WorldWideScience

Sample records for benzene fugitive emissions

  1. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  2. Controlling fugitive emissions from mechanical seals

    International Nuclear Information System (INIS)

    Adams, W.V.

    1992-01-01

    This paper reports that enactment of the 1990 Federal Clean Air Amendments will sharply focus efforts in the process industries to reduce fugitive emissions. Moreover, state and local governments may be imposing stricter laws and regulations which will affect allowable fugitive emissions from U.S. refineries and process plants. Plants outside the U.S. have similar concerns. Clearly, mechanical seals for process pumps represent an enormous population and is one category of equipment destined for careful evaluation as a means to control fugitive emissions. Fugitive are unintentional emissions from valves, pumps, flanges, compressors, etc., as opposed to point-source emissions from stacks, vents and flares. Fugitive emissions do not occur as a part of normal plant operations, but result from the effects of: Malfunctions, Age, Lack of proper maintenance, Operator error, Improper equipment specification, Use of inferior technology, and externally caused damage

  3. Fugitive emissions from nanopowder manufacturing

    International Nuclear Information System (INIS)

    Trompetter, W. J.; Ancelet, T.; Davy, P. K.; Kennedy, J.

    2016-01-01

    In response to health and safety questions and concerns regarding particulate matter emissions from equipment used for synthesizing NiFe and TiO 2 nanopowders, a study was undertaken to assess their impact on the air quality inside and outside a laboratory where the manufacturing equipment is operated. Elemental concentrations determined by ion beam analysis (IBA) of air particulate matter (PM) samples collected hourly with a Streaker TM sampler were used to identify possible sources and estimate contributions from nanopowder production and other sources. The fugitive nanopowder emissions were the highest at the indoor sampling location when powders were being manufactured. Average fugitive emissions of 210 ng m −3 (1-h average) (maximum 2163 ng m −3 1-h average) represented 2 % (maximum 20 %) of the average PM collected (9359 ng m −3 1-h average). The measured NiFe alloy or TiO 2 PM concentrations were much smaller than the 8-h time-weighted average (TWA) workplace exposure standards (WES) for these materials (≥1,000,000 ng m −3 ). Most PM was found to be from infiltrated outdoor ambient sources. This suggests that nanopowder production in the laboratory is not likely to have adverse health effects on individuals using the equipment, although further improvements can be made to further limit exposure.Graphical abstract

  4. Fugitive emissions from nanopowder manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Trompetter, W. J., E-mail: b.trompetter@gns.cri.nz; Ancelet, T.; Davy, P. K.; Kennedy, J. [GNS Science (New Zealand)

    2016-07-15

    In response to health and safety questions and concerns regarding particulate matter emissions from equipment used for synthesizing NiFe and TiO{sub 2} nanopowders, a study was undertaken to assess their impact on the air quality inside and outside a laboratory where the manufacturing equipment is operated. Elemental concentrations determined by ion beam analysis (IBA) of air particulate matter (PM) samples collected hourly with a Streaker{sup TM} sampler were used to identify possible sources and estimate contributions from nanopowder production and other sources. The fugitive nanopowder emissions were the highest at the indoor sampling location when powders were being manufactured. Average fugitive emissions of 210 ng m{sup −3} (1-h average) (maximum 2163 ng m{sup −3} 1-h average) represented 2 % (maximum 20 %) of the average PM collected (9359 ng m{sup −3} 1-h average). The measured NiFe alloy or TiO{sub 2} PM concentrations were much smaller than the 8-h time-weighted average (TWA) workplace exposure standards (WES) for these materials (≥1,000,000 ng m{sup −3}). Most PM was found to be from infiltrated outdoor ambient sources. This suggests that nanopowder production in the laboratory is not likely to have adverse health effects on individuals using the equipment, although further improvements can be made to further limit exposure.Graphical abstract.

  5. Fugitive methane emissions from an agricultural biodigester

    International Nuclear Information System (INIS)

    Flesch, Thomas K.; Desjardins, Raymond L.; Worth, Devon

    2011-01-01

    The use of agricultural biodigesters provides a strategy for reducing greenhouse gas (GHG) emissions while generating energy. The GHG reduction associated with a biodigester will be affected by fugitive emissions from the facility. The objective of this study was to measure fugitive methane (CH 4 ) emissions from a Canadian biodigester. The facility uses anaerobic digestion to produce biogas from cattle manure and other organic feedstock, which is burnt to generate electricity (1 MW capacity) and heat. An inverse dispersion technique was used to calculate emissions. Fugitive emissions were related to the operating state of the biodigester, and over four seasonal campaigns the emission rate averaged 3.2, 0.8, and 26.6 kg CH 4 hr -1 for normal operations, maintenance, and flaring periods, respectively. During normal operations the average fugitive emission rate corresponded to 3.1% of the CH 4 gas production rate. -- Highlights: → Biodigesters reduce greenhouse gas emissions. → Net emission reduction affected by fugitive emissions. → Fugitive CH 4 measured at agricultural biodigester (1 MW generating capacity). → Emissions were 3.1% of gas production. → Emissions lower than assumed in carbon credit protocols.

  6. Emission inventory for fugitive emissions from fuel in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2013. The inventory of fugitive emissions includes CO2, CH4, N2O, SO2, NOx, NMVOC, CO, particulate matter, Black carbon, heavy metals, dioxin and PAHs. In 2013 the total...... Danish emission of greenhouse gasses was 54 584 Gg CO2 equivalents. Fugitive emissions from fuels account for 387 Gg CO2 equivalents or approximately 1 %. The major part of the fugitive emissions are emitted as CO2 (61 %) mainly from flaring in upstream oil and gas production. The major source...... of fugitive CH4 emission is production of oil and gas in the North Sea, refining of oil and loading of oil onto ships both offshore and onshore. The fugitive emissions of NMVOC originate for the major part from oil and gas production, loading of ships, transmission and distribution of oil, and to a less...

  7. Monitoring of fugitive emissions in petrochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rozilda F. [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental

    1993-12-31

    COPENE (Petroquimica do Nordeste S/A) has been implanting a program of fugitive emissions adapted to its reality, trying to promote a continuous improvement in its employees` working conditions and in environmental protection. This paper presents the methodology for the elaboration of this program and the conclusions of some surveys which were already completed (author). 4 refs., 7 figs., 3 tabs.

  8. Monitoring of fugitive emissions in petrochemical plant

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rozilda F [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental

    1994-12-31

    COPENE (Petroquimica do Nordeste S/A) has been implanting a program of fugitive emissions adapted to its reality, trying to promote a continuous improvement in its employees` working conditions and in environmental protection. This paper presents the methodology for the elaboration of this program and the conclusions of some surveys which were already completed (author). 4 refs., 7 figs., 3 tabs.

  9. Economical benzene emission reduction

    International Nuclear Information System (INIS)

    Schuetz, R.

    1999-01-01

    Benzene has been classified as a toxic compound under the Canadian Environmental Protection Act. This has prompted the Alberta Energy and Utilities Board (AEUB) to introduce specific reporting and monitoring guidelines for the oil and gas industry regarding excessive benzene emissions. Glycol dehydration units have been determined to be the major single source of benzene emissions causing air and soil pollution. DualTank Corp. has designed a condensation and storage tank unit to enhance emission reduction, odour elimination and liquid recovery from dehydration units. Their newly designed combined tank unit consists of a large, uninsulated surface area for cooling, and an excessive internal volume for increased retention time. The first prototype was installed in December 1998 at an Enerplus Resources Site. The system provides excellent benzene emission reduction and the elimination of odours and visual plumes. Effective January 1, 1999, the petroleum and natural gas industry must either clean up excessive emissions voluntarily or face government imposed regulations, facility shutdowns and/or fines. 1 fig

  10. Estimation of fugitive dust emissions in opencast mines

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M. [MECON Ltd., Ranchi (India). Environmental Engineering Division

    2001-02-01

    Fugitive dusts being the most annoying air pollutant in opencast mines, estimation of the fugitive dust level at ongoing sites and also prediction of dust level for the future years is important. A rapid increase in the percentage of surface mining to support an optimistic industrial growth rate at core sector has raised alarms owing to the apprehension of phenomenal increase of dust level in mine air. Fairly accurate estimation of dust dispersion level is a prerequisite to designing adequacy and suitability of a dedusting system. Determination of emission factors suited to various geomining conditions is an important basic step towards this direction. In advanced countries research work has been carried out at the national level to evolve emission factors in mining and industry. Till now no concerted effort has been attempted in India for this. In the present paper the author has utilised limited data to discuss fugitive dust emission factors for various operations for mining. 9 refs., 2 tabs.

  11. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  12. Measurement of fugitive emissions from gas processing plants in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A. [Alberta Research Council, Edmonton, AB (Canada)

    2004-07-01

    This paper presents a new gas visualization camera created to detect leaks. An outline of the device's projected entry into the oil and gas industry was provided, and included: a demonstration of Differential Absorption Light Detection and Ranging (DIAL) and leak cameras to measure and reduce fugitive emissions; a comparison of DIAL measured emissions with estimated emissions; and a review of methods to measure particulate emissions. In addition, a background of gas leak visualisation technology was presented along with an an overview of DIAL and its results from sour gas plants. The results of a survey conducted in 2003 were presented, including leaks identified and repaired as well as a follow up leak survey. An analysis of pre and post-repair hydrocarbon emissions from the Deepcut area revealed a 60 per cent reduction with savings of $140,000 as well as additional savings from reduced carbon emissions. A similar survey conducted in another plant measured emissions from condensate tanks before and after cooler installation as well as from surrounding well sites, quantifying an 80 per cent reduction in methane emissions. Tasks identified for future research concerned particulate emissions and the development of Lidar methods which can currently identify particulates, but are not yet able to quantify them. Other tasks included a complete DIAL data workup and reporting; the quantification of both methane and carbon emissions reduction at a sour gas plant; a comparison of measured emissions with methods that estimate fugitives; and a complete review of particulate measurements. tabs, figs.

  13. Diffuse and fugitive emission dose assessment on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-01-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order requires RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and (2) continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request requires RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. The RL Compliance Plan included as one of its milestones the requirement to develop a Federal Facility Compliance Agreement (FFCA). An FFCA was negotiated between RL and the EPA, Region 10, and was entered into on February 7, 1994. One of the milestones was to provide EPA, Region 10, with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI will include an assessment of the diffuse and fugitive emissions from the Hanford Site. This assessment does not identify any diffuse or fugitive emission source that would cause an effective dose equivalent greater than 0.1 mrem/yr

  14. Controlling fugitive dust emissions in material handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, G E

    1992-05-01

    The primary mechanism of fugitive dust generation in bulk material handling transfer operations is by dispersion of dust in turbulent air induced to flow with falling or projected material streams. This paper returns to basic theories of particle dynamics and fluid mechanics to quantify the dust generating mechanism by rational analysis. Calculations involving fluid mechanisms are made easier by the availability of the personal computer and the many math manipulating programs. Rational analysis is much more cost effective when estimating collection air volumes to control fugitive emissions; especially in enclosed material handling transfers transporting large volumes of dusty material. Example calculations, using a typical enclosed conveyor-to-conveyor transfer operation are presented to illustrate and highlight the key parameters that determine the magnitude of induced air flow that must be controlled. The methods presented in this paper for estimating collection air volumes apply only enclosed material handling transfers, exhausted to a dust collector. Since some assistance to the control of dust emissions must be given by the material handling transfer chute design, a discussion of good transfer chute design practice is presented. 4 refs., 2 figs., 2 tabs.

  15. Refinery evaluation of optical imaging to locate fugitive emissions.

    Science.gov (United States)

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  16. A comprehensive study of benzene concentrations and emissions in Houston

    Science.gov (United States)

    Müller, Markus; Eichler, Philipp; Berk Knighton, W.; Estes, Mark; Crawford, James H.; Mikoviny, Tomas; Wisthaler, Armin

    2014-05-01

    The Houston Metropolitan Area (Greater Houston) has a population of over 6 million people, it ranks among the three fastest growing metropolises in the developed world and population growth scenarios predict it to reach megacity status in the coming two to four decades. Greater Houston is home to the largest petrochemical-manufacturing complex in the world with important consequences for the environment in the region. Direct and fugitive emissions of hydrocarbons adversely affect Houston's air quality which has been subject to intense studies over the past two decades. In 2013, NASA conducted the DISCOVER-AQ field campaign in support of developing a satellite-based capability to assess Houston's air quality in the future. Amongst other measurements, airborne, mobile ground-based and stationary ground-based measurements of benzene were carried out. Benzene is a carcinogenic air toxic with strict exposure regulations in the U.S. and in Europe. We have used the obtained comprehensive dataset to map benzene concentrations in the Houston metropolitan area, locate and identify point sources, compare industrial and traffic emissions and put them in relation to previous measurements and emission inventories. The obtained data will allow a better assessment of health risks associated with benzene exposure in a large metropolitan area that includes both traffic and industrial benzene sources. This work was funded by BMVIT / FFG-ALR in the frame of the Austrian Space Application Programme (ASAP 8, project 833451). PE was funded through the PIMMS ITN (EU-FP7, agreement number 287382). Additional resources were provided through NASA's Earth Venture program (EV-1) and the NASA Postdoctoral Program (NPP). We want to thank Scott Herndon and Aerodyne Research for their support.

  17. Puff models for simulation of fugitive radioactive emissions in atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Camila P. da, E-mail: camila.costa@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Matematica e Estatistica; Pereira, Ledina L., E-mail: ledinalentz@yahoo.com.b [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Vilhena, Marco T., E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tirabassi, Tiziano, E-mail: t.tirabassi@isac.cnr.i [Institute of Atmospheric Sciences and Climate (CNR/ISAC), Bologna (Italy)

    2009-07-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  18. Puff models for simulation of fugitive radioactive emissions in atmosphere

    International Nuclear Information System (INIS)

    Costa, Camila P. da; Vilhena, Marco T.

    2009-01-01

    A puff model for the dispersion of material from fugitive radioactive emissions is presented. For vertical diffusion the model is based on general techniques for solving time dependent advection-diffusion equation: the ADMM (Advection Diffusion Multilayer Method) and GILTT (Generalized Integral Laplace Transform Technique) techniques. The first one is an analytical solution based on a discretization of the Atmospheric Boundary Layer (ABL) in sub-layers where the advection-diffusion equation is solved by the Laplace transform technique. The solution is given in integral form. The second one is a well-known hybrid method that had solved a wide class of direct and inverse problems mainly in the area of Heat Transfer and Fluid Mechanics and the solution is given in series form. Comparisons between values predicted by the models against experimental ground-level concentrations are shown. (author)

  19. Mine haul road fugitive dust emission and exposure characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.J.; Visser, A.T. [University of Pretoria, Pretoria (South Africa). Dept. of Mining Engineering

    2001-03-01

    Excessive dust generation from mine haul roads is a problem common to most surface coal mining operations. Optimal wearing course material selection parameters reduce, but do not toally eliminate the potential to produce dust. For existing operations, which may not have optimally designed and maintained roads, the problem of identifying the haul road dust defect, quantifying its impact on both safety and health and assigning priorities within the constraints of limited capital and manpower is problematic. This is reflected in the fact that most surface mine operators agree dust-free roads are desirable, but find it difficult to translate this into cost-effective betterment activities. The aim of this paper is to describe fugitive dust emission and exposure characteristics associated with ultra-heavy mine haul trucks running on unpaved mine haul roads. Models are described which enable mines to assess the likely dustiness of their chosen haul road material as a function of surface loading of fines, traffic types and volume, together with various material parameters. By combining these models with the results of quantitative exposure profiling, a mine can, in conjunction with the assessment, determine the most cost- and safety-effective haul road dust management strategy. 18 refs., 10 figs., 2 tabs.

  20. Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal

    Science.gov (United States)

    Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel

    2013-04-01

    Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.

  1. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    Science.gov (United States)

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  2. CHARACTERIZATION OF THE FUGITIVE MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT. OVERALL STUDY DESIGN

    Science.gov (United States)

    The paper discusses a detailed emissions measurement campaign that was conducted over a 9-day period within a mercury (Hg) cell chlor-alkali plant in the southeastern United States (U.S.). The principal focus of this study was to measure fugitive (non-ducted) airborne Hg emission...

  3. PROBLEMS WITH DETERMINATION OF FUGITIVE EMISSION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM COKE OVEN BATTERY

    Directory of Open Access Journals (Sweden)

    Rafał Bigda

    2017-03-01

    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  4. [Characteristics of fugitive dust emission from paved road near construction activities].

    Science.gov (United States)

    Tian, Gang; Fan, Shou-Bin; Li, Gang; Qin, Jian-Ping

    2007-11-01

    Because of the mud/dirt carryout from construction activities, the silt loading of paved road nearby is higher and the fugitive dust emission is stronger. By sampling and laboratory analysis of the road surface dust samples, we obtain the silt loading (mass of material equal to or less than 75 micromaters in physical diameter per unit area of travel surface) of paved roads near construction activities. The result show that silt loading of road near construction activities is higher than "normal road", and silt loading is negatively correlated with length from construction's door. According to AP-42 emission factor model of fugitive dust from roads, the emission factor of influenced road is 2 - 10 times bigger than "normal road", and the amount of fugitive dust emission influenced by one construction activity is "equivalent" to an additional road length of approximately 422 - 3 800 m with the baseline silt loading. Based on the spatial and temporal distribution of construction activities, in 2002 the amount of PM10 emission influenced by construction activities in Beijing city areas account of for 59% of fugitive dust from roads.

  5. Health aspects of wood particles in fugitive emission during professional exposition

    International Nuclear Information System (INIS)

    Vlckova, H.; Schwarz, M.; Lalik, V.

    2008-01-01

    Fugitive emission of wood dust can constitute serious menace to health of worker in wood industry. Present paper describes not only influence of unaccompanied wood which develops allergic reactions, respire diseases, dermatosis, cancer etc., but also additional effects of natural wood components as endotoxins, microbial spores, amoebas, fungus, animal and proteins, volatile components wood resins, respectively. (authors)

  6. 40 CFR 63.7291 - What work practice standards must I meet for fugitive pushing emissions if I have a by-product...

    Science.gov (United States)

    2010-07-01

    ... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a... existing by-product coke oven battery with vertical flues. (1) Observe and record the opacity of fugitive...

  7. Assessing fugitive emissions of CH4 from high-pressure gas pipelines

    Science.gov (United States)

    Worrall, Fred; Boothroyd, Ian; Davies, Richard

    2017-04-01

    The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.

  8. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    Science.gov (United States)

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  9. A new approach to estimate fugitive methane emissions from coal mining in China

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yiwen, E-mail: juyw03@163.com [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Sun, Yue [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Sa, Zhanyou [Department of Safety Engineering, Qingdao Technological University, Qingdao 266520 (China); Pan, Jienan [School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Jilin [School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116 (China); Hou, Quanlin; Li, Qingguang; Yan, Zhifeng [Key Laboratory of Computational Geodynamics of Chinese Academy Sciences, Beijing 100049 (China); College of Earth Science, University of Chinese Academy Sciences, Beijing 100049 (China); Liu, Jie [Department of Safety Engineering, Qingdao Technological University, Qingdao 266520 (China)

    2016-02-01

    Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geological conditions and mining technologies, previous efforts to estimate fugitive methane emissions from coal mining in China has led to disagreeing results. This paper proposes a new calculation methodology to determine fugitive methane emissions from coal mining based on the domestic analysis of gas geology, gas emission features, and the merits and demerits of existing estimation methods. This new approach involves four main parameters: in-situ original gas content, gas remaining post-desorption, raw coal production, and mining influence coefficient. The case studies in Huaibei–Huainan Coalfield and Jincheng Coalfield show that the new method obtains the smallest error, + 9.59% and 7.01% respectively compared with other methods, Tier 1 and Tier 2 (with two samples) in this study, which resulted in + 140.34%, + 138.90%, and − 18.67%, in Huaibei–Huainan Coalfield, while + 64.36%, + 47.07%, and − 14.91% in Jincheng Coalfield. Compared with the predominantly used methods, this new one possesses the characteristics of not only being a comparably more simple process and lower uncertainty than the “emission factor method” (IPCC recommended Tier 1 and Tier 2), but also having easier data accessibility, similar uncertainty, and additional post-mining emissions compared to the “absolute gas emission method” (IPCC recommended Tier 3). Therefore, methane emissions dissipated from most of the producing coal mines worldwide could be more accurately and more easily estimated. - Highlights: • Propose a new method to estimate fugitive methane emissions from coal mining. • New method has accurate prediction for CMM emissions without activity data updating. • Mining

  10. Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK

    Science.gov (United States)

    Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.

    2016-12-01

    Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from

  11. Localization of fugitive methane emission from natural gas distribution network of Titas Gas

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2017-03-01

    Full Text Available The aim of this paper is to localize the fugitive leaks from the above ground facilities of the existing system of Titas Gas (TG after developing mathematical model for fugitive emission. Soap screening techniques and Gasurveyor 500 series instrument were used in this study for detecting potential leaks. Leaked gas was quantified using either Hi-Flow gas sampler or bagging measurements system. The results show that the respective potential gas leaking point of City Gate Station (CGS, commercial Regulating and Metering Station (RMS, industrial RMS, residential RMS and Town Bordering Station (TBS/ District Regulating Station (DRS are scrubber dump valve (average leak rate 217.00 L/min, insulating point (average leak rate 4.04 L/min, tube fitting connector (average leak rate 8.00 L/min, connector (average leak rate 1.55 L/min and pressure relief valve (average leak rate 437.92 L/min. Fugitive methane emission can be reduced by stopping leaks of fittings or components having high KLeak value.

  12. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    Science.gov (United States)

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  13. Fugitive Dust Emissions: Development of a Real-time Monitor

    Science.gov (United States)

    2011-10-01

    mean wind speed indicate that, for a typical mean wind speed of 4.4 m/s, particles larger than about 100 μm are likely to deposit within 10 meters ...from the point of emission. Particles that are 30 to 100 μm in diameter typically deposit within a few hundred meters from the injection point...Willeke, 1990). In general, it is accepted that isoaxial and isokinetic conditions result in representative sampling of aerosol particles from most

  14. A portable scanning lidar for real-time detection of fugitive dust emissions from multisource facilities

    Energy Technology Data Exchange (ETDEWEB)

    Emmitt, G.D. [Simpson Weather Associates, Inc., Charlottesville, VA (United States)

    1994-12-31

    A 400 mj, incoherent, pulsed, scanning CO{sub 2} lidar referred to as the Portable Laser for Coal Emission Mapping (PLACEM) is combined with a real-time version of EPA`s Industrial Source Complex - Short Term (ISCST) model to map TSP concentrations and dry deposition of fugitive particulate emissions from multiple sources within a coal handling complex. A Simpson Weather Associates concept, funded by Pier IX (a subsidiary of Zeigler Coal Handling Company), PLACEM was developed in response to the need for an eye-safe laser technique for (1) assessing the relative contribution of intermittent dust generating activities and sources within a coal transshipment facility, (2) evaluating the efficiency of various dust control measures, and (3) developing a means to assess compliance with pending Clean Air Act (CAA, 1990) regulations requiring Continuous Emission Monitoring (CEM). Integration of the PLACEM observations with the ISCST2 provides a means of dynamically calibrating the model for use with conventional in situ particulate monitors. Both simulated and real observations are presented to demonstrate the viability and utility of this lidar/model approach to fugitive emission monitoring.

  15. Fugitive Felons

    Data.gov (United States)

    Social Security Administration — The Fugitive Felon Reporting and Tracking System (FRATS) houses fugitive data submitted by reporters (RIDs) and warrant agencies (WAIDs). It also controls and tracks...

  16. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    Science.gov (United States)

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  17. 40 CFR 63.7292 - What work practice standards must I meet for fugitive pushing emissions if I have a by-product...

    Science.gov (United States)

    2010-07-01

    ... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...) Prepare and operate by a written plan that will eliminate or minimize incomplete coking for each by...

  18. Methane fugitive emissions quantification using the novel 'plume camera' (spatial correlation) method

    Science.gov (United States)

    Crosson, E.; Rella, C.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct

  19. Development of a life-cycle fugitive methane emissions model utilizing device level emissions and activity factors

    Science.gov (United States)

    Englander, J.; Brandt, A. R.

    2017-12-01

    There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b

  20. Fugitive emissions control on dry copper tailing with crushed rock armor

    International Nuclear Information System (INIS)

    Haase, E.F.

    1992-01-01

    Four inactive copper tailing impoundments totalling 1,900 acres near Ajo in southwestern Arizona were covered on horizontal surfaces with a 2 in. nominal thickness of crushed rock to control particulate emissions. The tailings are typically dominated by sand-sized particles but may also include significant PM 10 fractions towards the centers of the impoundments. The technology was selected by Phelps Dodge Corporation, after investigation of several alternatives, as a permanent and practical cover that essentially eliminates fugitive emissions. It simulates the natural desert pavement that characterizes this arid area of the Sonoran Desert. Rocky overburden was crushed to minus 3 in. diameter and broadcast on dry surfaces of tailing impoundments with all-terrain, balloon-tired spreaders. Stony residues in the rock armor tend to cement together following rainfall, forming a crust that enhances surface stability and erosion control. Slopes with windblown tailing deposition were covered to a nominal 6 in. thickness by conventional dozer pushing and blading of minus 10 in. rock over the sides. Athel trees, planted extensively since 1970 on two of the four inactive impoundments, provided partial control of fugitives, but were subjected to harsh environmental conditions, including abrasion from saltating particles. The rock armor functions as a mulch which is expected to improve water relations for existing vegetation and areas seeded with native species. New surface microenvironments, and the virtual elimination of surface creep and saltation, are expected to support native plant growth under favorable climatic conditions

  1. Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology

    Science.gov (United States)

    Tsai, T.; Rella, C.; Crosson, E.

    2013-12-01

    Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes

  2. Influence of benzene emission from motorcycle on Bangkok air quality

    Science.gov (United States)

    Leong, Shing Tet; Muttamara, S.; Laortanakul, Preecha

    This study investigated the influence of benzene concentration from motorcycle exhaust emissions on ambient air quality in Bangkok Metropolitan Region (BMR). Measurement of benzene concentration in exhaust emissions is performed on a standard test driving cycle through which each motorcycle to be tested is driven. The test result revealed that average benzene concentrations in exhaust emission for the test motorcycles ranged from 3.02 to 109.68 mg/m 3. The finding also indicated that two-stroke motorcycles emitted five times more benzene than that of four-stroke motorcycles. Four air monitoring sites were strategically established to determine the relationship between average benzene concentrations with different traffic configurations in each traffic zone of BMR during peak/non-peak hours, day/night times and weekday/weekend. The shape of the curve for benzene level usually shows two peaks corresponding to the morning and evening traffic rush or commuter rush hours. The finding shows that the mean concentrations for benzene in all monitoring stations in the ambient air for peak hours (07:00-09:00 and 16:00-18:00 h) ranged from 15.1 to 42.4 μg/m 3. For non-peak hour (11:30-15:00 h), benzene levels were found in the range 16.3-30.9 μg/m 3. It is observed that higher levels of benzene are found among roadside stations with slow moving traffic while lower levels are found among roadside stations with fast traffic movement. Additional factors such as temperature, wind speed, rainfall, etc. are also considered in this study to determine the relationship between traffic conditions and ambient benzene levels.

  3. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production.

    Science.gov (United States)

    Albertson, John D; Harvey, Tierney; Foderaro, Greg; Zhu, Pingping; Zhou, Xiaochi; Ferrari, Silvia; Amin, M Shahrooz; Modrak, Mark; Brantley, Halley; Thoma, Eben D

    2016-03-01

    This paper addresses the need for surveillance of fugitive methane emissions over broad geographical regions. Most existing techniques suffer from being either extensive (but qualitative) or quantitative (but intensive with poor scalability). A total of two novel advancements are made here. First, a recursive Bayesian method is presented for probabilistically characterizing fugitive point-sources from mobile sensor data. This approach is made possible by a new cross-plume integrated dispersion formulation that overcomes much of the need for time-averaging concentration data. The method is tested here against a limited data set of controlled methane release and shown to perform well. We then present an information-theoretic approach to plan the paths of the sensor-equipped vehicle, where the path is chosen so as to maximize expected reduction in integrated target source rate uncertainty in the region, subject to given starting and ending positions and prevailing meteorological conditions. The information-driven sensor path planning algorithm is tested and shown to provide robust results across a wide range of conditions. An overall system concept is presented for optionally piggybacking of these techniques onto normal industry maintenance operations using sensor-equipped work trucks.

  4. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China

    Science.gov (United States)

    Cao, Yiqi; Liu, Tao; He, Jiao

    2018-03-01

    An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.

  5. CHARACTERIZATION OF FUGITIVE MERCURY EMISSIONS FROM THE CELL BUILDING AT A U.S. CHLOR-ALKALI PLANT

    Science.gov (United States)

    The paper discusses an extensive measurement campaign that was conducted of the fugitive (non-ducted) airborne elemental mercury [Hg(0)] emissions from the cell building of a chlor-alkali plant (CAP) located in the southeastern United States. The objectives of this study were to ...

  6. Environmental impact of atmospheric fugitive emissions from amine based post combustion CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Attalla, M.I.; Azzi, M.; Jackson, P.; Angove, D. [CSIRO, Newcastle, NSW (Australia). Energy Technology Div

    2009-07-01

    Amine solvent-based chemical absorption of CO{sub 2} is the most mature technology for post combustion capture (PCC) and will likely to be the first to reach commercial scale application. As such, potentially millions of tonnes of solvent will be used per year. In order to ensure the viability of PCC, the potential environmental impacts of fugitive emissions on terrestrial, aquatic and atmospheric environments must be investigated. This study used controlled laboratory/ pilot scale experiments to determine the major chemical components emitted under different operating conditions. As well, the atmospheric photo-oxidation products of amines were studied in a smog chamber under ambient conditions. The environmental concerns associated with these emissions include entrainment of the amine/ammonia with the treated flue gas and their associated atmospheric chemical reaction pathways; formation of ammonia and other amine degradation products can be entrained with the flue gas to the atmosphere; nitrosamines may form as a result of the reaction between an amine and nitrogen oxide; and the mounting evidence of the presence of amines in particulate phase. The chemical compositions of potential fugitive emissions in the flue gases from the CO{sub 2} capture system were estimated. The CSIRO smog chamber was then used to assess the potential environmental impact of selected relevant compounds in terms of their reactivities to produce secondary products. These secondary products were then characterized to determine their potential health risk factors. An air quality model was used to evaluate the potential impact of using amine solutions for CO{sub 2} capture and to determine the trade-off between CO{sub 2} capture and local and regional air quality.

  7. Measurements of industrial fugitive emissions by the FTIR Tracer Method (FTM)

    International Nuclear Information System (INIS)

    Mellqvist, J.; Arlander, B.; Galle, B.; Bergqvist, B.

    1996-01-01

    A new method called the FTIR Tracer Method (FTM), has been developed for measuring and quantifying fugitive (diffuse) emissions of hydrocarbons. The method has been evaluated in field experiments which were conducted in the vicinity of several petrochemical plants and an oil refinery during 1993-1995. The technique is based on concentration measurements with infrared remote sensing by Long Path Fourier Transform InfraRed (LPFTIR), combined with tracer releases. The field experiments show the FTM to be very useful for mass flux measurements of both alkanes and alkenes and that the measurements are consistent with the conventional SF 6 method. However, the technique needs to be further validated and a more thorough understanding of the measurement uncertainties have to be achieved

  8. Fugitive emission source characterization using a gradient-based optimization scheme and scalar transport adjoint

    Science.gov (United States)

    Brereton, Carol A.; Joynes, Ian M.; Campbell, Lucy J.; Johnson, Matthew R.

    2018-05-01

    Fugitive emissions are important sources of greenhouse gases and lost product in the energy sector that can be difficult to detect, but are often easily mitigated once they are known, located, and quantified. In this paper, a scalar transport adjoint-based optimization method is presented to locate and quantify unknown emission sources from downstream measurements. This emission characterization approach correctly predicted locations to within 5 m and magnitudes to within 13% of experimental release data from Project Prairie Grass. The method was further demonstrated on simulated simultaneous releases in a complex 3-D geometry based on an Alberta gas plant. Reconstructions were performed using both the complex 3-D transient wind field used to generate the simulated release data and using a sequential series of steady-state RANS wind simulations (SSWS) representing 30 s intervals of physical time. Both the detailed transient and the simplified wind field series could be used to correctly locate major sources and predict their emission rates within 10%, while predicting total emission rates from all sources within 24%. This SSWS case would be much easier to implement in a real-world application, and gives rise to the possibility of developing pre-computed databases of both wind and scalar transport adjoints to reduce computational time.

  9. Assessment for potential radionuclide emissions from stacks and diffuse and fugitive sources on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Schmidt, J.W.; Gleckler, B.P.; Rhoads, K.

    1995-06-01

    By using the six EPA-approved methods, instead of only the original back calculation method for assessing the 84 WHC registered stacks, the number of stacks requiring continuous monitoring was reduced from 32 to 19 stacks. The intercomparison between results showed that no correlation existed between back calculations and release fractions. Also the NDA, upstream air samples, and powder release fraction method results were at least three orders of magnitude lower then the back calculations results. The most surprising results of the assessment came from NDA. NDA was found to be an easy method for assessing potential emissions. For the nine stacks assessed by NDA, all nine of the stacks would have required continuous monitoring when assessed by back calculations. However, when NDA was applied all stacks had potential emissions that would cause an EDE below the > 0.1 mrem/y standard. Apparent DFs for the HEPA filter systems were calculated for eight nondesignated stacks with emissions above the detection limit. These apparent DFs ranged from 0.5 to 250. The EDE dose to the MEI was calculated to be 0.028 mrem/y for diffuse and fugitive emissions from the Hanford Sited. This is well below the > 0.1 mrem/y standard

  10. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    Science.gov (United States)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment

  11. Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia

    Science.gov (United States)

    Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.

    2015-04-01

    Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of cut coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval

  12. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective

    Science.gov (United States)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.

    2016-12-01

    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak

  13. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    1999-07-01

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  14. Fugitive emission inventory from Brazilian oil and gas industry (2000-2005) and discussion of mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, Flavia A.; D' Avignon, Alexandre; La Rovere, Emilio L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Centro Clima

    2008-07-01

    The objective of this work is to evaluate current emissions of GHGs within the Brazilian oil and gas industry, specifically the fugitive emissions arising from exploration and production. Besides, projects for mitigating these emissions and opportunities for the national industry are investigated. Results show that N{sub 2}O contributes little to fugitive emissions from the oil and gas industry, principally from gas sector. NMVOC emissions are significant, principally from the oil sector. In relation to CO{sub 2} and CH{sub 4} emissions, the oil sector emits more CO{sub 2} while the gas sector contributes more to CH{sub 4} emissions. In both sectors flaring is the activity that emits most CO{sub 2}. In relation to CH{sub 4} the principal contribution to emissions are from exploration and production onshore, although offshore activities as a whole play a greater part in the national industry. The results make it clear that the use of gas from flaring activity is a great opportunity for emission mitigation projects. From a business point of view, methane emissions could mean lost opportunities in selling natural gas. The Kyoto Protocol mechanisms, as the Clean Development Mechanism and Joint Implementation actions, provide the opportunity to stimulate investments in projects for reducing flaring and venting of associated gas. (author)

  15. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    Hanyecz, Veronika; Szabó, Gábor; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád

    2013-01-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m −3 for benzene, 3 mg m −3 for toluene in natural gas, and 5 g m −3 for benzene and 6 g m −3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  16. 40 CFR 63.7293 - What work practice standards must I meet for fugitive pushing emissions if I have a non-recovery...

    Science.gov (United States)

    2010-07-01

    ... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...

  17. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    Science.gov (United States)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These

  18. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Science.gov (United States)

    2010-07-01

    ... amount of fugitive particulate matter that may be emitted from certain air pollution sources operating... minimize the accumulation of dusty materials that have the potential to become airborne, and the prompt... materials likely to become airborne. (viii) The prompt removal from paved streets of earth or other material...

  19. Feasibility of including fugitive PM-10 emissions estimates in the EPA emissions trends report

    International Nuclear Information System (INIS)

    Barnard, W.; Carlson, P.

    1990-09-01

    The report describes the results of Part 2 of a two part study. Part 2 was to evaluate the feasibility of developing regional emission trends for PM-10. Part 1 was to evaluate the feasibility of developing VOC emission trends, on a regional and temporal basis. These studies are part of the effort underway to improve the national emission trends. Part 1 is presented in a separate report. The categories evaluated for the feasibility of developing regional emissions estimates were: unpaved roads, paved roads, wind erosion, agricultural tilling, construction activities, feedlots, burning, landfills, mining and quarrying unpaved parking lots, unpaved airstrips and storage piles

  20. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  1. Characterizing and Quantifying Emissions and Transport of Fugitive Dust Emissions Due to Department of Defense Activities

    Science.gov (United States)

    2015-09-19

    response to shear stress (τ, N m-2) induced by the PI-SWERL®, the viscosity of the fluid exerts a torque (N m-1) that eventually balances with τ. The...Engelbrecht et al. (2012) from CCSEM measurements, report that these silicate mineral particles are largely coated by a veneer of clay minerals and fine...content does not, by itself, contribute to the high emissions observed at YTC. The presence of high clay content can constrain the emissions by

  2. Evaluation of methane fugitive emissions in systems of natural gas transportation. The Bolivia-Brazil pipeline case; Avaliacao das emissoes fugitivas de metano em sistemas de transporte de gas natural. O caso do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Daniele Mesquita Bordalo da; La Rovere, Emilio Lebre [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: danielembc@poli.ufrj.br, emilio@ppe.ufrj.br; Sarno, Ruy Alberto Campos [Transportadora Brasileira Gasoduto Bolivia-Brasil S.A., Rio de Janeiro, RJ (Brazil)], E-mail: ruy@tbg.com.br

    2010-07-01

    This paper verifies the total annual of fugitive emissions of methane from the Bolivia-Brazil pipeline, presently the largest pipeline in operation in Brazil, beside to estimate the financial loss associated to those emissions.

  3. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  4. Effects of Adding Corn Dried Distiller Grains with Solubles (DDGS to the Dairy Cow Diet and Effects of Bedding in Dairy Cow Slurry on Fugitive Methane Emissions

    Directory of Open Access Journals (Sweden)

    Daniel I. Massé

    2014-12-01

    Full Text Available The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss in dairy slurry on fugitive CH4 emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29% the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS, fat, neutral detergent fiber (NDF, acid detergent fiber (ADF and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH4 emissions showed a significant increase of 15% (p < 0.05 for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH4 emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05 in fugitive CH4 emissions.

  5. Effects of Adding Corn Dried Distiller Grains with Solubles (DDGS) to the Dairy Cow Diet and Effects of Bedding in Dairy Cow Slurry on Fugitive Methane Emissions.

    Science.gov (United States)

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi

    2014-12-09

    The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH₄ emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH₄ emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH₄ emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH₄ emissions.

  6. Indicators of benzene emissions and exposure in Bangkok street

    International Nuclear Information System (INIS)

    Leong, S.T.; Laortanakul, Preecha

    2003-01-01

    Ambient benzene measurements were conducted for the first time at four air monitoring sites in the Bangkok metropolitan region (BMR), from January to December 2001. Analytical results show that the mean benzene concentrations range from 42.4 μg/m 3 at the Din Daeng urban site to 15.1 μg/m 3 at the Chaeng Wattana suburban site. The monitoring results show that at a larger distance from the roadside or a higher level from the street surface, the level of benzene decreases. Analysis of the ambient benzene concentrations was carried out with reference to meteorological influences and traffic density. In traffic analysis, the combined effects of street topography and traffic flows established high impact on the overall benzene concentration in Bangkok. Statistical analysis shows good correlations of blood benzene levels and trans, trans-muconic acid with ambient benzene and demonstrated substantial exposure from traffic

  7. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.

    2013-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements

  8. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Weld County Colorado using δ13CH4 analysis

    Science.gov (United States)

    Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making

  9. Utilization of alternative fuels and materials in cement kiln towards emissions of benzene, toluene, ethyl-benzene and xylenes (BTEX

    Directory of Open Access Journals (Sweden)

    Muliane Ulfi

    2018-01-01

    Full Text Available Co-processing in cement industry has benefits for energy conservation and waste recycling. Nevertheless, emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX tend to increase compared to a non co-processing kiln. A study was conducted in kiln feeding solid AFR (similar to municipal solid waste, MSW having production capacity 4600-ton clinker/day (max. 5000 ton/day and kiln feeding biomass having production capacity 7800-ton clinker/day (max. 8000 ton/day. The concentration of VOCs emissions tends to be higher at the raw mill on rather than the raw mill off. At the raw mill on, concentration of total volatile organic carbon (VOCs emission from cement kiln stack feeding Solid AFR 1, biomass, Solid AFR 2, and mixture of Solid AFR and biomass is 16.18 mg/Nm3, 16.15 mg/Nm3, 9.02 mg/Nm3, and 14.11 mg/Nm3 respectively. The utilization of biomass resulted in the lower fraction of benzene and the higher fraction of xylenes in the total VOCs emission. Operating conditions such as thermal substitution rate, preheater temperature, and kiln speed are also likely to affect BTEX emissions.

  10. Mobile sensing of point-source fugitive methane emissions using Bayesian inference: the determination of the likelihood function

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.

    2016-12-01

    Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (using a specialized vehicle mounted with fast response methane analyzers and a GPS unit. Methane concentrations were measured at two different heights along mobile traversals downwind of the sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.

  11. Benzene emission from the actual car fleet in relation to petrol composition in Denmark

    International Nuclear Information System (INIS)

    Palmgren, F.; Hansen, A.B.; Berkowicz, R.; Skov, H.

    2001-01-01

    The present study covers an investigation of the trends in air pollution levels of benzene in Danish cities and their relationship with the benzene content in petrol. Petrol samples from the two refineries in Denmark as well as sold petrol from some representative Danish petrol stations were analysed. The benzene content in Danish petrol was reduced from 3.5% for 95 octane prior to 1995 to approx. 2% in 1995 and further to 1% in 1998. Air quality measurements of aromatic VOC are available from two Danish cities; Copenhagen since 1994 and Odense since 1997. Measurements of benzene, CO and NO x from these two locations were analysed using the Operational Street Pollution Model (OSPM) and trends in the actual emissions of these pollutants were determined. It is shown that the decrease in both the concentration levels and in the emissions was significantly larger for benzene than for CO and NO x . The decreasing trends of NO x and CO could be explained by the increasing fraction of petrol-fuelled vehicles with three way catalysts (TWC). The much steeper decreasing trend for benzene can most likely be attributed to a combination of the effect of the increasing share of the TWC vehicles and a simultaneous reduction of benzene content in Danish petrol. The reduction of benzene concentrations and emissions is observed despite that the total amount of aromatics in petrol has increased slightly in the same period. (Author)

  12. Quantification of Nitrous Oxide from Fugitive Emissions by Tracer Dilution Method using a Mobile Real-time Nitrous Oxide Analyzer

    Science.gov (United States)

    Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.

    2012-12-01

    Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.

  13. Gasoline reformulation to reduce exhaust emissions in Finnish conditions. Influence of sulphur and benzene contents of gasoline on exhaust emissions

    International Nuclear Information System (INIS)

    Kytoe, M.; Aakko, P.; Lappi, M.

    1994-01-01

    At earlier stages of the study it was found that the exhaust emissions from cars are reduced when using fuels with no more than 4 wt% of oxygen. At this stage of the study the work focused on impacts of the sulphur and benzene content of gasoline on exhaust emissions in Finland. Sulphur in gasoline retards the operation of the catalyst, and consequently the exhaust emissions of catalyst cars increase if the sulphur content of the fuel increases. In the present study, evaporation during refuelling were measured for fuels with varying vapour pressures and benzene contents of gasoline. The total hydrocarbon evaporation was reduced by 22 % (10 g) when the vapour pressure of gasoline was reduced from 85 kPa to 65 kPa. Correspondingly, benzene evaporation during refuelling was reduced to a third when the benzene content of the fuel was reduced from the level of 3 wt% to 1 wt%. The reduction of the sulphur content of gasoline from 500 ppm to 100 ppm affected regulated exhaust emissions from the catalyst car at +22 deg C as follows: CO emission was reduced on average by 14 % (0.175 g/km), CH emission by 7 % (0.010 g/km) and NO x emission by 9 % (0.011 g/km). At-7 deg C the percentual changes were smaller. When the benzene content of the fuel was reduced from 3 wt% to 1 wt%, the benzene emission from the catalyst cars was reduced by 20-30 % and from the non-catalyst cars on average by 30 % both at +22 deg C and -7 deg C. The benzene emission ranged 3-22 mg/km for the catalyst cars and 40-90 mg/km for the non-catalyst cars at +22 deg C in the FTP test

  14. CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT

    Science.gov (United States)

    The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...

  15. Fugitive hydrocarbon emissions from pacific OCS facilities. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    In January 1989, the Minerals Management Service (MMS) conducted a study using the latest approved methods for emission screening and sampling solely on Outer Continental Shelf (OCS) oil and gas platforms in the Santa Barbara Channel in order to determine platform emission rates more representative of that region. The study was designed and reviewed throughout its conduct by a Quality Review Board (QRB) composed of air resource agencies and industry. Representatives from the Tri-county Air Pollution Control Districts and the MMS actively participated at these meetings. Some participants expressed concerns about some of the methods used and the study results. ABB's thorough responses to these questions and comments were submitted to all reviewers before the printing of the final report, and are contained in appendices of the study final report now available to the public. The results of the MMS study show that the average emission factors for the Pacific OCS oil and gas facilities measured in 1989 are 3.5 times lower than those Pacific OCS facilities sampled in the 1979 API/Rockwell study, and 7.8 times lower than the Gulf of Mexico OCS facilities sampled in the same 1979 study. Efforts to determine the quantitative effect of inspection and maintenance programs on controlling emissions were inconclusive

  16. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  17. Road fugitive dust emission characteristics in Beijing during Olympics Game 2008 in Beijing, China

    Science.gov (United States)

    Shou-bin, Fan; Gang, Tian; Gang, Li; Yu-hu, Huang; Jian-ping, Qin; Shui-yuan, Cheng

    2009-12-01

    Eighty road dust-fall (DF) monitoring sites and 14 background monitoring sites were established in the Beijing metropolitan area, and monitoring was conducted from January 2006 to December 2008. The dust-fall attributable to roads (ΔDF) showed a clear decline from 2006 to 2008. Dust-fall levels decreased across different road types from freeway > major arterial roads > minor arterial roads > collector roads > background sites. The ΔDF showed declines of 65%, 55%, 65% and 84% respectively for freeways, major arterial, minor arterial and collector roads from August 2007 to August 2008, and declines of 77%, 76%, 82% and 82% between August 2006 and August 2008. The ΔDF declined by 80%, 79%, 82% and 69% for freeways, major arterial, minor arterial and collector roads respectively between September 2007 and September 2008, and declined by 84%, 88%, 80% and 81% between September 2006 and September 2008. Eighty samples were collected in August 2007 and August 2008 and analyzed for silt loading. PM 10 emission factors and emission strengths were calculated using the AP-42 model. The silt loading reduced by 77%, 35%, 61%, 59% and 75% for freeways, major arterial, minor arterial, collector and local roads respectively. The PM 10 emission factors were reduced by 57%, 15%, 36%, 51% and 61% and the PM 10 emission strength declined by 70%, 40%, 55%, 65% and 72% for freeways, major arterial, minor arterial, collector and local roads respectively between August 2007 and August 2008. The decline is consistent with the reduction in road dust-fall.

  18. Final report of fugitive and diffuse emissions evaluations at the Hanford Site, CY 1994

    International Nuclear Information System (INIS)

    Gleckler, B.P.; Schmidt, J.W.

    1995-01-01

    The objective of this study was to evaluate several of Hanford's major diffuse emission sources and evaluate the effectiveness of monitoring these sources individually versus collectively. The results from this evaluation may also be utilized to demonstrate Westinghouse's compliance status with the applicable air emissions regulations and determine if additional studies and/or evaluations are necessary. Air sampling results from four waste handling and storage facilities were collected for a one week period and analyzed. The following is a list of the selected sampling sites: Plutonium Finishing Plant; 241-BY Tank Farm; 1301-N Trench; 300 Area Trenches and North Ponds. These sites were chosen as being representative of most of the Hanford waste sites, which are known to be diffuse emission sites. The sites were evaluated on the following criteria: physical size, surface contamination levels, geology, vegetation density, surface cover, potential for occupational exposure, and potential for public exposure. The selected sites vary greatly with the selection criteria parameters, and as a result should provide representative data for most of Hanford's waste sites

  19. Velocity-dependent emission factors of benzene, toluene and C 2-benzenes of a passenger car equipped with and without a regulated 3-way catalyst

    Science.gov (United States)

    Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian; Mattrel, Peter

    Time-resolved chemical ionization mass spectrometry (CI-MS) has been used to investigate the velocity-dependent emission factors for benzene, toluene, the C 2-benzenes (xylenes and ethyl benzene) and nitrogen monoxide of a gasoline-driven passenger car (1.4 l, model year 1995) driven with or without catalytic exhaust gas treatment. A set of seven different driving cycles - including the European Driving Cycle (EDC), the US Urban (FTP 75) and the Highway driving cycles - with a total driving time of 12,000 s have been studied. From the obtained emission data, two sets of 15,300 and 17,200 data points which represent transient driving in the velocity range of 0-150 km h -1 and in an acceleration window of -2-3 m s -2 were explored to gain velocity-dependent emission factors. The passenger car, equipped with a regulated rhodium-platinum based three-way catalyst, showed optimal conversion efficiency (>95%) for benzene in the velocity range of 60-120 km h -1. The conversion of benzene was reduced (speed and engine load (>130 km h -1). Whereas the conversion efficiency for the class of C 2-benzenes was reduced to 10%, no net conversion could be found for toluene and benzene when driven above 130 km h -1. In contrast, the benzene and toluene emissions exceeded those of the untreated exhaust gas in the velocity range of 130-150 km h -1 by 50-92% and by 10-34%, respectively. Thus, benzene and toluene were formed across the examined three-way catalyst if the engine is operated for an extended time in a fuel-rich mode (lambda<1).

  20. A comparison of PCA and PMF models for source identification of fugitive methane emissions

    Science.gov (United States)

    Assan, Sabina; Baudic, Alexia; Bsaibes, Sandy; Gros, Valerie; Ciais, Philippe; Staufer, Johannes; Robinson, Rod; Vogel, Felix

    2017-04-01

    Methane (CH_4) is a greenhouse gas with a global warming potential 28-32 times that of carbon dioxide (CO_2) on a 100 year period, and even greater on shorter timescales [Etminan, et al., 2016, Allen, 2014]. Thus, despite its relatively short life time and smaller emission quantities compared to CO_2, CH4 emissions contribute to approximately 20{%} of today's anthropogenic greenhouse gas warming [Kirschke et al., 2013]. Major anthropogenic sources include livestock (enteric fermentation), oil and gas production and distribution, landfills, and wastewater emissions [EPA, 2011]. Especially in densely populated areas multiple CH4 sources can be found in close vicinity. Thus, when measuring CH4 emissions at local scales it is necessary to distinguish between different CH4 source categories to effectively quantify the contribution of each sector and aid the implementation of greenhouse gas reduction strategies. To this end, source apportionment models can be used to aid the interpretation of spatial and temporal patterns in order to identify and characterise emission sources. The focus of this study is to evaluate two common linear receptor models, namely Principle Component Analysis (PCA) and Positive Matrix Factorisation (PMF) for CH4 source apportionment. The statistical models I will present combine continuous in-situ CH4 , C_2H_6, δ^1^3CH4 measured using a Cavity Ring Down Spectroscopy (CRDS) instrument [Assan et al. 2016] with volatile organic compound (VOC) observations performed using Gas Chromatography (GC) in order to explain the underlying variance of the data. The strengths and weaknesses of both models are identified for data collected in multi-source environments in the vicinity of four different types of sites; an agricultural farm with cattle, a natural gas compressor station, a wastewater treatment plant, and a pari-urban location in the Ile de France region impacted by various sources. To conclude, receptor model results to separate statistically the

  1. Benzene observations and source appointment in a region of oil and natural gas development

    Science.gov (United States)

    Halliday, Hannah Selene

    Benzene is a primarily anthropogenic volatile organic compound (VOC) with a small number of well characterized sources. Atmospheric benzene affects human health and welfare, and low level exposure (Atmospheric Observatory (PAO) in Colorado to investigate how O&NG development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's DISCOVER-AQ field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. A limited information source attribution with the PAO dataset was completed using the EPA's positive matrix factorization (PMF) source receptor model. Six VOCs from the PTR-QMS measurement were used along with CO and NO for a total of eight chemical species. Six sources

  2. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions

    Science.gov (United States)

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  3. Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions

    Science.gov (United States)

    Leifer, Ira; Culling, Daniel; Schneising, Oliver; Farrell, Paige; Buchwitz, Michael; Burrows, John P.

    2013-08-01

    The potent greenhouse gas, methane, CH4, has a wide variety of anthropogenic and natural sources. Fall, continental-scale (Florida to California) surface CH4 data were collected to investigate the importance of fossil fuel industrial (FFI) emissions in the South US. A total of 6600 measurements along 7020-km of roadways were made by flame ion detection gas chromatography onboard a nearly continuously moving recreational vehicle in 2010. A second, winter survey in Southern California measured CH4 at 2 Hz with a cavity ring-down spectrometer in 2012. Data revealed strong and persistent FFI CH4 sources associated with refining, oil/gas production, a presumed major pipeline leak, and a coal loading plant. Nocturnal CH4 mixing ratios tended to be higher than daytime values for similar sources, sometimes significantly, which was attributed to day/night meteorological differences, primarily changes in the boundary layer height. The highest CH4 mixing ratio (39 ppm) was observed near the Kern River Oil Field, California, which uses steam reinjection. FFI CH4 plume signatures were distinguished as stronger than other sources on local scales. On large (4°) scales, the CH4 trend was better matched spatially with FFI activity than wetland spatial patterns. Qualitative comparison of surface data with SCIAMACHY and GOSAT satellite retrievals showed agreement of the large-scale CH4 spatial patterns. Comparison with inventory models and seasonal winds suggests for some seasons and some portions of the Gulf of Mexico a non-negligible underestimation of FFI emissions. For other seasons and locations, qualitative interpretation is not feasible. Unambiguous quantitative source attribution is more complex, requiring transport modeling.

  4. Paint this pipeline green : new pipeline technologies set to trim fugitive emissions, reuse waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2007-01-15

    A significant amount of methane is released when natural gas is moved through North American pipelines, and gas producers continue to search for a method to recapture energy wasted as a result of the pressure reductions needed to deliver natural gas to residential areas. This article provided details of a new direct fuel cell energy recovery generation unit (DFC-ERG) consisting of a 1.2 MW fuel cell and a 1 MW unfired gas expansion turbine. As the natural gas exits the high pressure mainline, it passes through the unfired turbine, which rotates a generator and produces electricity. The fuel cell then uses an electrochemical process to internally convert natural gas to hydrogen, which is then converted into electricity and heat. The combined system can achieve electrical efficiencies of more than 60 per cent, and has almost no emissions. Heat produced by the fuel cell can be captured and used to warm up the gas in the distribution network in order to offset boiler emissions. Designed by Enbridge, the system is expected to be in operation by 2008, and will provide up to 15,000 MW hours per year. TransCanada Corporation has designed a supersonic gas-gas ejector that fits around the turbine shafts that release small amounts of gas to prevent heat build-up at compressor stations. The device encapsulates the gas, which is then re-injected back into the mainline, and may save the company up to 0.5 bcf per year. In Alberta, many portable compressor engines waste as much as 30 per cent of their efficiency through exhaust gases. A 3 year research project has resulted in the design of a slug flow generator. Water from a large tub is pumped into the top of a transparent acrylic cylinder which creates a vortex. Compressed air is then injected into the top of the vortex, where it breaks down into discrete slugs of water. While still in the initial design phases, the device may be used for field compressor exhaust pipes, as well as for commercial and residential applications. 2

  5. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    OpenAIRE

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and ...

  6. Top-down estimates of benzene and toluene emissions in Pearl River Delta and Hong Kong, China

    OpenAIRE

    X. Fang; M. Shao; A. Stohl; Q. Zhang; J. Zheng; H. Guo; C. Wang; M. Wang; J. Ou; R. L. Thompson; R. G. Prinn

    2015-01-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and tolu...

  7. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    Directory of Open Access Journals (Sweden)

    X. Fang

    2016-03-01

    Full Text Available Benzene (C6H6 and toluene (C7H8 are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD and Hong Kong (HK, which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12–75 and 5 (2–7 Gg yr−1 for the PRD and HK, respectively, and the toluene emissions were 131 (44–218 and 6 (2–9 Gg yr−1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant emissions in the PRD and HK in the future.

  8. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    Science.gov (United States)

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-03-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12-75) and 5 (2-7) Gg yr-1 for the PRD and HK, respectively, and the toluene emissions were 131 (44-218) and 6 (2-9) Gg yr-1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant) emissions in the PRD and HK in the future.

  9. Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014

    Science.gov (United States)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald R.; Hornbrook, Rebecca S.; Mikoviny, Tomas; Müller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan J.

    2016-09-01

    High time resolution measurements of volatile organic compounds (VOCs) were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (O&NG) development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  10. FORENSIC CRIMINOLOGY - FUGITIVE PSYCHOLOGY

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2014-01-01

    Forensic Criminology – Fugitive Psychology, 2010 Security Summit (Regional Security Exhibition & Conference ) a forum hosted by Kenya Security Industry Association, Securi Fast Trainers & Consultants, Fidelity Security Limited at Desmond Tutu Conference Centre, Nairobi Kenya from 4th-5th March, 2010  

  11. Atmospheric Benzene Observations from an Oil and Gas Field in the Denver Julesburg Basin in July and August 2014

    Science.gov (United States)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald; Hornbrook, Rebecca S.; Mikoviny, Tomas; Mueller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan

    2016-01-01

    High time resolution measurements of volatile organic compounds (VOCs) were collectedusing a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the PlattevilleAtmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (ONG) developmentimpacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurementswere carried out in July and August 2014 as part of NASAs Deriving Information on Surface Conditions fromColumn and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign. ThePTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontalsurveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (meanbenzene 0.53 ppbv, maximum benzene 29.3 ppbv), primarily at night (mean nighttime benzene 0.73ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurementsindicate that benzene originated from within the WGF, and typical source signatures detected in the canistersamples implicate emissions from ONG activities rather than urban vehicular emissions as primary benzenesource. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerlyflow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that trafficemissions were not responsible for the observed high benzene levels. Previous measurements at the BoulderAtmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzeneenhancements between the two atmospheric observatories. Fugitive emissions of benzene from ONGoperations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  12. Benzene: questions and answers

    International Nuclear Information System (INIS)

    1999-01-01

    This information booklet is intended to inform residents near natural gas dehydration facilities about benzene and its levels in the atmosphere. It was issued following the federal government's decision to place benzene on its Priority Substances List and to require industry to establish means for reducing benzene emissions from natural gas dehydrators and to inform residents about benzene emissions from glycol dehydration facilities. Accordingly, the booklet explains what benzene is (a colourless flammable liquid component of hydrocarbons) how it gets into the air (during gasoline refining, vehicle refueling and the production of steel and petrochemicals), the associated health hazards (a recognized carcinogen, causing an increased incidence of leukemia in concentrations of 100 parts per million), defines a glycol dehydrator (a facility built at or near some natural gas fields for the removal of water from the natural gas to prevent corrosion and freezing of pipelines), and enumerates the steps that are being taken to reduce benzene levels in the air (benzene levels in gasoline have been reduced, along with benzene emissions from petrochemical plants, refineries, steel plants and glycol dehydrators by 54 per cent to date; this will rise to 90 per cent by 2005). In addition to these actions, industry plans call for all existing glycol dehydrators within 750 metres of any permanent residence to be limited to benzene emissions of no more than three tonnes per year before 2001; new glycol dehydrators after that date will be expected to have benzene emissions reduced to the lowest level that can be practically achieved

  13. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    Science.gov (United States)

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  14. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  15. Numerical Validation of a Near-Field Fugitive Dust Model for Vehicles Moving on Unpaved Surfaces

    Science.gov (United States)

    2013-09-25

    turbulent dissipation rate 1 Introduction Particles suspended in air by vehicular movement on paved and unpaved roads are a major contributor to fugitive...own “ Brownian Motion” type of trajectory, but a group of particles in the same region of space do not follow the same “eddy” and the overall effects...fugitive dust caused by vehicle movement , especially when traveling on unpaved surfaces. Given the needs for particle emission models, there are very

  16. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with differe...

  17. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.

    Science.gov (United States)

    Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte

    2014-08-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR

  18. Personal exposure to benzene from fuel emissions among commercial fishers: comparison of two-stroke, four-stroke and diesel engines.

    Science.gov (United States)

    Kirrane, Ellen; Loomis, Dana; Egeghy, Peter; Nylander-French, Leena

    2007-03-01

    Commercial fishers are exposed to unburned hydrocarbon vapors and combustion products present in the emissions from their boat engines. The objective of this study was to measure personal exposure to benzene as a marker of fuel exposure, and to predict exposure levels across categories of carbureted two-stroke, four-stroke and diesel engines. A self-monitoring approach, employing passive monitors, was used to obtain measurements of personal exposure to benzene over time. Mixed-effect linear regression models were used to predict exposure levels, identify significant effects and determine restricted maximum likelihood estimates for within- and between-person variance components. Significant fixed effects for engine type and refueling a car or truck were identified. After controlling for refueling, predicted benzene exposure levels to fishers on boats equipped with two-stroke, four-stroke and diesel engines were 58.4, 38.9 and 15.7 microg/m3, respectively. The logged within-person variance component was 1.43, larger than the between-person variance component of 1.13, indicating that the total variation may be attributable to monitor placement, environmental conditions and other factors that change over time as well as differences between individual work practices. The health consequences of exposure to marine engine emissions are not known. The predicted levels are well below those at which health effects have been attributed, however.

  19. Benzene poisoning

    Science.gov (United States)

    ... may be admitted to the hospital if the poisoning is severe. ... benzene they swallowed and how quickly they receive treatment. The ... Poisoning can cause rapid death. However, deaths have occurred ...

  20. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  1. Consideration of Fugitive Emissions from Grain Elevators

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. Ensemble classification for identifying neighbourhood sources of fugitive dust and associations with observed PM10

    CSIR Research Space (South Africa)

    Khuluse-Makhanya, Sibusisiwe A

    2017-10-01

    Full Text Available accuracy of 78%. Next, cluster analysis and a varying intercepts regression model are used to assess the statistical association between land cover, a fugitive dust emissions proxy and observed PM10. We found that land cover patterns in the neighbourhood...

  3. Emission Behavior of Crystalline 1,4-Bis(4-phenylthiophene-2-yl)benzene Film Under Optical Excitation with Ultra Short Pulses.

    Science.gov (United States)

    Mochizuki, Hiroyuki; Kawaguchi, Yoshizo; Sasaki, Fumio; Hotta, Shu

    2016-04-01

    We evaluated emission behaviors of crystallized films of 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) in detail which was a representative thiophene/phenylene co-oligomer. The crystallized AC5 films were prepared by vapor deposition onto a substrate and thermal treatment. The AC5 films consisted of a crystalline domain with the size of several tens of micrometers. We used femtosecond laser pulses for the excitation of the AC5 films. As a result, the femtosecond laser pulses did not induce re-absorption above excitation energy densities of their laser threshold. The obtained gain value for AC5 crystallized film was large, over 150 cm-1. Furthermore, the emission cross section of the crystallized AC5 film was nearly 10(-16) cm2.

  4. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  5. Draft Benzene Case Study Review - Second Prospective Report Study Science Advisory Board Review, March 2008

    Science.gov (United States)

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  6. Benzene Case Study Final Report - Second Prospective Report Study Science Advisory Board Review, July 2009

    Science.gov (United States)

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  7. Benzene and its Isomers

    Indian Academy of Sciences (India)

    instantly brings benzene to mind. Benzene is one of the most basic structural units of thousands of the so-called aromatic compounds, which include dyes, drugs, polymers and many more types of compounds that are very useful for our existence and progress. The whole gamut of the chemistry of aromatic compounds, ...

  8. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC......Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...

  9. Benzene Monitor System report

    International Nuclear Information System (INIS)

    Livingston, R.R.

    1992-01-01

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale open-quotes SRAT/SME/PRclose quotes and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard trademark sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system (±0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge ampersand trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer's computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants)

  10. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  11. Review of fugitive dust control for uranium mill tailings

    International Nuclear Information System (INIS)

    Li, C.T.; Elmore, M.R.; Hartley, J.N.

    1983-01-01

    An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques

  12. Review of fugitive dust control for uranium mill tailings

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.T.; Elmore, M.R.; Hartley, J.N.

    1983-01-01

    An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques.

  13. Risk factor benzene

    Energy Technology Data Exchange (ETDEWEB)

    Stobbe, H.

    1981-01-01

    Nearly one hundred years ago clinical and epidemiological studies have already assigned benzene as a markedly haematotoxic substance. Nowadays benzene is known as an important professional noxa, which is straight off directed against the haematopoietic system, essentially to a dose-time-effect. By this it can be taken as a model also for other noxious substances. Similar solvents often contain so-called 'hidden benzene', that means not declared benzene, so that the consumer doesn't know what dangerous substance are available for his personal use. Impairments caused by benzene mostly are manifested earliest after months, years or for tens of years, and the point is, that these haematopoietic disorders are irreversible disturbances of the haematopoietic stem cell compartment. The consequence of this fact is a deep involvement of the proliferation of the erythro-, mono-, granulo- and thrombopoietic cell lines, mostly with predominance of one of these myeloproliferative cell systems. In the further progression of the impairments due to benzene three different clinical pictures can be observed: the aplastic bone marrow syndrome (i.e. aplastic anemia), the haematopoietic dysplasia (i.e. preleukemia) and the acute leukemias (with the subtypes erythroleukosis, myeloblastic-promyelocytic or myelomonocytic from respectively). Also the transition from one clinical picture to another is possible.

  14. Benzene monitoring at CPPI service stations

    International Nuclear Information System (INIS)

    Davis, C.S.

    1996-01-01

    A study was conducted in which ambient airborne concentration levels of benzene were measured at a representative set of gasoline service stations in Toronto and Vancouver. Benzene is considered to be toxic under the Canadian Environmental Protection Act (CEPA). It is a component in gasoline (0.1 to 4.7 per cent by volume) and is present in vehicle evaporative and exhaust emissions. Measurements were made every 18 days at each station for one year. The objective of the study was to assess the ambient and employee exposure levels of benzene at service stations and to determine whether the levels were typical of those published in the literature. In a 1986 PACE (Petroleum Association for Conservation of the Canadian Environment) survey of exposure to gasoline hydrocarbon vapours at Canadian service stations, airborne benzene concentration data was inconsistent with similar ambient and personal exposure data in the international literature. It was concluded that both the mean ambient benzene concentration and the personal exposure level measurements in this study were generally lower than similar measurements made in other countries. The same observation was made with respect to ambient and personal exposure levels measured in this study vis-a-vis those measured during the PACE study conducted in 1985/86. . 31 refs., 24 tabs., 5 figs

  15. Soil sample collection and analysis for the Fugitive Dust Characterization Study

    Science.gov (United States)

    Ashbaugh, Lowell L.; Carvacho, Omar F.; Brown, Michael S.; Chow, Judith C.; Watson, John G.; Magliano, Karen C.

    A unique set of soil samples was collected as part of the Fugitive Dust Characterization Study. The study was carried out to establish whether or not source profiles could be constructed using novel analytical methods that could distinguish soil dust sources from each other. The soil sources sampled included fields planted in cotton, almond, tomato, grape, and safflower, dairy and feedlot facilities, paved and unpaved roads (both urban and rural), an agricultural staging area, disturbed land with salt buildup, and construction areas where the topsoil had been removed. The samples were collected using a systematic procedure designed to reduce sampling bias, and were stored frozen to preserve possible organic signatures. For this paper the samples were characterized by particle size (percent sand, silt, and clay), dry silt content (used in EPA-recommended fugitive dust emission factors), carbon and nitrogen content, and potential to emit both PM 10 and PM 2.5. These are not the "novel analytical methods" referred to above; rather, it was the basic characterization of the samples to use in comparing analytical methods by other scientists contracted to the California Air Resources Board. The purpose of this paper is to document the methods used to collect the samples, the collection locations, the analysis of soil type and potential to emit PM 10, and the sample variability, both within field and between fields of the same crop type.

  16. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Benzene in Canadian gasoline : report on the effect of the benzene in gasoline regulations 2002

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, J. [Environment Canada, Ottawa, ON (Canada); Sabourin, R. [Carleton Univ., Ottawa, ON (Canada); Brunet, E. [Waterloo Univ., ON (Canada)

    2003-11-01

    The response of primary suppliers to Benzene in Gasoline Regulations was reviewed, and a summary of the effects of those regulations on the composition of gasoline in Canada in 2002 was offered. These regulations, effective July 1, 1999, were designed to provide a new approach to control fuel composition. It allowed suppliers, as a basis for compliance, the option to elect to use a yearly pool average. The benzene emission number (BEN) of gasoline was regulated, and a limit imposed on a per-litre limit for benzene at point of sale. The results indicated that reported benzene levels were significantly reduced, while aromatic levels remained practically unchanged from 1994. Since 1998, rural ambient benzene concentrations decreased by more than 32 per cent, while in urban areas, they decreased by 47 per cent over the same period. The regulated requirements for benzene concentration were met by primary suppliers in Canada in 2002 (with one exception), as were BEN levels. A number of instances of non-compliance with laboratory procedures were discovered during independent audits required for those suppliers who elected to be on on a yearly pool average. Corrective action designed to address these issues was implemented. 41 tabs., 24 figs.

  18. Consideration of Fugitive Emissions at Oilseed Processing Plants

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Consideration of Fugitive Emissions in Major Source Determinations

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  1. Benzene and its Isomers

    Indian Academy of Sciences (India)

    organic chemistry in particular is the period between 1825 when benzene was isolated and 1865 when its correct structure was proposed. Significant initial strides were made during these years in finding new organic reactions and searching for meth- ods to draw molecular structures. For an average chemist the molecular ...

  2. Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics

    Science.gov (United States)

    Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.

    2017-10-01

    Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.

  3. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations

    International Nuclear Information System (INIS)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I.

    2004-12-01

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  4. Investigation of Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle

    Science.gov (United States)

    Yang, S.; Talbot, R. W.; Frish, M. B.; Golston, L.; Aubut, N. F.; Zondlo, M. A.

    2017-12-01

    The U.S is now the world's largest natural gas producer, of which methane (CH4) is the main component. About 2% of the CH4 is lost through fugitive leaks. This research is under the DOE Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) program of ARPA-E. Our sentry measurement system is composed of four state-of-the-art technologies centered around the RMLDTM (Remote Methane Leak Detector). An open path RMLDTM measures column-integrated CH4 concentration that incorporates fluctuations in the vertical CH4 distribution. Based on Backscatter Tunable Diode Laser Absorption Spectroscopy and Small Unmanned Aerial Vehicles, the sentry system can autonomously, consistently and cost-effectively monitor and quantify CH4 leakage from sites associated with natural gas production. This system provides an advanced capability in detecting leaks at hard-to-access sites (e.g., wellheads) compared to traditional manual methods. Automated leak detecting and reporting algorithms combined with wireless data link implement real-time leak information reporting. Early data were gathered to set up and test the prototype system, and to optimize the leak localization and calculation strategies. The flight pattern is based on a raster scan which can generate interpolated CH4 concentration maps. The localization and quantification algorithms can be derived from the plume images combined with wind vectors. Currently, the accuracy of localization algorithm can reach 2 m and the calculation algorithm has a factor of 2 accuracy. This study places particular emphasis on flux quantification. The data collected at Colorado and Houston test fields were processed, and the correlation between flux and other parameters analyzed. Higher wind speeds and lower wind variation are preferred to optimize flux estimation. Eventually, this system will supply an enhanced detection capability to significantly reduce fugitive CH4 emissions in the natural gas industry.

  5. Benzene exposures in urban areas

    International Nuclear Information System (INIS)

    Valerio, F.; Pala, M.; Cipolla, M.; Stella, A.

    2001-01-01

    Benzene exposures in urban areas were reviewed. Available data confirm that both in USA and Europe, benzene concentrations measured by fixed outdoor monitoring stations underestimate personal exposures of urban residents. Indoor sources, passive smoke and the high exposures during commuting time may explain this difference. Measures in European towns confirm that very frequently mean daily personal exposures to benzene exceed 10 μg/m 3 , current European air quality guideline for this carcinogenic compound [it

  6. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  7. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  8. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  9. Benzene formation in electronic cigarettes.

    Directory of Open Access Journals (Sweden)

    James F Pankow

    Full Text Available The heating of the fluids used in electronic cigarettes ("e-cigarettes" used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen from e-cigarette fluids containing propylene glycol (PG, glycerol (GL, benzoic acid, the flavor chemical benzaldehyde, and nicotine.Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice, and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG and glycerol (GL, and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.

  10. OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantification (GMAP-REQ) and OTM33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-Direct Assessment (GMAP-REQ-DA)

    Science.gov (United States)

    Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...

  11. Canada-wide standard for benzene phase 1 : Progress report 2001

    International Nuclear Information System (INIS)

    2001-01-01

    In June 2000, the Canadian Council of Ministers of the Environment (CCME) ratified the Canada-Wide Standard (CWS) for Benzene Phase 1. Benzene is classified as a carcinogen to humans and any level of exposure is generally considered to carry some probability of harmful effects. The Ministers committed to reducing national benzene emissions by 30 per cent between 1995 and 2000. This report presents the progress thus far and describes how the Alberta Government has focused on effecting emission reductions in the natural gas sector, dehydrators, petroleum refineries and in chemical manufacturing plants. Their initiatives led to a 66 per cent decrease in benzene emissions by 1999. In addition, overall emissions in the province were reduced by 50 per cent from industry and mobile sources. The measures initiated during Phase 1 will continue beyond the time frame, and Phase 2, not yet ratified, will call for a follow-through on those measures. Phase 2 recognizes best management practices and jurisdictional regulations that will minimize emissions. Specifically, Phase 2 calls for an additional reduction of 6 kilotonnes in benzene emissions for existing facilities by the end of 2010. The minimization of benzene emissions through the application of best available pollution prevention and control techniques is contained for new and expanding facilities. The implementation of the CWS comprises the follow-up of existing initiatives resulting from the application of Phase 1 and the promotion and application of best management practices for new and expanding facilities, the determination and tracking of ancillary emission reductions of benzene realized as a result of other CWS initiatives, and the monitoring and reporting of progress. 13 refs., 4 tabs., 3 figs

  12. Highly Stretchable, Biocompatible, Striated Substrate Made from Fugitive Glue

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-06-01

    Full Text Available We developed a novel substrate made from fugitive glue (styrenic block copolymer that can be used to analyze the effects of large strains on biological samples. The substrate has the following attributes: (1 It is easy to make from inexpensive components; (2 It is transparent and can be used in optical microscopy; (3 It is extremely stretchable as it can be stretched up to 700% strain; (4 It can be micro-molded, for example we created micro-ridges that are 6 μm high and 13 μm wide; (5 It is adhesive to biological fibers (we tested fibrin fibers, and can be used to uniformly stretch those fibers; (6 It is non-toxic to cells (we tested human mammary epithelial cells; (7 It can tolerate various salt concentrations up to 5 M NaCl and low (pH 0 and high (pH 14 pH values. Stretching of this extraordinary stretchable substrate is relatively uniform and thus, can be used to test multiple cells or fibers in parallel under the same conditions.

  13. Fugitive carbon dioxide: It's not hiding in the ocean

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1992-01-01

    The fugitive carbon is the difference between the 7 billion or so tons that spew as carbon dioxide from smokestacks and burning tropical forests and the 3.4 billion tons known to stay in the atmosphere. Finding the other 3 billion or 4 billion tons has frustrated researchers for the past 15 years. The oceans certainly take up some of it. Any forecast of global warming has to be based on how much of the carbon dioxide released by human activity will remain in the atmosphere, and predictions vary by 30% depending on the mix of oceanic and terrestrial processes assumed to be removing the gas. What's more, those predictions assume that the processes at work today will go on operating. But not knowing where all the carbon is going raises the unnerving possibility that whatever processes are removing it may soon fall down on the job without warning, accelerating any warming. Such concerns add urgency to the question of whether the ocean harbors the missing carbon. But there's no simple way to find out. The obvious strategy might seem to be to measure the carbon content of the ocean repeatedly to see how much it increases year by year. The trouble is that several billion tons of added carbon, though impressive on a human scale, are undetectable against the huge swings in ocean carbon that occur from season to season, year to year, and place to place

  14. Story of skeletally substituted benzenes

    Indian Academy of Sciences (India)

    Unknown

    values are extensively used to define aromaticity quantitatively.3 In a recent study on ... studies were directed to unravel the subtle ways in which the stability, reactivity, and ..... The singlet–triplet gaps of all the skeletally substituted benzenes ...

  15. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  16. 77 FR 19153 - Nonpayment of Benefits to Fugitive Felons and Probation or Parole Violators

    Science.gov (United States)

    2012-03-30

    ... toll-free number, 1-800-772-1213 or TTY 1-800-325-0778, or visit our Internet site, Social Security... SOCIAL SECURITY ADMINISTRATION 20 CFR Parts 404 and 416 [Docket No. SSA 2006-0173] RIN 0960-AG12 Nonpayment of Benefits to Fugitive Felons and Probation or Parole Violators AGENCY: Social Security...

  17. 38 CFR 3.666 - Incarcerated beneficiaries and fugitive felons-pension.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Incarcerated beneficiaries and fugitive felons-pension. 3.666 Section 3.666 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation...

  18. Rebuilding conveyor transfer points to cut fugitive material and improve operations

    Energy Technology Data Exchange (ETDEWEB)

    Stahura, R P [Martin Engineering Company, Neponset, MA (USA)

    1992-10-01

    The article describes a three-part programme to control spillage and prevent fugitive material at conveyor transfer points. The three parts are: adequate belt support; the installation of a wear line inside the chute to preserve the rubber seal system; and the maintenance of an effective edge seal. The article also discusses designing for ease of maintenance. 9 figs.

  19. Characterization of VOCs Across Pennsylvania: Assessing Emissions from Rural, Forested, Agricultural and Natural Gas Drilling-Impacted Areas

    Science.gov (United States)

    Grannas, A. M.; Fuentes, J. D.; Ramos-Garcés, F.; Wang, D. K.; Martins, D. K.

    2012-12-01

    Volatile organic compounds (VOCs) of both biogenic and anthropogenic origin are important to troposphere chemistry, particularly the formation of photochemical smog and secondary organic aerosol. There is concern that increased natural gas exploration may lead to increased emissions of certain VOCs during well development and due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, a variety of VOCs were measured using canister sampling from a mobile measurement platform. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and gas well-impacted sites. As expected, biogenic VOCs and isoprene oxidation products were enhanced in forested regions, while anthropogenic non-methane hydrocarbons were enhanced in urban areas. BTEX (benzene, toluene, ethylbenzene and xylenes) was enhanced in urban areas, but the concentrations of BTEX measured near developing and existing natural gas sites were similar to rural and forested sites. Halogenated hydrocarbons and Freon compounds were consistent at all site locations. We will discuss the specific concentrations and signatures of these compounds and assess the potential impact of agricultural activities and gas well development on the observed VOC concentrations and variability.

  20. Mechanistic considerations in benzene physiological model development.

    OpenAIRE

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-01-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergis...

  1. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  2. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei

    International Nuclear Information System (INIS)

    Sabourin, P.J.; Sun, J.D.; MacGregor, J.T.; Wehr, C.M.; Birnbaum, L.S.; Lucier, G.; Henderson, R.F.

    1990-01-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased

  3. The impact of candle burning during All Saints' Day ceremonies on ambient alkyl-substituted benzene concentrations.

    Science.gov (United States)

    Olszowski, Tomasz; Kłos, Andrzej

    2013-11-01

    Research findings concerning benzene, toluene, ethylobenzene, meta-, para- and ortho-xylene as well as styrene (BTEXS) emission at public cemeteries during All Saints' Day are presented here. Tests were carried out at town-located cemeteries in Opole and Grodków (southern Poland) and, as a benchmark, at the centres of those same towns. The purpose of the study was to estimate BTEXS emissions caused by the candle burning and, equally important to examine, whether emissions generated by the tested sources were similar to the BTEXS emissions generated by road transport. During the festive period, significant increases in benzene concentrations, by 200 % and 144 %, were noted at the cemeteries in Opole and Grodków, as well as in toluene, by 366 % and 342 %, respectively. Styrene concentrations also increased. It was demonstrated that the ratio of toluene to benzene concentrations from emissions caused by the burning candles are comparable to the ratio established for transportation emissions.

  4. Occupational exposure to benzene in South Korea.

    Science.gov (United States)

    Kang, Seong-Kyu; Lee, Mi-Young; Kim, Tae-Kyun; Lee, Jeong-Oh; Ahn, Yeon Soon

    2005-05-30

    Benzene has been used in various industries as glues or solvents in Korea. Since 1981, a preparation containing more than 1% benzene is not allowed to be manufactured, used or dealt with in the workplace, except in laboratories and in those situations benzene must be used in a completely sealed process as specified in Industrial Safety and Health Act (ISHA). Claims for compensation of hematopoietic diseases related to benzene have been rising even though the work environment has been improved. This study was conducted to assess the status of benzene exposure in different industries in Korea. We reviewed the claimed cases investigated by the Korea Occupational Safety and Health Agency (KOSHA) between 1992 and 2000. The Survey of National Work Environment Status in 1998 was analyzed to assume the number of workers and factories exposed to benzene. In 2000, six factories were investigated to evaluate benzene exposure. Personal air monitoring was performed in 61 workers and urine samples were collected from 57 workers to measure trans,trans-muconic acid (t,t-MA). Hematologic examination has performed. Thirty-four cases of hematopoietic diseases were investigated by KOSHA including eight cases of myelodysplastic syndrome and eight cases of acute myelocytic leukemia. Eight cases were accepted as related to benzene exposure. The number of workers possibly exposed to benzene can be estimated to be 196,182 workers from 6219 factories based on the database. The geometric mean of benzene in air was 0.094 (0.005-5.311) ppm. Seven samples were higher than 1 ppm but they did not go over the 10 ppm occupational exposure limit (OEL) value in Korea. The geometric mean of trans,trans-muconic acid in urine was 0.966 (0.24-2.74) mg/g creatinine. The benzene exposure level was low except in a factory where benzene was used to polymerize other chemicals. The ambient benzene from 0.1 to 1 ppm was significantly correlated with urine t,t-MA concentration (r=0.733, p<0.01). Hematologic

  5. Mechanistic considerations in benzene physiological model development.

    Science.gov (United States)

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  6. Benzene degradation in a denitrifying biofilm reactor

    NARCIS (Netherlands)

    Waals, van der Marcelle J.; Atashgahi, Siavash; Rocha, da Ulisses Nunes; Zaan, van der Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more

  7. 40 CFR 63.1445 - What work practice standards must I meet for my fugitive dust sources?

    Science.gov (United States)

    2010-07-01

    ...) Each transfer point in conveying systems used to transport fugitive dust materials. These points include, but are not limited to, transfer of material from one conveyor belt to another and transfer of...

  8. Estimating U.S. Methane Emissions from the Natural Gas Supply Chain. Approaches, Uncertainties, Current Estimates, and Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Warner, Ethan [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Steinberg, Daniel [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States); Brandt, Adam [Stanford Univ., CA (United States)

    2015-08-01

    A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH4) emissions from fugitives and venting along the natural gas (NG) supply chain.

  9. Benzene - exposure and risk evaluation; Benzol - Exposition und Risikoabschaetzung

    Energy Technology Data Exchange (ETDEWEB)

    Eikmann, T. [Giessen Univ. (Germany). Hygiene-Institut und Umweltmedizin; Eikmann, S. [Gesellschaft fuer Umwelttoxikologie und Krankenhaushygiene mbH, Wetzlar (Germany); Goeen, T. [Technische Hochschule Aachen (Germany). Inst. fuer Hygiene und Arbeitsmedizin

    2000-07-01

    Benzene is one of the most important environmental carcinogens. Because of its potential to induce leukemia, benzene is noted as carcinogeneous hazardous substance in legal guidelines for occupational use and environmental contact. Epidemiological studies resulted to unit-risk values between 2.8 x 10{sup -6} to 30 x 10{sup -6} for lifelong exposure to 1 {mu}g/m{sup 3} benzene. In Germany, the average unit-risk was estimated to be 9 x 10{sup -6}. The general population is mainly exposed to benzene due to the emissions of motor vehicles. The average annual air concentration of benzene at main roads and in industrial areas are 5 to 30 {mu}g/m{sup 3}. Due to seasonal influences and special exposure situations distinctly higher peak concentrations are occurring. Regional differences, i.e. between rural and urban immission levels and between the concentration in air of the northern and southern part of Europe, are also recognizable. The life-style factor smoking increases the individual exposure distinctly, whereas contamination of the diet contribute little to the total uptake of benzene. The internal exposure of the general population varies due to living area, smoking habits and mobility. Individuals living in no-smoking buildings show benzene concentrations in blood of 15 to 170 ng/l, whereas the benzene level of persons with additional exposures (smoking, frequently use of motor vehicles, etc.) can reach approximately 1000 ng/l blood. Comparable conclusions result from data for the urinary levels of two sensitive metabolites of benzene: trans-, trans-muconic acid and S-phenylmercapturic acid. (orig.) [German] Benzol stellt aufgrund seines ubiquitaeren Auftretens und seiner Leukaemie verursachenden Wirkung eines der bedeutendsten Umweltkanzerogene dar. Es ist als krebserzeugender Gefahrstoff (Gefahrstoffverordnung: Gruppe II) und als eindeutig krebserzeugender Arbeitsstoff (Kategorie 1) ausgewiesen. Aus epidemiologischen Studien ergaben sich Unit

  10. Adsorption of Benzene by “Green” functionalization of Montmorillonite

    Directory of Open Access Journals (Sweden)

    Anjum Hirra

    2018-01-01

    Full Text Available The capacity of organically modified Montmorillonite (MMT clay to adsorb nonpolar organic compound (benzene in an aqueous solution, was investigated under the batch process. MMT was pretreated (centrifuged and then functionalized with green intercalating agent i.e. 1-hexyl-3-methyl imadazolium chloride [HMim][Cl]. The characterization through Fourir Transoform Infrared Spectroscopy (FTIR, Differential Scanning Calorimeter (DSC and Field Emission Scanning Electron Microscope (FE-SEM confirmed the presence of the oxygen containing functional groups, changes in melting point and variation in the morphological properties. The governing parameters for the sorption of benzene such as the effect of contact time, pH, adsorbent dose and rotation were studied. The kinetic data conformed to pseuodo 2nd order kinetic model and the isotherm experimental data were a better fit to Langmuir model with maximum adsorption capacity of 588.23mg/g under experimental conditions. Overall, MMT intercalated with 1-hexyl-3-methyl imadazolium chloride is a promising environmental friendly adsorbent for the abatement of benzene in an aqueous solution.

  11. Canadian soil quality guidelines for the protection of environmental and human health : benzene

    Energy Technology Data Exchange (ETDEWEB)

    Potter, K.

    2005-07-01

    This report presented soil quality guidelines for benzene to protect humans and ecological receptors in 4 types of land uses: agricultural; residential and parklands; commercial and industrial. The chemical and physical properties of benzene were reviewed, as well as the sources and emissions of benzene in Canada. The distribution and behaviour of benzene in the environment was examined, and the toxicological effects of benzene on microbial processes, plants, animals and humans were reviewed. It was noted that the background information and rationale for the derivation of Canadian Soil Quality Guidelines for this substance were originally published in 1999 by the Canadian Council of Ministers of the Environment (CCME) in Canadian Environmental Quality Guidelines. These guidelines have since been revised to reflect new data and lessons learned during the development of the Canada-wide Standard for Petroleum Hydrocarbons in Soil (CCME 2000). Modifications in this report included the derivation of guidelines for different soil textures and depths. Behaviour and effects in biota were reviewed, including soil microbial processes; terrestrial plants; terrestrial invertebrates; livestock and wildlife; and bioaccumulation. Behaviour and effects in humans and mammalian species were examined. The derivation of environmental soil quality guidelines was outlined. Recommendations for Canadian soil quality guidelines were presented. It was concluded that there is a lack of studies on the toxic effects of benzene on livestock, mammalian wildlife and birds and that studies on the metabolism of benzene in mammals and birds as well as invertebrates are needed. In addition, research is needed on the effects of benzene on nitrogen fixation, nitrification, nitrogen mineralization, decomposition and respiration. 118 refs., 3 tabs., 2 figs.

  12. [Influence of traffic restriction on road and construction fugitive dust].

    Science.gov (United States)

    Tian, Gang; Li, Gang; Qin, Jian-Ping; Fan, Shou-Bin; Huang, Yu-Hu; Nie, Lei

    2009-05-15

    By monitoring the road and construction dust fall continuously during the "Good Luck Beijing" sport events, the reduction of road and construction dust fall caused by traffic restriction was studied. The contribution rate of road and construction dust to particulate matter of Beijing atmosphere environment, and the emission ratio of it to total local PM10 emission were analyzed. The results show that the traffic restriction reduces road and construction dust fall significantly. The dust fall average value of ring roads was 0.27 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.81 and 0.59 g x (m2 x d)(-1) 1 month and 7 days before. The dust fall average value of major arterial and minor arterial was 0.21 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.54 and 0.58 g x (m2 x d)(-1) 1 month and 7 days before. The roads emission reduced 60%-70% compared with before traffic restriction. The dust fall average values of civil architecture and utility architecture were 0.61 and 1.06 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 1.15 and 1.55 g x (m2 x d)(-1) 20 days before. The construction dust reduced 30%-47% compared with 20 days before traffic restriction. Road and construction dust emission are the main source of atmosphere particulate matter in Beijing, and its contribution to ambient PM10 concentration is 21%-36%. PM10 emitted from roads and constructions account for 42%-72% and 30%-51% of local emission while the local PM10 account for 50% and 70% of the total emission.

  13. Benzene and lymphohematopoietic malignancies in humans.

    Science.gov (United States)

    Hayes, R B; Songnian, Y; Dosemeci, M; Linet, M

    2001-08-01

    Quantitative evaluations of benzene-associated risk for cancer have relied primarily on findings from a cohort study of highly exposed U.S. rubber workers. An epidemiologic investigation in China (NCI/CAPM study) extended quantitative evaluations of cancer risk to a broader range of benzene exposures, particularly at lower levels. We review the evidence implicating benzene in the etiology of hematopoietic disorders, clarify methodologic aspects of the NCI/CAPM study, and examine the study in the context of the broader literature on health effects associated with occupational benzene exposure. Quantitative relationships for cancer risk from China and the U.S. show a relatively smooth increase in risk for acute myeloid leukemia and related conditions over a broad dose range of benzene exposure (below 200 ppm-years mostly from the China study and above 200 ppm-years mostly from the U.S. study). Risks of acute myeloid leukemia and other malignant and nonmalignant hematopoietic disorders associated with benzene exposure in China are consistent with other information about benzene exposure, hematotoxicity, and cancer risk, extending evidence for hematopoietic cancer risks to levels substantially lower than had previously been established. Published 2001 Wiley-Liss, Inc.

  14. INTELLIGENCE STUDIES IN FORENSIC CRIMINOLOGY OF FUGITIVE EMANATING DEFINITIVE AND LOCATIONAL PARAMETERS - Dissertation without Errata

    OpenAIRE

    Nyagudi, Nyagudi Musandu

    2014-01-01

    This dissertation addresses the problem of manhunts, against criminal fugitives. It establishesnew ways of describing and refining mechanisms and techniques, for manhunts. Methods used in thisdissertation to meet those objectives, include: review of case studies, benchmarking of techniques andthe analysis of techniques and concepts, which have been put forward by other scholars. Emphasishas been placed on the applicability of search techniques to a wide range of situations, and techniques for...

  15. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  16. Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene

    Science.gov (United States)

    Ghazalli, N. F.; Yuliati, L.; Lintang, H. O.

    2018-01-01

    We highlight the systematic study on vapochromic sensing of aromatic vapors such as benzene using phosphorescent trinuclear pyrazolate complexes (2) with supramolecular assembly of a weak intermolecular metal-metal interaction consisting of 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). The resulting chemosensor 2(Cu) revealed positive response to benzene vapors in 5 mins by blue-shifting its emission band in 44 nm (from 616 to 572 nm) and emitted bright orange to green, where this change cannot be recovered even with external stimuli. Comparing to 2(Ag) with longer metal-metal distance (473 nm) with same sensing time and quenching in 37%, 2(Au) gave quenching in 81% from its original intensity at 612 nm with reusability in 82% without external stimuli and emitted less emissive of red-orange from its original color. The shifting phenomenon in 2(Cu) suggests diffusion of benzene vapors to inside molecules for formation of intermolecular interaction with Cu(I)-Cu(I) interaction while quenching phenomenon in 2(Au) suggests diffusion of benzene vapors to between the Au(I)-Au(I) interaction. These results indicate that suitable molecular structure of ligand and metal ion in pyrazolate complex is important for designing chemosensor in the detection of benzene vapors.

  17. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long...... quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation...

  18. Radiocarbon dating methods using benzene liquid scintillation

    International Nuclear Information System (INIS)

    Togashi, Shigeko; Matsumoto, Eiji

    1983-01-01

    The radiocarbon dating method using benzene liquid scintillation is reported in detail. The results of measurement of NBS oxalic acid agree with the recommended value, indicating that isotopic fractionation during benzene synthesis can be negligible. Ten samples which have been already measured by gas counter are dated by benzene liquid scintillation. There is no significant difference in age for the same sample between benzene liquid scintillation and gas counters. It is shown that quenching has to be corrected for the young sample. Memory effect in stainless steel reaction vessel can be removed by using an exchangeable inner vessel and by baking it in the air. Using this method, the oldest age that can be measured with 2.3 g carbon is 40,000 years B.P. (author)

  19. Aromaticity of benzene in condensed phases. A case of a benzene-water system

    Science.gov (United States)

    Zborowski, Krzysztof K.

    2014-05-01

    A theoretical Density Functional Theory study was performed for a benzene molecule in water cages. Two DFT functionals (B3LYP and BLYP) were employed. The optimized geometries of the studied clusters were used to calculate the aromaticity of benzene in a condensed phase using the aromaticity indices: HOMA, NICS, PDI, and H. The results were compared with aromaticity of a single benzene molecule in the gas phase and in the solvent environment provided by the PCM continuum model. It is argued that high aromaticity of benzene in the gas phase is retained in the water environment.

  20. Muconaldehyde formation from 14C-benzene in a hydroxyl radical generating system

    Energy Technology Data Exchange (ETDEWEB)

    Latriano, L.; Zaccaria, A.; Goldstein, B.D.; Witz, G.

    1985-01-01

    It has recently been proposed that muconaldehyde, a six carbon, alpha, beta-unsaturated dialdehyde, may be a hematotoxic metabolite of benzene. The present studies indicate that trans, trans-muconaldehyde is formed from benzene in vitro in a hydroxyl radical (.OH) generating system containing ascorbate, ferrous sulfate and EDTA in phosphate buffer, pH 6.7. Muconaldehyde formed from benzene in the .OH generating system was identified by trapping it with thiobarbituric acid (TBA), which results in the formation of an adduct with a 495 nm absorption maximum and a 510 nm fluorescence emission maximum. These maxima were identical to those observed after reacting authentic trans, trans-muconaldehyde with TBA. This finding was supported by thin layer chromatography and solid phase extraction studies. In those studies benzene-derived muconaldehyde cochromatographed with the muconaldehyde/TBA standard. Analyses of the products from the .OH generating system using high performance liquid chromatography (HPLC) confirm that trans, trans-muconaldehyde is a product of benzene ring fission. Regardless of whether or not TBA was used for trapping, samples from the .OH system incubated with benzene contained a peak which cochromatographed with the muconaldehyde standard. The radioactivity profile of fractions collected during HPLC analysis demonstrates 14C-benzene to be the source of the trans, trans-muconaldehyde. The role of hydroxyl radicals in the formation of muconaldehyde was investigated by using dimethyl sulfoxide, mannitol, and ethanol as .OH scavengers. These scavengers, at concentrations of 10 and 100 mM, were found to cause a dose-dependent decrease in the formation of muconaldehyde.

  1. Radiolysis of Aqueous Benzene Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-05-15

    Aerated and deaerated aqueous solutions of benzene have been irradiated with {sup 60}Co {gamma}-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H{sub 2}) = 0.44 (0. 43) and G(H{sub 2}O{sub 2}) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e{sup -}{sub aq} + H{sub 2}O{sub 2}) >> k(H + H{sub 2}O{sub 2}). Furthermore, the results indicate that a competition takes place between the reactions: 2 C{sub 6}H{sub 6}OH {center_dot} -> dimer -> biphenyl. C{sub 6}H{sub 7} {center_dot} + C{sub 6}H{sub 6}OH {center_dot} -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H{sub 2}O{sub 2}) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C{sub 6}H{sub 6})/k(H + O{sub 2}) was 1.4x10{sup -2}. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe{sup 2+} or Fe{sup 3+} to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed.

  2. SIMULATION OF ECOLOGICALLY CONSCIOUS CHEMICAL PROCESSES: FUGITIVE EMISSIONS VERSUS OPERATING CONDITIONS

    Science.gov (United States)

    Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...

  3. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels

    Directory of Open Access Journals (Sweden)

    Werner Tirler

    2015-03-01

    Full Text Available Introduction. The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and places of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. Aim. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC and benzene, produced by various incense sticks and sparklers. Results and discussion.The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 µg/m³ of benzene in the test room after the incense sticks had been tested.

  4. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels.

    Science.gov (United States)

    Tirler, Werner; Settimo, Gaetano

    2015-01-01

    The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and places of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC) and benzene, produced by various incense sticks and sparklers. The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 µg/m of benzene in the test room after the incense sticks had been tested.

  5. Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene.

    Science.gov (United States)

    Yu, Wenbin; Deng, Liangliang; Yuan, Peng; Liu, Dong; Yuan, Weiwei; Liu, Peng; He, Hongping; Li, Zhaohui; Chen, Fanrong

    2015-06-15

    Naturally occurring porous diatomite (Dt) was functionalized with phenyltriethoxysilane (PTES), and the PTES-modified diatomite (PTES-Dt) was characterized using diffuse reflectance Fourier transform infrared spectroscopy, nitrogen adsorption, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. After silylation, a functional group (-C6H5, phenyl) was successfully introduced onto the surface of Dt. PTES-Dt exhibited hydrophobic properties with a water contact angle (WCA) as high as 120°±1°, whereas Dt was superhydrophilic with a WCA of 0°. The benzene adsorption data on both Dt and PTES-Dt fit well with the Langmuir isotherm equation. The Langmuir adsorption capacity of benzene on PTES-Dt is 28.1 mg/g, more than 4-fold greater than that on Dt. Moreover, the adsorption kinetics results show that equilibrium was achieved faster for PTES-Dt than for Dt, over the relative pressure range of 0.118-0.157. The excellent benzene adsorption performance of PTES-Dt is attributed to strong π-system interactions between the phenyl groups and the benzene molecules as well as to the macroporosity of the PTES-Dt. These results show that the silylated diatomite could be a new and inexpensive adsorbent suitable for use in benzene emission control. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Airborne concentrations of benzene due to diesel locomotive exhaust in a roundhouse.

    Science.gov (United States)

    Madl, Amy K; Paustenbach, Dennis J

    2002-12-13

    Concentrations of airborne benzene due to diesel exhaust from a locomotive were measured during a worst-case exposure scenario in a roundhouse. To understand the upper bound human health risk due to benzene, an electromotive diesel and a General Electric four-cycle turbo locomotive were allowed to run for four 30-min intervals during an 8-h workshift in a roundhouse. Full-shift and 1-h airborne concentrations of benzene were measured in the breathing zone of surrogate locomotive repairmen over the 8-h workshift on 2 consecutive days. In addition, carbon monoxide was measured continuously; elemental carbon (surrogate for diesel exhaust) was sampled with full-shift area samples; and nitrogen dioxide/nitric oxide was sampled using full-shift and 15-min (nitrogen dioxide only) area samples. Peak concentrations of carbon monoxide ranged from 22.5 to 93 ppm. The average concentration of elemental carbon for each day of the roundhouse study was 0.0543 and 0.0552 microg/m(3 )for an 8-h workshift. These were considered "worst-case" conditions since the work environment was intolerably irritating to the eyes, nose, and throat. Short-term nitrogen dioxide concentrations ranged from 0.81 to 2.63 ppm during the diesel emission events with the doors closed. One-hour airborne benzene concentrations ranged from 0.001 to 0.015 ppm with 45% of the measurements below the detection limit of 0.002-0.004 ppm. Results indicated that the 8-h time-weighted average for benzene in the roundhouse was approximately 100-fold less than the current threshold limit value (TLV) of 0.5 ppm. These data are consistent with other studies, which have indicated that benzene concentrations due to diesel emissions, even in a confined environment, are quite low.

  7. Evaporative Gasoline Emissions and Asthma Symptoms

    Science.gov (United States)

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  8. Dehydrogenation of benzene on Pt(111) surface

    Science.gov (United States)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  9. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  10. Peer Review Comments on the IRIS Assessment of Benzene

    Science.gov (United States)

    Attachment to IRIS file for benzene, January 19, 2000, RESPONSE TO THE PEER REVIEW COMMENTS, II. Extrapolation of the Benzene Inhalation Unit Risk Estimate to the Oral Route of Exposure (EPA/NCEA-W-0517, July 1999)

  11. Survey of benzene and aromatics in Canadian Gasoline - 1994

    International Nuclear Information System (INIS)

    Tushingham, M.

    1996-01-01

    A comprehensive database of the benzene and aromatics levels of gasoline produced in or imported into Canada during 1994, was presented. Environment Canada conducted a survey that requested refineries and importers to report quarterly on benzene and aromatics levels in gasoline. Benzene, which has been declared toxic by the Canadian Environmental Protection Act, is found in gasoline and is formed during the combustion of the aromatic components of gasoline. It was shown that benzene and aromatics levels differ regionally and seasonally. There are also variations in benzene levels between batches of gasoline produced at any one refinery. This report listed the responses to the benzene/aromatics survey. It also described the analytical procedures used to measure benzene and aromatics levels in gasoline, and provided guidelines for reporting gasoline benzene and total aromatics data. 7 tabs., 21 figs

  12. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    Science.gov (United States)

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials

  13. Computed structure of small benzene clusters

    NARCIS (Netherlands)

    van de Waal, B.W.

    1986-01-01

    The structures of small benzene clusters (C6H6)n, n = 2–7, have been calculated employing potential-energy minimization with respect to molecular translational and rotational coordinates, using exp-6-1 non-bonded atom-atom potential functions. The influence of the adopted point-charge model is

  14. The oxidative conversion of toluene to benzene

    NARCIS (Netherlands)

    Jong, de J.G.; Batist, P.A.

    1971-01-01

    An oxidative reaction is described in which toluene is converted into benzene. The reaction is catalyzed by bismuth uranate. Selectivities up to 70% are obtained if toluene vapor reacts with the catalyst without O (g) being present; the catalyst becomes partially reduced, but is easily reoxidized

  15. 29 CFR 1910.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ...) Scope and application. (1) This section applies to all occupational exposures to benzene. Chemical...-general, and paragraph (e)(6) accuracy of monitoring. Engineering and work practice controls shall be used... wholesale customers. Container means any barrel, bottle, can, cylinder, drum, reaction vessel, storage tank...

  16. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal - gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  17. Ion induced polymerization in benzene frozen films

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, G [Catania Univ. (Italy). Ist. di Fisica; Strazzulla, G [Catania Univ. (Italy). Osservatorio Astrofisico; Fichera, M; Foti, G [Catania Univ. (Italy). Ist. di Radiologia

    1983-07-01

    The cross section of the polymerization process induced by energetic protons colliding with frozen benzene layers has been measured. The results have been described by a simple theory and they show that the process is a volume one occurring along the ion track and interesting all of the crossed layers.

  18. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene

    DEFF Research Database (Denmark)

    Dawes, Anita; Pascual, Natalia; Hoffmann, Soren V.

    2017-01-01

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with com parisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers w ere grow n at 25 K and annealed to 90 K under conditions pertinent to interstellaricy dust grains...

  19. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  20. Prevention of unorganized emissions of ammonia in installations of dewaxing of oils

    Science.gov (United States)

    Rehovskaya, E. O.; Nagibina, I. Yu; Ivanov, A. Yu

    2018-01-01

    The problem of lack of automation devices in oil dewaxing units is considered in this work. As a result, fugitive ammonia emissions that exceed the maximum permissible concentration, which adversely affect the health of personnel and the environment, can occur in the atmospheric air. The device and the operating principle of the automatic air separator are shown.

  1. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  2. Inventory of primary particulates emissions; Inventaire des emissions de particules primaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    CITEPA carried out a national inventory on particulate emissions. This report presents the results of this study for a great number of sectors and it covers a larger number of sources than the previous CITEPA inventories on particles and some other inventories carried out by International organisms (TNO, IIASA). In particular, at the present time, fugitive dust emissions for some sources are rarely taken into account in inventories because of poor knowledge and they are still the subject of researches in order to validate the emission results. (author)

  3. Isotopically constrained lead sources in fugitive dust from unsurfaced roads in the southeast Missouri mining district

    Science.gov (United States)

    Witt, Emitt C.; Pribil, Michael; Hogan, John P; Wronkiewicz, David

    2016-01-01

    The isotopic composition of lead (Pb) in fugitive dust suspended by a vehicle from 13 unsurfaced roads in Missouri was measured to identify the source of Pb within an established long-term mining area. A three end-member model using 207Pb/206Pb and concentration as tracers resulted in fugitive dust samples plotting in the mixing field of well characterized heterogeneous end members. End members selected for this investigation include the 207Pb/206Pb for 1) a Pb-mixture representing mine tailings, 2) aerosol Pb-impacted soils within close proximity to the Buick secondary recycling smelter, and 3) an average of soils, rock cores and drill cuttings representing the background conditions. Aqua regia total concentrations and 207Pb/206Pb of mining area dust suggest that 35.4–84.3% of the source Pb in dust is associated with the mine tailings mixture, 9.1–52.7% is associated with the smelter mixture, and 0–21.6% is associated with background materials. Isotope ratios varied minimally within the operational phases of sequential extraction suggesting that mixing of all three Pb mixtures occurs throughout. Labile forms of Pb were attributed to all three end members. The extractable carbonate phase had as much as 96.6% of the total concentration associated with mine tailings, 51.8% associated with smelter deposition, and 34.2% with background. The next most labile geochemical phase (Fe + Mn Oxides) showed similar results with as much as 85.3% associated with mine tailings, 56.8% associated with smelter deposition, and 4.2% associated with the background soil.

  4. High pressure photoinduced ring opening of benzene

    International Nuclear Information System (INIS)

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  5. Formation of reactive metabolites from benzene

    International Nuclear Information System (INIS)

    Snyder, R.; Jowa, L.; Witz, G.; Kalf, G.; Rushmore, T.

    1986-01-01

    Rat liver mitoplasts were incubated first with [ 3 H]dGTP, to form DNA labeled in G, and then with [ 14 C]benzene. The DNA was isolated and upon isopycnic density gradient centrifugation in CsCl yielded a single fraction of DNA labeled with both [ 3 H] and [ 14 C]. These data are consistent with the covalent binding of one or more metabolites of benzene to DNA. The DNA was enzymatically hydrolyzed to deoxynucleosides and chromatographed to reveal at least seven deoxyguanosine adducts. Further studies with labeled deoxyadenine revealed one adduct on deoxyadenine. [ 3 H]Deoxyguanosine was reacted with [ 14 C]hydroquinone or benzoquinone. The product was characterized using uv, fluorescence, mass and NMR spectroscopy. A proposed structure is described. (orig.)

  6. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

    Directory of Open Access Journals (Sweden)

    Kheirbek Iyad

    2012-07-01

    point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.

  7. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study.

    Science.gov (United States)

    Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas

    2012-07-31

    Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures

  8. Environmental exposure to benzene: an update.

    OpenAIRE

    Wallace, L

    1996-01-01

    During the 1990s, several large-scale studies of benzene concentrations in air, food, and blood have added to our knowledge of its environmental occurrence. In general, the new studies have confirmed the earlier findings of the U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) studies and other large-scale studies in Germany and the Netherlands concerning the levels of exposure and major sources. For example, the new studies found that personal exposures exceed...

  9. PROCESS SIMULATION OF BENZENE SEPARATION COLUMN OF LINEAR ALKYL BENZENE (LABPLANT

    Directory of Open Access Journals (Sweden)

    Zaid A. AbdelRahman

    2013-05-01

    Full Text Available       CHEMCAD process simulator was used for the analysis of existing benzene separation column in LAB plant(Arab Detergent Company/Beiji-Iraq.         Simulated column performance curves were constructed. The variables considered in this study are the thermodynamic model option, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates compositions, were constructed. Four different thermodynamic models options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.            For Benzene Column (32 real stages, feed stage 14, the simulated results show that bottom temperature above 200 oC the weight fractions of top components, except benzene, increases sharply, where as benzene top weight fraction decreasing sharply. Also, feed temperature above 180 oC  shows same trends. The column profiles remain fairly constant from tray 3 (immediately below condenser to tray 10 (immediately above feed and from tray 15 (immediately below feed to tray 25 (immediately above reboiler. Simulation of the benzene separation column in LAB production plant using CHEMCAD simulator, confirms the real plant operation data. The study gives evidence about a successful simulation with CHEMCAD.

  10. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  11. Connecting the Plots: The Extension of Return and Korean Ethnic Nationalism in Jane Jeong Trenka’s 'Fugitive Visions'

    Directory of Open Access Journals (Sweden)

    Ethan Waddell

    2017-05-01

    Full Text Available Thousands of overseas Korean adoptees return to Korea temporarily each year in search of their true origin, but few choose to stay permanently. A prominent member of this small community is Jane Jeong Trenka, author of two memoirs: The Language of Blood (2003 and Fugitive Visions: An Adoptee’s Return to Korea (2009. This article analyses Trenka’s literary struggle for permanence in Fugitive Visions through theories on Korean ethnic national identity. Using Marshall McLuhan’s idea of media as the ‘extension of man’, it explores the symbiotic relationship between literary media and identity, connecting colonial-era writings on Korean ethnic nationalism to Trenka’s portrayal of transnational return.

  12. Assimilation and transformation of benzene by higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Durmishidze, S V; Ugrekhelidze, D Sh; Dzhikiya, A N

    1974-01-01

    Higher plants are capable of assimilating benzene, the molecules of which are subjected to deep chemical transformations; the products of its metabolism move along the plant. Taking part in total metabolism, carbon atoms of benzene molecules incorporate into composition of low-molecular compounds of the plant cell. The bulk of benzene carbon incorporates into composition of organic acids and a comparatively small part - into composition of amino acids. In the metabolism process benzene carbon localizes mainly in the chloroplasts. Phenol, muconic acid and CO/sub 2/ are isolated and identified from the products of benzene enzymatic oxidation. A range of benzene assimilation by higher plants is extremely wide. 9 references, 5 tables.

  13. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  14. The contribution of benzene to smoking-induced leukemia.

    OpenAIRE

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-01-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts t...

  15. Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.; Sosa, R.; Sanchez, P. [Universidad Autonoma de Mexico, Ciudad Universitaria (Mexico). Centro de Ciencias de la Atmosfera; Bueno, E.; Gonzalez, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia, SEMARNAP, Mexico (Mexico)

    2002-08-01

    The Mexico City Metropolitan Zone (MCMZ) presents important emissions of hazardous air pollutants. It is well documented that the MCMZ suffers a critical air pollution problem due to high ozone and particulate matter concentrations. However, toxic air pollutants such as benzene and toluene have not been considered. Benzene has accumulated sufficient evidence as a human carcinogen, and the ratio benzene/toluene is an excellent indicator to evaluate control strategies efficiency. In order to evaluate the levels of these two air toxic pollutants in the MCMZ, ambient air samples were collected in canisters and analyzed with a gas chromatograph with a flame ionization detector, according to procedures described in the United States Environmental Protection Agency (USEPA) method TO-15. Quality assurance was performed collecting duplicate samples which were analyzed in replicate to quantify the precision of air-quality measurements. Three different sites located in the Southwestern area in the MCMZ were selected for the sampling: the University campus, a gas station, and a vertical condominium area, in the same neighborhood, which presents different activities. At these sites, grab air samples were collected during the morning hours (7-8 a.m.), while for the University area, 24 h integrated air samples were collected simultaneously, with grab samples. Benzene concentrations (24 h sampling) in the atmosphere around the University campus have similar present levels as in other cities of North America. Mean values in this site were about 1.7 ppb. A significant variation exists between the benzene and toluene concentrations in the studied sites, being the more critical values than those registered at the gas station (an average of 25.8 ppb and a maximum of 141 ppb of benzene). There is a fuel regulation for gasoline in Mexico, which allows a maximum of 1 percent of benzene. However, since more than 60 percent of vehicles do not have catalytic converters (models before 1991

  16. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  17. Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, H. ten; Doesburg, W. van; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    A stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20-1650 times higher than reported for anaerobic benzene

  18. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    Science.gov (United States)

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  19. Accumulation of chlorinated benzenes in earthworms

    Science.gov (United States)

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  20. Benzene exposure in a Japanese petroleum refinery.

    Science.gov (United States)

    Kawai, T; Yamaoka, K; Uchida, Y; Ikeda, M

    1990-07-01

    Time-weighted average (TWA) intensity of exposure of workers to benzene vapor during a shift was monitored by diffusive sampling technique in a Japanese petroleum refinery. The subjects monitored (83 in total) included refinery operators, laboratory personnel and tanker-loading workers. The results showed that the time-weighted average exposures are well below 1 ppm in most cases. The highest exposure was recorded in 1 case involved in bulk loading of tanker ships, in which exposure of over 1 ppm might take place depending on operational conditions. The observation was generally in agreement with levels previously reported.

  1. Outline and operations of benzene plant

    Energy Technology Data Exchange (ETDEWEB)

    Omori, S; Hirooka, N; Nakamura, M; Goto, T

    1983-01-01

    An account is given of plant which can process 130,000 tonnes of by-product coke oven gas light oil (GLO) per year (via hydrodesulfurization, extraction and distillation) to produce benzene, toluene and xylene. The flowsheets and component equipment of the various production processes are explained, together with special features such as the production of hydrogen from coke oven gas by the PSA process and the processing of GLO by the ARCO process. Plant operation is outlined and the results of performance tests are noted.

  2. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  3. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    Science.gov (United States)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  4. Benzene: a case study in parent chemical and metabolite interactions.

    Science.gov (United States)

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  5. Deuteration of benzen derivatives and condensed aromatics

    International Nuclear Information System (INIS)

    Ichikawa, Masaru.

    1970-01-01

    A process for the deuteration of aromatic compounds (benzene derivatives having one or more cyano, halogeno, nitro or other electron attractive groups, and condensed ring aromatics) is provided. The process comprises reducing said aromatic compound with an alkali metal (preferably K, Rb or Cs) in a solvent (dimethoxyethane, tetrahydrofuran, etc.) to provide an electron-acceptor-donor complex, which is followed by introducing gaseous deuterium into the solution. The deuteration takes place selectively at the position of highest electron density in accordance with nature of the substituent, regardless of steric hindrance. The process is applicable to a wide variety of aromatics to give deuterated compounds in high yields. In one example, 5x10 -3 mole of anthracene (An) was reacted with 2g of metallic potassium in 80cc of dimethoxyethane in a N 2 atmosphere. Into the resulting solution of An=2K + was introduced D 2 gas (30 cmHg) at 25 0 C. After decomposition with air and washing with alcohol, the precipitate was recrystallized from benzene. Yield of recovered AN: more than 90%. Yield of deuteration: 100%. Position of deuteration: 9 and 10 (revealed by NMR and mass spectroscopy). (Kaichi, S.)

  6. Practical Design Guidelines for Fugitive Gas Detection from Unmanned Aerial Vehicles

    Science.gov (United States)

    Tandy, William D., Jr.

    Simulation, design, and analysis are combined in this effort to realize a UAV-scale instrument for fugitive gas detection. The contributing material to the industry begins by extending and correlating an integrated Gaussian plume model useful for instrument predictions and trade studies, regardless of the instrument type or molecule of interest. A variety of generally applicable plots are produced from this foundation, including receiver operator curves for leak rate detectability vs. wind speed, beam diameter vs. leak rate detectability, and plots for required scan densities. The atmospheric and instrument parameter trade studies are followed by hardware-specific analyses applicable to differential absorption lidar (DIAL) instruments. A synopsis of the lessons learned from hands-on experiences in the lab further define the design space for DIAL sensors. The dissertation culminates in the detailed design and analysis of two DIAL instrument concepts. The conclusion is that a DIAL instrument capable of reliably detecting a 50 SCFH plume in winds speeds up to 7 mph is on the threshold of being achievable on a quadcopter platform. Of special note is that the effort was funded by a Pipeline and Hazardous Materials Safety Administration grant and performed in collaboration with Ball Aerospace & Technologies.

  7. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  8. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  9. Benzene degradation coupled with chlorate reduction in soil column study

    NARCIS (Netherlands)

    Tan, N.C.G.; Doesburg, van W.C.J.; Langenhoff, A.A.M.; Stams, A.J.M.

    2006-01-01

    Perchlorate and chlorate are electron acceptors that during reduction result in the formation of molecular oxygen. The produced oxygen can be used for activation of anaerobic persistent pollutants, like benzene. In this study chlorate was tested as potential electron acceptor to stimulate benzene

  10. Evidence that humans metabolize benzene via two pathways.

    NARCIS (Netherlands)

    Rappaport, S.M.; Kim, S.; Lan, Q.; Vermeulen, R.C.H.; Waidyanatha, S.; Zhang, L.; Li, G.; Yin, S.; Hayes, R.B.; Rothman, N.; Smith, M.T.

    2009-01-01

    BACKGROUND: Recent evidence has shown that humans metabolize benzene more efficiently at environmental air concentrations than at concentrations > 1 ppm. This led us to speculate that an unidentified metabolic pathway was mainly responsible for benzene metabolism at ambient levels. OBJECTIVE: We

  11. The contribution of benzene to smoking-induced leukemia.

    Science.gov (United States)

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-04-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.

  12. Oxidative desulfurization of benzene fraction on transition metal oxides

    Science.gov (United States)

    Boikov, E. B.; Vishnetskaya, M. V.

    2013-02-01

    It is established that molecular oxygen is able to oxidize thiophene selectively in a mixture with benzene on V2O5 · MoO3. The introduction of thiophene inhibits the oxidation of benzene. It is shown that the conversion of thiophene during operation of the catalyst is reduced at first and then increases until it reaches its initial value.

  13. In situ synthesis of silver benzene-dithiolate hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, Roger, E-mail: roger.brenier@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Piednoir, Agnès, E-mail: agnes.piednoir@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Bertorelle, Franck, E-mail: franck.bertorelle@univ-lyon1.fr [Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, Domaine Scientifique de La Doua, Batiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, Cedex (France); Penuelas, José, E-mail: jose.penuelas@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France); Grenet, Geneviève, E-mail: genevieve.grenet@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, CNRS, UMR 5270, 36 rue Guy de Collongues, F69134 Ecully (France)

    2016-02-01

    In this article, a method for in situ synthesis of silver benzene-dithiolate hybrid films is presented. Silver nanoparticles, generated on ZrO{sub 2} films, are transformed into silver benzene 1,4-dithiolate or, partially, into silver benzene 1,2-dithiolate after sample immersion in the corresponding thiol solutions. These transformations occur at room temperature owing to the catalytic action of ZrO{sub 2}. It is also shown that TiO{sub 2} in place of ZrO{sub 2} is very efficient, both for the catalytic generation of silver nanoparticles and for their further transformation in benzene 1,4-dithiolate compound. This latter semiconductor has an optical bandgap of about 3 eV and the film is made of touching nanoparticles in an amorphous state. Our work has potential applications in the electronic and photovoltaic fields. - Highlights: • A method for in situ synthesis of silver benzene-dithiolate hybrid semiconductor films is presented. • Silver nanoparticles are, first, generated on ZrO{sub 2} or on TiO{sub 2} coated silica substrates. • The samples are immersed in benzene dithiol solution for two days at room temperature. • During the immersion, the silver nanoparticles are transformed into silver benzene dithiolate. • The silver benzene dithiolate film is made of amorphous nanoparticles with a banbgap of 3 eV.

  14. Indoor Emissions from the Household Combustion of Coal

    Science.gov (United States)

    Learn about the lung cancer risk associated with burning coal inside your home. Indoor emissions from the household combustion of coal contain harmful chemicals such as benzene, carbon monoxide, and formaldehyde.

  15. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  16. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  17. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  18. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae was identified as dominant benzene degrader by Stable Isotope Probing (SIP)

    NARCIS (Netherlands)

    Zaan, van der B.M.; Talarico Saia, F.; Plugge, C.M.; Vos, de W.M.; Smidt, H.; Stams, A.J.M.; Langenhoff, A.A.M.; Gerritse, J.

    2012-01-01

    An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a

  19. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    Science.gov (United States)

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  20. Active and passive monitoring of benzene in Milan from 1992 up to today

    International Nuclear Information System (INIS)

    Lerda, D.; Robles, P.; Astori, M.; Barletta, M.; Canzi, R.; Barilli, L.

    1999-01-01

    The air quality degradation in large urban areas, mainly due to the traffic, is evaluated through the measurement of pollutants coming, directly or indirectly, from the traffic itself. Due to its cancerogenicity, a quality standard for benzene has been settled by D.M.25/11/1994, which obliges this measure in towns having more than 150.000 inhabitants.Starting from 1992, Milan P.M.I.P. has been controlling benzene and other homologues concentrations in air with routine and campaign measurements. Concentrations change depends both on variations of fuel formulation and on the renewal of the cars fleet. As a matter of fact, the lower benzene percentage in fuels and the use of tailpipes with catalytic converter greatly reduced the emission of these compounds in air, giving an estimate annual average lower than the impose limit. In an urban area, an estimate of an average concentration starting from the three sampling points according to the low can give a value far from the real average level; to solve this problem Milan P.M.I.P. programmed an annual campaign with daily sampling in 24 sites homogeneously located in Milan territory [it

  1. Metabolic Polymorphisms and Clinical Findings Related to Benzene Poisoning Detected in Exposed Brazilian Gas-Station Workers

    Directory of Open Access Journals (Sweden)

    Simone Mitri

    2015-07-01

    Full Text Available Benzene is a ubiquitous environmental pollutant and an important industrial chemical present in both gasoline and motor vehicle emissions. Occupational human exposure to benzene occurs in the petrochemical and petroleum refining industries as well as in gas-station workers, where it can lead to benzene poisoning (BP, but the mechanisms of BP are not completely understood. In Brazil, a significant number of gas-station service workers are employed. The aim of the present study was to evaluate alterations related to BP and metabolic polymorphisms in gas-station service workers exposed to benzene in the city of Rio de Janeiro, Brazil. Occupational exposure was based on clinical findings related to BP, and metabolic polymorphisms in 114 Brazilian gas-station attendants. These workers were divided into No Clinical Findings (NCF and Clinical Findings (CF groups. Neutrophil and Mean Corpuscular Volume (MCV showed a significant difference between the two study groups, and neutrophil has the greatest impact on the alterations suggestive of BP. The clinical findings revealed higher frequencies of symptoms in the CF group, although not all members presented statistical significance. The frequencies of alleles related to risk were higher in the CF group for GSTM1, GSTT1, CYP2E1 7632T > A, but lower for NQO1 and CYP2E1 1053C > T genotypes. Moreover, an association was found between GSTM1 null and alterations related to BP, but we did not observe any effects of other polymorphisms. Variations in benzene metabolizing genes may modify benzene toxicity and should be taken into consideration during risk assessment evaluations.

  2. Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities.

    Science.gov (United States)

    Heibati, Behzad; Godri Pollitt, Krystal J; Charati, Jamshid Yazdani; Ducatman, Alan; Shokrzadeh, Mohammad; Karimi, Ali; Mohammadyan, Mahmoud

    2018-03-01

    Elevated emissions of volatile organic compounds, including benzene, toluene, ethylbenzene, and o, p, and m-xylenes (BTEX), are an occupational health concern at oil transfer stations. This exploratory study investigated personal exposure to BTEX through environmental air and urine samples collected from 50 male workers at a major oil distribution company in Iran. Airborne BTEX exposures were evaluated over 8h periods during work-shift by using personal passive samplers. Urinary BTEX levels were determined using solid-phase microextraction with gas chromatography mass spectrometry for separation and detection. Mean exposure to ambient concentrations of benzene differed by workers' job type: tanker loading workers (5390μg/m 3 ), tank-gauging workers (830μg/m 3 ), drivers (81.9μg/m 3 ), firefighters (71.2μg/m 3 ) and office workers (19.8μg/m 3 ). Exposure across job type was similarly stratified across all personal exposures to BTEX measured in air samples with maximum concentrations found for tanker loading workers. Average exposures concentrations of BTEX measured in urine were 11.83 ppb benzene, 1.87 ppb toluene, 0.43 ppb ethylebenzene, and 3.76 ppb xylene. Personal air exposure to benzene was found to be positively associated with benzene concentrations measured in urine; however, a relationship was not observed to the other BTEX compounds. Urinary exposure profiles are a potentially useful, noninvasive, and rapid method for assessing exposure to benzene in a developing and relatively remote production region. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  4. Radical production in the radiolysis of benzene

    International Nuclear Information System (INIS)

    LaVerne, J.A.; Araos, M.S.

    1998-01-01

    Complete text of publication follows. Benzene is the prototypical aromatic compound and yet the radiation chemistry of the radicals formed in its radiolysis is not well understood. Temporal information on the yield of phenyl radical, the major radical produced in the radiolysis, is important for understanding the radiation chemistry of many other types of aromatic compounds including some polymers. The effects of track structure on the production of phenyl radicals have been examined using iodine-scavenging techniques. The variation of the yields of iodobenzene and the other major molecular products such as biphenyl as a function of iodine concentration gives a good indication of the competition kinetics occurring in particle tracks. Experimental results of the scavenger experiments will be shown and their implications in the radiolysis of condensed hydrocarbons will be discussed

  5. Quantification of methane emissions in the exploration and production of natural gas and petroleum in The Netherlands

    International Nuclear Information System (INIS)

    Oonk, H.; Vosbeek, M.

    1995-01-01

    Methane emissions from the oil and gas industry contribute significantly to the total methane emissions. For this reason, methane emissions from this sector are further quantified for The Netherlands. This quantification, based on both a detailed engineering study and on measurements, indicates Dutch methane emissions to be about 30 to 50 k tonne higher than previously expected. The main reason for this difference is, that in this quantification emissions during exploitation and fugitive and incidental emissions are incorporated, whereas they have been neglected earlier. 3 tabs., 11 refs

  6. Retrofitting compressor engines to reduce emissions

    International Nuclear Information System (INIS)

    Collison, Melanie

    2011-01-01

    Cenovus Energy Inc. is upgrading its natural gas compression facilities at 37 sites it operates in Alberta. The project itself consists of a retrofit of the natural-fas fired engines that power the compressors that fill its natural gas sales pipe-line. Piping to capture fugitive natural gas will also be installed. These emissions will be used as fuel. The efficiency rating of such engine will be the same as a new fuel-injected engine. One of the challenge in the design of the parts of these engines ss to to ensure the least possible downtime to minimize production losses.

  7. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  8. Benzene exposure and risk of non-Hodgkin lymphoma.

    Science.gov (United States)

    Smith, Martyn T; Jones, Rachael M; Smith, Allan H

    2007-03-01

    Exposure to benzene, an important industrial chemical and component of gasoline, is a widely recognized cause of leukemia, but its association with non-Hodgkin lymphoma (NHL) is less clear. To clarify this issue, we undertook a systematic review of all case-control and cohort studies that identified probable occupational exposures to benzene and NHL morbidity or mortality. We identified 43 case-control studies of NHL outcomes that recognized persons with probable occupational exposure to benzene. Forty of these 43 (93%) studies show some elevation of NHL risk, with 23 of 43 (53%) studies finding statistically significant associations between NHL risk and probable benzene exposure. We also identified 26 studies of petroleum refinery workers reporting morbidity or mortality for lymphomas and all neoplasms and found that in 23 (88%), the rate of lymphoma morbidity or mortality was higher than that for all neoplasms. A substantial healthy-worker effect was evident in many of the studies and a comprehensive reevaluation of these studies with appropriate adjustments should be undertaken. Numerous studies have also reported associations between benzene exposure and the induction of lymphomas in mice. Further, because benzene is similar to alkylating drugs and radiation in producing leukemia, it is plausible that it might also produce lymphoma as they do and by similar mechanisms. Potential mechanisms include immunotoxicity and the induction of double-strand breaks with subsequent chromosome damage resulting in translocations and deletions. We conclude that, overall, the evidence supports an association between occupational benzene exposure and NHL.

  9. Benzene exposure is associated with cardiovascular disease risk.

    Directory of Open Access Journals (Sweden)

    Wesley Abplanalp

    Full Text Available Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke known to increase cardiovascular disease (CVD risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA. Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+ as well as an increased levels of plasma low-density lipoprotein (LDL compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133-, CD34+/45+/AC133+. Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine and acrolein (3-hydroxymercapturic acid. Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers.

  10. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    ROKKAN, D.J.

    2000-06-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

  11. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    International Nuclear Information System (INIS)

    ROKKAN, D.J.

    2000-01-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard

  12. Austrian emission inventory for dust

    International Nuclear Information System (INIS)

    Winiwarter, W.; Trenker, C.; Hoeflinger, W.

    2001-09-01

    For the first time, Austrian emissions of anthropogenic particulate matter emissions to the atmosphere have been estimated. Results have been reported as total suspended particles (TSP) as well as for the fractions of particles smaller than 10 μm or 2.5 μm aerodynamic diameter (PM 10 , PM 2.5 ), respectively. Base years for the inventory were 1990, 1995 and 1999. Excluded from this assessment is wind blown dust, which has been considered a natural source here. National statistics have been applied, specifically those also used previously in the Austrian air pollution inventory (OLI). Emission factors have been taken from literature compilations, only for exceptional cases specific Austrian assessments were performed or original literature on emission measurements was consulted. Resuspension of dust by road traffic emerged as the most important source. For the size fraction of PM 10 this source contributed about half of the emissions, when applying the calculation scheme by the U.S. EPA. While this scheme is widely used and well documented, its validity is currently subject of intense scientific debate. As these results do not seem to coincide with ambient air measurements, resuspension of road dust is considered separately and not now included in the national total. The sum of all other sources increases from 75,000 t of TSP in 1990 and 1995 to 77,000 t in 1999, while both PM 10 and PM 2.5 exhibit decreasing tendency (at 45,000 t and 26,000 t in 1999, respectively). The increase in TSP derives from increasing traffic and friction related emissions (tire wear, break wear), decrease of the finer particulate matter is due to reductions in firewood consumption for domestic heating. Most important source sectors are fugitive emissions from material transfer in industry as well as the building industry and the tilling of agricultural land. Common to these sources is the high uncertainty of available data. Wood combustion is the most important of the non-fugitive

  13. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    Science.gov (United States)

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Variability of benzene exposure among filling station attendants

    International Nuclear Information System (INIS)

    Carere, A.; Iacovella, N.; Turrio Baldassarri, L.; Fuselli, S.; Iavarone, I.; Lagorio, S.; Proietto, A.R.

    1996-12-01

    A monitoring survey of filling station attendants aimed at identifying sources of variability of exposure to benzene and other aromatics was carried out. Concurrent samples of the worker's breathing zone air, atmospheric air in the service station proximity, and gasoline were collected, along with information about daily workloads and other exposure-related factors. Benzene personal exposure was characterised by a small between-worker variability and a predominant within-worker variance component. Such elevated day-to-day variability yields to imprecise estimates of mean personal exposure. Almost 70% of the overall personal exposure variance was explained by a model including daily benzene from dispensed fuel, presence of a shelter over the refueling area, amount of fuel supplied to the station if a delivery occurred, and background atmospheric benzene concentration

  15. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase.......The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  16. Thermophilic biofiltration of benzene and toluene.

    Science.gov (United States)

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  17. Pacific Northwest National Laboratory Site Radionuclide Air Emissions Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2013-06-06

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2012 from PNNL Site sources is 9E-06 mrem (9E-08 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 1E-7 mrem (1E-9 mSv) EDE. The dose from radon emissions is 2E-6 mrem (2E-08 mSv) EDE. No nonroutine emissions occurred in 2012. The total radiological dose for 2012 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 1E-5 mrem (1E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance.

  18. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    2014-06-01

    This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minor point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance

  19. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Environmental and biological monitoring of benzene during self-service automobile refueling.

    OpenAIRE

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (...

  1. Remote sensing investigations of fugitive soil arsenic and its effects on vegetation reflectance

    Science.gov (United States)

    Slonecker, E. Terrence

    2007-12-01

    Three different remote sensing technologies were evaluated in support of the remediation of fugitive arsenic and other hazardous waste-related risks to human and ecological health at the Spring Valley Formerly Used Defense Site in northwest Washington D.C., an area of widespread soil arsenic contamination as a result of World War I research and development of chemical weapons. The first evaluation involved the value of information derived from the interpretation of historical aerial photographs. Historical aerial photographs dating back as far as 1918 provided a wealth of information about chemical weapons testing, storage, handling and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5 % of the features were spatially correlated with current areas of contamination or remedial activity. The second investigation involved the phytoremediation of arsenic through the use of Pteris ferns and the evaluation of the spectral properties of these ferns. Three hundred ferns were grown in controlled laboratory conditions in soils amended with five levels (0, 20, 50, 100 and 200 parts per million) of sodium arsenate. After 20 weeks, the Pteris ferns were shown to have an average uptake concentration of over 4,000 parts per million each. Additionally, statistical analysis of the spectral signature from each fern showed that the frond arsenic concentration could be reasonably predicted with a linear model when the concentration was equal or greater than 500 parts per million. Third, hyperspectral imagery of Spring Valley was obtained and analyzed with a suite of spectral analysis software tools. Results showed the grasses growing in areas of known high soil arsenic could be identified and mapped at an approximate 85% level of accuracy when the hyperspectral image was processed

  2. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene...). The rule is applicable to facilities with affected sources associated with the production of aluminum... are subject to the requirements of this NESHAP: 14 primary aluminum production plants and one carbon...

  3. Removal of organic carbon and sulphur compounds from process and fugitive emissions. Phase 1: Results from laboratory studies

    International Nuclear Information System (INIS)

    Coleman, R.N.

    1994-01-01

    Lab-scale biofilters were constructed from black polypropylene plastic tubing with internal dimensions of 5 by 100 cm. A biofilter matrix was provided using coarse sphagnum peat which was washed with water and inoculated with enriched cultures of appropriate microorganisms. Compressed air was applied to the biofilters and various compounds were added to the air stream at appropriate concentrations. These compounds included hydrogen sulfide, n-hexane, cyclohexane, propionic acid, and butyric acid. Removal efficiency was evaluated for each compound. Over 99% of the hydrogen sulfide was removed, at concentrations of up to 125 ppM by volume. Removal levels of n-hexane, cyclohexane, and the organic acids were lower. Thiophene was not demonstrated as being removed. Numbers of microorganisms were assessed and their identity determined throughout the biofilter matrix. A mass balance for sulfur was determined throughout the biofilter system and showed 3.5% of sulfur unaccounted for. 9 refs., 9 figs., 7 tabs

  4. Trace metals in fugitive dust from unsurfaced roads in the Viburnum Trend resource mining District of Missouri--implementation of a direct-suspension sampling methodology.

    Science.gov (United States)

    Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan

    2013-09-01

    Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. Published by Elsevier Ltd.

  5. Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study.

    Science.gov (United States)

    Olaguer, Eduardo P

    2015-01-01

    The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure.

  6. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bisping, Lynn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    This report documents radionuclide air emissions that result in the 2014 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI due to routine major and minor point source emissions in 2014 from PNNL Campus sources is 2E 05 mrem (2E-07 mSv) EDE. The dose from all fugitive sources is 3E-6 mrem (3E-8 mSv) EDE. The dose from radon emissions is 1E-6 mrem (1E-8 mSv) EDE. No nonroutine emissions occurred in 2014. The total radiological dose for 2014 to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 3E-5 mrem (3E-7 mSv) EDE, or more than 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Campus is in compliance.

  7. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bisping, Lynn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minor point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.

  8. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    OpenAIRE

    Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

    2013-01-01

    A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

  9. Health risk assessment of ambient air concentrations of benzene, toluene and xylene (BTX) in service station environments.

    Science.gov (United States)

    Edokpolo, Benjamin; Yu, Qiming Jimmy; Connell, Des

    2014-06-18

    A comprehensive evaluation of the adverse health effects of human exposures to BTX from service station emissions was carried out using BTX exposure data from the scientific literature. The data was grouped into different scenarios based on activity, location and occupation and plotted as Cumulative Probability Distributions (CPD) plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ) at 50% (CEXP50) and 95% (CEXP95) exposure levels. HQ50 and HQ95 > 1 were obtained with benzene in the scenario for service station attendants and mechanics repairing petrol dispensing pumps indicating a possible health risk. The risk was minimized for service stations using vapour recovery systems which greatly reduced the benzene exposure levels. HQ50 and HQ95 service station attendants than any other scenario.

  10. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  11. RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE CY2003

    International Nuclear Information System (INIS)

    ROKKAN, D.J.

    2004-01-01

    This report documents radionuclide air emissions from the US Department of Energy (DOE) Hanford Site in 2003 and the resulting effective dose equivalent (EDE) to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities''; Washington Administrative Code (WAC) Chapter 246-247, ''Radiation Protection-Air Emissions''; 10 CFR 830.120, Quality Assurance; DOE Order 414.1B, Quality Assurance; NQA-1, Quality Assurance Requirements for Nuclear Facility Application; EPA QA/R-2, EPA Requirements for Quality Management Plans; and EPA QA/R-5, Requirements for Quality Assurance Project Plans. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from DOE facilities and the resulting public dose from those emissions. A standard of 10 mrem/yr EDE is not to be exceeded. The EDE to the MEI due to routine and nonroutine emissions in 2003 from Hanford Site point sources was 0.022 mrem (0.00022 mSv), or 0.22 percent of the federal standard. The portions of the Hanford Site MEI dose attributable to individual point sources as listed in Section 2.0 are appropriate for use in demonstrating the compliance of abated stack emissions with applicable terms of the Hanford Site Air Operating Permit and of Notices of Construction. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations, yet further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. WAC 246-247 also requires the reporting of radionuclide emissions from all Hanford Site sources during routine as well as nonroutine operations. The EDE from

  12. Emissions from burning of softwood pellets

    International Nuclear Information System (INIS)

    Olsson, Maria; Kjaellstrand, Jennica

    2004-01-01

    Softwood pellets from three different Swedish manufacturers were burnt in laboratory scale to determine compounds emitted. The emissions were sampled on Tenax cartridges and assessed by gas chromatography and mass spectrometry. No large differences in the emissions from pellets from different manufacturers were observed. The major primary semi-volatile compounds released during flaming burning were 2-methoxyphenols from lignin. The methoxyphenols are of interest due to their antioxidant effect, which may counteract health hazards of aromatic hydrocarbons. Glowing combustion released the carcinogenic benzene as the predominant aromatic compound. However, the benzene emissions were lower than from flaming burning. To relate the results from the laboratory burnings to emissions from pellet burners and pellet stoves, chimney emissions were determined for different burning equipments. The pellet burner emitted benzene as the major aromatic compound, whereas the stove and boiler emitted phenolic antioxidants together with benzene. As the demand for pellets increases, different biomass wastes will be considered as raw materials. Ecological aspects and pollution hazards indicate that wood pellets should be used primarily for residential heating, whereas controlled large-scale combustion should be preferred for pellets made of most other types of biomass waste. (Author)

  13. Synthesis of disodium [benzene-U-{sup 14}C]-(4-chlorophenylthio)methylenediphosphonate, [benzene-U-{sup 14}C]-tiludronate

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Alain; Ellames, G.J. [Alnwick Research Centre (United Kingdom). Dept. of Metabolism and Pharmacokinetics

    1995-12-31

    Disodium [benzene-U-{sup 14}C]-(4-chlorophenylithio)methylenediphosphonate, [benzene-{sup 14}C]-Tiludronate, 2, has been prepared in six steps from [benzene-U-{sup 14}C]-acetanilide in an overall radiochemical yield of 41%. A key step in this transformation was the efficient conversion of [U-{sup 14}C]-4-chloroaniline to [benzene-U-{sup 14}C]-4-chlorophenylthiocyanate, 5, in 83% yield by treatment of the corresponding diazonium salt, 9 with iron(111) thiocyanate. It should be noted that formation of the isomeric [benzene-U-{sup 14}C]-4-chlorophenylisothiocyanate, 11, as a byproduct, was observed in only {approx} 1% yield. (author).

  14. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan

    Science.gov (United States)

    Wang, Qiaoli; Li, Sujing; Dong, Minli; Li, Wei; Gao, Xiang; Ye, Rongmin; Zhang, Dongxiao

    2018-06-01

    Zhoushan is an island city with booming tourism and service industry, but also has many developed VOCs and/or NOX emission industries. It is necessary to carry out regional VOCs and O3 pollution control in Zhoushan as the only new area owns the provincial economic and social administration rights. Anthropogenic VOCs emission inventories were built based on emission factor method and main emission sources were identified according to the emission inventories. Then, localized VOCs source profiles were built based on in-site sampling and referring to other studies. Furthermore, ozone formation potentials (OFPs) profiles were built through VOCs source profiles and maximum incremental reactivity (MIR) theory. At last, the priority control analysis results showed that industrial processes, especially surface coating, are the key of VOCs and O3 control. Alkanes were the most emitted group, accounting for 58.67%, while aromatics contributed the most to ozone production accounting for 69.97% in total OFPs. n-butane, m/p-xylene, i-pentane, n-decane, toluene, propane, n-undecane, o-xylene, methyl cyclohexane and ethyl benzene were the top 10 VOC species that should be preferentially controlled for VOCs emission control. However, m/p-xylene, o-xylene, ethylene, n-butane, toluene, propene, 1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, ethyl benzene and 1,2,3-trimethyl benzene were the top 10 VOC species that required preferential control for O3 pollution control.

  15. [Myelofibrosis in a benzene-exposed cleaning worker].

    Science.gov (United States)

    Bausà, Roser; Navarro, Lydia; Cortès-Franch, Imma

    Long-term exposure to benzene has been associated with several blood malignancies, including aplastic anemia, myeloproliferative neoplasms, and different leukemias. We present a case of primary myelofibrosis in a 59-year-old woman who worked as a cleaner at a car dealership and automobile mechanic shop. For 25 years, she used gasoline as a degreaser and solvent to clean engine parts, floors and work desks on a daily basis. She was referred by her primary care provider to the Occupational Health Unit of Barcelona to assess whether her illness was work-related. Review of her job history and working conditions revealed chronic exposure to benzene in the absence of adequate preventive measures. An association between benzene exposure and myeloproliferative disease was established, suspicious for an occupational disease. Copyright belongs to the Societat Catalana de Salut Laboral.

  16. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities.

    Science.gov (United States)

    Rich, Alisa L; Orimoloye, Helen T

    2016-01-01

    The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.

  18. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  19. Concentrations of benzene, toluene, ethylbenzene and o-xylene in soil and atmospheric precipitations in the cities of Almaty and Astana

    Directory of Open Access Journals (Sweden)

    Dina Orazbayeva

    2016-06-01

    Full Text Available BTEX (benzene, toluene, ethylbenzene, xylene is one of the most dangerous groups of organic toxicants in terms of emissions and risks to public health. BTEX are present in almost all technogenic and natural objects. The greatest risk to public health is caused by BTEX contamination of cities characterized by high population densities and emissions to the environment. The aim of this work was to determine the concentrations of benzene, toluene, ethylbenzene and o-xylene in samples of soils and atmospheric precipitations selected in the cities of Almaty and Astana. Screening and quantification of analytes was performed by gas chromatography - mass spectrometry. Solid-phase microextraction was used for sample preparation. In the soil samples collected in the cities of Almaty and Astana, the concentrations of analytes ranged from 29.9 to 455 ng/g for benzene, from 9.9 to 375 ng/g for toluene, from 1.8 to 386 ng/g for ethylbenzene, and from 2.4 to 217 ng/g for o-xylene. Concentrations of BTEX in samples of atmospheric precipitations varied in the range of 8.2-21.2 ng/g for benzene; 0.8-5.1 ng/g for toluene; 0.1-1.1 ng/g for ethylbenzene; and 0.2-0.5 ng/g for o-xylene. BTEX concentrations in analyzed soil samples were in average ten times higher than those measured in European cities.

  20. Mineral-like clathrate of cadmium cyanide with benzene

    International Nuclear Information System (INIS)

    Kitazava, T.; Nishimura, A.

    1999-01-01

    A new mineral-like clathrate of cadmium cyanide with benzene Cd(CN) 2 ·C 6 H 6 is prepared. Data of x-ray diffraction analysis show that benzene molecule is incorporated in cadmium cyanide lattice and a new mineral-like lattice of Cd(CN) 2 belongs to structures of cristobalite type. Clathrate Cd(CN) 2 ·C 6 H 6 crystallizes in trigonal space group R3m, a=8.953(4), c=21929(6) A [ru

  1. Unleaded gasoline with reduction in benzene and aromatics

    International Nuclear Information System (INIS)

    Ahmed, I.

    2003-01-01

    The trend today is towards making gasoline more environment and human friendly or in other words making gasoline a really clean fuel. This paper covers the ill effects of benzene and aromatics and the driving force behind their reduction in gasoline worldwide. It addresses health concerns specifically, and the theme is unleaded gasoline without simultaneously addressing reduction in benzene and aromatics is more harmful. The paper cites worldwide case studies, and also the World Bank (WB), Government of Pakistan (GoP), and United Nations (UN) efforts in this area in Pakistan. (author)

  2. A field campaign for measurement of benzene in urban area of Venice

    International Nuclear Information System (INIS)

    Allegrini, I.; Febo, A.; Giliberti, C.; Giusto, M.; Montagnoli, M.

    1996-01-01

    A field campaign for the measurement of benzene and toluene in urban areas has been planned by the city of Venice in collaboration with CNR during the period June-July 1994. The measurements were provided by three automatic systems, available from the companies Chrompack, Elecos and Perkin-Elmer. The main aims of this campaign were to collect information on spatial and temporal distribution of these pollutants, in order to estimate the exposure risk for people in an urban polluted environment, and to identify the most reliable and accurate systems to measure this pollutant. From the comparison between the temporal trend of benzene and natural radioactivity it can be deduced that the concentration levels of primary pollutants at ground state are not simply linked to emissions, but they are strongly modulated by atmospheric diffusion processes. The reliability of the experimental results was demonstrated by a statistical treatment, and it was shown that it is necessary to carry out measurements at sufficiently high frequencies to represent the real environmental situation

  3. Meteorological aspects of benzene transport, dispersion and personal exposure in Valdez, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Murray, D.R.; Ball, R.J. [TRC Environmental Corp., Windsor, CT (United States)

    1994-12-31

    The Valdez Air Health Study (VAHS) was conducted in Valdez, Alaska to determine the personal exposure of the residential population of Valdez to certain volatile organic compounds (VOCs). The VAHS used the EPA`s Total Exposure Assessment Methodology (TEAM) with continuous meteorology, air quality and intense tracer measurements to monitor personal and indoor/outdoor concentrations of VOCs in the community. The Valdez fjord is the site of the Alyeska Marine Terminal, the largest crude oil loading terminal in the United States, with a maximum capacity of 2.2 million barrels per day. The Alyeska Marine Terminal is the transfer point for Prudhoe Bay crude oil from the pipeline to marine tankers. During 1990, the terminal and marine tankers were estimated to emit approximately 450 metric tonnes/year of benzene to the air at an average throughput of 1.8 million barrels/day while benzene emissions from other sources in the basin were estimated to be approximately 3 tonnes/year.

  4. A methodological frame for assessing benzene induced leukemia risk mitigation due to policy measures

    International Nuclear Information System (INIS)

    Karakitsios, Spyros P.; Sarigiannis, Dimosthenis A.; Gotti, Alberto; Kassomenos, Pavlos A.; Pilidis, Georgios A.

    2013-01-01

    The study relies on the development of a methodology for assessing the determinants that comprise the overall leukemia risk due to benzene exposure and how these are affected by outdoor and indoor air quality regulation. An integrated modeling environment was constructed comprising traffic emissions, dispersion models, human exposure models and a coupled internal dose/biology-based dose–response risk assessment model, in order to assess the benzene imposed leukemia risk, as much as the impact of traffic fleet renewal and smoking banning to these levels. Regarding traffic fleet renewal, several “what if” scenarios were tested. The detailed full-chain methodology was applied in a South-Eastern European urban setting in Greece and a limited version of the methodology in Helsinki. Non-smoking population runs an average risk equal to 4.1 · 10 −5 compared to 23.4 · 10 −5 for smokers. The estimated lifetime risk for the examined occupational groups was higher than the one estimated for the general public by 10–20%. Active smoking constitutes a dominant parameter for benzene-attributable leukemia risk, much stronger than any related activity, occupational or not. From the assessment of mitigation policies it was found that the associated leukemia risk in the optimum traffic fleet scenario could be reduced by up to 85% for non-smokers and up to 8% for smokers. On the contrary, smoking banning provided smaller gains for (7% for non-smokers, 1% for smokers), while for Helsinki, smoking policies were found to be more efficient than traffic fleet renewal. The methodology proposed above provides a general framework for assessing aggregated exposure and the consequent leukemia risk from benzene (incorporating mechanistic data), capturing exposure and internal dosimetry dynamics, translating changes in exposure determinants to actual changes in population risk, providing a valuable tool for risk management evaluation and consequently to policy support. - Highlights

  5. A methodological frame for assessing benzene induced leukemia risk mitigation due to policy measures

    Energy Technology Data Exchange (ETDEWEB)

    Karakitsios, Spyros P. [Aristotle University of Thessaloniki, Department of Chemical Engineering, 54124 Thessaloniki (Greece); Sarigiannis, Dimosthenis A., E-mail: denis@eng.auth.gr [Aristotle University of Thessaloniki, Department of Chemical Engineering, 54124 Thessaloniki (Greece); Centre for Research and Technology Hellas (CE.R.T.H.), 57001, Thessaloniki (Greece); Gotti, Alberto [Centre for Research and Technology Hellas (CE.R.T.H.), 57001, Thessaloniki (Greece); Kassomenos, Pavlos A. [University of Ioannina, Department of Physics, Laboratory of Meteorology, GR-45110 Ioannina (Greece); Pilidis, Georgios A. [University of Ioannina, Department of Biological Appl. and Technologies, GR-45110 Ioannina (Greece)

    2013-01-15

    The study relies on the development of a methodology for assessing the determinants that comprise the overall leukemia risk due to benzene exposure and how these are affected by outdoor and indoor air quality regulation. An integrated modeling environment was constructed comprising traffic emissions, dispersion models, human exposure models and a coupled internal dose/biology-based dose–response risk assessment model, in order to assess the benzene imposed leukemia risk, as much as the impact of traffic fleet renewal and smoking banning to these levels. Regarding traffic fleet renewal, several “what if” scenarios were tested. The detailed full-chain methodology was applied in a South-Eastern European urban setting in Greece and a limited version of the methodology in Helsinki. Non-smoking population runs an average risk equal to 4.1 · 10{sup −5} compared to 23.4 · 10{sup −5} for smokers. The estimated lifetime risk for the examined occupational groups was higher than the one estimated for the general public by 10–20%. Active smoking constitutes a dominant parameter for benzene-attributable leukemia risk, much stronger than any related activity, occupational or not. From the assessment of mitigation policies it was found that the associated leukemia risk in the optimum traffic fleet scenario could be reduced by up to 85% for non-smokers and up to 8% for smokers. On the contrary, smoking banning provided smaller gains for (7% for non-smokers, 1% for smokers), while for Helsinki, smoking policies were found to be more efficient than traffic fleet renewal. The methodology proposed above provides a general framework for assessing aggregated exposure and the consequent leukemia risk from benzene (incorporating mechanistic data), capturing exposure and internal dosimetry dynamics, translating changes in exposure determinants to actual changes in population risk, providing a valuable tool for risk management evaluation and consequently to policy support

  6. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    OpenAIRE

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-01-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several inve...

  7. Interpretation of Urinary and Blood Benzene biomarkers of Exposure for Non-Occupationally Exposed Individuals

    Science.gov (United States)

    Non-occupational exposure to benzene occurs primarily through inhalation ofair impacted by motor vehicle exhaust, fuel sources, and cigarette smoke. This study relates published measurements ofbenzene biomarkers to air exposure concentrations. Benzene has three reliable biomar...

  8. Metagenomic and proteomic analyses to elucidate the mechanism of anaerobic benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Abu Laban, Nidal [Helmholtz (Germany)

    2011-07-01

    This paper presents the mechanism of anaerobic benzene degradation using metagenomic and proteomic analyses. The objective of the study is to find out the microbes and biochemistry involved in benzene degradation. Hypotheses are proposed for the initial activation mechanism of benzene under anaerobic conditions. Two methods for degradation, molecular characterization and identification of benzene-degrading enzymes, are described. The physiological and molecular characteristics of iron-reducing enrichment culture are given and the process is detailed. Metagenome analysis of iron-reducing culture is presented using a pie chart. From the metagenome analysis of benzene-degrading culture, putative mobile element genes were identified in the aromatic-degrading configurations. Metaproteomic analysis of iron-reducing cultures and the anaerobic benzene degradation pathway are also elucidated. From the study, it can be concluded that gram-positive bacteria are involved in benzene degradation under iron-reducing conditions and that the catalysis mechanism of putative anaerobic benzene carboxylase needs further investigation.

  9. Economic analysis of the reduction of dehydrator emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Chalifoux, C.

    1999-01-01

    Under the Canadian Environmental Protection Act benzene has been designated as toxic, and after gasoline combustion, the natural gas extraction industry is the largest source of benzene emissions to the environment. The study's objective is to present a profile of the natural gas industry and to analyze the costs to the private sector of complying with the various benzene reduction targets. Also outlined is a profile of the natural gas extraction industry. A description is included of the method used to extrapolate the results obtained from the sample of 370 sites to the industry as a whole. Two scenarios studied are described in section four including: (1) scenario one in which the environmental requirements would have to be applied across-the-board to all emitting sites, which would have to comply with maximum benzene reductions, and (2) scenario two in which the environmental requirements would only be applied to high-emission sites, which would have to comply with specific requirements. A compilation is made in the fifth section for each scenario of the cost to the industry and the benzene emission reductions for each scenario for the sample of 370 sites to the industry as a whole. The aim of developing the two scenarios used to analyze various benzene emissions reduction levels at the sample of 370 sites was to determine: capital costs required, additional annual costs as additional annual operating costs plus annualized capital costs, number of sites affected, and total benzene reductions expressed in tonnes per year. 10 tabs

  10. Interim report: Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1997-09-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form a 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses both flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry stimulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every 3 minutes. The following 75-mL samples were measured for release rates: KTPB slurry with 15,000 ppm freshly added benzene that was gently mixed with the slurry, KTPB slurry homogenized (energetically mixed) with 15,000 ppm and 5,000 ppm benzene, clear and filtered KTPB salt solution saturated with benzene (with and without a pure benzene layer on top of the solution), and a slurry sample from a large demonstration experiment (DEMO slurry) containing-benzene generated in situ

  11. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.

    Science.gov (United States)

    Nicholson, Carla A; Fathepure, Babu Z

    2004-02-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment.

  12. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  13. Traffic-related air pollution and the onset of myocardial infarction: disclosing benzene as a trigger? A small-area case-crossover study.

    Directory of Open Access Journals (Sweden)

    Denis Bard

    Full Text Available Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI. Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far.We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000-2007 in the Strasbourg Metropolitan Area (France. Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10, ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0-1 and 1 day was 10.4 (95% confidence interval 3-18.2, 10.7 (2.7-19.2 and 7.2 (0.3-14.5, respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature.We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars--main benzene emitters-, should be taken into account for public health action.

  14. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.; Akhtar, M. N.; Odedairo, T.; Aitani, A.; Tukur, N. M.; Kubů, M.; Musilová -Pavlačková , Z.; Čejka, J.

    2011-01-01

    experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction

  15. Electronic states of 1,4-bis(phenylethynyl)benzene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola; Hoffmann, Søren Vrønning

    2012-01-01

    The electronic transitions of 1,4-bis(phenylethynyl)benzene (BPEB) were investigated by UV synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 25,000 – 58,000 cm–1 (400 – 170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable...

  16. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  17. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Isopropylation of benzene with 2-propanol over substituted large ...

    Indian Academy of Sciences (India)

    The catalytic performance of these materials was tested for isopropylation of benzene with 2-propanol at 250, 300, 350 and 400°C. The products were cumene, -DIPB (-diisopropylbenzene) and -DIPB (-diisopropylbenzene). MnAPO-5 was found to be more active than the other catalysts. Maximum conversion (20%) ...

  19. Synthesis of Substituted Linear Ter- and Quaterphenyls via Dewar Benzenes

    Czech Academy of Sciences Publication Activity Database

    Janková, Š.; Hybelbauerová, S.; Kotora, Martin

    -, č. 3 (2011), s. 396-398 ISSN 0936-5214 Grant - others:GA MŠk(CZ) LC06070; GA AV ČR(CZ) IAA401110805 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : dewar benzene * alkynes * cyclobutadiene * polycycles * metallacycles Subject RIV: CC - Organic Chemistry Impact factor: 2.710, year: 2011

  20. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in

  1. Iron-functionalized Al-SBA-15 for benzene hydroxylation

    NARCIS (Netherlands)

    Li, Y.; Xia, H.; Fan, F.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    For the first time an ordered mesoporous silica (Fe–Al-SBA-15) with catalytically active isolated Fe surface species for the hydroxylation of benzene with nitrous oxide is prepared by introduction of Fe3+ in the synthesis gel of Al-SBA-15. Graphical abstract image for this article (ID: b717079c)

  2. Mechanism of microsomal metabolism of benzene to phenol

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, J.A.; Freeman, J.P.; Potter, D.W.; Mitchum, R.K.; Evans, F.E.

    1985-05-01

    The mechanism of microsomal hydroxylation of benzene to phenol has been studied by examining the microsomal metabolism of the specifically deuterated derivative 1,3,5-(/sub 2/H/sup 3/)benzene. Evidence for the formation of the following four products was obtained: 2,3,5-(/sub 2/H/sup 3/)phenol, 3,5-(/sub 2/H/sup 2/)phenol, 2,4,6-(/sub 2/H/sup 3/)phenol, and 2,4-(/sub 2/H/sup 2/)phenol. The presence of 2,3,5-(2H3)phenol and 2,4-(/sub 2/H/sup 2/)phenol shows that, in the microsomal metabolism of benzene to phenol, a NIH shift had occurred. A deuterium isotope effect (kH/kD) of approximately 4 was detected in both the meta- and para-deuterated phenols. This finding indicates that cyclohexadienone, formed either by isomerization of the epoxide or directly from the enzyme-substrate complex, is a major intermediate in the metabolism of benzene to phenol.

  3. Isopropylation of benzene with 2-propanol over substituted large ...

    Indian Academy of Sciences (India)

    3. The major draw- back of these catalysts is their corrosive and envi- ronmentally hazardous ... catalytic activity towards vapor phase isopropylation of benzene with ... 2 cm i.d. The glass reactor was heated to the requi- site temperature with ...

  4. 40 CFR 80.1275 - How are early benzene credits generated?

    Science.gov (United States)

    2010-07-01

    ...), per § 80.1280(a). Bavg,y = Average benzene concentration of gasoline produced at the refinery during averaging period y (volume percent benzene), per § 80.1238. Ve,y = Total volume of gasoline produced at the... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading...

  5. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements of...

  6. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure

    NARCIS (Netherlands)

    Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, van B.; Groten, J.P.

    2005-01-01

    Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver

  7. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Science.gov (United States)

    2010-07-01

    ... baseline? 80.1285 Section 80.1285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline... credits. (b) For U.S. Postal delivery, the benzene baseline application shall be sent to: Attn: MSAT2...

  8. Determination of benzene in exhaust gas from biofuels. Final report; Bestimmung von Benzol im Abgas von Biokraftstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dutz, M.; Buenger, J.; Gnuschke, H.; Halboth, H.; Gruedl, P.; Krahl, J.

    2001-10-01

    With the advance of environmental legislation and practices oriented towards sustainability renewable energy resources are becoming increasingly important. Use of replenishable raw materials helps preserve fossil resources. In the fuel sector the most widely used replenishable materials are rape methyl ester (RME) and ethyl tertiary butyl ether (ETBE). The purpose of the present project on the ''Determination of benzene in exhaust gas from biofuels'' was to generate orienting data on the potential health relevance of mixtures of fossil and renewable fuel intended for use in spark ignition and diesel engines. This included a determination of benzene emissions and the mutagenicity of particles. Beyond the applied-for scope of research measurements were also performed on the test engine's toluene, ethyl benzene and xylene emissions as well as on the smoke spot number and nitrogen oxide (NO{sub x}) and hydrocarbon (HC) emissions of the diesel engine. [German] Regenerative Energien gewinnen durch die Umweltgesetzgebungen und das Streben nach einer nachhaltigen Entwicklung zunehmend an Bedeutung. Durch die Verwendung nachwachsender Rohstoffe koennen die fossilen Ressourcen geschont werden. Im Kraftstoffsektor sind hier hauptsaechlich Rapsoelmethylester (RME) und optional Ethyltertiaerbutylether (ETBE) zu nennen. Um fuer Diesel- und Ottomotoren insbesondere mit Blick auf Kraftstoffgemische aus fossilen und regenerativen Komponenten orientierende Daten ueber eine potenzielle Gesundheitsrelevanz zu generieren, wurde das Projekt 'Bestimmung von Benzol im Abgas von Biokraftstoffen' durchgefuehrt. Neben der Benzolemission wurde die Mutagenitaet der Partikeln ermittelt. Ueber den beantragten Untersuchungsrahmen hinaus wurden die Tuluol-, Ethylbenzol-, und Xylolemissionen der eingesetzten Motoren, sowie die Russzahl (RZ) und die Stickoxid- (NO{sub x}) und Kohlenwasserstoffemissionen (HC) des Dieselmotors bestimmt. (orig.)

  9. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  10. Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1998-08-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry simulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every minute

  11. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...... metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance...... was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further...

  12. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    Science.gov (United States)

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration

  13. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.

    Science.gov (United States)

    Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel

    2015-08-26

    The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.

  14. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    International Nuclear Information System (INIS)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-01-01

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors

  15. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    Science.gov (United States)

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Benzene leaks in sight; Benzeenlekken in het vizier

    Energy Technology Data Exchange (ETDEWEB)

    Okkerse, W.J.; Van Doorn, R.; Bison, H. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands)

    2013-02-15

    About five years ago, elevated concentrations of benzene were detected at air measuring stations of the DCMR Environmental Protection Agency in the Botlek area, the Netherlands. Extensive research of potential sources in industry followed. A wide range of advanced techniques were deployed. A smart combination of techniques has ultimately resulted in the identification and clean-up of the benzene sources. A bright future is anticipated for these techniques [Dutch] Ongeveer vijf jaar geleden werden rond het Botlekgebied verhoogde benzeenconcentraties geconstateerd op luchtmeetstations van de DCMR Milieudienst Rijnmond. Een uitgebreid onderzoek naar de potentiele bronnen in de industrie was het gevolg. Daarbij is een scala aan geavanceerde technieken ingezet. Toepassing van een slimme combinatie van technieken heeft er uiteindelijk toe geleid dat benzeenbronnen werden opgespoord en gesaneerd. Een grote toekomst wordt voorzien voor deze technieken.

  17. Mechanisms of free radical chemistry and biochemistry of benzene

    International Nuclear Information System (INIS)

    Karam, L.R.; Simic, M.G.

    1989-01-01

    o-Tyrosine (o-Tyr) was used as a specific biomarker for OH radicals generated in biosystems. Specificity of o-Tyr as an OH biomarker was based on previous studied in systems exposed to ionizing radiations. Fresh muscle tissue incubated with benzene for 1 hr at 38 degree C exhibits formation of o-Tyr as seen in the cases of ethanol- and carbon tetrachloride-exposed systems. Gas chromatography/mass spectrometry selective ion monitoring measurements of o-Tyr yields in chicken breast muscle incubated with water or benzene indicate levels of less than 0.1 ppm and 3.0 ± 0.5 ppm of o-Tyr, respectively. Formation of OH is presumed to originate via a Haber-Weiss reaction of H 2 O 2 with Fe (II) preceded by the formation of O 2 and H 2 O 2 from distorted mitochondria

  18. Measurement of DNA repair deficiency in workers exposed to benzene

    International Nuclear Information System (INIS)

    Hallberg, L.M.; Au, W.W.; El Zein, R.; Grossman, L.

    1996-01-01

    We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m 2 UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m 2 and 350 J/m 2 were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (<0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay. 26 refs., 4 figs., 2 tabs

  19. 2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Zhang

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4−·H2O, contains one 2-phenylimidazolium cation, half a benzene-1,3-dicarboxylate anion and one water molecule. In the crystal, components are connected by N—H...O and O—H...O hydrogen-bonding interactions into a three-dimensional network.

  20. Lithium Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    OpenAIRE

    Krepel, Dana; Hod, Oded

    2013-01-01

    The anchoring of benzene molecules on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects of adsorbate densities, specific adsorption locations, and spin states on the structural stability and electronic properties of the underlying graphene derivatives are revealed. At sufficiently high densities, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half-metallic due to charge transfer from th...

  1. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  2. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  3. Comparison of measurement methods for benzene and toluene

    Science.gov (United States)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorström-Lundén, E.; Sjöberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.80±1.6) μg m -3 for diffusive sampling and (11.3±1.6) μg m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.91±0.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  4. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  5. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin.

    Science.gov (United States)

    Liu, Peng; Long, Chao; Li, Qifen; Qian, Hongming; Li, Aimin; Zhang, Quanxing

    2009-07-15

    In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.

  6. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Long Chao, E-mail: clong@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China); Li Qifen [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Qian Hongming [State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China); Li Aimin; Zhang Quanxing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China)

    2009-07-15

    In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.

  7. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Das, Tomi Nath; Dey, G.R.

    2013-01-01

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  8. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin

    International Nuclear Information System (INIS)

    Liu Peng; Long Chao; Li Qifen; Qian Hongming; Li Aimin; Zhang Quanxing

    2009-01-01

    In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.

  9. Sources of atmospheric emissions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    An inventory of emissions for the Athabasca oil sands airshed that can be used as a basis for air quality assessments was presented. This report was prepared for the Suncor Steepbank Mine Environmental Impact Assessment (EIA) and for the Syncrude Aurora Mine EIA. Both Syncrude and Suncor have plans to develop new oil sands leases and to increase their crude oil and bitumen production. Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere and Syncrude will develop additional ambient air quality, sulphur deposition and biomonitoring programs to ensure that environmental quality is not compromised because of atmospheric emissions associated with their operations. Major emission sources are controlled and monitored by regulatory statutes, regulations and guidelines. In this report, the following four types of emission sources were identified and quantified: (1) major industrial sources associated with Suncor's and Syncrude's current oil sands operations, (2) fugitive and area emission sources such as volatilization of hydrocarbons from tanks and tailings ponds, (3) other industrial emission sources in the area, including oil sands and non-oil sands related facilities, and (4) highway and residential emission sources. Emissions associated with mining operations include: SO 2 , NO x , CO, and CO 2 . The overall conclusion was that although there are other smaller sources of emissions that can influence air quality, there is no reason to doubt that Suncor and Syncrude oil sands operations are the major sources of emissions to the atmosphere. 13 refs., 12 tabs., 8 figs

  10. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  11. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    Science.gov (United States)

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  12. Excited state luminescence of multi-(5-phenyl-1,3,4-oxadiazo-2-yl)benzenes in an electron-donating matrix: exciplex or electroplex?

    Science.gov (United States)

    Yang, Chih-Chiang; Hsu, Chia-Jung; Chou, Pi-Tai; Cheng, Hsu Chun; Su, Yuhlong Oliver; Leung, Man-kit

    2010-01-21

    Multi-(5-phenyl-1,3,4-oxadiazo-2-yl)benzenes show emission in organic solvents from ultraviolet to blue (339-447 nm). The reduction potentials E(1/2)(red) cover a large range of -2.11 V for 2,5-diphenyl-1,3,4-oxadiazole to -0.76 V for 1,2,3,4,5,6-hexa(5-phenyl-1,3,4-oxadiazo-2-yl)benzene. An unexpectedly wide spectral range of the oxadiazole (OXD) exciplex emissions in PVK is observed, ranging from 406 to 603 nm. The OXDs also exhibit similar electroluminescence (EL) when blended into polyvinylcarbazole (PVK). A linear correlation between the lambda(max) of the electroluminescence and photoluminescence is observed, implying that the emission mechanisms in both processes are similar. In addition, the linear correlation between the E(1/2)(red) versus lambda(max) of EL (eV) reflected that the term of the charge-transfer configuration of the contact electron-hole pair plays a major role in the exciplex emission. The exciplex EL of 1,2,5-tri(5-phenyl-1,3,4-oxadiazo-2-yl)benzene (5) could be as high as 1.0 cd/A. Since the exciplex emission usually has a large Stokes shift, this provides a window for us to generate duo emissions for near white light EL with high efficiency. Among the devices we tried, the device of PVK/2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole/5/2,5,8,11-tetra-tert-butylperylene (100:40:40:4) gave EL with good current efficiency of 1.63 cd/A.

  13. Sorption of phenanthrene and benzene on differently structural kerogen: Important role of micropore-filling

    International Nuclear Information System (INIS)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-01-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (V o,d ) initially increase and then decrease. The V o,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The V o,d of phenanthrene and benzene on the kerogen samples accounts for 23–46% and 36–65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. -- Highlights: • The microporosity estimated by benzene vapor differs greatly from that by N 2 . • The micropore volume changes with kerogen maturation. • The phenanthrene or benzene sorption is related to the microporosity of kerogen. • Higher adsorption volume for benzene than for phenanthrene suggests molecular sieve effect. • The pore-filling plays an important role in the sorption of phenanthrene and benzene. -- The sorption behaviors of benzene and phenanthrene are related to the microporosity of the differently matured kerogen, indicating the importance of pore-filling

  14. Dynamics of Rb{sup +}-benzene and Rb{sup +}-benzene-Ar {sub n} (n {<=} 3) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain)], E-mail: m.alberti@ub.edu; Aguilar, A. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Lucas, J.M. [Centre de Recerca en Quimica Teorica, Departament de Quimica Fisica, Parc Cientific, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Cappelletti, D. [Dipartimento di Ingegneria Civile ed Ambientale, Universita di Perugia, 06123 Perugia (Italy); Lagana, A. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Pirani, F. [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy)

    2006-09-29

    The potential energy function of the Rb{sup +}-benzene cluster and of some of its Ar solvated variants is here modeled using a combination (pairwise sum) of ion(atom)-molecular bond and ion-molecular charges interaction contributions which provide, respectively, the non electrostatic and the electrostatic terms of the total non covalent intermolecular potential energy. In particular, such interaction contributions have been represented using, in addition to the ion(atom) polarizability, the bond polarizability tensor components and the charge distribution which account, respectively, for the polarizability and the quadrupolar moment of the benzene molecule. On the resulting potential energy surface, dynamical calculations have been carried out for the microcanonical ensemble by focusing on isomerization processes and on the effect of the mass of the cation.

  15. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  16. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    Science.gov (United States)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  17. Estimation of methane emission from California natural gas industry.

    Science.gov (United States)

    Kuo, Jeff; Hicks, Travis C; Drake, Brian; Chan, Tat Fu

    2015-07-01

    Energy generation and consumption are the main contributors to greenhouse gases emissions in California. Natural gas is one of the primary sources of energy in California. A study was recently conducted to develop current, reliable, and California-specific source emission factors (EFs) that could be used to establish a more accurate methane emission inventory for the California natural gas industry. Twenty-five natural gas facilities were surveyed; the surveyed equipment included wellheads (172), separators (131), dehydrators (17), piping segments (145), compressors (66), pneumatic devices (374), metering and regulating (M&R) stations (19), hatches (34), pumps (2), and customer meters (12). In total, 92,157 components were screened, including flanges (10,101), manual valves (10,765), open-ended lines (384), pressure relief valves (358), regulators (930), seals (146), threaded connections (57,061), and welded connections (12,274). Screening values (SVs) were measured using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. For a given SV range, the measured leak rates might span several orders of magnitude. The correlation equations between the leak rates and SVs were derived. All the component leakage rate histograms appeared to have the same trend, with the majority of leakage ratesGas Research Institute (EPA/GRI) study. Twenty-five natural gas facilities in California were surveyed to develop current, reliable, and California-specific source emission factors (EFs) for the natural gas industry. Screening values were measured by using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 EPA/GRI study. The smaller EF values from this study might be partially attributable to the employment of the leak detection and repair program by most, if not all

  18. Benzene adsorption and hydrogenation on Pd-Ru alloy by pulse chromatography

    International Nuclear Information System (INIS)

    Dobrokhotov, V.G.; Pavlova, L.F.; Gryaznov, V.M.

    1983-01-01

    Pulse chromatography has been applied to investigate benzene adsorption and hydrogenation on the Walls of a capillary of the Pd-6% Ru alloy at different hydrogen contents in the alloy and various methods of hydrogen supply: as a mixture with benzene vapors or by diffusion through the walls of the capillary. It is stated that reversible adsorption of benzene vapors on the Pd-6% Ru alloy at 303 K under the conditions of the β-phase existence in the alloy-hydrogen system does not change whereas in the region of the α-phase existence it slightly increases with a growth of hydrogen pressure. Strongly adsorbed benzene occupies approximately 7% of the surface. Only strongly adsorbed benzene is hydrogenated on the α-phase of the alloy-hydrogen system. Hydrogen supply to the hydrogenation zone by diffusion throUgh the alloy results in supersaturation of the surface active in the reaction of benzene hydrogenation with a chemisorbed hydrogen form

  19. Monitoring Oilfield Operations and GHG Emissions Sources Using Object-based Image Analysis of High Resolution Spatial Imagery

    Science.gov (United States)

    Englander, J. G.; Brodrick, P. G.; Brandt, A. R.

    2015-12-01

    Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity

  20. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    Energy Technology Data Exchange (ETDEWEB)

    Katoch, Neha, E-mail: nehakatoch2@gmail.com; Kapoor, Pooja; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Center for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G{sub 0} to 2G{sub 0} suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  1. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  2. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  3. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    Science.gov (United States)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  4. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    Science.gov (United States)

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  5. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    Energy Technology Data Exchange (ETDEWEB)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  6. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  7. Benchmarking of refinery emissions performance : Executive summary

    International Nuclear Information System (INIS)

    2003-07-01

    This study was undertaken to collect emissions performance data for Canadian and comparable American refineries. The objective was to examine parameters that affect refinery air emissions performance and develop methods or correlations to normalize emissions performance. Another objective was to correlate and compare the performance of Canadian refineries to comparable American refineries. For the purpose of this study, benchmarking involved the determination of levels of emission performance that are being achieved for generic groups of facilities. A total of 20 facilities were included in the benchmarking analysis, and 74 American refinery emission correlations were developed. The recommended benchmarks, and the application of those correlations for comparison between Canadian and American refinery performance, were discussed. The benchmarks were: sulfur oxides, nitrogen oxides, carbon monoxide, particulate, volatile organic compounds, ammonia and benzene. For each refinery in Canada, benchmark emissions were developed. Several factors can explain differences in Canadian and American refinery emission performance. 4 tabs., 7 figs

  8. Comparison of personal air benzene and urine t,t-muconic acid as a benzene exposure surrogate during turnaround maintenance in petrochemical plants.

    Science.gov (United States)

    Koh, Dong-Hee; Lee, Mi-Young; Chung, Eun-Kyo; Jang, Jae-Kil; Park, Dong-Uk

    2018-04-12

    Previous studies have shown that biomarkers of chemicals with long half-lives may be better surrogates of exposure for epidemiological analyses, leading to less attenuation of the exposure-disease association, than personal air samples. However, chemicals with short half-lives have shown inconsistent results. In the present study, we compared pairs of personal air benzene and its short-half-life urinary metabolite trans,trans-muconic acid (t,t-MA), and predicted attenuation bias of theoretical exposure-disease association. Total 669 pairs of personal air benzene and urine t,t-MA samples were taken from 474 male workers during turnaround maintenance operations held in seven petrochemical plants. Maintenance jobs were classified into 13 groups. Variance components were calculated for personal air benzene and urine t, t-MA separately to estimate the attenuation of the theoretical exposure-disease association. Personal air benzene and urine t, t-MA showed similar attenuation of the theoretical exposure-disease association. Analyses for repeated measurements showed similar results, while in analyses for values above the limits of detection (LODs), urine t, t-MA showed less attenuation of the theoretical exposure-disease association than personal air benzene. Our findings suggest that there may be no significant difference in attenuation bias when personal air benzene or urine t,t-MA is used as a surrogate for benzene exposure.

  9. Effect of in vivo exposure to benzene on the characteristics of bone marrow adherent cells

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, H M; Cronkite, E P; Drew, R T

    1983-01-01

    The effect of benzene on the adherent cell population, cultured from the bone marrow of exposed mice was investigated in the presence and absence of hydrocortisone. The adherent CFUs from exposed animals did not differ either in numbers or self-replicate ability to those derived from shown exposed animals. Adherent layers from mice exposed to 100 or 400 pp-benzene were devoid of fat cells regardless of the presence or absence of hydrocortisone. Hydrocortisone was shown to influence the proportion of acid phosphatase-positive cells derived from benzene-exposed animals. Those results suggest that benzene exposure may influence the bone marrow stromal cells.

  10. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    International Nuclear Information System (INIS)

    Medeiros Vinci, Raquel; Canfyn, Michael; De Meulenaer, Bruno; Schaetzen, Thibault de; Van Overmeire, Ilse; De Beer, Jacques; Van Loco, Joris

    2010-01-01

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 μg L -1 ).

  11. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Vinci, Raquel [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Canfyn, Michael [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); De Meulenaer, Bruno [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Schaetzen, Thibault de; Van Overmeire, Ilse; De Beer, Jacques [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Van Loco, Joris, E-mail: Joris.VanLoco@iph.fgov.BE [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium)

    2010-07-05

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 {mu}g L{sup -1}).

  12. Pressure Dependence of Molar Volume near the Melting Point in Benzene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pressure dependence of the molar volume was at constant temperatures close to the melting point in benzene. The molar volume of benzene was calculated using experimental data for the thermal expansivity for constant temperatures of 25℃, 28.5℃, 40℃, and 51℃ at various pressures for both the solid and liquid phases. The predictions are in good agreement with the observed volumes in both the solid and liquid phases of benzene. The predicted values of the molar volume for a constant temperature of 28.5℃ in the liquid phase of benzene agree well with experimental data in the literature.

  13. Destruction of benzene (VOC) using electron beam radiation in flue gas treatment

    International Nuclear Information System (INIS)

    Mohd Nahar Othman; Mohd Noor Muhd Yunus

    2004-01-01

    In this study, Benzene, one of the volatile organic compounds (VOCs) is used to destruct by electron beam. As we know Benzene is one of the most stable compound and very difficult to break. By using the powerful energy produced by electron beam, the benzene compound can be broken up to form new compounds. The technique used in this experiment is by using static process in a control condition where other gases are not allowed to enter the Tedlar bag or glass jar. The Tedlar Bag and Glass jar are used as media for benzene gas to be irradiated. From the experiment it was found that the Tedlag Bag is more suitable than the glass jar the electron beam can easily penetrate and destroy benzene gas. Nitrogen and Helium gas is used as a cleaning gas. The concentrations of benzene gas used for this study are 100 ppm. (part per million), 1 ppmv, and 1 ppmv each for 32 types of VOC. From the result it can be concluded that the electron beam technique used for destruction of benzene (VOQ is very suitable for the low concentration of benzene, the dose needed for the destruction to reach 85-95% is only between 8-12 kGy. It was also observed that many new compound can be produced when benzene is destruct by electron beam. (Author)

  14. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  15. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    Science.gov (United States)

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  16. "Yin and Yang" tuned fluorescence sensing behavior of branched 1,4-bis(phenylethynyl)benzene.

    Science.gov (United States)

    Sun, Xiaohuan; Qi, Yanyu; Liu, Huijing; Peng, Junxia; Liu, Kaiqiang; Fang, Yu

    2014-11-26

    Achieving high sensing performance and good photostability of fluorescent films based on adlayer construction represents a significant challenge in the area of functional fluorescent film research. A solution may be offered by "Yin and Yang", a balance idea from Chinese philosophy, for the design of a fluorophore and the relevant assembly. Accordingly, a 1,4-bis(phenylethynyl)benzene (BPEB) derivative (C2) with two cholesteryl residues in the side chains and two glucono units in the head and tail positions was designed and synthesized. As a control, compound C1 was also prepared. The only difference between C1 and C2 is that the hydroxyl groups in the glucono residues of C1 are fully acetylated. Studies of the fluorescence behaviors of the two compounds in solution revealed that both the profile and the intensity of the fluorescence emission of the compounds, in particular C2, are dependent on their concentration and on the nature of solvents employed. Presence of HCl also alters the emission of the compounds in solution. On the basis of the studies, three fluorescent films were prepared, and their sensing performances to HCl in vapor state were studied. Specifically, Film 1 and Film 3 were fabricated via physical coating, separately, of C2 and C1 on glass plate surfaces. As another comparison, Film 2 was also fabricated with C2 as a fluorophore but at a much lower concentration if compared to that for the preparation of Film 1. As revealed by SEM and fluorescent microscopy studies, Film 1 and Film 2 exhibit well-defined microstructures, which are spherical particles and spherical pores, respectively, while Film 3 is characterized by irregular aggregates of C1. Fluorescence measurements demonstrated that Film 1 and Film 3 both display an aggregation emission, of which the emission from Film 1 is supersensitive to the presence of HCl vapor (detection limit: 0.4 ppb, a lowest value reported in the literatures). For Film 3, however, its emission is insensitive to the

  17. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  18. The (p, ρ, T) of (methanol + benzene) and (methanol + ethylbenzene)

    International Nuclear Information System (INIS)

    Naziev, Yashar M.; Shahverdiyev, Astan N.; Hasanov, Vaqif H.

    2005-01-01

    The (p, ρ, T) of methanol, ethylbenzene and (methanol + benzene) and (methanol + ethylbenzene) at temperatures between (290 and 500) K and pressures in the range (0.1 to 60) MPa have been measured with a magnetic suspension densimeter with an uncertainty of ±0.1%. Our measurements with methanol deviate from the literature values by less than 0.2%. The (p, ρ, T) measurements were fitted with experimental uncertainties by an empirical equation. The temperature and mole fraction dependence of the coefficients of the equation of state are presented

  19. Subpicosecond pulse radiolysis in liquid methyl-substituted benzene derivatives

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Kozawa, Takahiro; Saeki, Akinori; Yoshida, Yoichi; Tagawa, Seiichi

    2007-01-01

    The early processes of radiation chemistry in the picosecond time region in methyl-substituted benzene derivatives have been investigated using subpicosecond pulse radiolysis. In o-xylene, a fairly slow geminate ion recombination was observed within 50 ps after the electron beam irradiation; this is due to the smaller electron mobility. The kinetic traces were analyzed using the Smoluchowski equation with exponential and modified-Gaussian (YGP) functions as the distribution of thermalized electrons. Only exponential functions well reproduced the experimental data within 50 ps after the electron pulse

  20. Scenario Study on PM emission Reduction in Cement Industry

    Science.gov (United States)

    Tang, Qian; Chen, Xiaojun; Xia, Xin; Wang, Lijuan; Wang, Huili; Jin, Ling; Yan, Zhen

    2018-01-01

    Cement industry is one of the high pollution industries in China. Evaluation of the primary particulate matter (PM) emission status and the reduction potential is not only important for our understanding of the effectiveness of current pollution control measures but also vital for future policy design. In this study, PM emitted from cement producing process in 2014 was calculated using an emission factor method. Three PM emission control scenarios were set up considering source control, process management and end-of-pipe treatment, and the PM emission reduction by 2020 under the three scenarios was predicted, respectively. In 2014, the primary PM emission from cement industry was 1.95 million tons. By 2020, the productions of cement and clinker were expected to increase by 12% and 7%, respectively, and the PM emission would increase by about 10%. By implementation of GB4915-2013 and comprehensive control of fugitive PM emission, the PM emission would probably be reduced by 34%. Another 7% decrease would be expected from source control. The second scenario can be considered as an assessment of the effectiveness of the revised emission standard, and this research can be used as a technical support to the environmental management authorities to make relevant policies.

  1. Bis(2-formylphenyl benzene-1,2-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Shaaban K. Mohamed

    2018-02-01

    Full Text Available The asymmetric unit of the title compound, C22H14O6, consists of two independent molecules differing in the orientations of the ester groups. In one molecule, the two terminal benzene rings are inclined to the central benzene ring by 4.99 (13 and 77.46 (13°, while in the other the corresponding angles are 11.03 (13 and 88.09 (12°. In the crystal, molecules are connected into a ribbon structure running along [101] via C—H...O and C—H...π interactions. Adjacent ribbons are further linked by additional C—H...O and C—H...π interactions. The crystal studied was a non-merohedral twin [twin law (0.986 − 0.073 − 0.008, 0.323 1.036 0.148, −0.121 − 0.102 0.942], the ratio of components being 0.937 (4:0.063 (4.

  2. Oxidation of benzene by radiolytically produced OH radicals. [x rays

    Energy Technology Data Exchange (ETDEWEB)

    Klein, G W; Schuler, R H [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1978-01-01

    The radiolysis of N/sub 2/O saturated-aqueous solutions of benzene-/sup 14/C has been examined using radio-liquid chromatographic methods to follow the quantitative aspects of the reactions of hydroxycyclohexadienyl radicals. In the absence of a radical oxidant, at least five important products are produced. The total yield of 5.8 observed for the incorporation of benzene into products accounts for essentially all of the radicals initially produced from the water. Dimeric products predominate with a total yield of 4.1. Phenol is produced with a yield of only 0.8 indicating a disproportionation/combination ratio for hydroxycyclohexadienyl radicals of < = 0.4. In the presence of 2mM ferricyanide the hydroxycyclohexadienyl radicals are quantitatively oxidized to phenol with no trace (< 1%) remaining of dimeric or other high molecular weight products. The initial yield for phenol formation (6.0 molecules/100 eV) provides a measure for OH production in N/sub 2/O saturated aqueous solutions.

  3. Sonochemical treatment of benzene/toluene contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, G.; Gleason, M. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering; Popov, V. [Scientific Production Association Typhoon, Obninsk (Russian Federation). Inst. of Experimental Meterology

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  4. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  5. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    Science.gov (United States)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  6. C.A.R.S. monitor of fragmentation and secondary reactions during U.V. laser induced decomposition of benzene

    International Nuclear Information System (INIS)

    Fantoni, R.; Giorgi, M.; Moliterni, A.G.G.; Lipinska-Kalita, K.E.

    1992-01-01

    Among the different types of non-linear Raman spectroscopies, vibrational CARS (Coherent AntiStokes Raman Scattering, probing Raman active vibrational modes) has proved to be a valuable on-line technique in the study of laser induced processes involving gas phase reactants, such as the deposition of thin films or synthesis of ultrafine powders. The application of lasers in total decomposition (mineralisation) of gas-phase pollutants has been considered, and test experiments have been started on benzene as a precursor of a large family of aromatic pollutants. This paper reports on the use of a broad-band CARS to monitor, on-line, the laser induced dissociation of benzene at 266 nm. The electronically excited C 2 produced during the process was detected by RECARS (Resonantly Enhanced CARS) in the visible region. The laser induced primary decomposition and secondary reaction were studied under collisional conditions upon the addition of inert (N 2 ) and reactive (O 2 ) partners. Reaction intermediates produced in electronically excited states were detected by time resolved spontaneous emission spectroscopy performed with the same set-up in the absence of probe lasers

  7. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Science.gov (United States)

    2010-07-01

    ... concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported... percent benzene). i = Individual batch of gasoline produced at the refinery or imported during the applicable averaging period. n = Total number of batches of gasoline produced at the refinery or imported...

  8. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Science.gov (United States)

    2010-07-01

    ... benzene). i = Individual batch of gasoline produced at the refinery from January 1, 2004 through December 31, 2005. n = Total number of batches of gasoline produced at the refinery from January 1, 2004... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading...

  9. Benzene biodegradation using an anaerobic column coupled to Mn(IV) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Villatoro-Monzon, W.R.; Velasquez-Mejia, E.K.; Morales-Ibarria, M.G.; Razo-Flores, E. [Instituto Mexicano del Petroleo (Mexico). Programo de Biotenologia del Petroleo

    2004-07-01

    Benzene, toluene, and o, m, p-xylene compounds make up a large proportion of gasoline. Due to spills and leaks from underground tanks, these compounds frequently contaminate groundwater and sediment. In particular the high solubility of benzene makes it very mobile and an extra danger to groundwater. Moreover, there are strong links between benzene and cancer and thus benzene is considered a serious pollutant. Contaminated sites usually become anaerobic due to microbe action. In this study, benzene biodegradation was done in a glass column inoculated with anaerobic Rhine River sediment and using Mn(IV) as the final electron acceptor. Under steady state operation, benzene biodegradation efficiency was as high as 95 per cent. Carbon dioxide and Mn(II) recovery rates were 81 and 77 per cent respectively. Reactor sediment was withdrawn on day 104 and subject to DGGE profiling. This sediment showed different band patterns than the original sediment that was not exposed to benzene. The authors conclude that the species associated with the degradation of benzene are of the genus Propionibacterium and Actinomyces. 17 refs., 2 figs.

  10. 40 CFR 80.1290 - How are standard benzene credits generated?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading... approved under § 80.1340. (b) [Reserved] (c)(1) The number of standard benzene credits generated shall be... the nearest gallon. Fractional values shall be rounded down if less than 0.50, and rounded up if...

  11. Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition

    NARCIS (Netherlands)

    van der Waals, Marcelle J.; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than

  12. Significance of calculated cluster conformations of benzene: comment on a publication by D. E. Williams

    NARCIS (Netherlands)

    van de Waal, B.W.

    1981-01-01

    Results of potential-energy minimization, applied to clusters of benzene molecules, have been reported recently by Williams [Acta Cryst. (1980), A36, 715-723]. Two stable tridecamer clusters were found and compared with a 13-molecule fragment from crystalline orthorhombic benzene. In this comment

  13. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Ravensberg, L.C.; Smoorenburg, G.F.

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was

  14. Sulfur tolerance of Pt/mordenites for benzene hydrogenation. Do Bronsted acid sites participate in hydrogenation?

    NARCIS (Netherlands)

    Simon, L.; van Ommen, J.G.; Jentys, A.; Lercher, J.A.

    2002-01-01

    The comparison of Pt electronic properties studied by in situ XANES and the kinetic study of benzene hydrogenation strongly suggests that the hydrogenation of benzene on Pt/mordenites occurs along two parallel reaction pathways. The routes proposed include (i) the monofunctional hydrogenation of

  15. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    Science.gov (United States)

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  16. Homolytic iodination and nitration of some benzene derivatives in the gas phase

    International Nuclear Information System (INIS)

    Vonk, W.F.M.

    1980-01-01

    Two gas phase reactions, involving the iodination and nitration of benzene derivatives, are described. The experimental techniques of the apparatus and the methods used are outlined. The kinetic H/D isotope effect in the gas phase nitration of benzene with NO 2 is determined. (C.F.)

  17. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  18. 46 CFR Appendix B to Subpart C to... - Substance Technical Guidelines, Benzene

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Substance Technical Guidelines, Benzene B Appendix B to... Subpart C to Part 197—Substance Technical Guidelines, Benzene I. Physical and Chemical Data (a) Substance... temperature: 580 °C (1076 °F). (3) Flammable limits in air, % by volume: Lower: 1.3%, Upper: 7.5%. (4...

  19. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Science.gov (United States)

    2010-07-01

    ... accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for benzene and 1,3-butadiene in bag samples for the baseline fuel are 4.0 ppm and 0.30 ppm respectively. At...

  20. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dipty [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India); Fulekar, M.H., E-mail: mhfulekar@yahoo.com [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India)

    2010-03-15

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  1. Simultaneous exposure to ethyl benzene and noise : synergistic effects on outer hair cells

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Smoorenburg, G.F.

    2001-01-01

    The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dBlin SPL or background noise at 65 dBlin SPL) and all

  2. A DFT study on benzene adsorption over tungsten sulfides: surface model and adsorption geometries

    NARCIS (Netherlands)

    Koide, R.; Hensen, E.J.M.; Paul, J.F.; Cristol, S.; Payen, E.; Nakamura, H.; Santen, van R.A.

    2007-01-01

    Benzene adsorption on a WS2(100) surface was studied by ab initio periodic DFT computations. Benzene adsorption is facile on the bridge site of the bare W edge via ¿2 or ¿3 coordination. Taking into account the stable configuration at the W edge under typical hydrotreating reaction conditions (623

  3. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  4. Advancing Understanding of Emissions from Oil and Natural ...

    Science.gov (United States)

    Executive Summary Environmentally responsible development of oil and gas assets requires well-developed emissions inventories and measurement techniques to verify emissions and the effectiveness of control strategies. To accurately model the oil and gas sector impacts on air quality, it is critical to have accurate activity data, emission factors and chemical speciation profiles for volatile organic compounds (VOCs) and nitrogen oxides (NOx). This report describes a U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) Region 8 Regional Applied Research Effort (RARE) effort executed in Fiscal Year (FY) 2014 to FY 2016 that aimed to improve information on upstream oil and production emissions and identify areas where future work is needed. The project involved both field activities and data analysis and synthesis work with emphasis on product-related VOC emissions from well pads. In oil and gas basins with significant condensate and oil production, VOC emissions from well pads primarily arise from the separation of gas and liquid products and the storage process, with the control of emissions usually accomplished by enclosed combustion devices (ECDs), such as flares. Fugitive emissions of VOCs can originate from leaks and from potentially ineffective control systems. In the case of ECDs, byproducts of incomplete combustion may produce more highly reactive ozone precursor species. For both compliance and scientific purposes, the abili

  5. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  6. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay

    DEFF Research Database (Denmark)

    Tuo, J; Loft, S; Thomsen, M S

    1996-01-01

    was further increased to 5.4-fold and 6.6-fold of the control values, respectively (p propylene glycol (5 microliters/g b.wt., twice with a 60-min interval), a selective CYP2E1 inhibitor, reduced the increase in the tail length by about half at all doses in both cell types (p ...The myelotoxic and genotoxic effects of benzene have been related to oxidative DNA damage after metabolism by CYP2E1. Single cell gel electrophoresis (alkaline comet assay) detects DNA damage and may thus be a convenient method for the study of benzene genotoxicity. Benzene exposure to NMRI mice.......01). By comparing our data with those from genotoxicity studies on benzene using other methods, we conclude that the 'alkaline comet assay' is a sensitive method to detect DNA damage induced by benzene. We also infer that CYP2E1 contributes, at least partly, to the formation of the 'comet'-inducing metabolites...

  7. The role of octanol in the extraction of hydrochloric acid by trilaurylamine dissolved in benzene

    International Nuclear Information System (INIS)

    Muhammed, M.A.

    1976-01-01

    The extraction of hydrochloric acid by trilaurylamine (TLA) dissolved in benzene was studied in the presence and in absence of n-octanol. The extraction of HCl was found to be enhanced by the addition of octanol to the organic phase. In order to explain this effect by means of the law of mass action, the systems TLA-HCl-benzene and n-octanol-HCl-benzene as well as TLA-octanol-benzene were also studied. It was found that TLA reacts with octanol to form a complex TLAROH, while the octanol itself associates in benzene to form dimers and tetramers, although it does not extract HCl alone from the dilute solutions used in the present study. The enhancement of the extraction of HCl by TLA upon the addition of n-octanol could be described by the formation of the species TLA.ROH.HCl and its stability constant was determined. (author)

  8. Benzene in blood as a biomarker of low level occupational exposure

    Energy Technology Data Exchange (ETDEWEB)

    Brugnone, F.; Perbellini, L.; Romeo, L.; Cerpelloni, M.; Bianchin, M.; Tonello, A. [Institute of Occupational Medicine, University of Verona, Policlinico Borgo Roma, 37134 Verona (Italy)

    1999-09-01

    The occupational airborne exposure to benzene of 150 workers employed in petrol stations and a refinery plant was assessed using personal sampling pumps. All workers provided blood samples after the end of work and on the following morning before resuming work. Benzene concentrations in the blood of 243 non-occupationally-exposed subjects were also measured. The median occupational benzene exposure for all 150 workers studied was 80 {mu}g/m{sup 3}. Overall median blood benzene of all workers was 251 ng/l at the end of the shift, and 174 ng/l the following morning. The benzene concentrations measured in blood collected the following morning proved to be significantly lower than those measured at the end of the shift. Median blood benzene for the 243 'normal' subjects was 128 ng/l, which was significantly lower than that measured in the workers before a new work shift. The median blood benzene concentration was significantly higher in smokers than in non-smokers, both in the general population (210 ng/l vs. 110 ng/l) and in the exposed workers at the end of the shift (476 ng/l vs. 132 ng/l) and the following morning (360 ng/l vs. 99 ng/l). End-of-shift blood benzene correlated significantly with environmental exposure; this correlation was better in the 83 non-smokers than in the 67 smokers. In non-smokers with the median benzene occupational exposure of 50 {mu}g/m{sup 3}, no difference was found in blood benzene concentration in exposed and non-exposed subjects.

  9. Biological monitoring of benzene exposure for process operators during ordinary activity in the upstream petroleum industry.

    Science.gov (United States)

    Bråtveit, Magne; Kirkeleit, Jorunn; Hollund, Bjørg Eli; Moen, Bente E

    2007-07-01

    This study characterized the exposure of crude oil process operators to benzene and related aromatics during ordinary activity and investigated whether the operators take up benzene at this level of exposure. We performed the study on a fixed, integrated oil and gas production facility on Norway's continental shelf. The study population included 12 operators and 9 referents. We measured personal exposure to benzene, toluene, ethylbenzene and xylene during three consecutive 12-h work shifts using organic vapour passive dosimeter badges. We sampled blood and urine before departure to the production facility (pre-shift), immediately after the work shift on Day 13 of the work period (post-shift) and immediately before the following work shift (pre-next shift). We also measured the exposure to hydrocarbons during short-term tasks by active sampling using Tenax tubes. The arithmetic mean exposure over the 3 days was 0.042 ppm for benzene (range ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was significantly higher when the process operators performed flotation work during the shift versus other tasks. Work in the flotation area was associated with short-term (6-15 min) arithmetic mean exposure to benzene of 1.06 ppm (range 0.09-2.33 ppm). The concentrations of benzene in blood and urine did not differ between operators and referents at any time point. When we adjusted for current smoking in regression analysis, benzene exposure was significantly associated with the post-shift concentration of benzene in blood (P = 0.01) and urine (P = 0.03), respectively. Although these operators perform tasks with relatively high short-term exposure to benzene, the full-shift mean exposure is low during ordinary activity. Some evidence indicates benzene uptake within this range of exposure.

  10. Progress of epidemiological and molecular epidemiological studies on benzene in China.

    Science.gov (United States)

    Li, Guilan; Yin, Songnian

    2006-09-01

    Benzene is an organic solvent that has been used in industry for about 100 years throughout the world. Since 1973, a series of toxicological and molecular epidemiological studies on benzene were conducted by researchers at the Chinese Academy of Preventive Medicine (CAPM) (1973-1986) and subsequently by a collaboration between the CAPM and the National Cancer Institute (NCI) in the United States that began in 1986, which was joined by investigators from the University of California at Berkeley, the University of North Carolina at Chapel Hill, and New York University. The findings demonstrated that the risk of leukemia and lymphoma among benzene-exposed workers was significantly increased, with elevated risks for leukemia present not only at higher exposure but also among workers exposed to under 10 ppm. Therefore, the benzene permissible level was decreased to 1.8 ppm (6 mg/m(3)) and benzene-induced leukemia is treated as an occupational cancer in China. The benzene permissible level is 1.0 in the United States and in several other developed countries and it has been suggested to be decreased to 0.5 ppm (ACGIH). A number of potential biomarkers are related to benzene exposure and poisoning. Some of these are benzene oxide-protein adducts, chromosome aberration of lymphocytes, and GPA mutations in erythrocytes, a decrease in B cell and CD4(-)T cell counts in peripheral blood, and altered expression of CXCL16, ZNF331, JUN, and PF4 in lymphocytes. Variation in multiple benzene metabolizing genes may be associated with risk of benzene hematotoxicity, including CYP2E1, MPO, NQO1, and GSTT1.

  11. (Liquid + liquid) equilibria for benzene + cyclohexane + N,N-dimethylformamide + sodium thiocyanate

    International Nuclear Information System (INIS)

    Dong, Hongxing; Yang, Xiaoguang; Yue, Guojun; Zhang, Wei; Zhang, Jin

    2013-01-01

    Graphical abstract: On the left, the figure was phase diagram about the LLE date. On the right, the figure was about the effects of mass fraction of benzene in the raffinate phase to the selectivity(S) coefficient under different salt concentration. ■, the NaSCN and DMF in ratio of 5/95; • , the NaSCN and DMF in ratio of 10/90; ▴, the NaSCN and DMF in ratio of 15/85; ★, the NaSCN and DMF in ratio of 20/80; ▾, the NaSCN and DMF in ratio of 23/77. ♦, only DMF was used extractant (the selectivity coefficient was calculated by literature 17). w 22 , refer to the mass fraction of benzene in the raffinate phase (cyclohexane-rich phase). Highlights: • (Liquid + liquid) equilibrium for quaternary system was measured. • The components include benzene, cyclohexane, N,N-dimethylformamide, sodium thiocyanate. • The (liquid + liquid) equilibrium data can be well correlated by the NRTL model. • Separation of benzene and cyclohexane by NaSCN + DMF was discussed. -- Abstract: (Liquid + liquid) equilibrium (LLE) data for benzene + cyclohexane + N,N-dimethylformamide (DMF) + sodium thiocyanate (NaSCN) were measured experimentally at atmospheric pressure and 303.15 K. The selectivity coefficients from these LLE data were calculated and compared to those previously reported in the literature for the systems (benzene + cyclohexane + DMF) and (benzene + cyclohexane + DMF + KSCN). The NRTL equation was used to correlate the experimental data. The agreement between the predicted and experimental results was good. It was found that the selectivity coefficients of DMF + NaSCN for benzene ranged from 2.45 to 11.99. Considering the relatively high extraction capacity and selectivity for benzene, DMF + NaSCN may be used as a potential extracting solvent for the separation of benzene from cyclohexane

  12. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    International Nuclear Information System (INIS)

    Christensen, H.

    1964-07-01

    Aqueous solutions of benzene have been irradiated with Co γ-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed

  13. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-07-15

    Aqueous solutions of benzene have been irradiated with Co {gamma}-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed.

  14. Gas-phase hydrogenation of benzene on supported nickel catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Franco, H.A.; Phillips, M.J.

    1980-06-01

    The reaction of 22.66-280 Pa benzene with 72.39-122.79 Pa hydrogen on kieselguhr-supported nickel at 392.2/sup 0/-468.2/sup 0/K yielded only cyclohexane and was independent of 5.33-40 Pa cyclohexane added to the feed of the differential flow reactor. Best fit for the kinetic data was obtained with a rate equation developed by van Meerten and Coenen which assumed that all hydrogen addition steps have the same rate constant and are slow. An observed rate maximum at 458/sup 0/K may be the result of an increasing rate constant and decreasing cyclohexyl surface coverage as the temperature increases. Temperature-programed hydrogen desorption showed a series of desorption peaks at 358/sup 0/-600/sup 0/K, including one at 453/sup 0/K, which may be due to the hydrogen involved in the surface reaction.

  15. Benzene exposure in the shoemaking industry in China, a literature survey, 1978-2004.

    Science.gov (United States)

    Wang, Laiming; Zhou, Yimei; Liang, Youxin; Wong, Otto; Armstrong, Thomas; Schnatter, A Robert; Wu, Qiangen; Fang, Jinbin; Ye, Xibiao; Fu, Hua; Irons, Richard D

    2006-11-01

    This article presents a summary of benzene exposure levels in the shoemaking industry in China reported in the Chinese medical literature between 1978 and 2004. A comprehensive search identified 182 papers reporting such exposure data. These papers could be classified into two categories: benzene poisoning case reports and industrial hygiene surveys. From each paper, the following information was abstracted whenever available: location and year of occurrence, occupation and/or task involved, benzene content in adhesives/solvents, work environment, working conditions, working hours, diagnosis, and air monitoring data of benzene. A total of 333 benzene measurements (88 averages, 116 minimums, 129 maximums) in the shoemaking industry were reported in the 182 papers identified. The data were analyzed in terms of geographical location, time period, type of ownership (state, township, or foreign), type of report (benzene poisoning reports vs. industrial hygiene surveys), and job title (work activity) or process. The reported data covered a wide range; some measurements were in excess of 4500 mg/m(3). Thirty-five percent of the reported benzene concentrations were below 40 mg/m(3), which was the national occupational exposure limit (OEL) for benzene between 1979 and 2001. The remaining 65% measurements, which exceeded the national OEL in effect at the time, and were distributed as follows: 40-100 mg/m(3), 11%; 100-300 mg/m(3), 21%; 300-500 mg/m(3), 13%; and 500+ mg/m(3), 20%. However, only 24% of the reported measurements after 2002 were below 6 mg/m(3), i.e., Permissible Concentration-Time Weighted Average (PC-TWA) and 10 mg/m(3), i.e., Permissible Concentration-Short Term Exposure Limit (PC-STEL), the newly amended benzene OELs in effect after May 2002. The data demonstrated that the majority of the facilities in the shoemaking industry reported in the literature were not in compliance of the OEL for benzene in effect at the time. Overall, the data show a clear downward

  16. Methane emissions from U.S. natural gas operations

    International Nuclear Information System (INIS)

    Lott, R.A.

    1992-01-01

    The Gas Research Institute and the U.S. Environmental Protection Agency are cofunding and comanaging a program to evaluate methane emissions from U.S. natural gas operations. The purpose of the program is to provide an emissions inventory accurate enough for global climate modeling and for addressing the policy question of ''whether encouraging the increased use of natural gas is a viable strategy for reducing the U.S. contribution to global warming''. The program is comprised of three phases: Scoping, Methods Development, and Implementation. The purpose of Phase I was to define the problem. Phase II of the program concentrated on developing techniques for measuring steady state or fugitive emissions and for calculating the highly variable unsteady emissions from the variety of sources that comprise the gas industry. Because of the large number of sources within each source type, techniques were also developed for extrapolating emissions data to similar sources within the industry. Phase III of the program was started in early 1992 and should be completed in early 1994. The purpose of the current phase of the program is to collect sufficient data to achieve the accuracy goal of determining emissions to within ± 0.5 percent of production. Based on the limited amount of data collected to date, methane emissions from the U.S. gas industry appear to be in the range of 1 percent of production. (au) (19 refs.)

  17. Material flows of benzene with particular consideration of the Federal Republic of Germany; Stoffstroeme von Benzol unter besonderer Beruecksichtigung der Bundesrepublik Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Boehncke, A.; Mangelsdorf, I. [Fraunhofer Inst. fuer Toxikologie und Aerosolforschung, AG Dokumentation und Bewertung von Chemikalien, Hannover (Germany); Rosner, G. [ToxConsult, Merzhausen (Germany)

    1997-12-01

    In the Federal Republic of Germany, benzene is one of the most important basic materials for the chemical industry. Only a relatively small proportion of the pure benzene processed in the chemical industry is emitted into the environment (ca. 40 t in 1991). But the substance is also a natural component of the crude oil in gasoline and is released during incomplete combustion or is formed out of other aromatic substances. The primary source of emissions, with more than 10,000 t/yr (approximately 85% of this from motor vehicles with Otto engines), is commercial motor vehicle transportation. Benzene concentrations in the environment are approximately <1 {mu}g/m{sup 3} in rural areas, 20-30 {mu}g/m{sup 3} near main roads (peak levels in highly urbanized regions with much traffic as high as approximately 100 {mu}g/m{sup 3}) and 7-15 {mu}g/m{sup 3} in the vicinity of industrial polluters. It has not been possible to detect a specific trend over time during the last ten years. An increased exposure (approx. 350-27,000 {mu}g/m{sup 3}) is likely while filling the tank and within the motor vehicle (approx. 10-200 {mu}g/m{sup 3}) due to gasoline volatilization from pipes, etc. Compared to outdoor air, higher concentrations of benzene (approx. 2-11 {mu}g/m{sup 3}) are measured in the indoor air which contains additionally benzene from tobacco smoke, equipment, renovating work and heating. The primary exposure pathway of benzene in humans is inhalation. Apart from individuals with occupational exposure, smokers have the highest internal benzene burden. Measures undertaken during recent years to reduce the amount of emissions have been counteracted at least in part by the increase in motor vehicle traffic. Further measures to reduce the emissions or to change the transportation policies must still be or have already been initiated. (orig.) [Deutsch] Benzol stellt fuer die chemische Industrie in der Bundesrepublik Deutschland einen der wichtigsten Grundstoffe dar. Das in der

  18. An analysis of violations of Osha's (1987) occupational exposure to benzene standard.

    Science.gov (United States)

    Williams, Pamela R D

    2014-01-01

    The Occupational Safety and Health Administration (OSHA), which was formed by the Occupational Safety and Health Act of 1970 (OSH Act), establishes enforceable health and safety standards in the workplace and issues violations and penalties for non-compliance with these standards. The purpose of the current study was to evaluate the number and type of violations of the OSHA (1987) Occupational Exposure to Benzene Standard. Violations of the OSHA Hazard Communication Standard (HCS), particularly those that may pertain to specific provisions of the benzene standard, were also assessed. All analyses were based on OSHA inspection data that have been collected since the early 1970s and that are publicly available from the U.S. Department of Labor enforcement website. Analysis of these data shows that fewer than a thousand OSHA violations of the benzene standard have been issued over the last 25+ years. The results for benzene are in contrast to those for some other toxic and hazardous substances that are regulated by OSHA, such as blood-borne pathogens, lead, and asbestos, for which there have been issued tens of thousands of OSHA violations. The number of benzene standard violations also varies by time period, standard provision, industry sector, and other factors. In particular, the greatest number of benzene standard violations occurred during the late 1980s to early/mid 1990s, soon after the 1987 final benzene rule was promulgated. The majority of benzene standard violations also pertain to noncompliance with specific provisions and subprovisions of the standard dealing with initial exposure monitoring requirements, the communication of hazards to employees, and medical surveillance programs. Only a small fraction of HCS violations are attributed, at least in part, to potential benzene hazards in the workplace. In addition, most benzene standard violations are associated with specific industries within the manufacturing sector where benzene or benzene

  19. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers

    Science.gov (United States)

    Rushton, L; Schnatter, A R; Tang, G; Glass, D C

    2014-01-01

    Background: High benzene exposure causes acute myeloid leukaemia (AML). Three petroleum case–control studies identified 60 cases (241 matched controls) for AML and 80 cases (345 matched controls) for chronic lymphoid leukaemia (CLL). Methods: Cases were classified and scored regarding uncertainty by two haematologists using available diagnostic information. Blinded quantitative benzene exposure assessment used work histories and exposure measurements adjusted for era-specific circumstances. Statistical analyses included conditional logistic regression and penalised smoothing splines. Results: Benzene exposures were much lower than previous studies. Categorical analyses showed increased ORs for AML with several exposure metrics, although patterns were unclear; neither continuous exposure metrics nor spline analyses gave increased risks. ORs were highest in terminal workers, particularly for Tanker Drivers. No relationship was found between benzene exposure and risk of CLL, although the Australian study showed increased risks in refinery workers. Conclusion: Overall, this study does not persuasively demonstrate a risk between benzene and AML. A previously reported strong relationship between myelodysplastic syndrome (MDS) (potentially previously reported as AML) at our study's low benzene levels suggests that MDS may be the more relevant health risk for lower exposure. Higher CLL risks in refinery workers may be due to more diverse exposures than benzene alone. PMID:24357793

  20. Radiolysis of triphenylarsine in a mixture of benzene and cyclohexane. [. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, S B; Rai, R S [Birla Inst. of Tech. and Science, Pilani (India). Dept. of Chemistry

    1975-06-01

    A number of degassed samples of triphenylarsine were irradiated by gamma radiation in a mixture of benzene and cyclohexane. The condensable products formed were pentane, hexane, benzene and cyclohexane in cyclohexane solution containing triphenylarsine and cyclohexane in benzene in presence of triphenylarsine. When the composition of the solvent was varried by stepwise addition of benzene from 5 to 50%, the main condensable radiolytic products observed by vapour phase chromatography were hexane, : hexane and cyclohexene. No pentane was observed when benzene was present in the mixture upto 15%. However, it was detected in the presence of 20-30% benzene mixture. When the amount of benzene was 35-50% in the mixture, two isomers of hexane and hexene were also detected. A mechanism has been worked out for the formation of these compounds and protection and sensitization mechanisms have been invoked to explain the yields per 100 ev. From the kinetic analysis, it has been found out that the rate of formation of cyclohexene is much faster than rates of different products formed during gamma radiolysis and from the analysis of experimental data, sponge type protection has been postulated in this radiolytic system.

  1. Radiation chemistry of a mixture of benzene and cyclohexane in presence of triphenyl stibine

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, S B; Rai, R S [Birla Inst. of Tech. and Science, Pilani (India). Dept. of Chemistry

    1976-08-01

    Following previously reported work (Peterson et al. J. Phys. Chem.; 71: 4506 (1967)) on the radiolysis of triphenyl stibine in benzene from which it was concluded that the energy is absorbed by benzene and excited benzene molecules transfer their energy to the metal phenyl which does not decompose due to quenching and since benzene is a protective agent for cyclohexane against ..gamma.. radiation, a system consisting of benzene, cyclohexane and triphenyl stibine has been used to study the energy transfer processes and the nature of protection. It was found that /sup 60/C0 ..gamma.. radiolysis of cyclohexane in presence of 1 x 10/sup -2/M triphenyl stibine formed two isomers of pentane and hexane and hexene, methylcyclopentane, benzene and cyclohexene. G values of these products, except those of hexene and methylcyclopentane are negligible. All products except these two are eliminated in the radiolysis of this system in presence of benzene. G values of these products are reduced considerably. The mechanism of formation of these compounds and a sponge type protection have been postulated to explain the results.

  2. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  3. Effect Factors of Benzene Adsorption and Degradation by Nano-TiO2 Immobilized on Diatomite

    Directory of Open Access Journals (Sweden)

    Lijun Cheng

    2012-01-01

    Full Text Available Difference between adsorption of benzene by diatomite and nano-TiO2 immobilized on diatomite was investigated. And effects of temperature, light intensity, relative humidity, and initial benzene concentration on adsorption and degradation of benzene by nano-TiO2 immobilized on diatomite were also studied. The experimental results showed that when initial benzene concentration was 2.2×10−3 mg L−1, it could be degraded to below safe concentration (1.1×10−4 mg L−1 after 50 h when temperature was 20°C, but it just needed 30 h at 35°C. When light intensity was 6750 Lx, it needed 30 h for benzene to be degraded to below safe concentration, but benzene could barely be degraded without light. When relative humidity was 50%, benzene could be degraded to 1.0×10−4 mg L−1 after 30 h, while its concentration could be reduced to 7.0×10−5 mg L−1 at the relative humidity of 80%.

  4. Retrospective benzene exposure assessment for a multi-center case-cohort study of benzene-exposed workers in China.

    Science.gov (United States)

    Portengen, Lützen; Linet, Martha S; Li, Gui-Lan; Lan, Qing; Dores, Graça M; Ji, Bu-Tian; Hayes, Richard B; Yin, Song-Nian; Rothman, Nathaniel; Vermeulen, Roel

    2016-01-01

    Quality of exposure assessment has been shown to be related to the ability to detect risk of lymphohematopoietic disorders in epidemiological investigations of benzene, especially at low levels of exposure. We set out to build a statistical model for reconstructing exposure levels for 2898 subjects from 501 factories that were part of a nested case-cohort study within the NCI-CAPM cohort of more than 110,000 workers. We used a hierarchical model to allow for clustering of measurements by factory, workshop, job, and date. To calibrate the model we used historical routine monitoring data. Measurements below the limit of detection were accommodated by constructing a censored data likelihood. Potential non-linear and industry-specific time-trends and predictor effects were incorporated using regression splines and random effects. A partial validation of predicted exposures in 2004/2005 was performed through comparison with full-shift measurements from an exposure survey in facilities that were still open. Median cumulative exposure to benzene at age 50 for subjects that ever held an exposed job (n=1175) was 509 mg/m(3) years. Direct comparison of model estimates with measured full-shift personal exposure in the 2004/2005 survey showed moderate correlation and a potential downward bias at low (<1 mg/m(3)) exposure estimates. The modeling framework enabled us to deal with the data complexities generally found in studies using historical exposure data in a comprehensive way and we therefore expect to be able to investigate effects at relatively low exposure levels.

  5. [Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation].

    Science.gov (United States)

    Jia, Long; Xu, Yong-Fu

    2014-02-01

    Ozone formation potentials from irradiations of benzene-NO(x) and ethylbenzene-NO(x) systems under the conditions of different VOC/NO(x) ratios and RH were investigated using a characterized chamber and model simulation. The repeatability of the smog chamber experiment shows that for two sets of ethylbenzene-NO(x) irradiations with similar initial concentrations and reaction conditions, such as temperature, relative humidity and relative light intensity, the largest difference in O3 between two experiments is only 4% during the whole experimental run. On the basis of smog chamber experiments, ozone formation of photo-oxidation of benzene and ethylbenzene was simulated in terms of the master chemical mechanism (MCM). The peak ozone values for benzene and ethylbenzene simulated by MCM are higher than the chamber data, and the difference between the MCM-simulated results and chamber data increases with increasing RH. Under the conditions of sunlight irradiations, with benzene and ethylbenzene concentrations being in the range of (10-50) x 10(-9) and NO(x) concentrations in the range of (10-100) x 10(-9), the 6 h ozone contributions of benzene and ethylbenzene were obtained to be (3.1-33) x 10(-9) and (2.6-122) x 10(-9), whereas the peak O3 contributions of benzene and ethylbenzene were (3.5-54) x 10(-9) and (3.8-164) x 10(-9), respectively. The MCM-simulated maximum incremental reactivity (MIR) values for benzene and ethylbenzene were 0.25/C and 0.97/C (per carbon), respectively. The maximum ozone reactivity (MOR) values for these two species were obtained to be 0.73/C and 1.03/C, respectively. The MOR value of benzene from MCM is much higher than that obtained by carter from SAPRC, indicating that SAPRC may underestimate the ozone formation potential of benzene.

  6. Changes in the nervous system state and peripheral blood parameters under benzene intoxication during an experiment

    Directory of Open Access Journals (Sweden)

    R.A. Orujov

    2017-12-01

    Full Text Available Benzene is a widely spread chemical health risk factor. Our research goal was to examine the nervous system state and the blood system state under benzene intoxication during an experiment. An acute experiment was performed on 45 white mice with 5-fold poisoning with benzene; a chronic one was performed on 72 rabbits being under inhalation exposure to benzene during 4 months, its concentrations increasing and fluctuating. We determined the following blood parameters: number of reticulocytes, eosinophils, basocytes, and erythrocytes; erythrocytes sedimentation rate; blood clotting period; blood clot retraction; plasma re-calcification period; plasma tolerance to heparin; prothrombin time; prothrombin index; fibrinogen concentration; blood fibrinolytic activity; acetylcholine and choline esterase contents. We also determined adrenalin, noradrenalin, dopamine, and dihydroxyphenylalanine contents in urine. Acute experiments results revealed that one-time exposure to benzene exerted a narcotic effect on the central nervous system which had an excitation phase and inhibition phase. Under a repeat exposure to benzene animals' drug intoxication was shorter. And here neutrophils / leucocytes gradient first increased to 139.5 % from its standards value and then when down under consequent intoxications. We detected relevant changes in morphological picture of animals' peripheral blood and their central and vegetative nervous system under chronic exposure to intermittent and increasing benzene concentrations. So, our research revealed that effects exerted by benzene in small concentrations led to apparent shifts in white blood and catecholamines (adrenalin, noradrenalin, dopamine, and dihydroxyphenylalanine. We also detected certain signs that cate-cholamines endogenous reserves (dihydroxyphenylalanine were depleted and, and also signs of eosinophils-basocytes disso-ciation; such prognostic signs were considered to be unfavorable as it was exactly at that

  7. The use of biomonitoring data in exposure and human health risk assessment: benzene case study.

    Science.gov (United States)

    Arnold, Scott M; Angerer, Juergen; Boogaard, Peter J; Hughes, Michael F; O'Lone, Raegan B; Robison, Steven H; Schnatter, A Robert

    2013-02-01

    Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

  8. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    Science.gov (United States)

    Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O’Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of “Common Criteria” (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m3), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10−5 excess cancer risk (2.9 µg/m3). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects. PMID:23346981

  9. An overview of published benzene exposure data by industry in China, 1960-2003.

    Science.gov (United States)

    Liang, You-Xin; Wong, Otto; Armstrong, Thomas; Ye, Xi-Biao; Miao, Li-Zhuang; Zhou, Yi-Mei; Wu, Qiang-En; Qian, Hao-Jun; Fu, Hua

    2005-05-30

    This article presents an overview of occupational benzene exposures in China based on data published in Chinese medical journals. The data were derived from 384 reports of benzene poisoning or industrial hygiene surveys published in Chinese medical journals between 1960 and 2003. The following information was extracted whenever available: industry, occupation, task, date, benzene levels, sampling location, workplace descriptions and, for case reports, medical diagnosis. Each paper provided one or more sets of benzene data, each set representing a sampling location or job title with one to several measurements including, mainly, breathing zone area concentration measurements, and much less frequently personal monitoring. Two criteria based on data quality were applied to select suitable data for analyses. The selected exposure data were analyzed by industry and time period. Nine hundred five sets of benzene measurements from 72 industries were reported in the 384 papers selected for this review, and 621 sets (68.6%) presented average benzene concentrations, which covered 55 industries. The distribution of the reported average benzene exposures was skewed with a median of 51.5 mg/m3. The average benzene concentrations were below 100 mg/m3 for 406 (65%) of the 621 reported average concentrations. The medians of the reported averages in mg/m3 for the five industries with the highest exposures were: 124.8 for leather products, 98.7 for electronic devices, 75.4 for machinery, 50.4 for shoes, and 50.3 for office supplies and sports equipment manufacturing. These data describe the concentrations and changing patterns of occupational benzene exposure by industry and time period in China.

  10. (Liquid + liquid) equilibria of {benzene + cyclohexane + two ionic liquids} at different temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Sakal, Salem A.; Shen, Chong; Li, Chun-xi

    2012-01-01

    Highlights: ► (Liquid + liquid) equilibrium for two quaternary and two ternary systems were measured. ► The components include cyclohexane, benzene, [MIM][BF4], [MIM][ClO4] and [MMIM][DMP]. ► The (liquid + liquid) equilibrium data can be well correlated by the NRTL model. ► Separation of benzene and cyclohexane by pure ILs and their mixtures were discussed. - Abstract: (Liquid + liquid) equilibrium data of the following ternary and quaternary systems at different temperatures and mass fractions of ionic liquids (ILs) were measured at atmospheric pressure, i.e., {cyclohexane + benzene + 1,3-dimethylimidazolium dimethylphosphate ([MMIM][DMP])} at 298.2 K, {cyclohexane + benzene + 1-methylimidazolium tetrafluoroborate ([MIM][BF 4 ])} at 338.2 K, {cyclohexane + benzene + [MIM][BF 4 ] + [MMIM][DMP]} at (298.2 and 313.2) K, and {cyclohexane + benzene + 1-methylimidazolium perchlorate [MIM][ClO 4 ] + [MMIM][DMP]} at 298.2 K. The results indicate that both selectivity and distribution factor of the IL mixture for benzene are lower than that of pure IL [MMIM][DMP] at a specified condition, and decrease with the increase of the mass fraction of [MIM][BF 4 ] or [MIM][ClO 4 ] in its mixture of [MMIM][DMP] and the mole fraction of benzene. The extremely high selectivity of [MIM][BF 4 ] and [MIM][ClO 4 ] for aromatic compounds as predicted by the COSMOS-RS model is not justified by the present experimental results, and on the contrary, they show a relatively lower selectivity and extraction capacity for benzene than [MMIM][DMP].

  11. An evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites

    Science.gov (United States)

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.

  12. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    DEFF Research Database (Denmark)

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik

    2003-01-01

    phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...... oxidation product, a thiophene sulphoxide dimer, represented 78+/-12% of the transformed thiophene, while the second most important product, also a thiophene sulphoxide dimer, represented 20+/-2% of the converted thiophene. (C) 2003 Elsevier Science Ltd. All rights reserved....

  13. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  14. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  15. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  16. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    Science.gov (United States)

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  17. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  18. Benzene and MTBE Sorption in Fine Grain Sediments

    Science.gov (United States)

    Leal-Bautista, R. M.; Lenczewski, M. E.

    2003-12-01

    The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest

  19. Dispersion and exposure of sour gas flare emissions

    International Nuclear Information System (INIS)

    Davies, M.

    2002-01-01

    This presentation described the implications of flare research project findings with reference to reduced combustion efficiency, stack plume down wash and minor species. A plume model shows that reduced combustion efficiency decreases the energy available for plume rise. Reduced combustion may therefore decrease H 2 S to SO 2 conversion. Stack plume down wash can decrease plume rise under high wind speed conditions, and in extreme cases can also preclude any plume rise. Minor species include vapour phase emissions of polynuclear aromatic hydrocarbons (PAH), benzene, toluene, ethyl-benzene and xylenes (BTEX), and aldehydes. They also include particulate phase emissions such as soot and PAH. Observed concentrations of minor species were presented along with predicted vapour phase concentrations and particulate phase emissions. The standard modelling approaches used in this study included the Gaussian plume model, flame height, plume rise and dispersion. figs

  20. Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Calero, S.; Krishna, R.

    2015-01-01

    Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner

  1. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  2. Actual car fleet emissions estimated from urban air quality measurements and street pollution models

    International Nuclear Information System (INIS)

    Palmgren, F.; Berkowicz, R.; Hertel, O.; Ziv, A.

    1999-01-01

    A method to determine emissions from the actual car fleet under realistic driving conditions has been developed. The method is based on air quality measurements, traffic counts and inverse application of street air quality models. Many pollutants are of importance for assessing the adverse impact of the air pollution, e.g. NO 2 , CO, lead, VOCs and particulate matter. Aromatic VOCs are of special great concern due to their adverse health effects. Measurements of benzene, toluene and xylenes were carried out in central Copenhagen since 1994. Significant correlation was observed between VOCs and CO concentrations, indicating that the petrol engine vehicles are the major sources of VOC air pollution in central Copenhagen. Hourly mean concentrations of benzene were observed to reach values of up to 20 ppb, what is critically high according to the WHOs recommendations. Based on inverse model calculation of dispersion of pollutants in street canyons, an average emission factor of benzene for the fleet of petrol fuelled vehicles was estimated to be 0.38 g/km in 1994 and 0.11 in 1997. This decrease was caused by the reduction of benzene content in Danish petrol since summer 1995 and increasing percentage of cars equipped with three-way catalysts. The emission factors for benzene for diesel-fuelled vehicles were low

  3. Interactions of Na+, K+, Mg2+, and Ca 2+ with benzene self-assembled monolayers

    DEFF Research Database (Denmark)

    Pedersen, Morten Rimmen; Matthiesen, Jesper; Bovet, Nicolas Emile

    2014-01-01

    that are most common in the natural world, namely, Na+, K+, Mg 2+, and Ca2+. Specifically, we investigated how these ions affect the interactions between surfaces covered by self-Assembled monolayers (SAMs) terminated with benzene molecules. We used a flat oxidized silicon substrate and an atomic force...... from X-ray photoelectron spectroscopy (XPS) allowed us to conclude that K+ binds in the benzene layers, creating a positive surface charge on the benzene-covered surfaces, thus leading to lower adhesion in KCl solutions than in pure water. Evidence suggested that Ca2+ does not bind to the surfaces...... measurements. The results of our studies clearly show that even a nonpolar, hydrophobic molecule, such as benzene, has a role to play in the behavior of aqueous solutions and that it interacts differently depending on which ions are present. Even ions from the same column in the periodic table behave...

  4. Inhibition of Ps Formation in Benzene and Cyclohexane by CH3CI and CH3Br

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.; Pedersen, Niels Jørgen

    1983-01-01

    Positron-annihilation lifetime spectra have been measured for mixtures of CH3Cl and CH3Br in cyclohexane and of CH3Cl in benzene. The ortho-positronium (Ps) yield decreased monotonically from 38% and 43% in cyclohexane and benzene respectively to 11% in pure CH3Cl and 6% in pure CH3Br. The strength......− anions to form Ps. while it forms a bound state with the halides. X−. CH3Cl was a roughly three times weaker Ps inhibitor in benzene than in cyclohexane, which shows that CH3Cl− does not dechlorinate in times comparable to or shorter than 400–500 ps in benzene. An improved model for the explanation of Ps...

  5. Reverse isotope dilution method for determining benzene and metabolites in tissues

    International Nuclear Information System (INIS)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-01-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of the radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue

  6. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  7. Theory and experiment studies of the 1,4-bis(4-methoxylstyryl)benzene as a wavelength shifter of liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhanlong [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhu, Jiayi [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Bi, Yutie, E-mail: biyutie@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Xu, Yewei [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Qianfeng [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Xing [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Junjiang [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Zhang, Lin, E-mail: zhlmy@sina.com [School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2017-03-15

    A novel wavelength shifter of the 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB) was synthesized by employing the classical Horner-Wadsworth-Emmons reaction. Feasible analysis of the bis-4-MOSB as the wavelength shifter in a ternary liquid scintillator, in which p-xylene (PX) was as the solvent and 2,5-diphenyloxazole (PPO) was as the primary fluor, was carried out. The optimum prescription with 3.5 g/L PPO and 25 mg/L bis-4-MOSB was obtained with regard to the light yield. A series of characterization tests based on the optimal formulation were performed. Compared with the 1,4-bis(2-methylstyryl)benzene (bis-MSB), the maximum absorption peak at 356 nm and maximum emission peak at 421 nm in n-hexane with the red shift of 10 nm and 3 nm, respectively, were measured accordingly. The light yield characterized by using a relative measurement method achieved as high as 75.85% of the anthracene crystal. A brief density functional calculation was conducted to have an insight into the electronic structure characteristic of the bis-4-MOSB in the scintillation process. - Graphic abstract: In our work, 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB), as a novel wavelength shifter of liquid scintillator, was designed and synthesized. A comparison including absorption spectra and electronic structure characteristic between bis-4-MOSB and bis-MSB were conducted. Its maximum emission peak lied at 421 nm in n-hexane was corresponded to the maximum response range wavelength of PMT for the bis-4-MOSB. Furthermore, compared with the bis-MSB, the wavelength shifter of bis-4-MOSB showed a better luminescence performance.

  8. Theory and experiment studies of the 1,4-bis(4-methoxylstyryl)benzene as a wavelength shifter of liquid scintillator

    International Nuclear Information System (INIS)

    Zheng, Zhanlong; Zhu, Jiayi; Bi, Yutie; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Li, Junjiang; Zhang, Lin

    2017-01-01

    A novel wavelength shifter of the 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB) was synthesized by employing the classical Horner-Wadsworth-Emmons reaction. Feasible analysis of the bis-4-MOSB as the wavelength shifter in a ternary liquid scintillator, in which p-xylene (PX) was as the solvent and 2,5-diphenyloxazole (PPO) was as the primary fluor, was carried out. The optimum prescription with 3.5 g/L PPO and 25 mg/L bis-4-MOSB was obtained with regard to the light yield. A series of characterization tests based on the optimal formulation were performed. Compared with the 1,4-bis(2-methylstyryl)benzene (bis-MSB), the maximum absorption peak at 356 nm and maximum emission peak at 421 nm in n-hexane with the red shift of 10 nm and 3 nm, respectively, were measured accordingly. The light yield characterized by using a relative measurement method achieved as high as 75.85% of the anthracene crystal. A brief density functional calculation was conducted to have an insight into the electronic structure characteristic of the bis-4-MOSB in the scintillation process. - Graphic abstract: In our work, 1,4-bis(4-methoxylstyryl)benzene (bis-4-MOSB), as a novel wavelength shifter of liquid scintillator, was designed and synthesized. A comparison including absorption spectra and electronic structure characteristic between bis-4-MOSB and bis-MSB were conducted. Its maximum emission peak lied at 421 nm in n-hexane was corresponded to the maximum response range wavelength of PMT for the bis-4-MOSB. Furthermore, compared with the bis-MSB, the wavelength shifter of bis-4-MOSB showed a better luminescence performance.

  9. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  10. Electronic structure of molecules of substituted benzenes by x-ray spectroscopy. I. Nitrobenzene

    International Nuclear Information System (INIS)

    Yumatov, V.D.; Murakhtanov, V.V.; Salakhutdinov, N.F.; Okotrub, A.V.; Mazalov, L.N.; Logunova, L.G.; Koptyug, V.A.; Furin, G.G.

    1988-01-01

    The electronic structure of the nitrobenzene molecule has been studied by x-ray spectroscopy with the aid of quantum-chemical calculations. The structure of the molecular orbitals of nitrobenzene has been compared with the structure of benzene and nitrogen dioxide. It has been shown in the framework of a fragment-by-fragment analysis that the interaction of the highest occupied π orbitals of the benzene ring and the nitro group is weak

  11. Charge transfer from TiO2 into adsorbed benzene diazonium compounds

    Science.gov (United States)

    Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram

    2004-08-01

    Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.

  12. Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium.

    Science.gov (United States)

    Campos, V; Lessa, S S; Ramos, R L; Shinzato, M C; Medeiros, T A M

    2017-08-03

    The purpose of this study was to evaluate the remediation potential and disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Numerous studies over the years have found abundant evidence of the carcinogenicity of benzene and chromium (VI) in humans. Benzene and chromium are two toxic industrial chemicals commonly found together at contaminated sites, and one of the most common management strategies employed in the recovery of sites contaminated by petroleum products and trace metals is in situ remediation. Given that increasing interest has focused on the use of plants as depollution agents, direct injection tests and benzene misting were performed on I. walleriana to evaluate the remediation potential of this species. I. walleriana accumulated hexavalent chromium, mainly in the root system (164.23 mg kg -1 ), to the detriment of the aerial part (39.72 mg kg -1 ), and presented visible damage only at the highest concentration (30 mg L -1 ). Unlike chromium (VI), chromium (III) was retained almost entirely by the soil, leaving it available for removal by phytotechnology. However, after the contamination stopped, I. walleriana responded positively to the detoxification process, recovering its stem stiffness and leaf color. I. walleriana showed visible changes such as leaf chlorosis during the ten days of benzene contamination. When benzene is absorbed by the roots, it is translocated to and accumulated in the plant's aerial part. This mechanism the plant uses ensures its tolerance to the organic compound, enabling the species to survive and reproduce after treatment with benzene. Although I. walleriana accumulates minor amounts of hexavalent chromium in the aerial part, this amount suffices to induce greater oxidative stress and to increase the amount of hydrogen peroxide when compared to that of benzene. It was therefore concluded that I. walleriana is a species that possesses desirable characteristics for phytotechnology.

  13. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  14. A system for the analysis of tritium content in natural waters, through benzene

    International Nuclear Information System (INIS)

    Bocchi, N.

    1980-01-01

    A system is described for the analysis of tritium ( 3 H) in natural waters. The system consists of an electrolytic enrichment equipment and a vacuum line for benzene synthesis. The benzene is mixed with a scintillating solution and so used in tritium activity measurements by liquid scintillation spectrometry. The characteristcs of the system, as well as its performance, are pointed out through analysis of ground and rain waters. The precision and reproducibility of the measurements are discussed. (Author) [pt

  15. Effect of halogenated benzenes on acetanilide esterase, acetanilide hydroxylase and procaine esterase in rats.

    Science.gov (United States)

    Carlson, G P; Dziezak, J D; Johnson, K M

    1979-07-01

    1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.

  16. Emissions of carbon tetrachloride from Europe

    Science.gov (United States)

    Graziosi, Francesco; Arduini, Jgor; Bonasoni, Paolo; Furlani, Francesco; Giostra, Umberto; Manning, Alistair J.; McCulloch, Archie; O'Doherty, Simon; Simmonds, Peter G.; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela

    2016-10-01

    Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006-2014 were 2.2 (± 0.8) Gg yr-1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006-2012. Together with other regional studies, our results allow a better constraint

  17. Emissions from the Bena Landfill

    Science.gov (United States)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  18. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B., E-mail: bhala@prl.res.in [Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad (India)

    2015-01-10

    Propargyl alcohol (CHCCH{sub 2}OH) is a known stable isomer of the propenal (CH{sub 2}CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm{sup –1}. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C{sub 6}H{sub 6}) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C{sub 3}H{sub 3}) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C{sub 6}H{sub 6} in the interstellar icy mantles.

  19. Phytoremediation removal rates of benzene, toluene, and chlorobenzene.

    Science.gov (United States)

    Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G

    2018-06-07

    Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.

  20. Electron localization in a mixed-valence diniobium benzene complex.

    Science.gov (United States)

    Gianetti, Thomas L; Nocton, Grégory; Minasian, Stefan G; Kaltsoyannis, Nikolas; Kilcoyne, A L David; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Bergman, Robert G; Arnold, John

    2015-02-01

    Reaction of the neutral diniobium benzene complex {[Nb(BDI)N t Bu] 2 (μ-C 6 H 6 )} (BDI = N , N '-diisopropylbenzene-β-diketiminate) with Ag[B(C 6 F 5 ) 4 ] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)N t Bu] 2 (μ-C 6 H 6 )}{B(C 6 F 5 ) 4 }. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L 3,2 -edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment of a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.

  1. Vibrationally averaged dipole moments of methane and benzene isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  2. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    Science.gov (United States)

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Geogenic sources of benzene in aquifers used for public supply, California

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium 1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth <30 m, and anoxic conditions. Evidence for geogenic sources of benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.

  4. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    Science.gov (United States)

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  5. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  6. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M S; Gyldenkaerne, S

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  7. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  8. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    Dougal, R.A.

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60 Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60 Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60 Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  9. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman

    2004-01-01

    Measurement of urinary excretion of the benzene metabolites S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) has been proposed for assessing benzene exposure, in workplaces with relatively high benzene concentrations. Excretion of S-PMA and t,t-MA in underground workers...... the last shift of the week. Personal benzene exposure was 114 +/- 35 mug/m(3) in surface workers (n = 15) and 190 +/- 50 mug/m(3) in underground workers (n = 15) in measurements made prior to the study. We found t,t-MA excretion to be significantly higher in underground workers after the end of shifts 1...... of benzene metabolites as biomarkers for assessment of exposure at modest levels and warrant for further investigations of health risks of occupational benzene exposure in shale oil mines....

  10. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    Science.gov (United States)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  11. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  12. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  13. Assessment of Benzene Exposures in the Working Environment at Gasoline Stations

    Directory of Open Access Journals (Sweden)

    Sunisa Chaiklieng

    2015-07-01

    Full Text Available This study aimed to investigate benzene exposure in the working environment of workers at gasoline stations. Ambient air (n=20 and inhaled air samples (n=101 of benzene were collected in the city of Khon Kaen, Thailand and analyzed with gas chromatography (GC-FID. Data records were also kept of the amounts of various petroleum products sold. The results of inhaled air benzene indicated the range concentration from 0.03 ppb to 65.71 ppb and showed significant differences between concentrations of each zone (p<0.05. The highest mean concentration was found in suburban stations (35.55 ppb, followed by urban stations (18.19 ppb, and rural stations (2.52 ppb. The highest mean concentration of ambient air was found in urban stations (45.55 ppb. Regarding different job functions, the benzene concentration of fueling workers in the inhalation zone (27.29 ppb was significantly higher than that of cashiers (0.56 ppb. The amounts of petroleum products with high benzene content sold were relatively consistent with inhaled benzene concentration, indicated by the significant differences between suburban and rural zones (p<0.05. In conclusion, this study found the inhaled air benzene concentration ranged 0.03 to 65.71 ppb depending on locations and job functions of workers. Therefore, workers should be protected of adversely affected health from long-term exposure by training on safe working practice and awareness of the different risks associated with their job functions, locations of stations and daily amounts of petroleum products sold.

  14. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter.

    Science.gov (United States)

    Hassan, Ashraf Aly; Sorial, George A

    2010-12-15

    Trickle Bed Air Biofilters (TBABs) are considered to be economical and environmental-friendly for treatment of Volatile Organic Compounds (VOCs). Hydrophilic VOCs are easily degradable while hydrophobic ones pose a great challenge for adequate treatment due to the transfer of the VOC to the liquid phase. In this study the utilization of acidic pH is proposed for the treatment of benzene vapors. The acidic pH would encourage the growth of fungi as the main consortium. A TBAB operated at pH 4 was used for the treatment of an air stream contaminated with benzene under different loading rates ranging from 37 to 76.8 g/(m(3)h). The purpose of introducing fungi was to compare the performance with traditional TBAB operating under neutral pH in order to assess the biodegradation of benzene in mixtures with other compounds favoring acidic conditions. The experimental plan was designed to assess long-term performance with emphasis based on different benzene loading rates, removal efficiency with TBAB depth, and carbon mass balance closure. At benzene loading rate of 64 g/(m(3)h), the removal efficiency was 90%. At the maximum loading rate of 77 g/(m(3)h), the removal efficiency was 75% marking the maximum elimination capacity for the TBAB at 58.8 g/(m(3)h). Operating at acidic pH successfully supported the degradation of benzene in TBAB. It is worthwhile to note that benzene appears in mixtures with n-hexane and toluene, which are reported to be better degraded under such conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Separation of several alcohol-benzene mixtures by pervaporation through styrene graft polyethylene membranes

    International Nuclear Information System (INIS)

    Murata, Kenichi

    1989-01-01

    The permeation of pure liquids, such as methanol, ethanol, 1-propanol, 2-propanol and benzene, and the permeability and selectivity of 50 vol% binary mixtures of these alcohols and benzene were investigated by pervaporation technique. The used membranes (21%, 40%, and 72% graftings) were obtained by graft polymerization of styrene to polyethylene film (thickness 10 μm) by γ-radiation. The permeation rates of each of these alcohols and benzene were measured by pervaporation through the graft membranes. Those of these alcohols were very small as well as those through the original membrane. On the other hand, the permeabilities for benzene through the graft membranes were larger than that through the original membrane. The temperature dependence of the permeation rate for benzene was expressed by Arrhenius-type relationships, and the apparent activation energies were calculated to be 10.7 (21%), 10.2 (40%) and 10.0 (72%) kcal/mol. In the permeation of 50 vol% several alcohol-benzene mixtures, the permeabilities through the graft membranes were also larger than that through the original membrane, and increased with the grafting. The temperature dependence of the permeation for these mixtures was showed by Arrhenius relationships, and the apparent activation energies were calculated to be in the range of 8.4∼11.0 kcal/mol. The separation factors of the graft membranes calculated from composition of the permeates were always smaller than that of the original membrane, but became larger with increase of molecular volume of alcohol in alcohol-benzene mixtures. (author)

  16. Análise por cromatografia gasosa de BTEX nas emissões de motor de combustão interna alimentado com diesel e mistura diesel-biodiesel (B10 Analysis of BTEX in the emissions from an internal combustion engine burning diesel oil and diesel-biodiesel mixture (B10 by gas chromatography

    Directory of Open Access Journals (Sweden)

    Sérgio L. Ferreira

    2008-01-01

    Full Text Available This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene by using high resolution gas chromatography (HRGC. For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.

  17. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice

    International Nuclear Information System (INIS)

    Wan, Joanne; Winn, Louise M.

    2008-01-01

    Benzene is a known human leukemogen, but its role as an in utero leukemogen remains controversial. Epidemiological studies have correlated parental exposure to benzene with an increased incidence of childhood leukemias. We hypothesize that in utero exposure to benzene may cause leukemogenesis by affecting the embryonic c-Myb/Pim-1 signaling pathway and that this is mediated by oxidative stress. To investigate this hypothesis, pregnant CD-1 mice were treated with either 800 mg/kg of benzene or corn oil (i.p.) on days 10 and 11 of gestation and in some cases pretreated with 25 kU/kg of PEG-catalase. Phosphorylated and total embryonic c-Myb and Pim-1 protein levels were assessed using Western blotting and maternal and embryonic oxidative stress were assessed by measuring reduced to oxidized glutathione ratios. Our results show increased oxidative stress at 4 and 24 h after exposure, increased phosphorylated Pim-1 protein levels 4 h after benzene exposure, and increased Pim-1 levels at 24 and 48 h after benzene exposure. Embryonic c-Myb levels were elevated at 24 h after exposure. PEG-catalase pretreatment prevented benzene-mediated increases in embryonic c-Myb and Pim-1 protein levels, and benzene-induced oxidative stress. These results support a role for ROS in c-Myb and Pim-1 alterations after in utero benzene exposure

  18. Method of preparation of tritiated benzene for measuring in hydrology low level tritium in a liquid scintillator

    International Nuclear Information System (INIS)

    Pichat, L.; Sharefkin, D.; Herbert, M.

    1962-01-01

    It is given a preliminary account of the preparation of tritiated benzene by decarboxylation of calcium mellitate (calcium benzene-hexa-carboxylate) at 500 deg C by an excess of tritiated barium or calcium hydroxide yield is 64-72 pour cent based on used calcium mellitate. Benzene obtained after a single distillation is free from seriously quenching impurities. It is obtained 10-15 g benzene per batch. It remains to determine the occurrence of an isotope effect during the reaction. Various improvements and modifications are still necessary to increase the size of the sample to be treated. (authors) [fr

  19. Estimation of emissions of volatile organic compounds in the fuel marketing terminal Recope, Alto de Ochomogo, Cartago, Costa Rica

    Directory of Open Access Journals (Sweden)

    Laura Vanessa Quesada Carvajal

    2018-01-01

    Full Text Available Context: This study presents the estimation of the evaporative emissions generated in the fuel distribution plant in El Alto de Ochomogo, Cartago, Costa Rica and the selection of the adequate recovery system to reduce the emission of these gases into the atmosphere, thus decreasing the adverse effects caused by these compounds in the environment and the health of nearby populations. Method: The fugitive emission rate estimated in the tanker vehicle loading process, using load loss emission factors, and fuel storage, through specialized software. Subsequently, we proceeded to make the selection of the appropriate treatment system, considering the flow capacity of the gaseous current that each technology can treat. Results: It was determined that the generation of VOCs is greater in the loading area than in the storage tanks, since they correspond to 95% and 5% respectively. Due to this, the proposal of the vapor treatment system focuses on the fuel-loading zone, selecting the cryogenic condensation as non-destructive recovery treatment. Conclusions: The estimation of the fugitive emission rate allowed to have a base to establish a strategy for the reduction of these emissions in favor of the health of the workers who are constantly exposed to them. To reduce direct emissions to the atmosphere during the loading of tanks. Necessary changes must be made to adapt them to an airtight system. That allows sending gasoline vapors that generated by the presence of residual product on the walls of trucks and due to the turbulence that arises during the loading of the new product, to the vapor recovery unit.

  20. Vehicle emissions and effects on air quality: indoors and outdoors

    International Nuclear Information System (INIS)

    Perry, R.; Gee, I.L.

    1994-01-01

    Vehicle emissions of non-regulated volatile organic compounds (VOCs), such as benzene, can form a major contribution to pollution of the indoor as well as the outdoor environment. Several of these compounds are considered to be a health risk and are important factors in the production of photochemical smog. The introduction of unleaded and particularly 'super unleaded' fuels has significantly increased levels of aromatic compounds in petrol world-wide and has led to changes in fuel composition with respect to olefins and the use of oxygenates. Increased aromatics, olefins and other compounds in fuels used in vehicles not fitted with catalytic converters have shown to increase emissions of benzene, 1,4-budatiene and other VOCs as well as contributing to increases in photochemical smog precursors. Increases in VOC levels in ambient air clearly produce increased indoor air pollution, particularly in naturally ventilated buildings. (author) 6 figs., 5 tabs., 30 refs

  1. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    Science.gov (United States)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  3. GIS-based assessment of cancer risk due to benzene in Tehran ambient air.

    Science.gov (United States)

    Atabi, Farideh; Mirzahosseini, Seyed Alireza Hajiseyed

    2013-10-01

    The present study aimed to assess the risk of cancer due to benzene in the ambient air of gas stations and traffic zones in the north of Tehran. The cancer risk was estimated using the population distribution data for benzene levels and the unit risk for benzene proposed by the United States Environmental Protection Agency (US EPA). Sixteen sampling locations were monitored, once every week, during 5 April 2010 to 25 March 2011. The results showed that the mean annual benzene concentration was 14.51±3.17 parts per billion (ppb) for traffic zones and 29.01±1.32 ppb for outside gas stations. The risk calculated was 1026×10(-6) for gas station 27 and 955×10(-6) for gas station 139. According to our results, the annual benzene level in Tehran ambient air is 2 to 20 times higher than the respective value specified in International Standard (1.56 ppb). Moreover, the results showed a notable increase of cancer risks, ranging from 10% to 56%, for the vicinity population close to the gas stations in comparison to the vicinity population in the traffic zones.

  4. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene

    Directory of Open Access Journals (Sweden)

    Florencio Ballesteros, Jr.

    2016-03-01

    Full Text Available Leaking underground petroleum storage poses human and environmental health risks as it contaminates the soil and the groundwater. Of the many contaminants, benzene – a major constituent of gasoline, is of primary concern. It is an identified carcinogen with a permissible limit set at a low level of 0.005 mg L−1. This poses technical and regulatory challenge to remediation of contaminated sites. Various specialized treatment methods are available, but despite of the high removal efficiencies of sophisticated treatments, the residual level still poses health risks. Thus, additional alternative ways that are cost effective and require minimum technical expertise are necessary, and a constructed wetland (CW is a potential alternative. This study evaluates the performance of a surface flow type CW for the removal of benzene from the contaminated water. It further determines the efficacy of a common reed plant Phragmites karka in treating benzene. Planted and unplanted CW were acclimated with benzene for 16 wk and tested for an 8-d hydraulic retention time at benzene levels of 66 and 45 mg L−1. Results indicate that the planted CW performed better and gave reliable and stable results.

  5. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    International Nuclear Information System (INIS)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming; Liu, Yang; Wang, Fang; Gong, Jingjing; Kang, Zhenhui

    2012-01-01

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: ► The composites that Au nanoparticles supported on ZnO nanowires were synthesized. ► Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. ► Two operating mechanisms were proposed depending on excitation wavelength.

  6. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene

    Energy Technology Data Exchange (ETDEWEB)

    Denis, Pablo A., E-mail: pablod@fq.edu.uy; Iribarne, Federico

    2014-02-17

    Graphical abstract: - Highlights: • The binding energies between benzene and Be, Mg and Ca are 1.8, 2.3 and 3.2 kcal/mol. • The alkaline earth complexes with benzene favor the non ionic configuration. • For these complexes charge transfer does not take place. • The performance of the DFT functionals assayed was poor. - Abstract: The interaction energies (IE) between benzene and beryllium, magnesium and calcium were calculated at the CCSD(T)/CBS level and including corrections for core-valence and relativistic effects. The IE are 1.8, 2.3 and 3.2 kcal/mol for Be, Mg and Ca, respectively, In contrast with our previous findings for the benzene–Li complex, we found that the non-ionic structure is more stable than the ionic configuration. Thus, charge-transfer from alkaline earths to benzene would not take place. The performance of MP2 and DFT functionals is poor. At the complete basis set limit, M06-2X, M06-L, B97D and MP2 exhibited similar MAD (∼ 0.7–0.8 kcal/mol). When larger aromatic models were considered, the IE were similar to those computed for benzene. Finally, taking into account the drawbacks of the DFT functionals, the computed IE for the non-ionic adsorption of Be, Mg and Ca onto graphene, are tentatively estimated as 2.1, 2.7 and 2.9 kcal/mol, respectively.

  7. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  8. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc; Poater, Jordi; Chauvin, Remi; Poater, Albert

    2015-01-01

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  9. High-efficiency plasma catalytic removal of dilute benzene from air

    International Nuclear Information System (INIS)

    Fan, Hong-Yu; Shi, Chuan; Li, Xiao-Song; Zhao, De-Zhi; Xu, Yong; Zhu, Ai-Min

    2009-01-01

    Achieving complete oxidation, good humidity tolerance and low energy cost is the key issue that needs to be addressed in plasma catalytic volatile organic compounds removal from air. For this purpose, Ag/HZSM-5 catalyst-packed dielectric barrier discharge using a cycled system composed of a storage stage and a discharge stage was studied. For dilute benzene removal from simulated air, Ag/HZSM-5 catalysts exhibit not only preferential adsorption of benzene in humid air at the storage stage but also almost complete oxidation of adsorbed benzene at the discharge stage. Five 'storage-discharge' cycles were examined, which suggests that Ag/HZSM-5 catalysts are very stable during the cycled 'storage-discharge' (CSD) plasma catalytic process. High oxidation rate of absorbed benzene as well as low energy cost can be achieved at a moderate discharge power. In an example of the CSD plasma catalytic remedy of simulated air containing 4.7 ppm benzene with 50% RH and 600 ml min -1 flow rate, the energy cost was as low as 3.7 x 10 -3 kWh m -3 air. This extremely low energy cost to remove low-concentration pollutants from air undoubtedly makes the environmental applications of the plasma catalytic technique practical.

  10. Information draft on the development of air standards for isopropyl benzene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    Isopropyl benzene, also commonly referred to as cumene, is a colourless liquid with a sharp, penetrating odour. It is derived from the distillation of coal tar, naphtha and petroleum. It is used mainly as an intermediate in the production of phenol, acetone, and alpha-methyl styrene, all of which are components in plastic resins. Isopropyl benzene is also used as a solvent and thinner for paints and enamels and as an octane booster in aviation gasoline. In 1996, reported atmospheric releases in Canada amounted to 16.4 tonnes, of which 9.1 tonnes were from Ontario sources. Isopropyl benzene is not a significant threat to health in low concentrations. Inhalation exposure can cause dizziness, light-headedness and fainting. Contact with isopropyl benzene can irritate the skin, eyes, nose and mouth. The current Ontario half-hour interim Point of Impingement (OPI) standard and the one-hour Ambient Air Quality Criterion (AAQC) are both set at 100 microgram/cubic meter on the basis of the odour nuisance property of the substance. A review of applicable literature from world-wide sources (and summarized in this report) reveal that four US agencies have developed air quality criteria for isopropyl benzene based on the health effects of the compound. These criteria range from 9 to 585 micrograms/cubic meter for an annual average basis and from 87 to 400 microgram/cubic meter on a 24-hour basis. 40 refs., 1 tab., appendix.

  11. Extraction of benzene and cyclohexane using [BMIM][N(CN)2] and their equilibrium modeling

    Science.gov (United States)

    Ismail, Marhaina; Bustam, M. Azmi; Man, Zakaria

    2017-12-01

    The separation of aromatic compound from aliphatic mixture is one of the essential industrial processes for an economically green process. In order to determine the separation efficiency of ionic liquid (IL) as a solvent in the separation, the ternary diagram of liquid-liquid extraction (LLE) 1-butyl-3-methylimidazolium dicyanamide [BMIM][N(CN)2] with benzene and cyclohexane was studied at T=298.15 K and atmospheric pressure. The solute distribution coefficient and solvent selectivity derived from the equilibrium data were used to evaluate if the selected ionic liquid can be considered as potential solvent for the separation of benzene from cyclohexane. The experimental tie line data was correlated using non-random two liquid model (NRTL) and Margules model. It was found that the solute distribution coefficient is (0.4430-0.0776) and selectivity of [BMIM][N(CN)2] for benzene is (53.6-13.9). The ternary diagram showed that the selected IL can perform the separation of benzene and cyclohexane as it has extractive capacity and selectivity. Therefore, [BMIM][N(CN)2] can be considered as a potential extracting solvent for the LLE of benzene and cyclohexane.

  12. Migration, Masculinity and the Fugitive State of Mind in the Irish Emigrant Footballer Autobiography: the Case of Paul McGrath

    Directory of Open Access Journals (Sweden)

    Marcus Free

    2010-03-01

    Full Text Available The ‘confessional’ autobiography has become a popular variant of professional football autobiography in Britain. Co-written ‘autobiographies’ by prominent former emigrant Irish or Irish descended international footballers have featured prominently in this sub-genre.  Their ‘confessions’ of alcoholism, gambling, infidelity, irresponsibility towards partners or dependents, or underlying ontological insecurity might be seen as an insightful engagement with their lives as male footballers in Britain.  However, focusing on two autobiographies of Paul McGrath, and reading these ‘troubled’ accounts using psychoanalytic perspectives on sport, migration and masculinity, it is argued that they are contradictory texts which embody a peculiar variation on the emigrant “fugitive state of mind” (Davar, 1996, both approximating and deferring mature, reflexive engagement with the social and cultural construction of identity, allowing them to occupy a liminal but discontent imaginary space in which adolescent masculinity can be indefinitely extended.   The homosocial world of men’s professional football is a key factor in this.

  13. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  14. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  15. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    International Nuclear Information System (INIS)

    Philbrook, Nicola A.; Winn, Louise M.

    2015-01-01

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  16. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Philbrook, Nicola A. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, ON K7L3N6 (Canada)

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  17. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    Science.gov (United States)

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  18. 4-[(E-(5-tert-Butyl-2-hydroxyphenyldiazenyl]benzoic acid benzene hemisolvate

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2010-03-01

    Full Text Available The title benzene hemisolvate, C17H18N2O3·0.5C6H6, features an essentially planar (the r.m.s. deviation of the non-H atoms, excluding methyl-C, is 0.071 Å diazo molecule with an E conformation about the N=N bond, and a half-molecule of benzene disposed about a centre of inversion. The dihedral angle formed between the benzene rings of the diazo molecule is 7.69 (12°. In the crystal, centrosymmetrically related dimers associate via the eight-membered carboxylic acid dimer synthon, {...HOC(=O}2, and these are connected into a supramolecular chain along the b axis via C—H...O contacts.

  19. Characterization of vanadium-doped mesoporous titania and its adsorption of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Phan, Thuy-Duong; Song, Myoung Bock; Yun, Hyunran; Kim, Eui Jung; Oh, Eun-Suok [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of); Shin, Eun Woo, E-mail: ewshin@mail.ulsan.ac.kr [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2011-01-01

    A series of vanadium-doped mesoporous titania with different metal contents was synthesized in the study via a sol-gel process with the assistance of a dodecylamine surfactant. The existence of vanadium ions not only suppressed crystallization and sintering but also enhanced the porosity of the mesoporous TiO{sub 2}. Varying the vanadium concentration led to significant changes in the chemical oxidation state of each component. The presence of metal dopants significantly improved the removal efficiency of benzene and the doping the titania with 5 mol% vanadium removed the most benzene, regardless of the adsorption temperature. The adsorption behavior was elucidated by the specific surface area, the interactions between surface hydroxyl groups and the {pi}-electrons of benzene, and the formation of {sigma}-bonding and d-{pi}* back-donation between the adsorbent and organic compounds.

  20. Activated coal of tomato seeds for adsorption of vapors of ammonia, benzene and gasoline

    International Nuclear Information System (INIS)

    Márquez-Montesino, Francisco; Aguiar-Trujillo, Leonardo; Ramos-Robaina, Boris Abel; Zanzi-Vigouroux, Rolando; Birbas, Daniella

    2013-01-01

    The objective was to prove the adsorption possibilities of ammonia, benzene and vapors of gasoline in activated coals with phosphoric acid, of tomato seed. An immediate analysis to the biomass was carried out. It was concluded that the vapors adsorption of ammonia, is related with the physical adsorption and the presence of functional groups of acid character in the active surface of the coal that form weak connections with the molecules of ammonia. Experiments of adsorption of benzene and gasoline were carried out, these substances haven't functional groups as the ammonia, so they were less adsorbed, and it was confirmed a chemical adsorption preferably. The activation temperature, the relationship of impregnation (RI) and the concentration of the acid dissolution haven't a significant influence in the capacity of adsorption of benzene, but they have in the adsorption of ammonia and vapors of gasoline, it's of great application for the elimination of vapors' escape in the motors of vehicles. (author)

  1. Benzene oxidation at diamond electrodes: comparison of microcrystalline and nanocrystalline diamonds.

    Science.gov (United States)

    Pleskov, Yu V; Krotova, M D; Elkin, V V; Varnin, V P; Teremetskaya, I G; Saveliev, A V; Ralchenko, V G

    2012-08-27

    A comparative study of benzene oxidation at boron-doped diamond (BDD) and nitrogenated nanocrystalline diamond (NCD) anodes in 0.5 M K(2)SO(4) aqueous solution is conducted by using cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that during the benzene oxidation at the BDD electrode, adsorption of a reaction intermediate occurs, which partially blocks the electrode surface and lowers the anodic current. At the NCD electrode, benzene is oxidized concurrently with oxygen evolution, a (quinoid) intermediate being adsorbed at the electrode. The adsorption and the electrode surface blocking are reflected in the impedance-frequency and impedance-potential complex-plane plots. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    Diffusive isotope fractionation of organic contaminants in aqueous solution is difficult to quantify, and only a few experimental data sets are available for compounds of environmental interest. In this study, we investigate diffusive fractionation of perdeuterated and nondeuterated benzene...... and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  3. Solvation of decane and benzene in mixtures of 1-octanol and N, N-dimethylformamide

    Science.gov (United States)

    Kustov, A. V.; Smirnova, N. L.

    2016-09-01

    The heats of dissolution of decane and benzene in a model system of octanol-1 (OctOH) and N, N-dimethylformamide (DMF) at 308 K are measured using a variable temperature calorimeter equipped with an isothermal shell. Standard enthalpies are determined and standard heat capacities of dissolution in the temperature range of 298-318 K are calculated using data obtained in [1, 2]. The state of hydrocarbon molecules in a binary mixture is studied in terms of the enhanced coordination model (ECM). Benzene is shown to be preferentially solvated by DMF over the range of physiological temperatures. The solvation shell of decane is found to be strongly enriched with 1-octanol. It is obvious that although both hydrocarbons are nonpolar, the presence of the aromatic π-system in benzene leads to drastic differences in their solvation in a lipid-protein medium.

  4. Inelastic X-ray scattering on liquid benzene analyzed using a generalized Langevin equation

    Science.gov (United States)

    Yoshida, Koji; Fukuyama, Nami; Yamaguchi, Toshio; Hosokawa, Shinya; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-07-01

    The dynamic structure factor, S(Q,ω), of liquid benzene was measured by meV-resolved inelastic X-ray scattering (IXS) and analyzed using a generalized Langevin model with a memory function including fast, μ-relaxation and slow, structural, α-relaxation. The model well reproduced the experimental S(Q,ω) of liquid benzene. The dispersion relation of the collective excitation energy yields the high-frequency sound velocity for liquid benzene as related to the α-relaxation. The ratio of the high-frequency to the adiabatic sound velocity is approximately 1.5, larger to that of carbon tetrachloride and smaller than those of methanol and water, reflecting the nature of intermolecular interactions.

  5. Ab initio investigation of the switching behavior of the dithiole-benzene nano-molecular wire

    International Nuclear Information System (INIS)

    Darvish Ganji, M.; Rungger, I.

    2008-01-01

    We report a first-principle study of electrical transport and switching behavior in a single molecular conductor consisting of a dithiole-benzene sandwiched between two Au( 100) electrodes. Ab initio total energy calculations reveal dithiole-benzene molecules on a gold surface, contacted by a monoatomic gold scanning tunneling microscope tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it 10 change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly. despite their apparent simplicity, these Au-dithiole-benzene -Au nano wires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. The projected density of states and transmission coefficients are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to switching behavior

  6. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  7. Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE

    Directory of Open Access Journals (Sweden)

    Federica Rota

    2018-04-01

    Full Text Available Benzene, a known human carcinogen, and methyl tert-butyl ether (MTBE, not classifiable as to its carcinogenicity, are fuel-related pollutants. This study investigated the effect of these chemicals on epigenetic and transcriptional alterations in DNA repetitive elements. In 89 petrol station workers and 90 non-occupationally exposed subjects the transcriptional activity of retrotransposons (LINE-1, Alu, the methylation on repeated-element DNA, and of H3K9 histone, were investigated in peripheral blood lymphocytes. Median work shift exposure to benzene and MTBE was 59 and 408 µg/m3 in petrol station workers, and 4 and 3.5 µg/m3, in controls. Urinary benzene (BEN-U, S-phenylmercapturic acid, and MTBE were significantly higher in workers than in controls, while trans,trans-muconic acid (tt-MA was comparable between the two groups. Increased BEN-U was associated with increased Alu-Y and Alu-J expression; moreover, increased tt-MA was associated with increased Alu-Y and Alu-J and LINE-1 (L1-5′UTR expression. Among repetitive element methylation, only L1-Pa5 was hypomethylated in petrol station workers compared to controls. While L1-Ta and Alu-YD6 methylation was not associated with benzene exposure, a negative association with urinary MTBE was observed. The methylation status of histone H3K9 was not associated with either benzene or MTBE exposure. Overall, these findings only partially support previous observations linking benzene exposure with global DNA hypomethylation.

  8. Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries.

    Science.gov (United States)

    Chung, Eun-Kyo; Shin, Jung-Ah; Lee, Byung-Kyu; Kwon, Jiwoon; Lee, Naroo; Chung, Kwang-Jae; Lee, Jong-Han; Lee, In-Seop; Kang, Seong-Kyu; Jang, Jae-Kil

    2010-09-01

    The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.

  9. Sensitivity Enhancement of Benzene Sensor Using Ethyl Cellulose-Coated Surface-Functionalized Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Thanattha Chobsilp

    2018-01-01

    Full Text Available A hybrid sensor based on the integration of functionalized multiwalled carbon nanotubes (MWCNTs with ethyl cellulose (EC was fabricated for sensitivity enhancement of benzene detection. To functionalize the surface of MWCNTs, MWCNTs were treated with hydrochloric acid for 60 min (A60-MWCNTs, while other MWCNTs were treated with oxygen plasma for 30, 60, 90, and 120 min (P30-MWCNTs, P60-MWCNTs, P90-MWCNTs, and P120-MWCNTs, resp.. Pristine MWCNTs, A-MWCNTs, and P-MWCNTs were dispersed in 1,2-dichloroethane, then dropped onto a printed circuit board consisting of Cu/Au electrodes used as the sensor platform. Next, EC was separately spin coated on the pristine MWCNTs, A-MWCNTs, and P-MWCNTs (EC/MWCNTs, EC/A-MWCNTs, and EC/P-MWCNTs, resp.. All sensors responded to benzene vapor at room temperature by increasing their electrical resistance which was sensitive to benzene vapor. The EC/P90-MWCNTs enabled an approximately 11-fold improvement in benzene detection compared to EC/MWCNTs. The sensitivity of all sensors would be attributed to the swelling of EC, resulting in the loosening of the MWCNT network after benzene vapor exposure. The differences of the sensing responses of the EC/MWCNTs, EC/A-MWCNTs, and EC/P-MWCNTs would be ascribed to the differences in crystallinity and functionalization of MWCNT sidewalls, suggesting that acid and oxygen plasma treatments of MWCNTs would be promising techniques for the improvement of benzene detection.

  10. Qualitative evaluations of benzene in terminals and pipelines; Avaliacoes qualitativas de benzeno em terminais e oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Ferreira da; Baltar, Joao Luiz da Conceicao [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The benzene (C6H6) is a stable hydrocarbon, with pleasant smell, plenty toxic, being able to injure sanguine cells and to cause cancer. It is used as raw materials in the obtainment of several products (inks, waxes, lubricants, etc.), chemicals intermediate and, also, it is found in the petrochemical naphtha and in the gasoline. About 80% of the contaminations for benzene are attributed to the gasoline. In relation to the benzene contents present in the petrochemical processes produced in Brazil, the recent Portaria Interministerial no. 775 (Brazil,2004), of April 28, 2004, prohibits, in whole national territory, the commercialization of finished products that contain benzene in its composition. It is admitted, even so, the presence of this substance as contaminant agent in percentage non superior at 0,8% (in volume), from July 1st, 2004, 0,4% (in volume), from 1st of December of 2005 and 0,1% (in volume), from December 1st, 2007. The Brazilian Ministry of Labour regulation NR-15, P. 776, establish that the companies that produce, transport, store, use or manipulate benzene and its liquid mixtures contends 1% or more of volume, accomplish the registration in the SST - MTE and initiation the Programa de Prevencao de Exposicao Ocupacional ao Benzeno - PPEOB in TRANSPETRO. During the evaluations they had been carried through the recognition of the places, equipment and they had defined the homogeneous groups of exhibition - GHE. From these information, environmental and biological evaluations in the terminals and intermediary stations (TECAM, TEVOL, ESTAP, ESMAN, ESVOL and ESJAP), had been executed, including the accomplishment of essays to determine the presence of benzene in the liquid phase, through the infrared base equipment, GS 1000. With base in the results mitigation and remediation actions were implemented in order to guarantee the occupational health of the components of GHE. (author)

  11. Effect of phenobarbital pretreatment on benzene biotransformation in the rat. Pt. 2. 9. 000 g supernatant and isolated perfused liver versus living rat

    Energy Technology Data Exchange (ETDEWEB)

    Gut, I.; Hatle, K.; Zizkova, L.

    1981-03-01

    Factors responsible for different quantitative effect of phenobarbital (PB) pretreatment on benzene metabolism to phenol in vivo and in vitro were studied in male Wistar rats. A more than 4-fold increase of benzene metabolism was observed with 9,000 g supernatant of liver homogenate, 2.8- to 4-fold increase with isolated perfused liver; phenol formation in vivo after oral benzene was increased by PB 2-fold, but only shortly following benzene administration and the enhancement rapidly diminished to 1.15-fold increase in the total excreted phenol. Benzene concentrations in 9,000 g supernatant incubations were 2 mM, those with isolated perfused livers were up to 4 mM, but those in blood in vivo were below 0.3 mM; the effect of PB induction in vivo disappeared along with decreasing benzene and increasing phenol blood concentrations which surpassed benzene 2-3 h after oral benzene administration. The effect of benzene concentration on the manifestation of PB induction is also supported by almost a 2-fold increased phenol formation in PB rats over controls in vivo after repeated administration of benzene. The elimination of radioactive metabolites of orally administered benzene-/sup 14/C, in urine was markedly inhibited by intraperitoneal administration of phenol, but not by pyrocatechol, resorcinol or hydroquinol suggesting that phenol might inhibit benzene metabolism in vivo especially when its concentration exceeds that of benzene.

  12. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  13. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    OpenAIRE

    Arnold, Scott M.; Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O?Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of ?Common Criteria? (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of th...

  14. Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977-2014.

    Science.gov (United States)

    Tuomi, Tapani; Veijalainen, Henna; Santonen, Tiina

    2018-01-24

    Air concentrations of and inhalation exposure to total petroleum hydrocarbons (TPH) and benzene was monitored separately at two oil refineries from 1977 to 2014. Prevention policies and control measures that may explain changes were surveyed. The aim was to evaluate how the application of of Occupational Health and Safety Assessment Series OHSAS 18001.04 principles as well as Environmental protection Agency EPA and European Oil Company Organisation for Environment, Health and Safety CONCAWE practices have influenced air concentrations. Benzene air concentrations declined in 11 of 17 units, six of which were associated with declining exposures. Benzene air concentrations declined across all units on average by 46%. This amounts to an average yearly decline of 1.7%. TPH air concentrations declined in 10 of 17 units, seven of which were associated with declining exposures. The average decline in TPH air concentrations was 49%, corresponding to 1.3% per year. As a result, average working day exposure in 10 of 17 units have declined significantly and today, benzene and TPH exposure in most units are well below 10% of the current Occupational Exposure Limit (OEL 8h :s). A decline in air concentrations have coincided with consistent implementation of control measures. Such measures include on-line monitoring of leaks; benzene recovery; floating container roofs; improved valves and seals; hermetic pumps; recovery of loading gases and instalment of torches in terminals; cutback in coke combustion; a new production line spanning directly from the dock to aromatics production; and recovery of loading gases in the doc. Other tools in exposure management include personal leak monitors, on-line measurements, monitoring campaigns, risk assessment, and availability and user training of protective equipment. However, improvements are still needed. Hydrocarbon or benzene air concentrations have not declined in 8 of 17 units, in some of which concentrations exceed 10% of the relevant

  15. Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977–2014

    Science.gov (United States)

    Tuomi, Tapani; Veijalainen, Henna; Santonen, Tiina

    2018-01-01

    Air concentrations of and inhalation exposure to total petroleum hydrocarbons (TPH) and benzene was monitored separately at two oil refineries from 1977 to 2014. Prevention policies and control measures that may explain changes were surveyed. The aim was to evaluate how the application of of Occupational Health and Safety Assessment Series OHSAS 18001.04 principles as well as Environmental protection Agency EPA and European Oil Company Organisation for Environment, Health and Safety CONCAWE practices have influenced air concentrations. Benzene air concentrations declined in 11 of 17 units, six of which were associated with declining exposures. Benzene air concentrations declined across all units on average by 46%. This amounts to an average yearly decline of 1.7%. TPH air concentrations declined in 10 of 17 units, seven of which were associated with declining exposures. The average decline in TPH air concentrations was 49%, corresponding to 1.3% per year. As a result, average working day exposure in 10 of 17 units have declined significantly and today, benzene and TPH exposure in most units are well below 10% of the current Occupational Exposure Limit (OEL8h:s). A decline in air concentrations have coincided with consistent implementation of control measures. Such measures include on-line monitoring of leaks; benzene recovery; floating container roofs; improved valves and seals; hermetic pumps; recovery of loading gases and instalment of torches in terminals; cutback in coke combustion; a new production line spanning directly from the dock to aromatics production; and recovery of loading gases in the doc. Other tools in exposure management include personal leak monitors, on-line measurements, monitoring campaigns, risk assessment, and availability and user training of protective equipment. However, improvements are still needed. Hydrocarbon or benzene air concentrations have not declined in 8 of 17 units, in some of which concentrations exceed 10% of the relevant

  16. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  17. Early changes of lymphocyte RNA and serum immunoglobulins following chronic exposure to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Chircu, V.; Ionescu, M.; Zgoan

    Hematologic and immunochemical investigations carried out in 270 workers with chronic exposure to benzene demonstrated changes of the nucleologram and of the area of lymphocyte nucleoli as well as disorders of the humoral immune response revealed by radial immunodiffusion. The numerical rise of bi- and polynucleolated cells, of cells with irregular macronucleoli as well as an enlargement of the nucleolar area are assumed to reflect an increase of the endolymphocytic amounts of RNA. An increased capacity of immunoglobulin formation, particularly of IgM, was also observed. All these changes are considered as early signs of an enhanced immune reactivity following chronic exposure to benzene.

  18. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  19. catena-Poly[[aqua(imidazolecadmium(II]-μ3-benzene-1,3-dicarboxylato

    Directory of Open Access Journals (Sweden)

    Zhengfang Zeng

    2010-07-01

    Full Text Available In the title compound, [Cd(C8H4O4(C3H4N2(H2O]n, the CdII ion is seven-coordinated by five O atoms from three crystallographically independent benzene-1,3-carboxylate ligands, one N atom from the imidazole ligand and one coordinated water molecule. Neighboring CdII ions are bridged by the benzene-1,3-dicarboxylate ligands, forming a zigzag polymeric chain structure. These chains are further extended into a three-dimensional supramolecular structure through O—H...O and N—H...O hydrogen bonds.

  20. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    Science.gov (United States)

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  1. RPBE-vdW Description of Benzene Adsorption on Au(111)

    DEFF Research Database (Denmark)

    Pedersen, Jess Wellendorff; Kelkkanen, Kari André; Mortensen, Jens Jørgen

    2010-01-01

    Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange-correlation functionals fail miserably. Particularly those systems where binding is due to van...... der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description...... of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional....

  2. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya; Benali Kanoun, Mohammed; Manchon, Aurelien; Schwingenschlö gl, Udo

    2013-01-01

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  3. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and

  4. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  5. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment.

    Science.gov (United States)

    Yu, Wenbin; Yuan, Peng; Liu, Dong; Deng, Liangliang; Yuan, Weiwei; Tao, Bo; Cheng, Hefa; Chen, Fanrong

    2015-03-21

    Hierarchically porous diatomite/MFI-type zeolite (Dt/Z) composites with excellent benzene adsorption performance were prepared. The hierarchical porosity was generated from the microporous zeolite coated at the surface of diatom frustules and from the macroporous diatomite support. A facile NaOH etching method was employed for the first time to treat the frustule support, followed by hydrothermal growth of MFI-type zeolite at the surface of frustules previously seeded with nanocrystalline silicalite-1 (Sil-1). NaOH etching enlarged the pores on diatom frustules and further increased the coated zeolite contents (W(z)). The central macropore size of the diatom frustules increased from approximately 200-500 nm to 400-1000 nm after NaOH etching. The W(z) could reach 61.2%, while the macroporosity of the composites was largely preserved due to more voids for zeolite coating being formed by NaOH etching. The Dt/Z composites exhibited higher benzene adsorption capacity per unit mass of zeolite and less mass transfer resistance than Sil-1, evaluated via a method of breakthrough curves. These results demonstrate that etching of a diatomite support is a facile but crucial process for the preparation of Dt/Z composites, enabling the resulting composites to become promising candidates for uses in volatile organic compounds emission control. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  7. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    Science.gov (United States)

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  8. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...

  9. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline...

  10. Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, H. ten; Kieboom, C. van den; Doesburg, W. van; Langenhoff, A.A.M.; Gerritse, J.; Junca, H.; Stams, A.J.M.

    2008-01-01

    A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 μm wide and 1 to 2 μm long, are motile, and stain gram negative. Strain BC grows on

  11. 46 CFR Appendix D to Subpart C to... - Sampling and Analytical Methods for Benzene Monitoring-Measurement Procedures

    Science.gov (United States)

    2010-10-01

    ... chromatograph. Detection limit: 0.04 ppm. Recommended air volume and sampling rate: 10 liter at 0.2 liter/min. 1... nitric acid. The benzene is converted to nitrobenzene. The carbon disulfide layer is removed, dried with...=molecular weight of benzene. 8. Backup data 8.1 Detection limit—Air Samples. The detection limit for the...

  12. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  13. Emission from open burning of municipal solid waste in India.

    Science.gov (United States)

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  14. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  15. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  16. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    Science.gov (United States)

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  17. Pollutant emissions from gasoline combustion. 1. Dependence on fuel structural functionalities.

    Science.gov (United States)

    Zhang, Hongzhi R; Eddings, Eric G; Sarofim, Adel F

    2008-08-01

    To study the formation of air pollutants and soot precursors (e.g., acetylene, 1,3-butadiene, benzene, and higher aromatics) from aliphatic and aromatic fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submechanisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good predictions of species concentrations in premixed flames of n-heptane, isooctane, benzene, cyclohexane, olefins, oxygenates, and gasoline using a 23-component surrogate formulation. The 1,3-butadiene emission comes mainly from minor fuel fractions of olefins and cyclohexane. The benzene formation potential of gasoline components shows the following trends as functions of (i) chemical class: n-paraffins produced by the real fuel should have priority when selecting candidate surrogate components for combustion simulations.

  18. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  19. EFFECT OF ETHANOL ON THE NATURAL FERMENTATION OF BENZENE IN GROUNDWATER (ABSTRACT ONLY)

    Science.gov (United States)

    Ethanol is commonly used as a fuel oxygenate in California and in the mid continent area around the Great Lakes. The presence of ethanol in a gasoline spill has raised concerns about the effects of the additive on the natural biodegradation of fuel hydrocarbons, including benzen...

  20. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... specified in this paragraph (a). (5) Gasoline produced at foreign refineries that is subject to the gasoline... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline...