentration of the purple complex increases with temperature indicating its formation kinetically favored, which transforms into a more stable yellow complex very slowly with time. The geometry optimization by density functional theory (DFT) followed by spectra (TD-DFT method) calculations suggest that the purple and yellow complexes are due to clusters of six benzene molecules arranged vertically and horizontally respectively around the FR molecule.

  8. Effect of laser radiation on reparative processes in the hemogenic system of rabbits after benzene poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sarkisyan, A.P.; Teodorovich, B.P.

    1980-01-01

    Benzene was administered to 30 rabbits at a rate of 0.37 ml per kg of body weight on a daily basis, with the general dosage ranging from 8.12 to 21.3 ml. Doses were continued until the appearance of persistent leucopenia. Then a complete blood picture was prepared and histological material collected and evaluated. Of 18 rabbits who survived the benzene poisoning, 9 were treated with a helium-neon laser and the others used as controls. Results indicated that the laser treatment accelerated the regeneration of blood cells, particularly of the red part of hemogenic tissue. 11 references, 1 figure.

  9. catena-Poly[[aqua(imidazolecadmium(II]-μ3-benzene-1,3-dicarboxylato

    Directory of Open Access Journals (Sweden)

    Zhengfang Zeng

    2010-07-01

    Full Text Available In the title compound, [Cd(C8H4O4(C3H4N2(H2O]n, the CdII ion is seven-coordinated by five O atoms from three crystallographically independent benzene-1,3-carboxylate ligands, one N atom from the imidazole ligand and one coordinated water molecule. Neighboring CdII ions are bridged by the benzene-1,3-dicarboxylate ligands, forming a zigzag polymeric chain structure. These chains are further extended into a three-dimensional supramolecular structure through O—H...O and N—H...O hydrogen bonds.

  10. The relationship between distillation range of crude benzene and the content of three benzene%粗苯馏程与三苯含量的关系

    Institute of Scientific and Technical Information of China (English)

    李敏英

    2012-01-01

    In this paper, comparison analysis and function simulation on the coking plant chemical products quality index of the amount of distilling crude benzene before 180 ℃ as the products quality index and its benzene, toluene, xylene components of the sum of the detected data content for the coking plant were carried out. It was found that there was a linear relation between the distillation range of crude benzene and its content. And this model had some practical value and guiding significane for analysis, detection and real process production.%对焦化厂化工产品粗苯的质量指标180℃前馏出量与其苯、甲苯、二甲苯组分的含量之和的测定数据进行了对比分析和函数模拟,结果表明,两者之间存在着线性关系,且所得的一元线性回归方程对分析检测和工艺生产有着实际的指导意义。

  11. Conformational instability of the lowest triplet state of the benzene nucleus: II. p-Xylene, the influence of substituents

    NARCIS (Netherlands)

    J.H. van der Waals; M.C. van Hemert; W.J. Buma

    1990-01-01

    A calculation of the potential-energy surface of the lowest triplet state of p-xylene as a function of the S8(,) distortion coordinate of the benzene skeleton has been made to learn more about the influence of substituents on the vibronically induced distortion of benzene in its metastable triplet s

  12. Differentiation of HL-60 promyelocytes to granulocytes induced via the activation of protein kinase-C by benzene

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.; O' Connor, A.; Kalf, G. (Rutgers-the State Univ., Piscataway, NJ (United States) Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-03-15

    Benzene is a hematotoxin which affects the development of bone marrow progenitor cells and a leukemogen which causes acute myelogenous leukemia. The authors studied the effect of benzene on the differentiation of progenitors of the myeloid lineage, using HL-60 promyelocytic leukemia cells which can be induced to differentiate to granulocytes via the activation of protein kinase-C (PKC) by DMSO and retinoic acid. Exposure of HL-60 cells to 5 mM benzene for 5 min. results in the activation of PKC as measured by an increases in the phosphorylation of cellular proteins in a whole cell assay including proteins pp17 and pp27 reported by Feuerstein and Cooper to be involved in HL-60 cell differentiation. The increase in protein phosphorylation observed with benzene was equally as great as that observed with 100 ng/mL PMA, used as a control. Under the same conditions, benzene induces differentiation of the promyelocytes into granulocytes as measured by the acquisition of superoxide production and granulocyte morphology. Preincubation with 40 {mu}M sphinganine, a PKC inhibitor, prevents the benzene-induced increase in cellular protein phosphorylation and the differentiation to granulocytes. These results indicate that benzene, by activation of PKC, can affect myeloid differentiation which may play a role in the ability of benzene to cause acute myelogenous leukemia.

  13. Keanekaragaman metabolit sekunder Genus Artocarpus (Moraceae

    Directory of Open Access Journals (Sweden)

    ALIEFMAN HAKIM

    2011-11-01

    Full Text Available Hakim A. 2011. Keanekaragaman metabolit sekunder Genus Artocarpus (Moraceae. Bioteknologi 8: 86-98. Beberaapa spesies dari genus Artocarpus (Moraceae telah diteliti kandungan bahan alamnya. Metabolit sekunder yang berhasil diisolasi dari genus Artocarpus terdiri dari terpenoid, flavonoid, stilbenoid, arilbenzofuran, neolignan, dan adduct Diels-Alder. Kelompok flavonoid merupakan senyawa yang paling banyak ditemukan dari tumbuhan Artocarpus. Senyawa flavonoid yang telah berhasil diisolasi dari tumbuhan Artocarpus memiliki kerangka yang beragam seperti calkon, flavanon, flavan-3-ol, flavon sederhana, prenilflavon, oksepinoflavon, piranoflavon, dihidrobenzosanton, furanodi hidrobenzosanton, piranodihidrobenzosanton, kuinonosanton, siklolopentenosanton, santonolid, dihidrosanton.

  14. Metabolites from mangrove endophytic fungus Dothiorella sp.

    Institute of Scientific and Technical Information of China (English)

    XUQingyan; WANGJianfeng; HUANGYaojian; ZHENGZhonghui; SONGSiyang; ZHANGYongmin; SUWenjin

    2004-01-01

    Mangroves are special woody plant communities in the intertidal zone of tropical and subtropical coasts. They prove to be a natural microorganisms and new metabolites storage. In the study of mangrove endophytic fungi metabolites, four new compounds, Compounds 1, 2, 3 and 4, as well as a known octaketide, cytosporone B (5), are isolated from an endophytic fungus, Dothiorella sp., HTF3. They all show cytotoxic activities. The elucidation of these structures is mainly based on 1D/2D NMR and ESI-MS spectral analyses.

  15. Acid/base and hydrogen bonding effects on the proton-coupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, {sup 1}H NMR and computation

    Energy Technology Data Exchange (ETDEWEB)

    Alligrant, Timothy M. [Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., P.O. Box 842006, Richmond, VA 23284 (United States); Hackett, John C. [Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, P.O. Box 980133, Richmond, VA 23219 (United States); Alvarez, Julio C., E-mail: jcalvarez2@vcu.ed [Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., P.O. Box 842006, Richmond, VA 23284 (United States)

    2010-09-01

    This report seeks to address the role of hydrogen bonding with Bronsted acids and bases in proton-coupled electron transfer (PCET) as it pertains to concerted or stepwise pathways of quinone (Q) and hydroquinone (QH{sub 2}) electrochemistry. This study was performed using a series of techniques that included cyclic voltammetry (CV), digital simulations, computational chemistry and {sup 1}H NMR. Hydrogen bonding was inferred by a decrease in diffusion coefficient (D) values measured using a pulsed gradient echo- (PGE-) {sup 1}H NMR technique. Changes of 40.8% and 37.9% in D values were only noted after the addition of two equivalents of acetate to 1,4-hydroquinone (1,4-QH{sub 2}) and catechol (1,2-QH{sub 2}), respectively. In contrast, the D values for the addition of selected amines (pyridine, N,N-diisopropylethylamine and triethylamine) changed only 3.2% on average. Quantum mechanical calculations were conducted to determine the pK{sub a} of all quinoid species to serve as a starting point for the determination of equilibrium constants in voltammetric simulations. Simulations indicate that 1,4-benzoquinone undergoes stepwise electron-proton transfer upon addition of acetic acid, N-ethyldiisopropylammonium perchlorate and pyridinium nitrate and were simulated without the presence of hydrogen bonds. The QH{sub 2} compounds show stepwise proton-electron transfers after addition of the both the conjugate amines and acetate.

  16. Solubilities of benzene, toluene and diphenyl in the t-butyl alcohol + water mixtures and hydrophobic interaction

    Institute of Scientific and Technical Information of China (English)

    邹立壮; 杨冠英; 韩布兴; 刘瑞麟; 阎海科

    1999-01-01

    The solubilitices of benzene, toluene and diphenyl in mixed solvents of t-butyl alcohol (TBA) and water at 283.15, 288.15, 293.15 and 298.15 K have been determined by spectrophotometry. The mole fraction of TBA [x (TBA)] in the mixed solvent are 0.000, 0.010, 0.020, 0.030, 0.040, 0.045, 0.050, 0.060, 0.080 and 0.100, respectively. The standard Gibbs energies of solution of benzene, toluene and diphenyl in the mixed solvent have also been calculated based on the solubility data. The hydrophobic interactions (HI) for the pairs of benzene-benzene, methane-benzene and methane-methane in the mixed solvent were calculated and discussed.

  17. Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by superoxide anions, hydroquinone and carboxy-PTIO.

    Science.gov (United States)

    Lilley, E; Gibson, A

    1996-09-01

    1. The potential protective effect of several antioxidants [Cu/Zn superoxide dismutase (Cu/Zn SOD), ascorbate, reduced glutathione (GSH), and alpha-tocopherol (alpha-TOC)] on relaxations of the mouse anococcygeus muscle to nitric oxide (NO; 15 microM) and, where appropriate, nitrergic field stimulation (10 Hz; 10 s trains) was investigated. 2. The superoxide anion generating drug duroquinone (100 microM) reduced relaxations to exogenous NO by 54 +/- 6%; this inhibition was partially reversed by Cu/Zn SOD (250 u ml-1), and by ascorbate (500 microM). Following inhibition of endogenous Cu/Zn SOD activity with diethyldithiocarbamate (DETCA), duroquinone (50 microM) also reduced relaxations to nitrergic field stimulation (by 53 +/- 6%) and this effect was again reversed by Cu/Zn SOD and by ascorbate. Neither GSH (500 microM) nor alpha-TOC (400 microM) afforded any protection against duroquinone. 3. Xanthine (20 mu ml-1); xanthine oxidase (100 microM) inhibited NO-induced relaxations by 73 +/- 14%, but had no effect on those to nitrergic field stimulation, even after DETCA treatment. The inhibition of exogenous NO was reduced by Cu/Zn SOD (250 u ml-1) and ascorbate (400 microM), but was unaffected by GSH or alpha-TOC (both 400 microM). 4. Hydroquinone (100 microM) also inhibited relaxations to NO (by 52 +/- 10%), but not nitrergic stimulation. In this case, however, the inhibition was reversed by GSH (5-100 microM) and ascorbate (100-400 microM), although Cu/Zn SOD and alpha-TOC were ineffective. 5. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO, 50 microM) inhibited NO-induced relaxations by 50 +/- 4%, but had no effect on nitrergic responses; the inhibition was reduced by ascorbate (2-200 microM) and alpha-TOC (10-200 microM), but not by Cu/Zn SOD or GSH. 6. Hydroxocobalamin (5-100 microM) inhibited, equally, relaxations to both NO (-logIC40 3.14 +/- 0.33) and nitrergic stimulation (-logIC40 3.17 +/- 0.22). 7. Thus, a number of

  18. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene.

    Science.gov (United States)

    Juanjuan, Zhang; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-05-21

    Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which

  19. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Marianne Pons

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is the leading cause of legal blindness in the elderly population. Debris (termed drusen below the retinal pigment epithelium (RPE have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV. The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1, pro-angiogenic vascular endothelial growth factor (VEGF and anti-angiogenic pigment epithelial derived factor (PEDF in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ, a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice. PRINCIPAL FINDINGS: MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo. CONCLUSION: We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring

  20. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

    Directory of Open Access Journals (Sweden)

    Kheirbek Iyad

    2012-07-01

    Full Text Available Abstract Background Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. Methods To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes and formaldehyde to indicators of local sources, adjusting for temporal variation. Results Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively. Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Conclusions Traffic and