WorldWideScience

Sample records for benzene exposure identified

  1. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Cliona M.; Zhang, Luoping; Lan, Qing; Li, Guilan; Hubbard, Alan E.; Forrest, Matthew S.; Vermeulen, Roel; Chen, Jinsong; Shen, Min; Rappaport, Stephen M.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2009-03-01

    Benzene is an established cause of leukemia and a possible cause of lymphoma in humans but the molecular pathways underlying this remain largely undetermined. This study sought to determine if the use of two different microarray platforms could identify robust global gene expression and pathway changes associated with occupational benzene exposure in the peripheral blood mononuclear cell (PBMC) gene expression of a population of shoe-factory workers with well-characterized occupational exposures to benzene. Microarray data was analyzed by a robust t-test using a Quantile Transformation (QT) approach. Differential expression of 2692 genes using the Affymetrix platform and 1828 genes using the Illumina platform was found. While the overall concordance in genes identified as significantly associated with benzene exposure between the two platforms was 26% (475 genes), the most significant genes identified by either array were more likely to be ranked as significant by the other platform (Illumina = 64%, Affymetrix = 58%). Expression ratios were similar among the concordant genes (mean difference in expression ratio = 0.04, standard deviation = 0.17). Four genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-time PCR, were identified by both platforms in the current study and were among the top 100 genes. Gene Ontology analysis showed over representation of genes involved in apoptosis among the concordant genes while Ingenuity{reg_sign} Pathway Analysis (IPA) identified pathways related to lipid metabolism. Using a two-platform approach allows for robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified.

  2. Retrospective exposure assessment for benzene in the Australian petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Glass, D.C. [Deakin Univ., Occupational Hygiene Unit, Geelong, VIC (Australia); Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia); Adams, G.G.; Manuell, R.W.; Bisby, J.A. [Melbourne Univ., Dept. of Public Health and Community Medicine, Carlton, VIC (Australia)

    2000-07-01

    An excess of lympho-haematopoietic (LH) cancers has been identified in the Australian petroleum industry through the Health Watch surveillance programme. A nested case-control study is being conducted to investigate this excess. This paper describes the methods used to provide quantitative estimates of benzene exposure for each of the subjects in the case-control study. Job histories were compiled for each subject from interviews and company employment records. Site visits and telephone interviews were used to identify the tasks included in each job title. Details about the tasks such as their frequency, the technology in use and about changes that had taken place over the years were also gathered. Exposure dated back to the late 1940s for a few subjects. Collaborating petroleum companies provided recent benzene exposure monitoring data. These were used to generate Base Estimates of exposure for each task, augmented with data from the literature where necessary. Past exposures were estimated from the Base Estimates by means of an exposure algorithm. The modifying effects of technological changes and changes to the product were used in the algorithm. The algorithm was then computed to give, for each job, for each subject, an estimate of average benzene exposure in ppm in the workplace atmosphere (Workplace Estimate). This value was multiplied by the years for which the job was held and these values summed to give an estimate of Cumulative Estimate of benzene in ppm-years. The occupational hygienists performing the exposure assessment did so without knowledge of the case or control status of subjects. Overall exposures to benzene in the Australian petroleum industry were low, and virtually all activities and jobs were below a time-weighted average of 5 ppm. Exposures in terminals were generally higher than at refineries. Exposures in upstream areas were extremely low. Estimates of Cumulative Estimate to benzene ranged from 0.005 to 50.9 ppm-years. (Author)

  3. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    Science.gov (United States)

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  4. Benzene exposure on a crude oil production vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kirkeleit, J; Riise, T.; Bratveit, M.; Moen, B.E. [University of Bergen (Norway). Dept. of Public Health and Primary Health Care

    2006-07-01

    Objectives: The aim was to describe the personal exposure to benzene on a typical crude oil production vessel and to identify factors influencing the exposure level. Methods: The study population included process operators, deck workers, mechanics and contractors on a production vessel in the Norwegian sector of the North Sea. The personal exposure to benzene during ordinary activity, during a short shutdown and during tank work was monitored using organic vapour passive dosimeter badges (3MTM3500). Information on the tasks performed on the day of sampling was recorded. Exposure was assessed by grouping the measurements according to job category, mode of operation and the tasks performed on the sampling day. Univariate analysis of variance was used to test the differences between the groups. Results: Forty-two workers participated in the exposure assessment, comprising a total of 139 measurements. The arithmetic and geometric mean of benzene exposure for all measurements was 0.43 and 0.02 p.p.m., respectively. Twenty-five measurements (18%) were below the limit of detection (0.001 p.p.m.), while ten samples (7%) exceeded the occupational exposure limit of 0.6 p.p.m. The geometric mean exposure was 0.004 p.p.m. (95% CI 0.003-0.006) during ordinary activity, 0.01 p.p.m. (95% CI 0.005-0.02) during shutdown and 0.28 p.p.m. (95% CI 0.16-0.49) during tank work. Workers performing annual cleaning and maintenance of tanks containing crude oil or residues of crude oil had higher levels of exposure than workers performing other tasks, including work near open hydrocarbon-transport systems (all P < 0.001). However, because of the mandatory use of respirators, the actual personal benzene exposure was lower. The job categories explained only 5% of the variance in exposure, whereas grouping by mode of operation explained 54% of the variance and grouping by task 68%. Conclusion: The results show that, although benzene exposure during ordinary and high activity seems to be low in

  5. Benzene exposure: An overview of monitoring methods and their findings

    OpenAIRE

    Weisel, Clifford P.

    2010-01-01

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trac...

  6. Benzene exposure: an overview of monitoring methods and their findings.

    Science.gov (United States)

    Weisel, Clifford P

    2010-03-19

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person's total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites, differences

  7. Variability of benzene exposure among filling station attendants; Variabilita` dell`esposizione a benzene tra gli addetti all`erogazione di carburanti

    Energy Technology Data Exchange (ETDEWEB)

    Carere, A.; Iacovella, N.; Turrio Baldassarri, L. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia; Fuselli, S.; Iavarone, I.; Lagorio, S.; Proietto, A.R. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale

    1996-12-01

    A monitoring survey of filling station attendants aimed at identifying sources of variability of exposure to benzene and other aromatics was carried out. Concurrent samples of the worker`s breathing zone air, atmospheric air in the service station proximity, and gasoline were collected, along with information about daily workloads and other exposure-related factors. Benzene personal exposure was characterised by a small between-worker variability and a predominant within-worker variance component. Such elevated day-to-day variability yields to imprecise estimates of mean personal exposure. Almost 70% of the overall personal exposure variance was explained by a model including daily benzene from dispensed fuel, presence of a shelter over the refueling area, amount of fuel supplied to the station if a delivery occurred, and background atmospheric benzene concentration.

  8. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    Science.gov (United States)

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  9. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    Science.gov (United States)

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. PMID:26400870

  10. Lymphocyte chromosome breakage in low benzene exposure among Indonesian workers

    Directory of Open Access Journals (Sweden)

    Dewi S. Soemarko

    2015-01-01

    Full Text Available Background: Benzene has been used in industry since long time and its level in environment should be controled. Although environmental benzene level has been controlled to less than 1 ppm, negative effect of benzene exposure is still observed, such as chromosome breakage. This study aimed to know the prevalence of lymphocyte chromosome breakage and the influencing factors among workers in low level benzene exposure.Methods: This was a cross sectional study in oil & gas industry T, conducted between September 2007 and April 2010. The study subjects consisted of 115 workers from production section and head office. Data on type of work, duration of benzene exposure, and antioxidant consumption were collected by interview as well as observation of working process. Lymphocyte chromosome breakage was examined by banding method. Analysis of relationship between chromosome breakage and risk factors was performed by chi-square and odd ratio, whereas the role of determinant risk factors was analyzed by multivariate forward stepwise.Results: Overall lymphocyte chromosome breakage was experieced by 72 out of 115 subjects (62.61%. The prevalence among workers at production section was 68.9%, while among administration workers was 40% (p > 0.05. Low antioxidant intake increases the risk of chromosome breakage (p = 0.035; ORadjusted = 2.90; 95%CI 1.08-7.78. Other influencing factors are: type of work (p = 0,10; ORcrude = 3.32; 95% CI 1.33-8.3 and chronic benzene exposure at workplace (p = 0.014; ORcrude = 2.61; 95% CI 1.2-5.67, while the work practice-behavior decreases the lymphocyte chromosome breakage (p = 0.007; ORadjusted = 0.30; 95% CI 0.15-0.76.Conclusion: The prevalence of lymphocyte chromosome breakage in the environment with low benzene exposure is quite high especially in production workers. Chronic benzene exposure in the workplace, type of work, and low antioxidant consumption is related to lymphocyte chromosome breakage. Thus, benzene in the

  11. Leukemia risk associated with benzene exposure in the Pliofilm cohort

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, M.B. [American Petroleum Institute, Washington, DC (United States)

    1996-12-01

    A reanalysis of the Pliofilm cohort was conducted incorporating six additional years of follow-up information gathered by the National Institute of Occupational Safety and Health (NIOSH) and a new set of exposure estimates developed recently. The distribution of individual worker exposures calculated with the Paustenbach exposure estimates was compared to those derived using two earlier sets of job-, plant-, and year-specific exposure estimates. A traditional standardized mortality ratio analysis and the Cox proportional hazards model were used to investigate the impact of these exposure estimates and the NIOSH updated information on evaluation of benzene`s leukemogenicity. There were no additional cases of multiple myeloma or any indication of increased incidences of solid tumors. The data added in the update did not greatly modify the estimated relative risk of all leukemias associated with benzene exposure but confirmed previous findings that occupational exposure only to very high concentrations had leukemogenic potential. Leukemia has not been observed in anyone who began employment in Pliofilm production after 1950. Neither the Paustenbach nor the Crump exposures gave dose-response estimates as steep as that resulting from the Rinsky exposures. 16 refs., 3 figs., 8 tabs.

  12. Benzene exposure among auto-repair workers from workplace ambience: A pioneer study from Pakistan

    Directory of Open Access Journals (Sweden)

    Atif Kamal

    2014-10-01

    Full Text Available Objectives: In Pakistan, the reports on benzene exposure among workers in chemical industries are almost non-existing due to limited research work in the field of exposure science. This study aimed to investigate such exposure in a widely adopted occupation in Rawalpindi city. Material and Methods: In this cross-sectional study, 60 blood samples (N = 20/group of mechanics (MCs, spray painters (PNs and control participants (CN were analyzed. The socio-economic and demographic information of workers and that of workplaces was documented using a short questionnaire. Results: We identified that the workers in spray-painting occupation are highly at risk of benzene exposure. The results showed that PNs were more at risk of exposure to benzene than MCs, and this exposure was significantly correlated with long working hours (r = 0.68, p < 0.001. Moreover, there are several limitations in workplace setups, which need to be addressed in order to mitigate workers health risk in this occupation. In addition to the reckless use of chemicals, other identified predictors of exposure included active and passive smoking, poor workplace hygiene and substandard ventilation. Conclusions: To mitigate workplace exposure, it is necessary to reduce working hours and encourage regular use of self-protective equipments and adoption of proper hygiene in chemical workplaces.

  13. Genotoxicity of intermittent co-exposure to benzene and toluene in male CD-1 mice.

    Science.gov (United States)

    Wetmore, Barbara A; Struve, Melanie F; Gao, Pu; Sharma, Sheela; Allison, Neil; Roberts, Kay C; Letinski, Daniel J; Nicolich, Mark J; Bird, Michael G; Dorman, David C

    2008-06-17

    Benzene is an important industrial chemical. At certain levels, benzene has been found to produce aplastic anemia, pancytopenia, myeloblastic anemia and genotoxic effects in humans. Metabolism by cytochrome P450 monooxygenases and myeloperoxidase to hydroquinone, phenol, and other metabolites contributes to benzene toxicity. Other xenobiotic substrates for cytochrome P450 can alter benzene metabolism. At high concentrations, toluene has been shown to inhibit benzene metabolism and benzene-induced toxicities. The present study investigated the genotoxicity of exposure to benzene and toluene at lower and intermittent co-exposures. Mice were exposed via whole-body inhalation for 6h/day for 8 days (over a 15-day time period) to air, 50 ppm benzene, 100 ppm toluene, 50 ppm benzene and 50 ppm toluene, or 50 ppm benzene and 100 ppm toluene. Mice exposed to 50 ppm benzene exhibited an increased frequency (2.4-fold) of micronucleated polychromatic erythrocytes (PCE) and increased levels of urinary metabolites (t,t-muconic acid, hydroquinone, and s-phenylmercapturic acid) vs. air-exposed controls. Benzene co-exposure with 100 ppm toluene resulted in similar urinary metabolite levels but a 3.7-fold increase in frequency of micronucleated PCE. Benzene co-exposure with 50 ppm toluene resulted in a similar elevation of micronuclei frequency as with 100 ppm toluene which did not differ significantly from 50 ppm benzene exposure alone. Both co-exposures - 50 ppm benzene with 50 or 100 ppm toluene - resulted in significantly elevated CYP2E1 activities that did not occur following benzene or toluene exposure alone. Whole blood glutathione (GSH) levels were similarly decreased following exposure to 50 ppm benzene and/or 100 ppm toluene, while co-exposure to 50 ppm benzene and 100 ppm toluene significantly decreased GSSG levels and increased the GSH/GSSG ratio. The higher frequency of micronucleated PCE following benzene and toluene co-exposure when compared with mice exposed to

  14. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Science.gov (United States)

    Skov, Henrik; Hansen, Asger B.; Lorenzen, Gitte; Andersen, Helle Vibeke; Løfstrøm, Per; Christensen, Carsten S.

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90 μg m -3 for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene.

  15. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, H.; Hansen, A.B.; Andersen, H.V.; Loefstroem, P.; Christensen, C.S. [National Environmental Research Inst., Roskilde (Denmark). Dept. of Atmospheric Environment; Lorenzen, G. [Environmental Protection Agency, Copenhagen (Denmark)

    2001-05-01

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90{mu}gm{sup -3} for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene. (Author)

  16. Environmental, dietary, demographic, and activity variables associated with biomarkers of exposure for benzene and lead.

    Science.gov (United States)

    Roy, A; Georgopoulos, P G; Ouyang, M; Freeman, N; Lioy, P J

    2003-11-01

    Classification and regression tree methods represent a potentially powerful means of identifying patterns in exposure data that may otherwise be overlooked. Here, regression tree models are developed to identify associations between blood concentrations of benzene and lead and over 300 variables of disparate type (numerical and categorical), often with observations that are missing or below the quantitation limit. Benzene and lead are selected from among all the environmental agents measured in the NHEXAS Region V study because they are ubiquitous, and they serve as paradigms for volatile organic compounds (VOCs) and heavy metals, two classes of environmental agents that have very different properties. Two sets of regression models were developed. In the first set, only environmental and dietary measurements were employed as predictor variables, while in the second set these were supplemented with demographic and time-activity data. In both sets of regression models, the predictor variables were regressed on the blood concentrations of the environmental agents. Jack-knife cross-validation was employed to detect overfitting of the models to the data. Blood concentrations of benzene were found to be associated with: (a) indoor air concentrations of benzene; (b) the duration of time spent indoors with someone who was smoking; and (c) the number of cigarettes smoked by the subject. All these associations suggest that tobacco smoke is a major source of exposure to benzene. Blood concentrations of lead were found to be associated with: (a) house dust concentrations of lead; (b) the duration of time spent working in a closed workshop; and (c) the year in which the subject moved into the residence. An unexpected finding was that the regression trees identified time-activity data as better predictors of the blood concentrations than the measurements in environmental and dietary media.

  17. Exposure to benzene in urban workers: environmental and biological monitoring of traffic police in Rome

    OpenAIRE

    Crebelli, R; Tomei, F.; Zijno, A; Ghittori, S; M Imbriani; Gamberale, D; Martini, A.; Carere, A

    2001-01-01

    OBJECTIVES—To evaluate the contribution of traffic fumes to exposure to benzene in urban workers, an investigation on personal exposure to benzene in traffic police from the city of Rome was carried out.
METHODS—The study was performed from December 1998 to June 1999. Diffusive Radiello personal samplers were used to measure external exposures to benzene and alkyl benzenes during the workshift in 139 policemen who controlled medium to high traffic areas and in 63 office police. Moreover, as b...

  18. Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene.

    Science.gov (United States)

    Wells, M S; Nerland, D E

    1991-04-01

    Benzene is metabolized to one or more hematotoxic species. Saturation of benzene metabolism could limit the production of toxic species. Saturation of phase II enzymes involved in the conjugation of the phenolic metabolites of benzene also could affect the hematotoxicity of benzene. To investigate the latter possibility, we exposed male Swiss mice, via the inhalation route, to various concentrations of benzene for 6 h per day for 5 days. Following termination of the final exposure the mice were killed and the levels of phenylsulfate and phenylglucuronide in the blood determined. Spleen weights were recorded and the number of white blood cells counted. At low benzene exposure concentrations phenylsulfate is the major conjugated form of phenol in the blood. At high exposure concentrations, phenylglucuronide is the predominant species. The reductions in spleen weight and white blood cell numbers correlated with the concentration of phenylsulfate in the blood, but are most probably not causally related.

  19. Environmental and occupational exposure to benzene by analysis of breath and blood.

    Science.gov (United States)

    Perbellini, L; Faccini, G B; Pasini, F; Cazzoli, F; Pistoia, S; Rosellini, R; Valsecchi, M; Brugnone, F

    1988-05-01

    Benzene exposure of chemical workers was studied, during the entire workshift, by continuous monitoring of workplace benzene concentration, and 16 hours after the end of the workshift by the measurement of alveolar and blood benzene concentrations and excretion of urinary phenol. Exposure of hospital staff was studied by measuring benzene concentrations in the alveolar and blood samples collected during the hospital workshift. Instantaneous environmental air samples were also collected, at the moment of the biological sampling, for all the subjects tested. A group of 34 chemical workers showed an eight hour exposure to benzene, as a geometric mean, of 1.12 micrograms/l which corresponded, 16 hours after the end of the workshift, to a geometric mean benzene concentration of 70 ng/l in the alveolar air and 597 ng/l in the blood. Another group of 27 chemical workers (group A) turned out to be exposed to an indeterminable eight hour exposure to benzene that corresponded, the morning after, to a geometric mean benzene concentration of 28 ng/l in the alveolar air and 256 ng/l in the blood. The group of hospital staff (group B) had a benzene concentration of 14 ng/l in the alveolar air and 269 ng/l in the blood. Instantaneous environmental samples showed that in the infirmaries the geometric mean benzene concentration was 58 ng/l during the examination of the 34 chemical workers, 36 ng/l during the examination of the 27 chemical workers (group A), and 5 ng/l during the examination of the 19 subjects of the hospital staff (group B). Statistical analysis showed that the alveolar and blood benzene concentrations in the 34 workers exposed to 1.12 microgram/l of benzene differed significantly from those in groups A and B. It was found, moreover, that the alveolar and blood benzene concentrations were higher in the smokers in groups A and B but not in the smokers in the group of 34 chemical workers. The slope of the linear correlation between the alveolar and the instantaneous

  20. Electronic noses for monitoring benzene occupational exposure in biological samples of Egyptian workers

    Directory of Open Access Journals (Sweden)

    Ehab I. Mohamed

    2013-02-01

    Full Text Available Objectives: Benzene is commonly emitted in several industries, leading to widespread environmental and occupational exposure hazards. While less toxic solvents have been substituted for benzene, it is still a component of petroleum products and is a trace impurity in industrial products resulting in continued higher occupational exposures in industrial settings in developing countries. Materials and Methods: We investigated the potential use of an electronic nose (e-nose to monitor the headspace volatiles in biological samples from benzene-exposed Egyptian workers and non-exposed controls. The study population comprised 150 non-smoking male workers exposed to benzene and an equal number of matching non-exposed controls. We determined biomarkers of benzene used to estimate exposure and risk including: benzene in exhaled air and blood; and its urinary metabolites such as phenol and muconic acid using gas chromatography technique and a portable e-nose. Results: The average benzene concentration measured in the ambient air of the workplace of all studied industrial settings in Alexandria, Egypt; was 97.56±88.12 μg/m3 (range: 4.69–260.86 μg/m3. Levels of phenol and muconic acid were signifi cantly (p < 0.001 higher in both blood and urine of benzene-exposed workers as compared to non-exposed controls. Conclusions: The e-nose technology has successfully classifi ed and distinguished benzene-exposed workers from non-exposed controls for all measured samples of blood, urine and the exhaled air with a very high degree of precision. Thus, it will be a very useful tool for the low-cost mass screening and early detection of health hazards associated with the exposure to benzene in the industry.

  1. [Interaction between benzene and toluene in long term inhalation exposure in rats (author's transl)].

    Science.gov (United States)

    Gradiski, D; Bonnet, P; Duprat, P; Zissu, D; Magadur, J L; Guenier, J P

    1981-07-01

    Industrial chemicals are seldom used as pure substances; hazards resulting from exposure to mixtures have, however not been solved. Our study deals with chronic inhalation toxicity of a mixture of benzene and toluene; few studies have been completed on this subject. Our results show: - leucopenia with benzene alone, at a concentration of 50 p.p.m., that is not detectable in the presence of toluene; - metabolic variations consisting in: a decrease in the phenol urinary rate versus time with benzene alone; a sharp decrease of this rate from the third month of exposure on, in presence of toluene.

  2. Assessment of human exposure to benzene through foods from the Belgian market.

    Science.gov (United States)

    Medeiros Vinci, Raquel; Jacxsens, Liesbeth; Van Loco, Joris; Matsiko, Eric; Lachat, Carl; de Schaetzen, Thibault; Canfyn, Michael; Van Overmeire, Ilse; Kolsteren, Patrick; De Meulenaer, Bruno

    2012-08-01

    Benzene is a volatile organic compound known to be carcinogenic to humans (Group 1) and may be present in food. In the present study, 455 food samples from the Belgian market were analyzed for benzene contents and some possible sources of its occurrence in the foodstuffs were evaluated. Benzene was found above the level of detection in 58% of analyzed samples with the highest contents found in processed foods such as smoked and canned fish, and foods which contained these as ingredients (up to 76.21 μg kg(-1)). Unprocessed foods such as raw meat, fish, and eggs contained much lower concentrations of benzene. Using the benzene concentrations in food, a quantitative dietary exposure assessment of benzene intake was conducted on a national representative sample of the Belgian population over 15 years of age. The mean benzene intake for all foods was 0.020 μg kg bw d(-1) according to a probabilistic analysis. These values are below the minimum risk level for oral chronic exposure to benzene (0.5 μg kg bw d(-1)).

  3. Benzene and lead exposure assessment among occupational bus drivers in Bangkok traffic.

    Science.gov (United States)

    Muttamara, S; Leong, Shing Tet; Arayasiri, M

    2004-01-01

    Four environmental and biological monitoring sites were strategically established to evaluate benzene and lead exposure assessment at various traffic zones of Bangkok Metropolitan Region(BMR). Biological measurement of 48 non air-conditioned, male bus drivers was carried to study the relationship between individual exposure levels and exposure biomarkers. The study group was further subdivided into four age groups(16-25, 26-35, 36-45 and 46-55 years old) to monitor the age-related exposure effects. A total of 12 unexposed persons were deliberately chosen as the control group. Measurement of unmetobolized benzene in blood and analysis of urinary tt-Muconic acid urine and urinary creatinine are recommended as biomarkers of benzene exposure. Measurement of lead in blood and urine is also recommended for the biological monitoring of lead exposure. During the monitoring period, benzene and lead levels at Yaowarat Road was C6H6: 42.46 +/- 3.88 microg/m3 , Pb: 0.29 +/- 0.03 microg/m3 and decreased to C6H6: 33.5 +/- 1.35 microg/m3, Pb: 0.13 +/- 0.01 microg/m3 at Phahonyothin Road. Significant difference was established between the nonsmoking exposed group and nonsmoking control group for blood benzene concentrations (P < 0.001, two-tailed, Mann-Whiteney U test). Strong correlations were also found between trans-trans-Muconic acid concentrations in post shift samples and atmospheric benzene concentrations. Similarly, good correlation between all of biomarkers and lead level in air is established from automobile emissions. The analysis revealed that among the occupational population in the urban sites, the driver groups were found to have the highest risk of benzene and lead exposures derived from automobile emission. PMID:14971454

  4. Benzene and lead exposure assessment among occupational bus drivers in Bangkok traffic

    Institute of Scientific and Technical Information of China (English)

    SHING TET LEONG; PREECHA LAORTANAKUL

    2004-01-01

    Four environmental and biological monitoring sites were strategically established to evaluate benzene and lead exposure assessment at various traffic zones of Bangkok Metropolitan Region(BMR). Biological measurement of 48 non air-conditioned, male bus drivers was carried to study the relationship between individual exposure levels and exposure biomarkers. The study group was further subdivided into four age groups( 16-25, 26-35, 36-45 and 46-55 years old) to monitor the age-related exposure effects. A total of 12unexposed persons were deliberately chosen as the control group. Measurement of unmetobolized benzene in blood and analysis of urinary tt-Muconic acid urine and urinary creatinine are recommended as biomarkers of benzene exposure. Measurement of lead in blood and urine is also recommended for the biological monitoring of lead exposure.During the monitoring period, benzene and lead levels at Yaowarat Road was C6H6: 42.46 + 3.88 μg/m3 , Pb: 0.29 + 0.03 μg/m3 and decreased to C6 H6: 33.5 ± 1.35 μg/m3 , Pb: O. 13 + 0.01 μg/m3 at Phahonyothin Road. Significant difference was established between the nonsmoking exposed group and nonsmoking control group for blood benzene concentrations ( P < 0.001, two-tailed, Mann-Whiteney U test). Strong correlations were also found between trans-trans-Muconic acid concentrations in post shift samples and atmospheric benzene concentrations. Similarly, good correlation between all of biomarkers and lead level in air is established from automobile emissions.The analysis revealed that among the occupational population in the urban sites, the driver groups were found to have the highest risk of benzene and lead exposures derived from automobile emission.

  5. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Lynn C. [Washington State Univ., Pullman, WA (United States)

    2013-04-01

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit

  6. Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.

    Science.gov (United States)

    Hartle, R

    1993-12-01

    Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020445

  7. Brain met-enkephalin immunostaining after subacute and subchronic exposure to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Gandarias, J.M. de; Echevarria, E.; Martinez-Millan, L.; Casis, L. [Univ. of the Basque Country, Bilbao (Spain); Martinez-Garcia, F. [Univ. of Valencia (Spain)

    1994-01-01

    Benzene is used in a wide variety of domestic and occupational activities, and due to its lipophilic nature, it accumulates in lipid-rich tissues like the brain. In this sense, neurotoxic action has long been associated with organic solvent exposure and it has been shown that benzene, injected in a single dose or during a prolongued administration, modifies the content of dopamine, noradrenaline, serotonin and its main metabolite 5-hydroxy indolacetic acid, in several brain regions of the rat, then revealing a stimulating action on brain monoamine synthesis and turnover. However, information concerning neurotoxic action of benzene exposure in vivo on peptidergic neuromodulatory systems is still lacking. Nevertheless, it has been recently described that subacute benzene exposure in rats generates regional changes in brain aminopeptidase activity. These proteolytic enzymes have been widely associated with metabolic control of neuropeptides and it has been suggested that they could play a role in benzene neurotoxic mechanism by hypothetically changing regional neuropeptide levels. This being the case, we focused on analyzing met-enkephalin immunostaining in different brain regions of the rat after subacute and subchronic administration of benzene. 12 refs., 3 figs.

  8. Dermal exposure assessment to benzene and toluene using charcoal cloth pads

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Tielemans, E.; Vermeulen, R.; Wegh, H.; Kromhout, H.

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and

  9. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  10. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman;

    2004-01-01

    Measurement of urinary excretion of the benzene metabolites S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) has been proposed for assessing benzene exposure, in workplaces with relatively high benzene concentrations. Excretion of S-PMA and t,t-MA in underground workers...... the last shift of the week. Personal benzene exposure was 114 +/- 35 mug/m(3) in surface workers (n = 15) and 190 +/- 50 mug/m(3) in underground workers (n = 15) in measurements made prior to the study. We found t,t-MA excretion to be significantly higher in underground workers after the end of shifts 1...... of benzene metabolites as biomarkers for assessment of exposure at modest levels and warrant for further investigations of health risks of occupational benzene exposure in shale oil mines....

  11. Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Pukkala Eero

    2010-06-01

    Full Text Available Abstract Background A substantial number of epidemiologic studies have provided estimates of the relation between exposure to benzene at work and the risk of leukemia, but the results have been heterogeneous. To bridge this gap in knowledge, we synthesized the existing epidemiologic evidence on the relation between occupational exposure to benzene and the risk of leukemia, including all types combined and the four main subgroups acute myeloid leukemia (AML, acute lymphocytic leukemia (ALL, chronic lymphocytic leukemia (CLL, and chronic myeloid leukemia (CML. Methods A systematic literature review was carried out using two databases 'Medline' and 'Embase' from 1950 through to July 2009. We selected articles which provided information that can be used to estimate the relation between benzene exposure and cancer risk (effect size. Results In total 15 studies were identified in the search, providing 16 effect estimates for the main analysis. The summary effect size for any leukemia from the fixed-effects model was 1.40 (95% CI, 1.23-1.57, but the study-specific estimates were strongly heterogeneous (I2 = 56.5%, Q stat = 34.47, p = 0.003. The random-effects model yielded a summary- effect size estimate of 1.72 (95% CI, 1.37-2.17. Effect estimates from 9 studies were based on cumulative exposures. In these studies the risk of leukemia increased with a dose-response pattern with a summary-effect estimate of 1.64 (95% CI, 1.13-2.39 for low ( 100 ppm-years. In a meta-regression, the trend was statistically significant (P = 0.015. Use of cumulative exposure eliminated heterogeneity. The risk of AML also increased from low (1.94, 95% CI, 0.95-3.95, medium (2.32, 95% CI, 0.91-5.94 to high exposure category (3.20, 95% CI, 1.09-9.45, but the trend was not statistically significant. Conclusions Our study provides consistent evidence that exposure to benzene at work increases the risk of leukemia with a dose-response pattern. There was some evidence of an

  12. Assessment of Benzene Exposures in the Working Environment at Gasoline Stations

    Directory of Open Access Journals (Sweden)

    Sunisa Chaiklieng

    2015-07-01

    Full Text Available This study aimed to investigate benzene exposure in the working environment of workers at gasoline stations. Ambient air (n=20 and inhaled air samples (n=101 of benzene were collected in the city of Khon Kaen, Thailand and analyzed with gas chromatography (GC-FID. Data records were also kept of the amounts of various petroleum products sold. The results of inhaled air benzene indicated the range concentration from 0.03 ppb to 65.71 ppb and showed significant differences between concentrations of each zone (p<0.05. The highest mean concentration was found in suburban stations (35.55 ppb, followed by urban stations (18.19 ppb, and rural stations (2.52 ppb. The highest mean concentration of ambient air was found in urban stations (45.55 ppb. Regarding different job functions, the benzene concentration of fueling workers in the inhalation zone (27.29 ppb was significantly higher than that of cashiers (0.56 ppb. The amounts of petroleum products with high benzene content sold were relatively consistent with inhaled benzene concentration, indicated by the significant differences between suburban and rural zones (p<0.05. In conclusion, this study found the inhaled air benzene concentration ranged 0.03 to 65.71 ppb depending on locations and job functions of workers. Therefore, workers should be protected of adversely affected health from long-term exposure by training on safe working practice and awareness of the different risks associated with their job functions, locations of stations and daily amounts of petroleum products sold.

  13. Human monitoring of exposure to organic solvents. I Benzene, phenol, toluene, cresols and xylenes

    NARCIS (Netherlands)

    Jansen EHJM; de Fluiter P; TOX

    1994-01-01

    In this report the conclusions of a literature study has been summarized concerning the monitoring of the general population to exposure to benzene-like solvents. Since the Dutch population is exposed to concentrations far below the ppm level, the conclusions on the suitability of biomarkers are ba

  14. Exposure to benzene, toluene, xylenes and total hydrocarbons among snowmobile drivers in Sweden.

    Science.gov (United States)

    Eriksson, Kåre; Tjärner, Dan; Marqvardsen, Inger; Järvholm, Bengt

    2003-03-01

    The exposure to benzene, toluene, xylenes and total hydrocarbons among 25 individuals exposed to exhaust from a snowmobile equipped with a two-stroke engine has been evaluated. Sampling was performed by pumped and diffusive sampling in parallel. There was a relatively bad agreement between the two air-sampling methods. The bad agreement can in part be explained by back diffusion of the substances from the samplers, a high face velocity, and deposition of droplets of unburned gasoline onto or in the vicinity of the samplers. The levels of benzene ranged from not detectable (engine equipped with a catalyst could reduce the exposure. To reduce the exposure for the passenger on a sleigh an extension of the exhaust pipe may be effective.

  15. Personal exposure to benzene from fuel emissions among commercial fishers: comparison of two-stroke, four-stroke and diesel engines.

    Science.gov (United States)

    Kirrane, Ellen; Loomis, Dana; Egeghy, Peter; Nylander-French, Leena

    2007-03-01

    Commercial fishers are exposed to unburned hydrocarbon vapors and combustion products present in the emissions from their boat engines. The objective of this study was to measure personal exposure to benzene as a marker of fuel exposure, and to predict exposure levels across categories of carbureted two-stroke, four-stroke and diesel engines. A self-monitoring approach, employing passive monitors, was used to obtain measurements of personal exposure to benzene over time. Mixed-effect linear regression models were used to predict exposure levels, identify significant effects and determine restricted maximum likelihood estimates for within- and between-person variance components. Significant fixed effects for engine type and refueling a car or truck were identified. After controlling for refueling, predicted benzene exposure levels to fishers on boats equipped with two-stroke, four-stroke and diesel engines were 58.4, 38.9 and 15.7 microg/m3, respectively. The logged within-person variance component was 1.43, larger than the between-person variance component of 1.13, indicating that the total variation may be attributable to monitor placement, environmental conditions and other factors that change over time as well as differences between individual work practices. The health consequences of exposure to marine engine emissions are not known. The predicted levels are well below those at which health effects have been attributed, however.

  16. Benzene ground-water exposure study, Nesmith, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, F.L.

    1991-06-01

    Residents whose private well was contaminated with benzene and other volatile organic compounds (VOCs) were evaluated for VOC exposure. The extent to which they may have ingested contaminated water before discovering that the well was contaminated was not certain. However, they reported continuing to use water obtained from the well for bathing and household sanitation purposes after becoming aware of its contamination. Each adult household member completed a survey questionnaire to quantify individual water usage and characterize other potential exposure sources for VOCs. Although results of blood measurements for benzene for three family members showed blood levels of benzene that were within the range found in the third National Health and Nutrition Examination Survey (NHANES III) results, Blood levels for two of the family members were above the 90th percentile value for the reference population. Trichloroethene was not a suspected contaminant, but blood specimens of three study participants showed elevations in the upper 10 percent of the NHANES III population range. Two of the participants gave an occupational history consistent with an exposure potential to these analytes.

  17. Outdoor NO 2 and benzene exposure in the INMA (Environment and Childhood) Asturias cohort (Spain)

    Science.gov (United States)

    Fernández-Somoano, Ana; Estarlich, Marisa; Ballester, Ferran; Fernández-Patier, Rosalía; Aguirre-Alfaro, Amelia; Herce-Garraleta, Ma Dolores; Tardón, Adonina

    2011-09-01

    Air pollution exposure during pregnancy has been linked to a wide range of negative health effects. NO 2, a traffic pollution marker, and benzene, an industrial pollution indicator, stand out among the types of air pollution linked to these effects. The aim of this work is to show the methodology used to assign exposure levels for both pollutants and preliminary reports in the INMA (Environment and Childhood) Asturias cohort in Spain. This cohort consists of 494 pregnant women and their children, who have been recruited and followed since 2004. Air pollution levels were measured at 67 points by means of passive samplers. The mean NO 2 measured value was 21.2 μg m -3 (range 3.5 μg m -3 to 44.5 μg m -3), and the mean benzene value was 2.72 μg m -3 (range 0.18 μg m -3 to 9.17 μg m -3) at urban sampling points and 0.64 μg m -3 (range 0.04 μg m -3 to 2.62 μg m -3) in rural locations. The Pearson correlation coefficient among pollutants was 0.42. Land Use Regression models were built to predict exposure at the homes of pregnant women. Altitude, road distances and land use were part of the models. The percent of explained variance was 52% for NO 2 and 73% for benzene in the urban zones. No residual autocorrelation was found. Predictions were corrected based on the Air Quality Network of the Principality of Asturias taking into account pregnancy seasonality. Exposure indicators were determined for each term and for the entire pregnancy for each woman. Values for urban locations were higher than those for rural and benzene estimations for 5% of the cohort women were above the European Union annual limit value. Air pollution exposure for the INMA-Asturias cohort clearly depends on the place of residence. In particular, benzene concentrations are remarkably high if an individual lives in an urban and industrial area, which is an issue of management intervention and regulatory concern. Exposure assessment for different pollutants will allow us to evaluate potential

  18. Exposure of hematopoietic stem cells to benzene or 1,4-benzoquinone induces gender-specific gene expression.

    Science.gov (United States)

    Faiola, Brenda; Fuller, Elizabeth S; Wong, Victoria A; Pluta, Linda; Abernethy, Diane J; Rose, Jason; Recio, Leslie

    2004-01-01

    Chronic exposure to benzene results in progressive decline of hematopoietic function and may lead to the onset of various disorders, including aplastic anemia, myelodysplastic syndrome, and leukemia. Damage to macromolecules resulting from benzene metabolites and misrepair of DNA lesions may lead to changes in hematopoietic stem cells (HSCs) that give rise to leukemic clones. We have shown previously that male mice exposed to benzene by inhalation were significantly more susceptible to benzene-induced toxicities than females. Because HSCs are targets for benzene-induced cytotoxicity and genotoxicity, we investigated DNA damage responses in HSC from both genders of 129/SvJ mice after exposure to 1,4-benzoquinone (BQ) in vitro or benzene in vivo. 1,4-BQ is a highly reactive metabolite of benzene that can cause cellular damage by forming protein and DNA adducts and producing reactive oxygen species. HSCs cultured in the presence of 1,4-BQ for 24 hours showed a gender-independent, dose-dependent cytotoxic response. RNA isolated from 1,4-BQ-treated HSCs and HSCs from mice exposed to 100 ppm benzene by inhalation showed altered expression of apoptosis, DNA repair, cell cycle, and growth control genes compared with unexposed HSCs. Rad51, xpc, and mdm-2 transcript levels were increased in male but not female HSCs exposed to 1,4-BQ. Males exposed to benzene exhibited higher mRNA levels for xpc, ku80, ccng, and wig1. These gene expression differences may partially explain the gender disparity in benzene susceptibility. HSC culture systems such as the one used here will be useful for testing the hematotoxicity of various substances, including other benzene metabolites.

  19. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, G.K. [Mobil Oil Corp., New Hope, PA (United States); Wong, O. [Applied Health Sciences, Inc., San Mateo, CA (United States)

    1996-12-01

    Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings are consistent with those from several recent case-control studies of cell-type-specific leukemia. 95 refs., 4 figs., 10 tabs.

  20. Meteorological aspects of benzene transport, dispersion and personal exposure in Valdez, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Murray, D.R.; Ball, R.J. [TRC Environmental Corp., Windsor, CT (United States)

    1994-12-31

    The Valdez Air Health Study (VAHS) was conducted in Valdez, Alaska to determine the personal exposure of the residential population of Valdez to certain volatile organic compounds (VOCs). The VAHS used the EPA`s Total Exposure Assessment Methodology (TEAM) with continuous meteorology, air quality and intense tracer measurements to monitor personal and indoor/outdoor concentrations of VOCs in the community. The Valdez fjord is the site of the Alyeska Marine Terminal, the largest crude oil loading terminal in the United States, with a maximum capacity of 2.2 million barrels per day. The Alyeska Marine Terminal is the transfer point for Prudhoe Bay crude oil from the pipeline to marine tankers. During 1990, the terminal and marine tankers were estimated to emit approximately 450 metric tonnes/year of benzene to the air at an average throughput of 1.8 million barrels/day while benzene emissions from other sources in the basin were estimated to be approximately 3 tonnes/year.

  1. Occupational and ambient exposure to benzene and total hydrocarbons in the downstream petroleum industries and effectiveness of controls for exposure at distribution networks

    International Nuclear Information System (INIS)

    Ambient and occupational exposure to benzene and total hydrocarbon in the downstream petroleum industries were evaluated. Benzene is a minor component in gasoline and is considered to be toxic by the Canadian Environmental Protection Act. It has been classified as a human carcinogen by the International Agency for Research on Cancer. Data was collected from the following sectors of the downstream petroleum industry: refineries, pipelines, marine, bulk terminal, rail car, trucks, service stations, underground storage tanks and site remediation. A comparison of facilities with and without vapour controls was included in this study. A review of the existing literature and previous studies pertaining to benzene exposure revealed a notable lack of Canadian studies on occupational and environmental benzene levels. Traditional methods of benzene and total hydrocarbons (THC) occupational sampling has been long term, providing only time-weighted-average exposure data. Such data does not provide information as to which task of a particular job contributes most to workers' exposure. This data could lead to the development of control measures to reduce environmental benzene and gasoline vapour load. Data in this study was divided into three sections: (1) personal occupational long term samples, i.e.greater than one hour in duration, (2) personal occupational short term samples, i.e. less than one hour in duration, and (3) area and ambient samples, i.e. samples collected within or near the facility. 133 refs., 59 tabs., 6 figs

  2. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure

    NARCIS (Netherlands)

    Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, van B.; Groten, J.P.

    2005-01-01

    Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver

  3. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  4. The effect of occlusive and unocclusive exposure to xylene and benzene on skin irritation and molecular responses in hairless rats

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A.; Babu, R.J.; Ahaghotu, E.; Singh, M. [Florida A and M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL (United States)

    2005-05-01

    Aromatic hydrocarbons readily penetrate the skin on dermal exposure, leading to irritation, inflammation and cytotoxicity. The effects of short-term occlusive and long-term unocclusive dermal exposure to benzene and xylene on the skin irritation response (transepidermal water loss (TEWL), skin moisture content and erythema) and cytokine/chemokine expression (interleukin-1{alpha} (IL-1{alpha}), tumor necrosis factor-{alpha} (TNF-{alpha}) and monocyte chemoattractant protein-1 (MCP-1)) were investigated in hairless rats. Occlusive dermal exposure was carried out with 230 {mu}L of the chemicals for 1 h using Hill top chambers. In unocclusive dermal exposure, 15 {mu}L of the chemicals were applied to the skin every 2 h, for 8 h a day, for 4 days. The occlusive dermal exposure revealed a clear difference in the TEWL and erythema response of these chemicals (xylene>benzene) whereas unocclusive exposure revealed similar TEWL and erythema scores for both benzene and xylene. The expression of IL-1{alpha} was elevated 2.5- and 3.8-fold in response to occlusive and unocclusive exposure, respectively, vs control (P<0.01) for both the chemicals (benzene and xylene). Similarly, TNF-{alpha} levels were elevated about 2.4- and 6.0-fold as a result of occlusive and unocclusive exposure, respectively, vs control (P<0.01). These results show that unocclusive exposure induced significantly higher TNF-{alpha} expression than occlusive exposure (P<0.05). The MCP-1 expression in blood was slightly elevated compared with the control group, but this increase was not statistically significant (P>0.05). Similarly, MCP levels in skin were increased approximately 1.7- and 1.8-fold by occlusive and unocclusive exposure, respectively, compared with the control group (P<0.05). Our study demonstrates that the skin irritation profiles of benzene and xylene are similar and unocclusive long-term exposure to small amounts of these chemicals can induce more skin irritation and cytokine response than

  5. Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R. [and others

    1995-12-01

    Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolites are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.

  6. Benzene exposure, assessed by urinary trans,trans-muconic acid, in urban children with elevated blood lead levels

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, V.M.; Fitzwilliam, A.; Peters, H.L.; Groopman, J.D. [Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States)] [and others

    1996-03-01

    A pilot study was performed to evaluate the feasibility of using trans, trans-muconic acid (MA) as a biomarker of environmental benzene exposure. A secondary aim was to provide data on the extent of exposure to selected toxicants in a unique population consisting of inner-city children who were already overexposed to one urban hazard, lead. Potential sources of benzene were assessed by a questionnaire. Exposure biomarkers included urinary MA and cotinine and blood lead. Mean MA was 176.6 {plus_minus} 341.7 ng/mg creatinine in the 79 children who participated. A wide range of values was found with as many as 10.1%, depending on the comparison study, above the highest levels reported in adults not exposed by occupation. Mean MA was increased in children evaluated in the afternoon compared to morning, those at or above the median for time spent playing near the street, and those studied in the first half of the investigation. MA levels were not associated with blood lead or, consistently, with either questionnaire environmental tobacco smoke (ETS) data or cotinine. As expected, the mean blood lead level was elevated (23.6 {mu}g/dl). Mean cotinine was also increased at 79.2 ng/mg creatinine. We conclude that the use of MA as a biomarker for environmental benzene exposure is feasible since it was detectable in 72% of subjects with a wide range of values present. In future studies, correlation of MA with personal air sampling in environmental exposure will be essential to fully interpret the significance of these findings. In addition, these inner-city children comprise a high risk group for exposure to environmental toxicants including ETS, lead, and probably benzene, based on questionnaire sources and its presence in ETS. 22 refs., 5 figs., 4 tabs.

  7. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics

    OpenAIRE

    Vermeulen, Roel; Lan, Qing; Zhang, Luoping; Gunn, Laura; McCarthy, Diane; Woodbury, Ronald L; McGuire, Marielena; Podust, Vladimir N.; Li, Guilan; Chatterjee, Nilanjan; Mu, Ruidong; Yin, Songnian; Rothman, Nathaniel; Smith, Martyn T.

    2005-01-01

    Benzene is an important industrial chemical and environmental contaminant that causes leukemia. To obtain mechanistic insight into benzene's mechanism of action, we examined the impact of benzene on the human serum proteome in a study of exposed healthy shoe-factory workers and unexposed controls. Two sequential studies were performed, each using sera from 10 workers exposed to benzene (overall mean benzene air level >30 ppm) and 10 controls. Serum samples were subjected to anion-exchange fra...

  8. Optimization of SPE for Analysis of Mandelic Acid as a Biomarker of Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    SJ Shahtaheri, M Abdollahi, F Golbabaei, A Rahimi-Froushani, F Ghamari

    2004-10-01

    Full Text Available Ethyl benzene is an important constituent of widely used solvents in industries and laboratories, causing widespread environmental and industrial pollutions. For evaluation of occupational exposure to such pollutants, biological monitoring is an essential process, in which, preparation of environmental and biological samples is one of the most time-consuming and error-prone aspects prior to chromatographic techniques. The use of solid-phase extraction (SPE has been grown and is a fertile technique of sample preparation as it provides better results than those of liquid-liquid extraction (LLE. In this study, SPE using bonded silica has been optimized with regard to sample pH, sample concentration, elution solvent, elution volume, sorbent type, and sorbent mass. Through experimental evaluation, a strong anion exchange silica cartridge (SAX has been found successful in simplifying sample preparation. The present approach proved that, mandelic acid could be retained on SAX sorbent based on specific interaction. Further study was employed using 10% acetic acid to extract the analyte from spiked urine and gave a clean sample for HPLC-UV system. In this study, a high performance liquid chromatography, using reverse-phase column was used. The isocratic run was done at a constant flow rate of 0.85 ml/min, the mobile phase was water/methanol/acetic acid and a UV detector was used, setting at 225 nm. At the developed conditions the extraction recovery was exceeded 98%. The factors were evaluated statically and also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments.

  9. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  10. Carcinogenic effects of benzene: Cesare Maltoni's contributions.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Cesare Maltoni's contributions to understanding, identifying, and characterizing widely used commercial chemicals in experimental animals are among the most important methods developed in the history of toxicology and serve to protect working men and women, the general population, and our environment from hazardous substances. Maltoni developed experimental methods that have reached the "platinum standard" for protection of public health. Benzene was among the 400 or more chemicals that Maltoni and his associates tested for carcinogenicity. In 1976, Maltoni reported that benzene is a potent experimental carcinogen. Maltoni's experiments clearly demonstrated that benzene is carcinogenic in Sprague-Dawley rats, Wistar rats, Swiss mice, and RF/J mice when administered by inhalation or ingestion. Benzene caused carcinomas of the Zymbal gland, oral cavity, nasal cavities; cancers of the skin, forestomach, mammary glands, and lungs; angiosarcomas and hepatomas of the liver; and hemolymphoreticular cancers. Thus, benzene was shown to be a multipotential carcinogen that produced cancers in several species of animals by various routes of administration. On November 2, 1977, Chemical Week reported that Maltoni provided a "bombshell" when he demonstrated the "first direct link" between benzene and cancer. In this paper, I shall summarize early experiments and human studies and reports; Maltoni's experimental contribution to understanding the carcinogenicity of benzene in humans and animals; earlier knowledge concerning benzene toxicity; and benzene standards and permissible exposure levels.

  11. Adverse Health Effects of Benzene Exposure Among Children Following a Flaring Incident at the British Petroleum Refinery in Texas City.

    Science.gov (United States)

    D'Andrea, Mark A; Reddy, G Kesava

    2016-03-01

    This study examined the health effects of benzene exposure among children from a flaring incident at the British Petroleum (BP) refinery in Texas City, Texas. A total of 899 children (benzene exposed, n = 641 and unexposed, n = 258), aged <17 years, were included. Hematological analysis showed that white blood cell (×10(3)/µL) counts were significantly decreased in the exposed children compared with the unexposed children (7.1 ± 2.2 versus 7.6 ± 2.1, P = .001). Similarly, the hemoglobin (g/dL) levels were decreased significantly in the exposed group compared with the unexposed group (12.7 ± 1.3 vs 13.1 ± 1.5, P = .001). Conversely, platelet (×10(3)/µL) counts were increased significantly in the exposed group compared with the unexposed group (318.6 ± 79.8 versus 266.9 ± 58.8, P = .001). Hepatic enzymes were also significantly elevated among exposed children compared with the unexposed children. These findings suggest that children exposed to benzene are at a higher risk of developing both hepatic and bone marrow-related disorders.

  12. Biochemical toxicity of benzene.

    Science.gov (United States)

    Rana, S V S; Verma, Yeshvandra

    2005-04-01

    Human exposure to benzene in work environment is a global occupational health problem. After inhalation or absorption, benzene targets organs viz. liver, kidney, lung, heart and brain etc. It is metabolized mainly in the liver by cytochrome P450 multifunctional oxygenase system. Benzene causes haematotoxicity through its phenolic metabolites that act in concert to produce DNA strand breaks, chromosomal damage, sister chromatid exchange, inhibition of topoisomerase II and damage to mitotic spindle. The carcinogenic and myelotoxic effects of benzene are associated with free radical formation either as benzene metabolites or lipid peroxidation products. Benzene oxide and phenol have been considered as proheptons. Liver microsomes play an important role in biotransformation of benzene whereas in kidney, it produces degenerative intracellular changes. Cohort studies made in different countries suggest that benzene induces multiple myeloma in petrochemical workers. Though extensive studies have been performed on its toxicity, endocrinal disruption caused by benzene remains poorly known. Transgenic cytochrome P450 IIE1 mice may help in understanding further toxic manifestations of benzene.

  13. Effects of combined exposure to formaldehyde and benzene on immune cells in the blood and spleen in Balb/c mice.

    Science.gov (United States)

    Wen, Huaxiao; Yuan, Langyue; Wei, Chenxi; Zhao, Yun; Qian, Yan; Ma, Ping; Ding, Shumao; Yang, Xu; Wang, Xianliang

    2016-07-01

    Formaldehyde and benzene are the two major indoor air pollutants due to their prevalence and toxicity. This study aimed to explore the toxic effect on the spleen and relevant immune responses of Balb/c mice caused by exposure to a combination of formaldehyde and benzene. Balb/c mice were divided randomly into five groups (n=9/group): blank control group (Ctrl); solvent ([corn] Oil) control; formaldehyde only (FA, 3mg/m(3)); benzene only (BZ, 150mg/kg BW); and, formaldehyde+benzene group (FA+BZ). Exposures were performed for 8h/day, 5 day/week, for 2 weeks. Tail blood was collected after the final exposure; 24-h later, the mice were euthanized to permit assessment of a variety of immune endpoints. The endpoints' three areas were: (1) in living mice, body weight and delayed-type hypersensitivity (DTH) responses; (2) in blood, immune cell counts and serum antibody levels (serum hemagglutination); and, (3) in spleen samples, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), caspase-3 (cell apoptosis) levels and lymphocyte proliferation. In this study we fund (1) BZ and FA+BZ exposure can lead to the reduction in the number of some immune cells in peripheral blood; (2) Formaldehyde has certain synergistic effects on benzene-induced cytotoxicity in peripheral blood, (3) FA, BZ and FA+BZ exposure can lead to ROS and GSH depletion in spleen cells, and spleen cell apoptosis (caspase-3 increased) may be one of the downstream events, decreased splenic lymphocyte proliferation; and (4) the FA+BZ combined exposure can lead to the decreased body weight, serum antibody level (by serum hemagglutination assay). PMID:27343751

  14. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  15. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  16. Occupational exposure to benzene: a prevention program for employees and contractors; PPEOB - Programa de Prevencao a Exposicao Ocupacional ao Benzeno para Empregados Proprios e Contratados

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Paulo Sergio de; Silva, Edson Ferreira da; Patto, Claudio Monteiro [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    PETROBRAS/TRANSPETRO Pipelines and Terminals has 500 regular employees and 5.064 out sourced workers in its Southeast Division. The out sourced employees work through 125 contracts involving a wide range of activities such as maintenance, operational, pipeline launching , engineering, administrative and auxiliary services. Among these workers, 200 people are subjected to benzene occupational exposure, which might be present in the products we transport in our pipelines. Benzene is recognized as a carcinogen according to ACGIH and Brazilian Ministry of Labour regulation NR- 15. Exposure to benzene in an uncontrolled way, be it chronic or sharp, may affect the worker's health such as: hematological alterations, neoplasys, neurobehavior alterations. Our program PPEOB (acronym in Portuguese for benzene occupational exposure prevention program) involved the work force and fosters health by anticipation, recognition, evaluation and control of the situations that may result in injuries. Further actions include the acquisition of equipment for benzene detection in the air or diluted in liquids and the introduction of new technologies for process control. The priority is the acquisition of equipment for collective protection not forgetting the individual protection equipment (IPE) and the required training. Implementation of this program counted with the effective participation of managers, contract supervisors and HSE professionals whose main task was to advise all involved parts. Furthermore, an auto-evaluation was released in order to assess the adherence of the PPEOB related to the facility reality. Since a suitable level of adherence is reached, the PPEOB can be used as a standard in the whole TRANSPETRO. (author)

  17. Effect of CYP2E1 induction by ethanol on the immunotoxicity and genotoxicity of extended low-level benzene exposure.

    Science.gov (United States)

    Daiker, D H; Shipp, B K; Schoenfeld, H A; Klimpel, G R; Witz, G; Moslen, M T; Ward, J B

    2000-02-11

    Potential additive effects of ethanol consumption, a common life-style factor, and low-level benzene exposure, a ubiquitous environmental pollutant, were investigated. Ethanol is a potent inducer of the cytochrome P-450 2E1 (CYP2E1) enzyme, which bioactivates benzene to metabolites with known genotoxicity and immunotoxicity. A liquid diet containing 4.1% ethanol was used to induce hepatic CYP2E1 activity by 4-fold in female CD-1 mice. Groups of ethanol-treated or pair-fed control mice were exposed to benzene or filtered air in inhalation chambers for 7 h/d, 5 d/wk for 6 or 11 wk. The initial experiment focused on immunotoxicity endpoints based on literature reports that ethanol enhances high-dose benzene effects on spleen, thymus, and bone marrow cellularity and on peripheral red blood cell (RBC) and white blood cell (WBC) counts. No statistically significant alterations were found in spleen lymphocyte cellularity, subtype profile, or function (mitogen-induced proliferation, cytokine production, or natural killer cell lytic activity) after 6 wk of ethanol diet, 0.44 ppm benzene exposure, or both. This observed absence of immunomodulation by ethanol alone, a potential confounding factor, further validates our previously established murine model of sustained CYP2E1 induction by dietary ethanol. Subsequent experiments involved a 10-fold higher benzene level for a longer time of 11 wk and focused on genotoxic endpoints in known target tissues. Bone marrow and spleen cells were evaluated for DNA-protein cross-links, a sensitive transient index of genetic damage, and spleen lymphocytes were monitored for hprt-mutant frequency, a biomarker of cumulative genetic insult. No treatment-associated changes in either genotoxic endpoint were detected in animals exposed to 4.4 ppm benzene for 6 or 11 wk with or without coexposure to ethanol. Thus, our observations suggest an absence of genetic toxicity in CD-1 mice exposed to environmentally relevant levels of benzene with or

  18. The impact of a Bus Rapid Transit system on commuters' exposure to Benzene, CO, PM 2.5 and PM 10 in Mexico City

    Science.gov (United States)

    Wöhrnschimmel, Henry; Zuk, Miriam; Martínez-Villa, Gerardo; Cerón, Julia; Cárdenas, Beatriz; Rojas-Bracho, Leonora; Fernández-Bremauntz, Adrián

    Carbon monoxide (CO), benzene and other volatile organic compounds (VOCs) and suspended particles PM 2.5 and PM 10 were measured inside public transportation vehicles, before and after a new Bus Rapid Transit (BRT) system was implemented in Mexico City in June 2005. The objective was to evaluate the BRT system's impact on commuters' exposure to these air pollutants. The BRT system replaced conventional transport modes along 20 km of Insurgentes Avenue, and features confined corridors and new articulated diesel buses. We assessed the impact of the transportation mode on commuters' exposure using least squares regression models. We also analyzed the chemical composition of VOCs to evaluate the possible origin of these species. The implementation of the BRT system resulted in reductions in commuters' exposure to CO, benzene and PM 2.5 ranging between 20% and 70%. No significant reductions in PM 10 exposure were observed. Lower commuting times further reduced total commuters' exposure. Major sources affecting VOCs inside all transport modes are likely to be related to traffic and to emissions from the use of Liquefied Petroleum Gas. The results suggest that BRT systems could in general be an effective means of reducing human exposure to traffic related air pollutants and associated health impacts.

  19. Evaluation of benzene exposure in petrol pump attendants and in mechanics by urinary trans, trans-muconic acid (t, t-MA determination

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2004-12-01

    Full Text Available

    Occupational exposure to benzene in petrol pump attendants and in mechanics was studied by examining the benzene content in both the air breathed and in the urinary metabolite trans,trans-muconic acid (t,t-MA. Thirty petrol pump attendants and thirty mechanics (as exposed workers and thirty adult male office workers (as non exposed workers were involved in the study. Measures were taken at the begin and at the end of the working shifts.

     The benzene concentrations in the breathing air samples varied from 2 to 88 μg m-3, lower than the EU acceptable limit for occupational environment. The average urinary t,t-MA in the petrol pump attendants at the begin and at the end of the working shifts ranged between 133 ± 69 and 255 ± 174 μg g-1 creatinine and in the mechanics between 204 ± 139 and 300 ± 211 μg g-1 creatinine, respectively.

    In all the participants the mean levels of urinary t,t-MA at the end of the working shifts were significantly higher than those at the beginning. In the exposed workers mean levels of urinary t,t-MA were significantly higher than in those of the non-exposed workers. The influence of the smoking was demonstrated by the urinary t,t-MA levels in smoking non-exposed subjects.

  20. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast.

    Directory of Open Access Journals (Sweden)

    Matthew North

    Full Text Available Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ, catechol (CAT and 1,2,4-benzenetriol (BT, in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(PH:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.

  1. Benzene vapor recovery and processing

    International Nuclear Information System (INIS)

    The National Emissions Standards for Hazardous Air Pollutants, or NESHAPs, have provided a powerful motivation for interest in, and attention to, benzene vapor emissions in recent times. Benzene and its related aromatics are volatile organic compounds (VOCs), which marks them for surveillance as potential contributors to air pollution. In addition, benzene is a suspected carcinogen, which applies a special urgency to its control. The regulations governing the control of benzene emissions were issued as Title 40, Code of Federal Regulations, Part 61, subpart Y (Storage Vessels); subpart BB (Transfer Operations); and subpart FF (Waste Operations). These regulations specify very particular emission reduction guidelines for various generating sources. The problem in the hydrocarbon processing industry is to identify significant sources of benzene vapors in plants, and then to collect and process these vapors in an environmentally acceptable manner. This paper discusses various methods for collecting benzene fumes in these facilities

  2. Albumin Adducts of Electrophilic Benzene Metabolites in Benzene-Exposed and Control Workers

    OpenAIRE

    Lin, Yu-Sheng; Vermeulen, Roel; Tsai, Chin H.; Waidyanatha, Suramya; Lan, Qing; Rothman, Nathaniel; Smith, Martyn T.; Zhang, Luoping; Shen, Min; Li, Guilan; Yin, Songnian; Kim, Sungkyoon; Rappaport, Stephen M.

    2006-01-01

    Background Metabolism of benzene produces reactive electrophiles, including benzene oxide (BO), 1,4-benzoquinone (1,4-BQ), and 1,2-benzoquinone (1,2-BQ), that are capable of reacting with blood proteins to produce adducts. Objectives The main purpose of this study was to characterize relationships between levels of albumin adducts of these electrophiles in blood and the corresponding benzene exposures in benzene-exposed and control workers, after adjusting for important covariates. Because se...

  3. Effect of hydrolysis on identifying prenatal cannabis exposure

    OpenAIRE

    Gray, Teresa R.; Barnes, Allan J.; Huestis, Marilyn A.

    2010-01-01

    Identification of prenatal cannabis exposure is important due to potential cognitive and behavioral consequences. A two-dimensional gas chromatography–mass spectrometry method for cannabinol, Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 8β,11-dihydroxy-THC, and 11-nor-9-carboxy-THC (THCCOOH) quantification in human meconium was developed and validated. Alkaline, enzymatic, and enzyme–alkaline tandem hydrolysis conditions were optimized with THC- and THCCOOH-glucuronide reference...

  4. Effects of benzene inhalation on murine pluripotent stem cells.

    Science.gov (United States)

    Cronkite, E P; Inoue, T; Carsten, A L; Miller, M E; Bullis, J E; Drew, R T

    1982-03-01

    Effects of benzene inhalation on mouse pluripotent hematopoietic stem cells have been evaluated. Male mice 8--12 wk old were exposed to 400 ppm benzene for 6 h/d, 5 d/wk, for up to 9 1/2 wk. At various time intervals exposed and control animals were killed, and cardiac blood was evaluated for changes in white blood cell (WBC) and red blood cell (RBC) content. In addition, femora and tibiae were evaluated for total marrow cellularity, stem cell content (as measured by the spleen colony technique), and the percent of stem cells in DNA synthesis (as determined by the tritiated thymidine cytocide technique). Exogenous spleen colonies grown from marrow of exposed animals were counted, identified, and scored by histological type. Exposure to benzene caused significant depressions of RBCs and WBCs throughout the exposure period, which continued for at least 14 d after exposure. Bone marrow cellularity and stem cell content were also depressed in exposed animals throughout the study. Tritiated thymidine cytocide of spleen colony-forming cells was generally increased in exposed animals, perhaps indicating a compensatory response to the reduction of circulating cells. Spleen colonies of all types were depressed after exposure to benzene. The significance of the reduction in cellularity, stem cell content, and changes in morphology of spleen colonies is discussed in relation to cellular toxicity and residual injury.

  5. Protecting Critical Infrastructure by Identifying Pathways of Exposure to Risk

    Directory of Open Access Journals (Sweden)

    Philip O’Neill

    2013-08-01

    Full Text Available Increasingly, our critical infrastructure is managed and controlled by computers and the information networks that connect them. Cyber-terrorists and other malicious actors understand the economic and social impact that a successful attack on these systems could have. While it is imperative that we defend against such attacks, it is equally imperative that we realize how best to react to them. This article presents the strongest-path method of analyzing all potential pathways of exposure to risk – no matter how indirect or circuitous they may be – in a network model of infrastructure and operations. The method makes direct use of expert knowledge about entities and dependency relationships without the need for any simulation or any other models. By using path analysis in a directed graph model of critical infrastructure, planners can model and assess the effects of a potential attack and develop resilient responses.

  6. Fuel Dependence of Benzene Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  7. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene and their dose-effects on oxidative stress damage in kindergarten-aged children in Guangzhou, China.

    Science.gov (United States)

    Li, Junnan; Lu, Shaoyou; Liu, Guihua; Zhou, Yuanxiu; Lv, Yanshan; She, Jianwen; Fan, Ruifang

    2015-08-15

    Polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) are ubiquitous toxic pollutants in the environment. Children are sensitive and susceptible to exposure to these contaminants. To investigate the potential oxidative DNA damage from the co-exposure of PAHs and BT in children, 87 children (aged 3-6) from a kindergarten in Guangzhou, China, were recruited. Ten urinary PAHs and four BT metabolites, as well as 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage)in urine, were determined using a liquid chromatography tandem mass spectrometer. The results demonstrated that the levels of PAHs and BT in children from Guangzhou were 2-30 times higher than those in children from the other countries based on a comparison with recent data from the literature. In particular, the difference is more substantial for pyrene and volatile BT. Co-exposure to PAHs and BT could lead to additive oxidative DNA damage. Significant dose-effects were observed between the sum concentration of urinary monohydroxylated metabolites of PAHs (∑OH-PAHs), the sum concentration of the metabolites of BT (∑BT) and 8-OHdG levels. Every one percent increase in urinary PAHs and BT generated 0.33% and 0.02% increases in urinary 8-OHdG, respectively. We also determined that the urinary levels of PAHs and BT were negatively associated with the age of the children. Moreover, significant differences in the levels of ∑OH-PAHs and ∑BT were determined between 3- and 6-year-old children (pinhalation frequencies. In conclusion, exposure to PAHs or BT could lead to oxidative DNA damage, and 8-OHdG is a good biomarker for indicating the presence of DNA damage. There exists a significant dose-effect relationship between PAH exposure, BT exposure and the concentration of 8-OHdG in urine. Toddlers (3-4 years old) face a higher burden of PAH and BT exposure compared with older children.

  8. Biological monitoring of workers exposed to benzene in the coke oven industry.

    OpenAIRE

    Drummond, L; Luck, R; Afacan, A. S.; Wilson, H K

    1988-01-01

    Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the co...

  9. Effect of exposure to low concentration of benzene, toluene and xylene on the health of workers%低浓度苯、甲苯和二甲苯对接触工人健康的影响

    Institute of Scientific and Technical Information of China (English)

    杨云贵; 王志森

    2012-01-01

    目的 探讨低浓度“三苯”(苯、甲苯、二甲苯)对作业工人的健康危害.方法 对接苯工厂作业场所中“三苯”浓度进行测定,以439名三苯接触工人为苯接触组,以338名非接苯工人为对照组,对2组工人进行职业健康检查并对体检资料进行对照分析.结果 接苯工厂内各检测点的“三苯”8h时间加权平均浓度(C-TWA)及短时间接触浓度(C-STEL)的检测值均低于国家标准.苯接触组工人白细胞计数下降检出率为14.58%,非接触组为8.88%,差异有统计学意义;苯接触组工人血红蛋白含量下降检出率为19.59%,非接触组为8.28%,差异有统计学意义.苯接触组女工白细胞计数下降检出率为18.07%,男工为10.53%,差异有统计学意义;苯接触组女工血红蛋白含量下降检出率为32.53%,男工2.63%,差异有统计学意义;苯接触组男工血清丙氨酸转氨酶(ALT)异常率为7.89%,女工0.80%,差异有统计学意义.苯接触组不同工龄工人白细胞计数下降及血红蛋白含量下降存在线性剂量-反应关系.结论 长期接触低浓度的“三苯”也会损害作业工人的身体健康,应加强防护措施,加大健康监护力度.%[ Objective]To discuss the harm of exposure to low concentration of benzene, toluene and xylene on the health of workers. [Methods]The concentrations of benzene, toluene and xylene in the work places of factory with benzene exposure were detected. The benzene exposure group included 439 workers exposed to benzene, toluene and xylene, and the control group included 338 workers who have not been exposed to benzene. Two groups received the occupational health examination, and the results were investigated by a comparative analysis. [ Results]The 8h time weighted average concentration (C-TWA) and short time exposure limit concentration (C-STEL) of benzene, toluene and xylene in all monitoring points of factory were lower than the national standards. The

  10. Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure.

    Directory of Open Access Journals (Sweden)

    Jingli Liu

    Full Text Available Bisphenol A (BPA is a widespread endocrine-disrupting chemical used as the building block for polycarbonate plastics. Epidemiological evidence has correlated BPA exposure with higher risk of heart disease and type 2 diabetes. However, it remains unknown whether there are critical windows of susceptibility to BPA exposure on the development of dysglycemia. This study was an attempt to investigate the critical windows and the long-term consequences of perinatal exposure to BPA on glucose homeostasis. Pregnant mice were given either vehicle or BPA (100 µg/kg/day at different time of perinatal stage: 1 on days 1-6 of pregnancy (P1-P6, preimplantation exposure; 2 from day 6 of pregnancy until postnatal day (PND 0 (P6-PND0, fetal exposure; 3 from lactation until weaning (PND0-PND21, neonatal exposure; and 4 from day 6 of gestation until weaning (P6-PND21, fetal and neonatal exposure. At 3, 6 and 8 months of age, offspring in each group were challenged with glucose and insulin tolerance tests. Then islet morphometry and β-cell function were measured. The glucose homeostasis was impaired in P6-PND0 mice from 3 to 6 months of age, and this continued to 8 months in males, but not females. While in PND0-PND21 and P6-PND21 BPA-treated groups, only the 3-month-old male offspring developed glucose intolerance. Moreover, at the age of 3 months, perinatal exposure to BPA resulted in the increase of β-cell mass mainly due to the coordinate changes in cell replication, neogenesis, and apoptosis. The alterations of insulin secretion and insulin sensitivity, rather than β-cell mass, were consistent with the development of glucose intolerance. Our findings suggest that BPA may contribute to metabolic disorders relevant to glucose homeostasis and the effects of BPA were dose, sex, and time-dependent. Fetal development stage may be the critical window of susceptibility to BPA exposure.

  11. Small scale spatial gradients of outdoor and indoor benzene in proximity of an integrated steel plant.

    Science.gov (United States)

    Licen, Sabina; Tolloi, Arianna; Briguglio, Sara; Piazzalunga, Andrea; Adami, Gianpiero; Barbieri, Pierluigi

    2016-05-15

    Benzene is known as a human carcinogen, whose annual mean concentration exceeded the EU limit value (5 μg/m(3)) only in very few locations in Europe during 2012. Nevertheless 10% to 12% of the EU-28 urban population was still exposed to benzene concentrations above the WHO reference level of 1.7 μg/m(3). WHO recommended a wise choice of monitoring stations positioning in proximity of "hot spots" to define and assess the representativeness of each site paying attention to micro-scale conditions. In this context benzene and other VOCs of health concern (toluene, ethylbenzene, xylenes) concentrations have been investigated, with weekly passive sampling for one year, both in outdoor and indoor air in inhabited buildings in close proximity (180 m far up to 1100 m) of an integrated steel plant in NE of Italy. Even though the outdoor mean annual benzene concentration was below the EU limit in every site, in the site closest to the works the benzene concentration was above 5 μg/m(3) in 14 weeks. These events were related to a benzene over toluene ratio above one, which is diagnostic for the presence of an industrial source, and to meteorological factors. These information pointed at the identification of the coke ovens of the plant as the dominant outdoor source of benzene. Benzene gradients with the increasing distance from coke ovens have been found for both outdoor and indoor air. Linear models linking outdoor to indoor benzene concentrations have been then identified, allowing to estimate indoor exposure from ambient air benzene data. In the considered period, a narrow area of about 250 m appeared impacted at a higher degree than the other sites both considering outdoor and indoor air. Passive BTEX sampling permits to collect information on both ambient air and daily life settings, allowing to assemble a valuable data support for further environmental cost-benefit analyses. PMID:26930323

  12. 职业接触苯与非霍奇金淋巴瘤关联的Meta分析%The Meta analogy of relationship between benzene exposure and non- Hodgkin lymphoma(NHL)

    Institute of Scientific and Technical Information of China (English)

    王建锋

    2015-01-01

    目的:综合评价接触苯苯与非霍奇金淋巴瘤(non- Hodgkin lymphoma NHL)之间的关联。方法:检索国内外各大类型数据库,获得有关职业接触苯与非霍奇金淋巴瘤(NHL)关系的文献,采用Revman 4.2软件对筛选纳入的相关文献进行Meta分析,并计算合并O R值及其95%可信区间,倒漏斗图法定性评价发表性偏倚。结果:共纳入原始文献11篇,累计病例5916例,对照10346例。经Meta分析得出苯的暴露与非霍奇金淋巴瘤(NHL)发病合并OR值为1.02,95%可信区间为0.92-1.14。结论:苯的暴露与非霍奇金淋巴瘤(NHL)之间不存在相关关系,并不能证明苯暴露是非霍奇金淋巴瘤(NHL)的危险因素之一。%Objective To establish To evaluate the relationship between benzene exposure and non- Hodgkin lymphoma(NHL). Methods Literatures that reported on the associations between benzene exposure and non- Hodgkin lymphoma(NHL) were retrieved by searching international and national databases. Meta-analysis was done by RevMan 4.2 software. The pooled OR values and 95%CI were calculated,and published bias was assessed by funnel plots.Results Totally 11 studies with 5 916 cases and 10 346 controls were enrolled. The analysis showed that the pooled OR of the association between benzene exposure and non- Hodgkin lymphoma(NHL) was 1.02 with the 95%CI of 0.92 to 1.14.Conclusion Benzene exposure may not be associated with non- Hodgkin lymphoma(NHL). benzene exposure may not be a potential risk factor for non- Hodgkin lymphoma(NHL).

  13. Chemical of current interest--benzene.

    Science.gov (United States)

    Marcus, W L

    1987-03-01

    Benzene is one of the world's major commodity chemicals. It is derived from petroleum and coal and is used both as a solvent and as a starting material in chemical syntheses. The numerous industrial uses of benzene over the last century need not be recounted here, but the most recent addition to the list of uses of benzene is as a component in a mixture of aromatic compounds added to gasoline for the purpose of replacing lead compounds as anti-knock ingredients. The best known and longest recognized toxic effect of benzene is the depression of bone marrow function seen in occupationally exposed individuals. These people have been found to display anemia, leucopenia, and/or thrombocytopenia. When pancytopenia, i.e., the simultaneous depression of all three cell types, occurs and is accompanied by bone marrow necrosis, the syndrome is called aplastic anemia. In addition to observing this decrease in humans and relating it to benzene exposure, it has been possible to establish animal models which mimic the human disease. The result has been considerable scientific investigation into the mechanism of benzene toxicity. Although the association between benzene exposure and aplastic anemia has been recognized and accepted throughout most of this century, it is only recently that leukemia, particularly of the acute myelogenous type, has been related to benzene. The acceptance of benzene as an etiological agent in aplastic anemia in large measure derives from our ability to reproduce the disease in most animals treated with sufficiently high doses of benzene over the necessary time period. Unfortunately, despite extensive efforts in several laboratories, it has not been possible to establish a reproducible, reliable model for the study of benzene-induced leukemia. The recent demonstration that several animals exposed to benzene either by inhalation or in the drinking water during studies by Drs. B. Goldstein and C. Maltoni suggests that such a model may be forthcoming

  14. Sources of toxicity and exposure information for identifying chemicals of high concern to children

    International Nuclear Information System (INIS)

    Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was

  15. Establishment of biological limit value of urinary S-phenylmercapturic acid for occupational exposure to benzene%职业接触苯尿中苯巯基尿酸生物限值研究

    Institute of Scientific and Technical Information of China (English)

    梅勇; 宋世震; 陈斯琦; 叶玉杰; 叶方立

    2009-01-01

    Objective To establish the biological exposure limit values of urinary S-phenylmercap-turic acid (SPMA) for assessing occupational exposure to benzene. Methods Study participants were selected from 55 workers of benzene exposures below 32.5 mg/m~3. The concentration of personal exposure to benzene was measured by gas chromatography and sampled with personal sampler. The urine samples were collected at the end of work shift and individual internal exposure level was evaluated by determination of SPMA in urine by HPLC/MS method. Comparison of external and internal exposure was assessed by the relative internal expo-sure(RIE) index. Results The benzene exposure level ranged from 0.71 to 32.17 mg/m~3 (geometric mean 6.98 mg/m~3, median 7.50 mg/m~3). The urinary SPMA at the end of the work shift were significantly correlated with benzene exposure, Y (μg/g Cr)=-8.625 + 18.367X (mg/m~3), r=0.8035, (P<0.01). According to the occupational exposure limit for benzene in China and calculation of regression equation, the expected value of urinary SPMA was 101.58 μg/g Cr. Mean level of biotransformation of per mg/m~3 benzene to urinary SPMA was 18.23 μg/g Cr and the metabolic efficiencies of benzene transformation to urinary SPMA decreased with benzene exposure in-creased. Conclusion Based on abroad documents and data, biological limit value for occupational exposure to benzene in China is recommended as follows: 100 μg/g Cr (47 μmol/mol Cr) for SPMA in the urine at the end of shift.%目的 研制我国职业接触苯工人尿中苯巯基尿酸(SPMA)的生物限值.方法 在苯作业车间选择空气中苯浓度在32.5 mg/m~3以下接苯工人55人,应用个体采样器采集空气样品,用气相色谱法检测作业者个体苯接触水平,同时采集当日工人班后尿,应用高压液相色谱/质谱法(HPLC/MS)测定尿中SPMA含量以评价苯接触者的内暴露水平,内外暴露水平的比较用相对内暴露指数(RIE)加以评定.结果 接苯工人工作

  16. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene,...

  17. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject...

  18. Determination of exposure to benzene, toluene and xylenes in Turkish primary school children by analysis of breath and by environmental passive sampling.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Konings, J.; Demirel, G.; Gaga, E.O.; Anzion, R.B.M.; Peer, P.G.M.; Dogeroglu, T.; Ornektekin, S.; Doorn, W. van

    2010-01-01

    Benzene, toluene, m/p-xylene and o-xylene (BTX) are toxic volatile organic compounds and ubiquitous air pollutants. Smoking and consumer products are indoor sources of BTX, whereas traffic and industrial activities are primary sources contributing to outdoor levels of BTX. The aim of this study was

  19. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    NARCIS (Netherlands)

    Hendriksen, P.J.M.; Freidig, A.P.; Jonker, D.; Thissen, U.; Bogaards, J.J.P.; Mumtaz, M.M.; Groten, J.P.; Stierum, R.H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were

  20. Effects of inhalation exposure to a binary mixture of benzene and toluene on vitamin a status and humoral and cell-mediated immunity in wild and captive American kestrels.

    Science.gov (United States)

    Olsgard, Mandy L; Bortolotti, Gary R; Trask, Brenda R; Smits, Judit E G

    2008-01-01

    Benzene and toluene are representative volatile organic compounds (VOC) released during production, storage, and transportation associated with the oil and gas industry and are chemicals of concern, as they are released in greater and possibly more biologically significant concentrations than other compounds. Most studies of air pollution in high oil and gas activity areas have neglected to consider risks to birds, including top-level predators. Birds can be used as highly sensitive monitors of air quality and since the avian respiratory tract is physiologically different from a rodent respiratory tract, effects of gases cannot be safely extrapolated from rodent studies. Wild and captive male American kestrels were exposed for approximately 1 h daily for 28 d to high (rodent lowest-observed-adverse-effect level [LOAEL] of 10 ppm and 80 ppm, respectively) or environmentally relevant (0.1 ppm and 0.8 ppm, respectively) levels of benzene and toluene. Altered immune responses characteristic of those seen in mammalian exposures were evident in kestrels. A decreased cell-mediated immunity, measured by delayed-type hypersensitivity testing, was evident in all exposed birds. There was no effect on humoral immunity. Plasma retinol levels as measured by high-performance liquid chromatography (HPLC) analysis were decreased in wild and captive kestrels exposed to the rodent LOAEL for combined benzene and toluene. This study indicates that American kestrels are sensitive to combined benzene and toluene. The study also illustrates the need for reference concentrations for airborne pollutants to be calculated, including sensitive endpoints specific to birds. Based on these findings, future studies need to include immune endpoints to determine the possible increased susceptibility of birds to inhaled toxicants.

  1. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure

    NARCIS (Netherlands)

    Jong, W.H. de; Arts, J.H.E.; Klerk, A. de; Schijf, M.A.; Ezendam, J.; Kuper, C.F.; Loveren, H. van

    2009-01-01

    There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also

  2. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    OpenAIRE

    Barnum, D A; Johnson, R. E.; Brooks, B W

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control a...

  3. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.;

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  4. Behavioral changes in mice following benzene inhalation.

    Science.gov (United States)

    Evans, H L; Dempster, A M; Snyder, C A

    1981-01-01

    Although benzene is an important occupational health hazard and a carcinogen, the possibility that behavioral changes may forewarn of the later-occurring hematological changes has not been investigated. A time-sampling protocol was used to quantify the occurrence of 7 categories of behavior in the homecage following daily 6-hr exposures to two strains of adult mice (CD1 and C57BL/6J). The behavioral categories were stereotypic behavior, sleeping, resting, eating, grooming, locomotion, and fighting. The inhalation exposures were designed to reflect occupational exposure. Dynamic vapor exposure techniques in standard inhalation chambers were employed. Exposure to 300 or 900 ppm benzene increased the occurrence of eating and grooming and reduced the number of mice that were sleeping or resting. The responses to benzene of both the CD1 and the C57 strains were similar. The positive findings with benzene inhalation indicate the utility of behavioral investigations into the toxicology of inhaled organic solvents. The methods described herein illustrate an objective observation of animal behavior that is capable of documenting toxicity and of guiding detailed follow-up studies aimed at mechanism of action.

  5. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...... a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC...

  6. Molecular epidemiology identifies HIV transmission networks associated with younger age and heterosexual exposure among Korean individuals.

    Science.gov (United States)

    Chin, Bum Sik; Chaillon, Antoine; Mehta, Sanjay R; Wertheim, Joel O; Kim, Gayeon; Shin, Hyoung-Shik; Smith, Davey M

    2016-10-01

    To evaluate if HIV transmission networks could be elucidated from data collected in a short time frame, 131 HIV-1 pol sequences were analyzed which were generated from treatment-naïve Korean individuals who were sequentially identified over 1 year. A transmission linkage was inferred when there was a genetic distance <1.5% and a total of 16 clusters, involving 39/131 (29.8%), were identified. Younger age and heterosexual exposure were independently related with clustering in the inferred network, which demonstrated that molecular epidemiology with currently generated data (i.e., drug resistance genotypes) can be used to identify local transmission networks, even over a short timeframe. J. Med. Virol. 88:1832-1835, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990771

  7. Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities

    International Nuclear Information System (INIS)

    A survey of radioactivity in groundwater (110 sites) was conducted as a precursor to providing a baseline of radiation exposure in rural and remote communities in Queensland, Australia, that may be impacted upon by exposure pathways associated with the supply, treatment, use and wastewater treatment of the resource. Radionuclides in groundwater, including 238U, 226Ra, 222Rn, 228Ra, 224Ra and 40K were measured and found to contain activity concentration levels of up to 0.71 BqL-1, 0.96 BqL-1, 108 BqL-1, 2.8 BqL-1, 0.11 BqL-1 and 0.19 BqL-1 respectively. Activity concentration results were classified by aquifer lithology, showing correlation between increased radium isotope concentration and basic volcanic host rock. The groundwater survey and mapping results were further assessed using an investigation assessment tool to identify seven remote or rural communities that may require additional radiation dose assessment beyond that attributed to ingestion of potable water. - Research highlights: → We studied the concentration of naturally occurring radioactivity in groundwater in Queensland, Australia. → Groundwater radioactivity concentrations were classified by aquifer type, location and magnitude. → Radioactivity concentration in groundwater was used to develop a tool to determine the potential for elevated radiation exposure to rural and remote communities, based on a case study of a reference site. → Of 110 groundwater bores tested, seven were assessed as requiring further community dose assessment.

  8. Facts about Benzene

    Science.gov (United States)

    ... Lab Info Chemical Emergencies A–Z Abrin Adamsite Ammonia Arsenic Arsine Barium Benzene Brevetoxin Bromine BZ Carbon ... used to make some types of lubricants, rubbers, dyes, detergents, drugs, and pesticides. How you could be ...

  9. Benzene Monitor System report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.

    1992-10-12

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

  10. Investigation into Variation of Endogenous Metabolites in Bone Marrow Cells and Plasma in C3H/He Mice Exposed to Benzene

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2014-03-01

    Full Text Available Benzene is identified as a carcinogen. Continued exposure of benzene may eventually lead to damage to the bone marrow, accompanied by pancytopenia, aplastic anemia or leukemia. This paper explores the variations of endogenous metabolites to provide possible clues for the molecular mechanism of benzene-induced hematotoxicity. Liquid chromatography coupled with time of flight-mass spectrometry (LC-TOF-MS and principal component analysis (PCA was applied to investigate the variation of endogenous metabolites in bone marrow cells and plasma of male C3H/He mice. The mice were injected subcutaneously with benzene (0, 300, 600 mg/day once daily for seven days. The body weights, relative organ weights, blood parameters and bone marrow smears were also analyzed. The results indicated that benzene caused disturbances in the metabolism of oxidation of fatty acids and essential amino acids (lysine, phenylalanine and tyrosine in bone marrow cells. Moreover, fatty acid oxidation was also disturbed in plasma and thus might be a common disturbed metabolic pathway induced by benzene in multiple organs. This study aims to investigate the underlying molecular mechanisms involved in benzene hematotoxicity, especially in bone marrow cells.

  11. Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary trans,trans-Muconic Acid as a Biomarker of Benzene Exposure.

    Science.gov (United States)

    Ghamari, Farhad; Bahrami, Abdulrahman; Yamini, Yadollah; Shahna, Farshid Ghorbani; Moghimbeigi, Abbas

    2016-01-01

    For the first time, hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography-ultraviolet was used to extract trans,trans-muconic acid, in urine samples of workers who had been exposed to benzene. The parameters affecting the metabolite extraction were optimized as follows: the volume of sample solution was 11 mL with pH 2, liquid membrane containing dihexyl ether as the supporter, 15% (w/v) of trioctylphosphine oxide as the carrier, the time of extraction was 120 minutes, and stirring rate was 500 rpm. Organic phase impregnated in the pores of a hollow fiber was extracted into 24 µL solution of 0.05 mol L(-1) Na2CO3 located inside the lumen of the fiber. Under optimized conditions, a high enrichment factor of 153-182 folds, relative recovery of 83%-92%, and detection limit of 0.001 µg mL(-1) were obtained. The method was successfully applied to the analysis of ttMA in real urine samples. PMID:27660405

  12. Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary trans,trans-Muconic Acid as a Biomarker of Benzene Exposure

    Science.gov (United States)

    Ghamari, Farhad; Bahrami, Abdulrahman; Yamini, Yadollah; Shahna, Farshid Ghorbani; Moghimbeigi, Abbas

    2016-01-01

    For the first time, hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography–ultraviolet was used to extract trans,trans-muconic acid, in urine samples of workers who had been exposed to benzene. The parameters affecting the metabolite extraction were optimized as follows: the volume of sample solution was 11 mL with pH 2, liquid membrane containing dihexyl ether as the supporter, 15% (w/v) of trioctylphosphine oxide as the carrier, the time of extraction was 120 minutes, and stirring rate was 500 rpm. Organic phase impregnated in the pores of a hollow fiber was extracted into 24 µL solution of 0.05 mol L−1 Na2CO3 located inside the lumen of the fiber. Under optimized conditions, a high enrichment factor of 153–182 folds, relative recovery of 83%–92%, and detection limit of 0.001 µg mL−1 were obtained. The method was successfully applied to the analysis of ttMA in real urine samples. PMID:27660405

  13. Application of Monte-Carlo simulation method in cancer risk assessment for benzene exposure%蒙特卡洛模拟方法在苯致癌风险评价中的应用

    Institute of Scientific and Technical Information of China (English)

    王丽; 黄德寅; 刘茂; 王阳

    2011-01-01

    In our former research, health risk assessment for benzene occupational exposure was performed using physiologically based pharmacokinetic model and dose-response multi-stage model. Firstly, the processes of absorption, distribution and metabolism of benzene in the bodies of benzene-exposed workers after inhalation were described by PBPK model. Then, the cancer risk can be calculated from the multistage dose-response model parameterized by the internal dose (e.g. total metabolism amount or the concentration in the blood) drawn from the PBPK model. On the established basis, this paper firstly applies Euler numerical solution so that the PBPK model can be solved in Microsoft Excel software. Secondly, the formula of cancer risk was set as input of Excel sheet, and input parameter d (internal dose) of the formula was taken as output parameter d of the PBPK model by utilizing relative assignment expression. However, uncertainty is present in the whole process of developed cancer risk assessment. Therefore, Monte-Carlo simulation method in the software crystal ball, which is a user-friendly Excel plug-in, was adopted to transform the uncertainty into probability and present the probability distribution rules. At last, these methods were applied to a paint production program for cancer risk quantitative analysis of benzene exposure . The simulation times will affect the precision of result. In order to determine the appropriate times, the Monte-Carlo simulations in Crystal ball software were performed for every 200 samples increased until the mean and standard deviation of cancer risk reached or got an access to a stable state. In addition, distribution type of the cancer risk was determined according to the testing algorithm methods involved in crystal ball. The result of this case study shows that the risk value calculated by the developed method is tally with the actual situation. Therefore, the methods are feasible, reliable and objective. Furthermore, the methods can

  14. Benzene-induced hematotoxicity and bone marrow compensation in B6C3F1 mice.

    Science.gov (United States)

    Farris, G M; Robinson, S N; Gaido, K W; Wong, B A; Wong, V A; Hahn, W P; Shah, R S

    1997-04-01

    Long-term inhalation exposure of benzene has been shown to cause hematotoxicity and an increased incidence of acute myelogenous leukemia in humans. The progression of benzene-induced hematotoxicity and the features of the toxicity that may play a major role in the leukemogenesis are not known. We report the hematological consequences of benzene inhalation in B6C3F1 mice exposed to 1, 5, 10, 100, and 200 ppm benzene for 6 hr/day, 5 days/week for 1, 2, 4, or 8 weeks and a recovery group. There were no significant effects on hematopoietic parameters from exposure to 10 ppm benzene or less. Exposure of mice to 100 and 200 ppm benzene reduced the number of total bone marrow cells, progenitor cells, differentiating hematopoietic cells, and most blood parameters. Replication of primitive progenitor cells in the bone marrow was increased during the exposure period as a compensation for the cytotoxicity induced by 100 and 200 ppm benzene. In mice exposed to 200 ppm benzene, the primitive progenitor cells maintained an increased percentage of cells in S-phase through 25 days of recovery compared with controls. The increased replication of primitive progenitor cells in concert with the reported genotoxicity induced by benzene provides the components necessary for producing an increased incidence of lymphoma in mice. Furthermore, we propose this mode of action as a biologically plausible mechanism for benzene-induced leukemia in humans exposed to high concentrations of benzene.

  15. p53-dependent gene profiling for reactive oxygen species after benzene inhalation: special reference to genes associated with cell cycle regulation.

    Science.gov (United States)

    Hirabayashi, Yoko

    2005-05-30

    Benzene toxicity has long been thought to be due to its metabolites including reactive oxygen species (ROS). However, the major toxicological effect of benzene in wild-type mice carrying normal alleles of the p53 gene appears to be the significant perturbation of cell cycle regulation, possibly via an indirect signaling pathway. Other prominent genotoxic cellular damage can occur in the absence of cell cycle arrest in p53 gene deficiency. The suppression of cell cycle is clearly detected using a tool for stem-cell-specific cell cycle observation by the BU-UV method. Cells (including hemopoietic progenitor cells) in S-phase are labeled in vivo with bromodeoxyuridine (BrdU) and then exposed to near-ultraviolet (UV) light to kill cells that incorporated BrdU. The target fraction, the S-phase, is then evaluated on the basis of decreased numbers of hemopoietic colonies formed in assays such as for granulomacrophage colony-forming units (CFU-GM). Benzene toxicity was found to be more prominent in the primitive stem-cell compartment, as first suggested more than 20 years ago. Interestingly, when one examines the stem-cell-specific steady-state gene expression profiling, several key genes associated with benzene exposure are specifically identified, including CYP2E1. Benzene toxicity was found to be mediated by aryl hydrocarbon receptor (AhR) at an expression level; thus, the effect of benzene can be detected in nature at lower levels in the stem-cell compartment than expected. Alterations in gene expression profiles compared with those in steady-state gene expression profiles in the stem-cell compartment may elucidate the mechanism underlying benzene toxicity. Functional gene expressions after benzene exposure are not always detected, because their phenotypic expressions are often masked by the balance of expression of genes participating in various pathways of homeostasis, for example, p53. Thus, the actual expressions of the above-mentioned cell cycle-related genes may

  16. Comparative metabolism of [14C]benzene to excretable products and bioactivation to DNA-binding derivatives in maternal and neonatal mice

    International Nuclear Information System (INIS)

    Lactating adult female mice treated with a single dose of 880 mg/kg i.p. [14C]benzene, and their 2-day-old sucklings similarly treated or nursed by their treated dams were compared in terms of their ability to metabolize benzene to urinary products or reactive intermediates as assessed by covalently-bound benzene derivatives in whole blood or liver DNA. Six metabolite fractions were identified in the urine of sucklings by high performance liquid chromatographic (HPLC) analysis at 5 h following intraperitoneal (direct) treatment with benzene. Three of the metabolite fractions co-chromatographed with authentic phenol, phenyl glucuronide, and muconic acid, and contributed 11, 6.9 and 0.6%, respectively, to the total urinary benzene metabolites. Two of the fractions were unidentified. The sixth and most polar fraction consisted of multiple metabolites, 21% of which were conjugates, and accounted for 72% of the total urinary metabolites. A similar metabolite profile was observed in 24-h urine samples from treated dams with the exception that one of the unidentified fractions in the sucklings was absent and levels of the metabolites were quantitatively higher than those observed in sucklings 5 h following their treatment with benzene. Furthermore, 78% of the most polar fraction from the dams consisted of conjugates compared with 21% of that from the sucklings. The metabolite pattern in urine of sucklings nursed by treated dams was qualitatively similar to, but quantitatively different from the pattern in treated dams. Five hours following intraperitoneal treatment with benzene, covalent binding of the compound to DNA (expressed as pmol benzene equivalents/mg DNA) in sucklings was slightly higher in whole blood (1.15±0.07) than in liver (0.77±0.07), whereas in the dam, it was slightly lower in whole blood (0.88±0.48) than in liver (1.63±0.61). Twenty four hours following benzene exposure in sucklings of benzene-treated dams, DNA binding by the compound in whole blood

  17. Phase II metabolism of benzene.

    OpenAIRE

    Schrenk, D.; Orzechowski, A.; Schwarz, L R; Snyder, R.; Burchell, B; Ingelman-Sundberg, M; K. W. DE BOCK

    1996-01-01

    The hepatic metabolism of benzene is thought to be a prerequisite for its bony marrow toxicity. However, the complete pattern of benzene metabolites formed in the liver and their role in bone marrow toxicity are not fully understood. Therefore, benzene metabolism was studied in isolated rodent hepatocytes. Rat hepatocytes released benzene-1,2-dihydrodiol, hydroquinone (HQ), catechol (CT), phenol (PH), trans-trans-muconic acid, and a number of phase II metabolites such as PH sulfate and PH glu...

  18. A physiological model for simulation of benzene metabolism by rats and mice.

    Science.gov (United States)

    Medinsky, M A; Sabourin, P J; Lucier, G; Birnbaum, L S; Henderson, R F

    1989-06-15

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice are more sensitive to the toxic effects of benzene than are F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice and to determine if the observed differences in toxic effects could be explained by differences in the pathways for metabolism of benzene or by differences in uptake of benzene. Major pathways for elimination of benzene included metabolism to hydroquinone glucuronide or hydroquinone sulfate, phenyl glucuronide or phenyl sulfate, muconic acid, and prephenyl mercapturic acid or phenyl mercapturic acid. Model simulations for total benzene metabolized and for profiles of benzene metabolites were conducted for oral or inhalation exposure and compared to data for urinary excretion of benzene metabolites after exposure of rats and mice to [14C]- or [3H]-benzene by inhalation or gavage. Results for total amount of benzene metabolized, expressed per kilogram body weight, indicated that for inhalation exposure concentrations up to 1000 ppm, mice metabolized at least two to three times as much benzene as did rats. Simulations of oral exposure to benzene resulted in more benzene metabolized per kilogram body weight by rats at oral exposures of greater than 50 mg/kg. Patterns of metabolites formed after either route of exposure were very different for F344/N rats and B6C3F1 mice. Rats primarily formed the detoxification metabolite, phenyl sulfate. Mice formed hydroquinone glucuronide and muconic acid in addition to phenyl sulfate. Hydroquinone and muconic acid are associated with pathways leading to the formation of the putative toxic metabolites of benzene. Metabolic rate parameters, Vmax and Km, were very different for hydroquinone conjugate and muconic acid formation compared to formation of phenyl conjugates and phenyl mercapturic acids. Putative toxication pathways could be characterized as

  19. Benzene as a Chemical Hazard in Processed Foods

    Directory of Open Access Journals (Sweden)

    Vânia Paula Salviano dos Santos

    2015-01-01

    Full Text Available This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  20. Modulation of the immune response to Listeria monocytogenes by benzene inhalation.

    Science.gov (United States)

    Rosenthal, G J; Snyder, C A

    1985-09-30

    Benzene is a potent bone marrow toxicant. While all blood cell types are targets for benzene poisoning, lymphocytes are particularly sensitive. The immunotoxic consequences of benzene or its metabolites have been demonstrated in a number of in vitro studies; however, little data exist regarding the effects of benzene on host resistance to infectious agents. This investigation examined the effects of benzene on murine resistance to an infectious agent, Listeria monocytogenes. Four concentrations of benzene were employed, 10, 30, 100, and 300 ppm. To determine recovery from the effects of benzene, two exposure regimens were employed: 5 days prior to infection (preexposure), or 5 days prior to and 7 days during infection (continuous exposure). Appropriate air controls were maintained. Splenic bacterial counts and immune responsive cell populations were determined from mice killed at Days 1, 4, and 7 of infection. Preexposure to benzene produced increased bacterial numbers at Day 4 of the infection only at the highest benzene concentration (300 ppm). In contrast, continuous exposure produced increased bacterial numbers at Day 4 of infection at all but the lowest benzene concentration (10 ppm). Bacteria counts were not increased in any benzene-treated group at Day 1 or Day 7 of infection. The increased bacterial numbers at Day 4 suggest an effect on cell-mediated immune responses. Both T and B lymphocytes were particularly sensitive to benzene exhibiting reductions at all concentrations greater than or equal to 30 ppm for both exposure regimens. Esterase-positive cells, however, were relatively resistant to benzenes effects. The results point to a benzene-induced delay in the immune response to L. monocytogenes.

  1. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay

    DEFF Research Database (Denmark)

    Tuo, J; Loft, S; Thomsen, M S;

    1996-01-01

    The myelotoxic and genotoxic effects of benzene have been related to oxidative DNA damage after metabolism by CYP2E1. Single cell gel electrophoresis (alkaline comet assay) detects DNA damage and may thus be a convenient method for the study of benzene genotoxicity. Benzene exposure to NMRI mice.......01). By comparing our data with those from genotoxicity studies on benzene using other methods, we conclude that the 'alkaline comet assay' is a sensitive method to detect DNA damage induced by benzene. We also infer that CYP2E1 contributes, at least partly, to the formation of the 'comet'-inducing metabolites...

  2. 11. USING BIOMARKERS TO IMPROVE BENZENE RISK ASSESSMENT AND FIND THE CAUSES OF LEUKAEMIA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Benzene is an established cause of leukemia at high doses, but the risk it poses at exposures of ≤1ppm in air is diffcult to quantify. Molecular biomarkers may improve the accuracy of this risk assessment. We have therefore attempted to develop and validate biomarkers of exposure, early effect and susceptibility to benzene. We have shown

  3. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    International Nuclear Information System (INIS)

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  4. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be

  5. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN...

  6. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  7. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN...

  8. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN...

  9. Use of exposure history to identify patterns of immunity to pneumonia in bighorn sheep (Ovis canadensis)

    Science.gov (United States)

    Plowright, Raina K.; Manlove, Kezia; Cassirer, E. Frances; Besser, Thomas H.; Hudson, Peter J.

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating nai¨ve healthy animals into or near populations infected with pneumonia pathogens.

  10. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Directory of Open Access Journals (Sweden)

    Fry Rebecca C

    2011-04-01

    Full Text Available Abstract Background Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. Results In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. Conclusions This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.

  11. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    Science.gov (United States)

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  12. Modulation of mast cell and basophil functions by benzene metabolites.

    Science.gov (United States)

    Triggiani, Massimo; Loffredo, Stefania; Granata, Francescopaolo; Staiano, Rosaria I; Marone, Gianni

    2011-11-01

    Benzene is a carcinogenic compound used in industrial manufacturing and a common environmental pollutant mostly derived from vehicle emissions and cigarette smoke. Benzene exposure is associated with a variety of clinical conditions ranging from hematologic diseases to chronic lung disorders. Beside its direct toxicity, benzene exerts multiple effects after being converted to reactive metabolites such as hydroquinone and benzoquinone. Mast cells and basophils are primary effector cells involved in the development of respiratory allergies such as rhinitis and bronchial asthma and they play an important role in innate immunity. Benzene and its metabolites can influence mast cell and basophil responses either directly or by interfering with other cells, such as T cells, macrophages and monocytes, which are functionally connected to mast cells and basophils. Hydroquinone and benzoquinone inhibit the release of preformed mediators, leukotriene synthesis and cytokine production in human basophils stimulated by IgE- and non IgE-mediated agonists. Furthermore, these metabolites reduce IgE-mediated degranulation of mast cells and the development of allergic lung inflammation in rats. Both in vitro and in vivo studies indicate that benzene metabolites alter biochemical and functional activities of other immunocompetent cells and may impair immune responses in the lung. These inhibitory effects of benzene metabolites are primarily mediated by interference with early transduction signals such as PI3 kinase. Together, currently available studies indicate that benzene metabolites interfere by multiple mechanisms with the role of basophils and mast cells in innate immunity and in chronic inflammation in the lung. PMID:22103854

  13. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression.

    Science.gov (United States)

    Valentine, J L; Lee, S S; Seaton, M J; Asgharian, B; Farris, G; Corton, J C; Gonzalez, F J; Medinsky, M A

    1996-11-01

    Transgenic CYP2E1 knockout mice (cyp2e1-/-) were used to investigate the involvement of CYP2E1 in the in vivo metabolism of benzene and in the development of benzene-induced toxicity. After benzene exposure, absence of CYP2E1 protein was confirmed by Western blot analysis of mouse liver samples. For the metabolism studies, male cyp2e1-/- and wild-type control mice were exposed to 200 ppm benzene, along with a radiolabeled tracer dose of [14C]benzene (1.0 Ci/mol) by nose-only inhalation for 6 hr. Total urinary radioactivity and all radiolabeled individual metabolites were reduced in urine of cyp2e1-/- mice compared to wild-type controls during the 48-hr period after benzene exposure. In addition, a significantly greater percentage of total urinary radioactivity could be accounted for as phenylsulfate conjugates in cyp2e1-/- mice compared to wild-type mice, indicating the importance of CYP2E1 in oxidation of phenol following benzene exposure in normal mice. For the toxicity studies, male cyp2e1-/-, wild-type, and B6C3F1 mice were exposed by whole-body inhalation to 0 ppm (control) or 200 ppm benzene, 6 hr/day for 5 days. On Day 5, blood, bone marrow, thymus, and spleen were removed for evaluation of micronuclei frequencies and tissue cellularities. No benzene-induced cytotoxicity or genotoxicity was observed in cyp2e1-/- mice. In contrast, benzene exposure resulted in severe genotoxicity and cytotoxicity in both wild-type and B6C3F1 mice. These studies conclusively demonstrate that CYP2E1 is the major determinant of in vivo benzene metabolism and benzene-induced myelotoxicity in mice.

  14. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  15. Profiling Private Water Systems to Identify Patterns of Waterborne Lead Exposure.

    Science.gov (United States)

    Pieper, Kelsey J; Krometis, Leigh-Anne; Gallagher, Daniel; Benham, Brian; Edwards, Marc

    2015-11-01

    Although extensive literature documents corrosion in municipal water systems, only minimal data is available describing corrosion in private water systems (e.g., wells), which serve as a primary source of drinking water for approximately 47 million Americans. This study developed a profiling technique specifically tailored to evaluate lead release in these systems. When applied in an intensive field study of 15 private systems, three patterns of lead release were documented: no elevated lead or lead elevated in the first draw only (Type I), erratic spikes of particulate lead (Type II), and sustained detectable lead concentrations (Type III). While flushing protocols as short as 15-30 s may be sufficient to reduce lead concentrations below 15 μg/L for Types I and III exposure, flushing may not be an appropriate remediation strategy for Type II exposure. In addition, the sustained detectable lead concentrations observed with Type III exposure likely result from corrosion of components within the well and therefore cannot be reduced with increased flushing. As profiling techniques are labor- and sample-intensive, we discuss recommendations for simpler sampling schemes for initial private system surveys aimed at quantifying lead and protecting public health.

  16. The influence of ethanol on the stem cell toxicity of benzene in mice.

    Science.gov (United States)

    Seidel, H J; Bader, R; Weber, L; Barthel, E

    1990-08-01

    BDF1 mice were exposed to 100, 300, and 900 ppm benzene vapor, and the numbers of hematopoietic progenitor cells, early and late erythroid progenitors (BFU-E and CFU-E) and granuloid progenitors (CFU-C), were determined with and without additional exposure to ethanol (5, 10, 15 vol%) in the drinking water. The duration of benzene inhalation was up to 4 weeks, 6 hr per day, 5 days per week. It was shown that the number of CFU-E per femur was depressed in a dose-dependent manner by benzene alone and also by ethanol combined with a given benzene concentration. CFU-E showed rapid regeneration after the end of the exposure, but not BFU-E and CFU-C. Prolongation of the ethanol exposure after withdrawal of benzene had only a marginal effect on progenitor cell regeneration.

  17. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  18. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  19. 76 FR 52875 - 2-Propenoic Acid, Polymer With Ethenylbenzene and (1-methylethenyl) Benzene, Sodium Salt...

    Science.gov (United States)

    2011-08-24

    ... in this unit, no mammalian toxicity is anticipated from dietary, inhalation, or dermal exposure to 2... AGENCY 40 CFR Part 180 2-Propenoic Acid, Polymer With Ethenylbenzene and (1- methylethenyl) Benzene...-Propenoic acid, polymer with ethenylbenzene and (1-methylethenyl) benzene, sodium salt when used as an...

  20. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar;

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...... metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance...... was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further...

  1. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1).

  2. Quantifying Ongoing HIV-1 Exposure in HIV-1–Serodiscordant Couples to Identify Individuals With Potential Host Resistance to HIV-1

    OpenAIRE

    Mackelprang, Romel D.; Jared M Baeten; Donnell, Deborah; Celum, Connie; Farquhar, Carey; de Bruyn, Guy; Essex, Max; McElrath, M. Juliana; NAKKU-JOLOBA, Edith; Lingappa, Jairam R.

    2012-01-01

    Background. Immunogenetic correlates of resistance to HIV-1 in HIV-1–exposed seronegative (HESN) individuals with consistently high exposure may inform HIV-1 prevention strategies. We developed a novel approach for quantifying HIV-1 exposure to identify individuals remaining HIV-1 uninfected despite persistent high exposure.

  3. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,1â²-methylenebis , .alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis... to reporting. (1) The chemical substance identified generically as benzene,...

  4. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu...

  5. The ototoxic effects of ethyl benzene in rats

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Groot, J.C.M.J. de; Kulig, B.M.; Smoorenburg, G.F.

    1999-01-01

    Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using thre

  6. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.

    Science.gov (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru

    2002-11-01

    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  7. Effects of benzene inhalation on lymphocyte subpopulations and immune response in mice.

    Science.gov (United States)

    Aoyama, K

    1986-08-01

    To clarify the immunotoxicity of benzene, the effects of benzene inhalation on T and B lymphocytes and immune responses in mice were examined. BALB/c male mice were exposed to 50 or 200 ppm benzene vapor, 6 hr/day for 7 or 14 consecutive days. T and B lymphocytes, in blood and spleen, were detected by the cytotoxicity assay with anti-Thy-1.2 monoclonal antibody and the membrane immunofluorescence test with anti-immunoglobulin antibody, respectively. Humoral immune response to sheep red blood cells was determined by the hemolytic plaque-forming cell assay. Cell-mediated immune response was measured by contact sensitivity (CS) to picryl chloride. The activity of suppressor cells was evaluated in spleen by the suppressive effect on passive transfer of CS. The ratio and absolute number of T and B lymphocytes in blood and spleen were depressed after a 7-day exposure at 50 ppm benzene. The depression of B lymphocytes was dose dependent and more intense than that of T lymphocytes. The ability to form antibodies was suppressed by benzene at all exposure levels, but the CS response was resistant to benzene inhalation and rather enhanced at 200 ppm exposure for 14 days. The activity of suppressor cells could not be detected at this dose level. These data show that benzene inhalation effects on humoral and cell-mediated immune responses are a result of the selective toxicity of benzene to B lymphocytes and suppressor T cells.

  8. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.

    Science.gov (United States)

    Bauer, Alison K; Faiola, Brenda; Abernethy, Diane J; Marchan, Rosemarie; Pluta, Linda J; Wong, Victoria A; Gonzalez, Frank J; Butterworth, Byron E; Borghoff, Susan J; Everitt, Jeffrey I; Recio, Leslie

    2003-04-01

    Enzymes involved in benzene metabolism are likely genetic determinants of benzene-induced toxicity. Polymorphisms in human microsomal epoxide hydrolase (mEH) are associated with an increased risk of developing leukemia, specifically those associated with benzene. This study was designed to investigate the importance of mEH in benzene-induced toxicity. Male and female mEH-deficient (mEH-/-) mice and background mice (129/Sv) were exposed to inhaled benzene (0, 10, 50, or 100 ppm) 5 days/week, 6 h/day, for a two-week duration. Total white blood cell counts and bone marrow cell counts were used to assess hematotoxicity and myelotoxicity. Micronucleated peripheral blood cells were counted to assess genotoxicity, and the p21 mRNA level in bone marrow cells was used as a determinant of the p53-regulated DNA damage response. Male mEH-/- mice did not have any significant hematotoxicity or myelotoxicity at the highest benzene exposure compared to the male 129/Sv mice. Significant hematotoxicity or myelotoxicity did not occur in the female mEH-/- or 129/Sv mice. Male mEH-/- mice were also unresponsive to benzene-induced genotoxicity compared to a significant induction in the male 129/Sv mice. The female mEH-/- and 129/Sv mice were virtually unresponsive to benzene-induced genotoxicity. While p21 mRNA expression was highly induced in male 129/Sv mice after exposure to 100-ppm benzene, no significant alteration was observed in male mEH-/- mice. Likewise, p21 mRNA expression in female mEH-/- mice was not significantly induced upon benzene exposure whereas a significant induction was observed in female 129/Sv mice. Thus mEH appears to be critical in benzene-induced toxicity in male, but not female, mice.

  9. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: a comprehensive review.

    Science.gov (United States)

    Gulumian, M; Borm, P J A; Vallyathan, V; Castranova, V; Donaldson, K; Nelson, G; Murray, J

    2006-01-01

    Clinical detection of silicosis is currently dependent on radiological and lung function abnormalities, both late manifestations of disease. Markers of prediction and early detection of pneumoconiosis are imperative for the implementation of timely intervention strategies. Understanding the underlying mechanisms of the etiology of coal workers pneumoconiosis (CWP) and silicosis was essential in proposing numerous biomarkers that have been evaluated to assess effects following exposure to crystalline silica and/or coal mine dust. Human validation studies have substantiated some of these proposed biomarkers and argued in favor of their use as biomarkers for crystalline silica- and CWP-induced pneumoconiosis. A number of "ideal" biological markers of effect were identified, namely, Clara cell protein-16 (CC16) (serum), tumor necrosis factor-alpha (TNF-alpha) (monocyte release), interleukin-8 (IL-8) (monocyte release), reactive oxygen species (ROS) measurement by chemiluminescence (neutrophil release), 8-isoprostanes (serum), total antioxidant levels measured by total equivalent antioxidant capacity (TEAC), glutathione, glutathione peroxidase activity, glutathione S-transferase activity, and platelet-derived growth factor (PDGF) (serum). TNF-alpha polymorphism (blood cellular DNA) was identified as a biomarker of susceptibility. Further studies are planned to test the validity and feasibility of these biomarkers to detect either high exposure to crystalline silica and early silicosis or susceptibility to silicosis in gold miners in South Africa. PMID:16990219

  10. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Tian eZhang

    2014-05-01

    Full Text Available Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

  11. Consistent assignment of the vibrations of monosubstituted benzenes

    Science.gov (United States)

    Gardner, Adrian M.; Wright, Timothy G.

    2011-09-01

    We investigate the consistency of the labeling and assignments of the vibrations of the monosubstituted benzenes in the electronic ground state. In doing so, we also identify some inconsistencies in the labeling of the benzene modes. We commence by investigating the behavior of the benzene vibrations as one hydrogen is replaced by an artificial atomic substituent of increasing mass via quantum chemical calculations; the wavenumber variations with mass give insight into the assignments. We also examine how well the monohalobenzene vibrations can be described in terms of the benzene ones: consistent with some recent studies, we conclude that this is futile in a significant number of cases. We then show that "isotopic wavenumbers" obtained by artificially changing the mass of the fluorine atom in fluorobenzene are in very good agreement with the wavenumbers obtained via explicit calculation for the relevant monohalobenzene (chlorobenzene, bromobenzene, and iodobenzene) vibrations. As a consequence, we propose that the vibrations of monofluorobenzene be used as the basis for labelling the vibrational assignments of monosubstituted benzenes. As well as the four monohalobenzenes, we also apply this approach to the vibrations of aniline, toluene, benzonitrile, phenylacetylene, phenylphosphine, and nitrobenzene. This has allowed a much more consistent picture of the vibrational assignments to be obtained across ten monosubstituted benzenes.

  12. Low-dose metabolism of benzene in humans: science and obfuscation.

    Science.gov (United States)

    Rappaport, Stephen M; Kim, Sungkyoon; Thomas, Reuben; Johnson, Brent A; Bois, Frederic Y; Kupper, Lawrence L

    2013-01-01

    Benzene is a ubiquitous air pollutant that causes human leukemia and hematotoxic effects. Although the mechanism by which benzene causes toxicity is unclear, metabolism is required. A series of articles by Kim et al. used air and biomonitoring data from workers in Tianjin, China, to investigate the dose-specific metabolism (DSM) of benzene over a wide range of air concentrations (0.03-88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest at air concentrations American Petroleum Institute to fund a study by Price et al. to reanalyze the original data. Although their formal 'reanalysis' reproduced Kim's finding of enhanced DSM at sub-p.p.m. benzene concentrations, Price et al. argued that Kim's methods were inappropriate for assigning benzene exposures to low exposed subjects (based on measurements of urinary benzene) and for adjusting background levels of metabolites (based on median values from the 60 lowest exposed subjects). Price et al. then performed uncertainty analyses under alternative approaches, which led them to conclude that '… the Tianjin data appear to be too uncertain to support any conclusions …' regarding the DSM of benzene. They also argued that the apparent low-dose metabolism of benzene could be explained by 'lung clearance.' In addressing these criticisms, we show that the methods and arguments presented by Price et al. are scientifically unsound and that their results are unreliable. PMID:23222815

  13. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual......, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers....

  14. Bridging the gap between sample collection and laboratory analysis: using dried blood spots to identify human exposure to chemical agents

    Science.gov (United States)

    Hamelin, Elizabeth I.; Blake, Thomas A.; Perez, Jonas W.; Crow, Brian S.; Shaner, Rebecca L.; Coleman, Rebecca M.; Johnson, Rudolph C.

    2016-05-01

    Public health response to large scale chemical emergencies presents logistical challenges for sample collection, transport, and analysis. Diagnostic methods used to identify and determine exposure to chemical warfare agents, toxins, and poisons traditionally involve blood collection by phlebotomists, cold transport of biomedical samples, and costly sample preparation techniques. Use of dried blood spots, which consist of dried blood on an FDA-approved substrate, can increase analyte stability, decrease infection hazard for those handling samples, greatly reduce the cost of shipping/storing samples by removing the need for refrigeration and cold chain transportation, and be self-prepared by potentially exposed individuals using a simple finger prick and blood spot compatible paper. Our laboratory has developed clinical assays to detect human exposures to nerve agents through the analysis of specific protein adducts and metabolites, for which a simple extraction from a dried blood spot is sufficient for removing matrix interferents and attaining sensitivities on par with traditional sampling methods. The use of dried blood spots can bridge the gap between the laboratory and the field allowing for large scale sample collection with minimal impact on hospital resources while maintaining sensitivity, specificity, traceability, and quality requirements for both clinical and forensic applications.

  15. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Seema Gollamudi

    Full Text Available Parkinson's disease (PD is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ, pyridaben (PY and maneb (MN are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq in the ventral midbrain (VMB and striatum (STR of PQ, PY and paraquat+maneb (MNPQ treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard and G-Protein Coupled Receptors (GPCRs were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets.

  16. Products of the Benzene + O(3P) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  17. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    Science.gov (United States)

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ. PMID:26922359

  18. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    Science.gov (United States)

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ.

  19. Mapping the Racial Inequality in Place: Using Youth Perceptions to Identify Unequal Exposure to Neighborhood Environmental Hazards

    Science.gov (United States)

    Teixeira, Samantha; Zuberi, Anita

    2016-01-01

    Black youth are more likely than white youth to grow up in poor, segregated neighborhoods. This racial inequality in the neighborhood environments of black youth increases their contact with hazardous neighborhood environmental features including violence and toxic exposures that contribute to racial inequality in youth health and well-being. While the concept of neighborhood effects has been studied at length by social scientists, this work has not been as frequently situated within an environmental justice (EJ) paradigm. The present study used youth perceptions gained from in-depth interviews with youth from one Pittsburgh, Pennsylvania neighborhood to identify neighborhood environmental health hazards. We then mapped these youth-identified features to examine how they are spatially and racially distributed across the city. Our results suggest that the intersection of race and poverty, neighborhood disorder, housing abandonment, and crime were salient issues for youth. The maps show support for the youths’ assertions that the environments of black and white individuals across the city of Pittsburgh differ in noteworthy ways. This multi-lens, mixed-method analysis was designed to challenge some of the assumptions we make about addressing environmental inequality using youths’ own opinions on the issue to drive our inquiry. PMID:27571086

  20. Mapping the Racial Inequality in Place: Using Youth Perceptions to Identify Unequal Exposure to Neighborhood Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Samantha Teixeira

    2016-08-01

    Full Text Available Black youth are more likely than white youth to grow up in poor, segregated neighborhoods. This racial inequality in the neighborhood environments of black youth increases their contact with hazardous neighborhood environmental features including violence and toxic exposures that contribute to racial inequality in youth health and well-being. While the concept of neighborhood effects has been studied at length by social scientists, this work has not been as frequently situated within an environmental justice (EJ paradigm. The present study used youth perceptions gained from in-depth interviews with youth from one Pittsburgh, Pennsylvania neighborhood to identify neighborhood environmental health hazards. We then mapped these youth-identified features to examine how they are spatially and racially distributed across the city. Our results suggest that the intersection of race and poverty, neighborhood disorder, housing abandonment, and crime were salient issues for youth. The maps show support for the youths’ assertions that the environments of black and white individuals across the city of Pittsburgh differ in noteworthy ways. This multi-lens, mixed-method analysis was designed to challenge some of the assumptions we make about addressing environmental inequality using youths’ own opinions on the issue to drive our inquiry.

  1. Mapping the Racial Inequality in Place: Using Youth Perceptions to Identify Unequal Exposure to Neighborhood Environmental Hazards.

    Science.gov (United States)

    Teixeira, Samantha; Zuberi, Anita

    2016-01-01

    Black youth are more likely than white youth to grow up in poor, segregated neighborhoods. This racial inequality in the neighborhood environments of black youth increases their contact with hazardous neighborhood environmental features including violence and toxic exposures that contribute to racial inequality in youth health and well-being. While the concept of neighborhood effects has been studied at length by social scientists, this work has not been as frequently situated within an environmental justice (EJ) paradigm. The present study used youth perceptions gained from in-depth interviews with youth from one Pittsburgh, Pennsylvania neighborhood to identify neighborhood environmental health hazards. We then mapped these youth-identified features to examine how they are spatially and racially distributed across the city. Our results suggest that the intersection of race and poverty, neighborhood disorder, housing abandonment, and crime were salient issues for youth. The maps show support for the youths' assertions that the environments of black and white individuals across the city of Pittsburgh differ in noteworthy ways. This multi-lens, mixed-method analysis was designed to challenge some of the assumptions we make about addressing environmental inequality using youths' own opinions on the issue to drive our inquiry. PMID:27571086

  2. Identifying inequitable exposure to toxic air pollution in racialized and low-income neighbourhoods to support pollution prevention

    Directory of Open Access Journals (Sweden)

    Suzanne Kershaw

    2013-05-01

    Full Text Available Numerous environmental justice studies have confirmed a relationship between population characteristics such as low-income or minority status and the location of environmental health hazards. However, studies of the health risks from exposure to harmful substances often do not consider their toxicological characteristics. We used two different methods, the unit-hazard and the distance-based approach, to evaluate demographic and socio-economic characteristics of the population residing near industrial facilities in the City of Toronto, Canada. In addition to the mass of air emissions obtained from the national pollutant release inventory (NPRI, we also considered their toxicity using toxic equivalency potential (TEP scores. Results from the unit-hazard approach indicate no significant difference in the proportion of low-income individuals living in host versus non-host census tracts (t(107 = 0.3, P = 0.735. However, using the distance-based approach, the proportion of low-income individuals was significantly higher (+5.1%, t(522 = 6.0, P <0.001 in host tracts, while the indicator for “racialized” communities (“visible minority” was 16.1% greater (t(521 = 7.2, P <0.001 within 2 km of a NPRI facility. When the most toxic facilities by non-carcinogenic TEP score were selected, the rate of visible minorities living near the most toxic NPRI facilities was significantly higher (+12.9%, t(352 = 3.5, P = 0.001 than near all other NPRI facilities. TEP scores were also used to identify areas in Toronto that face a double burden of poverty and air toxics exposure in order to prioritise pollution prevention.

  3. Species differences in the metabolism of benzene.

    OpenAIRE

    Henderson, R F

    1996-01-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of th...

  4. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites.

    OpenAIRE

    Henderson, R F; Sabourin, P J; Bechtold, W E; Griffith, W. C.; Medinsky, M A; Birnbaum, L S; Lucier, G W

    1989-01-01

    Studies were completed in F344/N rats and B6C3F1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. ...

  5. 27 CFR 21.97 - Benzene.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are...

  6. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    Science.gov (United States)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  7. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Science.gov (United States)

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or...

  8. Double photoionization of halogenated benzene

    Energy Technology Data Exchange (ETDEWEB)

    AlKhaldi, Mashaal Q. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Wehlitz, Ralf, E-mail: rwehlitz@gmail.com [Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, Wisconsin 53589 (United States)

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  9. Slow Neutron Scattering by Benzene

    International Nuclear Information System (INIS)

    We have calculated the scattering of slow neutrons by the benzene molecule. The calculations are carried out within the framework of the time dependent formalism of Zemach and Glauber. Detailed account is taken of the effects of the molecular vibrations on the neutron scattering. Among the results explicitly calculated are the slow neutron total scattering cross-section as a function of energy and the energy angular distribution of singly scattered sections. (author)

  10. Korelasi paparan benzene melalui pengukuran kadar trans-trans Muconic Acid (t,t-MA) dengan kadar enzim transaminase dan total protein pada pekerja SPBU Pertamina kota Medan

    OpenAIRE

    Musthari

    2016-01-01

    Since evidence of health problems caused by exposure to benzene, then benzene is one of the chemicals that are most harmful to human health. The development of the oil and gas industry in Indonesia can not be separated relevance of the use of a wide range of chemicals. Gasoline is one of the oil products containing benzene (C6H6), which serves to increase the octane rating. Impact of acute benzene exposure in the form of disorders of the nervous system, lack of oxygen supply...

  11. Ion photon-stimulated desorption as a tool to monitor the physisorption to chemisorption transition of benzene on Si(111) 7 x 7

    CERN Document Server

    Carbone, M; Casaletto, M P; Zanoni, R; Besnard-Ramage, M J; Comtet, G; Dujardin, G; Hellner, L

    2003-01-01

    We investigated the use of ion photodesorption as a tool to monitor the transition from the physisorbed to the chemisorbed state on a surface. The adsorption of benzene on Si(111) 7 x 7 in the temperature range 40-300 K is chosen as a prototype. The D sup + ion photodesorption yield was monitored as a function of temperature at various benzene exposures. Comparative measurements of the C 1s photoelectron yield in the same temperature range enable the physisorbed to chemisorbed state transition to be distinguished from that of the multilayer to the chemisorbed state. We find the onset at 110 K in the first case, and at 130-140 K in the second case. These results demonstrate that ion photodesorption is a potentially interesting method to identify physisorption to chemisorption transitions of adsorbed molecules on surfaces. (letter to the editor)

  12. Ion photon-stimulated desorption as a tool to monitor the physisorption to chemisorption transition of benzene on Si(111) 7 x 7

    International Nuclear Information System (INIS)

    We investigated the use of ion photodesorption as a tool to monitor the transition from the physisorbed to the chemisorbed state on a surface. The adsorption of benzene on Si(111) 7 x 7 in the temperature range 40-300 K is chosen as a prototype. The D+ ion photodesorption yield was monitored as a function of temperature at various benzene exposures. Comparative measurements of the C 1s photoelectron yield in the same temperature range enable the physisorbed to chemisorbed state transition to be distinguished from that of the multilayer to the chemisorbed state. We find the onset at 110 K in the first case, and at 130-140 K in the second case. These results demonstrate that ion photodesorption is a potentially interesting method to identify physisorption to chemisorption transitions of adsorbed molecules on surfaces. (letter to the editor)

  13. Modulation of phase-II enzyme activities in benzene treated ovariectomized rats.

    Science.gov (United States)

    Verma, Yeshvandra; Rana, S V S

    2011-05-01

    The aim of the study was to determine the influence of ovariectomy on phase II enzymes viz. glutathione-S-transferase (GST), glutathione peroxidase (GPX) and catalase (CAT) in liver and kidney of female rats treated with benzene. The results showed the significant decrease of the GST and GPX activity in benzene treated rats after ovariectomy. However progesterone supplementation stimulated the activity of GST and GPX in liver and kidney of benzene treated non ovariectomized and ovariectomized rats. Progesterone supplementation to benzene treated ovariectomized rats helps to gain in CAT activity. Our results on DNA damage using single cell gel electrophoresis also confirmed our findings on antioxidant enzymes. The results showed that lack of protective progesterone against benzene toxicity is reflected in alterations in antioxidant enzyme activities. However progesterone therapy to benzene treated ovariectomized rats results in activating the antioxidant defence system. Since female workers are engaged in industrial sector, these results are important from occupational health point of view. Benzene exposure affects their reproductive health. Nevertheless, it could be modulated by suitable hormonal therapy. PMID:21787707

  14. Immunotoxicological effects of benzene inhalation in male Sprague-Dawley rats.

    Science.gov (United States)

    Robinson, S N; Shah, R; Wong, B A; Wong, V A; Farris, G M

    1997-05-16

    The inhalation of benzene is toxic to various components of the immunologic system in rodents. Spleen and thymus weights, total spleen and femur marrow cell counts, enumeration of spleen B- and T-lymphocytes, and an assessment of humoral immunocompetence, were used to evaluate the immunotoxicity of benzene in male Sprague-Dawley rats. Rats were exposed to 0, 30, 200 or 400 ppm benzene for 6 h/day, 5 days/week for 2 or 4 weeks. An early indicator of immunotoxicity was a reduction in the number of B-lymphocytes after 2 weeks of 400 ppm. After 4 weeks of 400 ppm, there was a reduction in thymus weight and spleen B-, CD4+/CD5+ and CD5+ T-lymphocytes. Rats exposed to 30, 200 or 400 ppm benzene for 2 or 4 weeks and challenged with sheep red blood cells developed a humoral response comparable to that of the control (0 ppm) animals. Enumeration of spleen T- and B-lymphocytes in rats exposed to benzene and challenged with SRBC showed only a transient reduction in spleen B-lymphocytes after 2 weeks of exposure to 400 ppm. These data suggest that there are no immunotoxicological effects of exposure to 200 ppm benzene or less, in rats exposed for 6 h/day, 5 days/week for 2 or 4 weeks.

  15. Electrochemical behaviour of benzene on platinum electrodes

    OpenAIRE

    Montilla Jiménez, Francisco; Huerta Arráez, Francisco; Morallón Núñez, Emilia; Vázquez Picó, José Luis

    1999-01-01

    The adsorption and oxidation of benzene in acidic media on platinum electrodes (polycrystalline and single-crystal electrodes) have been studied by cyclic voltammetry and in-situ Fourier transform infrared spectroscopy. The oxidation characteristics of benzene depend on the surface structure of the platinum electrode used. In all platinum electrodes studied, the main reduction product of benzene is cyclohexane, and the oxidation products detected by infrared spectroscopy have been CO2 and ben...

  16. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  17. Effect of benzene on the cerebellar structure and behavioral characteristics in rats

    Institute of Scientific and Technical Information of China (English)

    Ali Rafati; Mahboobeh Erfanizadeh; Ali Noorafshan; Saied Karbalay-Doust

    2015-01-01

    Objective:To investigate the effects of benzene on rat’s cerebellum structure and behavioral characteristics, including anxiety and motor impairment. Methods:Twenty rats were randomly allocated into two groups orally receiving distilled water and benzene (200 mg/kg/day). A total of 10 rats were used at the beginning of benzene exposure. Two rats died during benzene treatment and 8 rats remained for evaluation of the behavioral test and finally 6 rats underwent histological assessment. At the end of the 4th week, motor function and anxiety were evaluated in rotarod test and elevated plus maze, respectively. Besides, the cerebellum was dissected for structural assessment using stereological methods. Results:Performance of the benzene-treated rats in fixed and accelerating speed rotarod was impaired and their riding time (endurance) was lower compared to the control group (P=0.02). The benzene-treated rats also spent less time in the open arms and had fewer entrances to the open arms in comparison to the control group, indicating anxiety (P=0.01). The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei, total number of the Purkinje, Bergmann, Golgi, granule, neurons and glial cells of the molecular layer, and neurons and glial cells of the intracerebellar nuclei were reduced by 34%-76%in the benzene-treated rats in comparison to the distilled water group (P=0.003). The most cell loss was seen in Bergmann glia. Conclusions:The structure of cerebellum altered after benzene treatment. In addition, motor impairment and anxiety could be seen in benzene-treated rats.

  18. Effect of benzene on the cerebellar structure and behavioral characteristics in rats

    Institute of Scientific and Technical Information of China (English)

    Ali; Rafati; Mahboobeh; Erfanizadeh; Ali; Noorafshan; Saied; Karbalay-Doust

    2015-01-01

    Objective: To investigate the effects of benzene on rat’s cerebellum structure and behavioral characteristics, including anxiety and motor impairment.Methods: Twenty rats were randomly allocated into two groups orally receiving distilled water and benzene(200 mg/kg/day). A total of 10 rats were used at the beginning of benzene exposure. Two rats died during benzene treatment and 8 rats remained for evaluation of the behavioral test and finally 6 rats underwent histological assessment. At the end of the 4th week, motor function and anxiety were evaluated in rotarod test and elevated plus maze, respectively. Besides, the cerebellum was dissected for structural assessment using stereological methods.Results: Performance of the benzene-treated rats in fixed and accelerating speed rotarod was impaired and their riding time(endurance) was lower compared to the control group(P = 0.02). The benzene-treated rats also spent less time in the open arms and had fewer entrances to the open arms in comparison to the control group, indicating anxiety(P = 0.01). The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei, total number of the Purkinje, Bergmann, Golgi, granule, neurons and glial cells of the molecular layer, and neurons and glial cells of the intracerebellar nuclei were reduced by 34%-76% in the benzene-treated rats in comparison to the distilled water group(P = 0.003). The most cell loss was seen in Bergmann glia. Conclusions: The structure of cerebellum altered after benzene treatment. In addition, motor impairment and anxiety could be seen in benzene-treated rats.

  19. Upstream petroleum industry glycol dehydrator benzene emissions status report

    International Nuclear Information System (INIS)

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  20. 76 FR 38175 - Notice of Release of the Exposure Draft Revisions to Identifying and Reporting Earmarked Funds...

    Science.gov (United States)

    2011-06-29

    ... Funds: Amending Statement of Federal Financial Accounting Standards 27 AGENCY: Federal Accounting... Financial Accounting Standards 27. The Exposure Draft is available on the FASAB home page http://www.fasab... From the Federal Register Online via the Government Publishing Office FEDERAL ACCOUNTING...

  1. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  2. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    Science.gov (United States)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  3. Levels and source apportionment of children's lead exposure: could urinary lead be used to identify the levels and sources of children's lead pollution?

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-04-01

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as (207)Pb/(206)Pb, (208)Pb/(206)Pb and (204)Pb/(206)Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. PMID:25617855

  4. 29 CFR 1926.1128 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene....

  5. 46 CFR 151.50-60 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of...

  6. 29 CFR 1910.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... safety data sheet (MSDS) which addresses benzene and complies with 29 CFR 1910.1200. (ii) Employers who... the requirements of 29 CFR 1910.1200(h) (1) and (2), and shall include specific information on benzene... and unloading operations, except for the provisions of 29 CFR 1910.1200 as incorporated into...

  7. 29 CFR 1915.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical...

  8. 46 CFR 30.25-3 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more...

  9. Identifying inequitable exposure to toxic air pollution in racialized and low-income neighbourhoods to support pollution prevention.

    Science.gov (United States)

    Kershaw, Suzanne; Gower, Stephanie; Rinner, Claus; Campbell, Monica

    2013-05-01

    Numerous environmental justice studies have confirmed a relationship between population characteristics such as low-income or minority status and the location of environmental health hazards. However, studies of the health risks from exposure to harmful substances often do not consider their toxicological characteristics. We used two different methods, the unit-hazard and the distance-based approach, to evaluate demographic and socio-economic characteristics of the population residing near industrial facilities in the City of Toronto, Canada. In addition to the mass of air emissions obtained from the national pollutant release inventory (NPRI), we also considered their toxicity using toxic equivalency potential (TEP) scores. Results from the unit-hazard approach indicate no significant difference in the proportion of low-income individuals living in host versus non-host census tracts (t(107) = 0.3, P = 0.735). However, using the distance-based approach, the proportion of low-income individuals was significantly higher (+5.1%, t(522) = 6.0, P air toxics exposure in order to prioritise pollution prevention.

  10. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene.

    Science.gov (United States)

    Bassig, Bryan A; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P; Yin, Songnian; Rappaport, Stephen M; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E Beane; Blair, Aaron; Hayes, Richard B; Huang, Hanlin; Smith, Martyn T; Rothman, Nathaniel; Lan, Qing

    2016-07-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  11. OCCUPATIONAL SOLVENT EXPOSURE ASSOCIATED WITH DEVELOPMENTAL TOXICITY

    Directory of Open Access Journals (Sweden)

    Alina-Costina LUCA

    2016-05-01

    Full Text Available Organic solvent is a broad term that applies to many classes of chemicals. The solvent (benzene, toluene etc. aspects of occupational exposure are reviewed via the examination of the use, occurrence, and disposition as well as population’s potential of risk. The general public can be exposed to solvent in ambient air as a result of its occurrence in paint process. Solvents are primarily irritants to the skin and mucous membranes and have narcotic properties at high concentrations. Published epidemiological data identified various types of birth defects in certain occupations.

  12. Reduction of benzene toxicity by toluene.

    Science.gov (United States)

    Plappert, U; Barthel, E; Seidel, H J

    1994-01-01

    BDF1 mice were exposed in inhalation chambers to benzene (900 ppm, 300 ppm) and/or toluene (500 ppm, 250 ppm) 6 hr per day, 5 days per week, for up to 8 weeks. Benzene alone induced a slight anemia after 4 and 8 weeks and a reduction of BFU-E and CFU-E numbers in the marrow. The coexposure to toluene reduced the degree of anemia. These results confirm previous studies where toluene was found to reduce benzene toxicity. This protective effect was most pronounced when DNA damage was studied in peripheral blood cells, bone marrow, and liver using the single cell gel (SCG) assay. With benzene alone, either with 300 or 900 ppm, a significant increase in DNA damage was detected in cells sampled from all three organs. Toluene alone did not induce a significant increase in DNA damage. The coexposure of benzene and toluene reduced the extent of DNA damage to about 50% of benzene alone. This result is considered a clear indication for a protective effect of toluene on the genetic toxicity of benzene.

  13. A systems biology pipeline identifies new immune and disease related molecular signatures and networks in human cells during microgravity exposure

    Science.gov (United States)

    Mukhopadhyay, Sayak; Saha, Rohini; Palanisamy, Anbarasi; Ghosh, Madhurima; Biswas, Anupriya; Roy, Saheli; Pal, Arijit; Sarkar, Kathakali; Bagh, Sangram

    2016-05-01

    Microgravity is a prominent health hazard for astronauts, yet we understand little about its effect at the molecular systems level. In this study, we have integrated a set of systems-biology tools and databases and have analysed more than 8000 molecular pathways on published global gene expression datasets of human cells in microgravity. Hundreds of new pathways have been identified with statistical confidence for each dataset and despite the difference in cell types and experiments, around 100 of the new pathways are appeared common across the datasets. They are related to reduced inflammation, autoimmunity, diabetes and asthma. We have identified downregulation of NfκB pathway via Notch1 signalling as new pathway for reduced immunity in microgravity. Induction of few cancer types including liver cancer and leukaemia and increased drug response to cancer in microgravity are also found. Increase in olfactory signal transduction is also identified. Genes, based on their expression pattern, are clustered and mathematically stable clusters are identified. The network mapping of genes within a cluster indicates the plausible functional connections in microgravity. This pipeline gives a new systems level picture of human cells under microgravity, generates testable hypothesis and may help estimating risk and developing medicine for space missions.

  14. On the mechanistic differences of benzene-induced leukemogenesis between wild type and p53 knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Yoko; Yoon, Byung-Il; Kawasaki, Yasushi; Li, Guang-Xun; Kanno, Jun; Inoue, Tohru [National Inst. of Health Sciences, Tokyo (Japan)

    2003-07-01

    Leukemia induction by benzene inhalation was first reported by Le Noire in 1887, described multiple cases of leukemia among Parisian cobblers. However, experimental induction of leukemia by benzene exposure was not succeeded for a hundred years, until Snyder et al. and our group reported it nearly 20 years ago. Nevertheless, the mechanistic background of benzene-induced leukemia was still an enigma until recently a benzene-induced peculiar cell kinetics of the stem/progenitor cells has been elucidated by our study, demonstrated a marked repeated oscillatory decrease in peripheral blood and bone marrow (BM) cellularity during and after benzene exposure, which epigenetically preceded and developed the leukemia more than a year later. We utilized the BUUV (bromodeoxyuridine + UV exposure) method to study stem/progenitor cell kinetics during and/or after benzene exposure. Using these methods, we were able to measure the labeling rate, cycling fraction of clonogenic progenitor cells, and other cell cycle parameters. The cycling fraction of stem/progenitor cells was found not to turn into an active hematopoiesis but to remain low during benzene inhalation and further we found evidence that the cycling fraction depression may be mediated in part by a slowing of stem/progenitor cell cycling perse by up-regulation of p21. The benzene induced leukemogenicity between mice carrying wild-type p53 and mice lacking p53 seem to differ from one another. In the case of p53 knockout mouse, DNA damage such as weak mutagenicity and or chromosomal damages are retained, and those damages participated in the induction of a consequent activation of proto-oncogenes and the like, which led cells to further neoplastic changes. In contrast, in the case of wild type mice, a dramatic oscillational change in the cell cycle of the stem cell compartment seems to be an important factor for mice carrying the p53 gene. (author)

  15. Excited state of protonated benzene and toluene

    Energy Technology Data Exchange (ETDEWEB)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr [Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille (France)

    2015-08-21

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  16. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Science.gov (United States)

    2010-10-01

    ... principal effects of benzene exposure addressed in 46 CFR part 197, subpart C, appendix A, are pathological... specified in 46 CFR 197.560 is designed to observe, on a regular basis, blood indices for early signs of... required in 46 CFR 197.560. There are special provisions for medical tests in the event of...

  17. 78 FR 25476 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Benzene...

    Science.gov (United States)

    2013-05-01

    ... exposure to benzene in the workplace does not harm workers. This information collection is subject to the... provisions of law, no person shall generally be subject to penalty for failing to comply with a collection of... information, see the related notice published in the Federal Register on February 28, 2013 (78 FR...

  18. Ethyl benzene-induced ototoxicity in rats : a dose-dependent mild-frequency hearing loss

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Baretta, A.B.; Muijser, H.; Smoorenburg, G.F.

    2000-01-01

    Rats were exposed to ethyl benzene at 0, 300, 400 and 550 ppm for 8 hours/day for 5 consecutive days. Three to six weeks after the exposure, auditory function was tested by measuring compound action potentials (CAP) in the frequency range of 1-24 kHz and 2f1-f2 distortion product otoacoustic emissio

  19. 46 CFR Appendix A to Subpart C to... - Sample Substance Safety Data Sheet, Benzene

    Science.gov (United States)

    2010-10-01

    ..., nauseated, or intoxicated. Severe exposures may lead to convulsions and loss of consciousness. (2) Long-term... protection. You must wear splash-proof safety goggles if it is possible that benzene may get into your eyes... out immediately with large amounts of water. If irritation persists or vision appears to be...

  20. The role of geographical ecological studies in identifying diseases linked to UVB exposure and/or vitamin D.

    Science.gov (United States)

    Grant, William B

    2016-01-01

    Using a variety of approaches, researchers have studied the health effects of solar ultraviolet (UV) radiation exposure and vitamin D. This review compares the contributions from geographical ecological studies with those of observational studies and clinical trials. Health outcomes discussed were based on the author's knowledge and include anaphylaxis/food allergy, atopic dermatitis and eczema, attention deficit hyperactivity disorder, autism, back pain, cancer, dental caries, diabetes mellitus type 1, hypertension, inflammatory bowel disease, lupus, mononucleosis, multiple sclerosis, Parkinson disease, pneumonia, rheumatoid arthritis, and sepsis. Important interactions have taken place between study types; sometimes ecological studies were the first to report an inverse correlation between solar UVB doses and health outcomes such as for cancer, leading to both observational studies and clinical trials. In other cases, ecological studies added to the knowledge base. Many ecological studies include other important risk-modifying factors, thereby minimizing the chance of reporting the wrong link. Laboratory studies of mechanisms generally support the role of vitamin D in the outcomes discussed. Indications exist that for some outcomes, UVB effects may be independent of vitamin D. This paper discusses the concept of the ecological fallacy, noting that it applies to all epidemiological studies. PMID:27195055

  1. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Science.gov (United States)

    2010-10-01

    ... appendices A and B of this subpart or a MSDS on benzene meeting the requirements of 29 CFR 1910.1200(g) is... 46 Shipping 7 2010-10-01 2010-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards....

  2. Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model.

    Science.gov (United States)

    Medinsky, M A; Sabourin, P J; Henderson, R F; Lucier, G; Birnbaum, L S

    1989-07-01

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice were more sensitive to the carcinogenic effects of benzene than were F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice. Our objective was to determine if differences in toxic effects could be explained by differences in pathways for benzene metabolism or by differences in total uptake of benzene. Compartments incorporated into the model included liver, fat, a poorly perfused tissue group, a richly perfused tissue group, an alveolar or lung compartment and blood. Metabolism of benzene was assumed to take place only in the liver and to proceed by four major competing pathways. These included formation of hydroquinone conjugates (HQC), formation of phenyl conjugates (PHC), ring-breakage and formation of muconic acid (MUC), and conjugation with glutathione with subsequent mercapturic acid (PMA) formation. Values for parameters such as alveolar ventilation, cardiac output, organ volumes, blood flow, partition coefficients, and metabolic rate constants were taken from the literature. Model simulations confirmed that during and after 6-hr inhalation exposures mice metabolized more benzene on a mumole per kilogram body weight basis than did rats. After oral exposure, rats metabolized more benzene than mice at doses above 50 mg/kg because of the more rapid absorption and exhalation of benzene by mice. Model simulations for PHC and PMA, generally considered to be detoxification metabolites, were similar in shape and dose-response to those for total metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure.

    Directory of Open Access Journals (Sweden)

    Mary-Anne Enoch

    Full Text Available Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5 onto one factor; six genes loaded onto two. The largest factor (0.30 variance included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance and high (0.09 variance expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating

  4. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure.

    Science.gov (United States)

    Enoch, Mary-Anne; Baghal, Basel; Yuan, Qiaoping; Goldman, David

    2013-01-01

    Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from 'BrainSpan' was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress

  5. Pill characterization data streams for reducing exposure to inadequately identified anti-malarial medication in developing countries

    Directory of Open Access Journals (Sweden)

    Crandall Ian

    2010-07-01

    Full Text Available Abstract Background A large fraction of anti-malaria medicines (and indeed many other medicines classes used in developing countries are inadequately identified. Framing this problem as one of misidentification rather than the more common framing of criminal misrepresentation leads to new solutions sets not currently being considered. Method That reframing led to consideration and analysis of 4 new problems that informed design of a digital platform technology for delivering a distributed medicine characterization system: 1 problematic interests associated with a focus on preventing counterfeiting, 2 the complexity of the many ways that medicines can deviate from expected identities, 3 the challenge of choosing amongst a diversity of attribute characterization technologies, and 4 the need for a flexible and distributed data aggregation mechanism. Results Analysis of those new problems confirmed an initial insight that a previously described digital technology for tracking malaria tests results in infrastructure limited regions could be adapted for characterizing pill attributes. Feasibility is illustrated by describing how the platform design can be implemented using open-source software and commodity computational and communication technology readily available and supportable in developing countries. Discussion A system of this type would allow users to answer several questions. Is this medicine what it is supposed to be? Can it be used to treat locally encountered malaria? What has been the experience of others who have used pills having the same identity? Ubiquitous access to global digital telecommunication infrastructure allows the system to generate data streams from these distributed medicine characterization transactions that can be used to map global patterns of use of specifically identified medicines. This can provide feedback necessary to guide efforts to reduce the burden of malaria.

  6. Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility.

    Science.gov (United States)

    Neun, D J; Penn, A; Snyder, C A

    1992-01-01

    It has long been recognized that benzene exposure produces disparate toxic responses among different species or even among different strains within the same species. There is ample evidence that species- or strain-dependent differences in metabolic activity correlate with the disparate responses to benzene. However, bone marrow cells (the putative targets of benzene toxicity) may also exhibit species- or strain-dependent differences in susceptibility to the toxic effects of benzene. To investigate this hypothesis, two sets of companion experiments were performed. First, two strains of mice, Swiss Webster (SW) and C57B1/6J (C57), were exposed to 300 ppm benzene via inhalation and the effects of the exposures were determined on bone marrow cellularity and the development of bone marrow CFU-e (Colony Forming Unit-erythroid, an early red cell progenitor). Second, bone marrow cells from the same strains were exposed in vitro to five known benzene metabolites (1,4 benzoquinone, catechol, hydroquinone, muconic acid, and phenol) individually and in binary combinations. Benzene exposure, in vivo, reduced bone marrow cellularity and the development of CFU-e in both strains; however, reductions in both these endpoints were more severe in the SW strain. When bone marrow cells from the two strains were exposed in vitro to the five benzene metabolites individually, benzoquinone, hydroquinone, and catechol reduced the numbers of CFU-e in both strains in dose-dependent responses, phenol weakly reduced the numbers of the C57 CFU-e only and in a non-dose-dependent manner, and muconic acid was without effect on cells from either strain.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Polyphenolic metabolites in the blood and bone marrow of mice exposed to low levels of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R.; Henderson, R. [Inhalation Toxicology Research Inst., Albuquerque, NM (United States)

    1996-12-31

    Exposure to benzene can cause an increased incidence of leukemia in humans, possibly through the formation of polyphenolic metabolites. To define exposure-dose relationships, male B6C3F1 mice were exposed by inhalation for 6 hr to benzene at 60 ppm or {sup 13}C-benzene at 8 ppm. Levels of phenol, catechol, and hydroquinone were measured in blood and bone marrow by gas chromatography/mass spectrometry, and compared with unexposed controls. Levels of all three metabolites, after background correction, were significantly increased in both the blood and bone marrow of the mice exposed to 60 ppm relative to those exposed to 8 ppm. However, levels of the {sup 13}C metabolites in blood and bone marrow were consistently lower than background levels of the equivalent {sup 12}C polyphenolics in unexposed controls. These results demonstrate that single exposures of benzene of less than 10 ppm add little to the blood and bone marrow burdens of polyphenolic metabolites.

  8. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  9. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Institute of Scientific and Technical Information of China (English)

    姜楠; 鲁娜; 李杰; 吴彦

    2012-01-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h^-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  10. Metabolites of benzene are potent inhibitors of gap-junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Rivedal, Edgar [Norwegian Radium Hospital, Institute for Cancer Research, Montebello, Oslo (Norway); Witz, Gisela [Robert Wood Johnson Medical School/UMDNJ, Environmental and Occupational Health Sciences Institute and Department of Environmental and Occupational Medicine, Piscataway, New Jersey (United States)

    2005-06-01

    Chronic exposure to benzene has been shown to lead to bone marrow depression and the development of leukemia. The mechanism underlying the carcinogenicity of benzene is unknown, although a number of genetic changes including chromosomal aberrations have been associated with benzene toxicity. Metabolism of benzene is required for the induced toxicological effects. We have investigated the effect of trans,trans-muconaldehyde (MUC), hydroquinone (HQ), and four MUC metabolites on gap-junction intercellular communication (GJIC). Inhibition of GJIC has been considered a possible predictor of tumor promoters and non-genotoxic carcinogens, and shown to result in perturbation of hematopoiesis. MUC was found to be a strong inhibitor of GJIC (EC50=12 {mu}mol L{sup -1}) in rat liver epithelial cells IAR20, with potency similar to that of chlordane (EC50=7 {mu}mol L{sup -1}). HQ inhibited GJIC with an EC50 of 25 {mu}mol L{sup -1}, and the metabolite OH/CHO with an EC50 of 58 {mu}mol L{sup -1}. The other MUC metabolites tested, CHO/COOH and OH/COOH were weak inhibitors of GJIC whereas COOH/COOH had no effect. Benzene itself had no effect on GJIC when tested in concentrations up to 20 mmol L{sup -1}. The relative potency observed for the metabolites on GJIC is similar to their hematotoxic effects. The effect of MUC on GJIC was observed to take place concordant with a dramatic loss of connexin 43 (Cx43) from the cells as visualized by Western blotting. Substances with the ability to inhibit Cx43-dependent GJIC have previously been observed to interfere with normal hematopoietic development. The ability of benzene metabolites to interfere with gap-junction functionality, and especially the dramatic loss of Cx43 induced by MUC, should therefore be considered as a possible mechanism for benzene-induced hematotoxicity and development of leukemia. (orig.)

  11. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  12. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: A comprehensive review

    Energy Technology Data Exchange (ETDEWEB)

    Gulumian, M.; Borm, P.J.A.; Vallyathan, V.; Castranova, V.; Donaldson, K.; Nelson, G.; Murray, J. [NIOH, Johannesburg (South Africa). Dept. of Toxicology & Biochemical Research

    2006-09-15

    Clinical detection of silicosis is currently dependent on radiological and lung function abnormalities, both late manifestations of disease. Markers of prediction and early detection of pneumoconiosis are imperative for the implementation of timely intervention strategies. Understanding the underlying mechanisms of the etiology of coal workers pneumoconiosis (CWP) and silicosis was essential in proposing numerous biomarkers that have been evaluated to assess effects following exposure to crystalline silica and/or coal mine dust. Human validation studies have substantiated some of these proposed biomarkers and argued in favor of their use as biomarkers for crystalline silica-and CWP-induced pneumoconiosis. A number of 'ideal' biological markers of effect were identified, namely, Clara cell protein-16 (CC16) (serum), tumor necrosis factor-alpha (TNF-alpha) (monocyte release), interleukin-8 (IL-8) (monocyte release), reactive oxygen species (ROS) measurement by chemiluminescence (neutrophil release), 8-isoprostanes (serum), total antioxidant levels measured by total equivalent antioxidant capacity (TEAC), glutathione, glutathione peroxidase activity, glutathione S-transferase activity, and platelet-derived growth factor (PDGF) (serum). TNF-alpha polymorphism (blood cellular DNA) was identified as a biomarker of susceptibility. Further studies are planned to test the validity and feasibility of these biomarkers to detect either high exposure to crystalline silica and early silicosis or susceptibility to silicosis in gold miners in South Africa.

  13. Concentration dependence of the embryotoxic effects of benzene inhalation in CFY rats.

    Science.gov (United States)

    Tátrai, E; Ungváry, G; Hudák, A; Rodics, K; Lörincz, M; Barcza, G

    1980-01-01

    CFY rats were exposed to continuous benzene inhalation 24 h/day from day 7 to day 14 of gestation at 150, 450, 1500, or 3000 mg/m3 (50, 150, 500, or 1000 ppm) atmospheric concentrations. None of the benzene concentrations used proved to be teratogenic. There was no increase in the incidence of external, visceral, or skeletal malformations. Benzene inhalation at a 150 mg/m3 concentration brought about a slight toxic effect at a 450 mg/m3 concentration a more pronounced effect on both mothers and fetuses. The toxic effects were manifest as an increase in maternal mortality, circulatory damage, decreased gain in body weight, decrease in the weight of the placenta in the mothers and an increase in mortality (early and late), retardation of development (weight and skeleton) in the fetuses. No further change in the parameters was seen with further increases in benzene concentration. Avoidance of the risks of benzene exposure seems desirable before the commencement of planned pregnancy in the human.

  14. Detection of Sperm DNA Damage in Workers Exposed to Benzene by Modified Single Cell Gel Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bo SONG; Zhi-ming CAI; Xin LI; Li-xia DENG; Qiao ZHANG; Lu-kang ZHENG

    2005-01-01

    Objective To assess the effect of benzene on sperm DNA damageMethods Twenty-seven benzene-exposed workers were selected as exposed groupand 35 normal sperm donors as control group. Air concentration of benzene series inworkshop was determined by gas chromatography. As an internal exposure dose ofbenzene, the concentration of trans, trans-muconic acid (ttMA) was determined byhigh performance liquid chromatography. DNA was detected by modified single cellgel electrophoresis (SCGE).Results The air concentrations of benzene, toluene and xylene at the workplace were86.49 ± 2.83 mg/m3, 97.20 ±3.52 mg/m3 and 97.45 ±2.10 mg/m3, respectively.Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher thanthat of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determinedby modified SCGE method, significantly decreased in the exposed group (n=13, 70.18%± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P<0.001).Conclusion The modified SCGE method can be used to investigate the damage ofsperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cellsduring the spermatogenesiss.

  15. Identification of 6-hydroxy-trans,trans-2,4-hexadienoic acid, a novel ring-opened urinary metabolite of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Kline, S.A.; Robertson, J.F.; Grotz, V.L.; Goldstein, B.D.; Witz, G. (Robert Wood Johnson Medical School, Piscataway, NJ (United States) Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States))

    1993-09-01

    The authors have studied the in vivo metabolism of benzene in mice to ring-opened compounds excreted in urine. Male CD-1 mice were treated intraperitoneally with benzene (110-440 mg/kg), [[sup 14]C] benzene (220 mg/kg) or trans,trans-muconaldehyde (MUC; 4 mg/kg), a microsomal, hematotoxic metabolite of benzene. Urine, collected over 24 hr, was extracted and analyzed by HPLC with a diode-array detector and by scintillation counting. In addition to trans,trans-muconic acid, previously the only known ring-opened urinary benzene metabolite, a new metabolite, 6-hydroxy-trans,trans-2,4-hexadienoic acid, was detected in urine of mice treated with either benzene or MUC. The authors identified the new metabolite based on coelution of metabolites and UV spectral comparison with authentic standards in unmethylated and methylated urine extracts. Results presented here are consistent with the intermediacy of the ring-opened metabolites.

  16. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

    Directory of Open Access Journals (Sweden)

    Kheirbek Iyad

    2012-07-01

    Full Text Available Abstract Background Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. Methods To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes and formaldehyde to indicators of local sources, adjusting for temporal variation. Results Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively. Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Conclusions Traffic and

  17. Lead shot contribution to blood lead of First Nations people: The use of lead isotopes to identify the source of exposure

    International Nuclear Information System (INIS)

    Although lead isotope ratios have been used to identify lead ammunition (lead shotshell pellets and bullets) as a source of exposure for First Nations people of Canada, the actual source of lead exposure needs to be further clarified. Whole blood samples for First Nations people of Ontario, Canada, were collected from participants prior to the traditional spring harvest of water birds, as well as post-harvest. Blood-lead levels and stable lead isotope ratios prior to, and after the harvest were determined by ICP-MS. Data were analyzed by paired t-tests and Wilcoxon Signed-Ranks tests. All participants consumed water birds harvested with lead shotshell during the period of study. For the group excluding six males who were potentially exposed to other sources of lead (as revealed through a questionnaire), paired t-tests and Wilcoxon Signed-Ranks tests showed consistent results: significant (p 206Pb/204Pb and 206Pb/207Pb towards the mean values we previously reported for lead shotshell pellets; and a significant decrease in 208Pb/206Pb values towards the mean for lead shotshell pellets. However, when we categorized the group further into a group that did not use firearms and did not eat any other traditional foods harvested with lead ammunition other than waterfowl, our predictions for 206Pb/204Pb, 206Pb/207Pb and 208Pb/206Pb hold true, but there was not a significant increase in blood-lead level after the hunt. It appears that the activity of hunting (i.e., use of a shotgun) was also an important route of lead exposure. The banning of lead shotshell for all game hunting would eliminate a source of environmental lead for all people who use firearms and/or eat wild game

  18. Lead shot contribution to blood lead of First Nations people: the use of lead isotopes to identify the source of exposure.

    Science.gov (United States)

    Tsuji, Leonard J S; Wainman, Bruce C; Martin, Ian D; Sutherland, Celine; Weber, Jean-Philippe; Dumas, Pierre; Nieboer, Evert

    2008-11-01

    Although lead isotope ratios have been used to identify lead ammunition (lead shotshell pellets and bullets) as a source of exposure for First Nations people of Canada, the actual source of lead exposure needs to be further clarified. Whole blood samples for First Nations people of Ontario, Canada, were collected from participants prior to the traditional spring harvest of water birds, as well as post-harvest. Blood-lead levels and stable lead isotope ratios prior to, and after the harvest were determined by ICP-MS. Data were analyzed by paired t-tests and Wilcoxon Signed-Ranks tests. All participants consumed water birds harvested with lead shotshell during the period of study. For the group excluding six males who were potentially exposed to other sources of lead (as revealed through a questionnaire), paired t-tests and Wilcoxon Signed-Ranks tests showed consistent results: significant (pshotshell pellets; and a significant decrease in (208)Pb/(206)Pb values towards the mean for lead shotshell pellets. However, when we categorized the group further into a group that did not use firearms and did not eat any other traditional foods harvested with lead ammunition other than waterfowl, our predictions for (206)Pb/(204)Pb, (206)Pb/(207)Pb and (208)Pb/(206)Pb hold true, but there was not a significant increase in blood-lead level after the hunt. It appears that the activity of hunting (i.e., use of a shotgun) was also an important route of lead exposure. The banning of lead shotshell for all game hunting would eliminate a source of environmental lead for all people who use firearms and/or eat wild game.

  19. Lead shot contribution to blood lead of First Nations people: The use of lead isotopes to identify the source of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Leonard J.S. [Department of Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)], E-mail: ljtsuji@fes.uwaterloo.ca; Wainman, Bruce C. [Faculty of Health Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5 (Canada); Martin, Ian D. [Department of Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Sutherland, Celine [Attawapiskat First Nation Health Services, Attawapiskat, Ontario, P0L 1A0 (Canada); Weber, Jean-Philippe; Dumas, Pierre [Centre de toxicologie, Institut national de sante publique du Quebec, Quebec City, Quebec, G1V 5B3 (Canada); Nieboer, Evert [Faculty of Health Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5 (Canada); Institute of Community Medicine, University of Tromso, Tromso N-9037 (Norway)

    2008-11-01

    Although lead isotope ratios have been used to identify lead ammunition (lead shotshell pellets and bullets) as a source of exposure for First Nations people of Canada, the actual source of lead exposure needs to be further clarified. Whole blood samples for First Nations people of Ontario, Canada, were collected from participants prior to the traditional spring harvest of water birds, as well as post-harvest. Blood-lead levels and stable lead isotope ratios prior to, and after the harvest were determined by ICP-MS. Data were analyzed by paired t-tests and Wilcoxon Signed-Ranks tests. All participants consumed water birds harvested with lead shotshell during the period of study. For the group excluding six males who were potentially exposed to other sources of lead (as revealed through a questionnaire), paired t-tests and Wilcoxon Signed-Ranks tests showed consistent results: significant (p < 0.05) increases in blood-lead concentrations and blood levels of {sup 206}Pb/{sup 204}Pb and {sup 206}Pb/{sup 207}Pb towards the mean values we previously reported for lead shotshell pellets; and a significant decrease in {sup 208}Pb/{sup 206}Pb values towards the mean for lead shotshell pellets. However, when we categorized the group further into a group that did not use firearms and did not eat any other traditional foods harvested with lead ammunition other than waterfowl, our predictions for {sup 206}Pb/{sup 204}Pb, {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 206}Pb hold true, but there was not a significant increase in blood-lead level after the hunt. It appears that the activity of hunting (i.e., use of a shotgun) was also an important route of lead exposure. The banning of lead shotshell for all game hunting would eliminate a source of environmental lead for all people who use firearms and/or eat wild game.

  20. Ionic Liquid Catalyst Used in Deep Desulfuration of the Coking Benzene for Producing Sulfurless Benzene

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia-Ping; WANG Yan-Liang; MENG Fan-Wei; FAN Xing-Ming; QIN Song-Bo

    2008-01-01

    For the widening need of benzene used in organic synthesis, ionic liquid catalyst was prepared to study the process of deep desulfuration in the coking benzene. The result shows that the effect of de-thiophene by the ionic liquid catalyst (N-methyl imidazolium hydrogen sulfate [Hmim][HSO4]) is related to its acid function value.Hammett indicator was used to determine the acid function value H0 of the ionic liquid. It can be concluded that while the acid function value is in the range from -4 to -12, the ionic liquid catalyst can make the concentration certain acid quantity and strength, the ionic liquid catalyst helps to form alkyl thiophene through Friedel-Crafts reaction, which differs from the character of benzene and it is absolutely necessary for the separation and refinement of benzene. But overabundant quantity and higher acid value of [Hmim][HSO4] are more suitable for the side copolymerization of benzene, thiophene and alkene, thereby affecting repeated use of the ionic liquid catalyst([Hmim][HSO4]). In our research, thiophene derivant produced by desulfurization in the coking benzene was used as the polymer to provide the passing channel of the charges. The ionic liquid composition in poor performance after repeated use was made to prepare conductive material (resisting to static electricity) as an "electron-receiving" and "electron-giving" doping agent. The result shows that thiophene derivant after desulfuration in the coking benzene can be used to prepare doping conductive materials.

  1. Hematopoietic effects of benzene inhalation assessed by long-term bone marrow culture.

    Science.gov (United States)

    Abraham, N G

    1996-12-01

    The strong and long-lasting hematotoxic effect after benzene exposure in vivo (300 ppm, 6 hr/day, 5 days/week for 2 weeks) was assessed in mice with bone marrow cells grown in long-term bone marrow culture (LTBMC). Bone marrow cultures initiated 1 day after the last benzene exposure did not produce adequate numbers of hematopoietic cells over 3 weeks, and, in most cases, no erythroid or myeloid clonogenic cells could be recovered. The adherent cell layer of these cultures had a lowered capacity for supporting in vitro hematopoiesis after the second seeding with normal bone marrow cells compared with control cultures. Two weeks after the last benzene exposure, body weight, hematocrit, bone marrow cellularity, and committed hematopoietic progenitor content (BFU-E and CFU-GM) were regenerated to normal or subnormal values, whereas hematopoiesis in LTBMC was very poor. Over 8 weeks, little or no significant committed progenitor production was observed. Treatment of mice exposed to benzene with hemin (three doses of 3 micrograms/g bw i.v. over 2 weeks for a total dose of 9 micrograms/g) partially overcame the toxic effect of benzene on the hematopoietic system as measured by the LTBMC method. Cultures from mice treated with hemin had a modest recovery of BFU-E and CFU-GM clonogenic potential after 5 to 6 weeks in LTBMC. In contrast, little or no recovery was obtained for the adherent cell layer clonogenic capacity, even after hemin treatment. These results clearly indicate a strong, long-lasting toxic effect on the bone marrow stroma and a limited recovery of hematopoietic potential by clonogenic cells of the nonadherent population after in vivo hemin treatment.

  2. De novo assembly of the blunt snout bream (Megalobrama amblycephala) gill transcriptome to identify ammonia exposure associated microRNAs and their targets.

    Science.gov (United States)

    Sun, Shengming; Ge, Xianping; Zhu, Jian; Zhang, Wuxiao; Xuan, Fujun

    2016-01-01

    De novo transcriptome sequencing is a robust method for microRNA (miRNA) target gene prediction, especially for organisms without reference genomes. Following exposure of Megalobrama amblycephala to ammonia (0.1 or 20 mg L(-1) ), two cDNA libraries were constructed from the fish gills and sequenced using Illumina HiSeq 2000. Over 90 million reads were generated and de novo assembled into 46, 615 unigenes, which were then extensively annotated by comparing to different protein databases, followed by biochemical pathway prediction. The expression of 2666 unigenes significantly differed; 1961 were up-regulated, while 975 were down-regulated. Among these, 250 unigenes were identified as the targets for 10 conserved and 4 putative novel miRNA families by miRNA target computational prediction. We examined expression of ssa-miRNA-21 and its target genes by real-time quantitative PCR and found agreement with the sequencing data. This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the genomic resources available for Megalobrama amblycephala and will be useful for gene expression profile analysis and miRNA functional annotation. PMID:27504260

  3. De novo assembly of the blunt snout bream (Megalobrama amblycephala) gill transcriptome to identify ammonia exposure associated microRNAs and their targets.

    Science.gov (United States)

    Sun, Shengming; Ge, Xianping; Zhu, Jian; Zhang, Wuxiao; Xuan, Fujun

    2016-01-01

    De novo transcriptome sequencing is a robust method for microRNA (miRNA) target gene prediction, especially for organisms without reference genomes. Following exposure of Megalobrama amblycephala to ammonia (0.1 or 20 mg L(-1) ), two cDNA libraries were constructed from the fish gills and sequenced using Illumina HiSeq 2000. Over 90 million reads were generated and de novo assembled into 46, 615 unigenes, which were then extensively annotated by comparing to different protein databases, followed by biochemical pathway prediction. The expression of 2666 unigenes significantly differed; 1961 were up-regulated, while 975 were down-regulated. Among these, 250 unigenes were identified as the targets for 10 conserved and 4 putative novel miRNA families by miRNA target computational prediction. We examined expression of ssa-miRNA-21 and its target genes by real-time quantitative PCR and found agreement with the sequencing data. This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The transcriptome assembly data represent a substantial increase in the genomic resources available for Megalobrama amblycephala and will be useful for gene expression profile analysis and miRNA functional annotation.

  4. 46 CFR 153.1060 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060...

  5. Formation of Benzene in the Interstellar Medium

    Science.gov (United States)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  6. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  7. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to...

  8. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  9. A co-crystal between benzene and ethane: a potential evaporite material for Saturn's moon Titan

    Directory of Open Access Journals (Sweden)

    Helen E. Maynard-Casely

    2016-05-01

    Full Text Available Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H...π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group R\\bar 3 with a = 15.977 (1 Å and c = 5.581 (1 Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.

  10. Subchronic inhalation toxicity of benzene in rats and mice.

    Science.gov (United States)

    Ward, C O; Kuna, R A; Snyder, N K; Alsaker, R D; Coate, W B; Craig, P H

    1985-01-01

    A subchronic inhalation toxicity study of benzene was conducted in CD-1 mice and Sprague-Dawley rats. Four groups of animals consisting of 150 mice and 50 rats/sex each were exposed to concentrations of 1, 10, 30, and 300 ppm benzene vapor, 6 hours/day, 5 days/week, for 13 weeks. Additional groups of mice and rats, of equal size, were exposed under similar conditions to filtered air and served as control groups. Thirty mice and 10 rats/sex in each group were sacrificed after 7, 14, 28, 56, and 91 days of treatment. Criteria used to evaluate exposure-related effects included behavior, body weights, organ weights, clinical pathology, gross pathology, and histopathology. Fifty animals per sex of each species were exposed concurrently for cytogenetic studies. In addition, blood serum was obtained for immunological assays. The results of these two studies will be reported separately. No consistent exposure-related trends were seen in the clinical observations and body weight data. Exposure-related clinical pathology changes were seen in the high-level (300 ppm) animals of both species. In the mice, these changes included decreases in hematocrit, total hemoglobin, erythrocyte count, leukocyte count, platelet count, myeloid/erythroid ratios, and percentage of lymphocytes. Mean cell volume, mean cell hemoglobin, glycerol lysis time, and the incidence and severity of red cell morphologic changes were increased in the mice. In the rats, decreased lymphocyte counts and a relative increase in neutrophil percentages were the only exposure-related clinical pathology alterations. Histopathologic changes were present in the thymus, bone marrow, lymph nodes, spleen, ovaries, and testes of mice exposed to 300 ppm and in most cases the incidence and severity of the lesions were greater in the males. These changes in the testes and ovaries at 300 ppm were also seen at lower concentrations, but they were of doubtful biological significance. In rats, the only exposure-related lesion

  11. Discovering Electronic Effects of Substituents in Nitrations of Benzene Derivatives Using GC-MS Analysis

    Science.gov (United States)

    Clennan, Malgorzata M.; Clennan, Edward L.

    2007-01-01

    The nitration of six benzene derivatives having a range of substituents that differ in electronic effects were followed by GC-MS analyses of the crude reaction mixtures and adapted for the second-year organic laboratory. Students pool their results and identify the products by analyzing the mass spectral data of the isomers and by comparing them…

  12. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Science.gov (United States)

    2010-07-01

    ... with substituted phenol (generic). 721.1580 Section 721.1580 Protection of Environment ENVIRONMENTAL... substituted phenol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  13. [Effect of metals, benzene, pesticides and ethylene oxide on the haematopoietic system].

    Science.gov (United States)

    Pyszel, Angelika; Wróbel, Tomasz; Szuba, Andrzej; Andrzejak, Ryszard

    2005-01-01

    The hematopoietic system, due to intensive cells proliferation, is very sensitive to toxic substances. Many chemicals, including benzene, pesticides (dithiocarbamines), ethylene oxide and metals (mercury, cadmium, chrome, cobalt, lead, aluminum) exert their toxic effect on the hematopoietic system. Exposure to each of these substances may occur in the work place due to environmental pollution and in municipal or residential areas. Exposure to lead, aluminum, cadmium, and benzene results in the incidence of anemia. In addition, exposure to benzene and its metabolites leads to myelodysplastic syndromes, leukemia, lymphomas and bone marrow aplasia. Ethylene oxide induces neoplasm of the hematopoietic system and lymphomas, especially non-Hodgkin lymphoma. Arsenic compounds act like immunosuppressants. Mercury and chrome affect the immune system by immunosuppression and by evoking autoimmune reactions. Dithiocarbamates are suspected to induce leukemia. An analysis of the pathophysiology of individual substances reveal universal toxic mechanisms. In this paper, the authors discuss the pathomechanism of toxic effects of the aforesaid chemicals on the haematopoietic system and peripheral blood cells from the viewpoint of mutagenesis, apoptosis, myelotoxicity, anemia, immunomodulation, and individual sensitivity.

  14. Indoor Residential Chemical Exposures as Risk Factors for Asthmaand Allergy in Infants and Children: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.

    2006-03-01

    Most research into effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. This paper briefly reviews reported findings on associations of asthma or allergy in infants or children with risk factors related to indoor chemical emissions from residential materials or surface coatings. Associations, some strong (e.g., odds ratios up to 13), were reported. The most frequently identified risk factors were formaldehyde, aromatic organic compounds such as toluene and benzene, plastic materials and plasticizers, and recent painting. Exposures and consequent effects from indoor sources may be exacerbated by decreased ventilation. Identified risk factors may be proxies for correlated exposures. Findings suggest the frequent occurrence of important but preventable effects on asthma and allergy in infants and children worldwide from modern residential building materials and coatings.

  15. Quantitation of Aristolochic Acids in Corn, Wheat Grain, and Soil Samples Collected in Serbia: Identifying a Novel Exposure Pathway in the Etiology of Balkan Endemic Nephropathy.

    Science.gov (United States)

    Chan, Wan; Pavlović, Nikola M; Li, Weiwei; Chan, Chi-Kong; Liu, Jingjing; Deng, Kailin; Wang, Yinan; Milosavljević, Biljana; Kostić, Emina N

    2016-07-27

    While to date investigations provided convincing evidence on the role of aristolochic acids (AAs) in the etiology of Balkan endemic nephropathy (BEN) and upper urothelial cancer (UUC), the exposure pathways by which AAs enter human bodies to cause BEN and UUC remain obscure. The goal of this study is to test the hypothesis that environmental pollution by AAs and root uptake of AAs in the polluted soil may be one of the pathways by which AAs enter the human food chain. The hypothesis driving this study was that the decay of Aristolochia clematitis L., a AA-containing herbaceous plant that is found growing widespread in the endemic regions, could release free AAs to the soil, which could be taken up by food crops growing nearby, thereby transferring this potent human nephrotoxin and carcinogen into their edible parts. Using the highly sensitive and selective high-performance liquid chromatography coupled with fluorescence detection method, we identified and quantitated in this study for the first time AAs in corn, wheat grain, and soil samples collected from the endemic village Kutles in Serbia. Our results provide the first direct evidence that food crops and soil in the Balkans are contaminated with AAs. It is possible that the presence of AAs in edible parts of crops originating from the AA-contaminated soil could be one of the major pathways by which humans become exposed to AAs. PMID:27362729

  16. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal as an Example

    Directory of Open Access Journals (Sweden)

    Carla Candeias

    2014-09-01

    Full Text Available The Sn-W Panasqueira mine, in activity since the mid-1890s, is one of the most important economic deposits in the world. Arsenopyrite is the main mineral present as well as rejected waste sulphide. The long history is testified by the presence of a huge amount of tailings, which release considerable quantities of heavy metal(loids into the environment. This work assesses soil contamination and evaluates the ecological and human health risks due to exposure to hazardous materials. The metal assemblage identified in soil (Ag-As-Bi-Cd-Cu-W-Zn; potentially toxic elements (PTEs reflects the influence of the tailings, due to several agents including aerial dispersion. PTEs and pH display a positive correlation confirming that heavy metal mobility is directly related to pH and, therefore, affects their availability. The estimated contamination factor classified 92.6% of soil samples as moderately to ultra-highly polluted. The spatial distribution of the potential ecological risk index classified the topsoil as being of a very high ecological risk, consistent with wind direction. Non-carcinogenic hazard of topsoil, for children (1–6 years, showed that for As the non-carcinogenic hazard represents a high health risk. The carcinogenic risks, both for children and adult alike, reveal a very high cancer risk mostly due to As ingestion.

  17. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  18. Nonlinear diffusion in Acetone-Benzene Solution

    CERN Document Server

    Obukhovsky, Vjacheslav V

    2010-01-01

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  19. PROCESS SIMULATION OF BENZENE SEPARATION COLUMN OF LINEAR ALKYL BENZENE (LABPLANT

    Directory of Open Access Journals (Sweden)

    Zaid A. AbdelRahman

    2013-05-01

    Full Text Available       CHEMCAD process simulator was used for the analysis of existing benzene separation column in LAB plant(Arab Detergent Company/Beiji-Iraq.         Simulated column performance curves were constructed. The variables considered in this study are the thermodynamic model option, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates compositions, were constructed. Four different thermodynamic models options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.            For Benzene Column (32 real stages, feed stage 14, the simulated results show that bottom temperature above 200 oC the weight fractions of top components, except benzene, increases sharply, where as benzene top weight fraction decreasing sharply. Also, feed temperature above 180 oC  shows same trends. The column profiles remain fairly constant from tray 3 (immediately below condenser to tray 10 (immediately above feed and from tray 15 (immediately below feed to tray 25 (immediately above reboiler. Simulation of the benzene separation column in LAB production plant using CHEMCAD simulator, confirms the real plant operation data. The study gives evidence about a successful simulation with CHEMCAD.

  20. At-line benzene monitor for measuring benzene in precipitate hydrolysis aqueous

    International Nuclear Information System (INIS)

    A highly accurate and repeatable at-line benzene monitor (ALBM) has been developed to measure the benzene concentration in precipitate hydrolysis aqueous (PHA) in the DWPF. This analyzer was conceived and jointly developed within SRTC by the Analytical Development and the Defense Waste Process Technology Sections with extensive support from the Applied Statistics Group and the TNX Operations Section. It is recommended that an ALBM specifically adapted to DWPF analytical requirements be used to measure benzene in PHA; calibrations be performed using a 10% methanol solution matrix (for standard stability); and based on experience gained in development at TNX, the services of ADS and ASG be employed to both adapt the ALBM to DWPF requirements and develop statistical control procedures

  1. At-line benzene monitor for measuring benzene in precipitate hydrolysis aqueous

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.J.

    1992-10-14

    A highly accurate and repeatable at-line benzene monitor (ALBM) has been developed to measure the benzene concentration in precipitate hydrolysis aqueous (PHA) in the DWPF. This analyzer was conceived and jointly developed within SRTC by the Analytical Development and the Defense Waste Process Technology Sections with extensive support from the Applied Statistics Group and the TNX Operations Section. It is recommended that an ALBM specifically adapted to DWPF analytical requirements be used to measure benzene in PHA; calibrations be performed using a 10% methanol solution matrix (for standard stability); and based on experience gained in development at TNX, the services of ADS and ASG be employed to both adapt the ALBM to DWPF requirements and develop statistical control procedures.

  2. Induction of molecular chirality by circularly polarized light in cyclic azobenzene with a photoswitchable benzene rotor.

    Science.gov (United States)

    Hashim, P K; Thomas, Reji; Tamaoki, Nobuyuki

    2011-06-20

    New phototriggered molecular machines based on cyclic azobenzene were synthesized in which a 2,5-dimethoxy, 2,5-dimethyl, 2,5-difluorine or unsubstituted-1,4-dioxybenzene rotating unit and a photoisomerizable 3,3'-dioxyazobenzene moiety are bridged together by fixed bismethylene spacers. Depending upon substitution on the benzene moiety and on the E/Z conformation of the azobenzene unit, these molecules suffer various degrees of restriction on the free rotation of the benzene rotor. The rotation of the substituted benzene rotor within the cyclic azobenzene cavity imparts planar chirality to the molecules. Cyclic azobenzene 1, with methoxy groups at both the 2- and 5-positions of the benzene rotor, was so conformationally restricted that free rotation of the rotor was prevented in both the E and Z isomers and the respective planar chiral enantiomers were resolved. In contrast, compound 2, with 2,5-dimethylbenzene as the rotor, demonstrated the property of a light-controlled molecular brake, whereby rotation of the 2,5-dimethylbenzene moiety is completely stopped in the E isomer (brake ON, rotation OFF), while the rotation is allowed in the Z isomer (brake OFF, rotation ON). The cyclic azobenzene 3, with fluorine substitution on the benzene rotor, was in the brake OFF state regardless of E/Z photoisomerization of the azobenzene moiety. More interestingly, for the first time, we demonstrated the induction of molecular chirality in a simple monocyclic azobenzene by circular-polarized light. The key characteristics of cyclic azobenzene 2, that is, stability of the chiral structure in the E isomer, fast racemization in the Z isomer, and the circular dichroism of enantiomers of both E and Z isomers, resulted in a simple reversible enantio-differentiating photoisomerization directly between the E enantiomers. Upon exposure to r- or l-circularly polarized light at 488 nm, partial enrichment of the (S)- or (R)-enantiomers of 2 was observed. PMID:21567494

  3. The molecular mechanisms of liver and islets of Langerhans toxicity by benzene and its metabolite hydroquinone in vivo and in vitro.

    Science.gov (United States)

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Gholami, Mahdi; Ghafour-Boroujerdi, Elmira; Abdollahi, Mohammad

    2015-01-01

    Benzene (C6H6) is one of the most commonly used industrial chemicals causing environmental pollution. This study aimed to examine the effect of benzene and its metabolite hydroquinone on glucose regulating organs, liver and pancreas, and to reveal the involved toxic mechanisms, in rats. In the in vivo part, benzene was dissolved in corn oil and administered through intragastric route at doses of 200, 400 and 800 mg/kg/day, for 4 weeks. And, in the in vitro part, toxic mechanisms responsible for weakening the antioxidant system in islets of Langerhans by hydroquinone at different concentrations (0.25, 0.5 and 1 mM), were revealed. Benzene exposure raised the activity of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase) enzymes and increased fasting blood sugar (FBS) in comparison to control animals. Also, the activity of hepatic glucokinase (GK) was decreased significantly. Along with, a significant increase was observed in hepatic tumor necrosis factor (TNF-α) and plasma insulin in benzene treated rats. Moreover, benzene caused a significant rise in hepatic lipid peroxidation, DNA damage and oxidation of proteins. In islets of Langerhans, hydroquinone was found to decrease the capability of antioxidant system to fight free radicals. Also, the level of death proteases (caspase 3 and caspase 9) was found higher in hydroquinone exposed islets. The current study demonstrated that benzene and hydroquinone causes toxic effects on liver and pancreatic islets by causing oxidative impairment. PMID:26056850

  4. Metabolic Polymorphisms and Clinical Findings Related to Benzene Poisoning Detected in Exposed Brazilian Gas-Station Workers

    Directory of Open Access Journals (Sweden)

    Simone Mitri

    2015-07-01

    Full Text Available Benzene is a ubiquitous environmental pollutant and an important industrial chemical present in both gasoline and motor vehicle emissions. Occupational human exposure to benzene occurs in the petrochemical and petroleum refining industries as well as in gas-station workers, where it can lead to benzene poisoning (BP, but the mechanisms of BP are not completely understood. In Brazil, a significant number of gas-station service workers are employed. The aim of the present study was to evaluate alterations related to BP and metabolic polymorphisms in gas-station service workers exposed to benzene in the city of Rio de Janeiro, Brazil. Occupational exposure was based on clinical findings related to BP, and metabolic polymorphisms in 114 Brazilian gas-station attendants. These workers were divided into No Clinical Findings (NCF and Clinical Findings (CF groups. Neutrophil and Mean Corpuscular Volume (MCV showed a significant difference between the two study groups, and neutrophil has the greatest impact on the alterations suggestive of BP. The clinical findings revealed higher frequencies of symptoms in the CF group, although not all members presented statistical significance. The frequencies of alleles related to risk were higher in the CF group for GSTM1, GSTT1, CYP2E1 7632T > A, but lower for NQO1 and CYP2E1 1053C > T genotypes. Moreover, an association was found between GSTM1 null and alterations related to BP, but we did not observe any effects of other polymorphisms. Variations in benzene metabolizing genes may modify benzene toxicity and should be taken into consideration during risk assessment evaluations.

  5. Physiological and phylogenetic characterization of a stable chlorate-reducing benzene-degrading microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, ten H.; Doesburg, van W.C.J.; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20¿1650 times higher than reported for anaerobic benzene degradation

  6. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners and importers? (a) Annual average benzene standard. (1) Except as specified in paragraph (c) of...

  7. Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, H. ten; Doesburg, W. van; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    A stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20-1650 times higher than reported for anaerobic benzene degradati

  8. Experimental Emulsified Diesel and Benzen Investigation

    Directory of Open Access Journals (Sweden)

    Suleiman Abu-Ein

    2010-05-01

    Full Text Available This study presents an experimental investigation of emulsified fuels as an operating material for vehicle engines. Water in fuel blends is still relatively unknown and unaccepted by the majority of people. Introducing water into the combustion chamber has been around for more than one time, through water injection systems and emulsification of water into fuel. Adding water to fules will reduce bad emissions of the vehicles. It is found that brake power, engine power and also the engine torque have been improved with the emulsified fuels for both diesel and benzen till 25% water percentage addition.

  9. Quantification of volatile organic compounds in smoke from prescribed burning and comparison with occupational exposure limits

    Science.gov (United States)

    Romagnoli, E.; Barboni, T.; Santoni, P.-A.; Chiaramonti, N.

    2014-05-01

    Prescribed burning represents a serious threat to personnel fighting fires due to smoke inhalation. The aim of this study was to investigate exposure by foresters to smoke from prescribed burning, focusing on exposure to volatile organic compounds (VOCs). The methodology for smoke sampling was first evaluated. Potentially dangerous compounds were identified among the VOCs emitted by smoke fires at four prescribed burning plots located around Corsica. The measured mass concentrations for several toxic VOCs were generally higher than those measured in previous studies due to the experimental framework (short sampling distance between the foresters and the flame, low combustion, wet vegetation). In particular, benzene, phenol and furfural exceeded the legal short-term exposure limits published in Europe and/or the United States. Other VOCs such as toluene, ethybenzene or styrene remained below the exposure limits. In conclusion, clear and necessary recommendations were made for protection of personnel involved in fighting fires.

  10. How to identify partial exposures to ionizing radiation? Proposal for a cytogenetic method; Como identificar exposicoes parciais as radiacoes ionizantes? Proposta de um metodo citogenetico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, T.S.; Silva, E.B.; Pinto, M.M.P.L.; Amaral, A., E-mail: thiagosalazar@hotmail.com [Universidade Federal de Pernambuco (LAMBDA/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Lab. de Modelagem e Biodosimetria Aplicada; Lloyd, David [Health Protection Agency, Oxford (United Kingdom). Radiation Protection Division

    2013-08-15

    In cases of radiological incidents or in occupational exposures to ionizing radiation, the majority of exposures are not related to the total body, but only partial. In this context, if the cytogenetic dosimetry is performed, there will be an underestimation of the absorbed dose due to the dilution of irradiated cells with non-irradiated cells. Considering the norms of NR 32 - Safety and Health in the Work of Health Service - which recommends cytogenetic dosimetry in the investigation of accidental exposures to ionizing radiations, it is necessary to develop of a tool to provide a better identification of partial exposures. With this aim, a partial body exposure was simulated by mixing, in vitro, 70% of blood irradiated with 4 Gy of X-rays with 30% of unirradiated blood from the same healthy donor. Aliquots of this mixture were cultured for 48 and 72 hours. Prolonging the time of cell culture from 48 to 72 hours produced no significant change in the yield of dicentrics. However, when only M1 (first division cells) were analyzed, the frequency of dicentrics per cell was increased. Prolonging the time of cell culture allowed cells in mitotic delay by irradiation to reach metaphase, and thus provides enough time for the damage to be visualized. The results of this research present the proposed method as an important tool in the investigation of exposed individuals, allowing associating the cytogenetic analysis with the real percentage of irradiated cells, contributing significantly for the decision making in terms of occupational health. (author)

  11. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    Science.gov (United States)

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  12. Levels and source apportionment of children's lead exposure: Could urinary lead be used to identify the levels and sources of children's lead pollution?

    International Nuclear Information System (INIS)

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as 207Pb/206Pb, 208Pb/206Pb and 204Pb/206Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. - Highlights: • Pb isotopes of environmental media and children's blood and urine were analyzed. • Pb exposure and pollution source were studied in lead-acid battery and coking areas. • Pb isotope ratios in blood and urine were similar to those of food, water and PM. • Urine Pb level may not be used as a proxy for indicating the lead levels in blood. • Urine Pb isotope ratios is an alternative to identify source and exposure pathways. - Urinary lead is not a preferable proxy to estimate blood lead level, but urinary lead isotope ratios could be an alternative for identifying the sources of lead exposure in children

  13. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas. PMID:25960203

  14. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU Peter C; WANG Dei-Haw; LU Kaitao; MANI Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis (dibromomethyl) benzenes with fuming sulfuric acid, followed by hydrolysis, The yields were significantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  15. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Peter; C; WANG; Der-Haw; MANI; Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis(dibromomethyl) benzenes with fuming sulfuric acid,followed by hydrolysis. The yields were signifi-cantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  16. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  17. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  18. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    Science.gov (United States)

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  19. A Quantum Monte Carlo Study of mono(benzene)TM and bis(benzene)TM Systems

    CERN Document Server

    Bennett, M Chandler; Mitas, Lubos

    2016-01-01

    We present a study of mono(benzene)TM and bis(benzene)TM systems, where TM={Mo,W}. We calculate the binding energies by quantum Monte Carlo (QMC) approaches and compare the results with other methods and available experiments. The orbitals for the determinantal part of each trial wave function were generated from several types of DFT in order to optimize for fixed-node errors. We estimate and compare the size of the fixed-node errors for both the Mo and W systems with regard to the electron density and degree of localization in these systems. For the W systems we provide benchmarking results of the binding energies, given that experimental data is not available.

  20. New routes lead to benzene, propanal

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Haggin

    1993-05-10

    An ongoing research program at Oxford University in England has resulted in two new schemes for direct catalytic conversion of methane. One scheme produces aromatics, principally benzene, by oligomerization. The second scheme produces propanal in high yield by the judicious combination of three catalytic processes that have all been used before. One of the most active research areas is the catalytic conversion of methane to methanol, but so far the best yield has been about 8%, much too low for commercial interest. Likewise, the direct catalytic conversion of methane to ethane and/or ethylene has yet to produce either yields or selectivities high enough to compete with these products from crude oil. The paper describes these two new processes and their improved yields.

  1. Thermal decomposition of norbornane (bicyclo[2.2.1]heptane) dissolved in benzene. Experimental study and mechanism investigation

    CERN Document Server

    Herbinet, Olivier; Battin-Leclerc, Fr{é}d{é}rique; Fournet, Ren{é}; Marquaire, Paul-Marie

    2007-01-01

    The thermal decomposition of norbornane (dissolved in benzene) has been studied in a jet stirred reactor at temperatures between 873 and 973 K, at residence times ranging from 1 to 4 s and at atmospheric pressure, leading to conversions from 0.04 to 22.6%. 25 reaction products were identified and quantified by gas chromatography, amongst which the main ones are hydrogen, ethylene and 1,3-cyclopentadiene. A mechanism investigation of the thermal decomposition of the norbornane - benzene binary mixture has been performed. Reactions involved in the mechanism have been reviewed: unimolecular initiations 1 by C-C bond scission of norbornane, fate of the generated diradicals, reactions of transfer and propagation of norbornyl radicals, reactions of benzene and cross-coupling reactions.

  2. Benzene conversion by manganese dioxide assisted silent discharge plasma

    Institute of Scientific and Technical Information of China (English)

    LU Bin; JI Min; YU Xin; FENG Tao; YAO Shuiliang

    2007-01-01

    Non-thermal plasma technologies have shown their promising potential specially for the low concentration of volatile organic compound control in indoor air in recent years.But it is also high energy consuming.So,to improve the energy efficiency,adding catalysts which enhance the plasma chemical reactions to plasma reactors may be a good selection.Therefore,in this study the manganese dioxide assisted silent discharge plasma was developed for benzene conversion at a relatively high energy efficiency.The results show that MnO2 could promote complete oxidation of benzene with O2 and O3 produced in the plasma discharge zone.The energy efficiency of benzene conversion with MnO2 was two folds as much as that without catalysts.It was also found that the site of MnO2 in the reactor and the energy density had effects on benzene conversion.While the energy density was lower than 48 J/L,benzene conversion decreased with the increase in the distance between MnO2 bed and the plasma discharge zone.Whereas when the energy density was higher than 104 J/L,benzene conversion had an optimal value that was governed by the distance between MnO2 bed and the plasma discharge zone.The mechanism of benzene oxidation in plasma discharges and over MnO2 is discussed in detail.

  3. Transport and biodegradation of benzene in the saturated groundwater layer

    Directory of Open Access Journals (Sweden)

    Khongnakorn, W.

    2004-11-01

    Full Text Available The objective of this study was to investigate the biotic and abiotic processes that affected benzene transportation in the saturated groundwater layer. The study was performed in the laboratory using synthetic groundwater and soil sample from Maptaput Industrial Estate, Rayong. This study was divided into 3 parts; batch test, column test and computer modeling. The biotic, biodegradation, and the abiotic processes were studied in the batch system. The column experiment was performed to investigate the transport behavior of benzene. The computer program, CXTFIT, with parameters acquired from batch and column experiments was used to simulate the benzene transport behavior. It was found that benzene adsorption followed the linear adsorption isotherm with its coefficient (Kd of 0.544 cm3/g and the retardation factor of 5.43. The biodegradation rate could be estimated using the firstorder biodegradation rate equation with the degradation rate of 0.0009- 0.0092 per day. The dispersion coefficient estimated from column experiments was 0.0102 cm2/s. The results from computer simulation did not fit the experimental data well. It can be concluded that the transport of benzene was a non-equilibrium transport. It was also found that biodegradation of benzene had significant effect on benzene transportation in saturated groundwater. The simulated transport with biodegradation process fitted the data fairly.

  4. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups.

    Science.gov (United States)

    Pilidis, Georgios A; Karakitsios, Spyros P; Kassomenos, Pavlos A; Kazos, Elias A; Stalikas, Constantine D

    2009-03-01

    In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants. PMID:18386150

  5. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation.

    Science.gov (United States)

    Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D

    2015-08-15

    The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability. PMID:26072048

  6. Exacerbation of benzene pneumotoxicity in connexin 32 knockout mice: enhanced proliferation of CYP2E1-immunoreactive alveolar epithelial cells

    International Nuclear Information System (INIS)

    The pulmonary pathogenesis triggered by benzene exposure was studied. Since the role of the connexin 32 (Cx32) gap junction protein in mouse pulmonary pathogenesis has been suggested, in the present study, we explored a possible role of Cx32 in benzene-induced pulmonary pathogenesis using the wild-type (WT) and Cx32 knockout (KO) mice. The mice were exposed to 300 ppm benzene by inhalation for 6 h per day, 5 days per week for a total of 26 weeks, and then sacrificed to evaluate the pneumotoxicity or allowed to live out their life span to evaluate the reversibility of the lesions and tumor incidence. Our results clearly revealed exacerbated pneumotoxicity in the benzene-exposed Cx32 KO mice, characterized by diffuse granulomatous interstitial pneumonia, markedly increased mucin secretion of bronchial/bronchiolar and alveolar epithelial cells, and hyperplastic alveolar epithelial cells positive for CYP2E1. But the results did not indicate any enhancement of pulmonary tumorigenesis in the Cx32 KO mice though the number of animals was small

  7. Association between genetic variants in VEGF, ERCC3 and occupational benzene haematotoxicity.

    NARCIS (Netherlands)

    Hosgood 3rd, H.D.; Zhang, L.; Shen, M.; Berndt, S.I.; Vermeulen, R.; Li, G.; Yin, S.; Yeager, M.; Yuenger, J.; Rothman, N.; Chanock, S.; Smith, M.; Lan, Q.

    2009-01-01

    INTRODUCTION: Benzene is an established human haematotoxin, with substantial interindividual variation in benzene-induced toxicity. METHODS: To further examine if genetic variation contributes to benzene haematotoxicity, we analysed 1023 tagSNPs in 121 gene regions important for benzene metabolism,

  8. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Science.gov (United States)

    2010-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL... Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene... that contain gasoline benzene and gasoline volume information. (2) Agree the yearly volumes of...

  9. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene...

  10. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the benzene requirements of this subpart? 80.1235 Section 80.1235 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements...

  11. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL... Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program? (a) Benzene standard. (1) For the annual averaging period beginning January 1, 2011, and for...

  12. Intrinsic and enhanced biodegradation of benzene in strongly reduced aquifers

    NARCIS (Netherlands)

    Heiningen, W.N.M. van; Rijnaarts, H.H.M; Langenhoff, A.A.M.

    1999-01-01

    Laboratory microcosm studies were performed to examine intrinsic and enhanced benzene bioremediation using five different sediment and groundwater samples from three deeply anaerobic aquifers sited in northern Netherlands. The influence of addition of nitrate, sulfate, limited amounts of oxygen, and

  13. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  14. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  15. Profiling of Biomarkers for the Exposure of Polycyclic Aromatic Hydrocarbons: Lamin-A/C Isoform 3, Poly[ADP-ribose] Polymerase 1, and Mitochondria Copy Number Are Identified as Universal Biomarkers

    Directory of Open Access Journals (Sweden)

    Hwan-Young Kim

    2014-01-01

    Full Text Available This study investigated the profiling of polycyclic aromatic hydrocarbon- (PAH- induced genotoxicity in cell lines and zebrafish. Each type of cells displayed different proportionality of apoptosis. Mitochondrial DNA (mtDNA copy number was dramatically elevated after 5-day treatment of fluoranthene and pyrene. The notable deregulated proteins for PAHs exposure were displayed as follows: lamin-A/C isoform 3 and annexin A1 for benzopyrene; lamin-A/C isoform 3 and DNA topoisomerase 2-alpha for pentacene; poly[ADP-ribose] polymerase 1 (PARP-1 for fluoranthene; and talin-1 and DNA topoisomerase 2-alpha for pyrene. Among them, lamin-A/C isoform 3 and PARP-1 were further confirmed using mRNA and protein expression study. Obvious morphological abnormalities including curved backbone and cardiomegaly in zebrafish were observed in the 54 hpf with more than 400 nM of benzopyrene. In conclusion, the change of mitochondrial genome (increased mtDNA copy number was closely associated with PAH exposure in cell lines and mesenchymal stem cells. Lamin-A/C isoform 3, talin-1, and annexin A1 were identified as universal biomarkers for PAHs exposure. Zebrafish, specifically at embryo stage, showed suitable in vivo model for monitoring PAHs exposure to hematopoietic tissue and other organs.

  16. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase.......The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  17. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation

    International Nuclear Information System (INIS)

    Highlights: • Mercury concentrations documented for 10 species of penguins (26 breeding populations). • Mercury concentrations ⩽2.00 ppm in feathers from 18/26 penguin populations. • Trophic level calculations revealed source of population-level variation in mercury. • First documentation of geographic mercury ‘hotspots’ for penguin populations. - Abstract: The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00 ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic ‘hot spots’ of mercury availability

  18. Neurobehavioral performance in adolescents is inversely associated with traffic exposure

    OpenAIRE

    Kicinski, Michal; Vermeir, Griet; Van Larebeke, Nicolas; Den Hond, Elly; Schoeters, Greet; Bruckers, Liesbeth; Sioen, Isabelle; Bijnens, Esmée; Roels, Harry A.; Baeyens, Willy; Viaene, Mineke K; Nawrot, Tim S.

    2015-01-01

    On the basis of animal research and epidemiological studies in children and elderly there is a growing concern that traffic exposure may affect the brain. The aim of our study was to investigate the association between traffic exposure and neurobehavioral performance in adolescents. We examined 606 adolescents. To model the exposure, we constructed a traffic exposure factor based on a biomarker of benzene (urinary trans,trans-muconic acid) and the amount of contact with traffic preceding the ...

  19. 2H NMR study of dynamics of benzene-d6 interacting with humic and fulvic acids.

    Science.gov (United States)

    Eastman, Margaret A; Brothers, Lucinda A; Nanny, Mark A

    2011-05-01

    Samples of three humic acids and one fulvic acid with 1% loading of benzene-d(6) in sealed glass tubes have been studied with solid-state deuterium quadrupole-echo nuclear magnetic resonance spectroscopy. Calculated spectra combining three motional models, two isotropic models and a third more restricted small-angle wobble (SAW) motional model, are fit to the experimental spectra. One isotropic motion (ISO(v)) is assigned to vaporous benzene-d(6) due to the small line width, short T(1), and the loss of this component by about -25 °C when the temperature is lowered. The remaining two motional components, ISO(s) and SAW, are sorbed by the humic or fulvic acid. Benzene-d(6) slowly interacts with the humic substances, progressively filling SAW sites as ISO(s) motion diminishes. Both the sorption and increase in percentage of SAW motion are for the most part complete within 200 days but continue to a lesser extent over a period of a few years. For the SAW motion there are at least two and most likely a series of T(1) values, indicating more than one adsorption environment. Enthalpies of sorption, obtained from application of the van't Hoff equation to the percentages of the different motional models derived from a series of variable temperature spectra, are comparable in magnitude to the enthalpy of vaporization of benzene. In Leonardite humic acid, ΔH and ΔS for the ISO(s) to SAW transition change from positive to negative values with age, implying a transition in the driving force from an entropic effect associated with expansion and deformation in the molecular structure of the humic substance to accommodate benzene-d(6) to an enthalpic effect of strong benzene-d(6)-humic substance interactions. In contrast, at advanced ages, Suwannee River humic and fulvic acids have small positive or near zero ΔH and positive ΔS for the ISO(s) to SAW transition. PMID:21456559

  20. A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers.

    Science.gov (United States)

    Linet, Martha S; Yin, Song-Nian; Gilbert, Ethel S; Dores, Graça M; Hayes, Richard B; Vermeulen, Roel; Tian, Hao-Yuan; Lan, Qing; Portengen, Lutzen; Ji, Bu-Tian; Li, Gui-Lan; Rothman, Nathaniel

    2015-11-01

    Benzene exposure has been causally linked with acute myeloid leukemia (AML), but inconsistently associated with other hematopoietic, lymphoproliferative and related disorders (HLD) or solid tumors in humans. Many neoplasms have been described in experimental animals exposed to benzene. We used Poisson regression to estimate adjusted relative risks (RR) and the likelihood ratio statistic to derive confidence intervals for cause-specific mortality and HLD incidence in 73,789 benzene-exposed compared with 34,504 unexposed workers in a retrospective cohort study in 12 cities in China. Follow-up and outcome assessment was based on factory, medical and other records. Benzene-exposed workers experienced increased risks for all-cause mortality (RR = 1.1, 95% CI = 1.1, 1.2) due to excesses of all neoplasms (RR = 1.3, 95% CI = 1.2, 1.4), respiratory diseases (RR = 1.7, 95% CI = 1.2, 2.3) and diseases of blood forming organs (RR = ∞, 95% CI = 3.4, ∞). Lung cancer mortality was significantly elevated (RR = 1.5, 95% CI = 1.2, 1.9) with similar RRs for males and females, based on three-fold more cases than in our previous follow-up. Significantly elevated incidence of all myeloid disorders reflected excesses of myelodysplastic syndrome/acute myeloid leukemia (RR = 2.7, 95% CI = 1.2, 6.6) and chronic myeloid leukemia (RR = 2.5, 95% CI = 0.8, 11), and increases of all lymphoid disorders included excesses of non-Hodgkin lymphoma (RR = 3.9, 95%CI = 1.5, 13) and all lymphoid leukemia (RR = 5.4, 95%CI = 1.0, 99). The 28-year follow-up of Chinese benzene-exposed workers demonstrated increased risks of a broad range of myeloid and lymphoid neoplasms, lung cancer, and respiratory diseases and suggested possible associations with other malignant and non-malignant disorders.

  1. Occupational solvent exposure and cognition

    Science.gov (United States)

    Sabbath, E.L.; Glymour, M.M.; Berr, C.; Singh-Manoux, A.; Zins, M.; Goldberg, M.

    2012-01-01

    Objective: Chronic occupational solvent exposure is associated with long-term cognitive deficits. Cognitive reserve may protect solvent-exposed workers from cognitive impairment. We tested whether the association between chronic solvent exposure and cognition varied by educational attainment, a proxy for cognitive reserve. Methods: Data were drawn from a prospective cohort of French national gas and electricity (GAZEL) employees (n = 4,134). Lifetime exposure to 4 solvent types (chlorinated solvents, petroleum solvents, benzene, and nonbenzene aromatic solvents) was assessed using a validated job-exposure matrix. Education was dichotomized at less than secondary school or below. Cognitive impairment was defined as scoring below the 25th percentile on the Digit Symbol Substitution Test at mean age 59 (SD 2.8; 88% of participants were retired at testing). Log-binomial regression was used to model risk ratios (RRs) for poor cognition as predicted by solvent exposure, stratified by education and adjusted for sociodemographic and behavioral factors. Results: Solvent exposure rates were higher among less-educated patients. Within this group, there was a dose-response relationship between lifetime exposure to each solvent type and RR for poor cognition (e.g., for high exposure to benzene, RR = 1.24, 95% confidence interval 1.09–1.41), with significant linear trends (p < 0.05) in 3 out of 4 solvent types. Recency of solvent exposure also predicted worse cognition among less-educated patients. Among those with secondary education or higher, there was no significant or near-significant relationship between any quantification of solvent exposure and cognition. Conclusions: Solvent exposure is associated with poor cognition only among less-educated individuals. Higher cognitive reserve in the more-educated group may explain this finding. PMID:22641403

  2. Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration.

    Science.gov (United States)

    Shi, Jiaqi; Feng, Mingbao; Zhang, Xuesheng; Wei, Zhongbo; Wang, Zunyao

    2013-09-01

    The lethal doses (LD50s) of fluorinated, chlorinated, brominated, and iodinated benzene, phenol, and diphenyl ether in mice were ascertained respectively under the consistent condition. The acute toxicity of four benzenes orders in fluorobenzene (FB) phenols orders in 4-iodophenol≈4-bromophenol phenols, as they had lower octanol-water partition coefficients. Pathological changes in liver and liver/kidney weight changes were also observed. Hepatic superoxide dismutase, catalase activities, and malondialdehyde level were tested after a 28-day exposure, which reflects a toxicity order basically consistent with that reflected by the LD50s. By theoretical calculation and building models, the toxicity of benzene, phenol, and diphenyl ether were influenced by different structural properties.

  3. Decomposition of benzene in a corona discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kohki [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Centre of Environmental Science and Disaster Mitigation for Advanced Research, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan); Matsuzawa, Toshiharu; Itoh, Hidenori [Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585 (Japan)

    2008-05-01

    We investigated the decomposition characteristics of benzene in a positive DC corona discharge between multineedle and plane electrodes with a background gas of nitrogen-oxygen mixture at atmospheric pressure. We obtained C{sub 2}H{sub 2}, HCN, HCOOH, CO and CO{sub 2} as benzene fragments and by-products, and C{sub 2}H{sub 2} and HCN as minor intermediate products. Benzene was primarily converted into CO{sub 2} via CO at low oxygen concentrations (0.2%) and via CO and HCOOH at the atmospheric oxygen concentration (20%). Further, 57% and 24% of carbon atoms were deposited on the plane electrode and the discharge chamber at oxygen concentrations of 0.2% and 20%, respectively.

  4. Investigation of the DNA adducts formed in B6C3F1 mice treated with benzene: Implications for molecular dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bodell, W.J.; Pathak, D.N.; Levay, G. [Univ. of California, San Francisco, CA (United States)] [and others

    1996-12-01

    We have investigated the formation of DNA adducts in the bone marrow and white blood cells of male B6C3F1 mice treated with benzene using P1-enhanced {sup 32}P-postlabeling. No adducts were detected in the bone marrow of controls or mice treated with various doses of benzene once a day. After twice-daily treatment for 1 to 7 days with benzene, 440 mg/kg, one major (no. 1) and UP to two minor DNA adducts were detected in both the bone marrow and white blood cells. The relative adduct levels in these cells ranged from 0.06 to 1.46 x 10{sup -7}. A significant correlation (r 0.95) between levels of adducts in bone marrow and white blood cells was observed. After a 7-day treatment with benzene, 440 mg/kg twice a day, the number of cells per femur decreased from 1.6 x 10{sup 7} to 0.85 X 10{sup 7}, indicating myelotoxicity. In contrast, administration of benzene once a day produced only a small decrease in bone marrow cellularity. The observed induction of toxicity in bone marrow was paralleled by formation of DNA adducts. In vitro treatment of bone marrow with hydroquinone (HQ) for 24 hr produced the same DNA adducts as found after treatment of mice with benzene, suggesting that HQ is the principal metabolite of benzene leading to DNA adduct formation in vivo. Using {sup 32}P-postlabeling the principal DNA adduct formed in vivo was compared with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3-phosphate. The results of this comparison demonstrates that the DNA adduct formed in vivo co-chromatographs with N{sup 2}-(4-hydroxyphenyl)-2-deoxyguanosine-3{prime}-phosphate. These studies indicate that metabolic activation of benzene leads to the formation of DNA adducts in bone marrow and white blood cells and suggest that measurement of DNA adducts in white blood cells may be an indicator of biological effect following benzene exposure. 34 refs., 4 figs., 2 tabs.

  5. Comparative Analysis between Conventional PI and Fuzzy LogicPI Controllers for Indoor Benzene Concentrations

    Directory of Open Access Journals (Sweden)

    Nun Pitalúa-Díaz

    2015-05-01

    Full Text Available Exposure to hazardous concentrations of volatile organic compounds indoors in small workshops could affect the health of workers, resulting in respirative diseases, severe intoxication or even cancer. Controlling the concentration of volatile organic compounds is required to prevent harmful conditions for workers in indoor environments. In this document, PI and fuzzy PI controllers were used to reduce hazardous indoor air benzene concentrations in small workplaces. The workshop is represented by means of a well-mixed room model. From the knowledge obtained from the model, PI and fuzzy PI controllers were designed and their performances were compared. Both controllers were able to maintain the benzene concentration within secure levels for the workers. The fuzzy PI controller performed more efficiently than the PI controller. Both approaches could be expanded to control multiple extractor fans in order to reduce the air pollution in a shorter time. The results from the comparative analysis showed that implementing a fuzzy logic PI controller is promising for assuring indoor air quality in this kind of hazardous work environment.

  6. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom;

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...... dodecyl isomers (with the benzene group at positions 1, 2 and 6). The conductivity was measured both by van der Pauw measurements on PPy-DBS in the oxidized, dry state as function of temperature, and by electrochemical impedance spectroscopy as function of potential in 0.1 M NaCl aqueous electrolyte...

  7. Alice, Benzene, and Coffee: The ABCs of Ecopharmacognosy.

    Science.gov (United States)

    Cordell, Geoffrey A

    2015-12-01

    The sesquicentennial celebrations of the publication of "Alice's Adventures in Wonderland" and the structure of benzene offer a unique opportunity to develop a contemporary interpretation of aspects of Alice's adventures, illuminate the symbolism of benzene, and contextualize both with the globalization of coffee, transitioning to how the philosophy and sustainable practices of ecopharmacognosy may be applied to modulating approaches to the quality, safety, efficacy, and consistency (QSEC) of traditional medicines and dietary supplements through technology integration, thereby improving patient-centered health care. PMID:26882696

  8. Benzene/nitrous oxide flammability in the precipitate hydrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R A [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1989-09-18

    The HAN (hydroxylamine nitrate) process for destruction of nitrite in precipitate hydrolysis produces nitrous oxide (N2O) gas as one of the products. N2O can form flammable mixtures with benzene which is also present due to radiolysis and hydrolysis of tetraphenylborate. Extensive flame modeling and explosion testing was undertaken to define the minimum oxidant for combustion of N2O/benzene using both nitrogen and carbon dioxide as diluents. The attached memorandum interprets and documents the results of the studies.

  9. Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers.

    Science.gov (United States)

    Navasumrit, Panida; Arayasiri, Manasawee; Hiang, Ohmar May Tin; Leechawengwongs, Manoon; Promvijit, Jeerawan; Choonvisase, Suppachai; Chantchaemsai, Samroeng; Nakngam, Netnapa; Mahidol, Chulabhorn; Ruchirawat, Mathuros

    2008-05-01

    Incense smoke is a potential hazard to human health due to various airborne carcinogens emitted from incense burning. This study aimed to evaluate the potential health effects of exposure to benzene, 1,3-butadiene, and polycyclic aromatic hydrocarbons (PAHs) emitted from incense smoke in temple workers. Exposure and health risks were assessed through the measurement of ambient exposure as well as through the use of biomarkers of exposure and early biological effects. Ambient air measurement showed that incense burning generates significantly higher levels of airborne benzene (Pincense burning may increase health risk for the development of cancer in temple workers.

  10. The past suppression of industry knowledge of the toxicity of benzene to humans and potential bias in future benzene research.

    Science.gov (United States)

    Infante, Peter F

    2006-01-01

    Petrochemical industry representatives often withhold information and misinterpret positive evidence of toxicity of benzene, even from their own research, also discouraging or delaying disclosure of findings of adverse effects to the public. They now appear to be attempting to influence study results in industry's favor by offering predetermined conclusions about study results as part of an effort to draw financial support for the studies. The American Petroleum Institute is currently raising funds for benzene research being conducted in China for which it has already announced the intended conclusions. PMID:16967835

  11. Theoretical study of the solvent effect on the aromaticity of benzene: a NICS analysis.

    Science.gov (United States)

    Junqueira, Georgia M A; Dos Santos, Hélio F

    2014-03-01

    Nucleus-independent chemical shift (NICS) quantities for benzene-benzene and benzene-water species were obtained and are discussed in gas phase and in solution. Besides standard polarizable continuum model (PCM) calculations, sequential Monte Carlo/quantum mechanics (S-MC/QM) were also performed. Benzene was shown to be slightly more aromatic in condensate phase when we considered the average solvent configuration (ASEC) approach with explicit molecules.

  12. Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions

    OpenAIRE

    Montilla Jiménez, Francisco; Morallón Núñez, Emilia; Vázquez Picó, José Luis

    2002-01-01

    The electrochemical behaviour of benzene on platinum electrodes (polycrystalline and single-crystal electrodes) has been studied in acidic and alkaline solutions. In acid solutions the reduction of benzene to cyclohexane takes place in all the platinum surface structure employed, however it does not occur in alkaline media (0.1 M NaOH). In this case, the hydrogen adsorption/desorption processes displace the adsorbed benzene from the electrode surface. The oxidation of benzene is also af...

  13. Traffic-related air pollution and the onset of myocardial infarction: disclosing benzene as a trigger? A small-area case-crossover study.

    Directory of Open Access Journals (Sweden)

    Denis Bard

    Full Text Available Exposure to traffic is an established risk factor for the triggering of myocardial infarction (MI. Particulate matter, mainly emitted by diesel vehicles, appears to be the most important stressor. However, the possible influence of benzene from gasoline-fueled cars has not been explored so far.We conducted a case-crossover study from 2,134 MI cases recorded by the local Coronary Heart Disease Registry (2000-2007 in the Strasbourg Metropolitan Area (France. Available individual data were age, gender, previous history of ischemic heart disease and address of residence at the time of the event. Nitrogen dioxide, particles of median aerodynamic diameter <10 µm (PM10, ozone, carbon monoxide and benzene air concentrations were modeled on an hourly basis at the census block level over the study period using the deterministic ADMS-Urban air dispersion model. Model input data were emissions inventories, background pollution measurements, and meteorological data. We have found a positive, statistically significant association between concentrations of benzene and the onset of MI: per cent increase in risk for a 1 µg/m3 increase in benzene concentration in the previous 0, 0-1 and 1 day was 10.4 (95% confidence interval 3-18.2, 10.7 (2.7-19.2 and 7.2 (0.3-14.5, respectively. The associations between the other pollutants and outcome were much lower and in accordance with the literature.We have observed that benzene in ambient air is strongly associated with the triggering of MI. This novel finding needs confirmation. If so, this would mean that not only diesel vehicles, the main particulate matter emitters, but also gasoline-fueled cars--main benzene emitters-, should be taken into account for public health action.

  14. Biotransformation of toluene, benzene and naphthalene under anaerobic conditions.

    NARCIS (Netherlands)

    Langenhoff, A.A.M.

    1997-01-01

    Aromatic hydrocarbons are widespread in nature, due to increasing industrial activity, and often contribute to polluted soils, sediments, and groundwater. Most of these compounds are toxic at relatively high concentrations, but some are already carcinogenic at very low concentrations, e.g. benzene.

  15. 1,4-Bis[3-chloro-2-(chloromethylpropyl]benzene

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title molecule, C14H18Cl4, possesses a crystallographically imposed inversion centre, which coincides with the centre of benzene ring. In the absence of classical intermolecular interactions, van der Waals forces help the molecules to pack in the crystal.

  16. Electronic states of 1,4-bis(phenylethynyl)benzene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Jones, Nykola; Hoffmann, Søren Vrønning;

    2012-01-01

    The electronic transitions of 1,4-bis(phenylethynyl)benzene (BPEB) were investigated by UV synchrotron radiation linear dichroism (SRLD) spectroscopy in the range 25,000 – 58,000 cm–1 (400 – 170 nm) on molecular samples aligned in stretched polyethylene. The investigation was supported by variable...

  17. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  18. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  19. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program?...

  20. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall—...

  1. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's...

  2. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Science.gov (United States)

    2010-07-01

    ... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Measurement methods for benzene and...

  3. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline...

  4. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for...

  5. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL... Benzene Recordkeeping and Reporting Requirements § 80.1354 What are the reporting requirements for the gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2),...

  6. 40 CFR 80.1275 - How are early benzene credits generated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period...

  7. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners...

  8. 40 CFR 80.1290 - How are standard benzene credits generated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit...

  9. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Science.gov (United States)

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...: ER26FE07.012 Where: Bavg = Average benzene concentration for the applicable averaging period...

  10. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations.

    Science.gov (United States)

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-06-01

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources. PMID:26095869

  11. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    International Nuclear Information System (INIS)

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [3H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [3H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  12. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  13. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    DEFF Research Database (Denmark)

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik

    2003-01-01

    The influence of benzene as a growth substrate on the cometabolic conversion of thiophene was investigated in batch systems with microorganisms originating from an creosote contaminated site. Benzene was shown to stimulate the conversion of thiophene with a first-order rate, during the initial...... phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...

  14. The Grand Canonical Monte Carlo Simulations of Benzene and Propylene in ITQ-1 Zeolite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grand Canonical Monte Carlo (GCMC) simulations have been performed to study the localization and adsorption behavior of benzene and propylene, in purely siliceous MWW zeolite (ITQ-1). By analyzing the locations of benzene and propylene in ITQ-1, it can be deduced that the alkylation of benzene and propylene will mainly happen in 12-MR supercages at the external surface or close to the external surface. The adsorption isotherms of benzene and propylene at 315K and 0~3.5kPa are predicted, and the results for benzene generally coincide with the trend from the experiments of a series of aromatic compounds.

  15. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect

    International Nuclear Information System (INIS)

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions (196Hg, 198Hg, 202Hg, 204Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope 204Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m3 for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m3 at 1 s averaging and 0.1 mg/m3 at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. - Highlights: • Portable benzene analyser is designed for direct benzene detection in air and gas. • Zeeman effect absorption spectrometry ensures very low benzene detection limits. • The Hg 2537 nm emission line from capillary mercury lamp is used for absorption. • The best sensitivity and selectivity is found using Hg 204 isotope light source. • Mercury influence is eliminated by using a sorption filter at the inlet

  16. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Revalde, Gita, E-mail: gitar@latnet.lv [Institute of Technical Physics, Riga Technical University, P.Valdena 3, Riga LV 1050 (Latvia); Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir [St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034 (Russian Federation); Skudra, Atis [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu 4, Riga (Latvia)

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ({sup 196}Hg, {sup 198}Hg, {sup 202}Hg, {sup 204}Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope {sup 204}Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m{sup 3} for benzene) level, the interference from SO{sub 2}, NO{sub 2}, O{sub 3}, H{sub 2}S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m{sup 3} at 1 s averaging and 0.1 mg/m{sup 3} at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. - Highlights: • Portable benzene analyser is designed for direct benzene detection in air and gas. • Zeeman effect absorption spectrometry ensures very low benzene detection limits. • The Hg 2537 nm emission line from capillary mercury lamp is used for absorption. • The best sensitivity and selectivity is found using Hg 204 isotope light source. • Mercury influence is

  17. GC/MS analyses of fractionated extraction of Shenfu coal with CS2, n-hexane, benzene

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; WEI Xian-yong

    2008-01-01

    Shenfu coal was extracted with CS2,n-hexane,benzene sequentially.The extracts were analyzed with GC/MS.It is presented that group seperation of soluble organic compounds in the coal can be achieved by fractionated extraction using different solvents.Main components in CS2 soluble fraction from Shenfu coal are alkyl-substituted arenes.Aliphatic hydrocarbons are overwhelmingly predominant in n-hexane-soluble fraction.Dito tricyclic aramatic hydrocarbons are identified in benzene-soluble fraction.The molecular structures detection of 2,4,6-trichlorobenzenamine and 3,3',4,4',5,5'-hexachloro-1,1'-biphenyl and 2-chiorocyclohexanol firstly provide information for existence form of chlorine in coal.

  18. Indoor exposure and adverse birth outcomes related to fetal growth, miscarriage and prematurity-a systematic review.

    Science.gov (United States)

    Patelarou, Evridiki; Kelly, Frank J

    2014-06-01

    The purpose of this review was to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution and all-day personal exposure with adverse birth outcomes including fetal growth, prematurity and miscarriage. We carried out a systematic literature search of MEDLINE and EMBASE databases with the aim of summarizing and evaluating the results of peer-reviewed epidemiological studies undertaken in "westernized" countries that have assessed indoor air pollution and all-day personal exposure with specific quantitative methods. This comprehensive literature search identified 16 independent studies which were deemed relevant for further review and two additional studies were added through searching the reference lists of all included studies. Two reviewers independently and critically appraised all eligible articles using the Critical Appraisal Skills Programme (CASP) tool. Of the 18 selected studies, 14 adopted a prospective cohort design, three were case-controls and one was a retrospective cohort study. In terms of pollutants of interest, seven studies assessed exposure to electro-magnetic fields, four studies assessed exposure to polycyclic aromatic hydrocarbons, four studies assessed PM2.5 exposure and three studies assessed benzene, phthalates and noise exposure respectively. Furthermore, 12 studies examined infant growth as the main birth outcome of interest, six examined spontaneous abortion and three studies assessed gestational age at birth and preterm delivery. This survey demonstrates that there is insufficient research on the possible association of indoor exposure and early life effects and that further research is needed. PMID:24896737

  19. In-situ Investigation of BBr_3/benzene Solution by Fourier Transformation Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YU Li-li; GAI Li-gang; CUI De-Hang; WANG Qi-long

    2009-01-01

    By means of the in-situ Fourier transformation infrared spectroscopy(FTIR), the properties of BBr_3/ benzene solution, which is usually used as the reactant and solution to synthesize BN by benzene-thermal method, have been investigated. The results show that there are some side reactions between BBr_3 and benzene: (1) BBr_3 as an electron-deficient molecule reacts with benzene at room temperature; (2) below 100℃, substitution of Br atom for H atom of benzene(ring-H) dominates in BBr_3/benzene solution; (3) cracking of benzene ring occurs at a temperature above 100℃; (4) decomposition of benzene molecules and formation of long-chain aliphatic compounds feature the spectra of BBr_3/benzene solution collected at above 160℃. They are unfavor for BN to form when BBr_3 is excessive in the synthesis of BN by benzene-thermal route. On the basis of the experimental results, a coordination reaction mechanism via a η~2-C_6H_6 binding mode in BBr_3/benzene solution is suggested.

  20. Inhalation exposure or body burden? Better way of estimating risk--An application of PBPK model.

    Science.gov (United States)

    Majumdar, Dipanjali; Dutta, Chirasree; Sen, Subha

    2016-01-01

    We aim to establish a new way for estimating the risk from internal dose or body burden due to exposure of benzene in human subject utilizing physiologically based pharmacokinetic (PBPK) model. We also intend to verify its applicability on human subjects exposed to different levels of benzene. We estimated personal inhalation exposure of benzene for two occupational groups namely petrol pump workers and car drivers with respect to a control group, only environmentally exposed. Benzene in personal air was pre-concentrated on charcoal followed by chemical desorption and analysis by gas chromatography equipped with flame ionization detector (GC-FID). We selected urinary trans,trans-muconic acid (t,t-MA) as biomarker of benzene exposure and measured its concentration using solid phase extraction followed by high performance liquid chromatography (HPLC). Our estimated inhalation exposure of benzene was 137.5, 97.9 and 38.7 μg/m(3) for petrol pump workers, car drivers and environmentally exposed control groups respectively which resulted in urinary t,t-MA levels of 145.4±55.3, 112.6±63.5 and 60.0±34.9 μg g(-1) of creatinine, for the groups in the same order. We deduced a derivation for estimation of body burden from urinary metabolite concentration using PBPK model. Estimation of the internal dose or body burden of benzene in human subject has been made for the first time by the measurement of t,t-MA as a urinary metabolite using physiologically based pharmacokinetic (PBPK) model as a tool. The weight adjusted total body burden of benzene was estimated to be 17.6, 11.1 and 5.0 μg kg(-1) of body weight for petrol pump workers, drivers and the environmentally exposed control group, respectively using this method. We computed the carcinogenic risk using both the estimated internal benzene body burden and external exposure values using conventional method. Our study result shows that internal dose or body burden is not proportional to level of exposure rather have a

  1. 40 CFR 80.1334 - What are the requirements for early compliance with the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... compliance with the gasoline benzene program? 80.1334 Section 80.1334 Protection of Environment ENVIRONMENTAL... Benzene Hardship Provisions § 80.1334 What are the requirements for early compliance with the gasoline benzene program? (a)(1) A refinery may comply with the benzene requirements at § 80.1230 for its RFG...

  2. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Science.gov (United States)

    2010-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A...

  3. Overtone spectroscopy of benzene derivatives using thermal lensing

    Science.gov (United States)

    Vipin Prasad, J.; Rai, S. B.; Thakur, S. N.

    1989-12-01

    The vibrational overtones of CH stretching oscillators are reported as observed by conventional IR spectroscopy and dual-beam thermal lensing spectroscopy for benzene, fluorobenzene, chlorobenzene, bromobenzene and benzonitrile in the liquid phase at room temperature. The stretching frequency ω e, the anharmonicity constant ω eχ e and the change in CH bond length on substitution in benzene have been determined for all these molecules under the local-mode approximation. Effects of substitution on the change in CH stretching frequency have been discussed in terms of the electronegativity of the substituents as well as the inductive part of the Hammett σ. Variation of thermal lensing signal with chopping frequency and laser power has also been studied.

  4. Benzene leaks in sight; Benzeenlekken in het vizier

    Energy Technology Data Exchange (ETDEWEB)

    Okkerse, W.J.; Van Doorn, R.; Bison, H. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands)

    2013-02-15

    About five years ago, elevated concentrations of benzene were detected at air measuring stations of the DCMR Environmental Protection Agency in the Botlek area, the Netherlands. Extensive research of potential sources in industry followed. A wide range of advanced techniques were deployed. A smart combination of techniques has ultimately resulted in the identification and clean-up of the benzene sources. A bright future is anticipated for these techniques [Dutch] Ongeveer vijf jaar geleden werden rond het Botlekgebied verhoogde benzeenconcentraties geconstateerd op luchtmeetstations van de DCMR Milieudienst Rijnmond. Een uitgebreid onderzoek naar de potentiele bronnen in de industrie was het gevolg. Daarbij is een scala aan geavanceerde technieken ingezet. Toepassing van een slimme combinatie van technieken heeft er uiteindelijk toe geleid dat benzeenbronnen werden opgespoord en gesaneerd. Een grote toekomst wordt voorzien voor deze technieken.

  5. Molecular Dynamics Investigation of Benzene in Supercritical Water

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.

  6. 2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Zhang

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4−·H2O, contains one 2-phenylimidazolium cation, half a benzene-1,3-dicarboxylate anion and one water molecule. In the crystal, components are connected by N—H...O and O—H...O hydrogen-bonding interactions into a three-dimensional network.

  7. ADSORPTION OF WATER AND BENZENE VAPOUR IN MESOPOROUS MATERIALS

    OpenAIRE

    Paulina Taba

    2008-01-01

    Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification). MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16) or MCM-41 (C12) respectively and a mixture of cethyltrimethylammoniu...

  8. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  9. Pure Benzene Will Be Serous Short of Supply

    Institute of Scientific and Technical Information of China (English)

    John Zheng

    2007-01-01

    @@ Benzene is one of the important ba-sic raw materials for petrochemicals.It can be used to synthesize a seriesof important chemical products suchas synthetic rubbers, synthetic resins,synthetic fibers, pharmaceuticals,pesticides, explosives and dyestuffs.It can also be used as a solvent forcoatings and rubbers and as a blend-ing agent to increase gasoline's oc-tane number in the refining sector.

  10. LED Irradiation of a Photocatalyst for Benzene, Toluene, Ethyl Benzene,and Xylene Decomposition%LED Irradiation of a Photocatalyst for Benzene,Toluene,Ethyl Benzene,and Xylene Decomposition

    Institute of Scientific and Technical Information of China (English)

    JO Wan-Kuen; KANG Hyun-Jung

    2012-01-01

    Studies on the use of gas phase applications of light emitting diodes (LEDs) in photocatalysis are scarce although their photocatalytic decomposition kinetics of environmental pollutants are likely different from those in aqueous solutions.The present study evaluated the use of chips of visible light LEDs to irradiate nitrogen doped titania (N-TiO2) prepared by hydrolysis to decompose gaseous benzene,toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene.Photocatalysts calcined at different temperatures were characterized by various analytical instruments.The degradation efficiency of benzene was close to zero for all conditions.For the other compounds,a conventional 8 W daylight lamp/N-TiO2 unit gave a higher photocatalytic degradation efficiency as compared with that of visible-LED/N-TiO2 units.However,the ratios of degradation efficiency to electric power consumption were higher for the photocatalytic units that used two types of visible-LED lamps (blue and white LEDs).The highest degradation efficiency was observed with the use of a calcination temperature of 350 ℃.The average degradation efficiencies for toluene,ethyl benzene,m-xylene,p-xylene,and o-xylene were 35%,68%,94%,and 93%,respectively.The use of blue-and white-LEDs,high light intensity,and low initial concentrations gave high photocatalytic activities for the photocatalytic units using visible-LEDs.The morphological and optical properties of the photocatalysts were correlated to explain the dependence of photocatalytic activity on calcination temperature.The results suggest that visible-LEDs are energy efficient light source for photocatalytic gas phase applications,but the activity depends on the operational conditions.

  11. Atomic Structure of Benzene Which Accounts for Resonance Energy

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there ar...

  12. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    OpenAIRE

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern. In situ bioremediation of BTEX by using naturally occurring microorganisms or introduced microor...

  13. Adsorption isotherms for benzene on diatomites from China

    Institute of Scientific and Technical Information of China (English)

    YANG, Yu-Xianga; WU, Jie-Da; JIANG, Zhong-Liang; HUANG, Meng-Jian; CHEN, Rong-San; DAI, An-Bang

    2000-01-01

    In this paper, benzene adsorption isotherm and their hysteresis on two important local diatomites were determined at 25℃, ani their silicon hydroxyl group (SiOH) nunber was determined, their properties were reported, and the relationship between surface structure, surface SiOH number per nm2and adsorption isotherm with hysteresis was discussed. The specific surface was also calculated from the isotherms, and pore-size distribution was determined.

  14. Amidine Sulfonamides and Benzene Sulfonamides: Synthesis and Their Biological Evaluation

    OpenAIRE

    Muhammad Abdul Qadir; Mahmood Ahmed; Hina Aslam; Sadia Waseem; Muhammad Imtiaz Shafiq

    2015-01-01

    New amidine and benzene sulfonamide derivatives were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, 1HNMR, and 13CNMR). In vitro, developed compounds were screened for their antibacterial and antifungal activities against medically important bacterial strains, namely, S. aureus, B. subtilis, and E. coli, and fungi, namely, A. flavus, A. parasiticus, and A. sp. The antibacterial and antifungal activities have been determined by me...

  15. The Alberta Oil Sands Community Exposure and Health Effects Assessment Program : methods report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The Alberta Oil Sands Community Exposure and Health Effects Assessment Program involved the development of a holistic approach to the study of personal exposure and the potential health impacts of airborne contaminants including volatile organic compounds (VOCs), sulphur dioxide (SO{sub 2}), nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}) and particulates (both PM10 and PM2.5). Volunteer residents from Fort McMurray, Alberta were recruited to participate in neurocognitive tests and a health and nutrition survey. In addition, the local community identified several priority contaminants which were highlighted during a public hearing of the Alberta Energy and Utilities Board in relation to Syncrude's Mildred Lake Development Project. The approach to the study was based on the direct measurement of all routes of exposure to the contaminants (breathing, ingestion and skin contact), direct measurement of biomarkers, and daily logs of participant's activities. The choice of biomarkers was based on the ability of the laboratory to measure low levels of relevant biological markers, the most appropriate media for measuring the markers, and the burden placed on each volunteer. The final set of biological measures of exposure included trace metals (arsenic, cadmium, lead and uranium) nicotine, and metabolites of the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes). The objective was to determine if chronic or occupational exposure to these contaminants cause structural alterations in the respiratory system that compromise oxygen absorption and lung elasticity. 82 refs., 14 tabs., 15 figs., 3 appendices.

  16. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  17. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  18. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.; Siegel, D.; Schattenberg, D.G. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  19. INVESTIGATION OF BENZENE OXIDE IN BONE MARROW AND OTHER TISSUES OF F344 RATS FOLLOWING METABOLISM OF BENZENE IN VITRO AND IN VIVO

    Science.gov (United States)

    This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepare...

  20. Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model.

    OpenAIRE

    Medinsky, M A; Sabourin, P J; Henderson, R F; Lucier, G; Birnbaum, L S

    1989-01-01

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice were more sensitive to the carcinogenic effects of benzene than were F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice. Our objective was to determine if differences in toxic effects could be explained by differences in pathways for benzene metabolism or by differences in total uptake of benzene. Compartments incorpor...

  1. Limited recovery of soil microbial activity after transient exposure to gasoline vapors

    DEFF Research Database (Denmark)

    Modrzyński, Jakub J.; Christensen, Jan H.; Mayer, Philipp;

    2016-01-01

    growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene...

  2. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  3. Molecular Simulations of Adsorption and Diffusion Behaviors of Benzene Molecules in NaY Zeolite%NaY分子筛中苯分子吸附和扩散行为的分子模拟

    Institute of Scientific and Technical Information of China (English)

    张舟; 刘辉; 朱吉钦; 陈标华; 田辉平; 贺振富

    2009-01-01

    In the article the Grand Canonical Monte Carlo (GCMC), molecular dynamics (MD), and kinetic Monte Carlo (KMC) simulations with particular focus on ascertaining the loading dependence of benzene diffusion in the zeolite were performed. First, a realistic representation of the structure of the sorbate-sorbent system was obtained based on GCMC simulation. The simulation clearly shows the characteristics of the adsorption sites of the benzene-NaY system, from which two kinds of preferably adsorbing sites for benzene moleculcs, called SⅡ and W sites, are identified. The structure thus obtained was then used as a basis for KMC and MD simulations. A compara-tive study by introducing and comparing two different mechanisms underlying jump diffusion in the zeolite of in-terest shows that the MS diffusivity values predicted by the KMC and MD methods are fairly close to each other, leading to the conclusion that for benzene diffusion in NaY, the Su→W→SⅡ jumps of benzene molecules are dominated, while the W→W jumps do not exist in the process. These findings provide further support to our previous conclusion about the absence of the W→W jumps in the process of benzene diffusion in NaY. Finally, two relations for predicting the self-and MS diffusivities were derived and found to be in fair agreement with the KMC and MD simulations.

  4. Comparative study of the effects of toluene, benzene, 1,1,1-trichloroethane, diethyl ether, and flurothyl on anxiety and nociception in mice

    International Nuclear Information System (INIS)

    The main purpose of this study was to compare the effects of solvents from different chemical classes on anxiety and nociception. Independent groups of mice were exposed to air (control group), toluene (1000-4000 ppm), benzene (1000-4000 ppm), 1,1,1-trichloroethane (TCE, 2000-12000 ppm), diethyl ether (10,000-30,000) or flurothyl (200-600 ppm). After a 30-min exposure, animals were tested either in the anxiety paradigm conditioned defensive burying (CDB) test or in the hot plate test. All solvents but flurothyl produced anxiolytic-like actions being the order of potency toluene > benzene > TCE > diethyl ether. When tested in the hot plate paradigm, toluene and TCE increased nociception, benzene and diethyl ether had no effects, and flurothyl decreased nociception Additional groups of mice were conditioned to recognize the aversive stimulus (electrified prod) prior to toluene exposure and then tested in the CDB test. In unconditioned animals, toluene increased the number of shocks that mice received; however, when mice had previous experience in the CDB test, toluene lacked this effect. Taken together, these results show that inhalants have different effects with different potencies both in the CDB and in the hot plate tests. Additionally, data suggest that acute administration of toluene could impair learning

  5. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  6. ANALYSES OF CHROMOSOME ABERRATIONS IN LYMPHOCYTES AND BONE MARROW CELLS INDUCED BY RADIATION OR BENZENE

    Institute of Scientific and Technical Information of China (English)

    张鸿源; 王兰金; 等

    1995-01-01

    The chromosomoe and chromatid type aberration can be induced by benzene and the dicentric and ring ones were not observed in vitro experiment but observed in vivo one.In vitro experiment a good linear reression can be given between benzene concentrations and total aberration cells while power regression for radiation dose.The chromosome aberrations induced by benzene combined with radiation in rabbit blood lymphocytes are higher than in bone marryow cells.

  7. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa.

    Science.gov (United States)

    Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper

    2015-12-15

    Of increasing concern is pollution by volatile organic compounds, with particular reference to five aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total BTEX at the site. Benzene was within South African occupational limits, but above international occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-benzene and xylenes were within national and international occupational limits throughout the monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene concentrations, during winter, correspond to activity at the site, and thus idling of buses during refueling may elevate results. Overall, occupational air quality at the refueling bay is a matter of health concern, especially with regards to benzene exposure, and future reduction strategies are crucial. Discrepancies between national and international limit values merit further investigation to determine whether South African guidelines for benzene are sufficiently precautionary.

  8. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros Vinci, Raquel [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Canfyn, Michael [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); De Meulenaer, Bruno [Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Schaetzen, Thibault de; Van Overmeire, Ilse; De Beer, Jacques [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium); Van Loco, Joris, E-mail: Joris.VanLoco@iph.fgov.BE [Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Rue Juliette Wytsmanstraat 14, 1050 Brussels (Belgium)

    2010-07-05

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 {mu}g L{sup -1}).

  9. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS.

    Science.gov (United States)

    Vinci, Raquel Medeiros; Canfyn, Michael; De Meulenaer, Bruno; de Schaetzen, Thibault; Van Overmeire, Ilse; De Beer, Jacques; Van Loco, Joris

    2010-07-01

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 microg L(-1)).

  10. Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer.

    OpenAIRE

    Fahy, A.; Ball, A.S.; Lethbridge, G; Timmis, K N; McGenity, T.J.

    2008-01-01

    AIMS: To isolate benzene-degrading strains from neutral and alkaline groundwaters contaminated by benzene, toluene, ethylbenzene, xylenes (BTEX) from the SIReN aquifer, UK, and to test their effective pH range and ability to degrade TEX. METHODS AND RESULTS: The 14 isolates studied had an optimum pH for growth of 8, and could degrade benzene to below detection level (1 microg l(-1)). Five Rhodococcus erythropolis strains were able to metabolize benzene up to pH 9, two distinct R. erythropolis...

  11. Revisiting the glass transition and dynamics of supercooled benzene by calorimetric studies

    Science.gov (United States)

    Tu, Wenkang; Chen, Zeming; Li, Xiangqian; Gao, Yanqin; Liu, Riping; Wang, Li-Min

    2015-10-01

    The glass transition and dynamics of benzene are studied in binary mixtures of benzene with five glass forming liquids, which can be divided into three groups: (a) o-terphenyl and m-xylene, (b) N-butyl methacrylate, and (c) N,N-dimethylpropionamide and N,N-diethylformamide to represent the weak, moderate, and strong interactions with benzene. The enthalpies of mixing, ΔHmix, for the benzene mixtures are measured to show positive or negative signs, with which the validity of the extrapolations of the glass transition temperature Tg to the benzene-rich regions is examined. The extrapolations for the Tg data in the mixtures are found to converge around the point of 142 K, producing Tg of pure benzene. The fragility m of benzene is also evaluated by extrapolating the results of the mixtures, and a fragility m ˜ 80 is yielded. The obtained Tg and m values for benzene allow for the construction of the activation plot in the deeply supercooled region. The poor glass formability of benzene is found to result from the high melting point, which in turn leads to low viscosity in the supercooled liquid.

  12. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    International Nuclear Information System (INIS)

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 μg L-1).

  13. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    Science.gov (United States)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  14. Modeling of Pervaporation Separation Benzene from Dilute Aqueous Solutions Through Polydimethylsiloxane Membranes

    Institute of Scientific and Technical Information of China (English)

    彭福兵; 姜忠义

    2005-01-01

    A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.

  15. Pressure Dependence of Molar Volume near the Melting Point in Benzene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pressure dependence of the molar volume was at constant temperatures close to the melting point in benzene. The molar volume of benzene was calculated using experimental data for the thermal expansivity for constant temperatures of 25℃, 28.5℃, 40℃, and 51℃ at various pressures for both the solid and liquid phases. The predictions are in good agreement with the observed volumes in both the solid and liquid phases of benzene. The predicted values of the molar volume for a constant temperature of 28.5℃ in the liquid phase of benzene agree well with experimental data in the literature.

  16. Spectroscopic study of water-NaCl-benzene mixtures at high temperatures and pressures

    OpenAIRE

    Ohya, Tomoyuki; Kitagawa, Masaaki; Jin, Yusuke; Ikawa, Shun-ichi

    2005-01-01

    Near-infrared and ultraviolet spectra of water-NaCl-benzene mixtures have been measured in the 473–573 K and 100–400 bar range and 373–498 K and 50–300 bar range, respectively. Concentrations of water in the benzene-rich phase and benzene in the water-rich phase were estimated from integrated intensities of the absorption bands. It is found that addition of NaCl in the aqueous phase suppresses transfer of water into the benzene-rich phase, and the relative decrease in water solubility in ...

  17. Biomonitoring of human population exposed to petroleum fuels with special consideration of the role of benzene as a genotoxic component. Report of the EC Environment programme. Project EV5V-CT

    Energy Technology Data Exchange (ETDEWEB)

    Carere, A.; Crebelli, R. [ed.] [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1997-12-01

    In the framework of an EC research programme on the health risks of environmental chemicals, the Istituto Superiore di Sanita` co-ordinated, in 1993-1996, a project on the biological effects of benzene and petroleum fuels. Seven laboratories from six European countries collaborated in the biological monitoring of selected population with occupational exposure to petrochemicals. Several markers of early biological effect were applied together with environmental and personal exposure monitoring techniques. An epidemiological retrospective mortality study was also carried out on Italian filling station attendants. The results obtained highlighted an excess of genetic damage in some of the study populations, compared to matched unexposed controls. Even though these results do not allow a reliable risk estimation, the possible prognostic significance of cytogenetic damage for future cancer onset, together with some alerting findings from the mortality study, suggest that low dose exposures to benzene and petroleum fuels may retain some toxicological significance.

  18. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  19. Modeling of cavitation-bubble compression in benzene

    Science.gov (United States)

    Dnestrovskii, A. Yu.; Voropaev, S. A.; Zabrodina, E. A.

    2016-08-01

    In this study a two-dimensional model for calculating cavitation-bubble compression in benzene using a wide range of equations of state for ultrahigh pressures and temperatures is constructed. The calculations are carried out on the supercomputer of the Keldysh IAM. With the help of this model, the possibility of hits in the diamond-formation mode depending on the parameters of the external pressure and the initial bubble radius are analyzed. The dependence of the duration of the presence in the diamond-formation mode on these parameters is investigated.

  20. 4-Benzene­sulfonamido­benzoic acid

    OpenAIRE

    Sharif, Hafiz Muhammad Adeel; Dong, Gui-Ying; Arshad, Muhammad Nadeem; Khan, Islam Ullah

    2009-01-01

    In the mol­ecule of the title sulfonamide compound, C13H11NO4S, the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent mol­ecules are linked via classical inter­molecular N—H⋯O and O—H⋯O, and non-classical C—H⋯O hydrogen bonds, which stabilize the crystal structure.

  1. 4-Benzene­sulfonamido­benzoic acid

    Science.gov (United States)

    Sharif, Hafiz Muhammad Adeel; Dong, Gui-Ying; Arshad, Muhammad Nadeem; Khan, Islam Ullah

    2009-01-01

    In the mol­ecule of the title sulfonamide compound, C13H11NO4S, the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent mol­ecules are linked via classical inter­molecular N—H⋯O and O—H⋯O, and non-classical C—H⋯O hydrogen bonds, which stabilize the crystal structure. PMID:21578816

  2. Bis[diethyl(hydroxyammonium] benzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    De-Ming Xie

    2010-08-01

    Full Text Available In the centrosymmetric title compound, 2C4H12NO+·C8H4O42−, two N,N-diethyl(hydroxyammonium cations are linked to a benzene-1,4-dicarboxylate dianion by a combination of O—H...O and N—H...O hydrogen bonds, which can be described in graph-set terminology as R22(7. The crystal structure is further stabilized by C—H...O hydrogen bonds, leading to the fomation of a ribbon-like network.

  3. Atomic Structure of Benzene Which Accounts for Resonance Energy

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  4. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  5. Exposure Forecaster

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  6. Endocrine-mediated effects of two benzene related compounds, 1-chloro-4-(chloromethyl)benzene and 1,3-diethyl benzene, based on subacute oral toxicity studies using rats.

    Science.gov (United States)

    Yamasaki, Kanji; Ishii, Satoko; Kikuno, Tsukasa; Minobe, Yasushi

    2012-08-01

    The purpose of this study was to investigate the endocrine-mediated effects of the benzene-related compounds with reference to Organization for Economic Co-operation and Development (OECD) Test Guideline No. 407. Rats were orally gavaged with 0, 10, 50, and 250 mg/kg/day of 1-chloro-4-(chloromethyl)benzene, and 0, 25, 150, and 1000 mg/kg/day of 1,3-diethyl benzene for at least 28 days, beginning at 8 weeks of age. Thyroid dysfunction was observed in rats given the 1,3-diethyl benzene. Serum T4 values increased in all groups of male rats and in the 1000 mg/kg group of female rats, and TSH values also increased in the 1000 mg/kg groups of both sexes after 28 days' administration. Decreased T3 values were observed in the 1000 mg/kg group of female rats after 28 days' administration, and hormone values increased in the 1000 mg/kg groups of both sexes after the 14-day recovery period. In addition, thyroid weight increased in the 1000 mg/kg groups and thyroid follicular cell hyperplasia was detected in one male rat from the 1000 mg/kg group after 28 days' administration. Endocrine-mediated effects, including thyroid dysfunction were not observed in any groups of rats treated with 1-chloro-4-(chloromethyl)benzene. Our results indicated that endocrine-mediated effects such as thyroid dysfunction were associated with some benzene-related compounds. PMID:22643015

  7. Muonated cyclohexadienyl radicals observed by level crossing resonance in dilute solutions of benzene in hexane subjected to muon-irradiation

    International Nuclear Information System (INIS)

    Benzene is used here as a scavenger of muonium to produce the muonated cyclohexadienyl radical in dilute solutions in n-hexane. The radical was identified by level crossing resonance spectroscopy (LFR) by observing the proton resonance of the -CHMu group occurring at 2.059T. Its yield is found to equal the sum of the muonium atom yield and the ''missing'' muon yield in hexane (total 35% of the incident muons). Consequently, the complete dispersement of muons in different chemical associations is now accounted for in a saturated hydrocarbon liquid, and is seen to be similar to that in water. (author)

  8. Muonated cyclohexadienyl radicals observed by level crossing resonance in dilute solutions of benzene in hexane subjected to muon-irradiation

    International Nuclear Information System (INIS)

    Benzene is used here as a scavenger of muonium to produce the muonated cyclohexadienyl radical in dilute solutions in n-hexane. The radical was identified by level crossing resonance spectroscopy (LCR) by observing the proton resonance of the -CHMu group occurring at 2.059T. Its yield is found to equal the sum of the muonium atom yield and the 'missing' muon yield in hexane (total 35% of the incident muons). Consequently, the complete dispersement of muons in different chemical associations is now accounted for in a saturated hydrocarbon liquid, and is seen to be similar to that in water

  9. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  10. Benzene oxide is a substrate for glutathione S-transferases.

    Science.gov (United States)

    Zarth, Adam T; Murphy, Sharon E; Hecht, Stephen S

    2015-12-01

    Benzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published. Therefore, we incubated GSTA1, GSTT1, GSTM1, and GSTP1 with glutathione and BO and quantified the formation of S-phenylglutathione. Kinetic parameters were determined for GSTT1 and GSTP1. At 37 °C, the putative Km and Vmax values for GSTT1 were 420 μM and 450 fmol/s, respectively, while those for GSTP1 were 3600 μM and 3100 fmol/s. GSTA1 and GSTM1 did not exhibit sufficient activity for determination of kinetic parameters. We conclude that GSTT1 is a critical enzyme in the detoxification of BO and that GSTP1 may also play an important role, while GSTA1 and GSTM1 seem to be less important.

  11. Separation of Benzene and Cyclohexane by Batch Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    XU Jiao; ZHANG Weijiang; GUI Xia

    2007-01-01

    Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dimethyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameterssuch as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyclohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mL/min, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.

  12. Sonochemical treatment of benzene/toluene contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, G.; Gleason, M. [Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemical Engineering; Popov, V. [Scientific Production Association Typhoon, Obninsk (Russian Federation). Inst. of Experimental Meterology

    1998-12-31

    Studies of the destruction of benzene and toluene in water were undertaken using ultrasonic irradiation in a parallel place Near Field Acoustic Processor (NAP). This magnetostrictive system is capable of degrading both benzene and toluene in a continuous stirred tank reactor configuration. The reaction kinetics were characterized by first order rate constants for the disappearance of the parent compound; these ranged from 2.7 {times} 1{sup {minus}3} to 3.7 {times} 10{sup {minus}2} mm{sup {minus}1} over an applied power density range of 0.6 to 3.6 watt mL{sup {minus}1} and target concentration of approximately 25 to 900 {micro}M. The rate constant is shown to be inversely proportional to the target compound concentration, indicating higher order reaction kinetics. The conversion efficiency for the system was characterized through the G efficiency commonly used in radiation chemistry. The G efficiency ranged between 4 {times} 10{sup {minus}5} to 2.2 {times} 10{sup {minus}4} molecules destroyed per 100 eV of electrical energy drawn from the wall outlet. These values are comparable to those of other advanced oxidation processes. Suggestions are made regarding methods to improve this technology.

  13. Alkylation of Benzene with Propylene Catalyzed by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Sun Xuewen; Zhao Suoqi

    2006-01-01

    The alkylation of benzene with propylene catalyzed by ionic liquids to obtain cumene was investigated. Propylene conversion and cumene selectivity under mild reaction conditions were improved greatly after the ionic liquid was modified with HCl. Under the conditions of 20 oC, 0.1MPa, 5 min of reaction time, and a molar ratio of benzene to propylene of 10:1, propylene conversion increased from 83.6% to 100%, and cumene selectivity increased from 90.86% to 98.47%. In addition, it was found that the reaction could be carried out in two different stages so as to obtain a better result. At the first stage, the key reaction was alkylation and a higher propylene conversion was obtained at a lower temperature;At the second stage, the key reaction was transalkylation and a higher temperature was used to improve cumene selectivity. The reaction temperature, pressure and the amount of catalyst used in this work were lower than those used in traditional alkylation processes.

  14. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    CERN Document Server

    Azadi, Sam

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, compar...

  15. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  16. Pesticide-Exposure Matrix

    Science.gov (United States)

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  17. 高效苯降解菌的筛选鉴定及其在生物过滤塔处理苯的填料选择%Isolation and identification of a benzene-degrading strain and choice of packing material during degradation of benzene in biofilter

    Institute of Scientific and Technical Information of China (English)

    段传人; 胡江; 宋永安; 朱成惠; 王绍政; 武帅

    2012-01-01

    从污水处理厂曝气池的活性污泥筛选出1株苯的高效降解真菌HD-3,经形态特征、ITS基因序列系统学分析,确定HD-3为杂色曲霉Aspergillus versicolor,该菌株8 d内对初始浓度439.3 mg/L和4 393 mg/L的苯的降解率分别为78.56%和33.96%。当苯的初始浓度为439.3 mg/L,HD-3降解苯的最适温度为30℃,最适pH为4.5。在此基础上,提出了采用不同填料生物过滤塔处理苯废气的工艺,并进行了实验研究,实验结果表明:(1)随着苯的浓度提高,苯的降解率逐渐降低。当苯的浓度为200 mg/m3时,煤质柱状活性炭生物过滤塔、生物陶粒生物过滤塔、竹材生物过滤塔的苯平均去除率(REave)分别为93.63%、93.16%和82.38%;当苯的进口浓度增加到3 000 mg/m3时,3种生物过滤塔的苯平均去除率(REave)分别为78.89%、68.43%和51.87%。(2)不同填料对苯的去除能力不同,煤质柱状活性炭〉生物陶粒〉竹材。%A fungi HD-3 that can effectively degrade benzene was isolated form sludge collected from the aeration tank in sewage treatment plant. Strain HD-3 was identified as Aspergillus versicolor according to its mor- phological characteristics and sequence analysis of ITS. 78.56% of benzene was degraded by strain HD-3 within 8 days under the conditions of initial benzene concentration of 439.3 rag/L, but only 33.96% of benzene was degraded within 8 days under the conditions of initial benzene concentration of 4 393 mg/L. The most suitable temperature was 30~C and the most suitable pH was 4.5 when benzene concentration was 439.3 mg/L. On the basis of this, the process of biofilter with different packing material was put forward to remove benzene from ex- haust gases, a series of experiments were carried out. The experimental results show that benzene removal effi- ciency gradually decreased with the benzene concentration increasing. The REaveof CQC biofiher, BCC biofilter, BAM biofilter were 93.63% , 93.16% and 82

  18. The interaction effects of binary mixtures of benzene and toluene on the developing heart of medaka (Oryzias latipes).

    Science.gov (United States)

    Teuschler, Linda K; Gennings, Chris; Hartley, William R; Carter, Hans; Thiyagarajah, Arunthavarani; Schoeny, Rita; Cubbison, Chris

    2005-03-01

    The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity. PMID:15667848

  19. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model

    Science.gov (United States)

    Truong, Son C. H.; Lee, Myong-In; Kim, Ganghan; Kim, Dongmin; Park, Jong-Hwa; Choi, Sung-Deuk; Cho, Gi-Hyoug

    2016-11-01

    This study applied the American Meteorological Society and Environmental Protection Agency Regulatory Model (AERMOD) to assess the risk caused by an accidental release and dispersion of the toxic chemical benzene in the vicinity of a highly populated urban area. The modeling domain encompasses the Korean megacity of Ulsan, which includes two national industrial complexes and is characterized by a complex coastal terrain. Multiple AERMOD simulations were conducted for an assumed emission scenario using background wind data from August between 2009 and 2013. The series of experiments produced the spatial accident probability patterns for different concentration levels during daytime and nighttime scenarios based on the corresponding dominant wind patterns. This study further quantifies the potential accident risk based on the number of affected individuals by combining the accident probability with the indoor and outdoor population estimates. The chemical gas dispersion characteristics depend on various local meteorological conditions, such as the land-sea breeze direction, which alternates between daytime and nighttime, and the atmospheric stability. The results reveal that benzene dispersion affects a much larger area during the nighttime owing to the presence of a nocturnal stable boundary layer with significant temperature stratification. The affected area is smaller during the daytime owing to decreased stability and enhanced vertical mixing in the boundary layer. The results include a high degree of uncertainty during the nighttime owing to weak wind speeds and the lack of a prevailing wind direction, which impact the vulnerable area. However, vulnerable areas are more effectively identified during the daytime, when more consistent meteorological conditions exist. However, the potential risk becomes much lower during the nighttime owing to a substantial reduction of the outdoor population.

  20. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    Science.gov (United States)

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity.

  1. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    International Nuclear Information System (INIS)

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  2. Benzene emission from the actual car fleet in relation to petrol composition in Denmark

    International Nuclear Information System (INIS)

    The present study covers an investigation of the trends in air pollution levels of benzene in Danish cities and their relationship with the benzene content in petrol. Petrol samples from the two refineries in Denmark as well as sold petrol from some representative Danish petrol stations were analysed. The benzene content in Danish petrol was reduced from 3.5% for 95 octane prior to 1995 to approx. 2% in 1995 and further to 1% in 1998. Air quality measurements of aromatic VOC are available from two Danish cities; Copenhagen since 1994 and Odense since 1997. Measurements of benzene, CO and NOx from these two locations were analysed using the Operational Street Pollution Model (OSPM) and trends in the actual emissions of these pollutants were determined. It is shown that the decrease in both the concentration levels and in the emissions was significantly larger for benzene than for CO and NOx. The decreasing trends of NOx and CO could be explained by the increasing fraction of petrol-fuelled vehicles with three way catalysts (TWC). The much steeper decreasing trend for benzene can most likely be attributed to a combination of the effect of the increasing share of the TWC vehicles and a simultaneous reduction of benzene content in Danish petrol. The reduction of benzene concentrations and emissions is observed despite that the total amount of aromatics in petrol has increased slightly in the same period. (Author)

  3. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Science.gov (United States)

    2010-07-01

    ... that has held the substance, unless the container is empty as defined in 40 CFR 261.7(b)(3); any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a)...

  4. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Science.gov (United States)

    2010-07-01

    ... removed from a container that has held the substance, unless the container is empty as defined in 40 CFR... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance...

  5. 46 CFR Appendix B to Subpart C to... - Substance Technical Guidelines, Benzene

    Science.gov (United States)

    2010-10-01

    ...) Benzene is classified as a flammable liquid for the purpose of conforming to the requirements of 49 CFR... locations for the purposes of conforming to the requirements of 46 CFR parts 30 through 40, 151, and 153... 46 Shipping 7 2010-10-01 2010-10-01 false Substance Technical Guidelines, Benzene B Appendix B...

  6. Benzene emission from the actual car fleet in relation to petrol composition in Denmark

    Science.gov (United States)

    Palmgren, Finn; Hansen, Asger B.; Berkowicz, Ruwim; Skov, Henrik

    The present study covers an investigation of the trends in air pollution levels of benzene in Danish cities and their relationship with the benzene content in petrol. Petrol samples from the two refineries in Denmark as well as sold petrol from some representative Danish petrol stations were analysed. The benzene content in Danish petrol was reduced from 3.5% for 95 octane prior to 1995 to approx. 2% in 1995 and further to 1 % in 1998. Air quality measurements of aromatic VOC are available from two Danish cities; Copenhagen since 1994 and Odense since 1997. Measurements of benzene, CO and NO x from these two locations were analysed using the Operational Street Pollution Model (OSPM) and trends in the actual emissions of these pollutants were determined. It is shown that the decrease in both the concentration levels and in the emissions was significantly larger for benzene than for CO and NO x. The decreasing trends of NO x and CO could be explained by the increasing fraction of petrol-fuelled vehicles with three way catalysts (TWC). The much steeper decreasing trend for benzene can most likely be attributed to a combination of the effect of the increasing share of the TWC vehicles and a simultaneous reduction of benzene content in Danish petrol. The reduction of benzene concentrations and emissions is observed despite that the total amount of aromatics in petrol has increased slightly in the same period.

  7. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes. PMID:26322761

  8. Homolytic iodination and nitration of some benzene derivatives in the gas phase

    International Nuclear Information System (INIS)

    Two gas phase reactions, involving the iodination and nitration of benzene derivatives, are described. The experimental techniques of the apparatus and the methods used are outlined. The kinetic H/D isotope effect in the gas phase nitration of benzene with NO2 is determined. (C.F.)

  9. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, NLM; Klis, SFL; Muijser, H; Kulig, BM; Ravensberg, LC; Smoorenburg, GF

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was foun

  10. Hydrogenation of Benzene over Mo2C/Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Wu Weicheng

    2008-01-01

    The process of benzene hydrogenation over Mo2C catalyst has been studied.Mo2C was the active phase in benzene hydrogenation.The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.

  11. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dipty [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India); Fulekar, M.H., E-mail: mhfulekar@yahoo.com [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India)

    2010-03-15

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  12. Accurate computations of the structures and binding energies of the imidazole⋯benzene and pyrrole⋯benzene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ahnen, Sandra; Hehn, Anna-Sophia [Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Vogiatzis, Konstantinos D. [Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1a, D-76131 Karlsruhe (Germany); Trachsel, Maria A.; Leutwyler, Samuel [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern (Switzerland); Klopper, Wim, E-mail: klopper@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1a, D-76131 Karlsruhe (Germany)

    2014-09-30

    Highlights: • We have computed accurate binding energies of two NH⋯π hydrogen bonds. • We compare to results from dispersion-corrected density-functional theory. • A double-hybrid functional with explicit correlation has been proposed. • First results of explicitly-correlated ring-coupled-cluster theory are presented. • A double-hybrid functional with random-phase approximation is investigated. - Abstract: Using explicitly-correlated coupled-cluster theory with single and double excitations, the intermolecular distances and interaction energies of the T-shaped imidazole⋯benzene and pyrrole⋯benzene complexes have been computed in a large augmented correlation-consistent quadruple-zeta basis set, adding also corrections for connected triple excitations and remaining basis-set-superposition errors. The results of these computations are used to assess other methods such as Møller–Plesset perturbation theory (MP2), spin-component-scaled MP2 theory, dispersion-weighted MP2 theory, interference-corrected explicitly-correlated MP2 theory, dispersion-corrected double-hybrid density-functional theory (DFT), DFT-based symmetry-adapted perturbation theory, the random-phase approximation, explicitly-correlated ring-coupled-cluster-doubles theory, and double-hybrid DFT with a correlation energy computed in the random-phase approximation.

  13. 优化苯塔流程减少石油苯损失%To Optimize the Benzene Tower Process and Reduce Oil Benzene Loss

    Institute of Scientific and Technical Information of China (English)

    聂玉萍; 佟文媛

    2015-01-01

    歧化装置包括歧化和烷基化转移部分及苯-甲苯分馏部分,通过探讨歧化装置各部分操作及石油苯产量状况,围绕如何减少石油苯损失,提高石油苯产量展开讨论,最终得出结论并制定对策以期能够减少石油苯损失,提高石油苯产量,从而提高经济效益。%Disproportionation unit includes disproportionation and alkylation transfer part and the benzene-toluene fractionation part, this paper discussed how to reduce oil benzene loss and improve oil benzene production through the discussion of the operation of each part of disproportionation unit and the status of oil benzene production, and eventually reached a conclusion and developed countermeasures to reduce oil benzene loss and improve oil benzene production, thus enhancing economic efficiency.

  14. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pcherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. PMID:27041300

  15. Hydrogen Storage in Benzene Moiety Decorated Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing-Yun; LIANG Qi-Min; SONG Chen; XIA Yue-Yuan; ZHAO Ming-wen; LIU Xiang-Dong; ZHANG Hong-Yu

    2006-01-01

    The hydrogen storage capacity of(5,5)single-walled carbon nanotubes(SWNTs)decorated chemically with benzene moieties is studied by using molecular dynamics simulations(MDSs)and density functional theory(DFT) calculations.It is found that benzene molecules colliding on (5,5) SWNTs at incident energy of 50 eV form very stable configurations of benzene moiety adsorption on the wall of SWNTs.The MDSs indicate that when the benzene moiety decorated(5,5)SWNTs and a pristine(5,5)SWNT are put in a box in which hydrogen molecules are filled to a pressure of~26 atm,the hydrogen storage capacity of the benzene moiety decorated(5,5)SWNT is about 4.7wt.% and that of the pristine (5,5) SwNT is nearly 3.9 wt.%.

  16. Occupational exposure of diesel station workers to BTEX compounds at a bus depot.

    Science.gov (United States)

    Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper

    2015-04-13

    Diesel fuel is known to emit pollutants that have a negative impact on environmental and human health. In developing countries like South Africa, attendants are employed to pump fuel for customers at service stations. Attendants refuel vehicles with various octane unleaded fuel, lead-replacement petrol and diesel fuel, on a daily basis. Attendants are at risk to adverse health effects associated with the inhalation of volatile organic compounds released from these fuels. The pollutants released include benzene, toluene, ethylbenzene and xylenes (BTEX), which are significant due to their high level of toxicity. In this study, a risk assessment of BTEX was conducted at a diesel service station for public buses. Using Radiello passive samplers, it was found that benzene concentrations were above recommended international standards. Due to poor ventilation and high exposure duration, the average benzene concentration over the sampling campaign exceeded the US Environmental Protection Agency's chronic inhalation exposure reference concentration. Lifetime cancer risk estimation showed that on average there is a 3.78 × 10-4 cancer risk, corresponding to an average chronic daily intake of 1.38 × 10-3 mg/kg/day of benzene exposure. Additionally, there were incidences where individuals were at potential hazard risk of benzene and toluene that may pose non-carcinogenic effects to employees.

  17. Occupational Exposure of Diesel Station Workers to BTEX Compounds at a Bus Depot

    Directory of Open Access Journals (Sweden)

    Raeesa Moolla

    2015-04-01

    Full Text Available Diesel fuel is known to emit pollutants that have a negative impact on environmental and human health. In developing countries like South Africa, attendants are employed to pump fuel for customers at service stations. Attendants refuel vehicles with various octane unleaded fuel, lead-replacement petrol and diesel fuel, on a daily basis. Attendants are at risk to adverse health effects associated with the inhalation of volatile organic compounds released from these fuels. The pollutants released include benzene, toluene, ethylbenzene and xylenes (BTEX, which are significant due to their high level of toxicity. In this study, a risk assessment of BTEX was conducted at a diesel service station for public buses. Using Radiello passive samplers, it was found that benzene concentrations were above recommended international standards. Due to poor ventilation and high exposure duration, the average benzene concentration over the sampling campaign exceeded the US Environmental Protection Agency’s chronic inhalation exposure reference concentration. Lifetime cancer risk estimation showed that on average there is a 3.78 × 10−4 cancer risk, corresponding to an average chronic daily intake of 1.38 × 10−3 mg/kg/day of benzene exposure. Additionally, there were incidences where individuals were at potential hazard risk of benzene and toluene that may pose non-carcinogenic effects to employees.

  18. Evaluation of seawater contamination with benzene, toluene and xylene in the Ubatuba north coast, SP region, and study of their removal by ionizing radiation

    International Nuclear Information System (INIS)

    A major concern with leaking petroleum is the environmental contamination by the toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylene, and their removal by the exposure to the ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46'S of latitude and 45 deg 02'W and 45 deg 11'W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than Head Space concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 μg/L for benzene, 0.70 μg/L for toluene, and 1.54 μg/L for xylene, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MLD, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylene, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 μg/L to 2.0 μg/L, the concentration of toluene varied from 60Co, presented a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively; from 20% to 60% of toluene removal with 15 kGy absorbed dose and from 20% to 80% of xylene with 15 kGy absorbed dose in similar concentrations. (author)

  19. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes.

    Science.gov (United States)

    Peng, D; Jiaxing, W; Chunhui, H; Weiyi, P; Xiaomin, W

    2012-04-01

    Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2',7'-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes. PMID:22297702

  20. Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions.

    Science.gov (United States)

    Rakoczy, Jana; Schleinitz, Kathleen M; Müller, Nicolai; Richnow, Hans H; Vogt, Carsten

    2011-08-01

    Syntrophic mineralisation of benzene, as recently proposed for a sulphate-reducing enrichment culture, was tested in product inhibition experiments with acetate and hydrogen, both putative intermediates of anaerobic benzene fermentation. Using [(13)C(6)]-benzene enabled tracking the inhibition of benzene mineralisation sensitively by analysis of (13)CO(2). In noninhibited cultures, hydrogen was detected at partial pressures of 2.4 × 10(-6) ± 1.5 × 10(-6) atm. Acetate was detected at concentrations of 17 ± 2 μM. Spiking with 0.1 atm hydrogen produced a transient inhibitory effect on (13)CO(2) formation. In cultures spiked with higher amounts of hydrogen, benzene mineralisation did not restart after hydrogen consumption, possibly due to the toxic effects of the sulphide produced. An inhibitory effect was also observed when acetate was added to the cultures (0.3, 3.5 and 30 mM). Benzene mineralisation resumed after acetate was degraded to concentrations found in noninhibited cultures, indicating that acetate is another key intermediate in anaerobic benzene mineralisation. Although benzene mineralisation by a single sulphate reducer cannot be ruled out, our results strongly point to an involvement of syntrophic interactions in the process. Thermodynamic calculations revealed that, under in situ conditions, benzene fermentation to hydrogen and acetate yielded a free energy change of ΔG'=-83.1 ± 5.6 kJ mol(-1). Benzene mineralisation ceased when ΔG' values declined below -61.3 ± 5.3 kJ mol(-1) in the presence of acetate, indicating that ATP-consuming reactions are involved in the pathway.

  1. Effect Of Polar Component(1-Propanol On The RelativeVolatility Of The Binary System N-Hexane - Benzene

    Directory of Open Access Journals (Sweden)

    Khalid Farhod Chasib Al-Jiboury

    2008-01-01

    Full Text Available Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol

  2. In situ FTIR Investigation of Magnetic Field Effect on Heterogeneous Photocatalytic Degradation of Benzene over Pt/TiO2

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In situ FTIR spectroscopy was utlized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.

  3. EPHECT II: Exposure assessment to household consumer products.

    Science.gov (United States)

    Dimitroulopoulou, C; Trantallidi, M; Carrer, P; Efthimiou, G C; Bartzis, J G

    2015-12-01

    Within the framework of the EPHECT project (Emissions, exposure patterns and health effects of consumer products in the EU), irritative and respiratory health effects were assessed in relation to acute and long-term exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. In this context, inhalation exposure assessment was carried out for six selected 'target' compounds (acrolein, formaldehyde, benzene, naphthalene, d-limonene and α-pinene). This paper presents the methodology and the outcomes from the micro-environmental modelling of the 'target' pollutants following single or multiple use of selected consumer products and the subsequent exposure assessment. The results indicate that emissions from consumer products of benzene and α-pinene were not considered to contribute significantly to the EU indoor background levels, in contrast to some cases of formaldehyde and d-limonene emissions in Eastern Europe (mainly from cleaning products). The group of housekeepers in East Europe appears to experience the highest exposures to acrolein, formaldehyde and benzene, followed by the group of the retired people in North, who experiences the highest exposures to naphthalene and α-pinene. High exposure may be attributed to the scenarios developed within this project, which follow a 'most-representative worst-case scenario' strategy for exposure and health risk assessment. Despite the above limitations, this is the first comprehensive study that provides exposure estimates for 8 population groups across Europe exposed to 6 priority pollutants, as a result of the use of 15 consumer product classes in households, while accounting for regional differences in uses, use scenarios and ventilation conditions of each region. PMID:26173853

  4. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  5. Nonthermal plasma assisted photocatalytic oxidation of dilute benzene

    Indian Academy of Sciences (India)

    J Karuppiah; E Linga Reddy; L Sivachandiran; R Karvembu; Ch Subrahmanyam

    2012-07-01

    Oxidative decomposition of low concentrations (50-1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor with the inner electrode made up of stainless steel fibres (SMF) modified with transition metal oxides in such a way to integrate the catalyst in discharge zone. Typical results indicate the better performance of MnO and TiO2/MnO modified systems, which may be attributed to the in situ decomposition of ozone on the surface of MnO that may lead to the formation of atomic oxygen; whereas ultraviolet light induced photocatalytic oxidation may be taking place with TiO2 modified systems. Water vapour improved the selectivity to total oxidation.

  6. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    Science.gov (United States)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2016-09-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7 ± 3.0) ns and (36.6 ± 2.4) ns , respectively, while the full width [-3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. The scintillation light yield was measured to be (1.01 ± 0.12) ×103 photons / MeV .

  7. Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene

    CERN Document Server

    Li, Mohan; Yeh, Minfang; Wang, Zhe; Chen, Shaomin

    2015-01-01

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay researches. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator being developed. In this paper we observed a good separation of scintillation and Cherenkov lights in an LAB sample. The rising and decay times of the scintillation light of the LAB were measured to be $(7.7\\pm3.0)\\ \\rm{ns}$ and $(36.6\\pm2.4)\\ \\rm{ns}$, respectively, while the full width [-3$\\sigma$, 3$\\sigma$] of the Cherenkov light was 12 ns dominated by the time resolution of our photomultiplier tubes. The light yield of the scintillation was measured to be $(1.01\\pm0.12)\\times10^3\\ \\rm{photons}/\\rm{MeV}$.

  8. Localized helium excitations in 4He_N-benzene clusters

    CERN Document Server

    Huang, P; Huang, Patrick

    2003-01-01

    We compute ground and excited state properties of small helium clusters 4He_N containing a single benzene impurity molecule. Ground-state structures and energies are obtained for N=1,2,3,14 from importance-sampled, rigid-body diffusion Monte Carlo (DMC). Excited state energies due to helium vibrational motion near the molecule surface are evaluated using the projection operator, imaginary time spectral evolution (POITSE) method. We find excitation energies of up to ~23 K above the ground state. These states all possess vibrational character of helium atoms in a highly anisotropic potential due to the aromatic molecule, and can be categorized in terms of localized and collective vibrational modes. These results appear to provide precursors for a transition from localized to collective helium excitations at molecular nanosubstrates of increasing size. We discuss the implications of these results for analysis of anomalous spectral features in recent spectroscopic studies of large aromatic molecules in helium clu...

  9. Modeling Biodegradation Kinetics on Benzene and Toluene and Their Mixture

    Directory of Open Access Journals (Sweden)

    Aparecido N. Módenes

    2007-10-01

    Full Text Available The objective of this work was to model the biodegradation kinetics of toxic compounds toluene and benzene as pure substrates and in a mixture. As a control, Monod and Andrews models were used. To predict substrates interactions, more sophisticated models of inhibition and competition, and SKIP (sum kinetics interactions parameters model were applied. The models evaluation was performed based on the experimental data from Pseudomonas putida F1 activities published in the literature. In parameter identification procedure, the global method of particle swarm optimization (PSO was applied. The simulation results show that the better description of the biodegradation process of pure toxic substrate can be achieved by Andrews' model. The biodegradation process of a mixture of toxic substrates is modeled the best when modified competitive inhibition and SKIP models are used. The developed software can be used as a toolbox of a kinetics model catalogue of industrial wastewater treatment for process design and optimization.

  10. Benzene ring chains with lithium adsorption: Vibrations and their implications

    CERN Document Server

    Stegmann, Thomas; Seligman, Thomas H

    2016-01-01

    Lithium adsorption on aromatic molecules and polyacenes have been found to produce strong distortions associated to spontaneous symmetry breaking and lesser ones in more general cases. For polyphenyls we find similar, but more varied behaviour; an important feature is the fact that adsorption largely suppresses the torsion present in naked polyphenyl. The spectra of the vibrational modes distinguish the different structures of skeletons and adsorbates. In the more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essential followed by the adsorbate. Based on this we propose the possible use of such a chain of adsorbates on a chain of benzene rings as a quantum register with the lowest vibrations transmitting qubits for control gates. To strengthen this view and to show the effect of heavier alkalines we also present the very symmetric adsorption of ten rubidium atoms on pentaphenyl.

  11. Nonlinear response of the benzene molecule to strong magnetic fields

    Science.gov (United States)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2005-02-01

    The fourth-rank hypermagnetizability tensor of the benzene molecule has been evaluated at the coupled Hartree-Fock level of accuracy within the conventional common-origin approach, adopting gaugeless basis sets of increasing size and flexibility. The degree of convergence of theoretical tensor components has been estimated allowing for two different coordinate systems. It is shown that a strong magnetic field perpendicular to the plane of the molecule causes a distortion of the electron charge density, which tends to concentrate in the region of the C-C bonds. This charge contraction has a dynamical origin, and can be interpreted as a feedback effect in terms of the classical Lorentz force acting on the electron current density.

  12. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... requirements for the gasoline benzene program? 80.1352 Section 80.1352 Protection of Environment ENVIRONMENTAL... Benzene Recordkeeping and Reporting Requirements § 80.1352 What are the pre-compliance reporting requirements for the gasoline benzene program? (a) Except as provided in paragraph (c) of this section,...

  13. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Science.gov (United States)

    2010-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  14. Pre-commissioning of 120 kt/a Unit for Hydrotreating Crude Coke Oven Benzene Implemented at Baoyuan Chemical Company

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Baoyuan Chemical Company, Ltd. in Taiyuan has per-formed the precommissioning of a 120 kt/a unit for hydrotreating crude coke oven benzene. This unit is the phase II construction of the 300 kt/a crude benzene hydrotreating project, which adopts the process technology for hydrotreating crude coke oven benzene developed indepen-dently by our own efforts.

  15. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    Science.gov (United States)

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  16. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    Full Text Available Research from the Multiethnic Cohort (MEC demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA, a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005 SPMA/ml urine than Whites (2.67 [0.13] while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005. SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1 deletion explained between 14.2-31.6% (p = 5.4x10-157 and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9 of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.

  17. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Majcher, Emily H.; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2014-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and

  18. Advice of the Italian CCTN on the health risk assessment relative to exposure to automobile emissions

    Energy Technology Data Exchange (ETDEWEB)

    Camoni, I. [ed.] [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Applicata; Mucci, N. [ed.] [ISPESL, Monteporzio Catone, Roma (Italy). Dip. di Medicina del Lavoro; Foa`, V. [ed.] [Milan Univ. (Italy). Clinica del lavoro Luigi Devoto

    1998-06-01

    The period 1990-1995 are reported, they concern the health impact of exposure to benzene and polycyclic aromatic hydrocarbons (PAHs), resulting from automobile exhaust products, for Italian general and occupationally exposed populations. The first recommendation takes into consideration the possible long-term effects of the unleaded gasoline, recently introduced in Italy. The latter two recommendations concern the quantitative evaluation of the risk of leukaemia and of the risk of lung cancer from exposure to benzene and PAHs, resulting from automobile exhaust. [Italiano] Sono riportati i pareri espressi dalla Commissione Consultiva Tossicologica Nazionale (CCTN) nel periodo 1990-1995 riguardanti la valutazione del rischio cancerogeno per esposizione a sostanze contenute nelle emissioni autoveicolari. In particolare, viene stimato il rischio aggiuntivo di leucemia per esposizione a benzene e di cancro polmonare per esposizione a idrocarburi policiclici aromatici (IPA), sia per la popolazione generale che per quella professionalmente esposta.

  19. The role of C-H$\\ldots$ interaction in the stabilization of benzene and adamantane clusters

    Indian Academy of Sciences (India)

    R Mahesh Kumar; M Elango; R Parthasarathi; Dolly Vijay; V Subramanian

    2012-01-01

    In this investigation, a systematic attempt has been made to understand the interaction between adamantane and benzene using both ab initio and density functional theory methods. C-H$\\ldots$ type of interaction between C-H groups of adamantane and cloud of benzene is found as the important attraction for complex formation. The study also reveals that the methylene (-CH2) and methine (-CH) groups of adamantane interact with benzene resulting in different geometrical structures. And it is found that the former complex is stronger than the later. The diamondoid structure of adamantane enables it to interact with a maximum of four benzene molecules, each one along the four faces. The stability of the complex increases with increase in the number of benzene molecules. The energy decomposition analysis of adamantane-benzene complexes using DMA approach shows that the origin of the stability primarily arises from the dispersive interaction. The theory of atoms in molecules (AIM) supports the existence of weak interaction between the two systems. The electrostatic topography features provide clues for the mode of interaction of adamantane with benzene.

  20. Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor

    Science.gov (United States)

    Ma, Tianpeng; Zhao, Qiong; Liu, Jianqi; Zhong, Fangchuan

    2016-06-01

    The humidity effects on the benzene decomposition process were investigated by the dielectric barrier discharge (DBD) plasma reactor. The results showed that the water vapor played an important role in the benzene oxidation process. It was found that there was an optimum humidity value for the benzene removal efficiency, and at around 60% relative humidity (RH), the optimum benzene removal efficiency was achieved. At a SIE of 378 J/L, the removal efficiency was 66% at 0% RH, while the removal efficiency reached 75.3% at 60% RH and dropped to 69% at 80% RH. Furthermore, the addition of water inhibited the formation of ozone and NO2 remarkably. Both of the concentrations of ozone and NO2 decreased with increasing of the RH at the same specific input energy. At a SIE of 256 J/L, the concentrations of ozone and NO2 were 5.4 mg/L and 1791 ppm under dry conditions, whereas they were only 3.4 mg/L and 1119 ppm at 63.5% RH, respectively. Finally, the outlet gas after benzene degradation was qualitatively analyzed by FT-IR and GC-MS to determine possible intermediate byproducts. The results suggested that the byproducts in decomposition of benzene primarily consisted of phenol and substitutions of phenol. Based on these byproducts a benzene degradation mechanism was proposed. supported by National Natural Science Foundation of China (Nos. 11205007 and 11205029)

  1. Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cesarino, Ivana, E-mail: ivana@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil); Cesarino, Vivian; Moraes, Fernando C.; Ferreira, Tanare C.R.; Lanza, Marcos R.V. [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil); Mascaro, Lucia H. [Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970, São Carlos, SP (Brazil); Machado, Sergio A.S. [Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, 13560-970, São Carlos, SP (Brazil)

    2013-08-15

    In this study, a novel methodology for the electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes has been investigated. The morphology, the structure, and the electrochemical performance of the multi-walled carbon nanotubes-silver (MWCNT-Ag) nanocomposite film were characterised by transmission electron microscopy (TEM), X-ray diffraction (XRD), and cyclic voltammetry (CV), respectively. Electrocatalytic oxidation of benzene in an aqueous solution was studied to evaluate potential applications of the MWCNT-Ag modified glassy carbon (GC) electrode in environmental science. The benzene removal efficiency in natural water containing 10 mg L{sup −1} benzene yielded 77.9% at an applied potential of +2.0 V for 2 h using the MWCNT-Ag-GC electrode. In comparison, the removal efficiency reached only 8.0% with the bare GC electrode, showing the suitability of the MWCNT-Ag nanocomposite modified GC electrode for electro-oxidation of benzene in natural water. - Graphical abstract: Display Omitted - Highlights: • A novel methodology for the electrochemical degradation of benzene was developed. • Sensor based on silver nanoparticle-decorated carbon nanotubes was used. • The proposed method is suitable and efficient for the removal of benzene.

  2. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  3. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  4. OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations

    DEFF Research Database (Denmark)

    Klotz, B; Volkamer, R; Hurley, MD;

    2002-01-01

    The present work represents a continuation of part I of this series of papers, in which we investigated the phenol yields in the OH-initiated oxidation of benzene under conditions of low to moderate concentrations of NOx, to elevated NOx levels. The products of the OH-initiated oxidation of benzene...... in 700 760 Torr of N-2/O-2 diluent at 297 +/- 4 K were investigated in 3 different photochemical reaction chambers. In situ spectroscopic techniques were employed for the detection of products, and the initial concentrations of benzene, NOx, and O-2 were widely varied (by factors of 6300, 1500, and 13...

  5. Bond Energy Sums in Benzene, Cyclohexatriene and Cyclohexane Prove Resonance Unnecessary

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    The recent new structure of benzene shows that it consists of three C atoms of radii as in graphite alternating with three C atoms with double bond radii. This is different from the hypothetical cyclohexatriene (Kekule structure) involving alternate double and single bonds. It was shown that the difference in the bond energy sum of the atomic structure of benzene from that of the Kekule structure is the energy (erroneously) assumed to be due to resonance. Here it is shown that the present structure of benzene also explains the energy of hydrogenation into cyclohexane and its difference from that of cyclohexatriene.

  6. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  7. Occupational exposure to rubber vulcanization products during repair of rubber conveyor belts in a brown coal mine.

    Science.gov (United States)

    Gromiec, Jan P; Wesołowski, Wiktor; Brzeźnicki, Sławomir; Wróblewska-Jakubowska, Krystyna; Kucharska, Małgorzata

    2002-12-01

    Several hundred chemical compounds were found in workroom environments in the rubber industry, but most of the published exposure data relate to the production of tyres; information from the "non-tyre" sections are very limited, if any. This study was carried out to identify chemical substances and measure their air concentrations in the repair shop of a brown coal mine in which damaged rubber conveyor belts were repaired. GC-MS and HPLC analysis of stationary air samples resulted in identification of aliphatic and aromatic hydrocarbons to C12, PAHs, alcohols, phenols, ketones, heterocyclic nitrogen and sulfur compounds. Quantitative evaluation of occupational exposure included determination of organic compound vapours collected on charcoal (GC-MSD), polycyclic aromatic hydrocarbons (HPLC), N-nitrosoamines and other amines (GC-NPD) and DNPH derivatives of aldehydes (HPLC) in the breathing zone of workers representing all job titles. The concentrations of investigated compounds were very low. Carcinogenic substances: N-nitrosoamines, benzene, PAHs were not present in workroom air in concentrations exceeding limits of detection of the analytical methods being applied; concentrations of methylisobutylketone, tetrachloroethylene, naphtha, aromatic hydrocarbons, phthalates and aldehydes were much lower than the respective occupational exposure limit values. The results indicate much lower exposure than that reported in the production of tyres and other fabricated rubber products. PMID:12509065

  8. Extricating sex and gender in air pollution research: a community-based study on cardinal symptoms of exposure.

    Science.gov (United States)

    Oiamo, Tor H; Luginaah, Isaac N

    2013-09-01

    This study investigated sex and gender differences in cardinal symptoms of exposure to a mixture of ambient pollutants. A cross sectional population-based study design was utilized in Sarnia, ON, Canada. Stratified random sampling in census tracts of residents aged 18 and over recruited 804 respondents. Respondents completed a community health survey of chronic disease, general health, and socioeconomic indicators. Residential concentrations of NO₂, SO₂, benzene, toluene, ethylbenzene and o/m/p-xylene were estimated by land use regression on data collected through environmental monitoring. Classification and Regression Tree (CART) analysis was used to identify variables that interacted with sex and cardinal symptoms of exposure, and a series of logistic regression models were built to predict the reporting of five or more cardinal symptoms (5+ CS). Without controlling for confounders, higher pollution ranks increased the odds ratio (OR) of reporting 5+ CS by 28% (p air pollution, but additionally indicated that stronger effects on females is partly due to autoimmune disorders. Furthermore, gender differences in occupational exposure confound the effect size of exposure in studies based on residential levels of air pollution.

  9. A comparison of benzene, toluene and C{sub 2}-benzenes mixing ratios in automotive exhaust and in the suburban atmosphere during the introduction of catalytic converter technology to the Swiss Car Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, N.V.; Forss, A.-M.; Bach, C.; Reimann, S.; Herzog, A.; Jackle, H.W. [Swiss Federal Laboratories for Materials Testing and Research, Duebendorf (Switzerland)

    2000-07-01

    Time-resolved chemical ionization mass spectrometry (CIMS) has been used to investigate the variations of the mixing ratios of benzene, toluene and the C{sub 2}-benzenes (xylenes and ethyl benzene) in automotive exhaust during transient engine operation. A significant increase of the benzene/toluene ratios from 0.35 to 1.31 (median) was found upon introduction of a catalytic converter system. A preliminary emission model was developed from these test stand measurements to simulate benzene/toluene ratios of passenger car fleets with variable proportions of three-way catalyst vehicles. Although only the emissions of gasoline-driven passenger cars have been considered so far, the predicted increase of the benzene/toluene ratios during the introduction period of the three-way catalyst from 1980 to 2000 is in good agreement with the observed increase of the atmospheric benzene/toluene ratio measured at a suburban monitoring site (Dubendorf, Switzerland) which is strongly influenced by road traffic emissions. At this site, the atmospheric concentrations of benzene and alkyl benzenes have been detected at hourly intervals since 1993. A steady decrease of the yearly mean from 3.54 to 2.00 ppb for toluene and from 2.87 to 1.33 ppb for the sum of C{sub 2}-benzenes was found from 1994 to 1998, respectively, when the proportion of three-way catalyst passenger cars increased from 60 to 82%. Nevertheless, the mean benzene concentration was only affected to a small degree (from 1.10 to 0.97 ppb) within the same period of time. Thus, the observed increase of the atmospheric benzene/toluene-mixing ratios from 0.32 to 0.58 (mean) is in good agreement with the predicted values from the presented emission model. Reduced catalyst conversion efficiency for benzene with respect to alkylated benzenes can explain most of the observed increase of the benzene/toluene and benzene/C{sub 2}-benzenes mixing rations. In addition, benzene emissions e.g. from the class of light duty vehicles, which

  10. A lack of consensus in the literature findings on the removal of airborne benzene by houseplants: Effect of bacterial enrichment

    Science.gov (United States)

    Sriprapat, Wararat; Strand, Stuart E.

    2016-04-01

    Removal rates of benzene and formaldehyde gas by houseplants reported by several laboratories varied by several orders of magnitude. We hypothesized that these variations were caused by differential responses of soil microbial populations to the high levels of pollutant used in the studies, and tested responses to benzene by plants and soils separately. Five houseplant species and tobacco were exposed to benzene under hydroponic conditions and the uptake rates compared. Among the test plants, Syngonium podophyllum and Chlorophytum comosum and Epipremnum aureum had the highest benzene removal rates. The effects of benzene addition on populations of soil bacteria were determined using reverse transcription quantitative PCR (RT-qPCR) assays targeting microbial genes involved in benzene degradation. The total bacterial population increased as shown by increases in the levels of eubacteria 16S rRNA, which was significantly higher in the high benzene incubations than in the low benzene incubations. Transcripts (mRNA) of genes encoding phenol monooxygenases, catechol-2,3-dioxygenase and the housekeeping gene rpoB increased in all soils incubated with high benzene concentrations. Therefore the enrichment of soils with benzene gas levels typical of experiments with houseplants in the literature artificially increased the levels of total soil bacterial populations, and especially the levels and activities of benzene-degrading bacteria.

  11. CH/pi interaction between benzene and hydrocarbons having six carbon atoms in their binary liquid mixtures.

    Science.gov (United States)

    Kasahara, Yasutoshi; Suzuki, Yuji; Kabasawa, Aino; Minami, Hideyuki; Matsuzawa, Hideyo; Iwahashi, Makio

    2010-01-01

    Molecular interactions between benzene and hydrocarbons having six carbon atoms, such as hexane, cyclohexane and 1-hexene in their binary liquid mixtures were studied through the measurements of density, viscosity, self-diffusion coefficient, (13)C NMR spin-lattice relaxation time and (1)H NMR chemical shift. CH/pi attraction between hexane and benzene in their binary mixture was observed in a relatively benzene rich region, whereas a special attractive interaction was not observed between cyclohexane and benzene. On the other hand, 1-hexene and benzene in their binary mixtures were characteristic in their self-diffusion coefficient behaviors: 1-hexene more strongly attract benzene not only by the CH/pi attraction but also probably by the p/p interaction between the double bond in 1-hexene and the p-electron in benzene ring. PMID:20032596

  12. Benzene and MTBE Sorption in Fine Grain Sediments

    Science.gov (United States)

    Leal-Bautista, R. M.; Lenczewski, M. E.

    2003-12-01

    The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest

  13. Pesticide exposure - Indian scene

    International Nuclear Information System (INIS)

    Use of pesticides in India began in 1948 when DDT was imported for malaria control and BHC for locust control. India started pesticide production with manufacturing plant for DDT and benzene hexachloride (BHC) (HCH) in the year 1952. In 1958, India was producing over 5000 metric tonnes of pesticides. Currently, there are approximately 145 pesticides registered for use, and production has increased to approximately 85,000 metric tonnes. Rampant use of these chemicals has given rise to several short-term and long-term adverse effects of these chemicals. The first report of poisoning due to pesticides in India came from Kerala in 1958 where, over 100 people died after consuming wheat flour contaminated with parathion. Subsequently several cases of pesticide-poisoning including the Bhopal disaster have been reported. Despite the fact that the consumption of pesticides in India is still very low, about 0.5 kg/ha of pesticides against 6.60 and 12.0 kg/ha in Korea and Japan, respectively, there has been a widespread contamination of food commodities with pesticide residues, basically due to non-judicious use of pesticides. In India, 51% of food commodities are contaminated with pesticide residues and out of these, 20% have pesticides residues above the maximum residue level values on a worldwide basis. It has been observed that their long-term, low-dose exposure are increasingly linked to human health effects such as immune-suppression, hormone disruption, diminished intelligence, reproductive abnormalities, and cancer. In this light, problems of pesticide safety, regulation of pesticide use, use of biotechnology, and biopesticides, and use of pesticides obtained from natural plant sources such as neem extracts are some of the future strategies for minimizing human exposure to pesticides

  14. Kinetics of Liquid-Phase Hydrogenation of Benzene in a Metal Hydride Slurry System Formed by M1Ni5 and Benzene

    Institute of Scientific and Technical Information of China (English)

    代世耀; 徐国华; 安越; 陈长聘; 陈立新; 王启东

    2003-01-01

    The kinetics of liquid-phase hydrogenation of benzene in misch metal nickel-five (M1Ni5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of M1Ni5-C6H6 slurry system is 42.16 kJ·mo1-1.

  15. Acute leukaemia after exposure to a weed killer, 2-methyl-4-chlorphenoxyacetic acid.

    Science.gov (United States)

    Timonen, T T; Palva, I P

    1980-01-01

    Acute leukaemia is known to develop in many cases of benzene-induced pancytopenia [1]. This is a report of the development of acute leukaemia in a patient who had apparently recovered from pancytopenia after chronic exposure to a weed killer, 2-methyl-4-chlorphenoxyacetic acid. PMID:6769284

  16. Occupational Exposure of Gasoline Station Workers to BTEX Compounds in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    S Nopparatbundit

    2012-06-01

    Full Text Available Background: Gasoline station workers are exposed to volatile organic compounds such as benzene, toluene, ethylbenzene and xylene (BTEX. Objectives: To determine the level of exposure to BTEX compounds among gasoline station workers and measure the roadside concentrations of these compounds in the inner and outer areas of Bangkok, Thailand.Methods: 49 workers at 6 gasoline stations in the inner and outer areas of Bangkok participated in this study. Samples of ambient air were collected from the area near gas pumps at each station and at the roadside in front of the gas stations by charcoal tubes. All samples were analyzed for BTEX compounds by gas chromatography-flame ionized detector (GC-FID.Results: The mean BTEX concentration in gas stations was slightly higher than that of the roadside; there was no significant difference in the concentration between inner and outer areas. The mean lifetime cancer risks for workers exposed to benzene and ethylbenzene for 30 years were estimated at 1.75×10–4 and 9.55×10–7. The estimated hazard quotients for BTEX compounds were 0.600, 0.008, 0.007 and 0.002, respectively. The most prevalent symptoms of workers were headache (61%, fatigue (29% and throat irritation (11%, respectively. Exposure to benzene and toluene was significantly associated with fatigue (p<0.05.Conclusion: Exposure to BTEX compounds would increase the risk of cancer in gasoline station workers. Exposure to benzene and toluene may cause fatigue.

  17. Decomposition of benzene in air streams by UV/TiO2 process

    International Nuclear Information System (INIS)

    Photocatalytic decomposition of gaseous benzene at room temperature was studied with a fixed-bed annular reactor using titania as the photocatalyst. The effects of humidity, UV light intensity and benzene concentration on the conversion and mineralization of benzene were presented. Experimental results can be adequately described by using the Langmuir-Hinshelwood (L-H) kinetic model. The concentration distribution of benzene in the annular reactors of various dimensions can be described by combining the reactor design equation with L-H kinetics. Deactivation of catalyst was observed and attributed to the adsorption of reaction intermediates on TiO2 surface. The deactivated TiO2 catalyst could be photochemically regenerated by ozone-purging in the presence of humidity

  18. Interactions of Na+, K+, Mg2+, and Ca 2+ with benzene self-assembled monolayers

    DEFF Research Database (Denmark)

    Pedersen, Morten Rimmen; Matthiesen, Jesper; Bovet, Nicolas Emile;

    2014-01-01

    that are most common in the natural world, namely, Na+, K+, Mg 2+, and Ca2+. Specifically, we investigated how these ions affect the interactions between surfaces covered by self-Assembled monolayers (SAMs) terminated with benzene molecules. We used a flat oxidized silicon substrate and an atomic force...... from X-ray photoelectron spectroscopy (XPS) allowed us to conclude that K+ binds in the benzene layers, creating a positive surface charge on the benzene-covered surfaces, thus leading to lower adhesion in KCl solutions than in pure water. Evidence suggested that Ca2+ does not bind to the surfaces...... measurements. The results of our studies clearly show that even a nonpolar, hydrophobic molecule, such as benzene, has a role to play in the behavior of aqueous solutions and that it interacts differently depending on which ions are present. Even ions from the same column in the periodic table behave...

  19. Reverse isotope dilution method for determining benzene and metabolites in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-07-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of the radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue.

  20. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pbenzaldehyde in combination with ascorbic acid should be avoided.

  1. Benzene Oxidation on Boron-Doped Diamond Electrode: Electrochemical-Impedance Study of Adsorption Effects

    Directory of Open Access Journals (Sweden)

    Yuri Pleskov

    2012-01-01

    Full Text Available Benzene oxidation at a boron-doped diamond anode in 0.5 M K2SO4 aqueous solution is studied by cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that in the ideal-polarizability potential region benzene either is not adsorbed at the diamond electrode or the benzene adsorption does not affect its capacitance. At more positive potentials, the adsorption of some intermediate of the benzene oxidation occurs at the electrode. The intermediate partially blocks the electrode surface and lowers the anodic current. The very fact of the electrode surface blocking is reflected in the complex-plane presentation of the impedance-potential plots.

  2. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    International Nuclear Information System (INIS)

    Propargyl alcohol (CHCCH2OH) is a known stable isomer of the propenal (CH2CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm–1. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C6H6) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C3H3) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C6H6 in the interstellar icy mantles

  3. (η6-Benzenedichlorido(dicyclohexylphenylphosphaneruthenium(II benzene sesquisolvate

    Directory of Open Access Journals (Sweden)

    Alfred Muller

    2012-12-01

    Full Text Available The asymmetric unit of the title compound, [RuCl2(C6H6(C18H27P]·1.5C6H6, contains one molecule of the RuII complex and one and a half solvent molecules as one of these is located about a centre of inversion. The RuII atom has a classical three-legged piano-stool environment being coordinated by an η6-benzene ligand [Ru—centroid = 1.6964 (6 Å], two chloride ligands with an average Ru—Cl bond length of 2.4138 (3 Å and a dicyclohexylphenylphosphane ligand [Ru—P = 2.3786 (3 Å]. The effective cone angle for the phosphane was calculated to be 158°. In the crystal, weak C—H...Cl hydrogen bonds link the RuII complexes into centrosymmetric dimers. The crystal packing exhibits intra- and intermolecular C—H...π interactions resulting in a zigzag pattern in the [101] direction.

  4. Hydrogen Adsorption on Ti Decorating Benzene Grafted Tetrahydrido-silsequioxanes

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Dong; ZHANG Hong; TANG Yong-Jian; WU Wei-Dong; WANG Chao-Yang

    2012-01-01

    A novel type of Ti decorating benzene grafted tetrahydrido-silsequioxane struc-tures was designed and investigated using density functional theory(DFT).The hydrogen adsorption properties of this new material were investigated at the same level of theory.The results reveal that up to four hydrogen molecules(with the restrict of 18 electrons rule) can be adsorbed on each Ti atom of(TiC6H5)m-H4-mSi4O6(m = 1-4) molecular systems with the average binding energies of 0.691,0.692,0.693 and 0.695 eV for m = 1-4,respectively.The variations of HOMO- LUMO energy gaps verify that the host structures with four H2 molecules adsorbed own the best kinetics stability.The interaction mechanism of H2 molecules with the host materials mainly attributes to the well-known "kubas interactions".All the results indicate that the complex structures designed here may be used as hydrogen storage materials at ambient conditions.

  5. Symmetry forbidden vibronic spectra and internal conversion in benzene.

    Science.gov (United States)

    Li, Jun; Lin, Chih-Kai; Li, Xiang Yuan; Zhu, Chao Yuan; Lin, Sheng Hsien

    2010-12-01

    The spectra of symmetry-forbidden transitions and internal conversion were investigated in the present work. Temperature dependence was taken into account for the spectra simulation. The vibronic coupling, essential in the two processes, was calculated based on the Herzberg-Teller theory within the Born-Oppenheimer approximation. The approach was employed for the symmetry-forbidden absorption/fluorescence, and internal conversion between 1(1)A(1g) and 1(1)B(2u) states in benzene. Vibrational frequencies, normal coordinates, electronic transition dipole moments, and non-adiabatic coupling matrix elements were obtained by ab initio quantum chemical methods. The main peaks, along with the weak peaks, were in good agreement with the observed ones. The rate constant of the 1(1)A(1g)← 1(1)B(2u) internal conversion was estimated within the order of 10(3) s(-1). This could be regarded as the lower limit (about 4.8 × 10(3) s(-1)) of the internal conversion. It is stressed that the distortion effect was taken into account both in the symmetry-forbidden absorption/fluorescence, and the rate constants of internal conversion in the present work. The distortion effects complicate the spectra and increase the rate constants of internal conversion.

  6. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns

    International Nuclear Information System (INIS)

    Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers

  7. Amidine Sulfonamides and Benzene Sulfonamides: Synthesis and Their Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Qadir

    2015-01-01

    Full Text Available New amidine and benzene sulfonamide derivatives were developed and structures of the new products were confirmed by elemental and spectral analysis (FT-IR, ESI-MS, 1HNMR, and 13CNMR. In vitro, developed compounds were screened for their antibacterial and antifungal activities against medically important bacterial strains, namely, S. aureus, B. subtilis, and E. coli, and fungi, namely, A. flavus, A. parasiticus, and A. sp. The antibacterial and antifungal activities have been determined by measuring MIC values (μg/mL and zone of inhibitions (mm. Among the tested compounds, it was found that compounds 3b, 9a, and 9b have most potent activity against S. aureus, A. flavus, and A. parasiticus, respectively, and were found to be more active than sulfamethoxazole and itraconazole with MIC values 40 μg/mL. In contrast, all the compounds were totally inactive against the A. sp. except 10b and 15b to show activity to some extent.

  8. Experimental research on benzene detection using ion mobility spectrometer with a laser ionization source

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-yun; KONG Xiang-he; JI Ren-dong; ZHANG Shu-dong

    2006-01-01

    An ion mobility spectrometer equipped with a laser ionization source is used for the sensitive detection of benzene.Mobility spectra of the benzene are presented.We also discussed the mobility spectra at various concentrations and drift voltages.Detection limits are determined to be in the upper ppbv range.In the end,the advantages and possibilities of this technique are briefly discussed.

  9. Organometallic benzene-vanadium wire: A one-dimensional half-metallic ferromagnet

    DEFF Research Database (Denmark)

    Maslyuk, V.; Bagrets, A.; Meded, V.;

    2006-01-01

    Using density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker V-n(C6H6)(n+1) clusters which can be synthesized with established......% longitudinal elongation of the wire. Ab initio electron transport calculations reveal that finite size vanadium-benzene clusters coupled to ferromagnetic Ni or Co electrodes will work as nearly perfect spin filters....

  10. RPBE-vdW Description of Benzene Adsorption on Au(111)

    DEFF Research Database (Denmark)

    Pedersen, Jess Wellendorff; Kelkkanen, Kari André; Mortensen, Jens Jørgen;

    2010-01-01

    der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description...... of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional....

  11. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores.

    Science.gov (United States)

    Fomin, Yu D

    2013-11-15

    It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered-graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior.

  12. A system for the analysis of tritium content in natural waters, through benzene

    International Nuclear Information System (INIS)

    A system is described for the analysis of tritium (3H) in natural waters. The system consists of an electrolytic enrichment equipment and a vacuum line for benzene synthesis. The benzene is mixed with a scintillating solution and so used in tritium activity measurements by liquid scintillation spectrometry. The characteristcs of the system, as well as its performance, are pointed out through analysis of ground and rain waters. The precision and reproducibility of the measurements are discussed. (Author)

  13. Geogenic sources of benzene in aquifers used for public supply, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium 1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.

  14. Protective effects of zinc and selenium against benzene toxicity in rats.

    Science.gov (United States)

    Ibrahim, Khadiga S; Saleh, Zeinab A; Farrag, Abdel-Razik H; Shaban, Eman E

    2011-07-01

    The presented study investigates the protective role of zinc (Zn) and selenium (Se) in attenuating benzene-induced toxicity in rats. Male Sprague-Dawley rats were injected with benzene (0.5 mL/kg body weight ip) and received a diet supplement containing Zn and Se. Several hematological and biochemical parameters (representing antioxidant status) were estimated. Histopathological examinations were performed. Results showed that food intake and body weight gain of benzene-injected rats were significantly lower than that of the control rats. Benzene-injected rats showed increased plasma malondialdehyde (MDA) and decreased activity of: glutathione peroxidase (GSH-Px), catalase, superoxide dismutase (SOD) enzymes, as well as reduced glutathione (GSH) when compared to the control group. Histopathological investigations revealed structural changes in benzene-injected rats' liver. Supplementation with Zn and Se resulted in a significant decrease in MDA, elevation in GSH, GSH-Px, SOD and catalase levels. This study shows that Zn and Se supplementation can improve the activity of antioxidant enzymes in rats and decrease the histological anomalies induced by benzene toxicity as well. PMID:21511895

  15. Volatilization of monoaromatic compounds (benzene, toluene, and xylenes; BTX) from gasoline: effect of the ethanol.

    Science.gov (United States)

    Cagliari, Jóice; Fedrizzi, Francieli; Rodrigues Finotti, Alexandra; Echevenguá Teixeira, Cláudia; do Nascimento Filho, Irajá

    2010-04-01

    The main objective of present study was to assess the evaporation profile of monoaromatic compounds, namely, benzene, toluene, and xylenes (BTX) from gasoline-ethanol-blend fuels. The vapors from two river sand columns contaminated with gasoline and gasoline-ethanol were monitored for 77 d. Standards mixtures (batch tests) of benzene, toluene, and xylenes with different ethanol contents were also analyzed for evaporation rates studies. The instrumental analysis was performed via gas chromatography. The concentration of benzene in the vapor phase of the gasoline-ethanol column was decreased by 89.09%, considering the entire experimental period, whereas the toluene and xylenes concentrations were increased by 239.34 and 251.78%, respectively. In the batch tests, the benzene concentration in the vapor phase varied from 0.4 to 0.9 mg/L for ethanol concentrations (v/v) of 5 and 10%, respectively. For ethanol concentrations higher than 10%, no important changes in the benzene concentration were observed. The toluene exponentially increases between 20 and 30% ethanol concentration. and the maximum concentration of xylenes was observed when the ethanol concentration was 20% (v/v). These results suggest that the benzene evaporation behavior is preferentially affected by the interactions among ethanol and other aromatic compounds rather than the ethanol concentration itself. The evaporation behaviors of toluene and xylenes are directly dependent on the ethanol content.

  16. Prolonged in vitro exposure of Staphylococcus aureus to germicidal teat dips.

    Science.gov (United States)

    Hogan, J S; Smith, K L

    1989-04-01

    Eight strains of Staphylococcus aureus were tested to determine if prolonged exposure to commercial teat dips could enhance bacterial tolerance to teat dips in vitro. All strains of S. aureus were serially plated 15 times on chemically defined agar medium containing sublethal concentrations of linear dodecyl benzene sulfonic acid, chlorhexidine, sodium hypochlorite, and iodophor teat dips. Growth responses of S. aureus to chlorhexidine, sodium hypochlorite, and iodophor were not affected by prolonged exposure to these teat dips. Isolates subcultured on agar containing .1% linear dodecyl benzene sulfonic acid teat dip subsequently had a greater mean growth response to .1% solution of the germicide than did controls subcultured on basal medium. Hemolytic patterns, tube coagulase, clumping factor, and protein A reactions of S. aureus were not altered by exposure to any of the teat dips tested. In general, prolonged exposure to commercial teat dips did not alter germicidal susceptibility of S. aureus. PMID:2745808

  17. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS. PMID:27548948

  18. Consistent assignment of the vibrations of symmetric and asymmetric para-disubstituted benzene molecules

    Science.gov (United States)

    Andrejeva, Anna; Gardner, Adrian M.; Tuttle, William D.; Wright, Timothy G.

    2016-03-01

    We give a description of the phenyl-ring-localized vibrational modes of the ground states of the para-disubstituted benzene molecules including both symmetric and asymmetric cases. In line with others, we quickly conclude that the use of Wilson mode labels is misleading and ambiguous; we conclude the same regarding the related ones of Varsányi. Instead we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of para-difluorobenzene (pDFB). Since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules, we apply the Mulliken labelling under C2v symmetry. By studying the variation of the vibrational wavenumbers with mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. Particularly interesting are pairs of vibrations that evolve from in- and out-of-phase motions in pDFB to more localized modes in asymmetric molecules. We consider the para isomers of the following: the symmetric dihalobenzenes, xylene, hydroquinone, the asymmetric dihalobenzenes, halotoluenes, halophenols and cresol.

  19. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  20. Quantitative assessment of exposure and risk for three carcinogenics in long-standing pollution sites

    International Nuclear Information System (INIS)

    The project attempts a quantitative assessment of risks for three carcinogenics that are common in sites of long-standing pollution. Benzo(a)pyrene stands for the group of polycyclic aromatic hydrocarbons, cadmium for heavy metals, and benzene for volatile aromatic compounds. The report discusses the general fundamentals of exposure and risk assessment. The exposure model is described in detail and applied to the three test substances. (orig./MG)

  1. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  2. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  3. Stress response, biotransformation effort, and immunotoxicity in captive birds exposed to inhaled benzene, toluene, nitrogen dioxide, and sulfur dioxide.

    Science.gov (United States)

    Cruz-Martinez, Luis; Smits, Judit E G; Fernie, Kim

    2015-02-01

    In the oil sands of Alberta, Canada, toxicology research has largely neglected the effects of air contaminants on biota. Captive Japanese quail (Coturnix c. japonica) and American kestrels (Falco sparverius) were exposed to mixtures of volatile organic compounds and oxidizing agents (benzene, toluene, NO2 and SO2) in a whole-body inhalation chamber, to test for toxicological responses. Hepatic biotransformation measured through 7-ethoxyresorufin-O-dealkylase (EROD) tended to be increased in exposed kestrels (p=0.06) but not in quail (p=0.15). Plasma corticosterone was increased in the low dose group for quail on the final day of exposure (p=0.0001), and midway through the exposure period in exposed kestrels (p=0.04). For both species, there was no alteration of T and B-cell responses, immune organ mass, or histology of immune organs (p>0.05). This study provides baseline information valuable to complement toxicology studies and provides a better understanding of potential health effects on wild avifauna. PMID:25463874

  4. Structures and dynamics of phenol clusters in benzene solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwongwattana, Sermsiri [School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon-Ratchasima 30000 (Thailand); National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120 (Thailand); Sagarik, Kritsana [School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon-Ratchasima 30000 (Thailand); National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120 (Thailand)], E-mail: kritsana@sut.ac.th

    2009-01-27

    Structures and dynamics of phenol clusters ((PhOH){sub n}, n = 1-3) in benzene (Benz) solutions ([(PhOH){sub n}]{sub Benz}) at 298 K were studied using intermolecular potentials derived from the Test-particle model (T-model) and molecular dynamics (MD) simulations. Although Benz molecules interact weakly among themselves and with PhOH, the average three-dimensional structures and interaction energy distributions obtained from MD simulations showed that, they could form well-defined solvent cages in [(PhOH){sub n}]{sub Benz}. At infinite dilution, some solvent-separated structures, in which a Benz molecule linked between two PhOH molecules, were observed in [(PhOH){sub 2}]{sub Benz}, whereas hydrogen bond (H-bond) structures dominated in [(PhOH){sub 3}]{sub Benz}. Based on the observation that, under thermal equilibrium conditions and at short time, the exchange dynamics between the associated and dissociated forms involved periodic motions of the O-H...{pi} H-bond, the lifetimes of the PhOH-Benz 1:1 complex were estimated and in reasonable agreement with 2D-IR vibrational echo experiment. Due to high potential energy barriers on the average potential energy landscapes, solvent exchanges in [(PhOH){sub n}]{sub Benz} could take place through large-amplitude intermolecular vibrations of molecules in the first solvation shell. In order to provide insights into structures and dynamics in [(PhOH){sub n}]{sub Benz}, it was shown that, explicit solvent molecules have to be included in the theoretical models.

  5. Study of the association between exposure to transuranic radionuclides and cancer death

    Science.gov (United States)

    Fallahian, Naz Afarin

    An exploratory epidemiological study has been conducted on 319 deceased nuclear workers, who had recorded intakes and histories of employment for at least one year during the time period from 1943 to 1995, at different facilities including the United States Department of Energy (DOE) sites, and thorium and uranium mining and milling plants. These workers voluntarily agreed to donate their organs or whole body to the United States Transuranium and Uranium Registries (USTUR) for scientific research purposes. The majority of this population was involved in documented radiological incidents during their careers. Many were exposed to transuranic radionuclides primarily via inhalation or puncture wounds. The purpose of this study was to find the level of dose that was received by the USTUR registrants following accidents and subsequent to mitigating actions, and to investigate whether or not there is any association between exposure to these transuranic radionuclides and cancer deaths. The external and internal dose assessments were performed using occupational radiation exposure histories and postmortem concentrations of transuranic radionuclides in critical organs, respectively. Statistical data analyses were performed to identify whether or not the USTUR registrants can be categorized as a 'low-dose' population and to investigate the potential correlation between exposure to transuranic radionuclides and causes of death within this population due to cancers of the lungs and liver as well as cancers of all sites, while controlling for the effects of other confounders. Based on the statistical tests performed, the USTUR registrants can be categorized as a low-dose population in terms of their occupational external exposures. However, when considering their total effective dose equivalents from both external penetrating radiation and internal exposure to transuranic radionuclides, they can not be categorized as a low-dose population with a 95% confidence level (alpha = 0

  6. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  7. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    Science.gov (United States)

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  8. [Assessment of exposure to cancerogenic aromatic hydrocarbon during controlled-access highways management activities].

    Science.gov (United States)

    Martinotti, I; Cirla, A M; Cottica, D; Cirla, P E

    2011-01-01

    The purpose of this study was an integrated assessment of exposure to benzene and Polycyclic Aromatic Hydrocarbons (PAH) in 29 workers employed to manage a controlled-access highways. A campaign was performed in summertime by environmental monitoring (active and passive airborne personal sampler), as well as by biological monitoring (urine samples of the beginning and of the end of daily shift, baseline after two days of vacation). The measured environmental levels did not differ from background environmental concentrations found in a metropolitan area (i.e. benzo[a]pyrene < 1 ng/m3; benzene < 5 mcg/m3), and the results of biological monitoring were in agreement and were compatible with extra-professional habits of the investigated subjects (1-hydroxipyrene 50-990 ng/g creatinine; unmetabolized benzene 15-2010 ng/I; t-t muconic acid < 4-222 mcg/g creatinine).

  9. A proposed role played by benzene itself in the induction of acute cytopenia: inhibition of DNA synthesis.

    Science.gov (United States)

    Lee, E W; Garner, C D; Johnson, J T

    1988-04-01

    A single intraperitoneal dose of benzene (880 mg/kg) in mice inhibited DNA synthesis of bone marrow cells within one hour postinjection. However, there was no inhibitory effect on the synthesis of heme and protein at that dosage. Dose-dependent inhibition of DNA synthesis by benzene was observed over the range of 440 to 1760 mg/kg, supporting the idea that cytopenia which was observed by others following multiple doses of benzene (e.g., 440 or 880 mg/kg) might be due to the inhibitory effect of benzene on DNA synthesis. In our studies, benzene concentrations above 81 micrograms/g wet bone marrow resulted in inhibition of DNA synthesis, regardless of whether it was given ip or by inhalation. The effect of benzene itself, rather than its toxic metabolites, on DNA synthesis was further seen in experiments using a bone marrow cell culture system and cell-free DNA synthetic system. Experimental results demonstrated that benzene alone was capable of inhibiting the DNA synthesis of bone marrow cells and that the reduced DNA synthesis resulted from the inhibitory effect of benzene on DNA polymerase alpha, the enzyme that catalyzes the last step of the DNA synthetic pathway. Thus, benzene itself could play a significant role in inducing myelotoxicity in the case of acute or subacute toxicity by exerting its inhibitory effect on DNA synthesis.

  10. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ming, Hai; Zhang, Hengchao; Li, Haitao; Pan, Keming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Wang, Fang; Gong, Jingjing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-11-15

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: Black-Right-Pointing-Pointer The composites that Au nanoparticles supported on ZnO nanowires were synthesized. Black-Right-Pointing-Pointer Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. Black-Right-Pointing-Pointer Two operating mechanisms were proposed depending on excitation wavelength.

  11. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  12. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels

    Directory of Open Access Journals (Sweden)

    Werner Tirler

    2015-03-01

    Full Text Available Introduction. The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and places of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. Aim. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC and benzene, produced by various incense sticks and sparklers. Results and discussion.The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 µg/m³ of benzene in the test room after the incense sticks had been tested.

  13. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst

    International Nuclear Information System (INIS)

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano titania photo catalyst for benzene decomposition was tested. The paper indicated the effect of photo catalyst on removal efficiency of benzene, the compare of photo catalyst characteristic in different high temperatures by heat treatment, analysis of by-products. The results showed that the effect of degradation was visible by added photo catalyst in the plasma reactor. When concentration of benzene was 600 mg/m3 and electric field strength was 10 kV/cm, the removal efficiency of benzene was increased up to 81 % without photo catalyst. At the same condition, the removal efficiency was increased to 15 % higher with photo catalyst. Nano titania crystal was anatase crystal in 450 degC heat treatment which is best for benzene removal. The plasma reactor packed with photo catalyst shows a better selectivity of carbon dioxide than that without photo catalyst. By-products are mostly carbon dioxide, water and a small quantity of carbon monoxide

  14. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  15. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  16. An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S.

    Science.gov (United States)

    Sherrill, C David; Takatani, Tait; Hohenstein, Edward G

    2009-09-24

    Large, correlation-consistent basis sets have been used to very closely approximate the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] complete basis set potential energy curves of several prototype nonbonded complexes, the sandwich, T-shaped, and parallel-displaced benzene dimers, the methane-benzene complex, the H2S-benzene complex, and the methane dimer. These benchmark potential energy curves are used to assess the performance of several methods for nonbonded interactions, including various spin-component-scaled second-order perturbation theory (SCS-MP2) methods, the spin-component-scaled coupled-cluster singles and doubles method (SCS-CCSD), density functional theory empirically corrected for dispersion (DFT-D), and the meta-generalized-gradient approximation functionals M05-2X and M06-2X. These approaches generally provide good results for the test set, with the SCS methods being somewhat more robust. M05-2X underbinds for the test cases considered, while the performances of DFT-D and M06-2X are similar. Density fitting, dual basis, and local correlation approximations all introduce only small errors in the interaction energies but can speed up the computations significantly, particulary when used in combination.

  17. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.;

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...... the optical properties according to specific functionality targets. The differences in the spectra could be used to identify relative abundances of isomers with different spins in experimental studies. As a salient feature, this theoretical spectroscopic analysis predicts the metallization of the infinite (Ti...

  18. 低剂量辐射复合CO、苯和噪声对大鼠的生物效应研究%The combined biological effects of low dose radiation, carbon monoxide, benzene and noise on rats

    Institute of Scientific and Technical Information of China (English)

    陈伟; 何颖; 侯登勇; 钱甜甜; 莫琳芳; 蒋定文; 王庆蓉; 沈先荣

    2012-01-01

    目的 探讨低剂量辐射复合CO、苯和噪声等复合因素对大鼠生物效应的影响.方法 16只雄性SD大鼠随机分成实验组及对照组.实验组采用CO和苯染毒,并进行低剂量辐射和噪声暴露,对照组正常环境饲养.计数大鼠外周血细胞,检测各脏器指数、骨髓DNA含量,利用双向凝胶电泳和基质辅助激光解析飞行时间串联质谱技术分离、鉴定复合因素导致的大鼠血清差异表达蛋白.结果 与对照组相比,实验组大鼠的肝指数、脾指数、胸腺指数显著降低(t=2.732、4.141、3.053,P<0.05),外周血白细胞、血小板和骨髓DNA含量均显著降低(t=2.211、2.668、11.592,P<0.05).获得了血清蛋白凝胶电泳图谱,软件分析结合手工筛选出12个差异表达蛋白质点,鉴定血浆淀粉样蛋白A4(SAA4),Trichoplein角质细丝结合蛋白(TCHP)和α微管蛋白4A(TUBA4A)3个蛋白质点.结论 低剂量辐射复合CO、苯和噪声对大鼠造血系统、免疫系统损伤明显,导致大鼠血清中某些蛋白表达发生变化,发现差异表达的蛋白与复合因素损伤作用密切相关.%Objective To investigate the combined biological effects of low dose radiation,carbon monoxide,benzene and noise on rats.Methods Sixteen male SD rats were randomly divided into experiment group and control group.The experiment group was exposed to carbon monoxide,benzene,low dose radiation and noise daily,the control group was in common environment.Peripheral blood,organ index,and marrow DNA content were detected.Two-dimensional electrophoresis (2-DE) was performed on serum protein analysis.Differential expressed proteins were identified by a matrix assisted laser desorption/ionization time of flight mass spectrometry (MAIDI-TOF-MS).Results Compared to control group,the liver index,spleen index,thymus index,leukocytes,platelets count,and marrow DNA content of the experiment group were decreased significantly (t =2.732,4.141,3.053,2.211,2.668,11.592,P

  19. 4-[(E-(5-tert-Butyl-2-hydroxyphenyldiazenyl]benzoic acid benzene hemisolvate

    Directory of Open Access Journals (Sweden)

    Edward R. T. Tiekink

    2010-03-01

    Full Text Available The title benzene hemisolvate, C17H18N2O3·0.5C6H6, features an essentially planar (the r.m.s. deviation of the non-H atoms, excluding methyl-C, is 0.071 Å diazo molecule with an E conformation about the N=N bond, and a half-molecule of benzene disposed about a centre of inversion. The dihedral angle formed between the benzene rings of the diazo molecule is 7.69 (12°. In the crystal, centrosymmetrically related dimers associate via the eight-membered carboxylic acid dimer synthon, {...HOC(=O}2, and these are connected into a supramolecular chain along the b axis via C—H...O contacts.

  20. Solvation of decane and benzene in mixtures of 1-octanol and N, N-dimethylformamide

    Science.gov (United States)

    Kustov, A. V.; Smirnova, N. L.

    2016-09-01

    The heats of dissolution of decane and benzene in a model system of octanol-1 (OctOH) and N, N-dimethylformamide (DMF) at 308 K are measured using a variable temperature calorimeter equipped with an isothermal shell. Standard enthalpies are determined and standard heat capacities of dissolution in the temperature range of 298-318 K are calculated using data obtained in [1, 2]. The state of hydrocarbon molecules in a binary mixture is studied in terms of the enhanced coordination model (ECM). Benzene is shown to be preferentially solvated by DMF over the range of physiological temperatures. The solvation shell of decane is found to be strongly enriched with 1-octanol. It is obvious that although both hydrocarbons are nonpolar, the presence of the aromatic π-system in benzene leads to drastic differences in their solvation in a lipid-protein medium.

  1. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours.

  2. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  3. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. PMID:25908817

  4. Catalytic Synthesis of Isopropyl Benzene over SO42-/ZrO2 -MCM-41

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Super acid catalyst SO2-4-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques.The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO2-4/ZrO2-MCM-41 (SZM-41) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93%) for the isopropyl benzene.

  5. PERVAPORATION FOR SEPARATING BENZENE/CYCLOHEXANE MIXTURE BY P(AA-MA) COPOLYMER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Gao-fei Xu; Wei-pu Zhu

    2011-01-01

    P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.

  6. Risk estimation of benzene-induced leukemia by radiation equivalent dose

    International Nuclear Information System (INIS)

    Based on the Hiroshima and Nagasaki epidemiological study, risk assessment system for radiation has been well developed and is practically applied to the international protection standards. Hence, defining the radiation equivalent dose for chemical agents could place in the order of their risk. As well as the radiation, benzene causes leukemia to humans. Therefore, we evaluated the radiation-equivalent dose for benzene based on chromosome aberration rates induced by its metabolites and low-dose rate radiation because chromosome aberration is thought to be closely related to the leukemogenesis. Using radiation risk coefficient, the leukemia risk caused by 1 mg/m3 benzene inhalation was estimated 5.5 - 7.3 x 10-8, which is underestimated compared to other studies based on human epidemiological researches. (author)

  7. Characterization of vanadium-doped mesoporous titania and its adsorption of gaseous benzene

    Science.gov (United States)

    Nguyen-Phan, Thuy-Duong; Song, Myoung Bock; Yun, Hyunran; Kim, Eui Jung; Oh, Eun-Suok; Shin, Eun Woo

    2011-01-01

    A series of vanadium-doped mesoporous titania with different metal contents was synthesized in the study via a sol-gel process with the assistance of a dodecylamine surfactant. The existence of vanadium ions not only suppressed crystallization and sintering but also enhanced the porosity of the mesoporous TiO 2. Varying the vanadium concentration led to significant changes in the chemical oxidation state of each component. The presence of metal dopants significantly improved the removal efficiency of benzene and the doping the titania with 5 mol% vanadium removed the most benzene, regardless of the adsorption temperature. The adsorption behavior was elucidated by the specific surface area, the interactions between surface hydroxyl groups and the π-electrons of benzene, and the formation of σ-bonding and d-π* back-donation between the adsorbent and organic compounds.

  8. Qualitative evaluations of benzene in terminals and pipelines; Avaliacoes qualitativas de benzeno em terminais e oleodutos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Ferreira da; Baltar, Joao Luiz da Conceicao [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The benzene (C6H6) is a stable hydrocarbon, with pleasant smell, plenty toxic, being able to injure sanguine cells and to cause cancer. It is used as raw materials in the obtainment of several products (inks, waxes, lubricants, etc.), chemicals intermediate and, also, it is found in the petrochemical naphtha and in the gasoline. About 80% of the contaminations for benzene are attributed to the gasoline. In relation to the benzene contents present in the petrochemical processes produced in Brazil, the recent Portaria Interministerial no. 775 (Brazil,2004), of April 28, 2004, prohibits, in whole national territory, the commercialization of finished products that contain benzene in its composition. It is admitted, even so, the presence of this substance as contaminant agent in percentage non superior at 0,8% (in volume), from July 1st, 2004, 0,4% (in volume), from 1st of December of 2005 and 0,1% (in volume), from December 1st, 2007. The Brazilian Ministry of Labour regulation NR-15, P. 776, establish that the companies that produce, transport, store, use or manipulate benzene and its liquid mixtures contends 1% or more of volume, accomplish the registration in the SST - MTE and initiation the Programa de Prevencao de Exposicao Ocupacional ao Benzeno - PPEOB in TRANSPETRO. During the evaluations they had been carried through the recognition of the places, equipment and they had defined the homogeneous groups of exhibition - GHE. From these information, environmental and biological evaluations in the terminals and intermediary stations (TECAM, TEVOL, ESTAP, ESMAN, ESVOL and ESJAP), had been executed, including the accomplishment of essays to determine the presence of benzene in the liquid phase, through the infrared base equipment, GS 1000. With base in the results mitigation and remediation actions were implemented in order to guarantee the occupational health of the components of GHE. (author)

  9. Protective role of glycerol against benzene stress: insights from the Pseudomonas putida proteome.

    Science.gov (United States)

    Bhaganna, Prashanth; Bielecka, Agata; Molinari, Gabriella; Hallsworth, John E

    2016-05-01

    Chemical activities of hydrophobic substances can determine the windows of environmental conditions over which microbial systems function and the metabolic inhibition of microorganisms by benzene and other hydrophobes can, paradoxically, be reduced by compounds that protect against cellular water stress (Bhaganna et al. in Microb Biotechnol 3:701-716, 2010; Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a). We hypothesized that this protective effect operates at the macromolecule structure-function level and is facilitated, in part at least, by genome-mediated adaptations. Based on proteome profiling of the soil bacterium Pseudomonas putida, we present evidence that (1) benzene induces a chaotrope-stress response, whereas (2) cells cultured in media supplemented with benzene plus glycerol were protected against chaotrope stress. Chaotrope-stress response proteins, such as those involved in lipid and compatible-solute metabolism and removal of reactive oxygen species, were increased by up to 15-fold in benzene-stressed cells relative to those of control cultures (no benzene added). By contrast, cells grown in the presence of benzene + glycerol, even though the latter grew more slowly, exhibited only a weak chaotrope-stress response. These findings provide evidence to support the hypothesis that hydrophobic substances induce a chaotropicity-mediated water stress, that cells respond via genome-mediated adaptations, and that glycerol protects the cell's macromolecular systems. We discuss the possibility of using compatible solutes to mitigate hydrocarbon-induced stresses in lignocellulosic biofuel fermentations and for industrial and environmental applications. PMID:26612269

  10. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of batch experiments were performed using mixed bacterial consortia to investigate biodegradation performance of benzene,toluene,ethylbenzene and three xylene isomers (BTEX) under nitrate,sulfate and ferric iron reducing conditions.The results showed that toluene,ethylbenzeoe,m-xylene and o-xylene could be degraded independently by the mixed cultures coupled to nitrate,sulfate and ferric iron reduction.Under ferric iron reducing conditions the biodegradation of benzene and p-xylene could be occurred only in the presence of other alkylbenzenes.Alkylbenzenes can serve as the primary substrates to stimulate the transformation of benzene and p-xylene under anaerobic conditions.Benzene and p-xylene are more toxic than toluene and ethylbenzene,under the three terminal electron acceptors conditions,the degradation rates decreased with toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene.Nitrate was a more favorable electron acceptor compared to sulfate and ferric iron.The ratio between sulfate consumed and the loss of benzene,toluene,ethylbenzene,o-xylene,m-xylene,p-xylene was 4.44,4.51,4.42,4.32,4.37 and 4.23,respectively;the ratio between nitrate consumed and the loss of these substrates was 7.53,6.24,6.49,7.28,7.81,7.61,respectively;the ratio between the consumption of ferric iron and the loss of toluene,ethylbenzene,o-xylene,m-xylenewas 17.99,18.04,18.07,17.97,respectively.

  11. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    Science.gov (United States)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  12. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    Science.gov (United States)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  13. Penning ionization : In benzene · Ar and fluorobenzene · Ar van der waals molecules and in collisions of benzene with metastable Ar atoms

    Science.gov (United States)

    Rühl, E.; Bisling, P.; Brutschy, B.; Beckmann, K.; Leisen, O.; Morgner, H.

    1986-08-01

    The photoion efficiency curves of the van der Waals complexes benzene ·Ar (Bz·Ar) and fluorobenzene·Ar (Fb·Ar) exhibit sharp resonances, which correspond to excitation to the Ar 2P 3/24s and 2P 1/24s resonance states. The peaks are redshifted relative to their asymptotic values (Bz·Ar, Δ E = -70 ± 10 meV; Fb·Ar, Δ E = -40 ± 10 meV). These findings are supported by electron spectroscopy studies of the Penning ionization of benzene by state-selected metastable Ar ( 3p 2, 3p 0) atoms. Strong evidence is presented that Penning ionization is the process observed in both cases.

  14. Estimating the relationship between exposure to tar volatiles and the incidence of bladder cancer in aluminum smelter workers.

    Science.gov (United States)

    Armstrong, B G; Tremblay, C G; Cyr, D; Thériault, G P

    1986-10-01

    A previously reported case-referent study of 85 incident cases of bladder cancer among aluminum smelter workers and 255 matched referents revealed an excess risk among workers exposed to coal-tar pitch volatiles. For the study reported in the present investigation these data have been augmented by estimates of past workplace exposure to total tar (benzene-soluble matter) and to benzo-a-pyrene (BaP). From these new data, exposure-response relationships have been estimated by maximum likelihood. A linear relationship between cumulative exposure and relative risk and a minimum latency period of ten years were assumed on a priori grounds and found compatible with the data. Under these assumptions, relative risk increased for each year of exposure to benzene-soluble matter at a concentration of 1 mg/m3 by 13%, the 95% confidence interval being 5-31. The corresponding figure for BaP (as micrograms/m3 X year) was 2.3%. On the basis of these estimates, 40 years of exposure to benzene-soluble matter at the current exposure limit of 0.2 mg/m3 would lead to a relative risk of 2.4. There was suggestive but not conclusive evidence that relative risks due to exposure to tar volatiles and to cigarette smoke combined multiplicatively.

  15. catena-Poly[[aqua(imidazolecadmium(II]-μ3-benzene-1,3-dicarboxylato

    Directory of Open Access Journals (Sweden)

    Zhengfang Zeng

    2010-07-01

    Full Text Available In the title compound, [Cd(C8H4O4(C3H4N2(H2O]n, the CdII ion is seven-coordinated by five O atoms from three crystallographically independent benzene-1,3-carboxylate ligands, one N atom from the imidazole ligand and one coordinated water molecule. Neighboring CdII ions are bridged by the benzene-1,3-dicarboxylate ligands, forming a zigzag polymeric chain structure. These chains are further extended into a three-dimensional supramolecular structure through O—H...O and N—H...O hydrogen bonds.

  16. Ultrafast Photophysics of Star-Like Molecules with Benzene and Triazine Core

    Institute of Scientific and Technical Information of China (English)

    FENG Wen-Ke; KONG sheng; XIAO Li-Xin; MENG Kang; WANG Shu-Feng; GONG Qi-Huang

    2009-01-01

    Static and transient spectroscopic characters of newly synthesized start-like molecules,1,3,5-tri(10-butyl-3-propenyl-10H-phenothiazine)-benzene(TP3B)and 2,4,6-tri(10-butyl-3-propenyl-10H-phenothiazine)-[1,3,5]triazine(TP3T),are studied using static,picosecond fluorescence and femtosecond transient absorption spectroscopy.The results show that when the benzene group is in the center,a large conjugation system is formed,while a fast electron transfer process happens when the center group is triazine.

  17. Fullerene-Benzene purple and yellow clusters: Theoretical and experimental studies

    Science.gov (United States)

    Lundgren, Megan P.; Khan, Sakiba; Baytak, Aysegul K.; Khan, Arshad

    2016-11-01

    Fullerene (FR, C60) gives a purple colored solution almost instantly when benzene is added to it. Interestingly, this purple solution turns yellow in about 7 weeks and remains yellow afterwards. The concentration of the purple complex increases with temperature indicating its formation kinetically favored, which transforms into a more stable yellow complex very slowly with time. The geometry optimization by density functional theory (DFT) followed by spectra (TD-DFT method) calculations suggest that the purple and yellow complexes are due to clusters of six benzene molecules arranged vertically and horizontally respectively around the FR molecule.

  18. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  19. The effect of different electrodes on the electronic transmission of benzene junctions: Analytical approach

    Science.gov (United States)

    Mohebbi, Razie; Seyed-Yazdi, Jamileh

    2016-06-01

    In this paper we have investigated the electronic transmission of systems electrode-benzene-electrode using the Landauer approach. The effect of different electrodes made of metal (Au) and semiconductors (Si, TiO2) is investigated. These three electrodes are compared between them and the results show that the electronic transmission of benzene junctions, when using semiconductor electrodes, is associated to a gap in transmission which is due to the electrodes band gap. As a consequence, a threshold voltage is necessary to obtain conducting channels.

  20. Role of Hydroquinone-Thiol Conjugates in Benzene-Mediated Toxicity

    OpenAIRE

    Lau, Serrine S.; Kuhlman, Christopher; Bratton, Shawn B.; Monks, Terrence J.

    2009-01-01

    Hydroquinone (HQ) is a metabolite of benzene, and in combination with phenol (PHE), reproduces benzene myelotoxicity. HQ readily oxidizes to 1,4-benzoquinone (1,4-BQ) followed by the reductive addition of glutathione (GSH). Subsequent cycles of oxidation and GSH addition give rise to a variety of mono-, and multi-GSH substituted conjugates. Following administration of PHE/HQ (1.1 mmol/kg/0.9 mmol/kg, ip) to male Sprague-Dawley (SD) rats, 2-(glutathion-S-yl)HQ [GS-HQ], 2,5-bis-(glutathion-S-yl...

  1. Crystal structure of 2-benzene-sulfon-amido-3-hy-droxy-propanoic acid.

    Science.gov (United States)

    Jabeen, Nabila; Mushtaq, Misbah; Danish, Muhammad; Tahir, Muhammad Nawaz; Raza, Muhammad Asam

    2015-11-01

    In the title compound, C9H11NO5S, the O=S=O plane of the sulfonyl group is twisted at a dihedral angle of 52.54 (16)° with respect to the benzene ring. The dihedral angle between the carb-oxy-lic acid group and the benzene ring is 49.91 (16)°. In the crystal, C-H⋯O, N-H⋯O and O-H⋯O hydrogen bonds link the mol-ecules into (001) sheets. PMID:26594589

  2. Partial Hydrogenation of Benzene to Cyclohexene over Ru-Zn/MCM-41

    Directory of Open Access Journals (Sweden)

    Tongtong Zhang

    2015-01-01

    Full Text Available Ru-Zn/MCM-41 catalysts for the partial hydrogenation of benzene with differing Zn contents were prepared by the incipient-wetness impregnation method. The evaluation results indicate that Zn simultaneously depresses the catalysts activity and cyclohexene selectivity. This can be attributed to the change in the amount of the different hydrogenation sites affected by Zn. The weak hydrogenation sites can promote benzene conversion, and the strong hydrogenation sites, a novel kind of hydrogenation site found on the surface of the catalysts under the influence of Zn, are beneficial for cyclohexene hydrogenation.

  3. Advances in Study on Catalysts for Phenol Synthesis via Catalytic Hydroxylation of Benzene in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhaohui

    2004-01-01

    Synthesis of phenol via direct hydroxylation of benzene as a typical reaction of atomic economy has attracted extensive attention worldwide and has also become an actively investigated domain in China. This article refers to the recent domestic advances in study on phenol synthesis via hydroxylation of benzene from the viewpoint of catalysts, and considers the TS-1/H2O2 and FeZSM-5/N2O catalytic systems to be promising ones with good prospects for commercialization along with some suggestions on future research work.

  4. Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The isotope exchange method was employed to investigate the catalytic mechanism of ionic liquid in alkylation of benzenes with olefins.It is proposed that alkylation was induced by the Lewis acid AlCl3 which attracted π electrons of 1-dodecene to shift toward 1-carbon,thus forming a carbonium ion.The carbonium ion further reacted with benzenes to form a complex.Due to unstabilit of the complex,a deuterated ring proton was transferred into an electronegative 1-carbon of the side chain to substitute for the AlCl3,accordingly 2-phenyldodecane was generated.

  5. Oxides Catalysts of Rare Earth and Transient Metal for Catalytic Oxidation of Benzene

    Institute of Scientific and Technical Information of China (English)

    Liang Kun; Li Rong; Chen Jianjun; Ma Jiantai

    2004-01-01

    The catalysts of CeO2 and the mixture of CeO2 and CuO were prepared, and the activities of these catalysts for completely oxidizing benzene were studied.The results show that the optimal proportion of CeO2/CuO is 6: 4.The highest temperature at which benzene was completely oxidized on these catalysts at different airspeed was measured.Compared these catalysts with the noble metal used, our catalysts had superiority in the resources and the industrial cost besides good activities.

  6. Hydrodynamic influences of tidal fluctuations and beach slopes on benzene transport in unconfined, sandy costal aquifers

    Science.gov (United States)

    Ni, C.-F.; Wei, Y.-M.

    2012-04-01

    Oil spills in oceans have led to severe environment and ecosystem problems due to high toxicity substances, large spatial extents, and long temporal durations. The BTEX compounds are key indexes generally used for identifications of such contamination events and also for quantifications of residual substances after remediations. Benzene is one of the BTEX compounds, which is recognized to be high toxicity and may threat near-shore ecosystem and human safety. Therefore, the understanding of benzene transport in costal aquifers is critical for predictions of contaminated zones and managements and organizations of remediation plans. In this study a numerical investigation was conducted to quantify the influence of tidal fluctuations and beach slopes on benzene transport in an unconfined coastal aquifer. More specifically, three different tidal amplitudes and three beach slopes were considered in the two-dimensional HYDROGEOCHEM model to characterize the spatial and temporal behavior of the benzene transport. Simulation results show that tidal fluctuations will lead to shallow seawater circulations near the ground surface where the high tides can reach periodically. Such local circulation flows will trap benzene plume and the plume may migrate to the deeper aquifer, depending on the amplitudes of tides and the surface slopes of the coastal lines. The sine curve tides with 0.5 m amplitudes will create circulation plume sizes of about 50m in length and 20m in depth, while the circulation plume sizes for tides with 1.0 m amplitudes will significantly increase to approximately 150 m in length and 60 m in depth. Additionally, double the beach slopes and keep the same tidal amplitude will lead to 40 m plume movement toward the land. The amplitude of tidal fluctuation is the key factor to decide when and where a benzene plume reaches a largest depth. In general, the plume with tidal amplitude of 0.5 m requires 50 days to reach 90% of the largest depth. However, the plume with

  7. Bond Energy Sums in Benzene, Cyclohexatriene and Cyclohexane Prove Resonance Unnecessary

    OpenAIRE

    Heyrovska, Raji

    2008-01-01

    The recent new structure of benzene shows that it consists of three C atoms of radii as in graphite alternating with three C atoms with double bond radii. This is different from the hypothetical cyclohexatriene (Kekule structure) involving alternate double and single bonds. It was shown that the difference in the bond energy sum of the atomic structure of benzene from that of the Kekule structure is the energy (erroneously) assumed to be due to resonance. Here it is shown that the present str...

  8. An epidemiologic study of early biologic effects of benzene in Chinese workers

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, N.; Hayes, R.B.; Dosemeci, M. [National Cancer Institute, Bethesda, MD (United States)] [and others

    1996-12-01

    Benzene is a recognized hepatotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cell levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. 41 refs., 5 tabs.

  9. Ultrafast Photophysics of Star-Like Molecules with Benzene and Triazine Core

    International Nuclear Information System (INIS)

    Static and transient spectroscopic characters of newly synthesized start-like molecules, 1,3,5-tri(10-butyl-3-propenyl-10H-phenothiazine)-benzene (TP3B) and 2,4,6-tri(10-butyl-3-propenyl-10H-phenothiazine)-[1,3,5]triazine (TP3T), are studied using static, picosecond fluorescence and femtosecond transient absorption spectroscopy. The results show that when the benzene group is in the center, a large conjugation system is formed, while a fast electron-transfer process happens when the center group is triazine

  10. Vibrational characterization of the 1:1 iodine-benzene complex isolated in solid krypton.

    Science.gov (United States)

    Kiviniemi, Tiina; Hulkko, Eero; Kiljunen, Toni; Pettersson, Mika

    2008-06-12

    The structure and properties of a 1:1 iodine-benzene complex isolated in an inert krypton matrix at low temperature have been studied with infrared and resonance Raman spectroscopy and with MP2 calculations. The structure of the ground-state complex is found to be unsymmetric, and the I-I vibrational frequency is found to be red-shifted by 3.94 cm(-1) upon complexation. The experimental data agree well with computational results, leading to the conclusion that the I2-Bz complex structure is not axial but of above-bond type, identically with other halogen-benzene complexes. PMID:18489172

  11. The relationship between distillation range of crude benzene and the content of three benzene%粗苯馏程与三苯含量的关系

    Institute of Scientific and Technical Information of China (English)

    李敏英

    2012-01-01

    In this paper, comparison analysis and function simulation on the coking plant chemical products quality index of the amount of distilling crude benzene before 180 ℃ as the products quality index and its benzene, toluene, xylene components of the sum of the detected data content for the coking plant were carried out. It was found that there was a linear relation between the distillation range of crude benzene and its content. And this model had some practical value and guiding significane for analysis, detection and real process production.%对焦化厂化工产品粗苯的质量指标180℃前馏出量与其苯、甲苯、二甲苯组分的含量之和的测定数据进行了对比分析和函数模拟,结果表明,两者之间存在着线性关系,且所得的一元线性回归方程对分析检测和工艺生产有着实际的指导意义。

  12. Conformational instability of the lowest triplet state of the benzene nucleus: II. p-Xylene, the influence of substituents

    NARCIS (Netherlands)

    J.H. van der Waals; M.C. van Hemert; W.J. Buma

    1990-01-01

    A calculation of the potential-energy surface of the lowest triplet state of p-xylene as a function of the S8(,) distortion coordinate of the benzene skeleton has been made to learn more about the influence of substituents on the vibronically induced distortion of benzene in its metastable triplet s

  13. 78 FR 13707 - The Benzene Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Science.gov (United States)

    2013-02-28

    ... Order No. 1-2012 (77 FR 3912). ] Signed at Washington, DC, on February 22, 2013. David Michaels... Occupational Safety and Health Administration The Benzene Standard; Extension of the Office of Management and... the information collection requirements specified in the Benzene Standard (29 CFR 1910.1028)....

  14. Benzene and ethylene in Bio-SNG production. Nuisance, fuel or valuable products?

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M. Rabou; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-11-15

    Gasification of biomass with the aim to produce Substitute Natural Gas (SNG) is best performed at temperatures around 850C, where 50% of the combustion value of the producer gas is concentrated in hydrocarbons. After removal of the heavy hydrocarbons (i.e. tar) and sulphur components, the producer gas can be converted catalytically to a mixture of mainly methane, carbon dioxide and water. Using producer gas as intermediate instead of syngas can lead to 10% higher efficiency, as producer gas does contain a significant amount of methane already and because less heat is evolved in the conversion of the remainder than for a mixture of carbon monoxide and hydrogen. Some of the hydrocarbons in producer gas, notably benzene, toluene, acetylene and ethylene, together with some of the more volatile tar compounds, can be a nuisance in the conversion step, as they easily form carbon deposits on the methanation catalysts involved. Several strategies can be followed to make these annoying components useful. Here, we will focus on benzene and ethylene, as each represents nearly 90% of the total amount of aromatic and unsaturated hydrocarbons respectively in biomass producer gas. One approach, followed in the SNG demonstration plant in Guessing, is to remove benzene nearly completely from producer gas in a low-temperature scrubber. Recovered benzene with some of the scrubbing liquid is used as fuel to provide heat for the gasifier. Any benzene remaining in the producer gas and ethylene are converted in the fluidized bed methanation reactor. The fluidized bed creates conditions in which carbon deposits are gasified before they can harm the catalyst performance. The use of benzene as heat source in the gasifier reduces the need to burn part of the producer gas for that purpose. Effectively, more 'clean' producer gas becomes available for the methanation step. The MILENA type gasifier developed by ECN has a lower heat demand than the Guessing FICFB gasifier. Consequently

  15. Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible

    Science.gov (United States)

    Yoon, Y. Heidi; Trainer, Melissa G.; Tolbert, Margaret A.

    2012-01-01

    The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis.

  16. Solubilities of benzene, toluene and diphenyl in the t-butyl alcohol + water mixtures and hydrophobic interaction

    Institute of Scientific and Technical Information of China (English)

    邹立壮; 杨冠英; 韩布兴; 刘瑞麟; 阎海科

    1999-01-01

    The solubilitices of benzene, toluene and diphenyl in mixed solvents of t-butyl alcohol (TBA) and water at 283.15, 288.15, 293.15 and 298.15 K have been determined by spectrophotometry. The mole fraction of TBA [x (TBA)] in the mixed solvent are 0.000, 0.010, 0.020, 0.030, 0.040, 0.045, 0.050, 0.060, 0.080 and 0.100, respectively. The standard Gibbs energies of solution of benzene, toluene and diphenyl in the mixed solvent have also been calculated based on the solubility data. The hydrophobic interactions (HI) for the pairs of benzene-benzene, methane-benzene and methane-methane in the mixed solvent were calculated and discussed.

  17. Biological exposure limit for occupational exposure to coal tar pitch volatiles at cokeovens.

    Science.gov (United States)

    Jongeneelen, F J

    1992-01-01

    Biological monitoring is an efficient tool in the evaluation of exposure to chemical agents. However, the dose-response of adverse health effects using biological exposure indices and biological limit values are rarely available. This paper presents an estimation of the occupational exposure limit value of 1-hydroxypyrene in urine, a biological exposure indicator of polycyclic aromatic hydrocarbons (PAH). A large-scale study of the exposure of cokeoven workers to PAH, in which both air sampling (benzene soluble matter and individual PAH including benzo(a)pyrene) and biological monitoring (1-hydroxypyrene in urine) were applied, made it possible to establish an empirical mathematical relationship between the air sampling data and biological monitoring data. It was calculated that cokeoven workers with a urinary concentration of 1-hydroxypyrene of 2.3 mumol/mol creatinine after a 3-day working period equals the airborne threshold limit value (TLV) of coal tar pitch volatiles (CTPV). Epidemiological studies have quantified the relative risk of lung cancer for topside and non-topside cokeoven workers. The published environmental exposure data of topside and non-topside cokeoven workers were used to determine the time-average exposure. The data of 1-hydroxypyrene in the urine of cokeoven workers and data of epidemiological studies from different coke plants were combined according to the concentrations of PAH in the air. Thus, it was possible to establish an indirect relationship between lung cancer mortality risk and the biological exposure indicator for cokeoven workers. Exposure at the level of the suggested tentative biological exposure limit (BEL) of 2.3 mumol/mol creatinine is estimated to be equal to a relative risk of lung cancer of approximately 1.3.

  18. Neurobehavioral performance in adolescents is inversely associated with traffic exposure.

    Science.gov (United States)

    Kicinski, Michal; Vermeir, Griet; Van Larebeke, Nicolas; Den Hond, Elly; Schoeters, Greet; Bruckers, Liesbeth; Sioen, Isabelle; Bijnens, Esmée; Roels, Harry A; Baeyens, Willy; Viaene, Mineke K; Nawrot, Tim S

    2015-02-01

    On the basis of animal research and epidemiological studies in children and elderly there is a growing concern that traffic exposure may affect the brain. The aim of our study was to investigate the association between traffic exposure and neurobehavioral performance in adolescents. We examined 606 adolescents. To model the exposure, we constructed a traffic exposure factor based on a biomarker of benzene (urinary trans,trans-muconic acid) and the amount of contact with traffic preceding the neurobehavioral examination (using distance-weighted traffic density and time spent in traffic). We used a Bayesian structural equation model to investigate the association between traffic exposure and three neurobehavioral domains: sustained attention, short-term memory, and manual motor speed. A one standard deviation increase in traffic exposure was associated with a 0.26 standard deviation decrease in sustained attention (95% credible interval: -0.02 to -0.51), adjusting for gender, age, smoking, passive smoking, level of education of the mother, socioeconomic status, time of the day, and day of the week. The associations between traffic exposure and the other neurobehavioral domains studied had the same direction but did not reach the level of statistical significance. The results remained consistent in the sensitivity analysis excluding smokers and passive smokers. The inverse association between sustained attention and traffic exposure was independent of the blood lead level. Our study in adolescents supports the recent findings in children and elderly suggesting that traffic exposure adversely affects the neurobehavioral function. PMID:25461422

  19. QSARS for Acute Toxicity of Halogenated Benzenes to Bacteria in Natural Waters

    Institute of Scientific and Technical Information of China (English)

    GUAN-GHUA LU; CHAO WANG; YU-MEI LI

    2006-01-01

    Objective To measure the acute toxicity of halogenated benzenes to bacteria in natural waters and to study quantitative relationships between the structure and activity of chemicals. Methods The concentration values causing 50% inhibition of bacteria growth (24h-IC50) were determined according to the bacterial growth inhibition test method. The energy of the lowest unoccupied molecular orbital and the net charge of carbon atom of 20 halogenated benzenes were calculated by the quantum chemical MOPAC program. Results The log1/IC50 values ranged from 4.79 for 2,4-dinitrochlorobenzene to 3.65 for chlorobenzene. A quantitative structure-activity relationship model was derived from the toxicity and structural parameters: log1/IC50 =-0.531(ELUMO)+1.693(Qc)+0.163(logP)+3.375. This equation was found to fit well (r2=0.860, s=0.106), and the average percentage error was only 1.98%. Conclusion Halogenated benzenes and alkyl halogenated benzenes are non-polar narcotics, and have hydrophobicity-dependent toxicity. The halogenated phenols and anilines exhibit a higher toxic potency than their hydrophobicity, whereas 2,4-dinitrochlorobenzene is electrophile with the halogen acting as the leaving group.

  20. Conformational instability of the lowest triplet state of the benzene nucleus: I. The unsubstituted molecule

    NARCIS (Netherlands)

    J.H. van der Waals; M.C. van Hemert; W.J. Buma

    1990-01-01

    Experiments on benzene have established that its lowest triplet state (3B1u) is conformationally unstable owing to vibronic coupling with the next higher state (3E1u). This instability was found to be critically dependent on the influence of a crystal field. An analogous vibronic coupling is to be e