WorldWideScience

Sample records for benzaanthracenes

  1. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature.

    Science.gov (United States)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-15

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form. PMID:26720419

  2. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature

    Science.gov (United States)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-01

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  3. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Hiba Ben [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia); Leboulanger, Christophe, E-mail: christophe.leboulanger@ird.fr [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Le Floc' h, Emilie [UMS MEDIMEER, CNRS-Universite Montpellier II, SMEL 2 rue des Chantiers F-34200 Sete (France); Hadj Mabrouk, Hassine; Sakka Hlaili, Asma [Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. Black-Right-Pointing-Pointer Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. Black-Right-Pointing-Pointer Acute (photosynthesis) and chronic (population growth) effects have different thresholds. Black-Right-Pointing-Pointer Toxicity depends on both the species selected as a model and the compound considered. Black-Right-Pointing-Pointer Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L{sup -1}. The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 {mu}g L{sup -1}, respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 {mu}g L{sup -1} for the picophytoplankton Picochlorum sp. to 418 {mu}g L{sup -1} for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when

  4. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz

    2008-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  5. Influence of mode of exposure and the presence of a tubiculous polychaete on the fate of benz[a]anthracene in the benthos

    International Nuclear Information System (INIS)

    The distribution and metabolism of [14C-12]benz[a]-anthracene (BA) was followed in benthic microcosms in the presence and absence of the polychaete Nereis virens for periods of 4-25 days to simultaneously assess the effects of mode of introduction and the presence of large burrowing organisms on the fate of polycyclic aromatic hydrocarbons (PAH) and their metabolites in the benthos. Radiolabeled BA was added to the chambers in three ways: already sorbed to the entire sediment reservoir, directly into the water column, or incorporated into food for the worms. BA added to the water column was more available for uptake and metabolism by worms and microbial mineralization to CO2 than BA previously sorbed to the entire sediment reservoir. In experiments with the sediment reservoir uniformly labeled with BA, worms increased flux of BA from the sediment, and with time, their presence led to increased rates of microbial mineralization of BA to CO2. Dietary BA was most rapidly metabolized by Nereis

  6. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene.

    Science.gov (United States)

    Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M

    2016-08-28

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences. PMID:27586928

  7. Influence of mode of exposure and the presence of a tubiculous polychaete on the fate of benz(a)anthracene in the benthos

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, A.E.; Farrington, J.W.; Teal, J.M. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    The distribution and metabolism of ({sup 14}C-12)benz(a)-anthracene (BA) was followed in benthic microcosms in the presence and absence of the polychaete Nereis virens for periods of 4-25 days to simultaneously assess the effects of mode of introduction and the presence of large burrowing organisms on the fate of polycyclic aromatic hydrocarbons (PAH) and their metabolites in the benthos. Radiolabeled BA was added to the chambers in three ways: already sorbed to the entire sediment reservoir, directly into the water column, or incorporated into food for the worms. BA added to the water column was more available for uptake and metabolism by worms and microbial mineralization to CO{sub 2} than BA previously sorbed to the entire sediment reservoir. In experiments with the sediment reservoir uniformly labeled with BA, worms increased flux of BA from the sediment, and with time, their presence led to increased rates of microbial mineralization of BA to CO{sub 2}. Dietary BA was most rapidly metabolized by Nereis.

  8. Tumor initiating activities of various derivatives of benz(a)anthracene and 7, 12-dimethyl-benz(a)anthracene in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Slaga, T.J.; Gleason, G.L.; DiGiovanni, J.; Berry, D.L.; Juchau, M.R.; Harvey, R.G.

    1978-01-01

    Current information indicates that polycyclic aromatic hydrocarbons (PAH) exert their toxic, mutagenic, and carcinogenic activities after they have been metabolically activated by target cells to reactive epoxides. The results obtained from IN VIVO and IN VITRO binding, mutagenicity, metabolism, and carcinogenicity studies have led to the conclusion that BP-7, 8-diol is a proximate carcinogenic metabolite of BP, and the BP-diol-epoxide is an ultimate carcinogenic metabolite of BP. Recent results concerning the strong carcinogenicity of BP-7..beta.., 8..cap alpha..-diol-9..cap alpha..,10..cap alpha..-epoxide in newborn mice and in mouse skin strongly indicate that it is the ultimate carcinogenic metabolite of BP. Since diol-epoxides may be responsible for the carcinogenicity of PAH other than BP, diols and diol-epoxides as well as other derivatives of PAH were tested for skin tumor-initiation in a two-stage system of tumorigenesis. In addition, since activation of methylated PAH may involve the side-chain methyl group, the skin tumor-initiating activity of various side-chain derivatives of methylated PA were determined. In this report, the skin tumor initiation of various derivatives of a nonmethylated PAH, BA as well as a methylated PAH, DMBA are compared. The data suggest that bay region diol-epoxides may be important in BA and DMBA carcinogenicity in mice which is supportive of the theory proposed by Jerina and co-workers which predicts that diol-epoxides in the bay region are the major determinants of PAH carcinogenicity.

  9. 7,12-DIMETHYLBENZ(A)ANTHRACENE-DEOXYRIBONUCLEOSIDE ADDUCT FORMATION 'IN VIVO': EVIDENCE FOR THE FORMATION AND BINDING OF A MONOHYDROXYMETHYL-DMBA (DIMETHYLBENZ(A)ANTHRACENE) METABOLITE TO RAT LIVER DNA (DEOXYRIBONUCLEIC ACID)

    Science.gov (United States)

    The polycyclic aromatic hydrocarbon, 7,12-dimethyl benz(a)anthracene (DMBA) is a potent carcinogen to the female Sprague-Dawley rat, and when administered under conditions that have been shown to produce cancer, results in extensive formation of hydrocarbon-deoxyribonucleoside ad...

  10. Sources of polycyclic aromatic hydrocarbons (PAHs) pollution in marine sediment from Tuanku Abdul Rahman National Park, Sabah

    International Nuclear Information System (INIS)

    The concentrations of parent and alkyl Polycyclic Aromatic Hydrocarbons (PAHs) in marine sediment samples collected from Tuanku Abdul Rahman National Park, Sabah were determined by using GC-MS. The ratio of anthracene to anthracene plus phenanthrene, fluoranthene to fluoranthene plus pyrene, benz[a]anthracene to benz[a]anthracene plus chrysene and indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[g,h,i]perylene, compounds were used to identify the sources of PAHs pollution. The total concentration of parent and alkyl PAHs are ranged from 121.7 to 191.5 ng/ g dry weight. The concentrations of PAHs pollution in sediments were categorised as a moderate polluted. The ratio values of PAHs compound indicate the origin source of PAHs pollutions in marine sediment sample of Tuanku Abdul Rahman National Park were originated from fossil fuel combustion (pyrolytic). (author)

  11. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Aaslyng, Margit Dall; Meinert, Lene;

    2015-01-01

    for the detection of 24 PAHs in barbecued meat. In total, 203 commercially barbecued meat samples (beef, pork, chicken, salmon and lamb) and 15 samples barbecued during controlled time and heat conditions were included. The sum of PAH4 (benzo[a]pyrene, benz[a]anthracene, chrysene and benzo......[b]fluoranthene) was highest for a pork tenderloin (195 μg/kg) and lowest for chicken breast (0.1 μg/kg) and controlled barbecued meat (...

  12. Report on the inter-laboratory comparison organised by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons for the validation of a method for quantifying the four EU marker PAHs in Food

    OpenAIRE

    LERDA Donata; LOPEZ SANCHEZ Patricia; Szilagyi, Szilard; Wenzl, Thomas

    2011-01-01

    The European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons (EU-RL PAHs), operated by the Institute for Reference Materials and Methods (IRMM) of the Joint Research Centre (JRC), organised a method validation study by inter-laboratory comparison (ILC-MVS) for evaluating the effectiveness of a method based for the determination of the four marker PAHs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and chrysene in different food commodities within the scope of Commis...

  13. Metabolism of polycyclic aromatic hydrocarbons in benthic microcosms

    International Nuclear Information System (INIS)

    [12-14C]Benz(a)anthracene was used as a tracer to follow the metabolism of polycyclic aromatic hydrocarbons in benthic microcosms containing fine sediment and polychaetes. Experiments were conducted using both large (230 L) and small (2 L) microcosms where the fate of the radiolabel was followed for up to 42 days in the water column, in the sediment reservoir, and in two species of polychaetes (Nereis virens and Nephtys incisa). Benz(a)anthracene was extensively metabolized in these microcosms, although the degree of metabolism was highly dependent on how the radiolabel was introduced to the system and the presence of suspended particulates and an established microbial community

  14. Hidrocarbonetos policíclicos aromáticos (HPAS em cachaça, rum, uísque e álcool combustível Polycyclic aromatic hydrocarbons (PAHS in cachaça, rum, whiskey and alcohol fuel

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Galinaro

    2009-01-01

    Full Text Available The concentration of 15 polycyclic aromatic hydrocarbons (PAHs in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA, using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.

  15. PAH in tea and coffee

    OpenAIRE

    Duedahl-Olesen, Lene; Navarantem, Marin; Adamska, Joanna; Højgård, Arne

    2013-01-01

    For food regulation in the European Union maximum limits on other foods than tea and coffee includes benzo[a]pyrene and the sum of PAH4 (sum of benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene). This study includes analysis of the above mentioned PAH in both, tea leaves, coffee beans and ready-to-drink preparations. Compared to other food matrices (e.g. fish), the analytical methods were challenged by the hot water extracts.Preparation of tea includes roasting and drying o...

  16. Chemopreventive Action of Bacopa monnieri (Brahmi Hydromethanolic Extract on DMBA- Induced Skin Carcinogenesis in Swiss Albino Mice

    Directory of Open Access Journals (Sweden)

    Shiki Vishnoi

    2013-07-01

    Full Text Available Bacopa monnieri (L. Wettst. (Brahmi (Family: Scrophulariaceae, has been used in the Ayurvedic system of medicine for centuries. In the present study, Cancer Chemopreventive property of B. monnieri was evaluated on 7,12-dimethyl benz(aanthracene (DMBA induced skin papillomagenesis in male Swiss albino mice (6-7 weeks old. A single topical application of 7,12-dimethyl benz(aanthracene (104 µg/100 µl of acetone, followed 2 weeks later by repeated application of croton oil (1% in 100 µl acetone two times in a week and continued till the end of the experiment (After 16 weeks exhibited 100% tumor incidence. In contrast, mice topically treated on the shaven dorsal side with the Bacopa monnieri Hydromethanolic extract (BMH (dose 120 mg/kg body wt. & (dose 240mg/kg body wt. at one hour before each application of 1% Croton oil two times in a week., a significant reduction in the values of tumor incidence, average number of tumors per tumor bearing mouse and papillomas per papilloma bearing mouse were observed. Thus results showed that BMH possesses a Chemopreventive activity and provide evidences for its traditional usage in clinical studies.

  17. Comparison of PCBs and PAHs levels in European coastal waters using mussels from the Mytilus edulis complex as biomonitors

    Directory of Open Access Journals (Sweden)

    Michał Olenycz

    2015-04-01

    Full Text Available Mussels from the Mytilus edulis complex were used as biomonitors for two groups of organic pollutants: polychlorinated biphenyls (PCBs, congeners: 28, 52, 101, 118, 138, 153 and 180 and polycyclic aromatic hydrocarbons (PAHs, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(aanthracene, chrysene, benzo(bfluoranthene, benzo(kfluoranthene, benzo(apyrene, indeno(1,2,3-cdpyrene, dibenz(a,hanthracene, benzo(g,h,iperylene at 17 sampling sites to assess their relative bioavailabilities in coastal waters around Europe. Because of the temporal differences in PCBs and PAHs concentrations, data were adjusted using Seasonal Variation Coefficients (SVC before making large-scale spatial comparisons. The highest concentrations of PCBs were found near estuaries of large rivers flowing through urban areas and industrial regions. Elevated bioavailabilities of PAHs occurred in the vicinity of large harbors, urban areas, and regions affected by petroleum pollution as well as in some remote locations, which indicated long-range atmospheric deposition.

  18. Characterization of Polycyclic Aromatic Hydrocarbons (PAHs Present in Smoked Fish from Ghana

    Directory of Open Access Journals (Sweden)

    Linda M.N. Palm

    2011-10-01

    Full Text Available The study was conducted to determine the levels of Polycyclic Aromatic Hydrocarbons (PAH in smoked Scomba japonicus sampled from some Ghanaian markets. By way of preparation, smoked fish comes into contact with smoke or extremely high temperature which are potential sources of PAH generation. Levels of 20 individual PAHs including acenaphthene, acenaphtyelene, anthanthrene, anthracene, benz(aanthracene, benzo(apyrene, benzo(bfluoranthene, benzo(epyrene, benzo(ghiperylene, benzo(jfluoranthene, benzo(kfluoranthene, chrysene, cyclopenta(cdpyrene, dibenzo(ahanthracene, fluoranthene, fluorene, indeno(1, 2, 3-cdpyrene, naphthalene, phenanthrene and pyrene were determined in 34 smoked fish samples using gas chromatographic techniques with flame ionization detector. Benzo(apyrene, which is one of the very few PAHs for which a legal limit exists in different types of food matrices inaddition to other high molecular weight PAHs suspected to be carcinogens, were detected in most samples.

  19. Optimization of Large Volume Injection for Improved Detection of Polycyclic Aromatic Hydrocarbons (PAH) in Mussels

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Ghorbani, Faranak

    2008-01-01

    mussel samples. Samples were extracted with Accelerated Solvent Extraction (ASE) followed by two semi-automatic clean-up steps; gel permeation chromatography (GPC) on S-X3 and solid phase extraction (SPE) on pre-packed silica columns, prior to gas chromatography-mass spectrometry (GC-MS) detection. In......-MS detection of anthracene, benz[a]anthracene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and dibenzo[a,e]pyrene. The optimization of PTV-LVI for GC-MS analysis included the choice of liner, solvent venting, splitless time, split flow and initial inlet temperature for injection of 25 L standard solution and spiked...

  20. Quantitative structure–activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes)

    International Nuclear Information System (INIS)

    Highlights: • Medaka embryos were exposed to alkyl chrysenes and benzo[a]anthracenes (BAA). • Concentrations were kept constant by partition controlled delivery. • Chrysene was not toxic within solubility limits, in contrast to BAA. • Alkylation increased the toxicity of chrysene and BAA. • Toxicity was related to hydrophobicity and to specific modes of action. - Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and log Kow values provided a rough estimation of structure–activity relationships for alkyl-PAHs, but Kow alone did not provide a complete

  1. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

    Directory of Open Access Journals (Sweden)

    Jennifer C. Black

    2016-08-01

    Full Text Available Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are

  2. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  3. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton C. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Tilton, Susan C. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Corvi, Margaret M.; Wilson, Glenn R. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Janszen, Derek B. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Anderson, Kim A. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Tanguay, Robert L., E-mail: tanguay.robert@oregonstate.edu [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  4. Quantitative structure–activity relationships for chronic toxicity of alkyl-chrysenes and alkyl-benz[a]anthracenes to Japanese medaka embryos (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongkang [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Morandi, Garrett D. [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Brown, R. Stephen [School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Snieckus, Victor; Rantanen, Toni [Department of Chemistry, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Jørgensen, Kåre B. [Department of Mathematics and Natural Sciences, University of Stavanger, 4036 Stavanger (Norway); Hodson, Peter V., E-mail: peter.hodson@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L3N6 (Canada)

    2015-02-15

    Highlights: • Medaka embryos were exposed to alkyl chrysenes and benzo[a]anthracenes (BAA). • Concentrations were kept constant by partition controlled delivery. • Chrysene was not toxic within solubility limits, in contrast to BAA. • Alkylation increased the toxicity of chrysene and BAA. • Toxicity was related to hydrophobicity and to specific modes of action. - Abstract: Alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) are a class of compounds found at significant concentrations in crude oils, and likely the main constituents responsible for the chronic toxicity of oil to fish. Alkyl substituents at different locations on the aromatic rings change the size and shape of PAH molecules, which results in different interactions with tissue receptors and different severities of toxicity. The present study is the first to report the toxicity of several alkylated derivatives of chrysene and benz[a]anthracene to the embryos of Japanese medaka (Oryzias latipes) using the partition controlled delivery (PCD) method of exposure. The PCD method maintained the desired exposure concentrations by equilibrium partitioning of hydrophobic test compounds from polydimethylsiloxane (PDMS) films. Test concentrations declined by only 13% over a period of 17 days. Based on the prevalence of signs of blue sac disease (BSD), as expressed by median effective concentrations (EC50s), benz[a]anthracene (B[a]A) was more toxic than chrysene. Alkylation generally increased toxicity, except at position 2 of B[a]A. Alkyl-PAHs substituted in the middle region had a lower EC50 than those substituted at the distal region. Except for B[a]A and 7-methylbenz[a]anthracene (7-MB), estimated EC50 values were higher than their solubility limits, which resulted in limited toxicity within the range of test concentrations. The regression between log EC50s and log K{sub ow} values provided a rough estimation of structure–activity relationships for alkyl-PAHs, but K{sub ow} alone did not provide

  5. Characterizing priority polycyclic aromatic hydrocarbons (PAH) in particulate matter from diesel and palm oil-based biodiesel B15 combustion

    Science.gov (United States)

    Rojas, Nestor Y.; Milquez, Harvey Andrés; Sarmiento, Hugo

    2011-11-01

    A set of 16 priority polycyclic aromatic hydrocarbons (PAH) associated with particulate matter (PM), emitted by a diesel engine fueled with petroleum diesel and a 15%-vol. palm oil methyl ester blend with diesel (B15), were determined. PM was filtered from a sample of the exhaust gas with the engine running at a steady speed and under no load. PAH were extracted from the filters using the Soxhlet technique, with dichloromethane as solvent. The extracts were then analyzed by gas chromatography using a flame ionization detector (FID). No significant difference was found between PM mass collected when fueled with diesel and B15. Ten of the 16 PAH concentrations were not reduced by adding biodiesel: Benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, naphthalene and phenanthrene. The acenaphthene, acenaphthylene and anthracene concentrations were 45%-80% higher when using diesel, whereas those for benzo(k)fluoranthene, benzo(g,h,i)perylene and pyrene were 30%-72% higher when using the B15 blend. Even though the 16 priority-PAH cumulative concentration increased when using the B15 blend, the total toxic equivalent (TEQ) concentration was not different for both fuels.

  6. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    Science.gov (United States)

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. PMID:17268774

  7. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers

    DEFF Research Database (Denmark)

    Langer, Sarka; Weschler, Charles J.; Fischer, Andreas; Bekö, Gabriel; Toftum, Jørn; Clausen, Geo

    2010-01-01

    As part of the Danish Indoor Environment and Children's Health (IECH) study, dust samples were collected from 500 bedrooms and 151 daycare centers of children (ages 3 to 5) living on the island of Fyn. The present paper reports results from the analyses of these samples for five phthalate esters...... (diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP)) and three PAHs (pyrene, benz[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P)). The three PAHs and DEHP were detected in dust samples from all sites, while...... DEP. DnBP, DiBP and BBzP were detected in more than 75% of the bedrooms and more than 90% of the daycare centers. The dust mass-fractions of both phthalates and PAHs were log-normally distributed. With the exception of DEP, the mass-fractions of phthalates in dust were higher in daycare centers than...

  8. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    Science.gov (United States)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  9. Red Mold Rice Mitigates Oral Carcinogenesis in 7,12-Dimethyl-1,2-Benz[a]anthracene-Induced Oral Carcinogenesis in Hamster

    Directory of Open Access Journals (Sweden)

    Ruei-Lan Tsai

    2011-01-01

    Full Text Available The prevalence of oral tumor has exponentially increased in recent years; however, the effective therapies or prevention strategies are not sufficient. Red mold rice is a traditional Chinese food, and several reports have demonstrated that red mold rice had an anti-tumor effect. However, the possible anti-tumor mechanisms of the red mold rice are unclear. In this study, we examined the anti-tumor effect of red mold rice on 7,12-dimethyl-1,2-benz[a]anthracene (DMBA-induced oral tumor in hamster. The ethanol extract of red mold rice (RMRE treatment significantly decreases the levels of DMBA-induced reactive oxygen species, nitro oxide and prostaglandin E2 than those of the lovastatin-treated group (P < .001. Moreover, RMRE decreases the formation of oral tumor induced by DMBA. Monacolin K, monascin, ankaflavin or other red mold rice metabolites had been reported to decrease inflammation and oxidative stress and exerted anti-tumor effects. Therefore, we evaluated the anti-inflammation and anti-oxidative stress effects of monacolin K, monascin, ankaflavin and citrinin in lipopolysaccharide-treated RAW264.7 cells. We found that RMRE reduced the LPS-induced nitrite levels in RAW264.7 cells better than monacolin K, monascin, ankaflavin or citrinin (P < .05.

  10. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk.

    Science.gov (United States)

    Manoli, Evangelia; Kouras, Athanasios; Karagkiozidou, Olga; Argyropoulos, Georgios; Voutsa, Dimitra; Samara, Constantini

    2016-02-01

    Thirteen particle-phase PAHs, including nine >4-ring congeners [Benz[a]anthracene (BaAn), Chrysene (Chry), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene (BkF), Benzo[e]pyrene (BeP), Benzo[a]pyrene (BaP), Dibenzo[a,h]anthracene (dBaAn), Benzo[g,h,i]perylene (BghiPe), Indeno(1,2,3-c,d)pyrene (IP)], listed by IARC (International Agency for Research on Cancer) as class 1, class 2A, and 2B carcinogens, plus four ≤4-ring congeners [Phenanthrene (Ph), Anthracene (An), Fluoranthene (Fl), Pyrene (Py)], were concurrently measured in inhalable and respirable particle fractions (PM10 and PM2.5) at a heavy-traffic and an urban background site in Thessaloniki, northern Greece, during the warm and the cold period of the year. Carcinogenic and mutagenic potencies of the PAH-bearing particles were calculated, and the inhalation cancer risk (ICR) for local population was estimated. Finally, Chemical Mass Balance (CMB) modeling was employed for the source apportionment of ambient PAH levels and the estimated lung cancer risk. Resulted inhalation cancer risk during winter was found to be equivalent in the city center and the urban background area suggesting that residential wood burning may offset the benefits from minor traffic emissions. PMID:26490935

  11. Development of resistance to cyfluthrin and naphthalene among Daphnia magna.

    Science.gov (United States)

    Brausch, John M; Smith, Philip N

    2009-07-01

    In this study, Daphnia magna were exposed to a pyrethroid insecticide (cyfluthrin) or a polycyclic aromatic hydrocarbon (naphthalene) for 12 generations to evaluate development of resistance followed by a 12 generation recovery period. Twenty-four hour old D. magna were exposed to concentrations of each chemical resulting in 50-70% mortality to select for the least sensitive individuals. LC50 values, survival, reproductive output, and time to first brood in stressor-exposed and control D. magna were recorded for each generation. Significant changes in LC50 values were observed after 4 generations and then declined after 6-10 generations post-exposure. D. magna were 5 times less sensitive to cyfluthrin and 3 times less sensitive to naphthalene as compared to controls after 12 generations of exposure. There were no differences in survival, time to first brood, or total number of offspring produced between control and either of the resistant F13 D. magna. Cyfluthrin exposed D. magna exhibited cross-resistance to DDT and methyl parathion, and naphthalene resistant D. magna were less sensitive than controls to both pyrene and benz(a)anthracene. When the cytochrome P450 inhibitor piperonyl butoxide was used in conjunction with cyfluthrin and naphthalene the sensitivity of resistant and control D. magna were equal, suggesting P450s were responsible for conveying resistance. This study demonstrates that life history and organisms' capacity to develop resistance is important to consider ensuring accuracy of ecological risk assessments. PMID:19399609

  12. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Pena, M.T.; Pensado, Luis; Casais, M.C.; Mejuto, M.C.; Cela, Rafael [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia. Instituto de Investigacion y Analisis Alimentario, Santiago de Compostela (Spain)

    2007-04-15

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 {mu}g kg{sup -1} dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials. (orig.)

  13. Metabolism and macromolecular binding of benzo(a)pyrene and its noncarcinogenic isomer benzo(e)pyrene in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K.; MacLeod, M.C.

    1978-01-01

    The carcinogenicity of the polycyclic aromatic hydrocarbon benzo(a)pyrene (B(a)P) is thought to result from the metabolic formation of a highly reactive intermediate, 7,8-dihydrodiol-9,10-oxy-B(a)P which subsequently interacts with cellular macromolecules to produce neoplasia. Evidence has been presented implicating similar bay-region diol-epoxides as the ultimate carcinogenic forms of benz(a)anthracene, 7-methyl-benz(a)anthracene, dibenz(a,h)anthracene, and chrysene. Benzo(e)pyrene (B(e)P), on the other hand, is relatively inert when tested for carcinogenicity on mouse skin and rat trachea and when tested for mutagenicity in a mammalian system. This B(e)P molecule contains two (equivalent) bay regions and quantum mechanical model calculations suggest that 9,10-dihydrodiol-11,12-oxy-B(e)P can easily form a reactive bay-region-adjacent carbonium ion. In order to explain the noncarcinogenicity of B(e)P in the context of the bay region theory, we have studied the metabolism of B(e)P by rat liver microsomes and by cultured hamster embryo fibroblasts. In both systems, the major metabolic pathways involve the K-region of B(e)P, with little or no attack on the isolated benzo ring. These results suggest that the lack of carcinogenicity of B(e)P may reflect its preferred mode of interaction with the cellular metabolic machinery.

  14. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    Science.gov (United States)

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process. PMID:21877546

  15. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Tai-An; Ko, Ying-Chin [Graduate Institute of Medicine, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China); Wu, Pei-Fen [Department of Industrial Safety and Hygiene, Tajen Junior College of Pharmacy, Ping-Tung (Taiwan, Province of China); Wang, Li-Fang [School of Chemistry, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China); Lee, Huei [Department of Biochemistry, Chung San Medical and Dental College, Taichung (Taiwan, Province of China); Lee, Chien-Hung [School of Public Health, Kaohsiung Medical College, Kaohsiung (Taiwan, Province of China)

    1997-11-28

    According to epidemiologic studies, exposure of women to fumes from cooking oils appears to be an important risk factor for lung cancer. Fume samples from three different commercial cooking oils frequently used in Taiwan were collected and analyzed for mutagenicity in the Salmonella/microsome assay. Polycyclic aromatic hydrocarbons were extracted from the samples and identified by HPLC chromatography. Extracts from three cooking oil fumes were found to be mutagenic in the presence of S9 mix. All samples contained dibenz(a,h)anthracene (DB(a,h)A) and benz(a)anthracene (B(a)A). Concentration of DB(a,h)A and B(a)A were 1.9 and 2.2 {mu}g/m{sup 3} in fumes from lard oil, 2.1 and 2.3 {mu}g/m{sup 3} in soybean oil, 1.8 and 1.3 {mu}g/m{sup 3} in peanut oil, respectively. Benzo(a)pyrene (B(a)P) was identified in fume samples of soybean and peanut oil, in concentrations of 19.6 and 18.3 {mu}g/m{sup 3}, in this order. These results provide experimental evidence and support the findings of epidemiologic observations, in which women exposed to the emitted fumes of cooking oils are at increased risk of contracting lung cancer

  16. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    Science.gov (United States)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  17. Langkocyclines: novel angucycline antibiotics from Streptomyces sp. Acta 3034(*).

    Science.gov (United States)

    Kalyon, Bahar; Tan, Geok-Yuan A; Pinto, John M; Foo, Cheau-Yee; Wiese, Jutta; Imhoff, Johannes F; Süssmuth, Roderich D; Sabaratnam, Vikineswary; Fiedler, Hans-Peter

    2013-10-01

    Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines. PMID:23820614

  18. The Effect of Interaction Between White-rot Fungi and Indigenous Microorganisms on Degradation of Polycyclic Aromatic Hydrocarbons in Soil

    International Nuclear Information System (INIS)

    White-rot fungi applied for soil bioremediation have to compete with indigenous soil microorganisms. The effect of competition on both indigenous soil microflora and white-rot fungi was evaluated with regard to degradation of polycyclic aromatic hydrocarbons (PAH) with different persistence in soil. Sterile and non-sterile soil was artificially contaminated with 14C-labeled PAH consisting of three (anthracene), four (pyrene, benz[a]anthracene) and five fused aromatic rings (benzo[a]pyrene, dibenz[a,h]anthracene). The two fungi tested,Dichomitus squalens and Pleurotus ostreatus, produced similar amounts of ligninolytic enzymes in soil, but PAH mineralization by P. ostreatus was significantly higher. Compared to the indigenous soil microflora, P.ostreatus mineralized 5-ring PAH to a larger extent, while the indigenous microflora was superior in mineralizing 3-ring and 4-ring PAH. In coculture the special capabilities of both soil microflora and P. ostreatus were partly restricted due to antagonistic interactions, but essentially preserved. Thus, soil inoculation with P. ostreatus significantly increased the mineralization of high-molecular-weight PAH, and at the same time reduced the mineralization of anthracene and pyrene. Regarding the mineralization of low-molecular-weight PAH, the stimulation of indigenous soil microorganisms by straw amendment was more efficient than application of white-rot fungi

  19. Uptake, translocation, and accumulation of polycyclic aromatic hydrocarbons in vegetation

    International Nuclear Information System (INIS)

    A review of the scientific literature was conducted to determine the potential for plants to take up polycyclic aromatic hydrocarbons (PAHs) from soils and the possibility of PAH movement from soils into vegetation at waste disposal sites associated with manufactured gas plants (MGP). Studies published since 1983 are considered in conjunction with previous publications and literature reviews on PAH uptake by vegetation. These studies indicate that the extent to which sorption to roots occurs is likely to be influenced by species-specific properties of the plant, physicochemical properties of each PAH, soil properties, and biodegradation rates of the PAHs in soil. PAHs containing five or more rings may sorb to plant roots but are not expected to be translocated to foliage in other than trace quantities. Uptake of naphthalene, anthracene, and benzo[a]anthracene by roots has been reported in the literature. In addition, eight PAHs of three and four rings (acenapthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, and chrysene) were isolated from leaves and roots of four plant species collected near a coal tar disposal trench in eastern Tennessee. A total concentration of 5519 ng/g was observed for the eight PAHs in roots of lamb's quarters. Coal tar, in soil, was implicated as the source of PAHs in the four plant species

  20. Metabolism and excretion of polycyclic aromatic hydrocarbons in rat and in human.

    Science.gov (United States)

    Jacob, J; Grimmer, G

    1996-01-01

    Polycyclic aromatic hydrocarbons have shown to be an important class of environmental and occupational carcinogens. By balancing the carcinogenic potential PAH were found to predominantly contribute to the biological activity of environmental matter such as vehicle exhaust, used motor oil, and hard-coal combustion effluents. Due to the individual ratio of toxifying and detoxifying processes PAH-exposure measurements are not appropriate to be used for risk assessment without any further information on their metabolic fate. Accordingly, metabolite profiles of phenanthrene, pyrene, chrysene, benz(a)anthracene and fluoranthene have been recorded in both tar-pitch exposed Wistar rats and coke plant workers. The results show that metabolite profiles are invariant individual parameters which, however, vary from one individual to another. Significant differences with regard to the ratio of k-region and non-k-region hydroxylation of phenanthrene have been observed in a greater number of coke plant workers. This ratio might be helpful for risk assessment studies since it reflects the various cytochrome P450-dependent monooxygenase isoforms participating in the metabolism of PAH. Studies of this kind can only be carried out with substrates possessing several nonequivalent double bonds (phenanthrene, chrysene) whereas pyrene--commonly used for biomonitoring--does not satisfy this condition. The excretion rate (excretion versus exposure) seems to be an individual parameter. PMID:9167056

  1. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.

    Science.gov (United States)

    Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J

    2012-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. PMID:22197016

  2. Modulation of lipid peroxidation and antioxidant status upon administration of 'Shemamruthaa' in 7,12-dimethylbenz[a]anthracene induced mammary carcinoma bearing rats

    Institute of Scientific and Technical Information of China (English)

    Ayyakkannu Purushothaman; Elumalai Nandhakumar; Panchanatham Sachdanandam

    2012-01-01

    Objective: To investigate the therapeutic efficacy of a Shemamruthaa (SM), (combination of Hibiscus rosasinensis (H. rosasinensis) flowers, fruits of Phyllanthus emblica (P. emblica) and pure honey in definite ratio), against lipid peroxidation (LPO) and antioxidant status in experimentally induced mammary carcinoma rats. Methods: Adult female Sprague-Dawley rats were used for the study and were divided into four groups. Group I control animals received standard pellet diet and water ad libitum. Group II rats were induced with 7,12-dimethyl benz[a]anthracene (DMBA) (25 mg in 1 mL olive oil) by gastric intubation, whereas another set of DMBA-induced rats were treated with SM (400 mg/kg body weight/d) in olive oil orally by gastric intubation for 14 d after 3 months of induction period (group III). Group IV rats served as SM-treated control animals. At the end of the experimental period, the rats were anaesthetised and sacrificed and used for biochemical measures and histology studies. Results: The LPO was increased and antioxidant levels were decreased in the serum, liver and mammary tissues of cancer-induced rats. The administration of SM drug significantly (P<0.05) decreased LPO and reversed the status of antioxidants to near normal level in cancer-bearing animals. Conclusions: The results obtained indicate the additive and synergistic action of constituents’ plants in the SM drug against oxidative damage and its protective role in DMBA induced mammary cancer.

  3. PAH in tea and coffee

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Navarantem, Marin; Adamska, Joanna;

    For food regulation in the European Union maximum limits on other foods than tea and coffee includes benzo[a]pyrene and the sum of PAH4 (sum of benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene). This study includes analysis of the above mentioned PAH in both, tea leaves, coffee...... for accumulation of PAH in tea leaves. Different varieties of tea leaves were analyzed and highest concentrations were found in leaves from mate and black tea with maximum concentrations of 32 μg/kg for benzo[a]pyrene and 115 μg/kg for the sum of PAH4. Also, coffee beans are roasted during processing. However......, both benzo[a]pyrene and PAH4 concentrations were more than ten times lower for coffee beans than for tea leaves. Highest levels were found for PAH4 of solid instant coffee (5.1 μg/kg). Data were used to calculate the exposure of benzo[a]pyrene (15%) and sum of PAH4 (10%) from tea and coffee...

  4. PAH in Some Brands of Tea and Coffee

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Navaratnam, Marin Arosha; Jewula, J.;

    2015-01-01

    The presence of 25 polycyclic aromatic hydrocarbons (PAHs) in tea and coffee were investigated with focus on four PAHs (PAH4), classified by the European Food Safety Authority (EFSA) as suitable indicators; benz[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF) and benzo[a]pyrene (Ba......P). PAH4 from samples of 18 brands of tea leaves and 13 brands of coffee were extracted by pressurized liquid extraction (PLE) followed by highly automated clean up steps for gel permeation chromatography (SX-3) and solid phase extraction (500mg silica). GC-MS were applied for detection of PAH4. The limit...... of detection (LOD) ranged from 0.1–0.3 μg/kg with recoveries from 94–106% for PAH4. Concentrations of PAH4 followed the pattern of the total sum of 25 PAHs with higher concentrations with a maximum of 115 μg/kg in tea leaves compared to 5.1 μg/kg in coffee. The highest PAH4 levels were found in black tea...

  5. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-07-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.

  6. HEPATOPROTECTIVE AND ANTIOXIDANT POTENTIAL OF MORINGA OLEIFERA PODS AGAINST DMBA-INDUCED HEPATOCARCINOGENESIS IN MALE MICE

    Directory of Open Access Journals (Sweden)

    Ritu Paliwal

    2011-06-01

    Full Text Available The importance of Moringa oleifera pods hydroethanolic extract was investigated for its possible hepatoprotective effect in male swiss albino mice against DMBA (synthetic poly aromatic hydrocarbon 7, 12- dimethyl benz(aanthracene induced hepatocarcinogenicity and oxidative stress in hepatic tissues. DMBA exposure elicited a significant escalation in TBARS substances level and depletion in antioxidant enzymes namely superoxide dismutase and catalase in liver. It has been observed that mice treated with MO showed a significant improvement in LPO level along with elevated levels of SOD and CAT activity, which might be the reason for its chemopreventive effect. Phytochemical screening and antioxidant activity of MO clearly indicate that the extract possess antioxidant properties and could serve as free radical inhibitors, acting possibly as primary antioxidants. Finally, these results suggested that M. oleifera pods extract could act against DMBA-induced hepatic injury in mice by a mechanism related to its antioxidant properties and its ability to attenuate the hepatic stellate cells activation. These findings are suggestive of a possible chemopreventive potential of M. oleifera pods extract against chemical carcinogens.

  7. Mass balances on selected polycyclic aromatic hydrocarbons in the New York-New Jersey Harbor.

    Science.gov (United States)

    Rodenburg, Lisa A; Valle, Sandra N; Panero, Marta A; Muñoz, Gabriela R; Shor, Leslie M

    2010-01-01

    Mass balances on 10 polycyclic aromatic hydrocarbons (PAHs) in the New York-New Jersey Harbor (hereafter "the Harbor") were constructed using monitoring data from the water column, sediment, and atmosphere. Inputs considered included tributaries, atmospheric deposition, wastewater treatment plant discharges, combined sewer overflows (CSOs), and stormwater runoff. Removal processes examined included tidal exchange between the Harbor and the coastal Bight and Long Island Sound, volatilization, and accumulation or burial of sediment-bound PAHs in the Harbor. The PAHs investigated were fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, benzo[a]pyrene, perylene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene. The results show inputs and outputs are fairly well balanced for most compounds, a finding that suggests aerobic biodegradation may not be a key loss process in this Harbor, as has been assumed in other systems. The main pathway for inputs of all PAHs is stormwater runoff. Atmospheric deposition is an important conveyor of PAHs with molecular weights sustainable management of urban water resources. PMID:20176837

  8. Quantitative determination of hydroxy polycylic aromatic hydrocarbons as a biomarker of exposure to carcinogenic polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Woudneh, Million B; Benskin, Jonathan P; Grace, Richard; Hamilton, M Coreen; Magee, Brian H; Hoeger, Glenn C; Forsberg, Norman D; Cosgrove, John R

    2016-07-01

    A high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) method was developed for quantitative analysis of hydroxy polycyclic aromatic hydrocarbons (OH-PAHs). Four hydroxy metabolites of known and suspected carcinogenic PAHs (benzo[a]pyrene (B[a]P), benz[a]anthracene (B[a]A), and chrysene (CRY)) were selected as suitable biomarkers of PAH exposure and associated risks to human health. The analytical method included enzymatic deconjugation, liquid - liquid extraction, followed by derivatization with methyl-N-(trimethylsilyl) trifluoroacetamide and instrumental analysis. Photo-induced oxidation of target analytes - which has plagued previously published methods - was controlled by a combination of minimizing exposure to light, employing an antioxidant (2-mercaptoethanol) and utilizing a nitrogen atmosphere. Stability investigations also indicated that conjugated forms of the analytes are more stable than the non-conjugated forms. Accuracy and precision of the method were 77.4-101% (<4.9% RSD) in synthetic urine and 92.3-117% (<15% RSD) in human urine, respectively. Method detection limits, determined using eight replicates of low-level spiked human urine, ranged from 13 to 24pg/mL. The method was successfully applied for analysis of a pooled human urine sample and 78 mouse urine samples collected from mice fed with PAH-contaminated diets. In mouse urine, greater than 94% of each analyte was present in its conjugated form. PMID:27266337

  9. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes

    International Nuclear Information System (INIS)

    The effects of andrographolide, the major diterpenoid constituent of Andrographis paniculata, on the expression of cytochrome P450 superfamily 1 members, including CYP1A1, CYP1A2, and CYP1B1, as well as on aryl hydrocarbon receptor (AhR) expression in primary cultures of mouse hepatocytes were investigated in comparison with the effects of typical CYP1A inducers, including benz[a]anthracene, β-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Andrographolide significantly induced the expression of CYP1A1 and CYP1A2 mRNAs in a concentration-dependent manner, as did the typical CYP1A inducers, but did not induce that of CYP1B1 or AhR. Interestingly, andrographolide plus the typical CYP1A inducers synergistically induced CYP1A1 expression, and the synergism was blocked by an AhR antagonist, resveratrol. The CYP1A1 enzyme activity showed a similar pattern of induction. This is the first report that shows that andrographolide has a potency to induce CYP1A1 enzyme and indicates that andrographolide could be a very useful compound for investigating the regulatory mechanism of the CYP1A1 induction pathway. In addition, our findings suggest preparing advice for rational administration of A. paniculata, according to its ability to induce CYP1A1 expression

  10. Modeling the formation of some polycyclic aromatic hydrocarbons during the roasting of Arabica coffee samples.

    Science.gov (United States)

    Houessou, Justin Koffi; Goujot, Daniel; Heyd, Bertrand; Camel, Valerie

    2008-05-28

    Roasting is a critical process in coffee production, as it enables the development of flavor and aroma. At the same time, roasting may lead to the formation of nondesirable compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, Arabica green coffee beans from Cuba were roasted under controlled conditions to monitor PAH formation during the roasting process. Roasting was performed in a pilot-spouted bed roaster, with the inlet air temperature varying from 180 to 260 degrees C, for roasting conditions ranging from 5 to 20 min. Several PAHs were determined in both roasted coffee samples and green coffee samples. Different models were tested, with more or less assumptions on the chemical phenomena, with a view to predict the system global behavior. Two kinds of models were used and compared: kinetic models (based on Arrhenius law) and statistical models (neural networks). The numbers of parameters to adjust differed for the tested models, varying from three to nine for the kinetic models and from five to 13 for the neural networks. Interesting results are presented, with satisfactory correlations between experimental and predicted concentrations for some PAHs, such as pyrene, benz[a]anthracene, chrysene, and anthracene. PMID:18433138

  11. Laccase oxidation and removal of toxicants released during combustion processes.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Semlitsch, Stefan; Nyanhongo, Gibson S; Lemmouchi, Yahia; Guebitz, Georg M

    2016-02-01

    This study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile). These studies demonstrate the potential of laccase immobilized on solid supports to remove many structurally different toxicants released during combustion processes. This system has great potential application for in situ removal of toxicants in the manufacturing, food processing and food service industries. PMID:26408262

  12. Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency

    International Nuclear Information System (INIS)

    This experimental work investigated major gaseous (CO and NOx) and PAH emissions from a 400 kWth fluidized-bed combustor with a cone-shaped bed (referred to as 'conical FBC') firing rice husk with high, over 99%, combustion efficiency. Experimental tests were carried out at the fuel feed rate of 80 kg/h for different values of excess air (EA). As revealed by the experimental results, EA had substantial effects on the axial CO and NOx concentration profiles and corresponding emissions from the combustor. The concentration (mg/kg-ash) and specific emission (μg/kW h) of twelve polycyclic aromatic hydrocarbons (PAHs), acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene, were quantified in this work for different size fractions of ash emitted from the conical FBC firing rice husk at EA = 20.9%. The total PAHs emission was found to be predominant for the coarsest ash particles, due to the effects of a highly developed internal surface in a particle volume. The highest emission was shown by acenaphthylene, 4.1 μg/kW h, when the total yield of PAHs via fly ash was about 10 μg/kW h. (author)

  13. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples. PMID:27224000

  14. New observations on PAH pollution in old heavy industry cities in northeastern China

    International Nuclear Information System (INIS)

    This study investigated the distinctive PAHs adsorbed on street dust near various industries in the three typical industrialized cities of Daqing (DQ), Harbin (HEB) and Jilin (JL) in northeastern China. The mean ∑PAHs concentrations in street dust of DQ, HEB and JL were 1.84, 4.87, 12.38 μg/g, respectively. Typical petroleum resource city DQ had higher proportions of low and medium ringed PAHs with higher proportions of phenanthrene (Phe), naphthalene (Nap), fluoranthene (Flua) and chrysene (Chr) at industrial sites. Typical chemical processing city JL had higher proportions of medium and high ringed PAHs with higher proportions of Flua, benz[a]anthracene (BaA), pyrene (Pyr) and benzo[a]pyrene (BaP) at industrial sites. Phe, Flua, Pyr and Chr were four major PAHs from most studied industries. The distinctive PAH emissions from the ferroalloy plant were BaA and BaP. BaA and BaP concentrations decreased by 90% at sites more than 2 km away from the ferroalloy plant. - Highlights: • Industry types determined PAH pollution characteristics at industrial sites. • Petroleum resource city Daqing had more low and medium ringed PAHs. • Phe, Flua, Pyr and Chr were major PAHs at most studied industrial sites. • The distinctive PAH emissions from the ferroalloy plant were BaA and BaP. • The major industry pollution impact radius was found to be about 2 km. - This paper investigated the signature of PAH contamination in street dust from 3 cities with contrasting industries

  15. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Kanke, Hirohide; Uchida, Masao E-mail: uchidama@jamstec.go.jp; Okuda, Tomoaki; Yoneda, Minoru; Takada, Hideshige; Shibata, Yasuyuki; Morita, Masatoshi

    2004-08-01

    A quantitative apportionment of polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuel combustion ({sup 14}C-free) and biomass burning (contemporary {sup 14}C) was carried out using a recently developed compound-specific radiocarbon analysis (CSRA) method for a sediment core from an urban reservoir located in the central Tokyo metropolitan area, Japan. The {sup 14}C abundance of PAHs in the sediments was measured by accelerator mass spectrometry (AMS) after extraction and purification by three types of column chromatography, by high performance liquid chromatography (HPLC), and, subsequently, by a preparative capillary gas chromatography (PCGC) system. This method yielded a sufficient quantity of pure compounds and allowed a high degree of confidence in the determination of {sup 14}C. The fraction modern values (f{sub M}) of individual PAHs (phenanthrene, alkylphenanthrenes, fluoranthene, pyrene and benz[a]anthracene) in the sediments ranged from 0.06 to 0.21. These results suggest that sedimentary PAHs (those compounds mentioned above) were derived mostly from fossil fuel combustion. Three sectioned-downcore profiles ({approx}40 cm) of the {sup 14}C abundance in phenanthrene and alkylphenanthrenes showed a decreasing trend with depth, that was anti-correlated with the trend of {sigma}PAHs concentration. The f{sub M} values of phenanthrene were also larger than those of alkylphenanthrenes in each section of the core. This result indicates that phenanthrene received a greater contribution from biomass burning than alkylphenanthrenes throughout the core. This finding highlights the method used here as an useful approach to elucidate the source and origin of PAHs in the environment00.

  16. The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro.

    Science.gov (United States)

    Beníšek, Martin; Kubincová, Petra; Bláha, Luděk; Hilscherová, Klára

    2011-02-01

    Polycyclic aromatic hydrocarbons (PAHs) and their N-heterocyclic analogs (N-PAHs) are important environmental contaminants with negative effects in living organisms, including teratogenicity and embryotoxicity. Though most studies linked their embryotoxicity with aryl hydrocarbon receptor (AhR) and cytochrome P450 activation, the exact mechanism is not known. Other mechanisms such as disruption of retinoid signaling were recently suggested to be of importance. This study investigated PAHs and N-PAHs interference with retinoid signaling in vitro by modulating all-trans retinoic acid (ATRA) mediated response in a reporter gene assay using P19/A15 cell line. Further, effects on pluripotency and differentiation processes were evaluated by measuring octamer-4 (Oct-4), an important pluripotency marker and master differentiation factor. Two of the studied compounds, benz[a]anthracene and benz[c]acridine significantly up-regulated ATRA-mediated response in the co-exposure with a range of ATRA concentrations. Another structural N-PAH variant, 1,7-phenanthroline, downregulated ATRA-mediated response at most of tested ATRA concentrations and exposure times. Interesting concentration-dependent biphasic effects (i.e. downregulation with subsequent up-regulation to control levels) were observed at co-exposures of ATRA and parent PAH phenanthrene. Non significant Oct-4 modulation in co-exposure with ATRA was observed at compounds, which potentiated ATRA-mediated effects in the reporter gene assay. On the other hand, 1,7-phenanthroline and phenanthrene significantly suppressed Oct-4 levels in higher tested concentrations. Our results further extend the knowledge of PAH and N-PAH in vitro effects and indicate that these environmental toxicants may have influence on differentiation process and embryonic development by interfering with ATRA signaling and by modulating levels of Oct-4. PMID:21111795

  17. Photochemical Reaction of 7,12-Dimethylbenz[a]anthracene (DMBA and Formation of DNA Covalent Adducts

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2005-04-01

    Full Text Available DMBA, 7,12-dimethylbenz[a]anthracene, is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a probable human carcinogen. It has been found that DMBA is phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella typhimurium strain TA102. This article tempts to explain the photochemistry and photomutagenicity mechanism. Light irradiation converts DMBA into several photoproducts including benz[a]anthracene-7,12-dione, 7-hydroxy-12-keto-7-methylbenz[a]anthracene, 7,12-epidioxy-7,12-dihydro-DMBA, 7-hydroxymethyl-12-methylbenz[a]anthracene and 12-hydroxymethyl-7-methylbenz[a]anthracene. Structures of these photoproducts have been identified by either comparison with authentic samples or by NMR/MS. At least four other photoproducts need to be assigned. Photo-irradiation of DMBA in the presence of calf thymus DNA was similarly conducted and light-induced DMBA-DNA adducts were analyzed by 32P-postlabeling/TLC, which indicates that multiple DNA adducts were formed. This indicates that formation of DNA adducts might be the source of photomutagenicity of DMBA. Metabolites obtained from the metabolism of DMBA by rat liver microsomes were reacted with calf thymus DNA and the resulting DNA adducts were analyzed by 32P-postlabeling/TLC under identical conditions. Comparison of the DNA adduct profiles indicates that the DNA adducts formed from photo-irradiation are different from the DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results suggest that photo-irradiation of DMBA can lead to genotoxicity through activation pathways different from those by microsomal metabolism of DMBA.

  18. Chemical characterization and stable carbon isotopic composition of particulate polycyclic aromatic hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2012-08-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography coupled with a mass spectrometer (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the different species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion from others origins of particulate matter (vehicular exhaust using isotopic measurements (with δ13CPAH = −28.7 to −26.6‰ but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach of source tracking.

  19. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  20. Atmospheric behaviors of polycyclic aromatic hydrocarbons at a Japanese remote background site, Noto peninsula, from 2004 to 2014

    Science.gov (United States)

    Tang, Ning; Hakamata, Mariko; Sato, Kousuke; Okada, Yumi; Yang, Xiaoyang; Tatematsu, Michiya; Toriba, Akira; Kameda, Takayuki; Hayakawa, Kazuichi

    2015-11-01

    Total suspended particulates were collected at a Japanese remote background site (Noto Air Monitoring Station; NAMS) on the Noto Peninsula from September 2004 to June 2014. Nine polycyclic aromatic hydrocarbons (PAHs) in the particulates (fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) were determined by HPLC with fluorescence detection. The mean total concentrations of the nine PAHs in the cold season (November to May for the years 2004-2014) was 670 pg m-3 (range 37-4100 pg m-3). The mean total concentration in the warm season (June to October for the same period) was 170 pg m-3 (range 31-960 pg m-3). The atmospheric PAH level at NAMS decreased in recent years, although no significant change was found in the warm season. An analysis of meteorological conditions showed that the atmospheric PAHs at NAMS were long range transported from Northeast China in the cold seasons and were contributed to by Japanese domestic sources in the warm seasons. Lower concentration ratios of reactive PAHs to their isomers at NAMS also supported these results. Activities associated with the Beijing Olympic and Paralympic Games in 2008 and reconstruction after the 2007 Noto Hanto earthquake may have contributed to the yearly variations of atmospheric PAH levels at NAMS during the period 2007-2009. Source control measures implemented by the Chinese and Japanese governments appear to have been effective in decreasing the atmospheric PAH levels at NAMS in recent years.

  1. Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi'an, China during heating period: An investigation of spatial distribution and transformation.

    Science.gov (United States)

    Wang, Jingzhi; Hang Ho, Steven Sai; Huang, Rujin; Gao, Meiling; Liu, Suixin; Zhao, Shuyu; Cao, Junji; Wang, Gehui; Shen, Zhenxing; Han, Yongming

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) and its oxygenated derivatives (OPAHs) are toxins in PM2.5. Little information has been known for their transformation in the ambient airs. In this study, PM2.5 samples were collected at 19 sampling sites in Xi'an, China during the heating period, which is classified into: urban residential, university, commercial area, suburban region, and industry. Organic compounds including PAHs, OPAHs, hopanes and cholestanes were quantified. The average of total quantified PAHs and OPAHs concentrations were 196.5 ng/m(3) and 29.4 ng/m(3), respectively, which were consistent with other northern cities in China. Statistical analyses showed that there were significant differences on the distributions of PAHs between urban and suburban regions. The industry also had distinguishable profiles compared with urban residential and commercial area for OPAHs. The greater diversity of OPAHs than PAHs might be due to different primary emission sources and transformation and degradation pathways. The ratios of OPAHs to the corresponding parent PAHs, including 9-fluorenone/fluorene, anthraquinone/anthracene, benz[a]anthracene-7,12-dione/benzo[a]anthracene were 6.2, 12.7, and 1.4, respectively, which were much higher than those for the fresh emissions from coal combustion and biomass burning. These prove the importance of secondary formation and transformation of OPAHs in the ambient airs. Biomarkers such as retene, cyclopenta[CD]pyrene and αα-homohopane were characterized for the source apportionment. With Positive Matrix Factorization (PMF) model analysis, biomass burning was recognized as the most dominant pollution sources for PAHs during the heading period, which accounted for a contribution of 37.1%. Vehicle emission (22.8%) and coal combustion (22.6%) were also contributors in Xi'an. PMID:27323290

  2. Elimination of deleterious effects of DMBA-induced skin carcinogenesis in mice by Syzygium cumini seed extract.

    Science.gov (United States)

    Parmar, Jyoti; Sharma, Priyanka; Verma, Preeti; Sharma, Priyanka; Goyal, Pradeep K

    2011-09-01

    The inhibition of tumor incidence by hydro-alcoholic extract of S.cumini seed was evaluated in mice on two stage process of skin carcinogenesis induced by single application of 7, 12-dimethyl benz(a)anthracene (100 µg/100µl of acetone), and 2 weeks later promoted by repeated application of croton oil (1% acetone/thrice in a week) till the end of the experiment (i.e. 16 weeks). Oral administration of extract at a dose of 250mg/kg b.wt./day at the peri-initiational stage (i.e. 7 days before and 7 days after DMBA application), promotional stage (i.e. from the time of croton oil application) and at both the stages (i.e. 7 days prior to DMBA application & continued till the end of experiment) to the mice, recorded a significant reduction in tumor incidence to 37.5, 50 & 25% respectively in comparison to the carcinogen treated control, where tumor incidence was found as 100%. Tumor yield and Tumor burden were also significantly reduced by SCE. Similarly, the cumulative number of papillomas after 16 weeks was 68 in the control group, which was reduced to 15, 21 & 8 in the animals treated with the SCE continuously at peri-, post- and peri- & post- initiation stage respectively. A significant impairment was noticed in the levels of reduced glutathione, superoxide dismutase, catalase & protein and enhancement in LPO in liver and skin of carcinogen treated control mice as compared with vehicle treated mice. All such parameters were returned to near normal value by administration of SCE to DMBA treated mice. These results suggest a possible chemopreventive property of S.cumini against DMBA induced skin carcinogenesis in mice. PMID:21147816

  3. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  4. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China.

    Science.gov (United States)

    Jiang, Yufeng; Yves, Uwamungu J; Sun, Hang; Hu, Xuefei; Zhan, Huiying; Wu, Yingqin

    2016-04-01

    The level, distribution, compositional pattern and possible sources of polycyclic aromatic hydrocarbons (PAHs) in Lanzhou urban soil of Northwest China were investigated in this study. The total level of 22 PAHs ranged from 115 to 12,100µgkg(-1) and that of 16 priority PAHs from 82.4 to 10,900µgkg(-1). Seven carcinogenic PAHs generally accounted for 6.18-57.4% of total 22 PAHs. Compared with data from those reported about urban areas, PAH contamination in Lanzhou urban soils was moderate. Among different functional areas, higher level of PAHs was found along roadsides and in the industrial district (p<0.01), while lower levels were detected in the commercial, park and residential districts. The composition of PAHs was characterized by high molecular weight PAHs (≥4 rings), among which fluoranthene, benz[a]anthracene and phenanthrene were the most dominant components. Correlation analysis suggested that low molecular weight PAHs and high molecular weight PAHs originated from different sources and further corroborated that TOC was an important factor in the accumulation of PAHs in soil. Isomer ratios and principal component analysis indicated that PAHs in urban soil derived primarily from emissions resulting from the combustion of biomass, coal and petroleum products. Toxic equivalent concentrations (BaPeq) of soil PAHs ranged from 6.12 to 1302µgBaPeqkg(-1), with a mean of 138µgBaPeqkg(-1). The results suggested that human exposure to those soils which polluted by high concentrations of PAHs through direct ingestion or inhalation of suspended soil particles probably poses a significant risk to human health from the carcinogenic effects of PAHs. PMID:26748595

  5. Sources appointment and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Erhai Lake, a low-latitude and high-altitude lake in southwest China.

    Science.gov (United States)

    Hezhong, Yuan; Enlou, Zhang; Qi, Lin; Rong, Wang; Enfeng, Liu

    2016-03-01

    Sixteen polycyclic aromatic hydrocarbons (PAHs) were analyzed from the surficial sediments in Erhai Lake, a plateau lake in China. The results showed that except for acenaphthylene (Ace) Ace and Dibenz(a,h)anthracene (DBA), the central region contained individual PAHs at concentrations lower than those in other lake regions. Total concentration of the PAHs (ΣPAHs) in the sediments from Erhai Lake ranged from 32.42 to 558.53 mg/kg with a mean value of 256.70 mg/kg. The maximum value of ΣPAHs was observed in the north region of the lake and more than 10-fold higher than the minimum values. Moreover, high molecular weight (HMW) PAHs, especially 5-ring PAHs, accounted for higher ratios up to 76 % relative to other PAHs compound in almost all sampling sites. Molecular diagnostic ratios including anthtacene (Ant)/(Ant + phenanthrene (Phe)), fluoranthene (Flt)/(Flt + pyrene (Pyr)), benz(a)anthracene (BaA)/(BaA + chrysene (Chr)), and indeno(1,2,3-cd)pyrene (IPY)/(IPY + benz(g,h,i)perylene (BPE)) were recorded at all sampling sites and indicated that the origin of PAHs in Erhai Lake was predominately pyrolytic. Furthermore, principal component analysis with component dominating by HMW PAHs showed that combustion origins were the primary contamination sources of PAHs in the sediments of Erhai Lake. Finally, ecological risk assessment indicated that the sediments from Erhai Lake are exposed to potential low risk for ΣPAHs, and the ecological risk decreases in the order of northern region > southern region > central region. PMID:26507728

  6. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    Directory of Open Access Journals (Sweden)

    Lode Godderis

    Full Text Available Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes, we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti- apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  7. Airborne exposures to PAH and PM2.5 particles for road paving workers applying conventional asphalt and crumb rubber modified asphalt.

    Science.gov (United States)

    Watts, R R; Wallingford, K M; Williams, R W; House, D E; Lewtas, J

    1998-01-01

    Personal exposure monitoring was conducted for road paving workers in three states. A research objective was to characterize and compare occupational exposures to fine respirable particles (asphalt and asphalt containing crumb rubber from shredded tires. Workers not exposed to asphalt fume were also included for comparison (to support the biomarker component of this study). The rubber content of the crumb rubber modified (CRM) asphalt at the three study sites was 12, 15, and 20%. A comparison of some specific job categories from two sites indicates greater potential carcinogenic PAH exposures during CRM asphalt work, however, the site with the greatest overall exposures did not indicate any differences for specific jobs. A statistical analysis of means for fine particle, pyrene and total carcinogenic PAH personal exposure shows, with two exceptions, there were no differences in exposures for these three measurement variables. One site shows significantly elevated pyrene exposure for CRM asphalt workers and another site similarly shows greater carcinogenic PAH exposure for CRM asphalt workers. Conventional and CRM asphalt worker airborne exposures to the PAH carcinogen marker, BaP, were very low with concentrations comparable to ambient air in many cities. However, this study demonstrates that asphalt road paving workers are exposed to elevated airborne concentrations of a group of unknown compounds that likely consist of the carcinogenic PAHs benz(a)anthracene, chrysene and methylated derivatives of both. The research described in this article has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. PMID:9577752

  8. PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment.

    Science.gov (United States)

    Zheng, Xin; Yang, Yi; Liu, Min; Yu, Yingpeng; Zhou, John L; Li, Donghao

    2016-07-01

    A novel cleanup technique termed as gas purge-microsyringe extraction (GP-MSE) was evaluated and applied for polycyclic aromatic hydrocarbon (PAH) determination in road dust samples. A total of 68 road dust samples covering almost the entire Shanghai area were analyzed for 16 priority PAHs using gas chromatography-mass spectrometry. The results indicate that the total PAH concentrations over the investigated sites ranged from 1.04μg/g to 134.02μg/g dw with an average of 13.84μg/g. High-molecular-weight compounds (4-6 rings PAHs) were significantly dominant in the total mass of PAHs, and accounted for 77.85% to 93.62%. Diagnostic ratio analysis showed that the road dust PAHs were mainly from the mixture of petroleum and biomass/coal combustions. Principal component analysis in conjunction with multiple linear regression indicated that the two major origins of road dust PAHs were vehicular emissions and biomass/fossil fuel combustions, which contributed 66.7% and 18.8% to the total road dust PAH burden, respectively. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 0.16μg/g to 24.47μg/g. The six highly carcinogenic PAH species (benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) accounted for 98.57% of the total BaPeq concentration. Thus, the toxicity of PAHs in road dust was highly associated with high-molecular-weight compounds. PMID:27037890

  9. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  10. The temporal variability of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air: a study in a medium traffic area in Rome, 1993-1998

    Science.gov (United States)

    Menichini, E.; Monfredini, F.; Merli, F.

    The constancy, both temporal and spatial, of the profile of polycyclic aromatic hydrocarbons (PAHs) relative to benzo[a]pyrene (BaP) is a prerequisite to using the BaP-indicator approach in the carcinogenic risk assessment for PAHs. The principal aim of this study was to provide a contribution to validate this approach, by studying the variability of the profile at a typical urban site through a multi-year data set and by comparing the profiles available for different cities. Seven carcinogenic PAHs (benz[a]anthracene, benzo[b+j+k]fluoranthenes, BaP, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene) were determined in PM 10 24-h samples collected every third day at a road site; moreover, benzo[e]pyrene was determined as a reference PAH due to its stability. The profile was found stable from year to year. Besides, it was similar to those recently found in other European cities (observed differences within a factor of four) and to those elaborated from earlier (1970s-1980s) investigations. The substantial similarity of profiles, both temporal (on an annual basis) and spatial, supports the validity of the BaP-indicator approach. Large PAH-to-PAH differences were, however, found in the seasonal pattern of profile: they were explained by the different atmospheric degradability of PAHs, whose effect is enhanced under the meteoclimatic conditions typical of the European Mediterranean countries. PAH annual means showed a slight declining trend since 1994. In the last sampling year, mean concentration of BaP was 1.2 ng m -3. Within-year differences among monthly averaged PAH concentrations were observed, as large as up to 44-fold for BaP, underlining the need for whole-year monitoring.

  11. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  12. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Perera, F.; Pac, A.; Wang, L.; Flak, E.; Mroz, E.; Jacek, R.; Chai-Onn, T.; Jedrychowski, W.; Masters, E.; Camann, D.; Spengler, J. [Columbia University, New York, NY (United States)

    2008-11-15

    Current understanding on health effects of long-term polycyclic aromatic hydrocarbon (PAH) exposure is limited by lack of data on time-varying nature of the pollutants at an individual level. In a cohort of pregnant women in Krakow, Poland, we examined the contribution of temporal, spatial, and behavioral factors to prenatal exposure to airborne PAHs within each trimester and developed a predictive model of PAH exposure over the entire gestational period. The observed personal, indoor, and outdoor B(a)P levels we observed in Krakow far exceed the recommended Swedish guideline value for B(a)P of 0.1 ng/m{sup 3}. Based on simultaneously monitored levels, the outdoor PAH level alone accounts for 93% of total variability in personal exposure during the heating season. Living near the Krakow bus depot, a crossroad, and the city, center and time spent outdoors or commuting were not associated with higher personal exposure. During the nonheating season only, a 1-hr increase in environmental tobacco smoke (ETS) exposure was associated with a 10-16% increase in personal exposure to the nine measured PAHs. A 1{degree}C decrease in ambient temperature was associated with a 3-5% increase in exposure to benz(a)anthracene, benzo(k)fluoranthene, and dibenz(a,h)anthracene, after accounting for the outdoor concentration. A random effects model demonstrated that mean personal exposure at a given gestational period depends on the season, residence location, and ETS. Considering that most women reported spending < 3 hr/day outdoors, most women in the study were exposed to outdoor-originating PAHs within the indoor setting. Cross-sectional, longitudinal monitoring supplemented with questionnaire data allowed development of a gestation-length model of individual-level exposure with high precision and validity.

  13. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuels are ubiquitous contaminants and occur in aquatic habitats as highly variable and complex mixtures of compounds containing 2 to 6 rings. For aquatic species, PAHs are generally accepted as acting through either of two modes of action: (1) 'dioxin-like' toxicity mediated by activation of the aryl hydrocarbon receptor (AHR), which controls a battery of genes involved in PAH metabolism, such as cytochrome P4501A (CYP1A) and (2) 'nonpolar narcosis', in which tissue uptake is dependent solely on hydrophobicity and toxicity is mediated through non-specific partitioning into lipid bilayers. As part of a systematic analysis of mechanisms of PAH developmental toxicity in zebrafish, we show here that three tetracyclic PAHs (pyrene, chrysene, and benz[a]anthracene) activate the AHR pathway tissue-specifically to induce distinct patterns of CYP1A expression. Using morpholino knockdown of ahr1a, ahr2, and cyp1a, we show that distinct embryolarval syndromes induced by exposure to two of these compounds are differentially dependent on tissue-specific activation of AHR isoforms or metabolism by CYP1A. Exposure of embryos with and without circulation (silent heart morphants) resulted in dramatically different patterns of CYP1A induction, with circulation required to deliver some compounds to internal tissues. Therefore, biological effects of PAHs cannot be predicted simply by quantitative measures of AHR activity or a compound's hydrophobicity. These results indicate that current models of PAH toxicity in fish are greatly oversimplified and that individual PAHs are pharmacologically active compounds with distinct and specific cellular targets

  14. Aquatic predicted no-effect concentrations of 16 polycyclic aromatic hydrocarbons and their ecological risks in surface seawater of Liaodong Bay, China.

    Science.gov (United States)

    Wang, Ying; Wang, Juying; Mu, Jingli; Wang, Zhen; Cong, Yi; Yao, Ziwei; Lin, Zhongsheng

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous pollutants in marine environments, exhibit moderate to high adverse effects on aquatic organisms and humans. However, the lack of PAH toxicity data for aquatic organism has limited evaluation of their ecological risks. In the present study, aquatic predicted no-effect concentrations (PNECs) of 16 priority PAHs were derived based on species sensitivity distribution models, and their probabilistic ecological risks in seawater of Liaodong Bay, Bohai Sea, China, were assessed. A quantitative structure-activity relationship method was adopted to achieve the predicted chronic toxicity data for the PNEC derivation. Good agreement for aquatic PNECs of 8 PAHs based on predicted and experimental chronic toxicity data was observed (R(2)  = 0.746), and the calculated PNECs ranged from 0.011 µg/L to 205.3 µg/L. A significant log-linear relationship also existed between the octanol-water partition coefficient and PNECs derived from experimental toxicity data (R(2)  = 0.757). A similar order of ecological risks for the 16 PAH species in seawater of Liaodong Bay was found by probabilistic risk quotient and joint probability curve methods. The individual high ecological risk of benzo[a]pyrene, benzo[b]fluoranthene, and benz[a]anthracene needs to be determined. The combined ecological risk of PAHs in seawater of Liaodong Bay calculated by the joint probability curve method was 13.9%, indicating a high risk as a result of co-exposure to PAHs. Environ Toxicol Chem 2016;35:1587-1593. © 2015 SETAC. PMID:26517571

  15. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells

    International Nuclear Information System (INIS)

    Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27Kip1, or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27Kip1 and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative

  16. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrysik, Zdenek [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Vondracek, Jan [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic) and Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic)]. E-mail: vondracek@ibp.cz; Machala, Miroslav [Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Krcmar, Pavel [Department of Chemistry and Toxicology, Veterinary Research Institute, 621 32 Brno (Czech Republic); Svihalkova-Sindlerova, Lenka [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Kranz, Anne [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Weiss, Carsten [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Faust, Dagmar [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany); Kozubik, Alois [Laboratory of Cytokinetics, Institute of Biophysics, 612 65 Brno (Czech Republic); Dietrich, Cornelia [Institute of Toxicology, Johannes Gutenberg-University, 55131 Mainz (Germany)

    2007-02-03

    Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27{sup Kip1}, or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27{sup Kip1} and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may

  17. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?

    Energy Technology Data Exchange (ETDEWEB)

    Phillip F. Britt; A.C. Buchanan; Clyde V. Owens, Jr.; J. Todd Skeen [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Chemical and Analytical Sciences Division

    2004-08-01

    The gas-phase pyrolysis of proline, glucose, 1-((2{prime}-carboxy)pyrrolidinyl)-1-deoxy-D-fructose (the proline Amadori compound), and a 1:1 mixture by weight of proline and glucose was investigated at high temperatures (600-840{sup o}C) and short residence time (i.e. 1.0 s) in an inert atmosphere to determine if glucose or Maillard reaction products enhance the formation of nitrogen containing polycyclic aromatic compounds (N-PACs) and polycyclic aromatic hydrocarbons (PAHs) in the pyrolysis of proline. To study the gas-phase formation of N-PACs and PAHs, the substrates were sublimed into the pyrolysis furnace at 460{sup o}C. Thermogravimetric analysis showed that glucose, the proline/glucose mixture, and the proline Amadori compound undergo solid-state decomposition reactions before subliming. Thus, the substrates were pyrolyzed in two stages: at 460{sup o}C during the sublimation and at 600-840{sup o}C. At 800{sup o}C with a residence time of 1.0 s, proline produced low yields of N-PACs, such as quinoline, isoquinoline, indole, acridine, and carbazole, and PAHs, such as phenanthrene, pyrene, benz(a)anthracene, benzofluoranthene isomers, and benzo(a)pyrene. Increasing the temperature and residence time increased the yield of these products. Under similar pyrolysis conditions, the proline Amadori compound produced 2-8 fold more N-PACs and PAHs than proline. A 1:1 mixture of proline and glucose produced a similar slate of pyrolysis products as the proline Amadori compound, but it is unclear whether the proline Amadori compound was an intermediate in the reaction. In general, the proline Amadori compound produced a higher yield of N-PACs and PAHs than the proline/glucose mixture, but glucose clearly enhances the low temperature gas-phase formation of N-PACs and PAHs from the pyrolysis of proline. 56 refs., 10 figs., 3 tabs.

  18. Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food

    International Nuclear Information System (INIS)

    Food contamination caused by chemical hazards such as persistent organic pollutants (POPs) is a worldwide public health concern and requires continuous monitoring. The chromatography-based analysis methods for POPs are accurate and quite sensitive but they are time-consuming, laborious and expensive. Thus, there is a need for validated simplified screening tools, which are inexpensive, rapid, have automation potential and can detect multiple POPs simultaneously. In this study we developed a flow cytometry-based immunoassay (FCIA) using a color-encoded microbeads technology to detect benzo[a]pyrene (BaP) and other polycyclic aromatic hydrocarbons (PAHs) in buffer and food extracts as a starting point for the future development of rapid multiplex assays including other POPs in food, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). A highly sensitive assay for BaP was obtained with an IC50 of 0.3 μg L-1 using a monoclonal antibody (Mab22F12) against BaP, similar to the IC50 of a previously described enzyme-linked immunosorbent assay (ELISA) using the same Mab. Moreover, the FCIA was 8 times more sensitive for BaP compared to a surface plasmon resonance (SPR)-based biosensor immunoassay (BIA) using the same reagents. The selectivity of the FCIAs was tested, with two Mabs against BaP for 25 other PAHs, including two hydroxyl PAH metabolites. Apart from BaP, the FCIAs can detect PAHs such as indenol[1,2,3-cd]pyrene (IP), benz[a]anthracene (BaA), and chrysene (CHR) which are also appointed by the European Food Safety Authority (EFSA) as suitable indicators of PAH contamination in food. The FCIAs results were in agreement with those obtained with gas chromatography-mass spectrometry (GC-MS) for the detection of PAHs in real food samples of smoked carp and wheat flour and has great potential for the future routine application of this assay in a simplex or multiplex format in combination with simplified extraction procedure which are

  19. ANTICANCER EFFECTS OF CARICA PAPAYA IN EXPERIMENTAL INDUCED MAMMARY TUMORS IN RATS

    Directory of Open Access Journals (Sweden)

    Gurudatta M, Deshmukh YA, Naikwadi A A

    2015-07-01

    Full Text Available Objective: To evaluate the anticancer effect of Carica papaya in DMBA induced mammary tumors in rats. Methods: Wistar rats were divided in to five groups (n=6, Group-I (Normal control administered vehicle olive oil, Group-II, Group-III ,Group-IV and V induced mammary tumors by administering single dose of DMBA (7,12 Dimethyl benz(Aanthracene orally 65 mg/kg. Group-III was administered aqueous leaf extract of Carica papaya (ALQECP in a dose of 200 mg/kg body wt for a period of 3 months, group-IV has given ALQECP 200 mg/kg body wt for a period of 21 days post 3 months of tumor induction, group-V rats were administered a small dose of Carica papaya extract intra tumor locally in the region of tumor. Results: Values of CA15-3 were increased in group-II rats (tumor control significantly, whereas in group-III (prevention group the levels of CA15-3 were found to be reduced substantially and the P value < 0.001. Similarly, CA-15-3 levels were reduced significantly in group-IV (treatment groupand P<0.005. The levels of LDH were seen to be increased in group-II, where as in group-III LDH levels were decreased and P<0.001.similarly group-IV LDH levels also reduced significantly but not to the level of group-III. Conclusion: Among the various markers for the detection of cancer antigen-15(CA15-3 and lactate dehydrogenase (LDH are important biochemical parameters that give a clear understanding of the progression and proliferation of cancer cells. In this study it was found that there is increase in the levels of markers such as CA15-3 and LDH and also the tumor volume in tumor control, these marker levels were decreased by the administration of aqueous leaf extract of Carica papaya in a dose of 200 mg/kg body wt. ALQECP not only prevented the progression of cancer growth but also has significant effect in reducing the both CA15-3 and LDH levels in treatment group.

  20. Long term observations of PM2.5-associated PAHs: Comparisons between normal and episode days

    Science.gov (United States)

    Wang, Jia; Li, Xiao; Jiang, Nan; Zhang, Wenkai; Zhang, Ruiqin; Tang, Xiaoyan

    2015-03-01

    The pollution characteristic of fine particular matter (PM2.5) and associated polycyclic aromatic hydrocarbons (PAHs) are currently drawing a great deal of interest because of their influence on environment and health. In this study, PM2.5 was collected from 2011 to 2013 (n = 188) in a suburban area of Zhengzhou, China. 16-PAHs were analyzed to determine the concentration, seasonal variation and potential sources during normal days and episode events. The total mass of 16 PAHs and PM2.5 were in the range of 7-961 ng m-3 and 55-697 μg m-3, with a 3-year average of 174 ng m-3 and 194 μg m-3 respectively. Winter is most polluted for both PM2.5 and PAHs. Average PAH and PM2.5 concentrations during three episode events are 454 ng m-3 and 453 μg m-3, respectively, much higher than values during normal days (299 ng m-3 and 180 μg m-3, respectively). Ratios of Σ16PAH/PM2.5 varied with seasons and concentrations of PM2.5, but showed a negative correlation with PM2.5 concentrations during episode events. The dominant components of PAHs are Benzo[b]fluoranthene, Chrysene, Fluoranthene, and Benzo[k]fluoranthene, Benz[a]anthracene, Pyrene, Indeno(1,2,3-cd)pyrene and their total concentrations vary from 27 to 342 ng m-3, accounting for 58-82% (average = 73%) of 16 PAHs. The Benzo[a]pyrene (Bap) concentration obtained was 9.4 ng m-3 (3-year average), exceeding nearly one order of magnitude of ambient air BaP standard (annual average: 1.0 ng m-3) in China. Diagnose ratios and Positive Matrix Factorization results show that coal combustion, vehicles, coking plant, and biomass burning are main sources for PAHs in this area. The high concentrations of PM2.5 and PAHs, especially during episode events, reflected a potential health problem for nearby public and the necessity of air pollution control for both stationary and mobile sources.

  1. Bacterial degradation of recalcitrant PAHs: metabolic studies and application to pyrene degradation in a freshwater sediment

    Energy Technology Data Exchange (ETDEWEB)

    Jouanneau, Y.; Demaneche, S.; Meyer, Ch.; Willison, J.C. [CEA-Grenoble, UMR 5092 CNRS-CEA-UJF, 38 - Grenoble (France)

    2005-07-01

    Cost-effective bio-remediation strategies have been proposed to remove toxic chemicals, including polycyclic aromatic hydrocarbons (PAHs), from contaminated sites. However, the efficiency of these strategies is often limited, due to the resistance of certain chemicals to microbial degradation. Our studies deal with the biodegradation of four-ring PAHs using two recently isolated bacteria, Mycobacterium strain 6PY1, which can mineralize pyrene and phenanthrene, and Sphingomonas strain CHY-1, which mineralizes chrysene and various three-ring PAHs. The metabolic pathways for the biodegradation of PAHs have been investigated using GC-MS to identify and assay metabolites. Also, several enzymes involved in PAH catabolism have been identified by a combination of proteomic and genetic approaches. In Mycobacterium 6PY1, two ring-hydroxylating di-oxygenases which catalyze the initial attack of PAHs have been overproduced in E. coli, isolated and characterized. The selectivity of the two enzymes showed marked differences, since one di-oxygenase preferentially oxidized 2- or 3- ring PAHs whereas the other attacked pyrene and 3-ring PAHs exclusively. In Sphingomonas CHY-1, a single di-oxygenase, called PhnI, was found to convert seven PAHs, including chrysene, to the corresponding dihydro-diols. It is the first enzyme to be described which is able to attack the four-ring PAHs chrysene and benz[a]anthracene.. The fate of pyrene was examined in a sediment taken from a freshwater lake of the French Alps. Experiments were carried out in microcosms containing a layer of sediment which was spiked with {sup 14}C-pyrene. Pyrene mineralization was monitored over 61 days by measuring the {sup 14}CO{sub 2} evolved from the microcosms. Some microcosms were planted with young reeds (Phragmites australis), while other were inoculated with Mycobacterium 6PY1. P. australis reeds promoted a significant increase of pyrene degradation, which most likely resulted from a root-mediated increase of

  2. Bacterial degradation of recalcitrant PAHs: metabolic studies and application to pyrene degradation in a freshwater sediment

    International Nuclear Information System (INIS)

    Cost-effective bio-remediation strategies have been proposed to remove toxic chemicals, including polycyclic aromatic hydrocarbons (PAHs), from contaminated sites. However, the efficiency of these strategies is often limited, due to the resistance of certain chemicals to microbial degradation. Our studies deal with the biodegradation of four-ring PAHs using two recently isolated bacteria, Mycobacterium strain 6PY1, which can mineralize pyrene and phenanthrene, and Sphingomonas strain CHY-1, which mineralizes chrysene and various three-ring PAHs. The metabolic pathways for the biodegradation of PAHs have been investigated using GC-MS to identify and assay metabolites. Also, several enzymes involved in PAH catabolism have been identified by a combination of proteomic and genetic approaches. In Mycobacterium 6PY1, two ring-hydroxylating di-oxygenases which catalyze the initial attack of PAHs have been overproduced in E. coli, isolated and characterized. The selectivity of the two enzymes showed marked differences, since one di-oxygenase preferentially oxidized 2- or 3- ring PAHs whereas the other attacked pyrene and 3-ring PAHs exclusively. In Sphingomonas CHY-1, a single di-oxygenase, called PhnI, was found to convert seven PAHs, including chrysene, to the corresponding dihydro-diols. It is the first enzyme to be described which is able to attack the four-ring PAHs chrysene and benz[a]anthracene.. The fate of pyrene was examined in a sediment taken from a freshwater lake of the French Alps. Experiments were carried out in microcosms containing a layer of sediment which was spiked with 14C-pyrene. Pyrene mineralization was monitored over 61 days by measuring the 14CO2 evolved from the microcosms. Some microcosms were planted with young reeds (Phragmites australis), while other were inoculated with Mycobacterium 6PY1. P. australis reeds promoted a significant increase of pyrene degradation, which most likely resulted from a root-mediated increase of oxygen diffusion

  3. Comparative developmental toxicity of environmentally relevant oxygenated PAHs

    International Nuclear Information System (INIS)

    Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO, 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. - Highlights: • OPAHs are byproducts of combustion present in the environment. • OPAHs pose a largely

  4. Comparative developmental toxicity of environmentally relevant oxygenated PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Andrea L., E-mail: andrea.knecht@tanguaylab.com [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Goodale, Britton C., E-mail: goodaleb@onid.orst.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Truong, Lisa, E-mail: lisa.truong.888@gmail.com [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Simonich, Michael T., E-mail: mtsimonich@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Swanson, Annika J., E-mail: swansoan@onid.orst.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Matzke, Melissa M., E-mail: melissa.matzke@pnl.gov [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA (United States); Anderson, Kim A., E-mail: kim.anderson@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M., E-mail: katrina.waters@pnl.gov [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA (United States); Tanguay, Robert L., E-mail: robert.tanguay@oregonstate.edu [Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-09-01

    Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO, 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. - Highlights: • OPAHs are byproducts of combustion present in the environment. • OPAHs pose a largely

  5. KEY COMPARISON: CCQM-K50: Polycyclic aromatic hydrocarbons (PAHs) in soil/particulate matter

    Science.gov (United States)

    Philipp, R.; Bremser, W.; Becker, R.; Win, T.; Schantz, M. M.; Pérez Urquiza, M.; Ávila Calderón, M. A.; Maldonado Torres, M.; Carter, D.; O'Connor, G.; Sejeroe-Olsen, B.; Ricci, M.; Lalere, B.; Peignaux, M.; Kim, D. H.; Itoh, N.; Wong, S.; Man, T. O.; Marques Rodrigues Caixeiro, J.

    2010-01-01

    There are numerous Calibration and Measurement Capability Claims (CMCs) on PAH analysis in various matrices published in the BIPM key comparison database, Appendix C. By July 2007 such CMCs were released in Category 10 Biological fluids and materials, Subcategory 10.4 Tissues, Category 11 Food, Subcategory 11.2 Contaminants and Category 13 Sediments, soils, ores and particulates, Subcategories 13.1 Sediments, 13.2 Soils and 13.4 Particulates. CCQM comparisons are needed to underpin these claims. A pilot study CCQM-P69 'PAHs in soil' was successfully conducted in 2004. After review of the results at the OAWG meeting in September 2005 it was decided to proceed with a key comparison and a concurrent second pilot study CCQM-K50/P69.1. CENAM and BAM agreed to coordinate the intercomparison. The measurand of the study was specified as amount of specific PAHs in solid matrices as extracted under exhaustive extraction conditions. As for the preceding pilot study and two studies for PAHs in solution (CCQM-P31a and CCQM-K38), five target analytes, phenanthrene, fluoranthene, benz[a]anthracene, benzo[a]pyrene and benzo[ghi]perylene, were selected as representative of the measurement of individual compounds. The CCQM-K50 study utilized a soil sample from BAM and an air particulate sample from NIST. Both materials were naturally contaminated, not enriched or spiked. The mass fraction of target analytes in the samples ranged from 2 mg/kg to 15 mg/kg. NIST SRM 1649a Urban Dust was provided as a control material. Participants were requested to determine the mass fraction of the selected PAHs on a dry mass basis and submit a complete uncertainty budget for their measurements. Ten NMIs participated in the study. All participants applied Soxhlet or Accelerated Solvent extraction (ASE) and GC-MS with either deuterated or 13C labelled internal standards. Results demonstrate a good level of equivalence in capabilities of the participating NMIs to identify and measure PAHs in highly

  6. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    Science.gov (United States)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (‑48.4%), Ni (‑41.4%), Co (‑36.9%), Cu (‑35.7%), Mn (‑34.3%), Cd (‑33.2%), and Pb (‑30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the

  7. 百色市工业区表层土壤中多环芳烃污染特征及来源分析%Characteristics and sources of polycyclic aromatic hydrocarbons in surface soil from industrial areas of Baise, Guangxi

    Institute of Scientific and Technical Information of China (English)

    史兵方; 吴启琳; 欧阳辉祥; 刘细祥; 张金磊; 左卫元

    2014-01-01

    To expand and improve the database of polycyclic aromatic hydrocarbon (PAH) pollution signatures in different environmental samples from sites in China, surface soil samples were collected from five industrial areas of Baise, a prefecture-level city of the Guangxi Zhuang Autonomous Region. The concentration and composition of 16 PAHs listed for prior control by the US EPA were determined using high performance liquid chromatography. Selected diagnostic ratios and principal component analysis were used to identify possible sources of soil PAHs. Concentrations of∑16 PAHs in the present study were shown to vary greatly, and ranged from 18.7 to 6347 μg/kg, depending on the sampling location. The highest concentrations ofΣ16 PAHs were observed in Power plant 2 soils with a value of 1923.4μg/kg. Compared with domestic and foreign research, PAH pollution in the five Baise industrial areas reached medium to high levels. Soil PAH concentrations showed a strong Power plant 2-Power plant 1-Refinery-Lubricants plant-Cement plant gradient. Four-and five-ring PAHs, which have strong carcinogenic mutagenicity and distortion, dominated in the industrial areas with power plants and lubricant plants, while two-and three-ring PAHs dominated the surface soil near cement plants. Among the PAHs detected in the study-area soil, benz[a]anthracene (BaA), benzo[k]fluoranthene (BkF), chrysene (Chr), and fluoranthene (Fla) were the major pollutants occurring above standard levels. The study also suggested that the major sources of soil PAHs in Baise were coal and petroleum combustion (45.0%) and petroleum leakage (18.2%), or a combination of the two (36.8%).%为完善我国实地的不同的PAHs污染特征数据库,系统采集了百色市5个工业区表层土壤样品,利用HPLC分析了16种US EPA 优控 PAHs 的含量和组分特征,运用同分异构体比率法和主成分因子载荷法揭示其污染来源.结果表明,工业区土壤中 PAHs 总含量范围在18