WorldWideScience

Sample records for bentonite formation analogies

  1. Chemical and Mineralogical Features of Smectite from the Morron de Mateo Bentonite Deposit (Cabo de Gata, Almeria) in Relation to the Parent Rocks and the Alteration Processes Occurred After the Bentonite Formation: Analogies and Implications for the Engineered Clayey Barrier of a Deep Geological Rad waste Repository

    International Nuclear Information System (INIS)

    The Morron de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on the clayey barrier of a Deep Geological Rad waste Repository (DGRR) after its closure, in relation to the radioactive decay of the fission products and the container corrosion. This bentonite deposit and their host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the bioclastic calcarenite beds close to the dome. Bentonite from the NE sector of the deposit have been chemically and mineralogically characterized. Pyroclastic rocks (white tuffs), epyclastic rocks (mass flow) and andesitic breccia all of them hydrothermally altered, have been studied at the site. Samples are composed of feldspars, quartz and amphybols, as inherited minerals, and phyllosilicates, zeolites, crystoballite and calcite, as new formed minerals. White tuffs have the highest phyllosilicate contents, mainly dioctahedral smectite of montmorillonite type. Epyclastic rocks and andesitic breccia have a highest proportion of inherited minerals, the new formed phillosilicates being di octahedral smectite of beidellite type and an ordered interlayer chlorite/smectite mineral, of corrensite type. Smectite from the epyclastic rocks have higher Fe and Mg contents and chemical variability, as a consequence of nature of their parent rocks. The presence of corrensite in the epyclastic rocks suggests that in the Morron de Mateo area a propilitic alteration process occurred after bentonite formation, which transformed Fe-Mg-rich smectite into corrensite. This transformation was probably favoured by the sub volcanic intrusion, which also produced a temperature increase in the geological media and a supply of Fe-Mg-rich solutions, which also were the responsible for the metasomatic transformations observed in the calcarenite beds. (Author) 57 refs

  2. Biofilm Formation of Pasteurella Multocida on Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Ramachandranpillai Rajagopal

    2013-06-01

    Full Text Available Background and objectives: Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay.Materials and methods: The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures.Results and Conclusion: The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth. Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes

  3. Microbial communities in bentonite formations and their interactions with uranium

    International Nuclear Information System (INIS)

    Highlights: • Microbial diversity of Spanish bentonites was studied. • High number of aerobe and facultative anaerobe microbes were isolated from bentonites. • Natural bentonite microbes are able to tolerate high U concentrations. • U is immobilized by the cells of the strain Rhodotorula mucilaginosa BII-R8 as U(VI) phosphates. - Abstract: A reliable performance assessment of deep geological disposal of nuclear waste depends on better knowledge of radionuclide interactions with natural microbes of geological formations (granitic rock, clay, salts) used to host these disposal systems. In Spain, clay deposits from Cabo de Gata region, Almeria, are investigated for this purpose. The present work characterizes the culture-dependent microbial diversity of two bentonite samples (BI and BII) recovered from Spanish clay deposits. The evaluation of aerobe and facultative anaerobe microbial populations shows the presence of a high number of cultivable bacteria (e.g. Stenotrophomonas, Micrococcus, Arthrobacter, Kocuria, Sphingomonas, Bacillus, Pseudomonas, etc.) affiliated to three phyla Proteobacteria, Actinobacteria, and Firmicutes. In addition, a pigmented yeast strain BII-R8 related to Rhodotorula mucilaginosa was also recovered from these formations. The minimal inhibitory concentrations of uranium for the growth of these natural isolates were found to range from 4 to 10.0 mM. For instance, strain R. mucilaginosa BII-R8 was shown to tolerate up to 8 mM of U. Flow cytometry studies indicated that the high U tolerance of this yeast isolate is a biologically mediated process. Microscopically dense intracellular and cell wall-bound precipitates were observed by Scanning Transmission Electron Microscopy-High-Angle Annular Dark-Field (STEM-HAADF). Energy Dispersive X-ray (EDX) element-distribution maps showed the presence of U and P within these accumulates, indicating the ability of cells to precipitate U as U(VI) phosphate minerals. Fundamental understanding of the

  4. Preparation and characterization of bentonite clay for formation of nanocomposites

    International Nuclear Information System (INIS)

    This study we used the linear medium density polyethylene (PELMD) as polymer matrix and introduced, as reinforcement to increase the mechanical and thermal properties, the green bentonite deposit of Boa Vista/PB, rich montmorillonite (MMT), previously characterized by XRD, that passed by three stages of purification. The first stage was to clean by washing and filtering for removal of coarse material (sand and organic matter), followed by an acid attack. In the second, we used the quaternary ammonium surfactant, in order to increase the distance between the layers of MMT, and the third was removed from the wastewater, using absolute ethanol, finishing the purification of process. Then, the clay was introduced into the polymer matrix by polymerization in solution by intercalation and characterized by XRD. The results showed a partial exfoliation, satisfying the increasing properties. (author)

  5. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  6. Mineral formation on metallic copper in a 'Future repository site environment': Textural considerations based on natural analogs

    International Nuclear Information System (INIS)

    Copper mineral formation in the Swedish 'repository site environment' is discussed. Special attention is given to ore mineral textures (=the spatial relation among minerals), with examples given from nature. It is concluded: By analogy with observations from natural occurrences, an initial coating of Cu-oxide on the canister surface (because of entrapped air during construction) will probably not hinder a later sulphidation process. Early formation of Cu-sulphides on the canister surface may be accompanied by formation of CuFe-sulphides. The latter phase(s) may form through replacement of the Cu-sulphides or, alternatively, by means of reaction between dissolved copper and fine-grained iron sulphide (pyrite) in the surrounding bentonite. Should for some reason the bentonite barrier fail and the conditions become strongly oxidizing, we can expect crustifications and rhythmic growths of Cu(II)-phases, like malachite (Cu2(OH)2CO3). A presence of Fe2 in the clay minerals making up the bentonite might prove to have an adverse effect on the canister stability, since, in this case, the bentonite might be expected to act as a sink for dissolved copper. The mode of mineral growth along the copper - bentonite interface remains an open question

  7. Chemical and Mineralogical Features of Smectite from the Morron de Mateo Bentonite Deposit (Cabo de Gata, Almeria) in Relation to the Parent Rocks and the Alteration Processes Occurred After the Bentonite Formation: Analogies and Implications for the Engineered Clayey Barrier of a Deep Geological Rad waste Repository; Naturaleza de las Esmectitas del Yacimiento de Morron de Mateo (Cabo de Gata, Almeria) en Relacion con la Roca Madre y con los Procesos Posteriores a la Bentonitizacion: Implicaciones Analogicas para la Barrera de Ingenieria de un Almacenamiento Geologico de Residuos Radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Pelayo, M.; Labajo, M. A.; Garcia Romero, L.; Perez del Villar, L.

    2009-10-12

    The Morron de Mateo bentonite deposit is being studied as a natural analogue of the thermal and geochemical effects on the clayey barrier of a Deep Geological Rad waste Repository (DGRR) after its closure, in relation to the radioactive decay of the fission products and the container corrosion. This bentonite deposit and their host rocks were intruded by a rhyodacitic volcanic dome that induced a hydrothermal metasomatic process affecting the bioclastic calcarenite beds close to the dome. Bentonite from the NE sector of the deposit have been chemically and mineralogically characterized. Pyroclastic rocks (white tuffs), epyclastic rocks (mass flow) and andesitic breccia all of them hydrothermally altered, have been studied at the site. Samples are composed of feldspars, quartz and amphybols, as inherited minerals, and phyllosilicates, zeolites, crystoballite and calcite, as new formed minerals. White tuffs have the highest phyllosilicate contents, mainly dioctahedral smectite of montmorillonite type. Epyclastic rocks and andesitic breccia have a highest proportion of inherited minerals, the new formed phillosilicates being di octahedral smectite of beidellite type and an ordered interlayer chlorite/smectite mineral, of corrensite type. Smectite from the epyclastic rocks have higher Fe and Mg contents and chemical variability, as a consequence of nature of their parent rocks. The presence of corrensite in the epyclastic rocks suggests that in the Morron de Mateo area a propilitic alteration process occurred after bentonite formation, which transformed Fe-Mg-rich smectite into corrensite. This transformation was probably favoured by the sub volcanic intrusion, which also produced a temperature increase in the geological media and a supply of Fe-Mg-rich solutions, which also were the responsible for the metasomatic transformations observed in the calcarenite beds. (Author) 57 refs.

  8. Origin of bentonites and clastic sediments of the Paleocene Basilika Formation, Svalbard

    Science.gov (United States)

    Elling, Felix; Spiegel, Cornelia; Estrada, Solveig; Davis, Donald; Reinhardt, Lutz; Henjes-Kunst, Friedhelm; Allroggen, Niklas; Dohrmann, Reiner; Piepjohn, Karsten; Lisker, Frank

    2016-07-01

    The Paleocene was a time of transition for the Arctic, with magmatic activity of the High Arctic Large Igneous Province giving way to magmatism of the North Atlantic Large Igneous Province in connection to plate tectonic changes in the Arctic and North Atlantic. In this study we investigate the Paleocene magmatic record and sediment pathways of the Basilika Formation exposed in the Central Tertiary Basin of Svalbard. By means of geochemistry, Sm-Nd isotopic signatures and zircon U-Pb geochronology we investigate the characteristics of several bentonite layers contained in the Basilika Formation, as well as the provenance of the intercalated clastic sediments. Our data show that the volcanic ash layers of the Basilika Formation, which were diagenetically altered to bentonites, originate from alkaline continental-rift magmatism such as the last, explosive stages of the High Arctic Large Igneous Province in North Greenland and the Canadian Arctic. The volcanic ash layers were deposited on Svalbard in a flat shelf environment with dominant sediment supply from the east. Dating of detrital zircons suggests that the detritus was derived from Siberian sources, primarily from the Verkhoyansk Fold-and-Thrust Belt, which would require transport over ~3000 km across the Arctic.

  9. On the formation of a moving redox-front by α-radiolysis of compacted water saturated bentonite

    International Nuclear Information System (INIS)

    The formation of an expanding volume containing the radiolytically formed oxidants H2O2 and O2 has been studied in α-irradiated compacted water saturated bentonite (ρ = 2.12 gxcm-3). The G-values (0.67±0.05), (0.64±0.07) for H2O2 and O2 respectively are in fair agreement with the corresponding G-values obtained in experiments with synthetic ground water. From the leaching of γ-irradiated bentonite it is concluded that only a fraction of the Fe2+ content is easily accessible as scavenger for the radiolytically formed oxidants. (orig.)

  10. BENTONITE PROCESSING

    Directory of Open Access Journals (Sweden)

    Anamarija Kutlić

    2012-07-01

    Full Text Available Bentonite has vide variety of uses. Special use of bentonite, where its absorbing properties are employed to provide water-tight sealing is for an underground repository in granites In this paper, bentonite processing and beneficiation are described.

  11. Na-smectite s in the Cala de Tomate bentonite deposit (Spain): a natural analogue of the salinity effect on the bentonite barrier of a rad waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Fernandez, A.M.; Cozar, J.S. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT/DIRE/CEAGP), Madrid (Spain); Delgado, A.; Reyes, E. [Ciencias de la Tierra y Quimica Ambiental Estacion Experimental del Zaidin Dpt., Granada (Spain); Fernandez-Soler, J.M. [Granada Univ., Dpt. de Mineralogia y Petrologia (Spain); Tsige, M. [Facultad de Ciencias Geologicas, Dpt. de Geodinamica, Madrid (Spain)

    2005-07-01

    Within the framework of the ENRESA programme for the assessment of the long-term behaviour of the bentonite-engineered barrier for a deep radwaste geological repository, analogue studies on several bentonite deposits are conducted at CIEMAT. Among these analogue studies, the thermal effect induced by volcanic intrusions on bentonite deposits is highlighted. In the Cabo de Gata volcanic region, there are several analogue scenarios where these studies have been performed, such as the Cala de Tomate bentonite deposit that was intruded by a pyroxene andesite volcanic dome. However, geological, mineralogical, physicochemical, geochemical and stable isotopic data obtained from the smectites do not allow to establish any analogy with the thermal effect expected on the bentonite-engineered barrier of a deep geological repository after burial. Thus, the bentonitisation processes took place after the intrusion of the dome, as a result of meteoric diagenesis intensively developed on faulting zone affecting the parent pyroclastic acid tuffs. This faulting process occurred after the dome intrusion. However, the physicochemical characteristics of these smectites, specially the exchangeable cations, allow to consider this bentonite deposit as a natural analogue of the saline effect on the clayey barrier. This analogy has been established because Na-smectites are present in this deposit and, up to our present knowledge, it is the first time that these smectites occur naturally in the Cabo de Gata-La Serrata de Nijar volcanic region. As a consequence, the main objectives of this work are: i) to characterise these smectites; ii) to establish their genesis and processes affecting them after their formation and iii) to identify the effects on the bentonite-engineered barrier should it were affected by a Na-rich saline waterfront. (authors)

  12. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J. [Conterra AB (Sweden)

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  13. Modelling Iron-Bentonite Interactions

    Science.gov (United States)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin ( 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite alteration products. This, together with inclusion of processes of iron corrosion and diffusion, has enabled investigation of a representative model of the alteration of bentonite in a typical EBS environment. Simulations with fixed mineral surface areas show that berthierine dominates the solid product assemblage, with siderite replacing it at simulation times greater than 10 000 years. Simulations with time-dependent mineral surface areas show a sequence of solid alteration products, described by: magnetite -> cronstedtite -> berthierine -> chlorite. Using plausible estimates of mineral

  14. Bentonite erosion. Final report

    International Nuclear Information System (INIS)

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  15. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  16. Characterisation of bentonite from Hliník nad Hronom deposit (Jastrabá Formation of the Štiavnica stratovolcano, Western Carpathians

    Directory of Open Access Journals (Sweden)

    Peter Uhlík

    2012-05-01

    Full Text Available The Hliník nad Hronom bentonite deposit is situated in Jastrabá Formation on the NW margin of the Štiavnické vrchy Mts. Geological exploration was realised in the deposit at the end of eighties. The bentonite was described as lower quality. The deposit is very rarely operated. The purpose of presented study was characterisation of the bentonite predominately by actual X-ray diffraction techniques and infrared spectroscopy and comparison of the Hliník nad Hronom deposit with other Western Carpathian bentonites. Studied bentonite and bentonized rhyolitic tuff from Hliník nad Hronom were composed of 30–53 wt % of Al-Mg montmorillonite, 19–45 wt % of opal-C or opal-CT, mostly less than 14 wt % of volcanic glass and less than 10 wt % of K-feldspar. Also illite, biotite, kaolinite and other were determined as minor and trace mineral phases. Cation-exchange capacity (CEC of bulk rock samples ranged from 30 to 65 meq/100g. CEC was significantly higher in clay fraction (85–95 meq/100g that is in good correlation with presence of almost pure montmorillonite. The BWA analysis of montmorillonite 001 XRD peaks was performed to calculate the mean crystallite size and the crystallite size distribution. Surface controlled crystal growth mechanism was determined for Hliník nad Hronom´s montmorillonite according to calculated parameters of lognormal particle thickness distribution (α and β2, similarly as for other Western Carpathian smectites. The mean thickness of smectite particles from Hliník nad Hronom (about 6.78 nm belongs to the lowest values that were calculated for Western Carpathian smectites. Based on the presented results and previous knowledge, we can assume that the deposit originated in lacustrine environment. The insufficient fluid flow rate caused the precipitation of high amount of opal-C or/and opal-CT. The crystallisation temperature of smectites was low, only 20–50°C, at the bentonitization of rhyolitic tuff of Hliník nad

  17. Gas Transport in Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gutierre-Rodrigo, V.; Martin, P. I.; Romero, F. J.; Barcala, J. M.

    2013-07-01

    remained open allowing decreasing gas flow, the swelling capacity of the bentonite matrix (lower as the density is lower) had also an effect on path formation and consequently on permeability. After restoration of the bentonite the same breakthrough pressures and permeabilities were found, pointing to the perfect healing of these preferential pathways. A sealed interface along the bentonite did not seem to affect the breakthrough pressure or permeability values. (Author)

  18. Adsorption of single-strand alkylammonium salts on bentonite, surface properties of the modified clay and polymer nanocomposites formation by a two-roll mill

    International Nuclear Information System (INIS)

    The adsorption of tallow alkylammonium salts onto bentonite from the Lopburi province in Thailand, and the effect of surface wettability on the formation of polymer-clay nanocomposites are reported. We looked specifically at octadecyltrimethyl ammonium chloride (S18), a popular member of the tallow alkylammonium salt family. The adsorption of S18 onto the bentonite interlayer can be divided into three distinct stages depending upon the initial concentration of S18. These stages are (a) monolayer formation, (b) intermediate state of double layer formation and (c) double layer formation. A decrease in surface energy driven by drops in the values of the polar and dispersive components was observed as the amount of surfactant surface coverage increased. Using thermal gravimetric analysis (TGA), the critical surface energy (CSE) of organoclay was found to decrease as the amount of absorbed S18 increased. S18 organoclay with different degrees of surface coverage was used in a two-roll mill to prepare high-density polyetheylene (HDPE)-clay nanocomposites. The oxidized polyethylene wax (OWax) was used as a dispersing agent to promote the delamination of the organoclay platelets. The results from X-ray diffraction (XRD) and transmission electron microscope (TEM) indicated a difference in the dispersing capability of the organoclay.

  19. Adsorption of single-strand alkylammonium salts on bentonite, surface properties of the modified clay and polymer nanocomposites formation by a two-roll mill

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Jumpei [Materials Science and Engineering Programme and Nanotec Center of Excellence at Mahidol University, Faculty of Science, Mahidol University, Rajathavee, Bangkok 10400 (Thailand); Limpanart, Sarintorn; Khunthon, Srichalai [Metallurgy and Materials Research Institute, Chulalongkorn University, Phayathai, Bangkok 10330 (Thailand); Osotchan, Tanakorn [Materials Science and Engineering Programme and Nanotec Center of Excellence at Mahidol University, Faculty of Science, Mahidol University, Rajathavee, Bangkok 10400 (Thailand); Physics Department, Faculty of Science, Mahidol University, Rajathavee, Bangkok 10400 (Thailand); Traiphol, Rakchart [Laboratory of Advanced Polymers and Nanomaterials, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Srikhirin, Toemsak, E-mail: sctsk@mahidol.ac.th [Materials Science and Engineering Programme and Nanotec Center of Excellence at Mahidol University, Faculty of Science, Mahidol University, Rajathavee, Bangkok 10400 (Thailand); Physics Department, Faculty of Science, Mahidol University, Rajathavee, Bangkok 10400 (Thailand)

    2010-10-01

    The adsorption of tallow alkylammonium salts onto bentonite from the Lopburi province in Thailand, and the effect of surface wettability on the formation of polymer-clay nanocomposites are reported. We looked specifically at octadecyltrimethyl ammonium chloride (S18), a popular member of the tallow alkylammonium salt family. The adsorption of S18 onto the bentonite interlayer can be divided into three distinct stages depending upon the initial concentration of S18. These stages are (a) monolayer formation, (b) intermediate state of double layer formation and (c) double layer formation. A decrease in surface energy driven by drops in the values of the polar and dispersive components was observed as the amount of surfactant surface coverage increased. Using thermal gravimetric analysis (TGA), the critical surface energy (CSE) of organoclay was found to decrease as the amount of absorbed S18 increased. S18 organoclay with different degrees of surface coverage was used in a two-roll mill to prepare high-density polyetheylene (HDPE)-clay nanocomposites. The oxidized polyethylene wax (OWax) was used as a dispersing agent to promote the delamination of the organoclay platelets. The results from X-ray diffraction (XRD) and transmission electron microscope (TEM) indicated a difference in the dispersing capability of the organoclay.

  20. Activation of wine bentonite with gamma rays

    International Nuclear Information System (INIS)

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm3. All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  1. Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column

    International Nuclear Information System (INIS)

    Clays and clay rocks are considered viable geotechnical barriers in radioactive waste disposal. One reason for this is the propensity for cation exchange reactions in clay minerals to retard the migration of radionuclides. Although another retardation mechanism, namely the incorporation of radionuclides into sulfate or carbonate solid solutions, has been known for a long time, only recently has it been examined systematically. In this work, we investigate the competitive effect of both mechanisms on the transport of radium (Ra) in the near-field of a low- and intermediate level nuclear waste repository. In our idealized geochemical model, numerical simulations show that barium (Ba) and strontium (Sr) needed for Ra sulfate solid solutions also partition to the cation exchange sites of montmorillonite (Mont), which is the major mineral constituent of bentonite that is used for tunnel backfill. At high Mont content, most Ra tends to attach to Mont, while incorporation of Ra in sulfate solid solutions is more important at low Monte content. To explore the effect of the Mont content on the transport of radium, a multi-component reactive transport model was developed and implemented in the scientific software OpenGeoSys-GEM. It was found that a decrease of fixation capacity due to low Mont content is compensated by the formation of solid solutions and that the migration distance of aqueous Ra is similar at different Mont/water ratios. (author)

  2. Bentonite erosion by dilute waters in initially saturated bentonite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. One scenario of interest for the long-term safety assessment of a spent nuclear fuel repository involves the loss of bentonite buffer material through contact with dilute groundwater at a transmissive fracture interface (SKB 2011, Posiva 2012a). The scenario is based on the stable colloids at low ionic strength: - the cohesive forces of bentonite decrease in low-salinity conditions, and colloids start to dominate and are able to leave the gel-like bentonite on the groundwater bentonite boundary; - after colloid formation, groundwater may carry away the only just released clay colloids; - low-salinity events are most probable during post-glacial conditions, when also pressure gradients are high, causing elevated flow velocity, which may enhance colloidal transport. Therefore, it is very important from the point of view of repository safety assessment to be able to estimate how much bentonite may be lost during a post-glacial event, when the groundwater salinity and velocity, as well as the duration of the event are fixed. It is possible that more than one event will hit the same canister and buffer, and that several canisters and buffers may be jeopardized. The results in the issue so far may be divided into modelling attempts and experimental work. The modelling has been based on two main guidelines: external (Birgersson et al., 2009) and internal friction models (Neretnieks et al., 2009). However, these models have not been validated for erosion, probably due to lack of suitable laboratory data. The latter approach is more ambitious due to lack of fitting parameters, though the internal friction model itself may be varied. The internal friction model has proven to be time-consuming to solve numerically. This work indicates that experiments carried out by Schatz et al. (2012) differ significantly from the predictions obtained from Neretnieks' model. We present our numerical modelling results based on a set of

  3. Numerical simulation of alteration of sodium bentonite by diffusion of ionic groundwater components

    International Nuclear Information System (INIS)

    Experiments measuring the movement of trace amounts of radionuclides through compacted bentonite have typically used unaltered bentonite. Models based on experiments such as these may not lead to accurate predictions of the migration through altered or partially altered bentonite of radionuclides that undergo ion exchange. To address this problem, we have modified an existing transport code to include ion exchange and aqueous complexation reactions. The code is thus able to simulate the diffusion of major ionic groundwater components through bentonite and reactions between the bentonite and groundwater. Numerical simulations have been made to investigate the conversion of sodium bentonite to calcium bentonite for a reference groundwater characteristic of deep granitic formations. 20 refs., 2 figs., 2 tabs

  4. Porewater chemistry in compacted bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A.; Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In this study, the porewater chemistry in compacted bentonite, considered as an engineered barrier in the repository of spent fuel, has been studied in interaction experiments. Many parameters, like the composition and density of bentonite, composition of the solution, bentonite-to-water ratio (B/W), surrounding conditions and experimental time have been varied in the experiments. At the end of the interaction the equilibrating solution, the porewaters squeezed out of the bentonite samples, and bentonites themselves were analyzed to give information for the interpretation and modelling of the interaction. Equilibrium modelling was performed with the HYDRAQL/CE computer code 33 refs.

  5. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron

    International Nuclear Information System (INIS)

    The main objectives of this study were to enhance the understanding of the interactions of bentonites with steel containers in the near field of a repository in salt formations and to determine missing experimental thermo-hydraulical-chemical and mineralogical data needed for the THC modelling of the interactions of bentonites with iron. At the beginning of this project a literature review helped to clarify the state of the art regarding the above mentioned objectives prior to the start of the experimental work. In the following experimental programme the hydraulic changes in the pore space of compacted MX80 bentonites containing metallic iron powder and in contact with three solutions of different ionic strength containing different concentrations of Fe2+ have been investigated. The alterations of MX80 and several other bentonites have been assessed in contact with the low ionic strength Opalinus Clay Pore Water (OCPW) and the saturated salt solutions NaCl solution and IP21 solution. Under repository relevant boundary conditions we determined on compacted MX80 samples with the raw density of 1.6 g/cm3 simultaneously interdependent properties like swelling pressures, hydraulic parameters (permeabilities and porosities), mineralogical data (changes of the smectite composition and iron corrosion products), transport parameters (diffusion coefficients) and thermal data (temperature dependent reaction progresses). The information and data resulting from the experiments have been used in geochemical modelling calculations and the existing possibilities and limitations to simulate these very complex near field processes were demonstrated. The main conclusion of this study is that the alteration of bentonites in contact with iron is accentuated and accelerated. Alterations in contact with solutions of different ionic strength identified by the authors in previous studies were found be much more intensive in contact with metallic iron and at elevated temperatures. The

  6. Formation of unsaturated hydrocarbons in interstellar ice analogs by cosmic rays

    OpenAIRE

    Pilling, S.; Andrade, D. P. P; da Silveira, E. F.; Rothard, H.; Domaracka, A.; Boduch, P.

    2012-01-01

    The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accel\\'erat\\'eur National d'Ions Lourds) ...

  7. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  8. Bentonite erosion. Laboratory studies

    International Nuclear Information System (INIS)

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain mostly

  9. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)

    2009-11-15

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  10. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe{sup 2+} ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt

  11. Characterizing fiber formation in meat analogs using an anisotropic photon migration model

    Science.gov (United States)

    Ranasinghesagara, J.; Hsieh, F.; Yao, G.

    2006-10-01

    Animal meat products may not be the best choice for many people in the world due to various reasons such as cost, health problems, or religious restrictions. High moisture (40-80%) extrusion technology shows a great promise for texturizing vegetable proteins into fibrous meat alternatives. Soy protein which is healthy, highly nutritious, low in both fat and carbohydrate has been used in high moisture extrusion process to produce meat analogs with well formed fiber that resemble chicken or turkey breast meat. Assessing fiber formation in extruded products is important for controlling extrusion quality in manufacturing process. Although several methods have been studied for quantifying fiber formation in extrudates, their applications for real time quality control in manufacturing process have been challenging. We explored the possibility of applying a nondestructive method based on backscattered reflectance to measure the fiber formation of extruded soy proteins. An image processing method was developed to extract the light reflectance profile at the extrudates' surface. We applied the anisotropic continuous time random walk (CTRW) theory to quantitatively describe the fiber formation in extrudates based on extracted surface reflectance profiles. This method has a potential to be used as a non-destructive, fast, real time quality control tool for products with fibrous structures.

  12. Development of an Analog System to Simulate Interface Formation During Fusion™ Casting

    Science.gov (United States)

    Di Ciano, Massimo; Weckman, D. C.; Wells, M. A.

    2016-04-01

    To improve casting and product yields of Fusion™ cast AA3003-core/AA4045-clad laminate ingots, a fundamental understanding of the wetting and interface formation process between the oxidized AA3003 cast surface and the AA4045 melt is required. In this study, a laboratory scale analog/immersion test was developed which mimics the wetting and interface formation process that occurs during Fusion™ casting. The effects of reheating and remelting of the AA3003 cast surface, the degree of surface oxidation present during initial contact of the two alloys, and the atmospheric conditions (air or argon) on interface formation when dipped into an AA4045 melt were examined. Results indicated that in an argon atmosphere, wetting and dissolution of the solid, oxidized AA3003 samples by liquid AA4045 occurred at temperatures both above and below the measured onset of AA3003 remelting. AA3003/AA4045 interfaces were similar to those produced during Fusion™ casting, with a thin layer of AA4045 forming an oxide-free, metallurgical interface to the AA3003 after immersion. The AA3003 surface oxides were not an impediment to wetting and bond formation. Mg surface segregation was observed on the oxidized AA3003 surfaces and may play a role to help penetrate the oxide layer. For tests conducted in air, wetting of the sample by AA4045 liquid was generally poor regardless of temperature.

  13. Large Impacts around a Solar Analog Star in the Era of Terrestrial Planet Formation

    CERN Document Server

    Meng, Huan Y A; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E

    2015-01-01

    The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million year-old solar analog star. We observed a substantial brightening of the debris disk at 3-5 {\\mu}m, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.

  14. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Kaufhold, Stephan, E-mail: s.kaufhold@bgr.de [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); Hassel, Achim Walter [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sanders, Daniel [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf (Germany); Dohrmann, Reiner [BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover (Germany)

    2015-03-21

    Graphical abstract: Corrosion at the bentonite iron interface proceeds unaerobically with formation of an 1:1 Fe silicate mineral. A series of exposure tests with different types of bentonites showed that Na–bentonites are slightly less corrosive than Ca–bentonites and highly charges smectites are less corrosive compared to low charged ones. The formation of a patina was observed in some cases and has to be investigated further. - Highlights: • At the iron bentonite interface a 1:1 Fe layer silicate forms upon corrosion. • A series of iron–bentonite corrosion products showed slightly less corrosion for Na-rich and high-charged bentonites. • In some tests the formation of a patina was observed consisting of Fe–silicate, which has to be investigated further. - Abstract: Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na–bentonites compared to the Ca–bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe

  15. Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies.

    Science.gov (United States)

    Verma, P K; Pathak, P N; Mohapatra, P K; Godbole, S V; Kadam, R M; Veligzhanin, A A; Zubavichus, Y V; Kalmykov, S N

    2014-04-01

    The presence of long-lived radionuclides in natural aquatic systems is of great environmental concern in view of their possible migration into biospheres of mankind. Trivalent actinides such as (241/243)Am can contribute a great deal to radioactivity for several thousand years. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environments, and the sorption of species involving radionuclides by sediments around water bodies. Clay minerals such as bentonite are known to be highly efficient in radionuclide retention and hence are suitable candidates for backfill materials. This study presents experimental results on the interaction of Eu(iii) and Gd(iii) (chemical analogs of Am(iii) and Cm(iii)) with bentonite clay under varying experimental conditions of contact time, pH, and the presence of complexing anions such as humic acid (HA) and citric acid (cit). The sorption of HA on bentonite decreased with increasing the pH from 2 to 8, which was attributed to electrostatic interactions between HA and the bentonite surfaces. The sorption of Eu(iii) on bentonite colloids showed marginal variation with pH (>95%). However, a decrease in Eu(iii) sorption was observed in the presence of HA beyond pH 5 due to the increased aqueous complexation of Eu(iii) with deprotonated HA in the aqueous phase. The complexation of Eu(iii) with citrate ions was studied using Time Resolved Laser induced Fluorescence Spectroscopy (TRLFS) to explain the sorption data. Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) investigations were carried out to understand the local chemical environment surrounding Eu(iii) and Gd(iii) (EPR probe) sorbed on bentonite under different experimental conditions. Surface complexation modelling shows the predominant formation of ≡XOEu(+2) (silanol) up to pH < 7, and beyond which ≡YOEu(OH)(+) (aluminol) is responsible for the quantitative sorption of Eu(iii) onto

  16. Formation of unsaturated hydrocarbons in interstellar ice analogs by cosmic rays

    CERN Document Server

    Pilling, S; da Silveira, E F; Rothard, H; Domaracka, A; Boduch, P

    2012-01-01

    The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accel\\'erat\\'eur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometry at different ion fluences. Dissociation cross section of cyclohexane and its half-life in astrophysical environments were determined. A comparison between spectra of bombarded ices and young stellar sources indicates that the initial composition of grains in theses environments should contain a mixture of H2O, NH3, CO (or CO2), simple al...

  17. Deuterium Fractionation during Amino Acid Formation by Photolysis of Interstellar Ice Analogs Containing Deuterated Methanol

    Science.gov (United States)

    Oba, Yasuhiro; Takano, Yoshinori; Watanabe, Naoki; Kouchi, Akira

    2016-08-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH2DOH at 10 K. Five amino acids (glycine, α-alanine, β-alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α-alanine and β-alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  18. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  19. Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds

    Directory of Open Access Journals (Sweden)

    Kiipli, Tarmo

    2008-03-01

    Full Text Available Thirty suspected altered volcanic ash (bentonite samples from the Nässumaa-825 and Orissaare-859 sections were analysed by the X-ray fluorescence method. Twenty of these samples revealed chemical signs of pure volcanogenic material, one was of mixed terrigenous–volcanogenic origin, and nine were classified as terrigenous claystones. Twenty of the bentonites were correlated, with variable confidence, with bentonites from earlier studied sections; one sample represents a formerly unknown eruption. New and earlier published bentonite correlations were used for tracing the diachronous nature of the Rumba–Velise formations boundary and for composing new isopach schemes of six Telychian bentonites.

  20. Formation of the Moving Analogy Target with C+ + Language in TV Tracking Equipment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be varied. The video signal transformed by video switching card is used to test the performances of the electronic box of TV tracking equipment. These performances include minimal tracking contrast, minimal size of tracking target, maximal tracking speed and capture time.

  1. Coupled THMC models for bentonite in clay repository for nuclear waste

    Science.gov (United States)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  2. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    Science.gov (United States)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  3. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  4. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  5. Pertechnetate diffusion in GMZ bentonite

    International Nuclear Information System (INIS)

    99Tc is an important radionuclides related to repository safety assessment. The mobility pertechnetate (TcO4-) can be reduced to immobility technetium(IV) hydrous oxides (TcO2 · nH2O) by Fe(II)-bearing minerals. In China, Gaomiaozi (GMZ) bentonite is regarded as the favorable candidate backfilling material for the HLW repository, which is contained some FeO. The diffusion behavior of 99Tc was investigated in GMZ bentonite by through- and out-diffusion methods. The effective diffusion coefficient (De), the accessible porosity (εacc), apparent diffusion coefficient (Da) and distribution coefficient (Kd) were decreased with the increasing of dry density. The De values were (2.8 ± 0.2) x 10-11 m2/s and (3.5 ± 0.2) x 10-12 m2/s at dry density of 1,600 and 1,800 kg/m3, respectively. It was indicated that the dominating species was TcO4- during the diffusion processing. While, out-diffusion results showed that part of TcO4- may be reduced by Fe(II). The relationship of De and εacc could be described by Archie's law with exponent n = 2.4 for 99Tc diffusion in GMZ bentonite. Furthermore, the relationship between Da and dry density (ρ) was exponential. (author)

  6. Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment

    International Nuclear Information System (INIS)

    To investigate the dominant mechanisms of colloid formation from compacted and confined bentonite innovative experiments were conducted. Chemical or physical processes that can affect the erosion of the bentonite surface were analyzed (ionic strength of the water, Ca in the water and in the exchange complex of the clay, dry density of the clay and presence of a water flow rate at the bentonite surface).Hydration, swelling and extrusion of clay into pores or fractures are primary steps for the formation of free colloidal particles in the aqueous phase, and the chemistry of the clay/water system is the most important parameter controlling the generation and stability of colloids. Ca-bentonite formed colloids quantities below the detection limit of our techniques, even in deionised water, but a percentage of Na approximately 20-30% in the clay exchange complex, as that present in the FEBEX bentonite, is enough to allow the formation of colloidal particles in quantities very similar to those produced by the Na-bentonite. The results for bentonite colloid generation obtained at a laboratory scale allowed the estimation of a range of colloid generation rates under different chemical conditions. Results were compared with in situ experimental investigations carried out at the FEBEX gallery emplaced in a granite massif at the Grimsel Test Site (Switzerland). The quantitative analysis of laboratory and in situ data can be used as input for models and performance assessment (PA) of high level radioactive waste (HLRW) repositories. (authors)

  7. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior; Bionanocompositos quitosana/bentonita: morfologia e comportamento mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Braga, C.R.C.; Melo, F.M.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Vitorino, I.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencia e Engenharia de Materiais; Fook, M.V.L.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  8. Pharmacokinetics of Intranasal Scopolamine Gel Formation During Antiorthostatic Bedrest - A Microgravity Analog

    Science.gov (United States)

    Lakshmi, Putcha; Singh, R. P.; Crady, V. A.; Derendorf, H.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is the most frequently used drug for the treatment of motion sickness (MS) which is currently available in transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability thus allowing precise and reduced dosing options in addition to offering rescue and treatment options. As such, an intranasal gel dosage formulation of scopolamine (INSCOP) was developed and Pharmacokinetics (PK) and bioavailability were determined under IND guidelines. The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostatic bedrest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 and 0.4 mg doses of INSCOP during AMB and ABR in a four-way crossover design. Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose. Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration versus time curve (AUC) during ABR after the 0.4 mg dose. This difference in AUC and Cls at the higher but not the lower dose during ABR may suggest that ABR may affect metabolism and/or clearance at higher doses of INSCOP. These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  9. Properties of Bentonite Enhanced Loess and Laterite

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 白庆中; 聂永丰

    2004-01-01

    Loess and laterite distributed widely in the northern and southern China cannot be directly used as the natural barrier to isolate the solid waste because of their high hydraulic conductivity. In this paper, they are enhanced by bentonite to improve their hydraulic performance. The impact of bentonite content and water content on compressive strength of the compacted soil was investigated. The effects of bentonite content, water content, dry density and hydraulic gradient on the hydraulic conductivity were studied in detail. For the laterite and the laterite with 8% of bentonite, the experimental results of hydraulic conductivity can be applied in the engineering design. However, for the loess and the bentonite enhanced loess, those of hydraulic conductivity can not be directly applied in the engineering design because their hydraulic performance does not comply with the Darcy's law. These experimental results have to be carefully modified before application.

  10. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H. [LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Institut Pierre Simon Laplace, Labex ESEP, Paris (France); Duvernay, F.; Chiavassa, T., E-mail: vvinogradoff@mnhn.fr [PIIM, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, UMR CNRS 7345, Marseille (France)

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  11. Bentonite mat demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.G.

    1994-12-30

    The Bentonite Mat Demonstration was developed to provide the Environmental Restoration Department with field performance characteristics and engineering data for an alternative closure cover system configuration. The demonstration was initiated in response to regulatory concerns regarding the use of an alternative cover system for future design configurations. These design considerations are in lieu of the US Environmental Protection Agency (EPA) Recommended Design for Closure Cover Systems and specifically a single compacted kaolin clay layer with a hydraulic conductivity of 1 {times} 10{sup {minus}7} cm/sec. This alternative configuration is a composite geosynthetic material hydraulic barrier consisting from bottom to top: 2 ft compacted sandy clay layer (typical local Savannah River Site soil type) that is covered by a bentonite mat--geosynthetic clay liner (GCL) and is overlaid by a 40 mil High Density Polyethylene (HDPE) geomembrane--flexible membrane liner. This effort was undertaken to obtain and document the necessary field performance/engineering data for future designs and meet regulatory technical requirements for an alternative cover system configuration. The composite geosynthetic materials hydraulic barrier is the recommended alternative cover system configuration for containment of hazardous and low level radiological waste layers that have a high potential of subsidence to be used at the Savannah River Site (SRS). This alternative configuration mitigates subsidence effects in providing a flexible, lightweight cover system to maintain the integrity of the closure. The composite geosynthetic materials hydraulic barrier is recommended for the Sanitary Landfill and Low Level Radiological Waste Disposal Facility (LLRWDF) Closures.

  12. Assessment Criteria of Bentonite Binding Properties

    Directory of Open Access Journals (Sweden)

    S. Żymankowska-Kumon

    2012-09-01

    Full Text Available The criteria, with which one should be guided at the assessment of the binding properties of bentonites used for moulding sands, areproposed in the paper. Apart from the standard parameter which is the active bentonite content, the unrestrained growth indicator should be taken into account since it seems to be more adequate in the estimation of the sand compression strength. The investigations performed for three kinds of bentonites, applied in the Polish foundry plants, subjected to a high temperature influences indicate, that the pathway of changes of the unrestrained growth indicator is very similar to the pathway of changes of the sand compression strength. Instead, the character of changes of the montmorillonite content in the sand in dependence of the temperature is quite different. The sand exhibits the significant active bentonite content, and the sand compression strength decreases rapidly. The montmorillonite content in bentonite samples was determined by the modern copper complex method of triethylenetetraamine (Cu(II-TET. Tests were performed for bentonites and for sands with those bentonites subjected to high temperatures influences in a range: 100-700ºC.

  13. Effectiveness of fracture sealing with bentonite grouting

    International Nuclear Information System (INIS)

    Bentonite is known to have an extremely low permeability and a self-healing ability. It has therefore been selected as a major sealing component in several repository concepts. Bentonite grouts have the following advantages, (1) small particle size, can be injected into small fractures or voids, (2) suitable water absorption properties, can produce gels at low concentrations, and (3) stable physical and chemical properties, may have considerable longevity. Bentonite fracture grouting tests are performed on a model made of circular acrylic plates with outer diameter of 30 cm and central injection hole of 2.5 cm diameter. Suspension with bentonite concentration of 15% to 31% have been injected into fractures with apertures of 9 to 90 microns under injection pressures less than 0.6 MPa. Grouting reduces the hydraulic conductivities of the fractures from the 10-1 to the 10-5 cm/s level. When the suspension is thin enough and the fracture is very small, channeling develops in the grouted fractures. Preliminary results indicate that the permeability of a grouted fracture does not increase with time in more than 125 days. The flow properties of bentonite suspensions, viscosity, shear stress, yield stress and gelation, are investigated. Water flow through ungrouted fractures and movement of water in bentonite grout are studies. The physical stability or bleeding capacity of bentonite suspensions is determined. 122 refs., 56 figs., 10 tabs

  14. Quality assurance of the bentonite material

    International Nuclear Information System (INIS)

    This report describes a quality assurance chain for the bentonite material acquisition for a nuclear waste disposal repository. Chemical, mineralogical and geotechnical methods, which may be applied in quality control of bentonite are shortly reviewed. As a case study, many of the presented control studies were performed for six different bentonite samples. Chemical analysis is a very reliable research method to control material homogeneity, because the accuracy and repeatability of the study method is extremely good. Accurate mineralogical study of bentonite is a complicated task. X-ray diffractometry is the best method to identify smectite minerals, but quantitative analysis of smectite content remains uncertain. To obtain a better quantitative analysis, development of techniques based on automatic image analysis of SEM images is proposed. General characteristics of bentonite can be obtained by rapid indicator tests, which can be done on the place of reception. These tests are methylene blue test giving information on the cation exchange capacity, swelling index and determination of water absorption. Different methods were used in the determination of cation exchange capacity (CEC) of bentonite. The results indicated differences both between methodologies and between replicate determinations for the same material and method. Additional work should be done to improve the reliability and reproducibility of the methodology. Bentonite contains water in different modes. Thus, different determination methods are used in bentonite studies and they give somewhat dissimilar results. Clay research use frequently the so-called consistency tests (liquid limit, plastic limit and plasticity index). This study method does, however, not seem to be very practical in quality control of bentonite. Therefore, only the determination of liquid limit with fall-cone method is recommended for quality control. (orig.)

  15. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  16. 鄂尔多斯盆地南缘晚奥陶世钾质斑脱岩——SHRIMP测年及其成因环境%K-Bentonites from the Jinsushan Formation of Late Ordovician, Southern Ordos Basin: SHRIMP Dating and Tectonic Environment

    Institute of Scientific and Technical Information of China (English)

    陈诚; 史晓颖; 裴云鹏; 王新强

    2012-01-01

    The Late Ordovician Jinsushan Formation in southern Ordos basin is characterized by carbonate of deep marine facies, and contains several marked tuffaceous clay beds of orange color. Mineral and geochemical analysis show that the clay beds mainly consist of illite and mixed illite-montmorillonite in composition, with some quartz, feldspar and zircon minerals that derived from intermediate to acidic magma, rich in K2O, and are of typical K-bentonites. Analysis on trace elements and geochemical composition of the bentonites suggests that their source rock is likely derived from syn-collision island-arc volcanism. SHRIMP U-Pb dating on zircons from the bentonites has yielded three sets of ages: (451. 5 ±4. 9) to (452. 1 ±5. 1) Ma, (457. 5 ±5. 1) Ma and (465. 8 ±8. 3) Ma, with the former two identical to those of the well-known Millbrig-Kinnekulle and Dicke bentonites in Laurentia and Baltica. However, stepwise discriminant analysis on chemical composition of the bentonites and comparison with those from the Midcontinent of United States indicate that they are not congruent in chemical fingerprints, therefore may not have resulted from the same episodes of the giant eruptions. The tuffaceous materials in the Jinsushan bentonites were most likely from volcanic eruptions of the island-arcs along north side of the Shang-Dan oceanic basin. The strong basement subsidence at southern margin of the Ordos basin and the significant change in the sedimentary framework there in early Late Ordovician may be best interpre-ted as depositional responses to the tectonic extension and subsiding initiated in the back-arc basin north to the Erlangping island-arc.%鄂尔多斯盆地南缘上奥陶统金粟山组以深水碳酸盐岩沉积为特征,含多层桔黄色凝灰质粘土岩.矿物和化学成分分析表明,其主要由伊利石和伊蒙混层粘土矿物组成,含少量石英、长石和锆石等中酸性岩浆矿物,富K2O,属钾质斑脱岩;微量元素分析显示本

  17. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    Science.gov (United States)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  18. Results of bentonite grouting experiment

    International Nuclear Information System (INIS)

    The Bentonite grouting, which will not solidify, is mainly expected to reduce the hydraulic conductivity of underground water in the expected damage zone by filling the fractures or cracks, so the evaluation of the degree of hydraulic conductivity, stability and the improvement area becomes important. The study and basic experiments for sealing of the adits have been promoted, up to now, from the aspects of the characteristics and long term stability of candidate materials, and design and construction (Pusch et al., 1987; Tanai and Masuda, 1991). However, in Japan, the application examples of clay type materials for grouting are extremely few and is limited to the construction experience of the national oil underground storage at Kuji (Miyanaga and Ebara, 1993), with the exception of some test cases (Boergesson et al., 1991) from overseas. This report summarize basic characteristics of the clay type material relevant to the hydraulic conductivity, from the result of the clay grouting experiment conducted at the rock site. (author)

  19. Gas migration through bentonite clay

    International Nuclear Information System (INIS)

    Hydrogen gas produced by irradiation of pore water in the highly compacted bentonite that surrounds the copper canisters according to the KBS 2 and 3 concepts, may escape from the clay/copper interface if the gas pressure is higher than the groundwater pressure. A reasonable physical model predicts that gas may penetrate wider capillary passages that actually exist in the very dense clay, although these passages are still of microscopic size. In the large majority of the clay voids, the capillary action is sufficient, however, to resist gas penetration, and this suggests that a possible mechanism of gas migration is that of a finger-like pattern of tortuous gas passages extending from the canisters if radiolysis takes place at all. Two series of experiments have been run at gas pressures up to about 10 MPa. Nitrogen as well as hydrogen were used in these tests which seem to confirm, in principle, the validity of the physical model. (authors)

  20. The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides

    Science.gov (United States)

    Laboratory smog chamber experiments have been carried out to investigate secondary organic aerosol (SOA)formation from the photooxidation of naphthalene and its methyl analogs, 1- and 2-methylnaphthalene (1-MN and 2- MN, respectively). Laboratory smog chamber irradiations were co...

  1. Preparation of Bentonite Supported Nano Titanium Dioxide Photocatalysts by Electrostatic Self-assembly Method

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng; SHI Huisheng; LI Yan

    2012-01-01

    Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts.The materials were characterized by X-ray diffraction (XRD),fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).Methyl orange was used to estimate the photocatalytic activity of the materials.The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated.The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile.Part of nano-size TiO2 particles insert into the galleries of bentonite.The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange.Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.

  2. Pore water chemistry of the febex bentonite

    International Nuclear Information System (INIS)

    The knowledge of pore water chemistry in the clay barrier is essential for performance assessment purposes in a nuclear waste repository, since the pore water composition controls the processes involved in the release and transport of the radionuclides. The methodology followed to define the representative composition of the FEBEX bentonite pore water is presented in this paper. A series of bentonite-water interaction tests have been performed with the aim of providing a database on the main chemical parameters of the bentonite. These tests were carried out both with high solid to liquid (s:l) ratios (squeezing tests) and low s:l ratios (aqueous extracts tests). The exchangeable cations have also been analyzed to determine the selectivity coefficient of the exchange reactions. To complete the data set, a physical and mineralogical characterization of the bentonite was made. The most significant bentonite-water interaction processes controlling the chemistry of the system was identified. The ion concentrations basically depend on the s:l ratio of the system, and the pore water composition is controlled by the dissolution of chlorides, dissolution/precipitation of carbonates and sulphates and the cation exchange reactions in the smectite. The bentonite/water system was modelled with the PHREEQC2 program to obtain the best possible estimation of the pore water composition for initial conditions of water content (=14%), after checking the conceptual model with the experimental results. The model predictions fitted satisfactorily with the experimental data at low s:l ratios. At high s:l ratios, the modelled results agree adequately, except for the sulphate content, which could be affected by the effective porosity, anion exclusion or stagnant zones not taken into account in the model. According to the model, the FEBEX bentonite pore water at 14% moisture is a sodium-chloride type, with an ionic strength of 0.25 M and pH of 7.78. Copyright (2001) Material Research

  3. Microbial activity in bentonite buffers. Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, M.; Itavaara, M.

    2012-07-01

    The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokaryotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7-8 MPa, the amount of free water is low and the average pore and pore throat diameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. Literature on the environmental limits of microbial life in extreme conditions and the occurrence of sulphatereducing prokaryotes in extreme environments is reviewed briefly and the results of published studies characterizing microbes and microbial processes in repository conditions or in relevant subsurface environments are presented. The presence of bacteria, including SRBs, has been confirmed in deep groundwater and bentonite-based materials. Sulphate reducers have been detected in various high-pressure environments, and sulphate-reduction based on hydrogen as an energy source is considered a major microbial process in deep subsurface environments. In bentonite, microbial activity is strongly suppressed, mainly due to the low amount of free water and small pores, which limit the transport of microbes and nutrients. Spore-forming bacteria have been shown to survive in compacted bentonite as dormant spores, and they are able to resume a metabolically active state after decompaction. Thus, microbial sulphide production may increase in repository conditions if the dry density of the bentonite buffer is locally reduced. (orig.)

  4. Migration behavior of iodine in compacted bentonite

    International Nuclear Information System (INIS)

    When the wastes that include I-129 dispose, compacted bentonite would be used as buffer material as well as for HLW disposal. Therefore in this study diffusion experiments were carried out to investigate the migration behavior of iodine in compacted bentonite. Bentonite used in this study consists of more than 95 % of sodium montmorillonite. Bentonite powder was compacted into a cylinder with a diameter of 10 mm and a height of 10 mm with a varied dry density. After saturated with water including 0.01 M of NaCl for one month, approximately 10 micro liters of tracer solution I- or IO3- were spiked on a surface of compacted bentonite respectively. The constant boundary concentrations and the diffusion coefficients of I- and IO3- were determined by the penetration method. Iodine profiles showed typical shape of error function complement. The constant boundary concentration of I- is several times larger than that of IO3-. This could be cause by geometrical limitation and/or anion exclusion of montmorillonite because IO3- is larger than I- and montmorillonite has negative surface charge. Apparent diffusion coefficients of I- and IO3- were obtained in the range of 27.0 to 192.9 μm2/s and 9.8 to 117.4 μm2/s, respectively. (author)

  5. Enhancement of the bentonite sorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Mockovciakova, Annamaria, E-mail: mocka@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences Watsonova 45, 04354 Kosice (Slovakia); Orolinova, Zuzana [Institute of Geotechnics, Slovak Academy of Sciences Watsonova 45, 04354 Kosice (Slovakia); Skvarla, Jiri [Institute of Montaneous Sciences and Environmental Protection, Technical University in Kosice, Park Komenskeho 19, 04200 Kosice (Slovakia)

    2010-08-15

    The almost monomineral fraction of bentonite rock-montmorillonite was modified by magnetic particles to enhance its sorption properties. The method of clay modification consists in the precipitation of magnetic nanoparticles, often used in preparing of ferrofluids, on the surface of clay. The influence of the synthesis temperature (20 and 85 deg. C) and the weight ratio of bentonite/iron oxides (1:1 and 5:1) on the composite materials properties were investigated. The obtained materials were characterized by the X-ray diffraction method and Moessbauer spectroscopy. Changes in the surface and pore properties of the magnetic composites were studied by the low nitrogen adsorption method and the electrokinetic measurements. The natural bentonite and magnetic composites were used in sorption experiments. The sorption of toxic metals (zinc, cadmium and nickel) from the model solutions was well described by the linearized Langmuir and Freundlich sorption model. The results show that the magnetic bentonite is better sorbent than the unmodified bentonite if the initial concentration of studied metals is very low.

  6. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  7. Sealing performance of bentonite and bentonite/crushed rock borehole plugs

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, S.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

    1992-07-01

    This study includes a systematic investigation of the sealing performance of bentonite and bentonite/crushed rock plugs. American Colloid C/S granular bentonite and crushed Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that a composition to yield a permeability lower than 5 {times} 10{sup {minus}8} cm/s would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no significant effect on the sealing performance within the test range from room temperature to 600{degree}C. Piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for samples with a bentonite content of 25 and 35%, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for plug design. A permeability model is developed for the prediction of permeability in clays, especially in view of the difficulties in obtaining this property experimentally. A piping model is derived based on plastic flow theory. This piping model permits the estimation of critical hydraulic gradients at which flow of bentonite takes place. The model can also be used to define the maximum allowable pore diameter of a protective filter layer.

  8. Adsorption behaviour of bivalent ions onto Febex bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Garcia-Gutierrez, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Dpt. de Impacto Ambiental de la Energia Madrid (Spain)

    2005-07-01

    The sorption and transport properties of radionuclides in the near and far field barriers of a deep geological radioactive waste repository are amongst the principal aspects to be evaluated for the performance assessment (PA) of such a kind of disposal. The study of the clayey materials is crucial because the backfill material is constituted by compacted clay in most countries design; in addition, argillaceous formations are particularly suitable as host rock formations. It is widely recognised that, to acquire predictive modelling capability, a theoretical effort is needed for a mechanistic understanding of sorption processes, as they greatly influence the transport of radionuclides in clay porous structures. In this work, an exhaustive experimental study of the Co(II), Sr (II) and Ca(II) sorption behaviour on a Spanish bentonite was carried out. The clay used for these experiments is the FEBEX bentonite, which is basically formed by smectite (93 {+-} 2%) with small percentages of quartz (2 {+-} 1 %), plagioclase (3 {+-} 1 %), cristobalite (2 {+-} 1 %) and traces of minerals such as K-feldspar and calcite. (authors)

  9. Synthesis and Characteristics of Organic Bentonite Gel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The bentonite was modified using Ca-bentonite as a matrix and octadecyl/ hexadecyl ammoniumsized by dispersing it into the dimethyl benzene-methyl alcohol system fully.The optimum process conditions for organic modification were that the coating agent dosage is 22g/L, reaction time is 90 minutes and the pH value of pulp is 10.X-ray diffraction ( XRD ) analysis indicates that the d (001) value of the modified bentonite is 20.532A.The influence of gel temperature on its viscosity characteristic was studied.By analyzing the transmssion electron microscopy (TEM) images and observing the dispersed gel, the nanometer effect of the organic gel was discussed.

  10. MANU. Purchase of Bentonite. Process Description

    International Nuclear Information System (INIS)

    The aim of this study is to describe the entire bentonite purchasing process accurately. This will enable efficient and focused use of information related to the purchasing phase and to each individual bentonite batch. This work continues from the work started in the report by Ahonen et al. (2008), Quality Assurance of the Bentonite Material, Posiva Working Report 2008-33. The current work includes a short enquiry for all relevant and at the time known producers or re-sellers of bentonite. Questions about relevant products suitable for civil engineering use, more specifically nuclear waste disposal site use, were asked together with test methods, typical test results and test standards. The following aspects and opinions have been processed from the results that were obtained during the project. Each seller/producer has a quality management system, QMS (typically ISO 9001), and ability to perform the basic tests, but there is not an established common set of properties to be tested. Some producers are willing to test according to customers' specifications. Posiva could arrange a network of capable laboratories to carry out tests according to its selected standards. This activity should then be accredited with a reasonable testing volume. Before starting the purchase of bentonite at a large scale, Posiva should go through negotiations and audits with each seller in order to make sure that both parties are testing with the same methods and both understand the range where the values of key parameters may lie. A database is needed for gathering statistically relevant information from the bentonite material parameters over the long run. This is needed for determining the limits within which the material parameters should remain in order to be acceptable. Posiva is encouraged to create a process to optimize the test types and the amount of tests should be identified for immediate and long term use. This process ensures the required quality and costs involved. (orig.)

  11. Ion diffusion in compacted bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K{sub d}, unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.) 45 refs.

  12. Improved regioselectivity in pyrazole formation through the use of fluorinated alcohols as solvents: synthesis and biological activity of fluorinated tebufenpyrad analogs.

    Science.gov (United States)

    Fustero, Santos; Román, Raquel; Sanz-Cervera, Juan F; Simón-Fuentes, Antonio; Cuñat, Ana C; Villanova, Salvador; Murguía, Marcelo

    2008-05-01

    The preparation of N-methylpyrazoles is usually accomplished through reaction of a suitable 1,3-diketone with methylhydrazine in ethanol as the solvent. This strategy, however, leads to the formation of regioisomeric mixtures of N-methylpyrazoles, which sometimes are difficult to separate. We have determined that the use of fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvents dramatically increases the regioselectivity in the pyrazole formation, and we have used this modification in a straightforward synthesis of fluorinated analogs of Tebufenpyrad with acaricide activity.

  13. Erosion of bentonite by flow and colloid diffusion

    International Nuclear Information System (INIS)

    water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the order of a metre per year the gel may penetrate several metres into the fracture at steady state. The simulations were made with only sodium as counter-ion. Most simulations had sodium concentrations below the critical coagulation concentration, CCC. In the compacted bentonite at the fracture mouth it was 10 mM and 0.1 mM in the approaching water. At these concentrations the gel is expansive and can turn into a sol releasing colloidal particles. The low ion concentration has a strong impact on the fluid viscosity, which increases with decreasing ionic strength. At the same time, however the repulsion forces between the smectite particles increase causing a quicker expansion and sol formation. Simulations with higher sodium concentrations in the seeping water had a marginal influence on the erosion rate. For the highest water flow rates the smectite loss could be up to 0.3 kg per year for one canister. This is more than one order of magnitude more than what would result by smectite particle diffusion alone if gel flow was neglected and account was only taken of particle diffusion out into the seeping water. (authors)

  14. Effects of silica sol on bentonite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Compacted bentonite will be used in Sweden as an engineered barrier in the disposal of nuclear waste, mainly due to bentonites sorption and swelling capacity, where the latter property is warranted in order to seal possible future intersecting fractures. However during the actual construction and deposition period other grouting agents must be used in order to seal already existing fractures. In Sweden Silica sol is currently being investigated in situ at Aespoe Hard Rock Laboratory as a fine fracture (< 100 μm) grouting agent by injection. During this period, there is a plausible risk of Silica sol coming into contact with bentonite. The effect of Silica sol, either in colloidal form or as a gel, on the chemical and physical properties of bentonite has not been properly addressed and has to be further investigated. The Silica sol (Meyco MP320, EKA Chemicals) consists of amorphous SiO2 particles, average size approximately 20 nm. Due to the small particle size Silica sol can penetrate and seal finer fractures than more coarse grouting agents commonly used. Upon injection NaCl (approx 0.3 M) is used as a gel accelerator, leading to a hydrological barrier in the form of a ductile gel after < 1 hour, which then hardens with time (months) increasing its strength significantly, depending on water content, ionic strength and temperature. Upon aggregation, either due to high ionic strength or drying, the silica colloids aggregate seemingly irreversible forming siloxane bonds by condensation of the silanol surface groups. These silanol groups can react at the montmorillonite edges in a similar way. In a worst case scenario the Silica sol would act as an inorganic glue, creating a pillared montmorillonite or modify the edges of the clay particles. Such effects would irreversibly reduce the overall swelling capacity of the affected bentonite. An experimental program has been developed to characterize the Silica sol

  15. Erosion from compacted and confined bentonite at different water flow velocities

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Compacted bentonite barrier in deep geological repositories for high-level radioactive waste is expected to contribute to the repository safety due to its plasticity, low hydraulic permeability, swelling ability and sorption capability to retain radionuclides, amongst other properties. In a repository scenario, the water coming from the geological formation hydrates the bentonite and promotes its swelling, contributing to seal rock fissures. However, due to its expansion, bentonite suffers a density loss, strongest at the gel front. Under appropriate conditions, the gel can be transformed to a sol and different erosion processes may favour the release of bentonite particles and colloids (size3 with NaCl and a mixed Ca-Na electrolyte at 10-3 M. Consecutive flow changes were applied during selected time periods. Water velocities varied from 1.5.10-8 m/s to 3. 10-6 m/s and experiments lasted more than two years. Results confirmed that initial erosion rates were fairly constant with time, but at longer time the erosion was slowed down, and in the case of electrolytes with Ca content even tended to equilibrium, as can be appreciated in Figure 1, which shows the cumulative bentonite colloid masses eroded from FEBEX bentonite compacted at 1.65 g/cm3, with mixed Ca-Na electrolyte at 10-3 M, under different flow conditions. These effects were not so evident with NaCl electrolyte, which just showed gentle variations on colloid erosion rhythm under the experiment time span. Significant changes in colloid erosion rates were not observed, in any case, under successive flow changes and under the experimental conditions analyzed. The system chemistry seems to be much more relevant on colloid erosion rates than flow velocity. Results showed that the erosion rates measured at longer times are much lower than those observed in the initial linear stage. Moreover, it was observed that the continuous calcium supply inhibited colloid

  16. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  17. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  18. Ion-migration through bentonite/zeolite and bentonite/quartz sand mixture

    International Nuclear Information System (INIS)

    In the geological disposal system of the high level radioactive wastes radionuclides begin leaching from the waste form when the canister is degraded by corrosion. The buffer materials, as one of the engineered barriers can retard the migration of the radionuclides to the biosphere. In this study, the diffusivity of radionuclides has been obtained in the compacted clay materials, such as mixtures of bentonite-zeolite, and bentonite-quartz sand for buffer materials. For the bentonite and zeolite mixture, Kd-value for cesium has been increasing with zeolite contents. The increase in the Kd-value has also been obtained for strontium, though the inclination is found to be smaller than that for cesium. In the case of bentonite and quartz sand mixture, the Kd-value has increased with quartz content (up to 70%), though the increasing rate is smaller than that in the zeolite mixture. The purpose of the quartz sand mixing is to improve the thermal conductivity of the buffer materials. It is to be noted that the sorption capability of bentonite and quartz sand mixture is found to be a little bit larger than that of bentonite. As for cesium, the Kd-values obtained in diffusion experiment agree well with those from batch experiments within a factor of 2, while for strontium good agreement has not been obtained

  19. Behaviour of bentonite/montmorillonite gel at low ionic strength

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Swedish KBS-3 concept for a geological deep storage of spent nuclear fuel, bentonite of high montmorillonite content is proposed to serve as a buffer surrounding copper canisters containing the spent fuel. Montmorillonite has an exceptional affinity for water which results in the build-up of a swelling pressure when bentonite is placed in a confined volume. There may be fractures intersecting the deposition hole and at those fractures the bentonite is not restricted but can continue to swell until a steady state is reached. Under present day Swedish groundwater conditions the swelling into fractures will be limited because the montmorillonite at the swelling front will coagulate. However, at the end of a glaciation one cannot exclude that glacial meltwater of low ionic strength will permeate the bedrock. This could cause erosion of the bentonite, due to colloidal sol formation at the swelling front. A homo-ionic Ca-montmorillonite would not pose any problem because it has limited swelling due to attraction forces caused by ion correlations. In homo-ionic Na-montmorillonite, on the other hand, the correlation interactions are weak and cannot prevent the sol formation in case the montmorillonite is contacted with water of low ionic strength. Under repository conditions the montmorillonite is not homo-ionic, but contains a variety of counterions, both mono- and divalent. It was demonstrated earlier that for mixed Ca/Na-montmorillonite the sol-formation ability is much more sensitive to the ionic strength of the electrolyte than homo-ionic Na-montmorillonite. In deionized water sol formation occurs unless the equivalent charge fraction of Ca2+ is 90% or higher. However in electrolyte solution it was found that the sol is unstable if the ionic strength is above 4 mM. The investigated cases indicate that this condition holds even if the charge fraction of Ca2+ in the interlayer is as low as 20%. In this work it is

  20. Iron content and reducing capacity of granites and bentonite

    International Nuclear Information System (INIS)

    The iron contents in various granites and in bentonite have been determined. For granites, the content is usually in the range 1-9% (weight) and 2.5-3% for bentonite. Most of the iron is divalent in the granites (70-90%); in bentonite the divalent fraction is 25-50%. A large part of the divalent iron in the granites appears to be accessible for the reduction of dissolved oxygen in an aqueous system. (author)

  1. Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution

    Science.gov (United States)

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Cingolani, C.A.; Astini, R.A.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Ordovician K-bentonites have now been recorded from >20 localities in the vicinity of the Argentine Precordillera. Most occur in the eastern thrust belts, in the San Juan Limestone and the overlying the Gualcamayo Formation, but a few ash beds are known also from the central thrust belts. The oldest occur in the middle Arenig I, victoriae lunatus graptolite (Oe. evae conodont) Zone, and the youngest in the middle Llanvirn P. elegans (P. suecicus) Zone. Mineralogical characteristics, typical of other Ordovician K-bentonites, include a matrix of illite/smectite mixed-layer clay and a typical felsic volcanic phenocryst assemblage: biotite, beta-form quartz, alkali and plagioclase feldspar, apatite, and zircon, with lesser amounts of hornblende, clinopyroxene, titanite and Fe-Ti oxides. The proportions of the mineral phases and variations in their crystal chemistry are commonly unique to individual (or small groups of) K-bentonite beds. Glass melt inclusions preserved in quartz are rhyolitic in composition. The sequence is unique in its abundance of K-bentonite beds, but a close association between the Precordillera and other Ordovician sedimentary basins cannot be established. The ash distribution is most consistent with palaeogeographical reconstructions in which early Ordovician drifting of the Precordillera occurred in proximity to one or more volcanic arcs, and with eventual collision along the Andean margin of Gondwana during the mid-Ordovician Ocloyic event of the Famatinian orogeny. The Puna-Famatina terrane northeast of the Precordillera might have served as the source of the K-bentonite ashes, possibly in concert with active arc magmatism on the Gondwana plate itself.

  2. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

    International Nuclear Information System (INIS)

    The present work includes a coherent study of Wyoming bentonite with respect to the most relevant properties for use in a repository, and a parallel study of other potential buffer and tunnel backfilling materials. The reason for this is twofold; to quantify the effect of mineralogical variations on the various important sealing properties of bentonite, and to verify that there are alternative potential sources of bentonite. The latter is motivated by the fact that Sweden alone plans to deposit at least 6,000 copper canisters which include approximately 130,000 metric tones bentonite buffer material and several times more as tunnel backfill material. Different types of sealing clay materials may also be relevant to use, since the demands on the clay will be different at the various locations in a repository. Alternative sources of bentonite would consequently be valuable in order to secure quality, supply, and price. Important aspects on buffer and tunnel backfilling materials may be summarized as: Original sealing properties. Hazardous substances in any respect. Short-term effects of ground-water chemistry. Long-term stability, i.e. effects of temperature and ground-water chemistry. Availability. Costs. The focus in this study is on the first three items. The long-term stability is indirectly considered in that mineralogical composition is determined. The availability is only considered in such a way that most of the analyzed materials represent huge clay formations, which contain much more material than needed for a repository. The cost aspects have not been included, mainly because the present day price is not relevant due to the time frame of the construction of a repository

  3. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf (Clay Technology AB (SE))

    2006-12-15

    The present work includes a coherent study of Wyoming bentonite with respect to the most relevant properties for use in a repository, and a parallel study of other potential buffer and tunnel backfilling materials. The reason for this is twofold; to quantify the effect of mineralogical variations on the various important sealing properties of bentonite, and to verify that there are alternative potential sources of bentonite. The latter is motivated by the fact that Sweden alone plans to deposit at least 6,000 copper canisters which include approximately 130,000 metric tones bentonite buffer material and several times more as tunnel backfill material. Different types of sealing clay materials may also be relevant to use, since the demands on the clay will be different at the various locations in a repository. Alternative sources of bentonite would consequently be valuable in order to secure quality, supply, and price. Important aspects on buffer and tunnel backfilling materials may be summarized as: Original sealing properties. Hazardous substances in any respect. Short-term effects of ground-water chemistry. Long-term stability, i.e. effects of temperature and ground-water chemistry. Availability. Costs. The focus in this study is on the first three items. The long-term stability is indirectly considered in that mineralogical composition is determined. The availability is only considered in such a way that most of the analyzed materials represent huge clay formations, which contain much more material than needed for a repository. The cost aspects have not been included, mainly because the present day price is not relevant due to the time frame of the construction of a repository

  4. FTIR analysis of bentonite in moulding sands

    Science.gov (United States)

    Paluszkiewicz, C.; Holtzer, M.; Bobrowski, A.

    2008-05-01

    Bentonite is used in a wide range of applications. One of them is the foundry industry. The aim of this study was to investigate modification of moulding sands by dust which is generated during foundry process. Recycling of this dust is very important from ecological point of view. The samples of moulding sands were examined by Fourier Transform Infrared spectroscopy (FTIR). Analysis of the bands due to the Si-O stretching vibrations allows to reveal the changes of active bentonite and silica sand, i.e. the main components of the moulding sands. FTIR results are compared with technological properties of the materials studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods have been used as the complementary measurement.

  5. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    Science.gov (United States)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-04-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  6. Swelling characteristics of Gaomiaozi bentonite and its prediction

    Institute of Scientific and Technical Information of China (English)

    De’an Sun; Wenjing Sun; Lei Fang

    2014-01-01

    Gaomiaozi (GMZ) bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW) in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship be-tween the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na-and Ca-bentonites and Kunigel Na-bentonite are compared.

  7. Swelling characteristics of Gaomiaozi bentonite and its prediction

    Directory of Open Access Journals (Sweden)

    De'an Sun

    2014-04-01

    Full Text Available Gaomiaozi (GMZ bentonite has been chosen as a possible matrix material of buffers/backfills in the deep geological disposal to isolate the high-level radioactive waste (HLRW in China. In the Gaomiaozi deposit area, calcium bentonite in the near surface zone and sodium bentonite in the deeper zone are observed. The swelling characteristics of GMZ sodium and calcium bentonites and their mixtures with sand wetted with distilled water were studied in the present work. The test results show that the relationship between the void ratio and swelling pressure of compacted GMZ bentonite-sand mixtures at full saturation is independent of the initial conditions such as the initial dry density and water content, but dependent on the ratio of bentonite to sand. An empirical method was accordingly proposed allowing the prediction of the swelling deformation and swelling pressure with different initial densities and bentonite-sand ratios when in saturated conditions. Finally, the swelling capacities of GMZ Na- and Ca-bentonites and Kunigel Na-bentonite are compared.

  8. Removal of Phosphate from Aqueous Solution with Modified Bentonite

    Institute of Scientific and Technical Information of China (English)

    唐艳葵; 童张法; 魏光涛; 李仲民; 梁达文

    2006-01-01

    Bentonite combined with sawdust and other metallic compounds was used to remove phosphate from aqueous solutions in this study. The adsorption characteristics of phosphate on the modified bentonite were investigated, including the effects of temperature, adsorbent dosage, initial concentration of phosphate and pH on removal of phosphate by conducting a series of batch adsorption experiments. The results showed that 98% of phosphate removal rate was obtained since sawdust and bentonite used in this investigation were abundantly and locally available. It is concluded that modified bentonite is a relatively efficient, low cost and easily available adsorbent for the removal of phosphate from aqueous solutions.

  9. KAJIAN ADSORPSI LINEAR ALKYL BENZENE SULPHONATE (LAS DENGAN BENTONIT-KITOSAN

    Directory of Open Access Journals (Sweden)

    Miftah Rifai

    2013-11-01

    Full Text Available Deterjen pada umumnya tersusun atas surfaktan anionik seperti LAS (Linear alkyl Benzene sulphonate. pada percobaan ini LAS dapat menyerap sinar pada daerahuv dengan panjang gelombang maksimumnya adalah 223,5 nm. LAS dalam perairan dapat menimbulkan potensi masalah pencemaran.Tujuan dari penelitian ini adalah sebagai salah satu alternatif penanganan masalah pencemaran limbah domestik dengan cara menguji kinerja bentonit alam dan bentonit termodifikasi kitosan dalam mengadsorpsi LAS. Untuk mengetahui bahwa kitosan telah bereaksi dengan bentonit maka diuji dengan FTIR dan XRD pada bentonit alam dan bentonit-kitosan. Kemudian ditentukan waktu kontak optimum antara LAS dengan bentonit alam dan bentonit-kitosan. Serta penentuan isoterm adsorpsi LAS dengan bentonit alam dan bentonit-kitosan dengan cara membuat variasi konsentrasi larutan LAS. Uji kinerja bentonit alam dan bentonit-kitosan dalam mengadsorpsi LAS dilakukan dengan menggunakan sistem batch. Didapat waktu kontak optimum antara LAS berinteraksi dengan bentonit alam adalah 15 menit dengan kapasitas adsorpsi sebesar 3,265 mg/g. Sedangkan Waktu kontak optimum interaksi LAS dengan bentonit-kitosan terjadi pada waktu 15 menit dengan kapasitas adsorpsi sebesar 1,7mg/g. Dari hasil yang didapat maka dapat terlihat bahwa bentonit alam memiliki kapasitas adsorpsi yang lebih besar dibandingkan bentonit hasil modifikasi dengan kitosan. Interaksi antara bentonit alam dan bentonit–kitosan dengan LAS terjadi secara fisik dengan energi adsorpsi bentonit alam dengan LAS adalah 19,31 KJ/mol dan energi adsorpsi bentonit-kitosan dengan LAS adalah 19,60 KJ/mol.

  10. Mechanical Properties of Plastic Concrete Containing Bentonite

    OpenAIRE

    Peng Zhang; Qiaoyan Guan; Qingfu Li

    2013-01-01

    Plastic concrete consists of aggregates, cement, water and bentonite, mixed at a high water cement ratio, to produce a ductile material. It is used for creating an impermeable barrier (cut-off wall) for containment of contaminated sites or seepage control in highly permeable dam foundations. The effects of water to binder ratio and clay dosage on mechanical properties of plastic concrete were investigated. The results indicate that the water to binder ratio and clay dosage have great influenc...

  11. Stability of bentonite gels in crystalline rock

    International Nuclear Information System (INIS)

    The present, extended study comprises a derivation of a simple rock model as a basis for calculation of the penetration rate of bentonite and of the groundwater flow rate, which is a determinant of the erodibility of the protruding clay film. This model, which is representative of a gross permeability of about 10-8 - 10-9 m/s, implies a spectrum of slot-shaped joints with apertures ranging between 0.1 and 0.5 mm. It is concluded that less than 2percent of the highly compacted bentonite will be lost into traversing joints in 106 years. A closer analysis, in which also Poiseuille retardation and short-term experiments were taken into account, even suggests that the penetration into the considered joints will be less than that. The penetration rate is expected to be 1 decimeter in a few hundred years. The risk of erosion by flowing groundwater was estimated by comparing clay particle bond strength, evaluated from viscometer tests, and theoretically derived drag forces, the conclusion being that the maximum expected water flow rate in the widest joints of the rock model (4 times 10-4 m/s) is not sufficient to disrupt the gel front or the large individual clay flocs that may exist at this front. The experiments support the conclusion that erosion will not be a source of bentonite loss. A worst case scenario with a shear zone being developed across deposition holes is finally considered and in addition to this, the conditions in the fracture-rich tunnel floor at the upper end of the deposition holes are also analysed. This study shows that even if the rock is much more fractured than normal conditions would imply, the bentonite loss is expected to be very moderate and without substantial effect on the barrier functions of the remaining clay cores in the deposition holes. (author)

  12. Plutonium sorption and desorption behavior on bentonite.

    Science.gov (United States)

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite.

  13. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  14. A bentonite-gold nanohybrid as a heterogeneous green catalyst for selective oxidation of silanes.

    Science.gov (United States)

    Maya, R J; John, Jubi; Varma, R Luxmi

    2016-08-23

    A highly efficient, environmentally benign and reusable heterogeneous bentonite-gold nanohybrid catalyst was designed and synthesized. This heterogeneous catalyst could efficaciously catalyse the oxidation of organosilanes to silanols. The reaction is 98.7% atom economical and the products were obtained in excellent yield without the formation of disiloxanes as byproducts. The catalyst was also well applicable for the gram scale preparation of silanols.

  15. Hydrothermal alterations of Bentonites in Almeria (Spain)

    International Nuclear Information System (INIS)

    The use of bentonite as backfilling and sealing material in the high level radioactive waste disposals has been treated in previous studies accomplished by different authors. However, the use of this clayey barrier needs the resolution of different problems so that its efficiency will be enhanced. between those could be cited the study of the actual capacity of sealing the space around the canister and the accommodation to the pressure of the rocky environment; the possible variations in plasticity; the diffusion and reaction processes that can be produced through the barrier by groundwater, the capacity of radionuclides adsorption, etc. These studies, show that the bentonites with high content in smectite fulfill satisfactorily with the physical and chemical conditions to be used as sealing material, but it is known that the smectite can be unstable in diagenetic conditions similar to those are given in a deep repository of radioactive wastes, being transformed into illite. A conclusion of immediate interest is deduced from this last study. The bentonites used as sealing material in radioactive waste repositories must no contain Na as interlayer cation since it is very easily exchangeable by K. It is better to select those smectites with Ca and Mg that detain the entry of K in the interlayer and as a consequence the transformation process of smectite into illite is made more difficult. (Author)

  16. The analysis of the interaction between cement and bentonite in the construction of radioactive waste disposal in terms of long-term behavior

    International Nuclear Information System (INIS)

    Due to the enormous demands concerning the time of exploitation we can state, that in the case of nuclear dumping grounds, the interaction between bentonite and concrete (or let us say with its matrix) is one of the very important factors from the issue of the construction service life. The proper experimental part presented in this paper was oriented partly to the determination of the extent of bentonite suspension penetration into the capillary porous concrete structure and further to the analysis of the bentonite effect from the point of view of concrete resistance against the aggressive substances from outer surrounding. The series of experiments presented in this paper explicitly showed that bentonite is able to react with the hydration products of cement in the porous capillary structure. Results of physico-chemical analyzes show, that the dominant product of these reactions is the calcium hydro silicate phase. This aspect is very positive because the calcium hydro silicates belong among the most stable phases of the cement matrix. Concerning the impact of bentonite presence in cement matrix on the concrete resistance against the effect of aggressive substances from the outer surrounding. The realized experiments proved that in the surface layers of concrete not treated by bentonite suspension the exposure to aggressive media caused a formation of corrosive products which were the evidence of the cement matrix degradation. This fact can be confirmed by finding that in the surface layers of samples exposed to the effect of sulfates, the presence of ettringite and traces of gypsum (in the case of samples exposed to chlorides solution also traces of Friedel salt) were found. In the contrary in samples in the structure of which the bentonite suspension was impressed, no presence of new corrosive formations was found. This makes evident that the bentonite suspension stabilizes the cement matrix against aggressive substances

  17. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 2)

    International Nuclear Information System (INIS)

    This report describes the findings of a second programme of work (Phase 2) undertaken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of samples of compacted bentonite from experiments that SKB have co-funded in a study by Serco Assurance (Culham Laboratory, UK) to investigate the interaction of iron and bentonite, within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from four NF-PRO Experiments - NFC1, NFC4, NFC7 and NFC13 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) with energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. In addition, background chemical analysis of altered and background bentonite were also obtained by X-ray fluorescence spectrometry (XRFS). Bentonite immediately adjacent to corroding steel wires was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Similar observations were observed in bentonite around corroded iron coupons (observed in experiments NFC4 and NFC7 only), although the alteration zones were not as well developed in comparison to those around corroded steel wires. Detailed petrographical observation found no evidence for the formation discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. However, data from sequential chemical extraction suggests that a significant proportion (26 to 68%) of the iron in the altered bentonite is present as amorphous iron oxide or crystalline iron oxides (15 to 33% of the total iron). Some of the crystalline iron is present as primary magnetite and ilmenite

  18. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Eleonora; Bansal, Ruchi

    2015-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  19. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Leonie; Bansal, Ruchi

    2010-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  20. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. With the objective of deriving a more realistic description of radionuclide release from the near-field, an investigation has been initiated to quantitatively specify the chemistry of the near-field. In the Swiss case, the main components of the near-field are the glass waste-matrix, a thick steel canister horizontally emplaced in a drift, and a backfill of highly compacted sodium bentonite. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. Solubility limits and speciation of important actinides and the fission product technetium in the bentonite pore water are then calculated. The model is based on available experimental data on the interaction of sodium bentonite and groundwater and represents means of extrapolation from laboratory data to repository conditions. The modelled composition of the pore water of compacted sodium bentonite, as well as the various compositions resulting from the long-term extrapolation, are used to estimate radionuclide solubilities in the near-field of a deep repository. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. Since the effect of calcium bentonite on the groundwater chemical composition will be considerably less marked than that of sodium bentonite, especially with respect to key parameters for the nuclide speciation like carbonate concentration and pH, the use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  1. Granular bentonite production as buffer material for a full-scale emplacement ('FE') experiment

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the Swiss repository concept for the disposal of spent fuel (SF) and high-level vitrified waste (HLW), the canisters are emplaced in galleries surrounded by a bentonite buffer. These engineered barriers with favourable and well-known properties and predictable performance provide the secondary containment of the waste. The bentonite buffer has the following functions: a) to keep the canisters in place and protect them by homogenising the stress field; b) to mechanically stabilise the space between the canisters and the geological barrier; c) to act as a transport barrier for radionuclides and as a barrier for colloids; d) to ensure low corrosion rates of both the canister and the waste form and e) to limit microbial activity. In order to provide these functions, it is necessary for at least a significant part of the thickness of bentonite not to be altered in an unacceptable way by temperature or chemical interaction with the formation water or corrosion products of the canister. The FE experiment ('Full-Scale Emplacement Experiment') at Mont Terri URL, which develops and demonstrates on a 1:1 scale of the Swiss repository concept for disposal of SF and HLW in Opalinus Clay, is supported by the LUCOEX project, co-funded by the European Commission as part of the seventh Euratom research and training Framework Programme on nuclear energy. In this poster, a strategy based on previous experiences and the production concept based on current technology for producing a granular bentonite is presented. The main objectives of manufacturing granular bentonite for the LUCOEX/FE project are as follows: - Production of a suitable grain size distribution of the granules in order to achieve a target emplacement density and homogeneous emplacement; - Optimization of different parameters during the production process; - Evaluation of rational production processes for the production of suitable granular material; - Development

  2. Mineralogy and geochemistry of bauxite and bentonite deposits from Mozambique

    NARCIS (Netherlands)

    Dos Muchangos, A.C.

    2000-01-01

    Results of mineralogical and geochemical studies of bauxites, kaolinitic clays and bentoniteS from Mozambique are presented in this thesis. The bauxite and kaolinitic clay deposits in Penhalonga area (in the central western part of Mozambique) are associated with Precambrian magmatic rocks and the b

  3. Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays.

    Science.gov (United States)

    El-Dib, F I; Tawfik, F M; Eshaq, Gh; Hefni, H H H; ElMetwally, A E

    2016-05-01

    Organic-inorganic nanocomposite, namely chitosan immobilized Bentonite (CIB) with chitosan content of 5% was synthesized in an acetic acid solution (2%). Organically modified CIB and Bentonite (mbent.) were prepared by intercalating cetyl trimethylammonium bromide (CTAB) as a cationic surfactant at doses equivalent to 1.5 and 3 times the cation exchange capacity (CEC) of clay. The prepared samples were characterized using FTIR, XRD and SEM to explore the interlayer structure and morphology of the resultant nanocomposites. The remediation of distilleries (vinasse) wastewater process was carried out using different adsorbents including CIB, modified CIB (mCIB), Bentonite (bent.), modified Bentonite (mbent.) and chitosan at different contact time. The results showed that the packing density of surfactant used in the synthesis of organoclays strongly affects the sorption capacity of the clay mineral and also showed that (mCIB)3 was found to be the most effective sorbent in the purification of distilleries wastewater with 83% chemical oxygen demand (COD) reduction and 78% color removal. PMID:26840179

  4. Test Wiseness and Analogy Test Performance

    Science.gov (United States)

    Moore, James C.

    1971-01-01

    Subjects received self instruction on how to approach analogy questions. Instruction was directed toward knowledge of the general format of analogy questions in standarized tests and the 15 types of relationships commonly asked for in analogy questions. An analogies post-test showed a significant effect for the group. (Author)

  5. Synthesis and Photocatalytic Activity of Ti-pillared Bentonite

    Institute of Scientific and Technical Information of China (English)

    TANG Jianwen; WU Pingxiao; ZHENG Shaoyan; LIU Yun; WANG Feifei; XIE Xianfa

    2006-01-01

    Ti-pillared bentonite has been successfully prepared using a modified method that can induce the transformation of TiO2 pillar from amorphous to anatase phase at a low temperature (150℃). The value of d001 =1.94 nm obtained by Ti-pillared bentonite is larger than that of corresponding raw clay (1.56 nm). Due to large numbers of Ti-pillars formed, the Ti-pillared bentonite shows an excellent ability in adsorbing Rhodamine B (RB). The photocatalytic activity and kinetic equation are investigated by decomposing RB solution under the UV irradiation. It is found that the Tipillared bentonite shows super photocatalytic activity for the degradation of RB solution compared with the untreated bentonite and pure TiO2, and the kinetic equation of the degradation of RB solution is a 1.5-oder equation.

  6. Adsorption behavior of 239Pu by Gaomiaozi bentonite

    International Nuclear Information System (INIS)

    Adsorption behavior of 239Pu by Gaomiaozi bentonite as a function of the factors of aqueous phase pH value, 239Pu initial concentration and ionic species is studied by static adsorption experiments in this paper. The following results are obtained. Adsorption equilibrium time of 239Pu by Gaomiaozi bentonite samples is about 24 h, and the adsorption distribution ratio Kd value of 239Pu increases with the pH value, but decreases with increasing initial concentration of 239Pu. And adsorption of 239Pu by bentonite samples with different ionic species show that anions affect the most on adsorption of bentonite is CO32-, followed by HCO3- and SO42-, whereas Cl- and NO3- hardly have any influence on the adsorption of bentonite. (authors)

  7. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin

    2016-03-04

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  8. Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments

    Science.gov (United States)

    Xu, Wenbin; Jónsson, Sigurjón; Corbi, Fabio; Rivalta, Eleonora

    2016-04-01

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use interferometric synthetic aperture radar (InSAR) observations, stress calculations, and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2 m thick dike with an upper tip ~2 km below the surface on 16 May 2009, 4 weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outward with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  9. Enhanced shear strength of sodium bentonite using frictional additives

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, K.E. [GeoSyntec Consultants, Huntington Beach, CA (United States); Bowders, J.J.; Gilbert, R.B. [Univ. of Texas, Austin, TX (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45{degrees} for the expanded 36{degrees} for the recycled glass, and 7{degrees} for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44{degrees} for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10{sup -9} cm/sec, while increasing the shear strength parameters of the bentonitic mixture to {phi}{prime} = 17{degrees} and c{prime} = 0.

  10. Saline Playas on Qinghai-Tibet Plateau as Mars Analog for the Formation-Preservation of Hydrous Salts and Biosignatures

    Science.gov (United States)

    Wang, A.; Zheng, M.; Kong, F.; Sobron, P.; Mayer, D. P.

    2010-12-01

    Qinghai-Tibet (QT) Plateau has the highest average elevation on Earth (~ 4500 m, about 50-60% of atmospheric pressure at sea-level). The high elevation induces a tremendous diurnal (and seasonal) temperature swing caused by high level of solar irradiation during the day and low level of atmospheric insulation during the evening. In addition, the Himalaya mountain chain (average height >6100 m) in the south of the QT Plateau largely blocks the pathway of humid air from the Indian Ocean, and produces a Hyperarid region (Aridity Index, AI ~ 0.04), the Qaidam Basin (N32-35, E90-100) at the north edge of the QT Plateau. Climatically, the low P, T, large ΔT, high aridity, and high UV radiation all make the Qaidam basin to be one of the most similar places on Earth to Mars. Qaidam basin has the most ancient playas (up to Eocene) and the lakes with the highest salinity on QT Plateau. More importantly, Mg-sulfates appear in the evaporative salts within the most ancient playas (Da Langtang) at the northwest corner of Qaidam basin, which mark the final stage of the evaporation sequence of brines rich in K, Na, Ca, Mg, Fe, C, B, S, and Cl. The evaporation minerals in the saline playas of Qaidam basin, their alteration and preservation under hyperarid conditions can be an interesting analog for the study of Martian salts and salty regolith. We conducted a field investigation at Da Langtan playa in Qaidam basin, with combined remote sensing (ASTER on board of NASA’s Terra satellite, 1.656, 2.167, 2.209, 2.62, 2.336, 2.40 µm), in situ sensing of a portable NIR spectrometer (WIR, 1.25-2.5 µm continuous spectral range), and the laboratory analyses of collected samples from the field (ASD spectrometer, 0.4 -2.5 µm, and Laser Raman spectroscopy). The results indicate that the materials contributing the high albedo layers in playa deposits are carbonate-gypsum-bearing surface soils, salt-clay-bearing exhaumed Pleistocene deposits, dehydrated Na-sulfates, hydrous Mg

  11. Adsorption of aniline, phenol, and chlorophenols on pure and modified bentonite

    Science.gov (United States)

    Yildiz, A.; Gür, A.; Ceylan, H.

    2006-11-01

    In the present study, pure bentonite and bentonite modified by HNO3, EDTA, and HDTMA are adsorbents. The changes on the surfaces of bentonite samples are studied by IR spectroscopy. The adsorption of aniline, phenol, and phenol derivatives on these adsorbents is examined by means of gas chromatography. As the result of these examinations, it is seen that the adsorption capacities of clay-organic complexes (bentonite-EDTA and bentonite-HDTMA) are higher than those of bentonite-HNO3 and pure bentonite.

  12. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs.

    Science.gov (United States)

    Zhang, Minli; Resuello, Christina M; Guo, Jian; Powell, Mark E; Elmore, Charles S; Hu, Jun; Vishwanathan, Karthick

    2013-05-01

    In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo. PMID:23431111

  13. Sorption of Uranium(VI) and Thorium(IV) by Jordanian Bentonite

    OpenAIRE

    Fawwaz I. Khalili; Salameh, Najla'a H.; Mona M. Shaybe

    2013-01-01

    Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature,...

  14. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  15. Colloid chemical aspects of the ''confined bentonite concept''

    International Nuclear Information System (INIS)

    Measurements of the amount of particles released from a bentonite gel by light scattering and visual inspection show that while particles are released in distilled water, the gel will be coagulated if in contact with ground water and consequently the release of particles is negligibly small. Studies of sedimentation volumes by ultracentrifugation also clearly indicate that the bentonite in contact with ground water under the repository pressure will form a completely stable coagulated gel. The swelling of confined bentonite was studied in an ''artificial crack'' of width 0.5 mm. The bentonite flowed readily into this crack and into the much narrower crack formed when the cell was broken. The swelling properties of the bentonite at the repository depth are discussed. It is argued that the gel, if sufficient volume is available, will swell spontaneously to a volume that is approximately 30 % larger than the initial one and then form a stable, coagulated gel containing 30-35 % water in equilibrium with the ground water. Investigations of the diffusion of colloidal matter (sodium lignosulphonate molecules of mean diameter 6 nm) and calcium ions into a dilute bentonite gel show that colloidal matter very probably will have a negligible rate of diffusion while the calcium ions diffuse rapidly. This implies that the initial bentonite gel which is partially in its sodium form will be completely exchanged to its calcium form when brought into contact with ground water which ensures that it will remain coagulated even in its swollen state

  16. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Vickers, B.P.; Green, K.A.; Williams, C.L.; Shaw, R.A. (British Geological Survey (United Kingdom))

    2009-01-15

    This report summarises the findings of a programme of work under taken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of compacted bentonite from experiments designed to study the interaction between iron corrosion and bentonite. The experiments were undertaken by Serco Assurance (Culham Laboratory, Oxfordshire, United Kingdom), and were co-funded by SKB within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from three NF-PRO Experiments - NFC12, NFC16 and NFC17 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) and energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. Bentonite immediately adjacent to corroding steel was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Detailed petrographical observation found no evidence for the formation of discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the montmorillonite. If correct, then this alteration might represent the early stages of conversion of the dioctahedral montmorillonite to an iron-rich dioctahedral smectite such as nontronite. Alternatively, the same effect may have been produced as a result of the displacement of exchangeable interlayer cations by Fe and subsequent conversion to form additional Fe-rich octahedral layers. In either case, the XRD results are consistent with the petrographical

  17. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 1)

    International Nuclear Information System (INIS)

    This report summarises the findings of a programme of work under taken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of compacted bentonite from experiments designed to study the interaction between iron corrosion and bentonite. The experiments were undertaken by Serco Assurance (Culham Laboratory, Oxfordshire, United Kingdom), and were co-funded by SKB within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from three NF-PRO Experiments - NFC12, NFC16 and NFC17 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) and energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. Bentonite immediately adjacent to corroding steel was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Detailed petrographical observation found no evidence for the formation of discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the montmorillonite. If correct, then this alteration might represent the early stages of conversion of the dioctahedral montmorillonite to an iron-rich dioctahedral smectite such as nontronite. Alternatively, the same effect may have been produced as a result of the displacement of exchangeable interlayer cations by Fe and subsequent conversion to form additional Fe-rich octahedral layers. In either case, the XRD results are consistent with the petrographical

  18. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  19. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  20. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Green, K.A.; Williams, C.L.; Shaw, R.A.; Gowing, C.J.B.; Eatherington, N.D. (British Geological Survey (United Kingdom))

    2009-01-15

    This report describes the findings of a second programme of work (Phase 2) undertaken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of samples of compacted bentonite from experiments that SKB have co-funded in a study by Serco Assurance (Culham Laboratory, UK) to investigate the interaction of iron and bentonite, within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from four NF-PRO Experiments - NFC1, NFC4, NFC7 and NFC13 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) with energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. In addition, background chemical analysis of altered and background bentonite were also obtained by X-ray fluorescence spectrometry (XRFS). Bentonite immediately adjacent to corroding steel wires was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Similar observations were observed in bentonite around corroded iron coupons (observed in experiments NFC4 and NFC7 only), although the alteration zones were not as well developed in comparison to those around corroded steel wires. Detailed petrographical observation found no evidence for the formation discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. However, data from sequential chemical extraction suggests that a significant proportion (26 to 68%) of the iron in the altered bentonite is present as amorphous iron oxide or crystalline iron oxides (15 to 33% of the total iron). Some of the crystalline iron is present as primary magnetite and ilmenite

  1. Study of the photon-induced formation and subsequent desorption of CH3 OH and H2 CO in interstellar ice analogs

    CERN Document Server

    Martín-Doménech, R; Cruz-Díaz, G A

    2016-01-01

    Methanol and formaldehyde are two simple organic molecules that are ubiquitously detected in the interstellar medium. An origin in the solid phase and a subsequent nonthermal desorption into the gas phase is often invoked to explain their abundances in some of the environments where they are found. Experimental simulations under astrophysically relevant conditions have been carried out to find a suitable mechanism for that process. We explore the in situ formation and subsequent photon-induced desorption of these species, studying the UV photoprocessing of pure ethanol ice, and a more realistic binary H2O:CH4 ice analog. Ice samples deposited onto an infrared transparent window at 8 K were UV-irradiated using a microwave-discharged hydrogen flow lamp. Evidence of photochemical production of these two species and subsequent UV-photon-induced desorption into the gas phase were searched for by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer, respectively. Formation of CH3OH ...

  2. Effects of polyethyleneimine adsorption on rheology of bentonite suspensions

    Indian Academy of Sciences (India)

    A Alemdar; N Öztekin; F B Erim; Ö I Ece; N Güngör

    2005-06-01

    The influence of the cationic polymer, polyethyleneimine polymer (PEI) on the flow behaviour of bentonite suspensions (2%, w/w), was studied. XRD, zeta potential and adsorption studies were done together with rheological measurements. The addition of PEI at concentration ranges of 10-5–4.5 g/l and their rheological properties and stability of bentonite suspensions were studied. The adsorption rates for the bentonite suspensions are very fast. The XRD results showed that the PEG molecules did not intercalate into the layers of the clay.

  3. A research paper of `the basic sciences of the radioactive waste treatment` (Jul. 28,29, 1994) and `Interface and surface science of solid waste processing and disposal -differences between cement and bentonite` (Dec. 14, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report contains copies of OHP at the meetings of which discussions were centered upon the points of sameness and difference between cement and bentonite. There are sixteen papers, eleven in the first meeting and five in the second one. The following studies were read as under, on the first meeting, the role of retardation effect on the safety of high level atomic waste stratum processing, determination of colloid particle diameters by use of fieldflow fractionation, adsorption behavior of uranium, into black mica in granite, masstransfer mechanism of Cs and Se in the compression-bentonite, delay mechanism under conditions of mineral alteration, effects of humus on the behavior of radionuclides in stratum, formation of actinoids - humic acid complex and its effect on adsorption behavior, characteristic properties of water in bentonite, measurement of solubility of uranium and niobium, behavior of colloidal Am in the bentonite, illite - water system, effects of aging deterioration of bentonite on diffusion of nuclides, and on the second meeting, a view of cement materials, chemical behavior and long period stability of cement - relating to Atkinson model -, the present conditions of studies about sorption in cement, chemical properties of pore water in bentonite and interaction of bentonite and nuclides in solid - liquid interface. (S.Y.)

  4. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed

    2010-09-22

    The geotechnical barrier is an important component of a geological repository and consists of compacted bentonite surrounding radioactive waste containers. Its most important functions are, to retard the radionuclide migration into the biosphere and to prevent groundwater contact with containers. lt is therefore of central importance to investigate the bentonite material on its capacity to sorb radionuclides under near-natural chemical and physical conditions. The purpose of this work was to study the adsorption of uranium(VI) on bentonit and on montmorillonite-standards at high uranium concentrations. Thereby, a special account was given to the calcium-uranyl-carbonate complexation, which leads to the formation of very stable and mobile uncharged Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex. Results of batch experiments showed that the dicalcium-uranyl-tricarbonate complexation lowers the uranium(VI) sorption on natural clay (bentonite) by a factor of up to 3. After 21 days of contact time, about 40 % and 20 % of the initial uranium(VI)concentration were sorbed on Na-bentonite and ea-bentonite, respectively, from a solution with Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} dominating the uranium(VI) speciation. On the contrary, about 55 % of the initial uranium(VI)-concentration were sorbed on thes clays from the solution, in which (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -} complex dominated the uranium(VI) speciation. Thus uranium(VI) sorption is more strongly influenced by the solution composition than by bentonite type. Na-bentonite should be used instead of ea-bentonite as a geotechnical barrier, since calcium-uranyl-carbonate complexation may be a realistic scenario. Further SEM-EDX and HREM-EDX studies showed that uranium(VI) sorption occurred predominantly on montmorillonite, which is the main component of bentonite. Uranium(VI) sorption on bentonite's accessory Minerals (pyrite, calcite, mica, and feldspar) was not observed. Investigation of uranium

  5. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed

    2010-09-22

    The geotechnical barrier is an important component of a geological repository and consists of compacted bentonite surrounding radioactive waste containers. Its most important functions are, to retard the radionuclide migration into the biosphere and to prevent groundwater contact with containers. lt is therefore of central importance to investigate the bentonite material on its capacity to sorb radionuclides under near-natural chemical and physical conditions. The purpose of this work was to study the adsorption of uranium(VI) on bentonit and on montmorillonite-standards at high uranium concentrations. Thereby, a special account was given to the calcium-uranyl-carbonate complexation, which leads to the formation of very stable and mobile uncharged Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex. Results of batch experiments showed that the dicalcium-uranyl-tricarbonate complexation lowers the uranium(VI) sorption on natural clay (bentonite) by a factor of up to 3. After 21 days of contact time, about 40 % and 20 % of the initial uranium(VI)concentration were sorbed on Na-bentonite and ea-bentonite, respectively, from a solution with Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} dominating the uranium(VI) speciation. On the contrary, about 55 % of the initial uranium(VI)-concentration were sorbed on thes clays from the solution, in which (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -} complex dominated the uranium(VI) speciation. Thus uranium(VI) sorption is more strongly influenced by the solution composition than by bentonite type. Na-bentonite should be used instead of ea-bentonite as a geotechnical barrier, since calcium-uranyl-carbonate complexation may be a realistic scenario. Further SEM-EDX and HREM-EDX studies showed that uranium(VI) sorption occurred predominantly on montmorillonite, which is the main component of bentonite. Uranium(VI) sorption on bentonite's accessory Minerals (pyrite, calcite, mica, and feldspar) was not observed. Investigation of uranium

  6. Gas transport through saturated bentonite and interfaces

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The aim of this investigation was the determination of the gas transport properties of saturated compacted bentonite and its interfaces. The bentonite used was the Spanish FEBEX bentonite, which is mainly composed of montmorillonite (more than 90%). For a dry density of 1.6 g/cm3 the saturated permeability of the bentonite is about 5.10-14 m/s, with deionised water used as percolating fluid. The saturated swelling pressure for the same dry density has a value of about 6 MPa. To perform the gas breakthrough tests a series of stainless steel cells were designed and manufactured. The cells consisted of a body, in which the cylindrical sample was inserted, pistons with o-rings at both ends of the samples and threaded caps. The samples, of 3.8 and 5.0 cm in diameter and 2.5 or 5.0 in height, were obtained by uniaxial compaction of the bentonite with its hygroscopic water content directly inside the cell body. Saturation with deionised water was accomplished by applying injection pressures of between 2 and 10 bar. The water content of the bentonite after saturation was higher than 27% for all the dry densities. Once the samples saturated, the filters on top and bottom of the samples were replaced by dry ones, the cells were again closed, and they were connected to a setup specially designed to measure breakthrough pressure. It consisted of two stainless steel deposits connected to the ends of the cell. One of the deposits was pressurised with nitrogen at 2 bar, whereas vacuum was applied to the other one. The pressures were measured by means of pressure transmitters. If no changes in pressure were recorded during 24 h, the injection pressure in the upstream deposit was increased by 2 bar and kept constant for 24 h. The process was repeated until gas started to flow through the sample. The time required for the completion of a particular experiment was determined by the conditions of the sample being studied. Although

  7. Water uptake and stress development in bentonites and bentonite-sand buffer materials

    International Nuclear Information System (INIS)

    The development of swelling pressure and the transfer of pore water pressures through dense bentonite and bentonite-sand materials are examined in this report. This report focuses on the swelling pressure and total pressure developed in initially unsaturated specimens allowed access to free water on one end. The bentonite in this wetted region rapidly develops its full swelling pressure and this pressure is transferred upwards through the specimen. Hence, the bentonite plug will exert a pressure approximately equivalent to the swelling pressure even though only a small region of the plug is actually saturated. A number of specimens were tested with total pressure sensors mounted normal and parallel to the axis of compaction. Lateral pressures developed long before the wetting front reached sensor locations, suggesting stress transfer through the unsaturated portions of these specimens. On achieving saturation, specimens were found to have similar swelling pressures both normal to and parallel to the axis of compaction. This indicates that there is little or no specimen anisotropy induced by the compaction process. Tests were conducted on specimens allowed only to take on a limited quantity of water and it was found that density anisotropy was induced as the result of the swelling pressures generated by the buffer. The wetted skin of buffer developed a considerable pressure and compressed a region of buffer immediately above the wetted region. The results suggest that the buffer material placed in a disposal vault will rapidly develop and transfer swelling pressures as a result of the saturation of a limited region or 'skin' within the emplacement site. The total pressure ultimately present on the container surface should be the sum of the swelling and hydraulic components. (author). 14 refs., 4 tabs., 8 figs

  8. Impact of the changes in the chemical composition of pore water on chemical and physical stability of natural clays. A review of natural cases and related laboratory experiments and the ideas on natural analogues for bentonite erosion/non-erosion

    International Nuclear Information System (INIS)

    A scientific literature survey was compiled with the specific objective to find information for smectite mobilization and/or retention in natural clay formations caused by contact with water with low ionic concentrations such as can be expected during and after an ice age. Evidence was sought if smectite particles are lost from the clay to the water and if accessory minerals that remain could form a growing filter slowing down or stopping further loss of smectite. Bentonites are present in geological layers for hundreds of millions of years. There is limited exchange with surrounding layers, eg K transported into the bentonite layer from surrounding shale layers leading to the increased illite % in smectite-illite of the bentonite. Another process is silicification of surrounding layers leading to lowered permeability of surrounding rocks. Geological literature data on historical bentonites do not consider colloid formation in low ionic strength water as relevant mechanism for smectite mobilization. However there are no studied cases where this could be a relevant mechanism (as proposed by colloid release scenario). Soil researchers have studied the mechanism of colloid release in laboratory experiments and have found that there has to be an abrupt change in infiltrating water quality leading to 'osmotic explosion'. Clogging the pores in the lower part of the soil column has followed, leading to dramatic decrease of hydraulic conductivity in vertical profile and increased surface runoff. So, although limited, there are literature evidences of clay colloids release from bentonites/smectites caused by low-ionic circumneutral water. The geological settings to look for natural analogue studies include (1) Bentonite/smectite similar to what is used in repository. (2) Water similar to the composition of glacial meltwater. (3) Scenario similar to what is proposed in the bentonite erosion project. The problem related to the study of historical bentonite profiles is the

  9. Temperature influence on structural changes of foundry bentonites

    Science.gov (United States)

    Holtzer, Mariusz; Bobrowski, Artur; Żymankowska-Kumon, Sylwia

    2011-10-01

    The results of investigations of three calcium bentonites, activated by sodium carbonate, applied in the foundry industry as binding material for moulding sands, subjected to the influence of high temperatures - are presented in the paper. Investigations were performed by the thermal analysis (TG) method, the infrared spectroscopy (FTIR) method and the modern Cu(II)-TET complex method (used for the determination of the montmorillonite content in bentonite samples). The occurrence of the dehydration process and two-stage dehydroxylation process was confirmed only for bentonite no. 2. This probably indicates that cis- and trans-isomers are present in the octahedric bentonite structure. Tests were performed at temperatures: 500, 550, 700, 900, 1000, 1100, 1200 °C.

  10. A study on the thermal conductivity of compacted bentonites

    CERN Document Server

    Tang, Anh-Minh; Le, Trung Tinh; 10.1016/j.clay.2007.11.001

    2008-01-01

    Thermal conductivity of compacted bentonite is one of the most important properties in the design of high-level radioactive waste repositories where this material is proposed for use as a buffer. In the work described here, a thermal probe based on the hot wire method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results were analyzed to observe the effects of various factors (i.e. dry density, water content, hysteresis, degree of saturation and volumetric fraction of soil constituents) on the thermal conductivity. A linear correlation was proposed to predict the thermal conductivity of compacted bentonite based on experimentally observed relationship between the volumetric fraction of air and the thermal conductivity. The relevance of this correlation was finally analyzed together with others existing methods using experimental data on several compacted bentonites.

  11. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    OpenAIRE

    Biljana Kovačević Zelić; Dubravko Domitrović; Želimir Veinović

    2007-01-01

    Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs) composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the lo...

  12. Unified theory for swelling deformation and swelling pressure of bentonite

    International Nuclear Information System (INIS)

    The correlation of the water volume to vertical overburden pressure (p) is obtained as Vw/ Vm=KÞDs-3 for bentonite with fractal-textured surface. The maximum swelling strain is predicted according to the correlation of the water volume to vertical overburden pressure. The predictions of the maximum swelling strain and swelling pressure are in satisfactory agreement with the experimental data of Tsukinuno and Wyoming bentonite. (authors)

  13. The Effect of Bentonite on External Corrosion of Well Casings

    OpenAIRE

    Orayith, Mohammed

    2012-01-01

    ABSTRACTThe overall goal of this research is concerned with understanding the effects of bentonite on the external corrosion of bare mild steel well casing. Na-bentonite is mainly used in enormous amounts in drilling processes, so it used as the main electrochemical environment surrounding the casing at different condition. The major part of the current study was divided into 3 stages; the first stage is constant current cathodic protection (CP) with a range of 0.0 (Open Circuit Potential) to...

  14. Effect of activation on swelling property in Ca-bentonite

    International Nuclear Information System (INIS)

    Compacted bentonite is attracting greater attention as buffer material for deep geological repository of high-level radioactive waste under current design concept. Swelling behavior is a significant property in achieving the low-permeability sealing function. The potential buffer material used is a locally available clayey material known as Zhisin clay in Taiwan. Zhisin clay is a Ca-type bentonite. Experimental data indicated that the swelling potential of Zhisin clay is much lower than that of Na-bentonite due to its exchangeable cation type and capacity. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder is introduced in this research. Addition of Na2CO3 reagent to Zhisin clay caused precipitation of CaCO3 to occur and induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite in liquid phase. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Due to the ion exchange hysteresis, activated bentonite shows different type of time-swell curve from traditional sigmoid-shaped curve. The optimal amount of Na2CO3 addition is found to be 1%, and the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. The Na2CO3 -activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to the Na-type bentonites under different hydrothermal temperatures. (authors)

  15. Study on Preparation and Properties of Grease Based on Ultraifne Bentonite Powder

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Guo Xiaochuan; Jiang Mingjun; He Yan

    2016-01-01

    The feasibility for preparation of ultraifne bentonite powder by different milling methods was studied. And the comparison of comprehensive performance between ultraifne bentonite grease and traditional bentonite grease was also investigated. The results indicated that the statistic Z-average size of ultraifne bentonite prepared by sand milling was 250 nm with a narrow size distribution and the lattice structure of ultraifne bentonite maintained good character despite a slight distortion occasioned. The mechanical stability, colloid stability, antiwear ability and friction-reducing property of ultraifne bentonite grease were superior to the traditional one.

  16. Diffusion of organic colloids in compacted bentonite. The influence of ionic strength on molecular size and transport capacity of the colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wold, S.; Eriksen, Trygve E. [Royal Inst. of Tech., Stockholm (Sweden)

    2000-09-01

    Diffusion of radionuclides in compacted bentonite can be affected by inorganic and organic colloids if the radionuclides form complexes with the colloids. Formation and mobility of the colloid-radionuclide complexes will be governed by the properties of the colloids as well as the competition between complexation and sorption of the radionuclides on bentonite. This report presents the results of experiments with organic colloids humic acid (HA) and lignosulfonate (LS). The aim of the experiments has been to describe the HA and LS properties: size distribution, acidity, sorption on bentonite, diffusivity in compacted bentonite, complexation with strontium, and diffusion of strontium in bentonite in the presence of HA. This study indicates that the diffusion of cationic radionuclides like Sr{sup 2+} is not affected by the presence of HA in high ionic strength solution. In 0.1 M NaClO{sub 4} solution, HA is most probably not available for complexation due to coiling and shielding of the negative sites.

  17. Gas migration through bentonitic engineered barrier systems and through non-indurated clays

    International Nuclear Information System (INIS)

    This extended abstract summarises briefly the main conclusions and perspectives of the research work carried out in the frame of gas migration from a radioactive waste disposal through bentonitic engineered barrier systems (EBS) and non-indurated natural clay formations. After a description of the most important experimental results and the conceptual model evolution, we will focus on the safety relevant issues and the way the gas migration through such media is currently treated in performance assessment for different types of waste. Finally, the remaining open questions will be addressed at the end of this paper. Further insights are provided in the EC/NEA status report. (authors)

  18. Polyester-Bentonite Clay Composite: Synthesis, Characterization and Application as Anticorrosive Agent

    Directory of Open Access Journals (Sweden)

    Subramanian Chitra

    2015-09-01

    Full Text Available New polyester-bentonite clay composite was prepared and characterized by FTIR, TGA, SEM& XRD. The XRD and SEM studies are quite supportive of well dispersed polymer clay composite formation. The thermal stability of the polymer was significantly improved as indicated by TGA. The composite was evaluated for its inhibition performance for mild steel corrosion in 1M H2SO4 by weight loss, polarization and electrochemical impedance techniques. The studies reveal that the clay composite was an excellent adsorption type inhibitor and obeys Langmuir adsorption isotherm. Electrochemical studies showed that the polymer composite was a mixed inhibitor retarding both anodic metal dissolution and cathodic hydrogen evolution.

  19. Long-term stability of bentonite. A literature review

    International Nuclear Information System (INIS)

    The long-term thermodynamic stability of the bentonite buffer in the evolving chemical, thermal and hydrological conditions at Olkiluoto has been evaluated by reviewing the relevant experimental data and natural occurrences of bentonite that could serve as analogues for the long-term bentonite stability in the expected repository conditions, especially focussing on mineral transformations due, among others, to thermal effects including cementation. Natural occurrences with stable smectite have been reviewed and compared with Olkiluoto groundwater compositions at present and during the expected hydrogeochemical evolution of the repository. Alteration of the bentonite buffer is expected to be insignificant for natural groundwater conditions at present and for the evolving groundwater conditions at the expected thermal boundary conditions caused by the heat induced from the fuel canisters (+ and SiO2 and elevated pH due to degradation and dissolution processes. These may alter the conditions in the repository that may favour alteration and cementation processes. The amounts of foreign materials to be used in the repository will be updated along with the progress of the construction. Also the information on their impact on the barriers needs to be evaluated in more detail, including the degradation rate, mobility or dilution of the foreign materials in the repository environment. The exchangeable cation composition of the buffer bentonite is expected to equilibrate with the surrounding groundwater during and after saturation. This process is expected to lead towards Ca-dominant exchangeable cation composition within the montmorillonite interlayer spaces in the buffer. In general it seems that the transformation towards Ca-dominated composition would favour the long-term stability of the buffer as Ca-dominated smectite (compared to Na-dominated type) has larger water retention capacity and anion incorporation to the interlayer space of montmorillonite is more extensive

  20. Mechanisms and models for bentonite erosion

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars; Longcheng Liu; Moreno, Luis (Dept. of Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Inst. of Technology, KTH, Stockholm (Sweden))

    2009-12-15

    There are concerns that the bentonite buffer surrounding the canisters with spent nuclear fuel may erode when non-saline groundwaters seep past the buffer. This is known to happen if the water content of ions is below the critical coagulation concentration CCC. Above the CCC the smectite forms a coherent gel, which does not release particles. One main effort in this study has been directed to assess under which conditions the pore water composition of the gel at the gel/water interface could be lower than the CCC. Another main effort has been directed to understanding the behaviour of expansive gel when the pore water is below the CCC. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging. The model also predicted the gel expansion through filters with very narrow pores well. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion (effect included in the Dynamic model). The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses

  1. Mechanisms and models for bentonite erosion

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars; Longcheng Liu; Moreno, Luis (Dept. of Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Inst. of Technology, KTH, Stockholm (Sweden))

    2009-12-15

    There are concerns that the bentonite buffer surrounding the canisters with spent nuclear fuel may erode when non-saline groundwaters seep past the buffer. This is known to happen if the water content of ions is below the critical coagulation concentration CCC. Above the CCC the smectite forms a coherent gel, which does not release particles. One main effort in this study has been directed to assess under which conditions the pore water composition of the gel at the gel/water interface could be lower than the CCC. Another main effort has been directed to understanding the behaviour of expansive gel when the pore water is below the CCC. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging. The model also predicted the gel expansion through filters with very narrow pores well. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion (effect included in the Dynamic model). The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses

  2. Mechanisms and models for bentonite erosion

    International Nuclear Information System (INIS)

    There are concerns that the bentonite buffer surrounding the canisters with spent nuclear fuel may erode when non-saline groundwaters seep past the buffer. This is known to happen if the water content of ions is below the critical coagulation concentration CCC. Above the CCC the smectite forms a coherent gel, which does not release particles. One main effort in this study has been directed to assess under which conditions the pore water composition of the gel at the gel/water interface could be lower than the CCC. Another main effort has been directed to understanding the behaviour of expansive gel when the pore water is below the CCC. We have developed a Dynamic model for sodium gel expansion in fractures where the gel soaks up non-saline water as it expands. The model is based on a force balance between and on smectite particles, which move in the water. The Dynamic model of gel expansion showing the evolution in time and space of a gel was successfully tested against expansion experiments in test tubes. The expansion was measured with high resolution and in great detail over many months by Magnetic Resonance Imaging. The model also predicted the gel expansion through filters with very narrow pores well. A gel viscosity model of dilute gels was derived, which accounts for ion concentration influence as well as the volume fraction of smectite in the gel. The model accounts for the presence of the DDL, which seemingly makes the particles larger so that they interact at lower particle densities. Simulations were performed for a case where the gel expands outward into the fracture that intersects the deposition hole. Fresh groundwater approaches and passes the gel/water interface. Smectite colloids move out into the water due to the repulsive forces between the particle and by Brownian motion (effect included in the Dynamic model). The dilute gel/sol is mobilised and flows downstream in a thin region where the viscosity is low enough to permit flow. Sodium diffuses

  3. Occurrence of Fe-Mg-rich smectites and corrensite in the Morron de Mateo bentonite deposit (Cabo de Gata region, Spain): A natural analogue of the bentonite barrier in a radwaste repository

    Energy Technology Data Exchange (ETDEWEB)

    Pelayo, M., E-mail: m.pelayo@ciemat.es [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Garcia-Romero, E. [Departamento de Cristalografia y Mineralogia, Facultad C.C. Geologicas, UCM, 28040 Madrid (Spain); Labajo, M.A.; Perez del Villar, L. [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-07-15

    that the former seems to be formed from Fe-Mg-rich smectites. The presence of corrensite in the epiclastic rocks suggests that in the Morron de Mateo area a hydrothermal alteration process occurred after bentonite formation, which transformed Fe-Mg-rich smectites into corrensite. This transformation was probably favoured by the intrusion of the Morron de Mateo volcanic dome, which produced a temperature increase in the geological media and a supply of Fe-Mg-rich solutions. These physicochemical conditions were also responsible for the metasomatic transformations observed in the biocalcarenite beds located on the top of the bentonite deposit. All these data suggest that the Morron de Mateo natural system could be a good natural analogue of both thermal and chemical effects on a bentonite barrier related to the radioactive decay of fission products and the interaction between the corrosion products of steel over-packs and the bentonite. These circumstances would favour the transformation of the candidate Al-rich smectites into Fe-Mg-rich smectites and corrensite, as steps prior to formation of chlorite. In this case, all the physicochemical and mechanical properties of Al-rich smectites would disappear and the clayey barrier would fail.

  4. Lake restoration with aluminium, bentonite and Phoslock: the effect on sediment stability and light attenuation

    DEFF Research Database (Denmark)

    Egemose, Sara; Reitzel, Kasper; Flindt, Mogens

    treatments on aluminium mobility, sediment stability or light climate. A laboratory flume experiment including three shallow Danish lakes was conducted. We measured the effects of aluminium, Phoslock (a commercial product), bentonite, and a combination of bentonite/aluminium. Each treatment caused a varying...... consolidation of the sediment. The largest consolidation occurred using Phoslock- and bentonite-addition followed by bentonite/aluminium-addition, whereas aluminium alone had no effect. Sediment stability thresholds were measured before and after addition. Especially Phoslock, but also bentonite and bentonite....../aluminium increased sediment erosion threshold, with respectively 200%, 43% and 57%. Aluminium, bentonite/aluminium, and Phoslock improved the light conditions in the water phase, with respectively 60%, 57% and 50%, whereas bentonite created higher turbidity. Conclusively aluminium improved the light conditions...

  5. Field test of ethanol/bentonite slurry grouting into rock fracture

    International Nuclear Information System (INIS)

    Crystalline rocks have fractures which may cause unexpected routes of groundwater seepage. Cement grouting is one of the most effective methods to minimize seepage; however, cement materials may not be suitable for the purpose of extra-long durability, because cement is neutralized or degraded by chemical and physical influence of chemical reaction. Natural clay like bentonite is one of the most promising materials for seepage barrier; however, water/bentonite grout is so viscous that enough amount of bentonite can not be grouted into rock fractures. To increase bentonite content in grout with low viscosity, the utilization of ethanol as a mixing liquid was studied. Ethanol suppresses bentonite swelling, and more bentonite can be injected more than that of water/bentonite slurry. In this paper, grouting into in-situ rock mass fracture from the ground surface was tested to investigate the barrier performance and workability of ethanol/bentonite slurry as a grouting material. (author)

  6. Performance characteristics of EZhou bentonite of Hubei province and its modification

    Institute of Scientific and Technical Information of China (English)

    Long Wei; Fan Zitian; Hu Xueting

    2009-01-01

    Both the chemical compositions and performance characteristics of the bentonite raw ores in Ezhou area of Hubei province and Honghuoshan area of Liaoning province were compared and analyzed. The properties of these two kinds of bentonites were tested before and after Na+- and Li+-modification. The results show that the Ezhou bentonite ore possesses higher montmorillonite content than the Honghuoshan bentonite ore, but the Ezhou Na-bentonite has weaker castability (e.g. Wet compression strength and hot wet tensile strength) than the Honghuoshan Na-bentonite, while the performance of Ezhou Li-bentonite, such as colloid index, swelling value, swelling volume and mould coating performance, is equivalent to that of the Honghuoshan Na-bentonite.

  7. Geochemical discrimination of the Upper Ordovician Kinnekulle Bentonite in the Billegrav-2 drill core section, Bornholm, Denmark

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2014-12-01

    Full Text Available The content of the trace elements Ti, Nb, Zr and Th has been analysed in 34 Upper Ordovician bentonites from the Billegrav-2 drill core, Bornholm, Denmark. The section contains two 80–90 cm thick bentonites, which potentially may represent the Kinnekulle Bentonite, as well as several rather thick but composite bentonite layers with thin terrigenous shale interbeds. Comparison of the four immobile trace elements with data from the Kinnekulle Bentonite reported from other locations in Baltoscandia indicate that the 80 cm thick bentonite between 88.30 and 89.10 m in the Billegrav-2 core represents this marker bed. The other thick (90 cm bentonite in the Billegrav-2 core, exceeding the thickness of the Kinnekulle Bentonite, belongs to the Sinsen or uppermost Grefsen Series bentonites. Bentonites in the Grefsen Series frequently contain much higher concentrations of trace elements than the Kinnekulle Bentonite.

  8. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    Science.gov (United States)

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  9. CHARACTERISTICS OF BENTONITE AND ITS SYNERGISTIC RETENTION EFFECT WITH CPAM ON WHEAT STRAW PULP

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Wenxia Liu

    2004-01-01

    The various properties of bentonite samples with different sources and their synergistic retention effect with CPAM on wheat straw pulps were investigated.The investigated properties of bentonite included adsorptive capacity based on methylene blue,cation-exchange capacity, swelling volume, colloidal volume, particle size and charge properties. The results show that particle size is the most important properties of bentonite for its synergistic retention effect with CPAM. Using Wyoming type sodium bentonite without drying after modification can obtain the excellent furnishes retention.

  10. Measurement of pH of the Compacted Bentonite under the Reducing Condition

    OpenAIRE

    Nessa, Syeda Afsarun; Idemitsu, Kazuya; Yamasaki, Yosuke; Inagaki, Yaohiro; Arima, Tatsumi

    2007-01-01

    Compacted bentonite and carbon steel have been considered as the good buffer and over-pack materials in the repositories of high-level radioactive waste disposal. Sodium bentonite, Kunipia-F contains approximately 95wt% of montmorillonite. It has a high cation-exchange capacity and a high specific surface area, and its properties determine the behavior of bentonite. The pH of the pore water in compacted bentonite is an extremely important parameter because of its influence on radionuclide sol...

  11. Mechanical Properties of Plastic Concrete Containing Bentonite

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2013-02-01

    Full Text Available Plastic concrete consists of aggregates, cement, water and bentonite, mixed at a high water cement ratio, to produce a ductile material. It is used for creating an impermeable barrier (cut-off wall for containment of contaminated sites or seepage control in highly permeable dam foundations. The effects of water to binder ratio and clay dosage on mechanical properties of plastic concrete were investigated. The results indicate that the water to binder ratio and clay dosage have great influence on the mechanical properties of plastic concrete. There is a tendency of decrease in the compressive strength, splitting tensile strength, shear strength and elastic modulus of plastic concrete with the increase of water to binder ratio and clay dosage, while, the internal friction angle of the shear specimens is increasing gradually. To improve the resistance to deformation of cut-off walls constructed with plastic concrete, the higher water to binder ratio and clay dosage can be selected to decrease the elastic modulus of plastic concrete in the practical design and applications of plastic concrete on condition that the plastic concrete has enough compressive strength, tensile strength and shear strength.

  12. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  13. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    Science.gov (United States)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  14. Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite

    Institute of Scientific and Technical Information of China (English)

    Ping Jing; Meifang Hou; Ping Zhao; Xiaoyan Tang; Hongfu Wan

    2013-01-01

    The adsorption behavior of 2-mercaptobenzothiazole onto organo-bentonite was investigated.Natural bentonite from Gaozhou in Guangdong Province,China was collected.Organo-bentonite was prepared by intercalation of cetyltrimethyl ammonium bromide into the natural bentonite.The physicochemical properties of the prepared organo-bentonite were characterized by X-ray diffraction,N2 adsorption-desorption isotherm and Fourier transform infrared spectroscopy.The results showed that montmorillonite is the main component of the natural bentonite.The basal spacing of the natural bentonite is 1.47 nm,which increased to 1.98 nm on intercalation with cetyltrimethyl ammonium bromide.Moreover,both the surface area and pore volume increased with intercalation.Clear CH2 stretching (3000-2800 cm-1) and scissoring (1480-1450 cm-1) modes of the intercalated surfactants were observed for organobentonite.Compared with the pseudo first-order kinetic model,the pseudo second-order kinetic model is more suitable to describe the adsorption kinetics of 2-mercaptobenzothiazole onto organo-bentonite.The adsorption capacity of 2-mercaptobenzothiazole onto organo-bentonite increased with increasing initial concentration of 2-mercaptobenzothiazole,but decreased with increasing adsorbent dosage.The adsorption isotherm of 2-mercaptobenzothiazole onto organo-bentonite fits well with the Langmuir model.The maximum adsorption capacity of organo-bentonite for 2-mercaptobenzothiazole was 33.61 mg/g,indicating that organo-bentonite is a promising adsorbent for 2-mercaptobenzothiazole.

  15. Chemical and Pb isotope composition of phenocrysts from bentonites constrains the chronostratigraphy around the Cretaceous-Paleogene boundary in the Hell Creek region, Montana

    Science.gov (United States)

    Ickert, Ryan B.; Mulcahy, Sean R.; Sprain, Courtney J.; Banaszak, Jessica F.; Renne, Paul R.

    2015-09-01

    An excellent record of environmental and paleobiological change around the Cretaceous-Paleogene boundary is preserved in the Hell Creek and Fort Union Formations in the western Williston Basin of northeastern Montana. These records are present in fluvial deposits whose lateral discontinuity hampers long-distance correlation. Geochronology has been focused on bentonite beds that are often present in lignites. To better identify unique bentonites for correlation across the region, the chemical and Pb isotopic composition of feldspar and titanite has been measured on 46 samples. Many of these samples have been dated by 40Ar/39Ar. The combination of chemical and isotopic compositions of phenocrysts has enabled the identification of several unique bentonite beds. In particular, three horizons located at and above the Cretaceous-Paleogene boundary can now be traced—based on their unique compositions—across the region, clarifying previously ambiguous stratigraphic relationships. Other bentonites show unusual features, such as Pb isotope variations consistent with magma mixing or assimilation, that will make them easy to recognize in future studies. This technique is limited in some cases by more than one bentonite having compositions that cannot be distinguished, or bentonites with abundant xenocrysts. The Pb isotopes are consistent with a derivation from the Bitterroot Batholith, whose age range overlaps that of the tephra. These data provide an improved stratigraphic framework for the Hell Creek region and provide a basis for more focused tephrostratigraphic work, and more generally demonstrate that the combination of mineral chemistry and Pb isotope compositions is an effective technique for tephra correlation.

  16. Geochemical evolution of the Fe/Febex bentonite interface under simultaneous hydration and heating

    International Nuclear Information System (INIS)

    part of the cells was a plane stainless steel heater set at a temperature of 100 deg. C. In this way, a constant gradient between top and bottom of the sample was imposed. The hydration is made through the upper plug of the cell with water (granite water collected from Grimsel Test Site) taken from a stainless steel pressurized deposit. The cells were instrumented with capacitive-type sensors placed inside the clay at two different levels recording the evolution of relative humidity and temperature as the hydration front advances. Two of these cells were dismantled during European scientific research program NF-PRO after 6 and 15 months of operation and a third one was dismantled in the framework of the PEBS European Project after 52 months of operation. A detailed sampling of the iron/bentonite interface and the iron itself was performed for geochemical characterization. In all cases, an advective movement of salts towards the heater has been observed. Figure 1 shows the advance of the chloride front towards the heater as a function of the test time. After 15 months, most of soluble chloride is concentrated at the interface. Chloride was detected in corrosion products from the three dismantled cells. Initial precipitation of chloride seems to play a relevant role in the first stages of the corrosion process, as it helps to initiate it. In the three dismantled tests, Fe powder seems to undergo slight corrosion. Sequential dismantling of the cells allowed studying the influence of time on the nature of the corrosion products. Different colours were observed in the Fe powder as a function of the test time. Goethite and hematite were the main corrosion products identified in the 6-month and 15-month tests, respectively. In the 52- month test, a deep blue iron oxide was found together with goethite and hematite. Its characterization confirmed the formation of Fe(II) and mixed Fe(II)/Fe(III) phases (ferrous hydroxide and magnetite). No alteration of the bentonite was

  17. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura;

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  18. Characterization of bentonite clay from “Greda” deposit

    Directory of Open Access Journals (Sweden)

    Nadežda Stanković

    2011-06-01

    Full Text Available Based on mineralogical and technological investigations of the deposit “Greda” important characteristics of bentonite clay were determined. Representative samples of the deposit were characterized with X-ray diffraction, low-temperature nitrogen adsorption, chemical analysis, differential thermal analysis and scanning electron microscopy. It was determined that the main mineral is montmorillonite and in subordinate quantities kaolinite, quartz and pyrite. The chemical composition generally shows high silica and alumina contents in all samples and small quantities of Fe3+, Ca2+ and Mg2+ cations. Based on technological and mineralogical research, bentonite from this deposit is a high-quality raw material for use in the ceramic industry.

  19. Study on long-term performance of bentonite layer in radioactive waste repository

    International Nuclear Information System (INIS)

    It is important to appropriately evaluate the long-term performance of the bentonite layer in a radioactive waste repository because it can considerably affect the repository function for containment and delay of nuclides. Thus far, limited knowledge has been available on alkali alteration phenomena of highly compacted bentonite and their effect on its physical properties. In this study, we developed an apparatus for testing alkali alteration phenomena of highly compacted bentonite and its physical properties. Through studies conducted using the apparatus, we concluded that the alkali dissolution rate of montmorillonite in highly compacted bentonite is less than 9.7 x 10-13 mol/m2/sec and that the hydraulic conductivity of the bentonite layer is affected by the pore structure, which can be refined by the effect of dissolution and precipitation of minerals in bentonite, as well as by the density of the bentonite layer and the electrolyte concentration of pore solution. (author)

  20. The Formation of Liquid Water on Present-Day Mars: Calcium-Magnesium Chloride Brines in the Antarctic Dry Valleys as a Mars Analog

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.

    2016-09-01

    By analogy to the Antarctic Dry Valleys, Ca-Mg-Cl brines may be responsible for aqueous flows on Mars. We use modeling to show that Ca-Mg-Cl brines could be stable on Mars, and are often more favorable for forming solutions than perchlorate salts.

  1. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  2. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs+ and Sr2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs+ and Sr2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  3. DEPOSITS AND MINING POTENTIAL OF BENTONITE IN CROATIA

    Directory of Open Access Journals (Sweden)

    Mario Klanfar

    2012-07-01

    Full Text Available Bentonite is one of the materials that is planed to be used for buffering and backfilling in spent nuclear fuel repositories, within deep crystalline rock. There are several locations in Croatia that bentonite deposits and occurrences are found on. Some were exploited in past, and others were more or less explored. This paper presents overview of bentonite deposits, basic properties and potential resources, and mining practices in Croatia. Largest exploited deposits are found in area of Poljanska luka, Gornja Jelenska and Bednja. Surface and underground methods (drift and fill, sublevel caving were used during exploitation. In the area of Svilaja and Lika are found potentially valuable deposits that were never exploited. Montmorilonite content ranges form 20-50% to 57-89%. Most deposits contain bentonite beds with thickness 0,4-1,6 m, and have plunge 10°-30°. Few exceptions are nearly horizontal and thick more than 5 m and even 12 m. One is declined at 70° and up to 40m thick. Proven reserves are about 2,3 Mt with some level of uncertainty. Average production per mine during exploitation period can be assumed to be several thousands t/y.

  4. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    Madhuchhanda Sarkar; Kausik Dana; Sankar Ghatak; Amarnath Banerjee

    2008-02-01

    In the present work, a set of experimental polypropylene (PP) clay composites containing pristine bentonite clay of Indian origin has been prepared and then characterized. The polymer clay composites are processed by solution mixing of polypropylene with bentonite clay using a solvent xylene and high speed electric stirrer at a temperature around 130°C and then by compression molding at 170°C. The mechanical properties of PP–clay composites like tensile strength, hardness and impact resistance have been investigated. Microstructural studies were carried out using scanning electron microscope and transmission electron microscope and the thermal properties were studied using differential scanning calorimeter. Mechanical properties of the prepared composites showed highest reinforcing and toughening effects of the clay filler at a loading of only 5 mass % in PP matrix. Tensile strength was observed to be highest in case of 5 mass % of clay loading and it was more than 14% of that of the neat PP, while toughness increased by more than 80%. Bentonite clay–PP composite (5 mass %) also showed 60% increase in impact energy value. However, no significant change was observed in case of hardness and tensile modulus. Higher percentages of bentonite clay did not further improve the properties with respect to pristine polypropylene. The study of the microstructure of the prepared polymer layered silicate clay composites showed a mixed morphology with multiple stacks of clay layers and tactoids of different thicknesses.

  5. Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites.

    Science.gov (United States)

    Hernández, María C; Suárez, N; Martínez, Luis A; Feijoo, José L; Lo Mónaco, Salvador; Salazar, Norkys

    2008-05-01

    We investigate the effects of clay proportion and nanoscale dispersion in the dielectric response of poly(vinyl alcohol)-bentonite nanocomposites. The dielectric study was performed using the thermally stimulated depolarization current technique, covering the temperature range of the secondary and high-temperature relaxation processes. Important changes in the secondary relaxations are observed at low clay contents in comparison with neat poly(vinyl alcohol) (PVA). The high-temperature processes show a complex peak, which is a combination of the glass-rubber transition and the space-charge relaxations. The analysis of these processes shows the existence of two segmental relaxations for the nanocomposites. Dielectric results were complemented by calorimetric experiments using differential scanning calorimetry. Morphologic characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM and XRD results show a mixture of intercalated and exfoliated clay dispersion in a trend that promotes the exfoliated phase as the bentonite content diminishes. Dielectric and morphological results indicate the existence of polymer-clay interactions through the formation of hydrogen bounds and promoted by the exfoliated dispersion of the clay. These interactions affect not only the segmental dynamics, but also the secondary local dynamics of PVA. PMID:18643091

  6. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  7. Activation of a Ca-bentonite as buffer material

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post

  8. Activation of a Ca-bentonite as buffer material

    Science.gov (United States)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  9. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    Science.gov (United States)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  10. Study of cesium and strontium adsorption on slovak bentonite

    International Nuclear Information System (INIS)

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level radioactive waste and spent nuclear fuel. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonite. Adsorption of Cs and Sr on five Slovak bentonite of deposits (Jelsovy potok, Kopernica, Lieskovec, Lastovce and Dolna Ves) and montmorillonite K10 (Sigma-Aldrich) has been studied with the using batch of radiometric techniques. Natural, irradiated and natrified samples, in three different kinds of grain size: 15, 45 and 250 μm have been used in the experiments. The adsorptions of Cs and Sr on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations, pH after adsorption and effect of pH change, chemical modification, competitive ions and organic agents on the adsorption have been studied. The Kd have been determined for adsorbent-Cs/Sr solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The adsorption of Cs and Sr has increased with increasing metal concentrations. Adsorption of Cs and Sr has been suppressed by presence of organic agents; and of bivalent cations more than univalent cations. By adsorption on natrified samples colloidal particles and pH value increase have been formed. Adsorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonite of the Jelsovy potok and Kopernica deposits. (author)

  11. Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal.

    Science.gov (United States)

    Dutta, Anirban; Singh, Neera

    2015-03-01

    Bentonite clay was modified using quaternary ammonium cations, viz. phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), trioctylmethylammonium (TOMA) [100 % of cation exchange capacity of clay], and stearylkonium (SK) [100 % (SK-I) and 250 % (SK-II) of cation exchange capacity of clay]. The organoclays were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning electron microscopy (SEM). Atrazine adsorption on modified clays was studied using a batch method. Bentonite clay was a poor adsorbent of atrazine as 9.4 % adsorption was observed at 1 μg mL(-1) atrazine concentration. Modification of clay by PTMA cation did not improve atrazine adsorption capacity. However, atrazine adsorption in HDTMA-, TOMA-, and SK-bentonites varied between 49 and 72.4 % and data fitted well to the Freundlich adsorption isotherm (R > 0.96). Adsorption of atrazine in organoclays was nonlinear and slope (1/n) values were adsorption constants, K f(1/n) in HDTMA-, TOMA-, and SK-I-bentonites was 239.2, 302.4, and 256.6, respectively, while increasing the SK cation loading in the clay (SK-II) decreased atrazine adsorption [K f(1/n) - 196.4]. Desorption of atrazine from organoclays showed hysteresis and TOMA- and SK-I-bentonites were the best organoclays to retain the adsorbed atrazine. Organoclays showed better atrazine removal from wastewater than an aqueous solution. The synthesized organoclays may find application in soil and water decontamination and as a carrier for atrazine-controlled released formulations. PMID:25273519

  12. Coupled thermo-hydro-chemical models of swelling bentonites

    Science.gov (United States)

    Samper, Javier; Mon, Alba; Zheng, Liange; Montenegro, Luis; Naves, Acacia; Pisani, Bruno

    2014-05-01

    The disposal of radioactive waste in deep geological repositories is based on the multibarrier concept of retention of the waste by a combination of engineered and geological barriers. The engineered barrier system (EBS) includes the solid conditioned waste-form, the waste container, the buffer made of materials such as clay, grout or crushed rock that separate the waste package from the host rock and the tunnel linings and supports. The geological barrier supports the engineered system and provides stability over the long term during which time radioactive decay reduces the levels of radioactivity. The strong interplays among thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration, thermal and solute transport stages of the engineered barrier system (EBS) of a radioactive waste repository call for coupled THMC models for the metallic overpack, the unsaturated compacted bentonite and the concrete liner. Conceptual and numerical coupled THMC models of the EBS have been developed, which have been implemented in INVERSE-FADES-CORE. Chemical reactions are coupled to the hydrodynamic processes through chemical osmosis (C-H coupling) while bentonite swelling affects solute transport via changes in bentonite porosity changes (M-H coupling). Here we present THMC models of heating and hydration laboratory experiments performed by CIEMAT (Madrid, Spain) on compacted FEBEX bentonite and numerical models for the long-term evolution of the EBS for 1 Ma. The changes in porosity caused by swelling are more important than those produced by the chemical reactions during the early evolution of the EBS (t < 100 years). For longer times, however, the changes in porosity induced by the dissolution/precipitation reactions are more relevant due to: 1) The effect of iron mineral phases (corrosion products) released by the corrosion of the carbon steel canister; and 2) The hyper alkaline plume produced by the concrete liner. Numerical results show that

  13. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  14. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Hamideh Pouraboulghasem; Mohammad Ghorbanpour; Razieh Shayegh; Samaneh Lotfiman

    2016-01-01

    Nanocomposites of zinc/bentonite clay were synthesized for use as an antibacterial material by a quick and simple alkaline ion exchange method. The synthesis of zinc doped bentonite nanocomposite was accomplished by placing bentonite in a melting bath of ZnSO4 for 10, 20, 40, 60 and 90 min. The complexes were characterized by XRD, SEM and DRS. XRD analyses and SEM observations confirmed the diffusion of zinc to the clay surfaces. Antibacterial activity tests againstEscherichia coli showed that bentonite did not present any antibacterial properties, but after alkaline ion exchange treatment, inhibition was noted. The highest antibacterial activity was observed with ZnO/bentonite composite alkaline ion exchange for 60 and 90 min. Interestingly, the leaching test indicated that ZnO/bentonite did not present any risk for drinking water treatment.

  15. Sorption of wastewater containing reactive red X-3B on inorgano-organo pillared bentonite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bentonite is a kind of natural clay with good exchanging ability. By exchanging its interlamellar cations with various soluble cations, such as quaternary ammonium cations and inorganic metal ions, the properties of natural bentonite can be greatly improved. In this study, hexadecyltrimethylammonium bromide (HDTMA), CaCl2, MgCl2, FeCl3, AlCl3 were used as organic and inorganic pillared materials respectively to produce several kinds of Ca-, Mg-, Fe-, Al-organo pillared bentonites. Sorption of reactive red X-3B on them was studied to determine their potential application as sorbents in wastewater treatment. The results showed that these pillared bentonites had much improved sorption properties, and that the dye solutions' pH value had some effect on the performance of these inorgano-organo pillared bentonites. Isotherms of reactive X-3B on these pillared bentonites suggested a Langmuir-type sorption mechanism.

  16. Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea

    Institute of Scientific and Technical Information of China (English)

    Chulho; LEE; Kangja; LEE; Hangseok; CHOI; Hyo-Pum; CHOI

    2010-01-01

    The thermal conductivity and viscosity of bentonite grouts have been evaluated and compared each other to determine the suitability of these materials for backfilling vertical boreholes of ground heat exchangers.Seven bentonite grouts from different product sources were considered in this paper.Two additives,silica sand and graphite were added in bentonite grouts to enhance thermal performance.The bentonite grouts indicate that both the thermal conductivity and the viscosity increase with the content of silica sand and graphite.Therefore,it is recommended to select cautiously the amount of silica sand and graphite considering not only thermal conductivity but also viscosity for the optimum condition of backfilling.Finally,the effect of salinity in the pore water on the change of swelling potential of the bentonite-based grouts has been quantitatively evaluated to show the feasibility of bentonite grouts in the coastal area.

  17. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    Science.gov (United States)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM-EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  18. Bentonite-like material sealing to high-level radioactive wastes storage

    International Nuclear Information System (INIS)

    Among the most used materials for sealing of radioactive waste storage, bentonite shows a high number of advantages because of its plasticity, thermal and hydraulic conductivity, etc. The paper makes a review on different Spanish deposits of bentonite and their stability. Most of studies are focussed on the volcanic region at Cabo de Gata (Almeria). That area offers the most productive hydrothermal bentonite deposits in Spain

  19. Diffusion coefficient test of {sup 237}Np in bentonite backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Cui Anxi; Fan Zhiwen; Zhang Jinsheng; Gu Cunli [China Inst. for Radiation Protection, Shanxi (China); Mukai, M.; Maeda, T.; Matsumoto, J.; Tanaka, T.; Ogawa, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    This paper describes the work on diffusion coefficient test of Np in bentonite backfill materials. Due to its very low permeability, diffusion is the dominant migration mechanics in bentonite. The bentonite comes from Inner Mongolia of China. {sup 237}Np was used as tracer. The special apparatus for diffusion test was setup, the diffusion coefficient of Np in pure bentonite and sand-bentonite mixture were tested. The tracer was introduced between two bentonite columns. After a specific contacting period, the bentonite columns were taken out and cut to very thin slices. The radioactivity in bentonite slices was analyzed to give the nuclide concentration versus distance curves. The diffusion coefficient could be estimated. The diffusion coefficient of pure bentonite at different density was tested. When the density of pure bentonite samples varied from 1.1, 1.3, 1.5 to 1.7 g/ml, their diffusion coefficient were 1.36 x 10{sup -13} m{sup 2}/s 1.16 x 10{sup -13}m{sup 2}/s, 1.07 x 10{sup -13} m{sup 2}/s and 8.26 x 10{sup -14} m{sup 2}/s respectively. The diffusion coefficient of Np in sand-bentonite mixture sample was 4.13 x 10{sup -13} m{sup 2}/s. To estimate the distribution coefficient (K{sub d}) value of Np in mixture sample by diffusion method, the diffusion coefficient of Br was measured./ The concluded K{sub d} value was 77ml/g for the sand-bentonite mixture. The K{sub d} value obtained by batch test methods was 30ml/g. The reason is related with the error of Br diffusion coefficient and solid-liquid ratio. (author)

  20. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  1. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Biljana Kovačević Zelić

    2007-12-01

    Full Text Available Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the location and the obeying function, GCLs have to fulfill certain conditions. A legislated compatibility criterion has to be proven by various laboratory tests. In the paper are presented the results of direct shear and chemical compatibility tests of GCLs as well as the results of permeability measurement of kaolin clay (the paper is published in Croatian .

  2. Sorption of Lithium on Bentonite, Kaolin and Zeolite

    OpenAIRE

    Mandy Hoyer; Nicolai-Alexeji Kummer; Broder Merkel

    2015-01-01

    Li sorption was studied on natural bentonite, kaolin and zeolite in batch experiments at variable Li and Na concentrations (0, 1.5, 15, 150, 750 mM LiCl and 0.01, 0.1, 1, 3, 5 M NaCl). The solid-to-solution ratio was 1:4 and pH ranged from 2 to 10. Maximum Li sorption was determined at 0.01 M NaCl and 750 mM LiCl concentration in solution. It was 3800 ± 380 ppm, 1300 ± 130 ppm and 3900 ± 390 ppm on bentonite, kaolin and zeolite, respectively, which is in the average to upper range typical fo...

  3. Comparative study of bentonite properties with respect to the application as geotechnical barrier in HLRW repositories

    International Nuclear Information System (INIS)

    In concepts for the storage of high level radioactive waste (HLRW) the application of bentonite as sealing material is envisaged. Relevant properties of bentonites are cation exchange capacity (retention of pollutants), swelling (sealing of cracks), and low hydraulic conductivity. These properties significantly vary with the type of counter ion which is dominant in the smectite (commonly montmorillonite) interlayers. However, the variability of bentonites - not depending on the type of counter ion - is frequently underestimated. Bentonites vary in the mineralogical and chemical composition, and the arrangement of all components (intergrowth and micro fabric). Additionally, the main component (smectite) varies with respect to the degree of structural order, particle size, crystallite size, chemical composition, morphology, and amount and location of negative charges. This variation, of course, strongly affects bentonite properties in almost all fields of industrial application. Measurable parameters only occasionally explain the different properties. The common approach, therefore, is to perform application tests. In this study an attempt is made to identify the variation of bentonite properties with respect to the application in HLRW repositories. The study is based on the comparative investigation of 30 different bentonites from important bentonite mining areas worldwide. The bentonites were characterized intensively by mineralogical, optical, and chemical methods: XRD, IR, SEM, CEC, XRF, granulometry, layer charge density. (authors)

  4. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  5. Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol

    Science.gov (United States)

    Mnasri-Ghnimi, Saida; Frini-Srasra, Najoua

    2016-09-01

    Catalysts based on pillared clays with Zr and/or Al and Ce-Zr and/or Al polycations have been synthesized from a Tunisian bentonite and tested in catalytic oxidation of phenol at 298 K. The Zr-pillared clay showed higher activity than the Al-one in phenol oxidation. Mixed Zr-Al pillars lead to an enhancement of the catalytic activity due to the modification of the zirconium properties. The clays modified with Ce showed high conversions of phenol and TOC thus showing to be very selective towards the formation of CO2 and H2O.

  6. Diffusion and sorption properties of radionuclides in compacted bentonite

    International Nuclear Information System (INIS)

    In this report, recent studies on sorption and diffusion of radionuclides in compacted bentonite have been reviewed. The sorption distribution coefficient and diffusion coefficient data obtained from experiments in the literature have been compiled. Based on these experimental data and the report SKB-TR--91-16 (Brandberg and Skagius, 1991), this report proposes a set of sorption distribution coefficient and diffusion coefficient values for modelling purpose for safety analysis of nuclear waste repositories. The variability and uncertainty of the diffusivity data span somewhat more than an order or magnitude up and down. Most of the nuclides have an effective diffusivity in around 10-10 m2/s. Ion exclusion effects are observed for C, Cl and for Tc in oxidizing waters. Effective diffusivities are nearly tow orders of magnitude lower for these elements and of the order of 10-12 m2/s. Surface diffusion effects are found for Cs, Ni, Pa, Pb, Ra, Sn, Sr and Zr. Effective diffusivities for these elements are of the order of 10-8 m2/s. The surface diffusion effect should decrease in saline waters which is seen for Cs and Sr where there are data available. It is also deemed that Ra will have this effect because of its similarity with Sr. The other nuclides should also show this decrease but no data is available. Sorption and diffusion mechanisms in compacted bentonite are discussed in the report. In highly compacted bentonite, sorption and hence its distribution coefficient is not well defined, and a pore diffusion coefficient or a surface diffusion coefficient is not well defined either. Therefore, an apparent diffusion coefficient and a total concentration gradient should be more relevant in describing the diffusion process in compacted bentonite

  7. Soil-Bentonite Cutoff Walls: Hydraulic Conductivity and Contaminant Transport

    OpenAIRE

    Britton, Jeremy Paul

    2001-01-01

    ABSTRACT Soil-bentonite cutoff walls are commonly used to contain contaminants in the subsurface. A key property in determining the effectiveness of a cutoff wall is its hydraulic conductivity. There are important difficulties and uncertainties regarding the accuracy of commonly used methods of measuring the hydraulic conductivity of cutoff walls. When predicting contaminant transport through cutoff walls, common practice is to use the average hydraulic conductivity of the wall. ...

  8. Sorption of Lithium on Bentonite, Kaolin and Zeolite

    Directory of Open Access Journals (Sweden)

    Mandy Hoyer

    2015-04-01

    Full Text Available Li sorption was studied on natural bentonite, kaolin and zeolite in batch experiments at variable Li and Na concentrations (0, 1.5, 15, 150, 750 mM LiCl and 0.01, 0.1, 1, 3, 5 M NaCl. The solid-to-solution ratio was 1:4 and pH ranged from 2 to 10. Maximum Li sorption was determined at 0.01 M NaCl and 750 mM LiCl concentration in solution. It was 3800 ± 380 ppm, 1300 ± 130 ppm and 3900 ± 390 ppm on bentonite, kaolin and zeolite, respectively, which is in the average to upper range typical for clay minerals. Under these conditions, kaolin was saturated with Li, whereas Li in bentonite and zeolite occupied only about 55%–79% and 9%–26% of the typical cation exchange capacity (CEC of smectites and zeolites, respectively. This is explained by differences in the way Li is bound in the materials studied. Li sorption on bentonite was independent of pH due to strong pH buffering. Above pH 5, kaolin was transformed to gibbsite, which completely changed its Li sorption capabilities. Extremely low as well as extremely high pH destabilized the crystal lattice of zeolite. All in all it was shown that, under the studied conditions, Li sorption on the studied materials occurs in detectable quantities. So, clay minerals and zeolites can act as a sink for Li if Li concentrations in solution are sufficiently high.

  9. Post examination of copper ER sensors exposed to bentonite

    International Nuclear Information System (INIS)

    Highlights: • Copper sensors were used for monitoring corrosion in bentonite during 4.2-y exposure. • Corrosion rates were estimated by applying three different methods. • Average corrosion rates for copper in bentonite are several µm/year. - Abstract: Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion

  10. Diffusion of radionuclides in concrete/bentonite systems

    International Nuclear Information System (INIS)

    In a repository for nuclear waste, different construction materials will be used. Two important materials among these are concrete and bentonite clay. These will act as mechanical barriers, preventing convective water flow and also retard transport due to diffusion of dissolved radionuclides by a combination of mechanical constraints and chemical interactions with the solid. An important issue is the possible change of the initial sodium bentonite into the calcium form due to ion exchange with calcium from the cement. The initial leaching of the concrete has been studied using radioactive spiked concrete in contact with compacted bentonite. The diffusion of Cs, Am and Pu into 5 different types of concrete in contact with porewater have been measured. The measured diffusivity for Cs agrees reasonable well with data found in literature. For Am and Pu no movement could be measured (less than 0.2 mm) even though the contact times were extremely long (2.5 y and 5 y, respectively). This report gives also a summary of the previously published results about sorption and diffusion of radionuclides in cement performed in Prav/KBS/SKB projects 1980-1990. 25 refs

  11. Phenol determination on HDTMA-bentonite-based electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mojovic, Z., E-mail: zoricam@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoseva 12, 11000 Belgrade (Serbia); Jovic-Jovicic, N.; Milutinovic-Nikolic, A.; Bankovic, P.; Rabi-Stankovic, A. Abu; Jovanovic, D. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoseva 12, 11000 Belgrade (Serbia)

    2011-10-30

    Highlights: {yields} HDTMA-modified bentonites were tested as electrode materials in the electro-oxidation of phenol. {yields} The influences of the surfactant loading and pH of the supporting electrolyte were investigated. {yields} Rapid deactivation of electrodes occurred in an acidic environment. {yields} Good stability of the investigated electrodes was obtained in alkaline medium. {yields} The sensitivity toward phenol and stability of the electrodes was markedly improved with increasing HDTMA loading. - Abstract: The partial and complete substitution of cations in the interlayer region of clay with different amounts of hexadecyl trimethylammonium bromide (HDTMABr) was performed. The aim was to synthesize organo-bentonites to be used as constituents of porous electrodes for the electrooxidation of phenol. Domestic clay from Bogovina was subjected to a common procedure of the production of organo-bentonites. It included the following steps: grinding, sieving, Na-exchange, cation exchange and drying. The samples were characterized by X-ray diffraction (XRD) analysis, while the textural properties were evaluated by nitrogen physisorption. The multisweep cyclic voltammetry was applied to analyze the behavior of the clay modified glassy carbon electrode. The influences of the surfactant loading and pH of the support electrolyte were investigated. Rapid deactivation of electrodes occurred in an acidic environment, while good stability of the investigated electrodes was obtained in alkaline medium.

  12. Purification of Sardinella sp., Oil: Centrifugation and Bentonite Adsorbent

    Directory of Open Access Journals (Sweden)

    S.H. Suseno

    2014-01-01

    Full Text Available Centrifugation and purification using adsorbents is one example of a fish oil refining techniques applied to reduce impurities of fish oil. The study aimed to determine the sardine oil quality before treatment, to determine yield of fish oil after centrifugation treatment and to determine the influence of centrifugation speed and bentonite concentration on sardine oil quality. Factorial design with two factors was used in this study. Level of free fatty acid and peroxide value before purification was 35.53% and 170 mEq/kg. Yield of fish oil after centrifugation treatment has been ranged from 17.42±3.56 to 76.33±0.21%. The best treatment which could reduce the peroxide value and total oxidation was a treatment with centrifugation speed at 6500 rpm and bentonite concentration at 3%. Peroxide value and total oxidation of its treatment was 25.00±0.00 and 51.43±0.01 mEq/kg. The lowest value of p-anisidine was 1.29±0.05 mEq/kg and its value could be found in a treatment with centrifugation speed at 4500 rpm and bentonite concentration at 5%. The level of free fatty acid after purification process was ranged from 27.35 to 34.69%. Oil clarity tended to increase with the increase of centrifugation speed and adsorbent concentration.

  13. Preparation and thermal properties of chitosan/bentonite composite beads

    Directory of Open Access Journals (Sweden)

    Teofilović Vesna

    2014-01-01

    Full Text Available Due to their biodegradable and nontoxic nature, biopolymer composites are often used as remarkable adsorbents in treatment of wastewater. In this study chitosan/bentonite composite beads were obtained by addition of clay into the polymer using solution process. Before the composite preparation, bentonite was modified with surfactant cetyltrimethyl ammonium bromide (CTAB. The morphology of beads was examined by scanning electron microscopy (SEM. Thermal properties of the composite beads were studied by simultaneous thermogravimetry coupled with differential scanning calorimetry (SDT and differential scanning calorimetry (DSC. TG results showed that the complex decomposition mechanism of the composites depends on the preparation procedure. It was observed that the concentration of NaOH used for composites precipitation affects the final structure of beads. The influence of preparation procedure on the glass transition temperature Tg of chitosan/bentonite samples was not found (Tg values for all samples were about 144 °C. [Projekat Ministarstva nauke Republike Srbije, br. III45022 and ON172014 and Provincial Secretariat of Vojvodina for Science and Technological Development 114-451-2396/2011-01.

  14. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  15. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO{sub 4})) conditions. The influences of different complexing anions (1 x 10{sup -4} M) such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI){sub Hydroxy} > U(VI){sub HumicAcid} > U(VI){sub carbonate} > U(VI){sub citrate}. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L{sub 3

  16. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    International Nuclear Information System (INIS)

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO4)) conditions. The influences of different complexing anions (1 x 10-4 M) such as oxalic acid (ox), carbonate (CO32-), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI)Hydroxy > U(VI)HumicAcid > U(VI)carbonate > U(VI)citrate. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L3 edge. There was shift in the absorbance edge which

  17. Silurian bentonites in Lithuania: correlations based on sanidine phenocryst composition and graptolite biozonation – interpretation of volcanic source regions

    OpenAIRE

    Tarmo Kiipli; Sigitas Radzevičius; Toivo Kallaste

    2014-01-01

    Integrated correlation of bentonites (altered volcanic ashes) and graptolite biozonation is presented. Detailed study of two Lithuanian drill core sections extended previous knowledge of the occurrence and composition of bentonites to the south. Identification of graptolite species allowed bentonites to be assigned their proper stratigraphical position. Silurian bentonites in Lithuania are mostly characterized by wide and very wide XRD 201 reflections of the main component of sanidine phenocr...

  18. Dissolution Behaviour of UO2 in Anoxic Conditions: Comparison of Ca-Bentonite and Boom Clay

    International Nuclear Information System (INIS)

    In order to determine in how far the clay properties influence the dissolution of spent fuel, experiments were carried out with depleted UO2 in the presence of either compacted dry Ca-bentonite with Boom Clay groundwater (KB-BCW) or compacted dry Boom Clay with Boom Clay groundwater (BC-BCW). The leach tests were performed at 25 deg. C in anoxic atmosphere for 2 years. The U concentrations in the clay water were followed during these 2 years, and the amount of U in the clay was determined after 2 years in order to determine the UO2 dissolution rate. The uranium concentration after 0.45 μm filtration was 50 times higher in the Boom Clay with Boom Clay water (2.0 x 10-7 mol.L-1) than in Ca-bentonite with Boom Clay water (6.5 x 10-9 mol.L-1), probably due to colloid formation in the Boom Clay system. Most released uranium was found in the clay. The fraction of uranium, dissolved from the UO2 pellet and found on the clay represents about 42 % of total uranium release in the system BC-BCW and more than 76 % in the system KB-BCW. The higher uranium retention of Boom Clay goes together with a higher dissolution rate. Global dissolution rates were estimated at about 2.0 x 10-2 μg.cm-2.d-1 for the BCBCW system and 3.4 x 10-3 μg.cm-2.d-1 for the KB-BCW system. This is not much lower than for similar tests with spent fuel, reported in literature. (authors)

  19. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death.

    Science.gov (United States)

    Nones, Janaína; Nones, Jader; Riella, Humberto Gracher; Poli, Anicleto; Trentin, Andrea Gonçalves; Kuhnen, Nivaldo Cabral

    2015-10-01

    Bentonites are clays that highly adsorb aflatoxin B1 (AFB1) and, therefore, protect human and animal cells from damage. We have recently demonstrated that bentonite protects the neural crest (NC) stem cells from the toxicity of AFB1. Its protective effects are due to the physico-chemical properties and chemical composition altered by heat treatment. The aim of this study is to prepare and characterize the natural and thermal treatments (125 to 1000 °C) of bentonite from Criciúma, Santa Catarina, Brazil and to investigate their effects in the AFB1 adsorption and in NC cell viability after challenging with AFB1. The displacement of water and mineralogical phases transformations were observed after the thermal treatments. Kaolinite disappeared at 500 °C and muscovite and montmorillonite at 1000 °C. Slight changes in morphology, chemical composition, and density of bentonite were observed. The adsorptive capacity of the bentonite particles progressively reduced with the increase in temperature. The observed alterations in the structure of bentonite suggest that the heat treatments influence its interlayer distance and also its adsorptive capacity. Therefore, bentonite, even after the thermal treatment (125 to 1000 °C), is able to increase the viability of NC stem cells previously treated with AFB1. Our results demonstrate the effectiveness of bentonite in preventing the toxic effects of AFB1.

  20. Facile synthesis of carbon nanotube/natural bentonite composites as a stable catalyst for styrene synthesis.

    Science.gov (United States)

    Rinaldi, Ali; Zhang, Jian; Mizera, Jan; Girgsdies, Frank; Wang, Ning; Hamid, Sharifah Bee Abd; Schlögl, Robert; Su, Dang Sheng

    2008-12-28

    Natural bentonite mineral, without any wet chemical treatment, was used directly to catalyze the growth of multi-wall CNTs and the produced CNTs/bentonite as an integrated composite stably catalyzed the oxidative dehydrogenation reaction over a long period of time; this concept provides a highly economical way for large-scale synthesis of nanocarbons and manufacture of styrene synthesis catalysts. PMID:19057768

  1. Literature study on the microstructure of bentonite and its effect on diffusion

    International Nuclear Information System (INIS)

    In the study the available information from the literature on the microstructural properties of bentonite and its main component montmorillonite have been compiled, together with different phenomena which have been found to participate in the diffusion process in bentonite. (167 refs., 36 figs., 6 tabs.)

  2. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed wi

  3. Physico-chemical characterization of bentonite and its application for Mn2+ removal from water

    Directory of Open Access Journals (Sweden)

    Ranđelović Marjan S.

    2011-01-01

    Full Text Available Bentonite is mainly composed of clay minerals from smectite group, therefore it has a well developed and chemically active surface area and high cation exchange capacity. Moreover, an interlayer space of smectite has unusual hydration properties, which manifest as swelling of bentonite in water. These properties make bentonite as a commonly used raw material in chemistry and industry, and it is very important in environmental protection and water treatment as an effective sorbent of heavy metals. The results of X-ray diffraction, a cationic exchange capacity, specific surface area, acid-base properties of the surface and the swelling index showed that the bentonite sample contains mostly montmorillonite. The aim of this study was to test the efficacy of bentonite in the removal of Mn2+ from aqueous systems. The experimental results of Mn2+ adsorption on the bentonite were interpreted by Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption isotherm studies indicate that the adsorption of Mn2+ follows Langmuir isotherm very well. Theoretical monolayer saturation capacity according to Langmuir model was 12.41 mg/g. The removal of Mn2+ is achieved by ion exchange mechanism with naturally occurring cations in bentonite, as well as by forming the inner- and outer-sphere complexes with bentonite surface.

  4. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  5. Splitting Compounds by Semantic Analogy

    OpenAIRE

    Daiber, Joachim; Quiroz, Lautaro; Wechsler, Roger; Frank, Stella

    2015-01-01

    Compounding is a highly productive word-formation process in some languages that is often problematic for natural language processing applications. In this paper, we investigate whether distributional semantics in the form of word embeddings can enable a deeper, i.e., more knowledge-rich, processing of compounds than the standard string-based methods. We present an unsupervised approach that exploits regularities in the semantic vector space (based on analogies such as "bookshop is to shop as...

  6. KAJIAN ADSORPSI HORMON PENGATUR TUMBUH ASAM GIBERELIN DENGAN MENGGUNAKAN BENTONIT ALAM

    Directory of Open Access Journals (Sweden)

    Ula Nurul Fadlilah

    2014-05-01

    Full Text Available Telah dilakukan adsorpsi asam giberelin dengan menggunakan bentonit alam hasil purifikasi. Proses purifikasi dilakukan dengan menggunakan larutan H2O2. Bentonit alam hasil purifikasi dikarakterisasi dengan Fourier Transform infrared (FTIR dan X-Ray difraction (XRD. Jumlah asam giberelin yang teradsorpsi diukur dengan menggunakan spektrofotometer UV-vis. Proses adsorpsi dilakukan dengan sistem batch dan variasi pH larutan asam giberelin, variasi waktu adsorpsi, variasi kadar bentonit alam serta variasi konsentrasi asam giberelindilakukan untuk mengetahui kapasitas adsorpsi GA3. Hasil penelitian menunjukkan bahwa bentonit alam dapat mengadsorpsi asam giberelin pada pH larutan asam giberelin optimum pada pH 3, waktu optimum adsorpsi pada 2 jam, kadar bentonit alam pada 1,5 gram dan konsentrasi optimum asam giberelin pada 70 ppm. Model isoterm adsorpsi GA3 mengikuti model isoterm Freundlich.

  7. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. PMID:21945787

  8. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs

    Directory of Open Access Journals (Sweden)

    Bhavitavya Nijampatnam

    2014-09-01

    Full Text Available Streptococcus mutans is a key etiological agent in the formation of dental caries. The major virulence factor is its ability to form biofilms. Inhibition of S. mutans biofilms offers therapeutic prospects for the treatment and the prevention of dental caries. In this study, 14 analogs of makaluvamine, a marine alkaloid, were evaluated for their antibacterial activity against S. mutans and for their ability to inhibit S. mutans biofilm formation. All analogs contained the tricyclic pyrroloiminoquinone core of makaluvamines. The structural variations of the analogs are on the amino substituents at the 7-position of the ring and the inclusion of a tosyl group on the pyrrole ring N of the makaluvamine core. The makaluvamine analogs displayed biofilm inhibition with IC50 values ranging from 0.4 μM to 88 μM. Further, the observed bactericidal activity of the majority of the analogs was found to be consistent with the anti-biofilm activity, leading to the conclusion that the anti-biofilm activity of these analogs stems from their ability to kill S. mutans. However, three of the most potent N-tosyl analogs showed biofilm IC50 values at least an order of magnitude lower than that of bactericidal activity, indicating that the biofilm activity of these analogs is more selective and perhaps independent of bactericidal activity.

  9. Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Senger, R.; Finsterle, S.

    2011-02-01

    After closure of an underground nuclear waste repository, the decay of radionuclides will raise temperature in the repository, and the bentonite buffer will resaturate by water inflow from the surrounding host rock. The perturbations from these thermal and hydrological processes are expected to dissipate within hundreds to a few thousand years. Here, we investigate coupled thermal-hydro-chemical processes and their effects on the short-term performance of a potential nuclear waste repository located in a clay formation. Using a simplified geometric configuration and abstracted hydraulic parameters of the clayey formation, we examine geochemical processes, coupled with thermo-hydrologic phenomena, and potential changes in porosity near the waste container during the early thermal period. The developed models were used for evaluating the mineral alterations and potential changes in porosity of the buffer, which can affect the repository performance. The results indicate that mineral alteration and associated changes in porosity induced by early thermal and hydrological processes are relatively small and are expected to not significantly affect flow and transport properties. Chlorite precipitation was obtained in all simulation cases. A maximum of one percent volume fraction of chlorite could be formed, whose process may reduce swelling and sorption capacity of bentonite clay, affecting the performance of the repository. llitisation process was not obtained from the present simulations.

  10. Influence of dry density on HTO diffusion in GMZ bentonite

    International Nuclear Information System (INIS)

    With the low permeability and high swelling property, Gaomiaozi (GMZ) bentonite is regarded as the favorable candidate backfilling material for a potential repository. The diffusion behaviors of HTO in GMZ bentonite were studied to obtain effective diffusion coefficient (De) and accessible porosity (ε) by through- and out-diffusion experiments. A computer code named Fitting for diffusion coefficient (FDP) was used for the experimental data processing and theoretical modeling. The De and ε values were (5.2-11.2) x 10-11 m2/s and 0.35-0.50 at dry density from 1,800 to 2,000 kg/m3, respectively. The De values at 1,800 kg/m3 was a little higher than that of at 2,000 kg/m3, whereas the D e value at 1,600 kg/m3 was significantly higher (approximately twice) than that of at 1,800 and 2,000 kg/m3. It may be explained that the diffusion of HTO mainly occurred in the interlayer space for the highly compacted clay (dry density exceeding 1,300 kg/m3). 1,800 and 2,000 kg/m3 probably had similar interlayer space, whereas 1,600 kg/m3 had more. Both De and ε values decreased with increasing dry density. For compacted bentonite, the relationship of De and ε could be described by Archie's law with exponent n = 4.5 ± 1.0. (author)

  11. Interactions between copper corrosion products and MX-80 bentonite

    International Nuclear Information System (INIS)

    The report presents results from a study of the possible interaction between copper corrosion products and MX-80 bentonite under conditions that might occur in a final repository for spent nuclear fuel in Finland. The first part of the report describes the results from a literature survey, the objective of which was to identify some relevant corrosion products that might form when copper corrodes in wet MX-80 bentonite. On the basis of the literature survey, atacamite and a green copper corrosion product produced in-house were used for experimental studies. Experiments were performed with both soft and compacted MX-80. The soft samples consisted of water-saturated MX-80 mixed with CuCl2 solutions of various concentrations. The samples were kept under anaerobic conditions at ambient room temperature or at 75 deg C for 330 days. Porewater samples were then squeezed from the samples and analysed. Compacted MX-80 samples were stored under anaerobic conditions and kept in contact with an NaCl solution. The samples were kept at room temperature and 75 deg C for 2.9 years and then analysed. The presence of either atacamite or the green copper corrosion product on the plates did not have any notable effects on the porewater chemistry. However, the Cu concentration profiles indicated that the corrosion products did dissolve, and then diffused into the surrounding bentonite. Concentration profiles were found to be roughly the same, irrespective of whether the samples had been stored at room temperature or at 75 deg C. (orig.)

  12. ADSORPTION STUDY OF RHODAMIN B DYE ON IRAQI BENTONITE AND MODIFIED BENTONITE BY NANOCOMPOUNDS TIO2, ZNO, AL2O3 AND SODIUM DODECYL SULFATE

    Directory of Open Access Journals (Sweden)

    Iqbal Salman AL-Jobouri

    2013-01-01

    Full Text Available The adsorption of Rhodamin B on Iraqi bentonite at the concentration range from 50 to 250 μg mL-1 was studied, Nano compounds; ZnO, TiO2, Al2O3 m and SDS in different amounts 0.01-0.1 g 10-1 g of Bentonite were used to modified the adsorption capacity of bentonite to remove the Rhodamin B from aqueous solutions. The study indicated that using 0.05 g and 0.1 of Sodium Dodecyl Sulfate (SDS lead to increase the percentage removal (%R from 79.3% for pure bentonite to 99.3%. While using 0.05 g TiO2 lead to increase the %R to 98.9%, 0.05 of ZnO to 98.6%. The other amount additives and Al2O3 using was not success to increase the %R for the Rhodamin B on bentonite surface. SEM measurement was achieved to discover the Nanoparticl exists in the bentonite surfaces.

  13. Sunflower oil bleaching by adsorption onto acid-activated bentonite

    Directory of Open Access Journals (Sweden)

    E. L. Foletto

    2011-03-01

    Full Text Available Two bentonite clays with different mineralogical compositions from Mendoza, Argentine, were activated with H2SO4 solutions of 4 and 8 N at 90ºC for 3.5 hours. This treatment affected clay structural properties, as was shown by thermogravimetry, infrared spectrometry and chemical analysis. Bleaching efficiency for sunflower oil was strongly dependent on the acid concentration used for clay activation. The samples have bleaching capacity comparable to that observed with a commercial adsorbent standard. The mineralogical composition of natural clays influenced the properties of the activated clays.

  14. Swelling characteristics of immersed sand-bentonite mixtures

    Institute of Scientific and Technical Information of China (English)

    丰土根; 崔红斌; 孙德安; 杜冰

    2008-01-01

    A laboratory one-dimensional consolidation apparatus was employed to research the swelling stress and volume of the sand-bentonite mixture under immersed conditions. The stress-strain characteristics of mixtures under varied mixing ratios and loading statuses were analyzed. Based on the results of tests, the mechanism of mixture swelling and collapsing was further discussed. The results show that mixtures with low sand ratios are suitable as hydraulic barrier or containment barriers of general landfills, geological repository and other hydraulic infrastructure works.

  15. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    Science.gov (United States)

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  16. Insulin analogs and cancer

    Directory of Open Access Journals (Sweden)

    Laura eSciacca

    2012-02-01

    Full Text Available Today, insulin analogs are used in millions of diabetic patients. Insulin analogs have been developed to achieve more physiological insulin replacement in terms of time course of the effect. Modifications in the amino acid sequence of the insulin molecule change the pharmacokinetics and pharmacodynamics of the analogs in respect to human insulin. However, these changes can also modify the molecular and biological effects of the analogs. The rapid-acting insulin analogs, lispro, aspart and glulisine, have a rapid onset and shorter duration of action. The long-acting insulin analogs glargine and detemir have a protracted duration of action and a relatively smooth serum concentration profile. Insulin and its analogs may function as growth factors and therefore have a theoretical potential to promote tumor proliferation. A major question is whether analogs have an increased mitogenic activity in respect to insulin. These ligands can promote cell proliferation through many mechanisms like the prolonged stimulation of the insulin receptor, stimulation of the IGF-1 receptor (IGF-1R, prevalent activation of the ERK rather than the AKT intracellular post-receptor pathways. Studies on in vitro models indicate that short-acting analogs elicit molecular and biological effects that are similar to those of insulin. In contrast, long-acting analogs behave differently. Although not all data are homogeneous, both glargine and detemir have been found to have a decreased binding to IR but an increased binding to IGF-1R, a prevalent activation of the ERK pathway, and an increased mitogenic effect in respect to insulin. Recent retrospective epidemiological clinical studies have suggested that treatment with long-acting analogs (specifically glargine may increase the relative risk for cancer. Results are controversial and methodologically weak. Therefore prospective clinical studies are needed to evaluate the possible tumor growth-promoting effects of these insulin

  17. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  18. Electrophysical characteristics of polyurethane/organo-bentonite nano composites

    International Nuclear Information System (INIS)

    Modification of the Egyptian Bentonite (EB) was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity (CEC) of the EB was measured, also it was purified from different impurities using HCl and distilled water. The Organo-bentonite OB was characterized using IR, XRD, and TEM. PU/ODA-B nano composites were prepared by in situ polymerization then characterized by XRD and TEM. An amount of ODA-B ranging from 0.25% up to 5% by weight was added to the polyol component of the resin before mixing with toluene diisocynate TDI. TEM showed that the nano composites achieved good dispersion in the polyurethane matrix. The mechanical, swelling and electrical properties of the nano composites were measured. The results indicate that the tensile strength of all the nano composites enhanced with the addition of OB compared with the pure PU. The crosslink density of the nano composites increases with increasing the content of OB. The Pool-Frenckel conduction mechanism predominates for all the nano composite samples and the blank one

  19. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  20. Mechanisms of advanced oxidation processing on bentonite consumption reduction in foundry.

    Science.gov (United States)

    Wang, Yujue; Cannon, Fred S; Komarneni, Sridhar; Voigt, Robert C; Furness, J C

    2005-10-01

    Prior full-scale foundry data have shown that when an advanced oxidation (AO) process is employed in a green sand system, the foundry needs 20-35% less makeup bentonite clay than when AO is not employed. We herein sought to explore the mechanism of this enhancement and found that AO water displaced the carbon coating of pyrolyzed carbonaceous condensates that otherwise accumulated on the bentonite surface. This was discerned by surface elemental analysis. This AO treatment restored the clay's capacity to adsorb methylene blue (as a measure of its surface charge) and water vapor (as a reflection of its hydrophilic character). In full-scale foundries, these parameters have been tied to improved green compressive strength and mold performance. When baghouse dust from a full-scale foundry received ultrasonic treatment in the lab, 25-30% of the dust classified into the clay-size fraction, whereas only 7% classified this way without ultrasonics. Also, the ultrasonication caused a size reduction of the bentonite due to the delamination of bentonite particles. The average bentonite particle diameter decreased from 4.6 to 3 microm, while the light-scattering surface area increased over 50% after 20 min ultrasonication. This would greatly improve the bonding efficiency of the bentonite according to the classical clay bonding mechanism. As a combined result of these mechanisms, the reduced bentonite consumption in full-scale foundries could be accounted for. PMID:16245849

  1. Project Caesium - An ion exchange model for the prediction of distribution coefficients of caesium in bentonite

    International Nuclear Information System (INIS)

    A surface chemical model is established to thermodynamically describe caesium sorption on bentonite. Caesium sorption is studied on Wyoming bentonite MX-80 in solutions of NaCl, KCl, MgCl2, CaCl2, NaNO3 and Ca(NO3)2 of concentrations varying between 0.025M and 1M, as well as in the weakly saline Allard groundwater and the strongly saline Aespoe groundwater. Based on these experiments it is shown that the sorption behaviour of caesium on bentonite can be described, within the experimental and model uncertainties, in terms of a one-site ion exchange model. The ion exchange constant for the replacement of Na+ on montmorillonite by Cs+ is logKex degrees = 1.6. The model predictions compare well with sorption data published in the open literature on both Wyoming bentonite MX-80 and other types of bentonite. For the analysis of diffusion experiments in compacted bentonite, the apparent diffusivity of tritiated water, HTO, is used as an analogue to estimate the pore diffusivity of Cs+. Since insufficient information is available at present to estimate the porosity actually available for diffusion in compacted bentonite, it is assumed that the diffusion porosity can be approximated by using the value of the bulk porosity. Under these circumstances, the cation ex change capacity (CEC) found to be available for the diffusing species in compacted bentonite corresponds to about 12% of the total CEC of bentonite. It is recognised that the errors made in the estimation of the pore diffusivity and of the diffusion porosity are contained in the reduction factor of the CEC. A discussion of the factors affecting the diffusivities of radionuclides and the problem of establishing consistent sets of diffusivity data is given in the Appendix. 33 refs, 7 figs, 12 tabs

  2. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    Energy Technology Data Exchange (ETDEWEB)

    Parolo, María E., E-mail: maria.parolo@fain.uncoma.edu.ar [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Pettinari, Gisela R. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Musso, Telma B. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Sánchez-Izquierdo, María P.; Fernández, Laura G. [Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina)

    2014-11-30

    Graphical abstract: - Highlights: • Modification of clay was evaluated by two methods for removing an organic substance. • Surfactant cations and organosilanes were intercalated into the interlayer space. • The hydrophobic surface of adsorbents increased the retention of organic substances. • Clay grafted with vinyltrimethoxysilane showed the highest adsorption for aniline. - Abstract: The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm{sup −1} with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  3. [Effect of SDS on the adsorption of Cd2+ onto amphoteric modified bentonites].

    Science.gov (United States)

    Wang, Jian-Tao; Meng, Zhao-Fu; Yang, Ya-Ti; Yang, Shu-Ying; Li, Bin; Xu, Shao-e

    2014-07-01

    Under different modified ratios, temperatures, pH and ionic strengths, the effect of sodium dodecyl sulfonate (SDS) on the adsorption of Cd2+ onto bentonites which modified with amphoteric modifier dodecyl dimethyl betaine (BS-12) was studied by batch experiments, and the adsorption mechanism was also discussed. Results showed that the adsorption of Cd2+ on amphoteric bentonites can be enhanced significantly by SDS combined modification, Cd2+ adsorption decreases in the order: BS + 150SDS (BS-12 + 150% SDS) > BS + 100SDS (BS-12 + 100% SDS) > BS +50SDS(BS-12 + 50% SDS) > BS + 25SDS (BS-12 + 25% SDS) > BS (BS-12) > CK (unmodified soil). The adsorption isotherm can be described by the Langmuir equation. The change of temperature effect from positive on CK and amphoteric bentonites to negative on BS + 150SDS bentonites is observed with an increase of SDS modified ratio. The pH has little influence on Cd2+ adsorption on bentonites. The adsorption of Cd2+ on bentonites decreases with ionic strength rise, but the effect of ionic strength can be reduced with an increase of SDS modified ratio also. The adsorption thermodynamic parameters demonstrated that the adsorption of Cd2+ on modified bentonites was spontaneously controlled by entropy increment. When the SDS modified ratio is lower than 100% CEC, the adsorption of Cd2+ on modified bentonites is a process with characteristics of both enthalpy increment and entropy increment, while the SDS modified ratio is equal to or higher than 100% CEC, the adsorption of Cd2+ on modified bentonites becomes a process of enthalpy decrement and entropy increment. PMID:25244843

  4. Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    Science.gov (United States)

    Mills, R. D.; Simon, J. I.

    2012-01-01

    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal

  5. Bentonite Clay Evolution at Elevated Pressures and Temperatures: An experimental study for generic nuclear repositories

    Science.gov (United States)

    Caporuscio, F. A.; Cheshire, M.; McCarney, M.

    2012-12-01

    The Used Fuel Disposition Campaign is presently engaged in looking at various generic repository options for disposal of used fuel. Of interest are the disposal of high heat load canisters ,which may allow for a reduced repository footprint. The focus of this experimental work is to characterize Engineered Barrier Systems (EBS) conditions in repositories. Clay minerals - as backfill or buffer materials - are critical to the performance of the EBS. Experiments were performed in Dickson cells at 150 bar and sequentially stepped from 125 oC to 300 oC over a period of ~1 month. An unprocessed bentonite from Colony, Wyoming was used as the buffer material in each experiment. An K-Ca-Na-Cl-rich brine (replicating deep Stripa groundwater) was used at a 9:1 water:rock ratio. The baseline experiment contained brine + clay, while three other experiments contained metals that could be used as waste form canisters (brine +clay+304SS, brine+clay+316SS, brine+clay+Cu). All experiments were buffered at the Mt-Fe oxygen fugacity univarient line. As experiment temperature increased and time progressed, pH, K and Ca ion concentrations dropped, while Si, Na, and SO4 concentrations increased. Silicon was liberated into the fluid phase (>1000 ppm) and precipitated during the quenching of the experiment. The precipitated silica transformed to cristobalite as cooling progressed. Potassium was mobilized and exchanged with interlayer Na, transitioning the clay from Na-montmorillonite to K-smectite. Though illitization was not observed in these experiments, its formation may be kinetically limited and longer-term experiments are underway to evaluate the equilibrium point in this reaction. Clinoptilolite present in the starting bentonite mixture is unstable above 150 oC. Hence, the zeolite broke down at high temperatures but recrystallized as the quench event occurred. This was borne out in SEM images that showed clinoptilolite as a very late stage growth mineral. Both experimental runs

  6. Bentonite-stabilized CDA/CTA membranes for seawater desalination. Pt. 2

    International Nuclear Information System (INIS)

    The bentonite-stabilized seawater desalination membranes developed at GKSS were characterized by two transport coefficients. Both the hydrodynamic permeability as well as the electro-mechanical coefficient were significantly changed after 2000 hours RO rest runs. Their alterations were interpreted - applying the fively-porous membrane model - as an increase of the diffusion potential and a decrease of the streaming potential. The salt diffusion coefficient was analysed to be diminished by about 10%. The lowest performance changes of the membranes with 1000 ppm bentonite dope, support the experimental findings of flux-stabilization of bentonite-containing CDA/CTA membranes, published previously. (orig.)

  7. The study on bentonite slurry grout with ethanol for fractured rock masses

    International Nuclear Information System (INIS)

    The purpose of this paper is to propose the grouting material and method for fractured rock masses. So experimental study is executed in order to grasp that the properties of grouting material is stable and impermeable. In this study, experiments of hydraulic test and grouting injection test are performed on bentonite slurry mixes in the laboratory. From the results of the tests, a mixer of ethanol and bentonite is found to be very suitable for a grouting material. Also, dynamic grouting method is able to inject the concentrated bentonite slurry in the fractured aperture. (author)

  8. NBR/ORGANOMODIFIED BENTONITE INTERCALATED HYBRIDS AND THEIR EFFECTS ON THE TOUGHNESS OF PVC

    Institute of Scientific and Technical Information of China (English)

    Chang-jiang You; De-min Jia; Zeng-yong Zhen; Kui Ding; Song Xi; Hai-lin Mo; Yong-hua Zhang

    2003-01-01

    Hybrids of intercalative nitrile-butadiene rubber/organomodified bentonite (NBR/OMB) were prepared by the latex intercalation technique. Investigation of their mechanical properties and the microstructure of NBR/OMB showed that the organomodified bentonite is an effective toughener for NBR. Transmission electronic microscopy (TEM) and X-ray diffraction (XRD) tests showed that the NBR macromolecule could be intercalated into the galleries of bentonite.Incorporation of NBR/OMB hybrids as tougheners into poly(vinyl chloride) (PVC) results in a substantial increase in the impact strength of PVC, but little decrease in its tensile strength and flexural strength, compared to the unmodified PVC.

  9. Concrete/Febex Bentonite Interaction: Results On Short-Term Column Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, A.; Turrero, M.J.; Torres, E.; Martin, P.L. [CIEMAT, Environmental Department, Avda. Complutense, 22, 28040 Madrid (Spain)

    2008-07-01

    Interaction between the alkaline pore fluids from the concrete engineered barriers and the bentonite at the repository conditions may generate products that can diffuse through the porous structure of the bentonite affecting their properties. A comprehensive study based on series of short term experiments is being performed to provide experimental evidences on the physical, chemical and mineralogical changes during the concrete-compacted bentonite interaction. Samples were analyzed by XRD, SEM-EDS and FTIR. Measurements of swelling capacity, specific surface area and chemical analysis for cation exchange capacity and soluble salts analyses were also performed. (authors)

  10. Removal of natural uranium from water produced in the oil industry using Algerian bentonite

    International Nuclear Information System (INIS)

    Batch sorption experiments have been carried out to remove natural uranium (NORM) from water obtained together with crude oil and natural gas, using Algerian bentonites. The effect of some important factors such as S/L ratio, pH, initial concentration, particle size was evaluated and a kinetic study performed. The value of the distribution coefficient (Kd) at equilibrium for natural uranium varied from 30 to 600 cm3 x g-1 and 50 to 1100 cm3 x g-1 (∼ 10% margin error) using natural bentonite and drilling bentonite, respectively. The isotherms showed that the data are consistent with both Freundlich and Langmuir models. (author)

  11. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  12. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  13. Analog pulse processor

    Science.gov (United States)

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  14. Hydraulic Capacitor Analogy

    Science.gov (United States)

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  15. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2002-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  16. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2006-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  17. EVALUATION OF THE BENTONITE CONTENT IN SPENT FOUNDRY SANDS AS A FUNCTION OF HYDRAULIC CONDUCTIVITY COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Schirlene Chegatti

    2013-06-01

    Full Text Available This study evaluates the relationship of the bentonite content and hydraulic conductivity coefficient (k of waste foundry sands in tests of hydraulic conductivity in a flexible wall permeameter. The test samples had concentrations of activated sodium bentonite and natural sodium bentonite between 4% and 15%. It was also analyzed chemically the liquid leachate (aluminum, barium, chromium, cadmium, lead, phenols, iron, fluoride, and manganese, following de standard tests of Standard Methods 3111 B e D for the determination of this components in liquid samples. The experiments were supplemented with cation exchange capacity analysis. The results indicate that the values of are is related to the content of bentonite in waste foundry sand and the percolation from this waste disposal.

  18. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.;

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...... increased whereas the liquid limit decreased with increasing temperature for all cation types and concentrations. Significant and high correlations were found between swell index and liquid limit of bentonite at all three temperatures. Hydraulic conductivity of bentonite was found to increase...... with increasing temperature. No significant change in hydraulic conductivity with time was observed for all concentrations and cation types, and, overall, concentration and valance of cations had little effect on the hydraulic conductivity of bentonite....

  19. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    International Nuclear Information System (INIS)

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  20. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    Science.gov (United States)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  1. Backfilling of deposition tunnels: Use of bentonite pellets

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (Canada)); Sanden, Torbjoern (Clay Technology AB (Sweden)); Jonsson, Esther (Swedish Nuclear Fuel and Waste Mangaement Co. (Sweden)); Hansen, Johanna (Posiva Oy (Finland))

    2011-02-15

    The state of knowledge related to use of bentonite pellets as part of backfill or other gap filling components in repository applications is reviewed. How the pellets interact with adjacent sealing materials and the surrounding rock mass is a critical aspect in determining backfill behaviour. The key features and processes that determine how the pellet component of the KBS-3V deposition tunnel backfill will behave are discussed and recommendations related to what additional information needs to be developed are provided. Experiences related to pellet material composition, size, shape, placement options and more importantly, the density to which they can be placed all indicate that there are significant limitations to the achievable as-placed density of bentonite pellet fill. Low as-placed density of the pellet fill component of the backfill is potentially problematic as the outermost regions of tunnel backfill will be the first region of the backfill to be contacted by water entering the tunnels. It is also through this region that initial water movement along the length of the deposition tunnels will occur. This will greatly influence the operations in a tunnel, especially with respect to situations where water is exiting the downstream face of still open deposition tunnels. Pellet-filled regions are also sensitive to groundwater salinity, susceptible to development of piping features and subsequent mechanical erosion by through flowing water, particularly in the period preceding deposition tunnel closure. A review of the experiences of various organisations considering use of bentonite-pellet materials as part of buffer or backfill barriers is provided in this document. From this information, potential options and limitations to use of pellets or pellet-granule mixtures in backfill are identified. Of particular importance is identification of the apparent upper-limits of dry density to which such materials can to be placed in the field. These bounds will

  2. Properties of zeolite a synthesized by natural bentonite

    International Nuclear Information System (INIS)

    Synthetic zeolite was prepared by using of natural bentonite from Kampo area and the application of detergent builder was investigated. The optimum synthetic condition was SiO2/Al2O3 = 2, Na2O/Al2O3 = 1, H2O/Al2O3 30 at 90 deg C for 3 hr and it was found by XRD analysis that the zeolite synthesized under this condition was type A. When the zeolite A synthesized under the optimum condition was contacted with 40 deg Dh CaCl2 solution at 30 deg C for 15 min, the cation exchange capacity was 264.9 mg CaO/g-zeolite. And the whiteness of the sample was 89% and the mean particle size was 9.95μm. (author)

  3. Meat analog: a review.

    Science.gov (United States)

    Malav, O P; Talukder, S; Gokulakrishnan, P; Chand, S

    2015-01-01

    The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers. PMID:24915320

  4. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    Science.gov (United States)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated

  5. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  6. Research program to study the gamma radiation effects in Spanish bentonites

    International Nuclear Information System (INIS)

    The engineering barrier of a radioactive waste underground disposal facility, placed in a granitic host rock, will consist of a backfill of compacted bentonite blocks. At first, this material will be subjected to a gamma radiation field, from the waste canister, and heat from the spent fuel inside the canister. Moreover, any groundwater that reaches the repository will saturate the bentonite. For these reasons the performance of the engineered barrier must be carefully assessed in laboratory experiments. (Author)

  7. Removal of formaldehyde from aqueous solution by adsorption on kaolin and bentonite: a comparative study

    OpenAIRE

    Salman, Muhammad; Athar, Makshoof; SHAFIQUE, Umer; Rehman, Rabia

    2012-01-01

    The adsorption of formaldehyde on bentonite and kaolin was studied in batch mode. Parameters like adsorbent dose, pH, contact time and agitation speed were investigated. Langmuir, Freundlich and Temkin isotherms were employed for describing adsorption equilibrium. The maximum amounts of formaldehyde adsorbed (qmax), as evaluated by Langmuir isotherm, were 3.41 and 5.03 milligrams per gram of ground kaolin and bentonite, respectively. The study results led to the conclusion that kaol...

  8. An investigation on physical properties of polyethylene composite with bentonite, kaolin and calcium carbonate additives

    OpenAIRE

    Karabeyoğlu, Sencer S.; , Nurşen Öntürk

    2014-01-01

    Bentonite, Kaolin, Calcium carbonate easily obtained in nature as mineral products are widely used in plastics industry for additive materials. In this study, Bentonite, Kaolin, and Calcium carbonate minerals were compounded with polyethylene matrix used in specific rates. Prepared compounds melted in sheet metal molds and cooled down under appropriate conditions. Thus, production of composite material was achieved. Hardness, water absorption, and physical properties of manufactured composite...

  9. The effect of pore structural factors on diffusion in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Four kinds of diffusion experiments; (1) through-diffusion (T-D) experiments for diffusion direction dependency to compacted direction, (2) in-diffusion (I-D) experiments for composition dependency of silica sand in bentonite, (3) I-D experiments for initial bentonite grain size dependency, and (4) I-D experiments for the effect of a single fracture developed in bentonite, were carried out using tritiated water (HTO) to evaluate the effect of pore structural factors on diffusion. For (1), effective diffusivities (De) in Na-bentonites, Kunigel-V1 and Kunipia-F, were measured for densities of 1.0 and 1.5 Mg.m-3 in the axial and perpendicular directions to compacted one. Although De values in Kunigel-V1 for both directions were similar over the density, De values for perpendicular direction to compacted one in Kunipia-F were higher than those for the same direction as compacted one. For (2), apparent diffusivities (Da) in Kunigel-V1 with silica sand were measured for densities of 0.8 to 1.8 Mg.m-3. No significant effect of the mixture of silica sand was found. For (3), Da values for densities of 0.8 to 1.8 Mg.m-3 were measured for a granulated Na-bentonite, OT-9607. However, no effect of initial bentonite grain size was found. For (4), Da values in Kunigel-V1, in which a single fracture was artificially reproduced and immersed in distilled water, were measured. No effect of the fracture on Da was found. Based on this, it may be said that the composition of smectite in bentonite affects the orientation property of clay particle and also affects diffusion. Furthermore, a penetrated fracture formed in bentonite is restored for a short while and does not affect diffusion. Copyright (2001) Material Research Society

  10. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  11. Advances in Analog Circuit Design 2015

    CERN Document Server

    Baschirotto, Andrea; Harpe, Pieter

    2016-01-01

    This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing.

  12. Kapasitas Adsorpsi Bentonit terhadap Sulfur dan Merkuri secara Simultan pada Pembakaran Batubara

    Directory of Open Access Journals (Sweden)

    Alhamidi Yusran

    2015-12-01

    Full Text Available Pemanfaatan batubara sebagai sumber energi melalui pembakaran langsung akan menghasilkan emisi gas, partikulat trace metal (logam berat dan abu (terutama abu terbang yang akan mencemari udara. Penanganan terhadap pencemaran tersebut merupakan hal yang sangat mendesak. Dalam studi ini ditawarkan penyelesaian secara simultan terhadap emisi SOx dan partikulat logam berat merkuri pada pembakaran batubara peringkat rendah yang ada di Aceh melalui penyerapan menggunakan bentonit alam yang juga terdapat di Aceh (juga di daerah lain di Indonesia. Penggunaan bentonit dapat mengurangi emisi gas SO2 dan partikulat trace metal Hg dalam gas buang dan abu terbang. Bentonit dapat meningkatkan afinitas atau gaya tarik menarik antara Hg dan mineral-mineral dalam bentonit dan sekaligus menurunkan afinitas Hg terhadap S atau SO2. Konsentrasi bentonit dalam kajian ini, tanpa kalsinasi dan langsung dicampur dalam batubara, adalah 0 – 16% dan temperatur pembakaran adalah 700 – 900oC. Hasil yang didapat menunjukkan bahwa kondisi maksimum penyerapan sulfur dan/atau SO2 serta merkuri terjadi pada kandungan bentonit 6% dan temperatur 700oC.

  13. Investigation of Co(II) sorption on GMZ bentonite from aqueous solutions by batch experiments

    International Nuclear Information System (INIS)

    In this study, a local bentonite from Gaomiaozi county (Inner Mongolia, China) was converted to Na-bentonite and was characterized by FTIR and XRD to determine its chemical constituents and micro-structure. The removal of cobalt from aqueous solutions by Na-bentonite was investigated as a function of contact time, pH, ionic strength, foreign ions and temperature by batch technique under ambient conditions. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich, and D-R models were used to simulate the sorption isotherms of Co(II) at the temperatures of 293.15, 313.15 and 333.15 K, respectively. The thermodynamic parameters (ΔG0, ΔS0, ΔH0) of Co(II) sorption on GMZ bentonite calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on GMZ bentonite was an exothermic and spontaneous process. The Na-bentonite is a suitable material for the preconcentration and solidification of Co(II) from aqueous solutions. (author)

  14. The influence of the addition of polymers on the physico-chemical properties of bentonite suspensions

    Directory of Open Access Journals (Sweden)

    Stojiljkovic S.

    2014-01-01

    Full Text Available Bentonite clays have many applications in industries ranging from construction to cosmetics. Addition of polymers can profoundly influence the properties of bentonite suspensions and we now describe the influence of a range of different polymers. Whereas polyvinyl pyrolidone and soy isolate only slightly influenced the pH and the electrical conductivity of bentonite polymers in suspension, Carbopol solution caused decreases in both pH and electrical conductivity. As expected, strong electrolytes like sodium chloride caused big changes in the electrical conductivity of the suspensions. When the temperature of the bentonite suspensions was increased, the pH was almost unchanged, but the electrical conductivity increased. Bentonite treated with polymer suspensions can be used in purifying polluted water; for example, our results suggest that high pH caused by phosphorous salts can be addressed using bentonite modified with Carbopol. [Projekat Ministarstva nauke Republike Srbije: Stanisa Stojiljkovic, Vojkan Miljkovic, Goran Nikolic, Ivana Savic and Ivan Savic, TR 34020, Danijela Kostic 172047 and Biljana Arsic 174007

  15. [Study on performance of double mineral base liner using modified bentonite as active material].

    Science.gov (United States)

    Qu, Zhi-Hui; Zhao, Yong-Sheng; Wang, Tie-Jun; Ren, He-Jun; Zhou, Rui; Hua, Fei; Wang, Bing; Hou, Yin-Ting; Dai, Yun

    2009-06-15

    The absorbing capacity of clay,roasting bentonites by 450 degrees C and dual-cation organobentonites of the pollutions in landfill leachate was compared through static experiment, and investigations were conducted into availability of controlling the permeating of landfill leachate and feasibility of removing the main pollutants in leachate on the double mineral base liners of clay/roasting bentonites by 450 degrees C and clay/dual-cation organobentonites by using nice landfill leachate as the filter fluid. Experiment indicated that the adsorption equilibrium time of landfill leachate in clay, roasting bentonites by 450 degrees C and dual-cation organobentonites was 24 h; the absorbing capacity of roasting bentonites by 450 degrees C and dual-cation organobentonites was larger than that of clay. Simultaneous the penetration coefficients of the two liners were respective 1.31 x 10(-8) cm x s(-1) and 2.80 x 10(-8) cm x s(-1); Double mineral base liners of clay/roasting bentonites by 450 degrees C owned larger absorbing capacity of NH4+, however, double mineral base liners of clay/dual-cation organobentonites had strong absorbing capacity of organic pollutants and the attenuation rate of COD was 33.82% higher than the other. Conclusion was drawn that different types of modified bentonite should be chosen as "the active layer" according to different styles of landfill pollutants. PMID:19662882

  16. Study of combined effect of proteins and bentonite fining on the wine aroma loss.

    Science.gov (United States)

    Vincenzi, Simone; Panighel, Annarita; Gazzola, Diana; Flamini, Riccardo; Curioni, Andrea

    2015-03-01

    The wine aroma loss as a consequence of treatments with bentonite is due to the occurrence of multiple interaction mechanisms. In addition to a direct effect of bentonite, the removal of aroma compounds bound to protein components adsorbed by the clay has been hypothesized but never demonstrated. We studied the effect of bentonite addition on total wine aroma compounds (extracted from Moscato wine) in a model solution in the absence and presence of total and purified (thaumatin-like proteins and chitinase) wine proteins. The results showed that in general bentonite alone has a low effect on the loss of terpenes but removed ethyl esters and fatty acids. The presence of wine proteins in the solution treated with bentonite tended to increase the loss of esters with the longest carbon chains (from ethyl octanoate to ethyl decanoate), and this was significant when the purified proteins were used. The results here reported suggest that hydrophobicity can be one of the driving forces involved in the interaction of aromas with both bentonite and proteins. PMID:25665100

  17. Fundamental study on anisotropy of diffusion and migration pathway in compacted bentonite

    International Nuclear Information System (INIS)

    SEM observations for micropore structure in compacted bentonite and through-diffusion experiments for non-sorptive tritiated water (HTO) were conducted to evaluate the anisotropy of diffusive pathway in compacted bentonite used as a buffer material in the geological disposal of high-level radioactive waste. The SEM observations and thorough-diffusion experiments were conducted for axial and perpendicular directions to the compacted direction of bentonite as a function of bentonite's dry density. Two types of Na-bentonites, Kunigel-V1 and Kunipia-F with different smectite contents were used in both experiments. No orientation of clay particles was found for low-smectite content Kunigel-V1, while layers of clay particles orientated in the perpendicular direction to compacted direction were observed for Kunipia-F with approximately 100 wt% smectite content. This tendency is in good agreement with that for HTO's effective diffusivities obtained from diffusion experiments, indicating that smectite content in bentonite affects the orientation properties of clay particles and diffusive pathway. (author)

  18. Study of Japanese and Serbia bentonite on the fraction of 137Cs from cement-ion exchange resins-bentonite clay mixture

    International Nuclear Information System (INIS)

    Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. The cement specimens were prepared from construction cement which is basically a standard Portland cement. The cement was mixed with saturated wet cation exchange resins, (100 g. of dry resins +100 g. of water containing 137Cs) and two bentonite clay, from Serbia, and another from Japan. After each leaching period the radioactivity in the leachant was measured. All results exhibit practically the same general characteristics. An enhanced initial period of leaching occurs during the first 25-30 days or so, followed by a distinct reduction in the leach rate which is broadly maintained up to the long period of leaching. The leach behaviour of cement-mortar materials can be explained as a combination of two processes: surface wash-off, which is not diffusion controlled, followed by a static diffusion stage. Enhanced initial period of leaching can be explained in terms of a rapid equilibrium being established between spaces present in the surface pores of the Portland cement and ions in solution in the leachant; hence the term wash-off. It is the second stage which is controlled by diffusion that dominates the long-term leaching behaviour of the material. We also prove that increasing amount of bentonite causes a significant reduction in the leaching rate, because of bentonite good sorption characteristics and ion selectivity. We showed that the bentonite from Serbia can successfully be used for the immobilisation of radioactive waste with same quality as Japanese bentonite

  19. Challenges in Analogical Reasoning

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same physics principle is involved but that is more difficult to handle. Here, we examine introductory physics students' ability to use analogies in solving problems involving Newton's second law. Students enrolled in an algebra-based introductory physics course were given a solved problem involving tension in a rope and were then asked to solve another problem for which the physics is very similar but involved a frictional force. They were asked to point out the similarities between the two problems and then use the analogy to solve the friction problem.

  20. Characterization of natural organic matter in bentonite clays for potential use in deep geological repositories for used nuclear fuel

    International Nuclear Information System (INIS)

    Highlights: • We studied the composition of natural organic matter in bentonite clay. • Biomarker results indicate a predominance of plant-derived organic matter. • Aromatic and aliphatic compounds were observed in NMR spectra. • Degradation ratios suggest that organic matter is highly altered. • The natural organic matter in bentonite clay is predominantly recalcitrant. - Abstract: The Nuclear Waste Management Organization (NWMO) is developing a Deep Geological Repository (DGR) to contain and isolate used nuclear fuel in a suitable rock formation at a depth of approximately 500 m. The design concept employs a multibarrier system, including the use of copper-coated used fuel containers, surrounded by a low-permeability, swelling clay buffer material within a low permeability, stable host rock environment. The natural organic matter (NOM) composition of the bentonite clays being considered for the buffer material is largely uncharacterized at the molecular-level. To gain a better understanding of the NOM in target clays from Wyoming and Saskatchewan, molecular-level methods (biomarker analysis, solid-state 13C NMR and solution-state 1H nuclear magnetic resonance (NMR)) were used to elucidate the structure and sources of NOM. Organic carbon content in three commercially available bentonites analyzed was low (0.11–0.41%). The aliphatic lipid distribution of the clay samples analyzed showed a predominance of higher concentration of lipids from vascular plants and low concentrations of lipids consistent with microbial origin. The lignin phenol vanillyl acid to aldehyde ratio (Ad/Al) for the National sample indicated an advanced state of lignin oxidation and NOM diagenesis. The 13C NMR spectra were dominated by signals in the aromatic and aliphatic regions. The ratio of alkyl/O-alkyl carbon ranged from 7.6 to 9.7, indicating that the NOM has undergone advanced diagenetic alteration. The absence lignin-derived phenols commonly observed in CuO oxidation

  1. FGF growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  2. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  3. Synthesis of Paclitaxel Analogs

    OpenAIRE

    Xu, Zhibing

    2010-01-01

    Paclitaxel is one of the most successful anti-cancer drugs, particularly in the treatment of breast cancer and ovarian cancer. For the investigation of the interaction between paclitaxel and MD-2 protein, and development of new antagonists for lipopolysaccharide, several C10 A-nor-paclitaxel analogs have been synthesized and their biological activities have been evaluated. In order to reduce the myelosuppression effect of the paclitaxel, several C3â ² and C4 paclitaxel analogs have been synth...

  4. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Geh, Stefan; Rettenmeier, Albert W.; Dopp, Elke [University Hospital, Institute of Hygiene and Occupational Medicine, Essen (Germany); Yuecel, Raif [University Hospital, Institute of Cell Biology (Cancer Research), Essen (Germany); Duffin, Rodger [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); University of Edinburgh, ELEGI COLT Lab, Scotland (United Kingdom); Albrecht, Catrin; Borm, Paul J.A. [Institute of Environmental Health Research (IUF), Duesseldorf (Germany); Armbruster, Lorenz [Verein fuer Technische Sicherheit und Umweltschutz e.V., Gotha (Germany); Raulf-Heimsoth, Monika; Bruening, Thomas [Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Hoffmann, Eik [University of Rostock, Institute of Biology, Department of Cell Biology and Biosystems Technology, Rostock (Germany)

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Oe< 10 {mu}m) with an {alpha}-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. (orig.)

  5. Effects of Bentonite on p-Methoxybenzyl Acetate: A Theoretical Model for Oligomerization via an Electrophilic-Substitution Mechanism

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2011-02-01

    Full Text Available Tonsil Actisil FF, a commercial bentonitic clay, promotes the formation of a series of electrophilic-aromatic-substitution products from para-methoxybenzyl acetate in carbon disulfide. The molecules obtained correspond to linear isomeric dimers, trimers, tetramers and a pentamer, according to their spectroscopic data. A clear indication of the title mechanistic pathway for the oligomerization growth was obtained from the analysis of a set of computational-chemistry calculations using the density-functional-theory level B3LYP/6-311++G(d,p. The corresponding conclusions were based on the computed dipole moments, the HOMO/LUMO distributions, and a natural-populations analysis of the studied molecules.

  6. Unexpected effect of drying method on the microstructure and electrocatalytic properties of bentonite/alpha-nickel hydroxide nanocomposite

    Science.gov (United States)

    Nunes, Cícero V.; Danczuk, Marins; Bortoti, Andressa A.; Gonçalves, Josué M.; Araki, Koiti; Anaissi, Fauze J.

    2015-11-01

    The degree of crystallinity, morphology and electrochemical properties of a nanocomposite formed by stabilized alpha-Ni(OH)2 nanoparticles and bentonite nanoflakes is strongly influenced by the vacuum drying process, either at room temperature or by freeze-drying (lyophilization). Alpha-Ni(OH)2 nanoparticles induced the formation of intercalation nanocomposites exhibiting higher structural organization than in the precursor clay. Also, lyophilization process preserved the structure of the nanocomposites in aqueous suspension and/or induced the disaggregation of nanoflakes, producing materials with lower degree of crystallinity, larger interlamellar distances and electrochemically more active than those obtained by conventional vacuum drying. In fact, the lyophilized materials exhibited more than twice as large density of current for electrocatalytic oxidation of methanol (37 against 14 mA cm-2) indicating its potentiality for development of sensors and fuel cells.

  7. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  8. Silurian bentonites in Lithuania: correlations based on sanidine phenocryst composition and graptolite biozonation – interpretation of volcanic source regions

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2014-02-01

    Full Text Available Integrated correlation of bentonites (altered volcanic ashes and graptolite biozonation is presented. Detailed study of two Lithuanian drill core sections extended previous knowledge of the occurrence and composition of bentonites to the south. Identification of graptolite species allowed bentonites to be assigned their proper stratigraphical position. Silurian bentonites in Lithuania are mostly characterized by wide and very wide XRD 201 reflections of the main component of sanidine phenocrysts. Only fourteen of the 69 samples studied contained sanidine with a sharp reflection, which gave the best correlation potential. In the Lithuanian sections one bentonite was found in the Rhuddanian, five bentonites were recognized in the Aeronian, 17 bentonites in the Telychian, 26 in the Sheinwoodian, 10 in the Homerian and six in the Ludlow. All bentonites found in Lithuania are characterized by the main component of sanidine. A large number of Lithuanian bentonites are not known in Latvia and Estonia, indicating that volcanic ashes reached the East Baltic area from two source regions – the Central European and Norwegian Caledonides.

  9. Studies on dynamic compaction and hydraulic properties of Bentonite-based materials for geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    As the safe disposal method of high-level radioactive waste from nuclear power plants, there is the 'geological disposal' that buries the waste in the stable soil. For cushioning materials to be used for geological disposal, performances such as low permeability. self-sealing ability, and nuclide sorption ability are required, and bentonite has been picked up as a candidate for its main base material. This paper takes up granular bentonite and bentonite - silica sand mixed material as the bentonite-based materials used as cushioning materials for site application, and explains their dynamic compaction test and easy-to-use evaluation method. As for the granular bentonite, it was found that its compaction properties can be predicted from the plastic limit of pulverized sample of the original ore as a raw material for granular bentonite. As for bentonite - silica sand mixed material, the relationship between maximum dry density, optimum moisture content, and plastic limit showed a very good match between the measured results and calculated results. The permeability coefficient of granular bentonite can be predicted from the wet volume strain of montmorillonite, or the partial density of montmorillonite. As for the bentonite - silica sand mixed material, the permeability of Fe(III) type montmorillonite became significantly larger. (A.O.)

  10. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  11. Evaluation of long-term interaction between cement and bentonite for geological disposal (2) XAFS analysis of calcium silicate hydrate precipitates at cementitious and bentonite material interface

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Numerical analyses of the long-term alteration of the engineered barriers used for the disposal of TRU waste predicted precipitation of C-S-H minerals at the interface between the cementitious materials and the bentonite-based buffer. When the C-S-H precipitates at this interface, the diffusion coefficient in the engineered barriers will decrease, resulting in reduced mass transport, which feeds back to reduce the rate of subsequent alteration. The C-S-H predicted to form at the cement-bentonite interface could not be identified directly using conventional analytical tools, including XRD, due to its low crystallinity. The authors propose that XAFS analysis, which provides spectra sensitive to the valency and coordination of the element of interest regardless of its crystallinity, would be capable of characterizing the C-S-H. The presence of the C-S-H precipitated as a secondary mineral has already been confirmed by applying chemical and XAFS analyses to bentonite specimens collected from the compacted bentonite-cement interface. However, because of the limitations on the width of specimens that can be collected by cutting from block samples, i.e. approximately 1 mm, detailed concentration profiles could not be obtained for this secondary C-S-H. In this study, XAFS spectra of thin specimens were measured using an X-ray detector in order to obtain detailed concentration profiles for the C-S-H formed at the interface between the cementitious material and the bentonite-based buffer. The X-ray detector used in the XAFS analysis consists of 1024 photodiodes arranged in line with a 0.025 mm pitch (photodiode array; PDA). Ca-K-edge XAFS measurements were conducted at the Photon Factory of the KEK. The synchrotron was operated in top-up mode with 450 mA during the measurements. Specimens were taken from a contact sample of compacted bentonite (Kunigel V1; dry density of 1.6 g/cm3) and hardened OPC (w/c = 0.6) immersed in

  12. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  13. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.A. [Univ. of the Punjab, Lahore (Pakistan); Khan, S.A. [Government F.C. College, Lahore (Pakistan)

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  14. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  15. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  16. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  17. Digital and analog communication systems

    Science.gov (United States)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  18. Internal stratification of two thick Ordovician bentonites of Estonia: deciphering primary magmatic, sedimentary, environmental and diagenetic signatures

    Directory of Open Access Journals (Sweden)

    Sven Siir

    2015-05-01

    Full Text Available Twenty-six samples from two major altered volcanic ash beds, Kinnekulle and BII Bentonite of the Kuressaare core section (K-3, Saaremaa Island, were explored to record the geochemical and mineralogical heterogeneity of beds. Signs of ash transport fractionation, redeposition of volcanic ash and diagenetic redistribution of material are described and interpreted. In authigenic mineralogy of the Kinnekulle Bentonite illite–smectite dominates with addition of K-feldspar at the margins. The BII Bentonite is composed of chlorite–smectite and illite–smectite. The stability of phenocryst compositions, including that of sanidine and biotite, indicates that both bentonites originate from a single eruption. The observed rather stable pyroclastic sanidine compositions in the cross section of bentonites confirm the reliability of sanidine-based fingerprinting of altered volcanic ash beds. Trace element distribution in bentonites and host rocks indicates that Zr, Ga, Rb, Nb, Ti and Th stayed largely immobile during volcanic ash alteration and reflect primary ash composition. However, some redistribution of Nb and Ti as well as Y has probably occurred near the contacts of bentonite with the host rock. More scattered grain size distribution and immobile element patterns of the Kinnekulle Bentonite support the idea that the primary ash bed had a heterogeneous composition and it was one of the biggest bentonites of the Phanerozoic and most likely records an extended volcanic event. Significant geochemical variations, including a high S content, near the upper and lower contacts of the Kinnekulle Bentonite and elevated Ca and P in host rocks of both bentonites suggest that the studied large ash-falls caused notable perturbations in shallow marine and early post-sedimentary environment.

  19. Adsorption Properties of Bentonite with In Situ Immobilized Polyaniline Towards Anionic Forms of Cr(VI), Mo(VI), W(VI), V(V)

    OpenAIRE

    Kateryna RYABCHENKO; Elina YANOVSKA; Mariya MELNYK; Dariusz STERNIK; Olga KYCHKIRUK; Valentun TERTYKH

    2016-01-01

    A new composite material bentonite-PANI was synthesized by in situ immobilization of polyaniline (PANI) on the surface of natural mineral bentonite. It was established as a result of the modification of bentonite a surface area and an interlayer distance of mineral decrease and particles of bentonite transformed of irregular shape with different porosity on irregularly shaped particles of smaller size. It has been found that the total Cr(VI) ions extraction took place under the acid condition...

  20. Thermal detoxification and bloating of chromium(VI) with bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y.-L., E-mail: yulin@thu.edu.t [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China); Hsieh, H.-F.; Peng, Y.-S.; Yang, J.-C. [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China); Paul Wang, H. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environmental Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, C.-Y.; Shih, W.-L.; Hsu, C.-C. [Department of Environmental Science and Engineering, Tunghai University, Taichung 40704, Taiwan (China)

    2010-07-21

    This study stabilizes and bloats Cr(VI)-sorbed bentonite by heating at high temperature. Cr leaching decreases with increasing temperatures. Heating the sample at 1100 {sup o}C results in a non-detectable Cr concentration in the leachate, equivalent to a Cr leaching percent less than 0.001% (i.e., Cr TCLP concentration <0.018 mg of Cr L{sup -1} of leachate). Morphology observed with a scanning electron microscopy indicates the occurrence of sintering of the sample heated at 1100 {sup o}C. The heated samples also show the occurrence of a vesicant process at 1100 {sup o}C. X-ray absorption spectroscopy results indicate that heating at 500 {sup o}C for 4 h can convert approximately 87% Cr(VI) into Cr(III) that is negligibly toxic; Cr{sub 2}O{sub 3} was detected to be the most abundant Cr species. After heating at higher temperatures, namely 900-1100 {sup o}C, almost all doped Cr(VI) is reduced to Cr(III) as inferred from the height of the pre-edge peak of XANES spectra and/or from XANES simulation.

  1. Evaluation of impact strength of polyamide 6/bentonite clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Rene Anisio; Araujo, Edcleide Maria; Tomas Jeferson Alves; Amanda Damiao; Medeiros, Vanessa da Nobrega [Federal University of Campina Grande (CCT/UFCG), Campina Grande, PB (Brazil). Centro de Ciencias e Tecnologia; Pessan, Luiz Antonio [Federal University of Sao Carlos (DEMa/UFSCar), SP (Brazil). Materials Engineering Department

    2012-07-15

    Nanocomposites of polymer/clay have had much attention in recent years, particularly those developed with layered silicates due to the need of engineering materials more efficient than pure polymers for certain applications. The level of exfoliation of layered silicates in crystalline structure of polymer matrices has been studied and has been observed that it affects the crystalline behavior and the physical and mechanical properties. In this study, nanocomposites of polyamide 6 were obtained by the melt intercalation method, using a Brazilian bentonite modified with a quaternary ammonium salt. X-Ray Diffraction (XRD) results showed the incorporation of salt among the layers of clay, making it organophilic and that the nanocomposites presented exfoliated and/or partially exfoliated structures and confirmed by transmission electron microscopy (TEM). By thermogravimetry (TG), the results indicated that the presence of clay increased the thermal stability of polyamide 6. The impact properties of the nanocomposites showed inferior values in relation to the pure polyamide, in other words, decrease the toughness. (author)

  2. Experimental Study on Volume Change Indices of Bentonite Soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reports experimental results regarding statically compacted clay specimens to study the volume change behavior of bentonites. The volume change indices such as the coefficients of compressibility, volume compressibility, and consolidation ( i. e.av , mv and cv respectively) and the saturated coefficient of permeability k at different surcharge pressures were determined with the commonly adopted procedures. The swell potentials, swelling pressures, different phases of the swollen specimens were analyzed for the volume change behavior during compression. Experimental results revealed that the swell potential is dependent on the initial dry density, the initial water content and the vertical pressure at which the clay specimens were allowed to swell. The swelling pressure was found to be similar for the specimens with varying water content, showing strong dependency on the initial void ratio. The compression indices ( viz. mv and av) of saturated specimens decreased with an increase in the vertical pressure. About 80% to 90% of the volume change occurred in the primary compression phase under any given vertical pressure. The coefficient of consolidation cv and the saturated coefficient of permeability k decreased with an increase in the vertical pressure.

  3. FACTORS AFFECTING THE HYDRAULIC BARRIER PERFORMANCE OF SOIL-BENTONITE MIXTURE CUT-OFF WALL

    Science.gov (United States)

    Takai, Atsushi; Inui, Toru; Katsumi, Takeshi; Kamon, Masashi; Araki, Susumu

    Containment technique using cut-off walls is a valid method against contaminants in subsurface soil and/or groundwater. This paper states laboratory testing results on hydraulic barrier performance of Soil-Bentonite (SB), which is made by mixing bentonite with in-situ soil. Since the bentonite swelling is sensitive to chemicals, chemical compatibility is important for the hydraulic barrier performance of SB. Hydraulic conductivity tests using flexible-wall permeameter were conducted on SB specimens with various types and concentrations of chemicals in the pore water and/or in the permeant and with various bentonite powder contents. As a result, hydraulic barrier performance of SB was influenced by the chemical concentration in the pore water of original soil and bentonite powder content. In the case that SB specimens have damage parallel to the permeating direction, no significant leakage in the SB occurs by the self-sealing property of SB. In addition, the hydraulic conductivity values of SB have excellent correlation with their plastic indexes and swelling pr essures, thus these properties of SB have some possibility to be indicators for estimation of the hydraulic barrier performance of SB.

  4. The Lower Silurian Osmundsberg K-bentonite. Part I: Stratigraphic position, distribution, and palaeogeographic significance

    Science.gov (United States)

    Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.

    1998-01-01

    A large number of Lower Silurian (Llandovery) K-bentonite beds have been recorded from northwestern Europe, particularly in Baltoscandia and the British Isles, but previous attempts to trace single beds regionally have yielded inconclusive results. The present study suggests that based on its unusual thickness, stratigraphic position and trace element geochemistry, one Telychian ash bed, the Osmundsberg K-bentonite, can be recognized at many localities in Estonia, Sweden and Norway and probably also in Scotland and Northern Ireland. This bed, which is up to 115 cm thick, is in the lower-middle turriculatus Zone. The stratigraphic position, thickness variation and geographic distribution of the Osmundsberg K-bentonite are illustrated by means of 12 selected Llandovery successions in Sweden, Estonia, Norway, Denmark, Scotland and Northern Ireland. In Baltoscandia, the Osmundsberg K-bentonite shows a trend of general thickness increase in a western direction suggesting that its source area was located in the northern Iapetus region between Baltica and Laurentia. Because large-magnitude ash falls like the one that produced the Osmundsberg K-bentonite last at most a few weeks, such an ash bed may be used as a unique time-plane for a variety of regional geological and palaeontological studies.

  5. THE IMPACT OF LABORATORY AIR TEMPERATURE AND RELATIVE HUMIDITY ON BENTONITE WATER ABSORPTION CAPACITY

    Directory of Open Access Journals (Sweden)

    Helena Strgar

    2011-12-01

    Full Text Available Bentonite, which is a mineral component of geosynthetic clay liners, has important physical and chemical properties that ensure very small hydraulic permeability. The main component of bentonite is a clay mineral called sodium montmorillonite whose very low permeability is due to its ability to swell. The deposits of bentonite are spread all over the world, however, only a very small number of those deposits satisfies all the quality and durability demands that must be met if the bentonite is to be used in the sealing barriers. Depending on the location of installation and their purpose, geosynthetic clay liners must meet certain requirements. Their compatibility with the prescribed criterion is confirmed through various laboratory procedures. Amongst them are tests examining the index indicators (free swell index, fluid loss index, and water absorption capacity. This paper presents results regarding the impact of laboratory air temperature and relative humidity of the testing area on the water absorption capacity. This is one of the criteria that bentonite must satisfy during the quality and durability control of the mineral component of geosynthetic clay liner (the paper is published in Croatian.

  6. Polypropylene Fiber Amendments to Alleviate Initiation and Evolution of Desiccation Cracks in Bentonite Liners

    Science.gov (United States)

    Tuller, M.; Gebrenegus, T. B.

    2009-12-01

    Sodium saturated bentonite is a major constituent of compacted and geosynthetic liners and covers for hydraulic isolation of hazardous waste, playing a crucial role in protecting groundwater and other environmental resources from harmful landfill leachates. Due to favorable hydraulic properties (i.e., low permeability), large surface area and associated adsorption capacity for particular contaminants, and relative abundance and low cost, bentonite is the material of choice in many modern waste containment systems. However, long-term interactions between bentonite and waste leachate and exposure of bentonite to desiccative conditions may significantly deteriorate liner or cover performance and ultimately lead to failure of containment systems. In the presented study, the potential usefulness of polypropylene fiber amendments for preventing initiation and evolution of desiccation cracks, while maintaining acceptably low permeability under saturated conditions was investigated. Well-controlled desiccation experiments were conducted using initially saturated bentonite-sand mixtures that contained varying amounts of polypropylene fibers. Initiation and evolution of surface cracks were observed by means of X-Ray Computed Tomography (CT). Advanced image analysis techniques were employed to characterize and quantify 2-D and 3-D features of the evolving crack networks. Potential negative effects of employed additives on saturated hydraulic conductivity were determined with fully-automated Flexible Wall Permeametry (FWP).

  7. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate adsorption kinetics, isotherms and thermodynamic parameters of Reactive Blue 19 (RB19) onto modified bentonite from aqueous solutions. The effects of pH, contact time, initial dye concentration and temperature were investigated in the experimentally. Natural bentonite was modified by using 1,6-diamino hexane (DAH) as a modifying agent. The characterization of modified bentonite (DAH-bentonite) was accomplished by using FTIR, TGA, BET and elemental analysis techniques. The optimum pH value for the adsorption experiments was found to be 1.5 and all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results. Equilibrium data were also fitted well to the Langmuir isotherm model in the studied concentration range of RB19 at 20 deg. C. The results indicate that DAH-modified bentonite is a suitable adsorbent for the adsorption of textile dyes.

  8. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure

    Institute of Scientific and Technical Information of China (English)

    Yaxin Zhang; Yan Zhao; Yong Zhu; Huayong Wu; Hongtao Wang; Wenjing Lu

    2012-01-01

    The adsorption of cationic-nordonic mixed surfactant onto bentonite and its effect on bentonite structure were investigated.The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds.The cationic surfactant used was hexadecylpyridinium bromide(HDPB),and the nonionic suffactant was Triton X-100(TX100).Adsorption of TX100 was enhanced significantly by the addition of HDPB,but this enhancement decreased with an increase in the fraction of the cationic surfactant.Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB.However,the total adsorbed amount of the mixed surfactant was still increased substantially,indicating the synergistic effect between the cationic and nonionic surfactants.The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement,Fourier transform infrared spectroscopy,and thermogravimetric-derivative thermogravimetric/differential thermal analyses.Surfactant intercalation was found to decrease the bentonite specific surface area,pore volume,and surface roughness and irregularities,as calculated by nitrogen adsorption-desorption isotherms.The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite,but decreased the thermal stability of the organobentonite system.

  9. FRACTAL ANALYSIS OF PHYSICAL ADSORPTION ON SURFACES OF ACID ACTIVATED BENTONITES FROM SERBIA

    Directory of Open Access Journals (Sweden)

    Ljiljana Rožić

    2008-11-01

    Full Text Available Solid surfaces are neither ideally regular, that is, morphological and energeticcally homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and Mögel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.

  10. Microbial incidence on copper and titanium embedded in compacted bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Joergen; Lydmark, Sara; Edlund, Johanna; Paeaejaervi, Anna; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-10-15

    The incidence of bacteria on metal surfaces was examined in an experimental setting simulating conditions of the proposed Swedish concept for disposal of spent nuclear fuel. Titanium and copper rods were embedded in compacted bentonite clay saturated with groundwater collected at a depth of 450 m. Bentonite blocks were exposed to an external flux of groundwater with or without added lactate or H{sub 2} for up to 203 days. Bacterial accumulation on metal rods and in the surrounding bentonite was analyzed using real-time quantitative PCR (qPCR), with genetic markers for overall bacterial presence (16S rDNA) as well as specific for sulfate-reducing bacteria (apsA). Clay species composition was analyzed by cloning and sequencing 16S rDNA extracted from the clay. Results suggest limited bacterial accumulation on metal surfaces, amounting to a maximum of approximately 106 apsA copies cm-2, corresponding to a 3.7% coverage of metal surfaces. Bacterial species composition appeared to be a mix of species originating from the bentonite clay and from the added groundwater, including an apparently high proportion of sulfate-reducing bacteria. While titanium surfaces exhibited higher bacterial presence than did copper surfaces, neither the degree of bentonite compaction nor the addition of lactate or H{sub 2} appeared to have any effect on the bacterial incidence on metal surfaces

  11. Photodegradation of Methylene Blue by TiO2-Fe3O4-Bentonite Magnetic Nanocomposite

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-01-01

    Full Text Available Fe3O4-bentonite nanoparticles have been prepared by a coprecipitation technique under a nitrogen atmosphere. An aqueous suspension of bentonite was first modified with FeCl2 and FeCl3. TiO2 was then loaded onto the surface of the Fe3O4-bentonite by a sol-gel method. After sufficient drying, the colloidal solution was placed in a muffle furnace at 773 K to obtain the TiO2-Fe3O4-bentonite composite. The material has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD analysis, and vibrating sample magnetometry (VSM. Morphological observation showed that Fe3O4 and TiO2 nanoparticles had been adsorbed on the surface of bentonite nanoneedles. The material was then applied for the photodegradation of the azo dye methylene blue (MB. It was found that the removal efficiency of MB exceeded 90% under UV illumination, and that only a 20% mass loss was incurred after six cycles. The composite material thus showed good photocatalytic performance and recycling properties.

  12. Modeling cation diffusion in compacted water-saturated Na-bentonite at low ionic strength

    International Nuclear Information System (INIS)

    Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm-3 (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm-3

  13. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    Science.gov (United States)

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  14. HAPS, a Handy Analog Programming System

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1975-01-01

    HAPS (Hybrid Analog Programming System) is an analog compiler that can be run on a minicomputer in an interactive mode. Essentially HAPS is written in FORTRAN. The equations to be programmed for an ana log computer are read in by using a FORTRAN-like notation. The input must contain maximum...... and minimum values for the variables. The output file includes potentiometer coefficients and static-test 'measuring values.' The file format is fitted to an automatic potentiometer-setting and static-test program. Patch instructions are printed by HAPS. The article describes the principles of HAPS...

  15. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  16. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula;

    2015-01-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80Mgha-1) in laboratory pots, and different times of incubation of samples were...

  17. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  18. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  19. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  20. Transport of heavy metals and chemical compatibility of hydraulic conductivity of a compacted sand-bentonite mixture

    Directory of Open Access Journals (Sweden)

    Nanthanit Charoenthaisong

    2008-03-01

    Full Text Available Clayey soils are usually used as barrier material in landfill liners because of its low hydraulic conductivity and high sorption capacity. Bentonite, which consists mainly of montmorillonite, has a high cation exchange capacity resulting in a high retention capacity of heavy metals. Sand is a permeable material but its hydraulic conductivity decreases significantly when mixed with bentonite. However, using a sand-bentonite mixture as landfill liners is questionable, because the hydraulic conductivity of the sand-bentonite mixture may increase when permeated with heavy metal solutions, which are normally found in landfill leachates. In this paper, transport of heavy metals through a compacted sand-bentonite mixture and its chemical compatibility were studied through the batch adsorption test, the column test, and the hydraulic conductivity test.Experimental results indicate that the sorption capacity of the bentonite, ranked in descending order, was Cr3+, Pb2+, Cd2+, Zn2+, and Ni2+, respectively. The diffusion coefficients of the sand-bentonite mixture were in the order of 10-5 cm2/s and the retardation factors were 130, 115, 111, and 90 for Pb2+, Ni2+, Zn2+, and Cd2+, respectively. The hydraulic conductivity of thesand-bentonite mixture was only compatible with a chromium solution having a concentration not greater than 0.001 M.

  1. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Christopher D. White

    2009-12-21

    Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of

  2. Leachability of bentonite/cement for medium-level waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamlat, M.S.; Rabia, N. [Centre de Radioprotection et de Surete, Alger-Gare (Algeria)

    1998-12-31

    The release of radionuclides from Algerian bentonite/cement matrix has been measured experimentally using static and dynamic testing procedures. The waste forms were cement/sand and bentonite/cement matrices contaminated with Cs-137. To characterise radionuclide/waste form combination, two parameters, diffusion (D) and distribution coefficients ({alpha}) were used. (D) is an effective diffusion coefficient that describes the kinetic behaviour and is most easily determined using Soxhlet test, whereas, ({alpha}) describes the distribution of radionuclide between aqueous and solid phases at equilibrium and is best measured in static test. Leach rates obtained being very low. Distribution coefficient values have showed that the bentonite has relatively a high degree of fixation. It was concluded that the matrix under study seems play a role for the immobilisation. (orig.)

  3. Rebounding process of moulding sands-thermal degradation of bentonite binding qualities

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2010-01-01

    Full Text Available Problems related to a gradual degradation of binding qualities of montmorillonite, the main component of foundry bentonites, are presented in the paper. This degradation is caused by high temperatures originated from liquid metal influencing moulding sands. Laboratory measurements of an active binding agent content in classic moulding sands prepared with two types of bentonite and subjected to a controlled heating to high temperatures – were performed. These laboratory examinations were compared to industrial tests, in which a temperature distribution was being determined in several places in the thickness of the casting ingot mould for 24 hours from the moment of pouring liquid metal. On the basis of the performed examinations, the method allowing to determine optimal additions in the rebounding process of the tested bentonites was developed.

  4. Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon

    International Nuclear Information System (INIS)

    Cs-134, Sr-85, and I-131 were produced by neutron irradiation of CsCl, SrCl2, and K2TeO3, respectively, using the Kyoto University Reactor. These radioactive nuclides were added to river water and seawater to prepare artificially contaminated samples, and the removal of these nuclides using bentonite, zeolite, and activated carbon was then investigated. In the river water samples, Cs-134 and Sr-85 were successfully removed using bentonite and zeolite, and I-131 was removed using activated carbon. In the seawater samples, Cs-134 was removed using bentonite and zeolite, whereas Sr-85 and I-131 were hardly removed at all by these adsorbents. (author)

  5. Influence of ionic strength on the viscosities and water loss of bentonite suspensions containing polymers

    Directory of Open Access Journals (Sweden)

    Luciana Viana Amorim

    2007-03-01

    Full Text Available A study was made of the influence of ionic strength (S on the apparent (AV and plastic (PV viscosities and water loss (WL of sodium bentonite suspension with polymers. Na-bentonite was dispersed in water (4.86% w/w of different ionic strengths (S = 0.0, 0.015, 0.030 and 0.045 M followed by the addition of polymer. Three polymer samples were studied, i.e., low viscosity carboxymethyl cellulose (CMC BV, polyanionic cellulose (PAC, and partially hydrolyzed polyacrylamide (HPAM. The results indicated that the presence of salts and increased salinity greatly influence the apparent and plastic viscosities and water loss of bentonite suspensions with polymer.

  6. Diffusion of Radionuclides in Bentonite Clay - Laboratory and in situ Studies

    International Nuclear Information System (INIS)

    This thesis deals with the diffusion of ions in compacted bentonite clay. Laboratory experiments were performed to examine in detail different processes that affect the diffusion. To demonstrate that the results obtained from the laboratory investigations are valid under in situ conditions, two different kinds of in situ experiments were performed. Laboratory experiments were performed to better understand the impact of ionic strength on the diffusion of S2+ and Cs+ ions, which sorb to mineral surfaces primarily by ion exchange. Furthermore, surface related diffusion was examined and demonstrated to take place for Sr2+ and Cs+ but not for Co2+, which sorbs on mineral surfaces by complexation. The diffusion of anions in bentonite clay compacted to different dry densities was also investigated. The results indicate that anion diffusion in bentonite clay consists of two processes, one fast and another slower. We ascribe the fast diffusive process to intralayer diffusion and the slow process to diffusion in interparticle water, where anions are to some extent sorbed to edge sites of the montmorillonite. Two different types of in situ experiments were performed, CHEMLAB and LOT. CHEMLAB is a borehole laboratory, where cation (Cs+, Sr2+ and Co2+) and anion (I- and TcO4-) diffusion experiments were performed using groundwater from a fracture in the borehole. In the LOT experiments cylindrical bentonite blocks surrounding a central copper rod were placed in a 4 m deep vertical borehole. The borehole was then sealed and the blocks are left for 1, 5 or >> 5 years. When the bentonite was water saturated the central copper rod is heated to simulate the temperature increase due to radioactive decay of the spent fuel. Bentonite doped with radioactive Cs and Co was placed in one of the lower blocks. Interestingly, the redox-sensitive pertechnetate ion (TcO4-) which thermodynamically should be reduced and precipitate as TcO2 n H2O, travelled unreduced through the bentonite

  7. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers

    Directory of Open Access Journals (Sweden)

    A.M. Motawie

    2014-09-01

    Full Text Available Different types of nano-organo bentonite (NOB were prepared from the Egyptian Bentonite (EB. EB was characterized by energy dispersive X-ray EDX. It was purified from different impurities using a conventional method via the treatment with HCl and distilled water. The modification of the clay was carried out using different types of organo-modifiers namely; hexadecyl trimethyl ammonium bromide (HTAB, 3-aminopropyltriethoxysilane (Silane, octadecylamine (ODA, and dodecylamine (DDA. The cation exchange capacity (CEC was measured for pristine bentonite after and before modification. The NB was characterized by FTIR, XRD, TEM, and TGA techniques. The obtained results indicated that variation of the interlayer space gallery was effected by the type of the penetrator used.

  8. Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions

    Indian Academy of Sciences (India)

    E Günıster; S İşçı; A Alemdar; N Güngör

    2004-06-01

    The present study reports the effect of anionic surfactant sodium dodecyl sulfate (SDS, C12H25 OSO3Na) upon the electrokinetic (electrophoretic mobility, zeta potential) and rheological (viscosity, yield value) properties of the Ca-bentonitic clay found in Turkey and its Na-activated form. The SDS dispersant was added in different concentrations in the range of 1 × 10-5-5 × 10-2 mol/l. The results show that the viscosity and zeta potential values of bentonite dispersion are affected by the addition of anionic surfactant. The obtained data are analysed by considering the kind of exchangeable cations. Thixotropic property effect was observed in bentonite dispersions.

  9. Water retention behaviour of compacted bentonites: experimental observations and constitutive model

    Directory of Open Access Journals (Sweden)

    Dieudonne Anne-Catherine

    2016-01-01

    Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.

  10. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  11. Anti-Plasmodium activity of ceramide analogs

    Directory of Open Access Journals (Sweden)

    Gatt Shimon

    2004-12-01

    Full Text Available Abstract Background Sphingolipids are key molecules regulating many essential functions in eukaryotic cells and ceramide plays a central role in sphingolipid metabolism. A sphingolipid metabolism occurs in the intraerythrocytic stages of Plasmodium falciparum and is associated with essential biological processes. It constitutes an attractive and potential target for the development of new antimalarial drugs. Methods The anti-Plasmodium activity of a series of ceramide analogs containing different linkages (amide, methylene or thiourea linkages between the fatty acid part of ceramide and the sphingoid core was investigated in culture and compared to the sphingolipid analog PPMP (d,1-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol. This analog is known to inhibit the parasite sphingomyelin synthase activity and block parasite development by preventing the formation of the tubovesicular network that extends from the parasitophorous vacuole to the red cell membrane and delivers essential extracellular nutrients to the parasite. Results Analogs containing methylene linkage showed a considerably higher anti-Plasmodium activity (IC50 in the low nanomolar range than PPMP and their counterparts with a natural amide linkage (IC50 in the micromolar range. The methylene analogs blocked irreversibly P. falciparum development leading to parasite eradication in contrast to PPMP whose effect is cytostatic. A high sensitivity of action towards the parasite was observed when compared to their effect on the human MRC-5 cell growth. The toxicity towards parasites did not correlate with the inhibition by methylene analogs of the parasite sphingomyelin synthase activity and the tubovesicular network formation, indicating that this enzyme is not their primary target. Conclusions It has been shown that ceramide analogs were potent inhibitors of P. falciparum growth in culture. Interestingly, the nature of the linkage between the fatty acid part and the

  12. Approval condition in application of bentonite grouting to the radioactive waste disposal

    International Nuclear Information System (INIS)

    The purpose of this study is to understand the flow properties and the permeability of bentonite grout added NaCl by the laboratory tests, and to clarify the approval condition of bentonite as materials. The viscosity of the bentonite suspension was measured under the weight ratio of water and bentonite (W/B) is 6 to 20. The suspension of which W/B is smaller than 10 is difficult to inject into the rock joints, because the viscosity is higher than the thickest cement milk on dam grouting. When the necessary permeability of the clay grout is assumed to be 10-7 (cm/sec), the W/B becomes 10 or less. Then, when we add NaCl to the suspension of which W/B is 6, the viscosity decreases as the amount of NaCl increases. The injectable viscosity is achieved by adding NaCl as the proportion of water to NaCl is 1 to 40. Next, the permeability of the bentonite suspension that added NaCl was examined by the falling head permeability test. It was found that the initial permeability 10-6 (cm/sec) decreased to 10-8∼10-9 (cm/sec) by the test of the sample of 'B:W:NaCl=20:20:1' for 10 days. From these results, the suspension to inject into the rock joints can be made by adding NaCl. And it was clarified that the groundwater permeation to the suspension causes the decrease of the permeability. In addition, the bentonite is swelling according to the infiltration of underground water, the persistence in the suppression effect of diffusion and stability to erosion can be expected. (author)

  13. Coupled behaviour of bentonite buffer results of PUSKURI project; Bentoniittipuskurin kytketty kaeyttaeytyminen PUSKURI-hankkeen tuloksia

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Rasilainen, K.; Itaelae, A. [and others

    2011-08-15

    In the report main results form a KYT2010 programme's project Coupled behaviour of bentonite buffer (PUSKURI) are presented. In THC modelling, Aku Itaelae made and published his Master of Science Thesis. Itaelae was able to successfully model the LOT-experiment. Additionally, he also listed problems and development proposals for THC-modelling of bentonite buffer. VTT and Numerola created in collaboration a model coupling saturation, diffusion and cation exchange; the model was implemented and tested in Numerrin, COMSOL and TOUGHREACT. Petri Jussila's PhD THM-model was implemented into COMSOL to facilitate further development. At GTK, the mineralogical characterisation of bentonite was planned. The previous THM model (Jussila's model) including only small deformations was successfully generalized to finite deformations in way at least formally preserving the original formalism. It appears that the theory allows also a possibility to include finite plastic deformations in the theory. In order to measure the relevant mechanical properties of compacted bentonite, two different experiments, namely hydrostatic compression experiment and one-dimensional compression experiment were designed. In the hydrostatic compression experiment, a cylindrical sample of compacted bentonite covered with liquid rubber coating is placed in the sample chamber equipped with a piston. The same device was also used in one-dimensional compression experiment. X-ray microtomographic techniques were used in order to study the basic mechanisms of water transport in bentonite. The preliminary results indicate that in the present experimental set-up, water transport is dominated by a dispersive mechanism such as diffusion of vapour in gas phase or diffusion of water in solid phase. (orig.)

  14. Radionuclide transport coupled with bentonite extrusion in a saturated fracture system

    Science.gov (United States)

    Borrelli, Robert Angelo

    The study in this dissertation focuses on the characterization of radionuclide migration in a water saturated fracture. The near field of a high level radioactive waste repository contains the engineered barrier system, which provides manufactured components designed to limit radionuclide releases to the environment. A major component in this system involves the utilization of bentonite as a buffer to protect the degraded waste package and limit release of radionuclides into intersecting fractures that pose possible pathways for transport to the environment. A model is derived for radionuclide migration through this fracture. The model incorporates the features of bentonite: extrusion into the fracture, sorption, and the effect of bentonite swelling on groundwater flow. The resulting derivation of this model is a coupled system of differential equations. The differential equation describing the mass conservation of radionuclides is coupled to the equation system for bentonite extrusion. The models are coupled through the parameters in the radionuclide transport model, which are dependent on the spatial distribution of solid material in the domain. Numerical evaluations of the solution to this radionuclide transport model were conducted for neptunium, a weakly sorbing radionuclide and americium, a strongly sorbing radionuclide. Results were presented in terms normalized spatial distribution of radionuclide concentration in the fluid phase and normalized radionuclide release rate in the fluid phase. Major findings of the study conducted for this dissertation are provided. (1) Bentonite extrusion affects fluid phase advection resulting in groundwater flow countercurrent to the direction of extrusion to the direction of radionuclide migration. (2) The sorption distribution coefficient is the most important parameter affecting radionuclide behavior in this system for this model. (3) Simulations of the model for americium, a highly sorbing radionuclide, indicate that

  15. 23rd workshop on Advances in Analog Circuit Design

    CERN Document Server

    Baschirotto, Andrea; Makinwa, Kofi

    2015-01-01

    This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    • Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing; • Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; • Presents material in a tutorial-based format.

  16. Efficiency of additives of the polysaccharide type on physical properties of bentonite mixtures

    Directory of Open Access Journals (Sweden)

    J. Beňo

    2011-01-01

    Full Text Available The addition of polysaccharide additives generally aims at improving some important physical properties of bentonite mixt ures, above allthe stability of moulds against the water loss and prevention of surface defects of castings. Polysaccharide products of inland and foreign production were checked in mixtures of two bentonites of the Czech provenance with the same montmorillonite content. The attention was paid in particular to the abrasion resistance of mixtures during storing them under constant climatic conditions.Conclusions have shownthe substantial influence of: the amount of the added additive, the kind and structural composition of the additive (pH of the water extract, electric conductance.

  17. A Study on the Effect of Clay Particle Orientation on Diffusion in Compacted Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.

    2002-02-26

    In this study, the effect of the orientation of clay particles on diffusion in compacted bentonite, which is regarded to be quite important as a candidate buffer material in safety assessment for a geological disposal of high-level radioactive waste, was experimentally discussed by investigating effective diffusion coefficients (De) for tritiated water (HTO), which is non-sorptive onto bentonite. The diffusion experiments were carried out for 2 kinds of smectite contents of Na-bentonites, Kunigel-V1{reg_sign} (content of Na-smectite, 46-49wt%) and Kunipia-F{reg_sign} (content of Na-smectite, > 99wt%) at dry densities of 1.0 and 1.5 Mg/m3 by a through-diffusion method. The through-diffusion experiments were carried out for the same direction as compacted direction of bentonite and perpendicular direction to compacted direction. Scanning electron microscopic (SEM) observations for the cross section of bentonite in the axial and perpendicular directions to compacted direction of bentonite were also carried out at dry densities of 1.0, 1.6, and 2.0 Mg/m3. Although De values for Kunigel-V1{reg_sign} were approximately the same for both diffusion directions to compacted direction over the densities, and no anisotropy in De was found, De values in the perpendicular direction to compacted direction for Kunipia-F{reg_sign} were clearly higher than those in the same direction as compacted direction. In the SEM observations, no significant orientation of clay particles was found for Kunigel-V1{reg_sign} over the densities, while the orientation of clay particles was clearly found for Kunipia-F{reg_sign}, and the degree of the orientation of clay particles became significant with an increase in dry density of bentonite. This tendency is in good agreement with that for De values obtained, indicating that smectite content in bentonite affects the orientation property of clay particles, and that the orientated clay particles affect diffusion pathway.

  18. Photodegradation of dye pollutants on TiO2 pillared bentonites under UV light irradiation

    Institute of Scientific and Technical Information of China (English)

    李静谊; 朱怀勇; 丁哲; 陈春城; 赵进才

    2002-01-01

    TiO2 pillared bentonite samples dried under different conditions are used to degrade 2,4-dichlorophenol and orange II under UV light irradiation. The supercritical dried sample exhibits a high activity for the photodegradation of 2,4-dichlorophenol and orange II due to its structural features. TOC and COD are measured during the degradation of 2,4-dichlorophenol under UV light irradiation using P25 and TiO2 pillared bentonite samples dried under different conditions. The clay-based catalysts can be readily separated by filtration or sedimentation.

  19. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite

    OpenAIRE

    ZHU, Chunming; Ye, Wei-Min; Chen, Yong-Gui; Chen, Bao; Cui, Yu Jun

    2013-01-01

    During the long-term operation of a deep geological repository, infiltration of groundwater with different chemical compositions can affect the buffer/backfill properties of compacted bentonite. Using a newly developed apparatus, swelling pressure and permeability tests were carried out on densely compacted GMZ01 bentonite samples, which has an initial dry density of 1.70 Mg/m3, with de-ionized water as well as NaCl and CaCl2 solutions at different concentrations. Salinity effects of infiltra...

  20. Thermal effect on water retention curve of bentonite: experiment and thermodynamic modeling

    International Nuclear Information System (INIS)

    The thermal effects on water retention curve of GMZ bentonite were investigated experimentally and theoretically. Water retention tests were conducted on GMZ bentonite at five temperatures ranging from 20℃ to 100℃. Test results showed that the water retention capacity and the hysteresis of the water retention curve decreased with increasing temperature, and that the water retention curves at different temperatures were almost parallel to each other. Based on the thermodynamics of sorption, a model was established to describe the temperature influence on the water retention curve. The model was validated by comparing the model predictions and the test results. (authors)

  1. A Study on the Effect of Clay Particle Orientation on Diffusion in Compacted Bentonite

    International Nuclear Information System (INIS)

    In this study, the effect of the orientation of clay particles on diffusion in compacted bentonite, which is regarded to be quite important as a candidate buffer material in safety assessment for a geological disposal of high-level radioactive waste, was experimentally discussed by investigating effective diffusion coefficients (De) for tritiated water (HTO), which is non-sorptive onto bentonite. The diffusion experiments were carried out for 2 kinds of smectite contents of Na-bentonites, Kunigel-V1(regsign) (content of Na-smectite, 46-49wt%) and Kunipia-F(regsign) (content of Na-smectite, > 99wt%) at dry densities of 1.0 and 1.5 Mg/m3 by a through-diffusion method. The through-diffusion experiments were carried out for the same direction as compacted direction of bentonite and perpendicular direction to compacted direction. Scanning electron microscopic (SEM) observations for the cross section of bentonite in the axial and perpendicular directions to compacted direction of bentonite were also carried out at dry densities of 1.0, 1.6, and 2.0 Mg/m3. Although De values for Kunigel-V1(regsign) were approximately the same for both diffusion directions to compacted direction over the densities, and no anisotropy in De was found, De values in the perpendicular direction to compacted direction for Kunipia-F(regsign) were clearly higher than those in the same direction as compacted direction. In the SEM observations, no significant orientation of clay particles was found for Kunigel-V1(regsign) over the densities, while the orientation of clay particles was clearly found for Kunipia-F(regsign), and the degree of the orientation of clay particles became significant with an increase in dry density of bentonite. This tendency is in good agreement with that for De values obtained, indicating that smectite content in bentonite affects the orientation property of clay particles, and that the orientated clay particles affect diffusion pathway

  2. Preparation and characterization of bentonite organo clay; Preparacao de caracterizacao de argilas bentonitas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolli, C.; Almeida Neto, A.F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica. Lab. de Engenharia Ambiental; Silva, M.G.C., E-mail: meuris@feq.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  3. Possible effects of external electrical fields on the corrosion of copper in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, Claes (Swerea KIMAB (Sweden))

    2011-12-15

    External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example

  4. Erosion of sodium bentonite by flow and colloid diffusion

    International Nuclear Information System (INIS)

    Smectite gel formed at the outer part of a bentonite buffer in granitic rock could expand into rock fractures with seeping water. Such a gel can release colloids into low ionic strength waters. In addition the gel/sol can itself slowly flow downstream when it has reached a low particle concentration sufficient to decrease the viscosity to allow flow. The erosion due to the combined effects of particle diffusion and gel/sol flow is modelled for a thin fracture into which the gel expands influenced by various forces between and on particles. Some of the forces such as the electrical double layer force and viscous force are strongly influenced by the ionic strength of the pore water. Changes in the ionic strength due to diffusion and dilution of ions in the expanding clay are modelled simultaneously with the gel expansion, flow of gel and colloid release to the seeping water. The model includes description of flow of the seeping fluid, which gradually turns from pure water to sol to more dense gel as the smectite source is approached. The model also describes expansion of the gel/sol and colloid release and flow and diffusion of ions in the system. The coupled models are solved using a numerical code. The results show that the gel will flow with a non-negligible flowrate when its volume fraction is below 1%, but that the erosion and loss of smectite is not much influenced by the concentration of sodium in the clay or in the approaching seeping water, if they are kept below the Critical Coagulation Concentration, CCC. (authors)

  5. Current status of mechanical erosion studies of bentonite buffer

    International Nuclear Information System (INIS)

    The performance of the bentonite buffer in KBS-3-type nuclear waste repository concept relies to a great extent on the buffer surrounding the canister having sufficient dry density. Loss of buffer material caused by erosion remains as the most significant process reducing the density of the buffer. The mechanical erosion, or pre-saturation erosion, is the process where flowing groundwater transports buffer material away from the deposition hole towards the deposition tunnel. This process reduces the overall buffer density and potentially creates localized regions of low density. In the worst case the process is assumed to last as long as the free volume between the pellets in the pellets filled regions is filled with groundwater. With fixed environmental and material parameters a set of experiments was performed, testing the erosive properties of different buffer and backfill materials (MX-80 and Friedland Clay) in different groundwater conditions. The method used was a pinhole erosion test using two sizescales; 100 mm and 400 mm of cell length. The purpose of the pinhole tests was to test the scenario where piping channel is formed in the buffer and water flows through a single channel. The erosion data was produced with two methods, firstly the time-related erosion rates measured in-situ during the measurement and secondly the overall mass loss in the sample cell measured after dismantling of the test. It was observed that erosion in piping channels decreases rapidly (∼24 h) and irreversibly to a level that is an order of magnitude lower than the peak values. (orig.)

  6. Removal of basic dye by modified Unye bentonite, Turkey

    International Nuclear Information System (INIS)

    The adsorption behavior of crystal violet (CV+) from aqueous solution onto raw (RB) and manganese oxide-modified (MMB) bentonite samples was investigated as a function of parameters such as initial CV+ concentration, contact time and temperature. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models were applied to describe the equilibrium isotherms. The Langmuir monolayer adsorption capacities of RB and MMB were estimated as 0.32 and 1.12 mmol/g, respectively. The mean adsorption energy derived from D-R isotherm for MMB showed that the type of adsorption of dye molecules on this material may be defined as chemical adsorption. The adsorption rate was fast and more than half of the adsorbed-CV+ was removed in the first 55 min for RB and 5 min for MMB at the room temperature. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data and rate constants were evaluated. The thermodynamic parameters such as ΔH, ΔS and ΔG were found 117.41 kJ/mol, 41.50 J/(mol K), -5.07 kJ/mol (RB) and 21.19 kJ/mol 98.34 J/(mol K), -7.84 kJ/mol (MMB) at 295.15 K, respectively. The quite high adsorption capacity and high adsorption rate of MMB will provide an important advantage for using of this material in basic dye solution

  7. Hydro-mechanical behaviour of bentonite pellet mixtures

    Science.gov (United States)

    Hoffmann, C.; Alonso, E. E.; Romero, E.

    Granular mixtures made of high-density pellets of bentonite are being evaluated as an alternative buffer material for waste isolation. Ease of handling is an often-mentioned advantage. The paper described the experimental program performed to characterize the hydro-mechanical behaviour of compacted pellet’s mixtures used in the engineered barrier (EB) experiment. The material tested in the laboratory was based in the pellet’s mixtures actually used for the emplacement of the EB in situ experiment. Grain size distribution was adjusted to a maximum pellet size compatible with the specimen’s dimensions. Dry densities of statically compacted specimens varied in most of the cases in the range: 1.3-1.5 Mg/m 3. Pellets had a very high dry density, close to 2 Mg/m 3. The outstanding characteristic of these mixtures is its discontinuous porosity. Pore sizes of the compacted pellets vary around 10 nm. However the inter-pellet size of the pores is four to five orders of magnitude higher. This double porosity and the highly expansive nature of the pellets controlled all the hydraulic and mechanical properties of the mixture. Tests performed include infiltration tests using different water injection rates and mechanisms of water transfer (in liquid and vapour phases), suction controlled oedometer tests and swelling pressure tests. The interpretation of some of the tests performed required backanalysis procedures using a hydro-mechanical (HM) computer code. Material response was studied within the framework of the elastoplastic constitutive model proposed by Alonso et al. [Alonso, E.E., Gens, A., Josa, A., 1990. A constitutive model for partially saturated soils. Géotechnique 40 (3), 405-430] (Barcelona Basic Model, BBM). Parameters for the model were identified and also a set of hydraulic laws necessary to perform coupled HM analysis.

  8. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  9. USW area analogs

    OpenAIRE

    Everett, Keith R.

    2005-01-01

    The purpose of this project is to investigate the feasibility of and methodology for the development of a set of environmental analogs of operational Undersea Warfare (USW) areas within fleet training areas. It is primarily a discussion of the identification of parameters that characterize the tactical USW environment, prioritization of these parameters, identification of existing databases that contain these parameters and an outline of the processes required to extract the desired data fro...

  10. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  11. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  12. Near Field sorption Data Bases for Compacted MX-80 Bentonite for Performance Assessment of a High-Level Radioactive Waste Repository in Opalinus Clay Host Rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.; Baeyens, B

    2003-08-01

    Bentonites of various types and compacted forms are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Nagra is currently considering an Opalinus clay (OPA) formation in the Zuercher Weinland as a potential location for a high-level radioactive waste repository. A compacted MX-80 bentonite is foreseen as a potential backfill material. Performance assessment studies will be performed for this site and one of the requirements for such an assessment are sorption data bases (SDB) for the bentonite near-field. The purpose of this report is to describe the procedures used to develop the SDB. One of the pre-requisites for developing a SDB is a water chemistry for the compacted bentonite porewater. For a number of reasons mentioned in the report, and discussed in more detail elsewhere, this is not a straightforward task. There are considerable uncertainties associated with the major ion concentrations and in particular with the system pH and Eh. The MX-80 SDB was developed for a reference bentonite porewater (pH = 7.25) which was calculated using the reference OPA porewater. In addition, two further SDBs are presented for porewaters calculated at pH values of 6.9 and 7.9 corresponding to lower and upper bound values calculated for the range of groundwater compositions anticipated for the OPA host rock. 'In house' sorption isotherm data were measured for Cs(I), Ni(II), Eu(III), Th(IV), Se(IV) and 1(-1) on the 'as received' MX-80 material equilibrated with a simulated porewater composition. Complementary 'in house' sorption edge and isotherm measurements on conditioned Na/Ca montmorillonites were also available for many of these radionuclides. These data formed the core of the SDB. Nevertheless, some of the required sorption data still had to be obtained from the open literature. An important part of this report is concerned with describing selection procedures and the modifications

  13. Near Field sorption Data Bases for Compacted MX-80 Bentonite for Performance Assessment of a High-Level Radioactive Waste Repository in Opalinus Clay Host Rock

    International Nuclear Information System (INIS)

    Bentonites of various types and compacted forms are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Nagra is currently considering an Opalinus clay (OPA) formation in the Zuercher Weinland as a potential location for a high-level radioactive waste repository. A compacted MX-80 bentonite is foreseen as a potential backfill material. Performance assessment studies will be performed for this site and one of the requirements for such an assessment are sorption data bases (SDB) for the bentonite near-field. The purpose of this report is to describe the procedures used to develop the SDB. One of the pre-requisites for developing a SDB is a water chemistry for the compacted bentonite porewater. For a number of reasons mentioned in the report, and discussed in more detail elsewhere, this is not a straightforward task. There are considerable uncertainties associated with the major ion concentrations and in particular with the system pH and Eh. The MX-80 SDB was developed for a reference bentonite porewater (pH = 7.25) which was calculated using the reference OPA porewater. In addition, two further SDBs are presented for porewaters calculated at pH values of 6.9 and 7.9 corresponding to lower and upper bound values calculated for the range of groundwater compositions anticipated for the OPA host rock. 'In house' sorption isotherm data were measured for Cs(I), Ni(II), Eu(III), Th(IV), Se(IV) and 1(-1) on the 'as received' MX-80 material equilibrated with a simulated porewater composition. Complementary 'in house' sorption edge and isotherm measurements on conditioned Na/Ca montmorillonites were also available for many of these radionuclides. These data formed the core of the SDB. Nevertheless, some of the required sorption data still had to be obtained from the open literature. An important part of this report is concerned with describing selection procedures and the modifications applied to the chosen values so

  14. The Age of Analog Networks

    OpenAIRE

    Mattiussi, Claudio; Swiss Federal Institute of Technology in Lausanne (EPFL); Marbach, Daniel; Swiss Federal Institute of Technology in Lausanne (EPFL); Dürr, Peter; Swiss Federal Institute of Technology in Lausanne (EPFL); Floreano, Dario; Swiss Federal Institute of Technology in Lausanne (EPFL)

    2008-01-01

    A large class of systems of biological and technological relevance can be described as analog networks, that is, collections of dynamical devices interconnected by links of varying strength. Some examples of analog networks are genetic regulatory networks, metabolic networks, neural networks, analog electronic circuits, and control systems. Analog networks are typically complex systems which include nonlinear feedback loops and possess temporal dynamics at different timescales. When tackled b...

  15. Scientific Opinion on the safety evaluation of the active substance iron (II modified bentonite as oxygen absorber for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2012-10-01

    Full Text Available

    This scientific opinion of EFSA deals with the safety evaluation of the active substance iron (II modified bentonite (FCM Substance No 1003 intended to be incorporated in monolayer or multilayer packages or in sachets for absorbing oxygen from the food environment. All starting substances of the oxygen absorber have been evaluated and approved for use as additives in plastic food contact materials or as food additives. From a toxicological point of view, migration of iron (incorporated and aluminium (naturally present ions from bentonite is of interest. Iron can be estimated to migrate up to 4.5 mg/kg acidic food, which is well below the SML value of 48 mg/kg food set in Regulation EU No 10/2011 based on the PMTDI of 0.8 mg/kg bw established by the Joint FAO/WHO Expert Committee on Food Additives in 1983 and the SCF in 1990. The iron (II modified bentonite is intended and expected to be present in the final article as non-nanoform. However, the formation of nanoparticles due to exfoliation cannot be excluded if the substance is incorporated in unpolar polymers with compatibilisers or without such additives in polar polymers. Aluminium can be estimated to migrate up to 0.3 mg /kg acidic food. This value corresponds to 3.5 % of the TWI set in 2008 by the EFSA AFC Panel. Therefore, under the intended conditions of use, the oxygen absorber formulation was considered toxicologically acceptable. The CEF Panel concluded that the substance iron (II modified bentonite does not raise a safety concern for the consumer when used as oxygen absorber incorporated without compatibilisers in polyolefin layers of food packages at levels up to 15% w/w. The substance equally does not raise a safety concern when it is used in sachets, placed in the headspace of the packaging, that prevent the physical release of their contents into the food and are not in direct contact with liquid foods, exudates, or foods with external aqueous liquid phase.

  16. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    Science.gov (United States)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  17. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  18. Composition and diagenetic processes of sandstone and tuff deposits of the Cenomanian Cardiel Formation, Cardiel Lake area, province of Santa Cruz

    OpenAIRE

    R.R. Andreis; P.E. Zalba; M.E. Morosi

    2007-01-01

    The Cardiel Formation (Cenomanian), around 200 m in thickness in the studied area, includes different types of volcaniclastic deposits, mainly represented by fine tuffs and massive bentonites, and subordinated epiclastics such as lithic sandstones of yellowish-brown, dusky yellow, or light olive hues, siltstones and claystones. Reddened paleosols with some small axial roots and weak prismatic structures appear on top of siltstones, tuffs and bentonites. Tufites and tuffs contain the same neov...

  19. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  20. Biochar, Bentonite and Zeolite Supplemented Feeding of Layer Chickens Alters Intestinal Microbiota and Reduces Campylobacter Load

    Science.gov (United States)

    Prasai, Tanka P.; Walsh, Kerry B.; Bhattarai, Surya P.; Midmore, David J.; Van, Thi T. H.; Moore, Robert J.; Stanley, Dragana

    2016-01-01

    A range of feed supplements, including antibiotics, have been commonly used in poultry production to improve health and productivity. Alternative methods are needed to suppress pathogen loads and maintain productivity. As an alternative to antibiotics use, we investigated the ability of biochar, bentonite and zeolite as separate 4% feed additives, to selectively remove pathogens without reducing microbial richness and diversity in the gut. Neither biochar, bentonite nor zeolite made any significant alterations to the overall richness and diversity of intestinal bacterial community. However, reduction of some bacterial species, including some potential pathogens was detected. The microbiota of bentonite fed animals were lacking all members of the order Campylobacterales. Specifically, the following operational taxonomic units (OTUs) were absent: an OTU 100% identical to Campylobacter jejuni; an OTU 99% identical to Helicobacter pullorum; multiple Gallibacterium anatis (>97%) related OTUs; Bacteroides dorei (99%) and Clostridium aldenense (95%) related OTUs. Biochar and zeolite treatments had similar but milder effects compared to bentonite. Zeolite amended feed was also associated with significant reduction in the phylum Proteobacteria. All three additives showed potential for the control of major poultry zoonotic pathogens. PMID:27116607

  1. The Increasing of Bentonite Quality as a Composite of B-3 Waste CeramicSolidification Process

    International Nuclear Information System (INIS)

    The ceramic composite from local material of bentonite Nanggulan wascarried out. The material were grinded, sieved to get through 100 mesh,rinsed with aquadest, dried at the temperature of 60 oC and putted in theexecutor, then were calcinate (physical activated) at 300 oC and chemicalactivated with NaCl 1.0 to 5.0 M. The activated bentonite were contacted withlead concentration of 150 to 500 ppm and then were dried at 60 oC.Bentonite-Pb which obtained was made to pellet by adding weak cullet withcomposition variation of bentonite-Pb to cullet = 20:80, 25:75, 30:70, 35:65,and 40:60%, and ignited on furnace at the the temperature of 850 oC, 900oC, and 1000 oC for composite ceramic production. The chemical compositionand mineral test for original local material and ceramic composite ofoptimization result were done by using AAS and X-ray diffraction, whereas theleaching test, pressure and porosity test were done only for ceramiccomposite. The experiment results were reported in this paper. (author)

  2. Methylene blue adsorption of GMZ bentonite and the effect of hyper-alkaline solution erosion

    International Nuclear Information System (INIS)

    The method of combining the halo method with the spectrometer method, was used to study on the Methylene blue (MB) adsorption of Gaomiaozi (GMZ) bentonite, which had been eroded by hyper-alkaline solution, to investigate the mechanism of the effect of hyper-alkaline pore water on the buffer/backfill properties of GMZ bentonite. Results present, method employed in this article is brief and feasible, and high accuracy; The total specific surface area calculated by the test of MB adsorption is more accurate than the method of ethylene glycol monomethyl ether (EGIVIE). The MB adsorption of samples, which had been eroded by hyper-alkaline solution, decreases with the increase of the concentration of hyper-alkaline solution, and the change law agrees with the variation of the mass percentage of montmorillonite in bentonite tested by X- Ray diffraction (XRD). Therefore, the erosion of hyper-alkaline pore water might dissolve montmorillonite, which is the effective composition of bentonite, and destroy the tetrahedron- octahedron-tetrahedron (T-O-T) structure of montmorillonite, then lead to the decrease of cation exchange capability and the specific surface area of montmorillonite, and the the macroscopic expressions are the decrease of MB adsorption, the swelling potential and the increase of permeability. (authors)

  3. Gas migration mechanism of saturated highly-compacted bentonite and its modeling

    International Nuclear Information System (INIS)

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore the gas migration tests are conducted in this study to investigate the mechanism of gas migration. On the basis of the experimental facts obtained through the gas migration tests, possible gas migration mechanism is proposed. A simplified method for calculating gas pressure at large breakthrough, which is defined as a sudden and sharp increase in gas flow rate out of the specimen is also proposed. (author)

  4. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite.

    Science.gov (United States)

    Koumanova, Bogdana; Peeva-Antova, P

    2002-03-29

    The adsorption of p-chlorophenol (p-CP) from aqueous solutions on bentonite and perlite was studied. These materials are available in large quantities in Bulgaria. Model solutions of various concentrations (1-50 mgdm(-3)) were shaken with certain amounts of adsorbent to determine the adsorption capacity of p-CP on bentonite and perlite as well. The influence of several individual variables (initial adsorbate concentration, adsorbent mass) on the rate of uptake of the studied compound on the adsorbent was determined by carrying out experiments at different contact times using the batch adsorber vessel designed according to the standard tank configuration. Rapid adsorption was observed 20-30 min after the beginning for every experiment. After that, the concentration of p-CP in the liquid phase remained constant. The adsorption equilibrium of p-CP on bentonite and perlite was described by the Langmuir and the Freundlich models. A higher adsorption capacity was observed for bentonite (10.63 mgg(-1)) compared to that for perlite (5.84 mgg(-1)).

  5. Study on GMZ bentonite-sand mixture by undrained triaxial tests

    Directory of Open Access Journals (Sweden)

    Sun Wen-jing

    2016-01-01

    Full Text Available It is particularly necessary to study the deformation, strength and the changes of pore water pressure of bentonite-based buffer/backfill materials under the undrained condition. A series of isotropic compression tests and triaxial shear tests under undrained conditions were conducted on the compacted saturated/unsaturated GMZ bentonite-sand mixtures with dry mass ratio of bentonite/sand of 30:70. During the tests, the images of the sample were collected by photographic equipment and subsequently were cropped, binarized and centroids marked by image processing technique. Based on identification of the variation of the position of marked centroids, the deformation of the sample can be determined automatically in real-time. Finally, the hydro-mechanical behaviour of saturated and unsaturated bentonite-sand mixtures under the undrained condition can be obtained. From results of triaxial shear tests on unsaturated samples under constant water content, inflated volumetric deformation transforms to contractive volumetric deformation due to the increase of the confining pressure and lateral expansion deformation are observed due to the increase in the shearing stress. Moreover, the net mean stress affects the initial stiffness, undrained shear strength and deformation of the sample during the undrained shear tests.

  6. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon

    Directory of Open Access Journals (Sweden)

    Khaled Okiel

    2011-06-01

    Full Text Available Emulsified oil in waste water constitutes is a severe problem in the different treatment stages before disposed off in a manner that does not violate environmental criteria. One commonly used technique for remediation of petroleum contaminated water is adsorption. The main objective of this study is to examine the removal of oil from oil–water emulsions by adsorption on bentonite, powdered activated carbon (PAC and deposited carbon (DC. The results gave evidence of the ability of the adsorbents to adsorb oil and that the adsorptive property of the three adsorbents (bentonite, PAC, and DC has been influenced by different factors. The effects of contact time, the weight of adsorbents and the concentration of adsorbate on the oil adsorption have been studied. Oil removal percentages increase with increasing contact time and the weight of adsorbents, and decrease with increasing the concentration of adsorbate. Equilibrium studies show that the Freunlich isotherm was the best fit isotherm for oil removal by bentonite, PAC, and DC. The data show higher adsorptive capacities by DC and bentonite compared to the PAC.

  7. Adsorptive Removal of Reactive Black 5 from Wastewater Using Bentonite Clay: Isotherms, Kinetics and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Amin

    2015-11-01

    Full Text Available The studies of the kinetics and isotherms adsorption of the Reactive Black 5 (RB5 onto bentonite clay were explored in a batch study in a laboratory. The maximum RB5 adsorption conditions of bentonite clay were optimized such as shaking speed (100 rpm, temperature (323 K, pH (10, contact time (40 min, initial dye concentration (170 mg·L−1, and particle size (177 µm. The adsorbent surface was characterized using Fourier Transform Infrared Spectroscopy spectroscopy. The mechanisms and characteristic parameters of the adsorption process were analyzed using two parameter isotherm models which revealed the following order (based on the coefficient of determination: Harkin-Jura (0.9989 > Freundlich (0.9986 and Halsey (0.9986 > Langmuir (0.9915 > Temkin (0.9818 > Dubinin–Radushkevich (0.9678. This result suggests the heterogeneous nature of bentonite clay. Moreover, the adsorption process was chemisorption in nature because it follows the pseudo-second order reaction model with R2 value of 0.9998, 0.9933 and 0.9891 at 25, 75 and 100 mg·L−1 RB5 dye in the solution, respectively. Moreover, based on the values of standard enthalpy, Gibbs free energy change, and entropy, bentonite clay showed dual nature of exothermic and endothermic, spontaneous and non-spontaneous as well as increased and decreased randomness at solid–liquid interface at 303–313 K and 313–323 K temperature, respectively.

  8. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    Science.gov (United States)

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  9. Modelling gas migration in compacted bentonite: GAMBIT Club Phase 2. Final report

    International Nuclear Information System (INIS)

    This report describes the second phase of a programme of work to develop a computational model of gas migration through highly compacted bentonite. Experimental data that have appeared since the earlier report are reviewed for the additional information they might provide on the mechanism of gas migration in bentonite. Experiments carried out by Horseman and Harrigton (British Geological Survey) continued to provide the main data sets used in model evaluation. The earlier work (POSIVA Report 98-08) had resulted in a preliminary model of gas migration whose main features are gas invasion by microcrack propagation, and dilation of the pathways formed with increasing gas pressure. New work was carried out to further explore the capabilities of this model. In addition, a feature was added to the model to simulate gas pathway creation by water displacement rather than crack propagation. The development of a new alternative gas migration model is described. This is based on a volume-averaged representation of gas migration rather than on a description of flow in discrete pathways. Evaluation of this alternative model showed that it can produce similar agreement with experimental results to the other models examined. The implications of flow geometry, confining conditions and flow boundary conditions on gas migration behaviour in bentonite are reviewed. Proposals are made for the development of the new model into a tool for simulating gas migration through a bentonite buffer around a waste canister, and for possible enhancements to the model that might remove some of its currently perceived deficiencies. (orig.)

  10. Hydraulic properties of dune sand–bentonite mixtures of insulation barriers for hazardous waste facilities

    Directory of Open Access Journals (Sweden)

    M.K. Gueddouda

    2016-08-01

    Full Text Available This paper presents a study on the valorization of local materials such as desert dune sand obtained from Laghouat region in the South Algeria and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste facilities. In practice, an economical mixture satisfying the hydraulic requirements is generally concerned. First, in order to get an adequate dune sand–bentonite mixture compacted to the optimum Proctor condition, an investigation on saturated hydraulic behavior is carried out in this study for different mixtures. Using oedometer test (indirect measurement, the adequate mixture of 85% dune sand and 15% bentonite satisfies the conditions of saturated hydraulic conductivity (k  3 MPa. This technique is conducted based on the exploitation of the water retention curve in order to establish the relationships between hydraulic conductivity, degree of saturation, and suction. It shows that the hydraulic conductivity increases with the degree of saturation and decreases with the suction. However, the hydraulic conductivity has a constant value for suctions larger than 20 MPa. The selected dune sand–bentonite mixture satisfies the regulation requirements and hence constitutes a good local and economical material for the conception of barrier base liners.

  11. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3)

    International Nuclear Information System (INIS)

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to assess quantitatively permeability of bentonite altered by hyper alkaline and nitrate. Modeling is progressed based on experimental results. The following results are obtained. 1) Consolidation test was carried out in 3 types of bentonite and 30 % sand mixture in which cation exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  12. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. 2

    International Nuclear Information System (INIS)

    Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Several experimental studies have been carried out in this study in order to assess quantitatively water conductivity of bentonite which is altered by hyper alkaline and nitrate. Modeling for previous results is carried out and several requirements to be defined are proposed. The conclusion of this study is summarized as below. Secondary minerals of bentonite alteration due to hyper alkaline with nitrate: 1) CSH and CAH were observed corresponding to solving montmorillonite in AWN solution. 2) Na2O Al2O3 1.68SiO2 generated from 90 days in batch experiment and it was observed in 360 days. Assessment of swelling and water conductivity changing by hyper alkaline with nitrate: 1) Little changing of water conductivity of bentonite was observed by saturated Ca(OH)2 solution and hyper alkaline solution. The conductivity significantly increased by penetrating sodium nitrate solution. 2) Water conductivity of ion exchanged bentonite by hyper alkaline solution significantly increased. It increased more by penetrating AWN solution. Modeling of tuff alteration by hyper alkaline solution: 1) Flow through test is proposed since soluble velocity to hyper alkaline solution should be defined. (author)

  13. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van; Žunić, M.; Milutinović-Nikolić, A.; Nastasović, A.; Vuković, Z.; Lončarević, D.; Vuković, I.; Jovanović, D.

    2013-01-01

    The aim of this study was to obtain enhanced textural properties of macroporous crosslinked copolymer poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) by synthesizing nanocomposites with acid-modified bentonite. Nanocomposites were obtained by introducing various amounts of acid-modifie

  14. 40 CFR 436.220 - Applicability; description of the bentonite subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the bentonite subcategory. 436.220 Section 436.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY...

  15. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite.

    Science.gov (United States)

    Angelidaki, I; Petersen, S P; Ahring, B K

    1990-07-01

    The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaptation of the digestors, very rapid degradation of oil was observed and more than 80% of the oil was degraded within a few hours after daily feeding. In batch experiments, glyceride trioleate was found to be inhibitory to thermophilic anaerobic digestion when the concentrations were higher than 2.0 g/l. However, addition of bentonite (a clay mineral) at concentrations of 0.15% and 0.45% was found to partly overcome this inhibition. Addition of calcium chloride in concentration of 3 mM (0.033% w/v) showed a similar positive effect on the utilization of oil, but the effect was lower than with bentonite. PMID:1366749

  16. Gas transport in the bentonite barrier of AGP and their interfaces

    International Nuclear Information System (INIS)

    The research of gas transport processes through the barriers is of great relevance in the assessment of the behaviour of the repository. The main objective of this study is to determine the properties of gas transport in saturated bentonite samples and the interfaces between them. (Author)

  17. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    Science.gov (United States)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  18. Simulation of Water Percolation in a FEBEX Bentonite Block using TOUGH2 Program

    International Nuclear Information System (INIS)

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs

  19. Removal of Chromium from Waste Water of Tanning Industry Using Bentonite

    International Nuclear Information System (INIS)

    Tanning industry is considered as one of the oldest industries in the world, which produces solid and liquid wastes, where the Chromium-containing liquid wastes are considered to be as the main liquid pollutant to the environment. In this research, a new method is applied to remove the chromium from the industrial water wastes, which are produced by tanning industry using the Aleppo Bentonite.The experiments on laboratory- prepared samples and collected samples from some tanning factories in Damascus have proved that chromium removal from tanning waste water is very effective for solution of 85-98 %. Moreover, the optimal conditions for the treatment process of tanning waste water by Aleppo Bentonite have determined and found to be (pH=4, Bentonite concentration = 20 g l-1 when chromium concentration is 0.8 g l-1 , solution temperature = 30 degree centigrade, and Bentonite particle size < 90 μm). However, the proposed method can be considered to be an environmental solution for the treatment of tanning industrial wastes in Syria. (author)

  20. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    International Nuclear Information System (INIS)

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  1. Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite-ash-mudstone sequence using K-Ar and 40Ar/39Ar isotopes

    Science.gov (United States)

    Warr, L. N.; Hofmann, H.; van der Pluijm, B. A.

    2016-03-01

    Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid-rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete ~13-17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.

  2. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    Science.gov (United States)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  3. Study on the Surface-Physicochemical-Property Changing of Bentonite by Adapting a New Soil Stabilizer

    Science.gov (United States)

    Huang, Wei; Xiang, Wei; Lang, Linzhi; Cui, Deshan

    2015-04-01

    Surface-physicochemical-property of clays has been proved to have direct influence on its mechanic behavior. Specific surface area (SSA) is one of the most important factors for surface-physicochemical-property assessment. The smaller SSA tends higher strength (shear strength, unconfined compressive strength and tensile strength) under different water contents of soil. In this paper, a new soil stabilizer (Tung oil-based sulfonated) is developed and applied to improve the properties of Ca-bentonite. The differences of specific surface area, fractal dimension and micro geometric morphology between raw Ca-bentonite samples and modified ones are investigated based on the data acquired from water vapor, nitrogen adsorption experiments and SEM experiments. Results show that the SSA including external SSA and total SSA of treated samples decrease largely and apparently when compared to that of the raw samples. Furthermore, the higher volume ratio between soil stabilizer and water, the more decrease in SSA. Compared to the ones of raw Ca-bentonite, the external SSA and total SSA of the modified Ca-bentonite samples decrease by 48.5% and 25.2%, respectively, when the volume ratio was 1:50. This result implies that the connection of montmorillonite particles becomes more tightly after the treatment by the soil stabilizer. In addition, an obvious decreasing trend is found in fractal dimension by analysis of water vapor adsorption isotherms. This finding indicates that the pore surface tends to be smoother by the chemical action among particles bonds, more condensable in aggregates and shorter space between the interlayer of montmorillonite. SEM results display that the new soil stabilizer developed a quantity of lamellar aggregates but did not change the structure of montmorillonite. Based on all mentioned above, the results of fractal dimension analysis are verified. Consequently, this study shows that the new soil stabilizer (Tung oil-based sulfonated) has obvious effects

  4. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier

    Science.gov (United States)

    Fernández, A. M. a.; Baeyens, B.; Bradbury, M.; Rivas, P.

    Compacted bentonites are being considered in many countries as a backfill material in high-level radioactive waste disposal concepts. A knowledge of the porewater chemistry in the clay barrier is essential since the porewater composition influences the release and transport of the radionuclides. However, quantification of the water chemistry in compacted bentonite under repository conditions is difficult. The methodology followed to obtain the porewater composition of the FEBEX bentonite is described in this paper. It is based on the characterisation of the solid phase, determination of the physico-chemical properties of the montmorillonite component and geochemical modelling. The FEBEX bentonite has a high cation exchange capacity (∼1 eq/kg), high surface area (∼725 m 2/g total surface area and 62 m 2/g external surface area) and accessory minerals such as carbonates, sulphates, pyrite, etc.; and organic matter. The chloride inventory in the FEBEX bentonite is ∼22 mmol/kg. The montmorillonite, together with the other mineral phases present, will determine the composition of the porewater. However, in order to calculate a unique aqueous chemistry, two further quantities are required, the chloride concentration and the pH. Water vapour adsoption/desorption isotherms, together with c-lattice spacing determinations, were used to identify the different states and location of water. Most of the water in the as received bentonite resides in the interlayer space. However, the measurements indicate that about 0.053 l/kg may be regarded as free water, implying a chloride concentration of 0.42 M. The pH of the system is fixed by equilibrium with the atmosphere ( PCO 2=10 -3.5 bar) and saturation with the carbonate phases present. The porewater calculated to be in equilibrium with the as received FEBEX bentonite powder is a Na-Ca-Mg chloride type with a high ionic strength, 0.66 M, and a pH of ∼7.4. Likewise, in order to calculate the porewater composition of

  5. Experimental studies on the interactions between anaerobically corroding iron and bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Liisa (Geological Survey of Finland, Espoo (Finland)); Karnland, Ola; Olsson, Siv (Clay Technology AB, Lund (Sweden)); Rance, Andy; Smart, Nick (Serco Assurance, Hook (United Kingdom))

    2008-06-15

    Anaerobic corrosion experiments using compacted bentonite, carbon steel and cast iron coupons, and carbon steel wires, were performed at temperatures of 30 deg C and 50 deg C. Dry Wyoming bentonite MX-80 powder was mixed with pieces of wire, and then compacted in stainless steel holders. The samples were evacuated and placed in test cells under nitrogen. For the coupon tests, the coupons were placed in the upper and lower part of cells filled with compacted bentonite. The compacted bentonite samples were immersed in deaerated artificial ground water containing sodium chloride and sodium carbonate at pH 10.4. The experiments with coupons ran for 356 days at 50 deg C and for 900 days at 30 deg C and the experiments with wires ran for 829 days at 30 deg C and for 911 days at 50 deg C. Corrosion products on the surface of wires and coupons were examined using Raman spectroscopy, scanning electron microscopy and electron microprobe analysis. A mixture of magnetite, hematite and goethite was found on the surface of coupons. Only magnetite was observed on the surface of wires. The bentonite was examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron microprobe analysis (EPMA), Raman spectroscopy, Moessbauer transmission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) and selected area electron diffraction. In addition, cation exchange capacity and exchangeable cations as well as total chemical composition were determined. Hydraulic conductivity and swelling pressure were also measured. In the coupon tests, increased iron contents could be observed in a thin contact zone. Sodium from the synthetic ground water had substituted for a fraction of the calcium in the interlayer positions of montmorillonite, which could be seen also in the total contents of these elements. A small increase in hydraulic conductivity was observed. In the wire tests a high

  6. Experimental studies on the interactions between anaerobically corroding iron and bentonite

    International Nuclear Information System (INIS)

    Anaerobic corrosion experiments using compacted bentonite, carbon steel and cast iron coupons, and carbon steel wires, were performed at temperatures of 30 deg C and 50 deg C. Dry Wyoming bentonite MX-80 powder was mixed with pieces of wire, and then compacted in stainless steel holders. The samples were evacuated and placed in test cells under nitrogen. For the coupon tests, the coupons were placed in the upper and lower part of cells filled with compacted bentonite. The compacted bentonite samples were immersed in deaerated artificial ground water containing sodium chloride and sodium carbonate at pH 10.4. The experiments with coupons ran for 356 days at 50 deg C and for 900 days at 30 deg C and the experiments with wires ran for 829 days at 30 deg C and for 911 days at 50 deg C. Corrosion products on the surface of wires and coupons were examined using Raman spectroscopy, scanning electron microscopy and electron microprobe analysis. A mixture of magnetite, hematite and goethite was found on the surface of coupons. Only magnetite was observed on the surface of wires. The bentonite was examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron microprobe analysis (EPMA), Raman spectroscopy, Moessbauer transmission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) and selected area electron diffraction. In addition, cation exchange capacity and exchangeable cations as well as total chemical composition were determined. Hydraulic conductivity and swelling pressure were also measured. In the coupon tests, increased iron contents could be observed in a thin contact zone. Sodium from the synthetic ground water had substituted for a fraction of the calcium in the interlayer positions of montmorillonite, which could be seen also in the total contents of these elements. A small increase in hydraulic conductivity was observed. In the wire tests a high

  7. Physical and chemical clay binder characteristics from various locality and their influence on some technological properties of bentonite mouling mixtures

    Directory of Open Access Journals (Sweden)

    I. Vasková

    2010-01-01

    Full Text Available The aim of this paper is to explore the complex physical – chemical characteristics of bentonite of slovak provenance and to compare with non-slovak, which is considered as European highest quality standard in foundry and to compare from the point of foundry application. These characteristics of raw material have direct relationship with technological properties of bentonite sand mixtures and mainly with the quality of castings poured into these mixtures. To compare technological properties of bentonite forming mixtures with use of various clay types point of view application in foundry industry.

  8. Analogical acts as conceptual strategies in science, engineering and the humanities

    Science.gov (United States)

    Winkler, V. M.

    1981-01-01

    The composing models which operate by means of analogy are identified. The importance of analogical acts in the prewriting stage of the composing process is discussed. The relations between analogical acts and concept formation are explored. A basic correspondence between the analogical thinking employed in successful learning and analogical thinking as a composing strategy is discussed. Teaching analogical acts as conceptual strategies for exploring problems and generating the form and content of discourse is presented in support of the contention that writing is a unique mode of learning.

  9. Pemanfaatan Bentonit Dan Karbon Sebagai Support Katalis NiO-MgO Pada Hidrogenasi Gliserol

    Directory of Open Access Journals (Sweden)

    Ferlyna Sari

    2014-09-01

    Full Text Available Semakin meningkatnya produksi biodiesel maka gliserol kasar yang merupakan produk samping dari reaksi transesterifikasi dari minyak nabati juga semakin besar. Salah satu cara yang dikembangkan untuk memanfaatkan gliserol adalah dengan mengubahnya menjadi propilen glikol (1,2-propanadiol melalui proses hidrogenasi menggunakan katalis heterogen (padat. Dalam penelitian ini digunakan katalis padat NiO-MgO dengan support bentonit dan karbn aktif dalam hidrogenasi gliserol untuk mengetahui pengaruh jumlah katalis, berat promote terhadap bentonit atau karbon, suhu, serta waktu reaksi terhadap besarnya konversi gliserol dan yield propilen glikol yang dihasilkan. Penelitian ini terdiri dari dua tahapan, yaitu preparasi katalis dan pembuatan propilen glikol. Preparasi katalis dilakukan melalui proses impregnasi dan kalsinasi. Kemudian dilakukan proses pembuatan propilen glikol di dalam reaktor batch berpengaduk dengan berat katalis, berat promoter terhadap bentonit dan karbon aktif, suhu, serta waktu reaksi sesuai variabel. Produk hasil proses hidrogenasi dipisahkan dari katalis, lalu menganalisa kadar gliserol sisa dengan menggunakan metode titrimetri dan propilen glikol terbentuk menggunakan analisa gas chromatography (GC. Konversi gliserol terbaik pada proses hidrogenasi gliserol menjadi propylene glycol dengan katalis NiO-MgO/Bentonit dan NiO-MgO/Karbon masing-masing sebesar 50,419% dan 52,882% pada kondisi suhu 200°C, tekanan 200 psi dengan 20% berat promote terhadap katalis dan 7%berat katalis selama 2 jam. Yield propylene glycol terbaik dengan menggunakan katalis NiO-MgO/Bentonit sebesar 8,1848% pada kondisi suhu 220°C dengan 10% berat promote terhadap katalis dan 7%berat katalis selama 3 jam, sedangkan pada katalis NiO-MgO/Karbon diperoleh yield terbaik sebesar 7,2607% pada kondisi suhu 200°C dengan 5% berat promote terhadap katalis dan 7%berat katalis selama 3 jam.

  10. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Institute of Scientific and Technical Information of China (English)

    Simona Saba; Jean-Dominique Barnichon; Yu-Jun Cui; Anh Minh Tang; Pierre Delage

    2014-01-01

    Pre-compacted elements (disks, torus) of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (mCT). Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure hetero-geneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of mCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by uniaxial

  11. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.

    2010-05-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm{sup 3} with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO{sub 4} {sup 2}- type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  12. Cost effects of Cu powder and bentonite on the disposal costs of an HLW repository in

    International Nuclear Information System (INIS)

    This paper provides the cost effect results of Cu powder and bentonite on the disposal cost for an HLW repository in Korea. In the cost analysis for both of these cost drivers, the price of Cu powder and the bentonite can affect the canister cost and the bentonite cost of the disposal holes as well as backfilling cost of the tunnels, respectively. Finally, we found that the unit cost of Cu and bentonite was the dominant cost drivers for the surface and underground facilities of an HLW repository. Therefore, an optimization of a canister and the layout of a disposal hole and disposal tunnels are essential to decrease the direct disposal cost of spent fuels. The disposal costs can be largely divided into two parts such as a surface facilities' cost and an underground facilities' cost. According to the KRS' cost analysis, the encapsulation material as well as the buffering and backfilling cost were the significant costs. Especially, a canister's cost was approximately estimated to be more than one fourth of the overall disposal costs. So it can be estimated that the unit cost of Cu powder is an important cost diver. Because the outer shell of the canister was made of Cu powder by a cold spray coating method. In addition, the unit cost of bentonite can also affect the buffering and the backfilling costs of the disposal holes and the disposal tunnels. But, these material costs will be highly expensive and unstable due to the modernization of the developing countries. So the studies for a material cost should be continued to identify the actual cost of an HLW repository

  13. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  14. Physical and chemical stability of the bentonite buffer

    International Nuclear Information System (INIS)

    A literature study was made on previous work on clay erosion and on the fundamental processes that govern the stability of clay gels. Mechanical erosion has been studied earlier and models devised to estimate the tendency to erode. We have used a different approach that we deem is fundamentally more correct. Chemical erosion processes have not been found to be studied previously and we have approached the problem by applying simple but fundamental mass balances and transport processes to the problem. The physical and chemical processes that govern the repulsive and cohesive forces in clay are well understood in principle but cannot yet be applied quantitatively to predict the gel/sol behaviour of the bentonite clay. It was necessary to rely directly on laboratory measurements for information on swelling and gel/sol properties. The backfill bentonite clay acts as a Bingham fluid over a wide range of clay density. To mobilise the clay a shear stress larger than the Bingham yield stress must be applied to the gel. The Bingham yield stress has been measured to be larger than 1 Pa (N/m2) although it cannot be ruled out that lower values can be found under different experimental conditions than those reported. Shear stresses exerted by the water flowing in the fractures that intersect the deposition holes with the clay backfill have been estimated for a wide range of fracture transmissivities, apertures and hydraulic gradients that could exist under repository conditions. This includes the extremely high gradients that could exist during some periods during an ice age. For fracture transmissivities ranging from 10-9 to 10-6 m2/s, fracture apertures from 0.1 to 2 mm and the hydraulic gradients from 0.01 to 1 mH2O/m, the largest local shear stress found in this range was about 0.1 Pa. To investigate a 'what if' situation where the shear stress exceeds the yield stress simple models were devised. They were used to assess the rate of erosion by the groundwater. In one model

  15. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, Sirpa; Kiviranta, Leena (BandTech Oy (Finland)); Carlsson, Torbjoern; Muurinen, Arto (VTT (Finland)); Svensson, Daniel (Svensk Kaernbraenslehantering AB (Sweden)); Sasamoto, Hiroshi; Yui, Mikatzu (JAEA (Japan)); Wersin, Paul; Rosch, Dominic (Gruner Ltd (Switzerland))

    2010-05-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two iron-bentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5-1.6 g/cm3) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B+Tech in airtight steel vessels filled with N{sub 2} and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO{sub 3}, or 0.05 M Na{sub 2}SO{sub 4}. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H{sub 2}, most possibly caused by corrosion of the cast iron, and CO{sub 2}, mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia

  16. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two iron-bentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5-1.6 g/cm3) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B+Tech in airtight steel vessels filled with N2 and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO3, or 0.05 M Na2SO4. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H2, most possibly caused by corrosion of the cast iron, and CO2, mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia, reducing conditions, a pH of around eight

  17. Correlation of upper Llandovery–lower Wenlock bentonites in the När (Gotland, Sweden and Ventspils (Latvia drill cores: role of volcanic ash clouds and shelf sea currents in determining areal distribution of bentonite

    Directory of Open Access Journals (Sweden)

    Tarmo Kiipli

    2012-11-01

    Full Text Available Study of volcanic ash beds using biostratigraphy, sanidine composition and immobile elements within bentonites has manifested several well-established and some provisional correlations between Gotland and East Baltic sections. Energy dispersive X-ray fluorescence microanalysis of phenocrysts has revealed bentonites containing Mg-rich or Fe-rich biotite. Sanidine phenocrysts contain, in addition to a major Na and K component, often a few per cent of Ca and Ba. On the basis of new correlations the mapping of the distribution areas of bentonites has been extended from the East Baltic to Gotland. The bentonite distribution can be separated into two parts in North Latvia–South Estonia, indicating the existence of shelf sea currents in the Baltic Silurian Basin.

  18. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  19. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  20. Evaluation on application of bentonite slurry grout for excavation disturbed zone in order to recover low permeable rock masses

    International Nuclear Information System (INIS)

    The purpose of this paper is to improve the technologies of the grouting for excavation disturbed zone in order to recover low permeable rock masses for research and development on geological disposal of high-level radioactive waste. In this study, experiments of grouting injection test are performed on bentonite slurry mixes with saline and ethanol in the laboratory. From the results of the tests, low viscous and high density bentonite slurry is found to be able to inject the concentrated bentonite slurry and to recover low permeable in the fine fractured aperture. In conclusion this bentonite slurry is able to be expected the grouting effects for excavation disturbed zone in order to recover low permeable rock masses. (author)

  1. The use of bentonite and zeolite as caesium-binders in feed to reindeer - experiences from Sweden

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    1990-09-01

    Full Text Available Feeding is used in Sweden to lower radiocaesium levels in reindeer before slaughter. In feeds used for this purpose, bentonite is added as a caesium-binder to prevent absorption of radiocaesium, since the animals usually have som access to contaminated pasture in their corrals. Bentonite is efficient as a caesium-binder but increases water consumption and excretion of urine. Zeolite has been used as a caesium-binder to reindeer in a few experiments. The effect, however, has been inferior to that of bentonite. It seems that zeolite, mixed in feeds, loose some of its effect as the feed is stored. The need of a caesium-binder is demonstrated by results from practical feeding of reindeer where radiocaesium levels have not decreased as expected when feed without bentonite has been used.

  2. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  3. Lifetime of Bentonites study: hydrothermal stability of saponites; Estudio de longevidad en bentonitas: estabilidad hidrotermal de saponitas

    Energy Technology Data Exchange (ETDEWEB)

    Leguey, S.; Cuevas, J.; Garralon, A. [Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Quimica Agricola, Geologia y Geoquimica, Madrid (Spain)

    1996-10-01

    The report studies the lifetime of bentonite and the hydrothermal stability of saponites. The testing comprised determination of physical and chemical properties of clays, the stability of the mineral porosity, lifetime and the wall of clay.

  4. Characterisation of bentonites from Kutch, India and Milos, Greece - some candidate tunnel back-fill materials?

    International Nuclear Information System (INIS)

    During the past decades comprehensive investigations have been made on bentonite clays in order to find optimal components of the multi-barrier system of repositories for radioactive waste. The present study gives a mineralogical characterisation of some selected bentonites, in order to supply some of the necessary background data on the bentonites for evaluating their potential as tunnel back-fill materials. Two bentonites from the island of Milos, Greece (Milos BF 04 and BF 08), and two bentonites from Kutch, India (Kutch BF 04 and BF 08) were analysed for their grain size distribution, cation exchange properties and chemical composition. The mineralogical composition was determined by X-ray diffraction analysis and evaluated quantitatively by use of the Siroquant software. Both the bulk bentonite and the 63 μm. The bentonite is distinguished by a high content of dolomite and calcite, which make up almost 25% of the bulk sample. The major accessory minerals are K-feldspars and plagioclase, whereas the content of sulphur-bearing minerals is very low (0.06% total S). Smectite makes up around 60% of the bulk sample, which has a CEC value of 73 meq/100 g. The pool of interlayer cations has a composition Mg>Ca>>Na>>K. The X-ray diffraction characteristics and the high potassium content (1.03% K2O) of the Na>Mg>>K. The 2O) which indicates that also this smectite may be interstratified with a few percent illitic layers. Based on the charge distribution the smectite should be classified as montmorillonite but in this case Fe predominates over Mg in the octahedral sheet. The structural formula suggests that this smectite has the lowest total layer charge of the smectites examined. Kutch BF 04 contains essentially no particles >63 μm. The bentonite has a high content of titanium and iron-rich accessory minerals, such as anatase, magnetite, hematite and goethite. Other accessory minerals of significance are feldspars and quartz, whereas the content of sulphur

  5. Analysis of the effect of vibrations on the bentonite buffer in the canister hole

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Martin (AaF- Berg och Maetteknik, Stockholm (Sweden)); Hakami, Hossein; Ekneligoda, Thushan (Itasca Geomekanik AB, Solna (Sweden))

    2009-09-15

    During the construction of a final repository for spent nuclear fuel in crystalline rock, blasting activities in certain deposition tunnels will occur at the same time as the deposition of canisters containing the waste is going on in another adjacent access tunnel. In fact, the deposition consists of several stages after the drilling of the deposition hole. The most vulnerable stage from a vibration point of view is when the bentonite buffer is placed in the deposition hole but the canister has not been placed yet. During this stage, a hollow column of bentonite blocks remains free to vibrate inside the deposition hole. The goal of this study was to investigate the displacement of the bentonite blocks when exposed to the highest vibration level that can be expected during the drill and blast operations. In order to investigate this, a three dimensional model in 3DEC, capable of capturing the dynamic behaviour of the bentonite buffer was set up. To define the vibration levels, which serve as input data for the 3DEC model, an extensive analysis of the recorded vibrations from the TASQ - tunnel was carried out. For this purpose, an upper expected vibration limit was defined. This was done outgoing from the fact that the planned charging for the construction of the geological repository will lie in the interval 2 to 4 kg. Furthermore, at the first stage for this study, it was decided that the vibration should be conservatively evaluated for 30 m distance. Using these data, it was concluded that the maximum vibration level that can be expected will be approximately 60 mm/s. After simplifying the vibration signal, a sinusoidal wave with the amplitude 60 mm/s was applied at the bottom of the column and it was assumed that the vibrations only affect the bentonite buffer in one direction (horizontal direction). From this simulation, it was concluded that hardly any displacements occurred. However, when applying the same sinusoidal wave both in the horizontal and the

  6. Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Nord, Sven [Ifoe Ceramics AB, Bromoella (Sweden ); Pusch, Roland [Geodevelopment AB, Lund (Sweden); Sjoeblom, Rolf [AaF-Energikonsult AB, Stockholm (Sweden)

    2000-09-01

    The purpose of the present work is to test, on a scale of 1:4, the feasibility of manufacturing bentonite blocks by isostatic compaction for application as a buffer material in a repository for spent nuclear fuel. In order for the tests to be sensitive to any weaknesses of the method, the blocks were shaped as beakers. The scope included the following: 1. Preparation of powder: a. mixing of the bentonite and addition of water in predetermined amounts, b. sieving to remove any lumps generated; 2. Isostatic compaction: a. establishment of a separate laboratory for the handling of bentonite powder (weighing, mixing, filling, sampling and machining), b. development and design of equipment and procedures for compaction of bentonite to beaker-shaped specimens, c. compaction process operation, d. visual inspection; 3. Sampling and characterisation: a. extraction of samples from the blocks made, b. determination of water content, c. determination of density, d. determination of strain at maximum stress by means of bending tests, e. determination of tensile strength by means of bending tests, f. determination of geometries of the blocks prepared; 4. Post-treatment by means of machining: a. machining of blocks made, b. visual inspection; 5. Evaluation. The work went very smoothly. No significant obstacles or unexpected events were encountered. The conclusions are as follows: The conclusions drawn in this report from work on the (linear)scale of one to four are very relevant to the full scale. Mixing of bentonite powder as well as moistening can be carried out on a pilot scale with a good homogeneity and with maintained good quality of the press powder. The compaction of bentonite can be carried out in a similar manner to the present operation at Ifoe Ceramics AB. This implies a very efficient handling as well as a very efficient use of the time in the press which may account for a large proportion of the total cost. The blocks could readily be produced to reproducible

  7. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, S.; Kiviranta, L. [B and Tech Oy, Helsinki (Finland); Carlsson, T.; Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Svensson, D. [Svensk Kaernbraenslehantering AB (SKB), Stockholm (Sweden); Sasamoto, Hiroshi; Yui, Mikatzu [Japan Atomic Energy Agency (JAEA) (Japan); Wersin, P.; Rosch, D. [Gruner Ltd, Basel (Switzerland)

    2011-12-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two ironbentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5- 1.6 g/cm{sup 3}) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B and Tech in airtight steel vessels filled with N{sub 2} and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO{sub 3}, or 0.05 M Na{sub 2}SO{sub 4}. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H{sub 2}, most possibly caused by corrosion of the cast iron, and CO{sub 2}, mainly as a result of carbonate dissolution. The eight years old external solution exhibited

  8. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated steel cylinder. Since steel is unstable in wet bentonite, it will corrode and the corrosion products will interact with the surrounding bentonite in ways that are not fully understood. Such interaction may seriously impair the bentonite's functioning as a buffer material, e.g. by lowering its CEC or decreasing its swelling capacity. This report presents results from two ironbentonite experiments carried out under quite different conditions at VTT (Finland) and JAEA (Japan). Both studies focused on long-term iron-bentonite interactions under anaerobic conditions. The study at VTT comprised eight years long experiments focused on diffusive based interactions between solid cast-iron and compacted MX-80 bentonite (dry density 1.5- 1.6 g/cm3) in contact with an aqueous 0.5 M NaCl solution. The study at JAEA comprised ten years long batch experiments, each involving a mixture of metallic iron powder (25 g), an industrially refined Na bentonite, Kunipia F, which contains more than 99% montmorillonite (25 g), and an aqueous solution (250 mL). Samples were sent to B and Tech in airtight steel vessels filled with N2 and subsequently analyzed at various laboratories in Finland and Sweden. The JAEA samples differed with regard to the initial solution chemistry, which was either distilled water, 0.3 M NaCl, 0.6 M NaCl, 0.1 M NaHCO3, or 0.05 M Na2SO4. The analyses of the MX-80 bentonite samples were carried out on samples containing a cast iron cylinder and also on corresponding background samples with no cast iron. In addition, the external solution and gas phase in contact with the bentonite were analyzed. Briefly, the gas contained H2, most possibly caused by corrosion of the cast iron, and CO2, mainly as a result of carbonate dissolution. The eight years old external solution exhibited, inter alia, reducing conditions, a pH of around

  9. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  10. Analog and digital signal processing

    Science.gov (United States)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  11. Physical and chemical stability of the bentonite buffer

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu; Neretnieks, Ivars [Chemical Engineering and Technology, Royal I nstitute of Technology, Stockholm (Sweden)

    2007-12-15

    A literature study was made on previous work on clay erosion and on the fundamental processes that govern the stability of clay gels. Mechanical erosion has been studied earlier and models devised to estimate the tendency to erode. We have used a different approach that we deem is fundamentally more correct. Chemical erosion processes have not been found to be studied previously and we have approached the problem by applying simple but fundamental mass balances and transport processes to the problem. The physical and chemical processes that govern the repulsive and cohesive forces in clay are well understood in principle but cannot yet be applied quantitatively to predict the gel/sol behaviour of the bentonite clay. It was necessary to rely directly on laboratory measurements for information on swelling and gel/sol properties. The backfill bentonite clay acts as a Bingham fluid over a wide range of clay density. To mobilise the clay a shear stress larger than the Bingham yield stress must be applied to the gel. The Bingham yield stress has been measured to be larger than 1 Pa (N/m{sup 2}) although it cannot be ruled out that lower values can be found under different experimental conditions than those reported. Shear stresses exerted by the water flowing in the fractures that intersect the deposition holes with the clay backfill have been estimated for a wide range of fracture transmissivities, apertures and hydraulic gradients that could exist under repository conditions. This includes the extremely high gradients that could exist during some periods during an ice age. For fracture transmissivities ranging from 10{sup -9} to 10{sup -6} m{sup 2}/s, fracture apertures from 0.1 to 2 mm and the hydraulic gradients from 0.01 to 1 mH{sub 2}O/m, the largest local shear stress found in this range was about 0.1 Pa. To investigate a 'what if' situation where the shear stress exceeds the yield stress simple models were devised. They were used to assess the rate of

  12. FET comparator detects analog signal levels without loading analog device

    Science.gov (United States)

    Wallace, H. L.

    1966-01-01

    FET comparator circuit detects discrete analog computer output levels without excessively loading the output amplifier of the computer. An FET common source amplifier is coupled by a differential amplifier to a bistable transistor flip-flop. This circuit provides a digital output for analog voltages above or below a predetermined level.

  13. [Analogies and analogy research in technical biology and bionics].

    Science.gov (United States)

    Nachtigall, Werner

    2010-01-01

    The procedural approaches of Technical Biology and Bionics are characterized, and analogy research is identified as their common basis. The actual creative aspect in bionical research lies in recognizing and exploiting technically oriented analogies underlying a specific biological prototype to indicate a specific technical application.

  14. Attenuation of elastic waves in bentonite and monitoring of radioactive waste repositories

    Science.gov (United States)

    Biryukov, A.; Tisato, N.; Grasselli, G.

    2016-04-01

    Deep geological repositories, isolated from the geosphere by an engineered bentonite barrier, are currently considered the safest solution for high-level radioactive waste (HLRW) disposal. As the physical conditions and properties of the bentonite barrier are anticipated to change with time, seismic tomography was suggested as a viable technique to monitor the physical state and integrity of the barrier and to timely detect any unforeseen failure. To do so, the seismic monitoring system needs to be optimized, and this can be achieved by conducting numerical simulations of wave propagation in the repository geometry. Previous studies treated bentonite as an elastic medium, whereas recent experimental investigations indicate its pronounced viscoelastic behaviour. The aims of this contribution are (i) to numerically estimate the effective attenuation of bentonite as a function of temperature T and water content Wc, so that synthetic data can accurately reproduce experimental traces and (ii) assess the feasibility and limitation of the HLRW repository monitoring by simulating the propagation of sonic waves in a realistic repository geometry. A finite difference method was utilized to simulate the wave propagation in experimental and repository setups. First, the input of the viscoelastic model was varied to achieve a match between experimental and numerical traces. The routine was repeated for several values of Wc and T, so that quality factors Qp(Wc, T) and Qs(Wc, T) were obtained. Then, the full-scale monitoring procedure was simulated for six scenarios, representing the evolution of bentonite's physical state. The estimated Qp and Qs exhibited a minimum at Wc = 20 per cent and higher sensitivity to Wc, rather than T, suggesting that pronounced inelasticity of the clay has to be taken into account in geophysical modelling and analysis. The repository-model traces confirm that active seismic monitoring is, in principle, capable of depicting physical changes in the

  15. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    Science.gov (United States)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  16. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  17. Analogy as a means of theoretical adoption of pedagogical disciplines

    Directory of Open Access Journals (Sweden)

    Solovcova Irina A.

    2006-01-01

    Full Text Available The paper considers an application of analogy in the initial-teacher training as a tool of approaching pedagogical disciplines. The author proposes a classification of pedagogical analogies which provides choices of the most efficient model for a specific didactic situation. The article clarifies the model of the theoretical approach to pedagogical disciplines through active use of analogy, which contributes to a higher efficiency in a teacher and student interaction. The model consists of three stages: training (the stage of acquiring analogy model, the analytical stage (acquisition of pedagogical concepts, phenomena and systems through the application of analogy, and the stage of self-realization (the application of analogy method in students’ scientific-research activities considering external and internal didactic conditions which transform analogy from a teaching method into a tool for the acquisition of pedagogical disciplines. The author demonstrates that the application of analogy has a positive effect not only on the acquisition of pedagogical knowledge (especially methodic and the development of heuristic skills in students, but also on motivation for the study of pedagogical disciplines (cognitive aspect and professional pedagogical activity (formation of an individual-pedagogical attitude. .

  18. Bentonite deposits as a natural analogue to long-term barriers in a final repository of nuclear waste

    International Nuclear Information System (INIS)

    The geology of bentonite occurrences in Almeria (Spain) and Wyoming (USA) were studied in order to find suitable natural analogue to the longterm mechanical behaviour of the bentonite barrier in the final nuclear waste disposal. The study is based on literature review over both occurrence areas and on fieldwork observations from Almeria, Spain. The deposit areas differ from each other by age, deposition environment, exchangeable cation chemistry, alteration condition, occurrence and deformational features. One of the most important deformational feature in Almeria bentonites was the existence of Tertiary (Middle and Upper Miocene, 6-15.5 Ma old) bentonite intrusion inside/over younger Quaternary (Pleistocene Superior, 0.01-0.72 Ma old) sediments. This was a result of the confining pressure of overlying volcanic rocks and sediments and the high plasticity behaviour of bentonites. According to this observation, the pressure effect in final nuclear waste repositories requires further investigations. The bentonites in Wyoming have survived weathering and shearing without losing their expandability or other properties typical of smectite-rich materials. (orig.)

  19. Summary of a GAMBIT Club Workshop on Gas Migration in Bentonite. A Report produced for the GAMBIT Club

    International Nuclear Information System (INIS)

    In order to review the status of understanding of gas migration in bentonite, and particularly the experimental data that provides the basis for such understanding as exists, the GAMBIT Club organised a workshop of invited participants that was held in Madrid during 29-30 October 2003. (The GAMBIT Club is a consortium of radioactive waste management agencies: SKB, ANDRA, Enresa, JNC, Nagra, and Posiva.) The motivation for the workshop was the difficulty found in developing models of gas migration in bentonite because of lack of detailed characterisation of its mechanism and controlling parameters. This report provides a summary of the presentations made at the workshop and of the discussions that took place. Copies of the slides presented are provided in the appendix. The titles of the presentations are: Overview of Current Status of Experimental Knowledge and Understanding of Gas migration in Bentonite (William Rodwell); Summary of GAMBIT Club Modelling of Gas Migration in Compacted Bentonite (William Rodwell); A Capillarity/advection Model for Gas Break-through Pressures (Marolo Alfaro, Jim Graham); Recent Experiments by JNC on Gas Migration in Bentonite (Kenji Tanai, Mikihiko Yamamoto); Gas Flow in Clays: Experimental Data Leading to Two-phase and Preferential-path Modelling (Eduardo Alonso); Gas Movement in MX80 Bentonite under Constant Volume Conditions (Jon Harrington, Steve Horseman); Some Practical Observations on Gas Flow in Clays and Clay-rich Rocks (Steve Horseman, Jon Harrington); Early Large-scale Experiments on Gas Break-through Pressures in Clay based Materials (Harald Hoekmark)

  20. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid

    Institute of Scientific and Technical Information of China (English)

    LU Hai-jun; LUAN Mao-tian; ZHANG Jin-li; YU Yong-xian

    2008-01-01

    The adsorption capacity of landfill liners containing granular activated carbon (GAC), or bentonite activated by acid, for Cr(VI) was investigated by batch testing. The results show that both GAC and activated bentonite could be used as sorptive amendments for trapping Cr(VI) in landfill liners. The Cr(VI) sorption to GAC and activated bentonite is much greater than Cr(VI) sorption to natural clay. The adsorption capacity of Cr(VI) onto all the soils increases with increasing temperature; adsorption ca-pacity is also significantly influenced by soil-solid concentration. As the soil-solid concentration increases the adsorption capacity first decreases logarithmically, but then stabilizes when the soil-solid concentration exceeds a critical value (e.g. 400 g/L). Perme-ability tests were conducted in the laboratory. The results indicate that the hydraulic conductivity of landfill liners containing GAC or activated bentonite can meet the engineering requirement of 1 nm/s. One-dimensional transport simulations for Cr(VI) were performed to evaluate the effect of GAC and activated bentonite on landfill liners. The results of the simulations indicate that land-fill liners containing GAC, or activated bentonite, significantly retard the transport of Cr(VI) relative to a conventional clay liner.

  1. Summary of a GAMBIT Club Workshop on Gas Migration in Bentonite. A Report produced for the GAMBIT Club

    Energy Technology Data Exchange (ETDEWEB)

    Rodwell, W.R. [Serco Assurance, Risley (GB)] (ed.)

    2005-11-15

    In order to review the status of understanding of gas migration in bentonite, and particularly the experimental data that provides the basis for such understanding as exists, the GAMBIT Club organised a workshop of invited participants that was held in Madrid during 29-30 October 2003. (The GAMBIT Club is a consortium of radioactive waste management agencies: SKB, ANDRA, Enresa, JNC, Nagra, and Posiva.) The motivation for the workshop was the difficulty found in developing models of gas migration in bentonite because of lack of detailed characterisation of its mechanism and controlling parameters. This report provides a summary of the presentations made at the workshop and of the discussions that took place. Copies of the slides presented are provided in the appendix. The titles of the presentations are: Overview of Current Status of Experimental Knowledge and Understanding of Gas migration in Bentonite (William Rodwell); Summary of GAMBIT Club Modelling of Gas Migration in Compacted Bentonite (William Rodwell); A Capillarity/advection Model for Gas Break-through Pressures (Marolo Alfaro, Jim Graham); Recent Experiments by JNC on Gas Migration in Bentonite (Kenji Tanai, Mikihiko Yamamoto); Gas Flow in Clays: Experimental Data Leading to Two-phase and Preferential-path Modelling (Eduardo Alonso); Gas Movement in MX80 Bentonite under Constant Volume Conditions (Jon Harrington, Steve Horseman); Some Practical Observations on Gas Flow in Clays and Clay-rich Rocks (Steve Horseman, Jon Harrington); Early Large-scale Experiments on Gas Break-through Pressures in Clay based Materials (Harald Hoekmark)

  2. A new program on digitizing analog seismograms

    Science.gov (United States)

    Wang, Maofa; Jiang, Qigang; Liu, Qingjie; Huang, Meng

    2016-08-01

    Historical seismograms contain a great variety of useful information which can be used in the study of earthquakes. It is necessary for researchers to digitize analog records and extract the information just as modern computing analysis requires. Firstly, an algorithm based on color scene filed method is presented in order to digitize analog seismograms. Secondly, an interactive software program using C# has been developed to digitize seismogram traces from raster files quickly and accurately. The program can deal with gray-scale images stored in a suitable file format and it offers two different methods: manual digitization and automatic digitization. The test result of the program shows that the methods presented in this paper can lead to good performance.

  3. Tl-208, Pb-212, Bi-212, Ra-226 and Ac-228 adsorption onto polyhydroxyethylmethacrylate-bentonite composite

    Energy Technology Data Exchange (ETDEWEB)

    Akkaya, Recep [Cumhuriyet University, Chemistry Department, 58140 Sivas (Turkey); Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr [Cumhuriyet University, Chemistry Department, 58140 Sivas (Turkey)

    2012-02-01

    The adsorption of naturally occurring radionuclides ({sup 208}Tl{sup +}, {sup 212}Pb{sup 2+}, {sup 226}Ra{sup 2+}, {sup 212}Bi{sup 3+} and {sup 228}Ac{sup 3+}) onto Polyhydroxyethylmethacrylate-bentonite (PHEMA-B) composite was investigated. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. The adsorption isotherms were L type of Giles classification proving that PHEMA-B had a high affinity adsorbent for the studied radionuclides. The Langmuir adsorption capacities (X{sub L}) were in the order of {sup 226}Ra (2.8 MBq kg{sup -1})>{sup 212}Bi (0.4 MBq kg{sup -1})>{sup 212}Pb (0.3 MBq kg{sup -1})>{sup 228}Ac and {sup 208}Tl (0.2 MBq kg{sup -1}). The adsorption process was physical via complex formation after proton exchanger for which the adsorption energies obtained from DR model was evidence. The enthalpy and entropy changes were positive and the negative free enthalpy change was proof for the spontaneity of adsorption. The reusability tests for PHEMA-B for five uses demonstrated that the adsorbent could be reused after complete recovery of the loaded radionuclide ions by 1 M HCl. The chemical structure of the composite did not change after the reuses and storage foregoing.

  4. Tl-208, Pb-212, Bi-212, Ra-226 and Ac-228 adsorption onto polyhydroxyethylmethacrylate-bentonite composite

    Science.gov (United States)

    Akkaya, Recep; Ulusoy, Ulvi

    2012-02-01

    The adsorption of naturally occurring radionuclides ( 208Tl +, 212Pb 2+, 226Ra 2+, 212Bi 3+ and 228Ac 3+) onto Polyhydroxyethylmethacrylate-bentonite (PHEMA-B) composite was investigated. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. The adsorption isotherms were L type of Giles classification proving that PHEMA-B had a high affinity adsorbent for the studied radionuclides. The Langmuir adsorption capacities ( XL) were in the order of 226Ra (2.8 MBq kg -1)> 212Bi (0.4 MBq kg -1)> 212Pb (0.3 MBq kg -1)> 228Ac and 208Tl (0.2 MBq kg -1). The adsorption process was physical via complex formation after proton exchanger for which the adsorption energies obtained from DR model was evidence. The enthalpy and entropy changes were positive and the negative free enthalpy change was proof for the spontaneity of adsorption. The reusability tests for PHEMA-B for five uses demonstrated that the adsorbent could be reused after complete recovery of the loaded radionuclide ions by 1 M HCl. The chemical structure of the composite did not change after the reuses and storage foregoing.

  5. Tl-208, Pb-212, Bi-212, Ra-226 and Ac-228 adsorption onto polyhydroxyethylmethacrylate-bentonite composite

    International Nuclear Information System (INIS)

    The adsorption of naturally occurring radionuclides (208Tl+, 212Pb2+, 226Ra2+, 212Bi3+ and 228Ac3+) onto Polyhydroxyethylmethacrylate-bentonite (PHEMA-B) composite was investigated. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. The adsorption isotherms were L type of Giles classification proving that PHEMA-B had a high affinity adsorbent for the studied radionuclides. The Langmuir adsorption capacities (XL) were in the order of 226Ra (2.8 MBq kg-1)>212Bi (0.4 MBq kg-1)>212Pb (0.3 MBq kg-1)>228Ac and 208Tl (0.2 MBq kg-1). The adsorption process was physical via complex formation after proton exchanger for which the adsorption energies obtained from DR model was evidence. The enthalpy and entropy changes were positive and the negative free enthalpy change was proof for the spontaneity of adsorption. The reusability tests for PHEMA-B for five uses demonstrated that the adsorbent could be reused after complete recovery of the loaded radionuclide ions by 1 M HCl. The chemical structure of the composite did not change after the reuses and storage foregoing.

  6. Use of immobile trace elements for the correlation of Telychian bentonites on Saaremaa Island, Estonia, and mapping of volcanic ash clouds

    OpenAIRE

    Kiipli, Tarmo; Orlova, Kiira; Kiipli, Enli; Kallaste, Toivo

    2008-01-01

    Thirty suspected altered volcanic ash (bentonite) samples from the Nässumaa-825 and Orissaare-859 sections were analysed by the X-ray fluorescence method. Twenty of these samples revealed chemical signs of pure volcanogenic material, one was of mixed terrigenous–volcanogenic origin, and nine were classified as terrigenous claystones. Twenty of the bentonites were correlated, with variable confidence, with bentonites from earlier studied sections; one sample represents a formerly unknown erupt...

  7. Natural analog studies: Licensing perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J.W. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This report describes the licensing perspective of the term {open_quotes}natural analog studies{close_quotes} as used in CFR Part 60. It describes the misunderstandings related to its definition which has become evident during discussions at the U.S Nuclear Regulatory Commission meetings and tries to clarify the appropriate applications of natural analog studies to aspects of repository site characterization.

  8. Drawing Analogies in Environmental Education

    Science.gov (United States)

    Affifi, Ramsey

    2014-01-01

    Reconsidering the origin, process, and outcomes of analogy-making suggests practices for environmental educators who strive to disengage humans from the isolating illusions of dichotomizing frameworks. We can view analogies as outcomes of developmental processes within which human subjectivity is but an element, threading our sense of self back…

  9. Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives

    Energy Technology Data Exchange (ETDEWEB)

    Mingyu Hu; Xiaomin Zhu; Fumei Long [Nanchang University, Nanchang (China). College of Civil Engineering

    2009-11-15

    Geopolymers were synthesized by using fly ash as the main starting material, zeolite or bentonite as supplementary materials, and NaOH and CaO together as activator. An orthogonal array testing protocol was used to analyze the influence of the mix proportion on the properties of the geopolymers. The results indicate that the concentration of NaOH solution and the CaO content play an important role on the strength of the materials. Especially, with zeolite as additive, the fly ash-based geopolymer shows the highest strength and the best sulfate resistance. Infrared spectroscopy, X-ray, and SEM-EDX demonstrate that supplementary zeolite may involve the process of geopolymerization to form a stable zeolitic structure and improve the properties of the geopolymer. Bentonite simply acts as a filler to make the geopolymer more compact, but shows no improvement on the compositions and the microstructures of the geopolymer.

  10. Modelling of erosion of bentonite gel by gel/sol flow

    International Nuclear Information System (INIS)

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  11. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting.

    Science.gov (United States)

    Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua

    2014-09-01

    The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. PMID:24928053

  12. Study on the mechanical properties of a HMS-PP nanocomposite with a Brazilian bentonite

    International Nuclear Information System (INIS)

    This work concerns to the study of the mechanical behavior of the nanocomposite HMSPP - Polypropylene High Melt Strength (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), known as 'Chocolate' in concentrations of 5 and 10% by weight, comparison of to one American Clay, cloisite 20A nanocomposite was done. Agent compatibilizer polypropylene-graft, known as maleic anhydride (PP-g-AM) was addict 3% concentration thought technique melt intercalation using a twin-screw extruder and the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The morphology of the nanocomposites was studied by the technique of Scanning Electron Microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). (author)

  13. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  14. Diffusion of hydrogen, hydrogen sulfide and large molecular weight anions in bentonite

    International Nuclear Information System (INIS)

    The diffusivities of HS- and H2 have been determined from profile analysis and steady state transport experiments. The diffusivity of HS- was found to be 9x10-12 and 4x10xsec1 in MX-80 and Erbsloeh bentonite respectively. The results are in fair agreement with the results earlier obtained for Cl- and I-. The H2 diffusivity calculated from steady state transport was found to be surprisingly low (3.6x10-12m2xsec-1). Various heavy anions with molecular weights 290-30x103 were found to migrate through MX-80 bentonite with diffusivities in the range (2,1-0,75)x10-15m2xsec-1. (Author)

  15. Studies on incorporation of exfoliated bentonitic clays in polyurethane foams for increasing flame retardancy

    International Nuclear Information System (INIS)

    In this contribution we report the results of studying the incorporation of exfoliated bentonitic clays into polyurethane foams. A suspension in water of a sodium bentonite from Argentine Patagonia was interchanged with cetyl trimethyl ammonium bromide (CTAB) for 4 h at 80°C, rendering an exfoliated clay, which is nanometric in only one dimension. This nanoclay, when dispersed in the polyurethane, resulted in the same fire retardancy rating (UL-94) than when polyurethane was treated with a commercial nanoclay. Scanning electron microscopy (SEM) at low augmentations of polyurethane samples treated with the synthethized nanoclay (2,5% w/w) showed no differences respect to untreated polyurethane, except for the irregularity of void edges.

  16. Comparative Study of Laterite and Bentonite Based Organoclays: Implications of Hydrophobic Compounds Remediation from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Nafees

    2013-01-01

    Full Text Available Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl and tetradecyl trimethyl ammonium bromide (TDTMA-Br. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well.

  17. Characterization of Brazilian Bentonite Organoclays as sorbents of petroleum-derived fuels

    Directory of Open Access Journals (Sweden)

    Caroline Bertagnolli

    2012-04-01

    Full Text Available This work focused on preparing and characterizing Brazilian bentonite clay through the use of quaternary ammonium salt so as to apply it as a sorbent for petroleum-derived fuels. Bentonite clay was organophilizated by the intercalation of quaternary ammonium salts such as cetyl-pyridinium chloride and benzalkonium chloride. The resulting materials were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, N2 physisorption and infrared spectroscopy techniques. The clay similarity with petroleum-derived fuels, gasoline and diesel oil were defined by sorption and swelling tests. The increase in basal spacing and the appearance of absorption bands related to the CH2 and CH3 groups confirm the efficiency of Brazilian organoclays. Removal percentages between 50 and 60 for benzene, toluene and xylene indicate the potential of organoclay in the remediation of areas contaminated by petroleum-derived fuels.

  18. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions (3) (Summary)

    International Nuclear Information System (INIS)

    This report is the summary of JNC-TJ--8400-2005-002. 1) Circumstance of TRU waste repository shows alkaline condition due to leaching of cementitious materials. The waste containing significant soluble nitrate may changes ground water chemistry to high ion strength. Consolidation test and permeability test are carried out in order to as. exchanged with nitrate. It is noted that permeability of bentonite increased at from 40 to 200 times by cation exchange. 2) Permeability of hyper alkaline solution is almost same to water. Permeability of hyper alkaline solution with nitrates increased corresponding to rising ion strength. 3) The results of batch of column test were simulated. The model can explain clearly the results in short period. This can estimate leaching ratio and secondary minerals. The model can simulate the experimental results by two types of velocity theory on altering bentonite. (author)

  19. One-dimensional contaminant transport model for the design of soil-bentonite slurry walls

    International Nuclear Information System (INIS)

    A user oriented computer model (TRANS1D) was developed for application to the analysis and design of vertical soil-bentonite barriers. TRANS1D is a collection of analytical and numerical solutions to the one dimensional advective-dispersive-reactive (ADR) equation. The primary objective in developing TRANS1D was to enable the designer of a barrier system to evaluate the potential system performance with respect to contaminant transport, without performing difficult and time consuming field or laboratory experiments. Several issues related to model application are discussed, including identification of governing transport processes, specification of boundary conditions, and parameter estimation. Model predictions are compared with the results of laboratory column experiments conducted with soil bentonite barrier material under diffusion-dominated conditions. Good agreement between model calibrations and experimental results was noted, with calibrated diffusion coefficients for organic contaminants consistent with literature values

  20. Bentonite electrical conductivity: a model based on series–parallel transport

    KAUST Repository

    Lima, Ana T.

    2010-01-30

    Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.

  1. A new type of bentonite-based non-woven composite

    Directory of Open Access Journals (Sweden)

    Rosić Branko

    2011-01-01

    Full Text Available Sandwich-like composites based on clays and textiles are extensively applied in various fields, including civil engineering and environmental protection. In this paper, the synthesis of a new type of composite with embedded bentonite particles within a non-woven polyester matrix is presented. The synthesized composite has improved mechanical properties compared to the corresponding non-woven matrix. Although more than two-times thinner, the synthesized composite showed mechanical properties similar to those of a commercial composite chosen for comparison. Sorption test results confirmed that the contribution of the textile component to the sorption of aqueous Cu(II ions by the composite was negligible. The sorption of aqueous Cu(II ions on the synthesized composite was best-fitted using the Langmuir model. The presented study confirmed that the loss of bentonite particles from the composite can be eliminated using the suggested synthesis method.

  2. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence. PMID:27456144

  3. Effects of the structural nature of the anionic additives on the rheological behavior of bentonite suspensions

    International Nuclear Information System (INIS)

    Different experimental measurements (Theology, granulometry, XRD) were carried out in order to study the main properties of bentonite suspensions in presence of anionic additives at different concentrations. These additives are: Sodium Dodecyl Sulfate (SDS) as surfactant, a flexible polymer (Sodium Carboxy Methyl Cellulose, CMC) and a semi-rigid polymer (Xanthan gum). It has been shown that the structural nature of anionic additive influences directly the mixtures viscoelastic and flow behavior. The steric effect of the surfactant modifies the Face-Edge interactions and yields changes of the mixtures rheological behavior at low deformation rates. Polymers act by coating each clay particle and prevent their agglomeration. Therefore, bentonite has no direct effect on the rheological behavior of the mixtures: the additives are responsible for the mechanisms of de-structuration and structure reorganization as well as the mixtures viscous and viscoelastic behavior. (author)

  4. Study of the Properties of Bentonites for their use in Clay Geo synthetic Barriers; Estudio de la propiedades de las bentonitas para su utilizacion en barreras geosinteticas arcillosas

    Energy Technology Data Exchange (ETDEWEB)

    Leiro Lopez, A.; Mateo Sanz, B.; Garcia Cidoncha, H.; Blanco Fernandez, M.

    2014-02-01

    Bentonites used for the production of clay geo synthetic barriers need to meet some properties so that they can be a waterproofing system. among the bentonites used in industry, sodium bentonite has the lowest permeability due to its high water absorption capacity in the inter-laminar space, causing it to swell and form a barrier to water flow. this paper provides the study of the properties of four bentonite to evaluate their quality the study of the properties of four bentonite to evaluate their quality. For this study, the main properties have been tested: water absorption, swelling index, fluid loss, cation exchange capacity and montmorillonite content. In order to optimize the procedure for the characterization of bentonites, correlations between different tests have been done, to identify the most suitable ones. Finally, a compatibility test has been carried out to study the performance of bentonites in water containing a high amount of sales, because in this case, an ion exchange between the interlayer sodium ions of bentonite and cations dissolved in the water can take, resulting in a decrease swell of the bentonite. (Author)

  5. Corrosion monitoring of carbon steel in the bentonite in deep underground

    International Nuclear Information System (INIS)

    In previous study, a corrosion sensor has been developed and its applicability to monitoring of the corrosion behavior of carbon steel overpack has been confirmed. In this study, a simulated overpack was placed with buffer material composed mainly of bentonite in test tunnel of 350 m deep underground constructed at Horonobe underground research laboratory. The corrosion monitoring was performed by AC impedance method using the corrosion sensors embeded in the buffer material. (author)

  6. Adsorption potential of bentonite and attapulgite clays applied for the desalination of sea water

    OpenAIRE

    Nel, Monica; Waanders, Frans B.; Fosso-Kankeu, Elvis

    2014-01-01

    A possible new process for the partial desalination of seawater is to use bentonite clay or attapulgite as an adsorbent. The ion exchange property of these clays, which is a result of the characteristic t-o-t layer structure, enables the use of these materials as adsorbents. This technique has the opportunity to be used as a pre-treatment as current commercial seawater desalination processes are very expensive. The clay was characterized using XRD, XRF and SEM analyses. ...

  7. The Lower Silurian Osmundsberg K-bentonite. Part II: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance

    Science.gov (United States)

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Sun, H.

    1998-01-01

    The Lower Silurian Osmundsberg K-bentonite is a widespread ash bed that occurs throughout Baltoscandia and parts of northern Europe. This paper describes its characteristics at its type locality in the Province of Dalarna, Sweden. It contains mineralogical and chemical characteristics that permit its regional correlation in sections elsewhere in Sweden as well as Norway, Estonia, Denmark and Great Britain. The Baltica as part of the subduction complex associated with the closure of Iapetus.

  8. Study of mechanical properties of films of nanocomposites LLDPE/bentonite

    International Nuclear Information System (INIS)

    Mechanical properties of LLDPE/bentonite clay were determined as a function of clay content (1 and 2% w/w), purification and organophilization. Raw materials were characterized by FTIR and XRD. Nanocomposites were obtained as flat films and characterized by XRD and mechanical properties. Results indicate that best overall mechanical properties were displayed by systems containing purified clay and that they tended to decrease with increasing clay content. Organofilization was effective and only intercalated nanocomposites were obtained. (author)

  9. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of Kd as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental Kd values. The overall error in Kd is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  10. The effect of zeolite,bentonite and sepiolite minerals onheavy metal uptake by sunflower

    OpenAIRE

    N . Esmaeilpour Fard; J. Givi; S. Houshmand

    2015-01-01

    Mining, industrial and agricultural activities can result in considerable soil pollution by heavy metals (HMs). One of the methods to control this pollution is application of adsorbent minerals. The purpose of this study was to compare the effects of adsorbent minerals (bentonite, zeolite and sepiolite) on transfer of some heavy metals (i.e., Pb, Zn and Cd) from soil to tissues of sunflower (Heliantus annuus L.). Treatments included: Non-polluted soil, HM-polluted soil, polluted soil + benton...

  11. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  12. Mixing conditions in application of bentonite grouting to radioactive waste disposal

    International Nuclear Information System (INIS)

    The purpose of this study was to understand the flow properties and permeability of bentonite grout with NaCl added, using laboratory tests, and to clarify the mixing conditions of bentonite as a material. Given that the required permeability of clay grout is 10-9 (m/s), the combination of grout (W/B) becomes 6 or less. The viscosity of the grout was measured, and because the viscosity was higher than the thickest cement milk on dam grouting, it was found that grout with a W/B of less than 10 was difficult to inject into rock joints. We then added NaCl to grout with a W/B is 6, and its viscosity decreased as the amount of NaCl increased. A grout of viscosity able to be injected into rock joints was achieved by adding NaCl in a density higher than 'W:NaCl=40:1'. Next, the permeability of a bentonite suspension with NaCl was examined using the falling head permeability test. Testing the sample 'B:W:NaCl=20:20:1' for 10 days revealed that the initial permeability 10-8 (m/s) decreased to 10-10 - 10-11 (m/s). These results showed that a suspension to inject into rock joints could be made by adding NaCl, and clarified that permeation of groundwater into the suspension causes a decline in permeability. (author)

  13. Hydrothermal alterations of Bentonites in Almeria (Spain); Alteracion hidrotermal de las bentonitas de Almeria

    Energy Technology Data Exchange (ETDEWEB)

    Linares Gonzalez, J.; Barahona Fernandez, E.; Huertas Garcia, F.; Caballero Mesa, E.; Cuadros Ojeda, J.

    1996-12-01

    The use of bentonite as backfilling and sealing material in the high level radioactive waste disposals has been treated in previous studies accomplished by different authors. However, the use of this clayey barrier needs the resolution of different problems so that its efficiency will be enhanced. between those could be cited the study of the actual capacity of sealing the space around the canister and the accommodation to the pressure of the rocky environment; the possible variations in plasticity; the diffusion and reaction processes that can be produced through the barrier by groundwater, the capacity of radionuclides adsorption, etc. These studies, show that the bentonites with high content in smectite fulfill satisfactorily with the physical and chemical conditions to be used as sealing material, but it is known that the smectite can be unstable in diagenetic conditions similar to those are given in a deep repository of radioactive wastes, being transformed into illite. A conclusion of immediate interest is deduced from this last study. The bentonites used as sealing material in radioactive waste repositories must no contain Na as interlayer cation since it is very easily exchangeable by K. It is better to select those smectites with Ca and Mg that detain the entry of K in the interlayer and as a consequence the transformation process of smectite into illite is made more difficult. (Author)

  14. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Alkaram, Uday F.; Mukhlis, Abduljabar A. [Department of Chemistry, College of Education, Ibn Al-Haitham, University of Baghdad, Baghdad (Iraq); Al-Dujaili, Ammar H., E-mail: ahdujaili@yahoo.com [Department of Chemistry, College of Education, Ibn Al-Haitham, University of Baghdad, Baghdad (Iraq)

    2009-09-30

    The natural bentonite (BC) and kaolinite (KC) were modified with two surfactant of hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium bromide (PTMA) to form four kinds of organic-modified clays, i.e., HDTMA-bentonite (BHM), HDTMA-kaolinite (KHM), PTMA-bentonite (KPM) and PTMA-kaolinite (KPM). The modified minerals were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. The surface areas were determined using methylene blue adsorption method. Cation-exchange capacity (CEC) was estimated using an ethylenediamine complex of copper method and the modifier loading was calculated from the total carbon analysis. The ability of raw and organo-modified clays to remove phenol from aqueous solutions has been carried out as a function of contact time, pH and temperatures using a batch technique. The removal of phenol from aqueous solutions by modified clays seems to be more effective than unmodified samples. The adsorption capacity was found to increase with increasing temperature indication that the adsorptions were endothermic. The adsorption of phenol onto these clays was found to be increased by increasing of pH value and the adsorption patterns data are correlated well by Langmuir and Freundlich isotherm models and that the adsorption is physical in nature. The experimental data fitted very well with the pseudo-second-order kinetic model. The thermodynamic study of adsorption process showed that the adsorption of phenol with these six adsorbents was carried out spontaneously, and the process was endothermic in nature.

  15. Effect of gas pressure on the sealing efficiency of compacted bentonite-sand plugs

    Science.gov (United States)

    Liu, J. F.; Davy, C. A.; Talandier, J.; Skoczylas, F.

    2014-12-01

    This research relates to the assessment of the sealing ability of bentonite/sand plugs when swollen in presence of both water and gas pressures, in the context of deep underground radioactive waste storage. Compacted bentonite/sand plugs are placed inside a constant volume cell, and subjected to swelling in presence of both water and gas: swelling kinetics and effective swelling pressure Pswell are identified. Secondly, the gas breakthrough (GB) characteristics of swollen plugs are assessed to determine their ability for gas migration, which has to be minimal for sealing radioactive waste repositories. We show that gas pressure Pg does not affect significantly Pswell until a threshold Pg > 2 MPa. When swelling occurs inside a tube with a smooth (turned) inner surface, continuous GB occurs when Pg is equivalent to the effective Pswell (obtained without gas pressure, at 7.32 MPa ± 0.11). When the plug swells inside a grooved tube, continuous GB does not occur up to Pg ≥ 10.5 MPa: smooth interfaces are a preferential gas migration pathway rather than grooved interfaces, and rather than water-saturated bentonite-sand plugs. With smooth tubes, in presence of Pg ≥ 2 MPa, although Pswell is not affected, gas passes through the sample at significantly lower values than Pswell, due to partial sample saturation. It is concluded that GB pressure is a more accurate indicator of partial sample saturation than swelling pressure Pswell alone.

  16. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    Science.gov (United States)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  17. Heterogeneous photo-assisted Fenton catalytic removal of tetracycline using Fe-Ce pillared bentonite

    Institute of Scientific and Technical Information of China (English)

    张亚平; 贾成光; 彭然; 马丰; 欧光南

    2014-01-01

    In the present work, a novel heterogeneous photo-Fenton catalyst was prepared by iron and cerium pillared bentonite. The catalyst Fe-Ce/bentonite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) methods. It is found that Fe and Ce intercalate into the silicate layers of bentonite successfully. Tetracycline was removed by heterogeneous photo-Fenton reaction using the catalyst in this work. The effects of different reaction systems, hydrogen peroxide concentration, initial pH, catalyst dosage, UV power and introduction of different anions on degradation were investigated in details. The stability of catalyst was investigated through recycling experiment. The results show that removal rate of tetracycline is 98.13%under the conditions of 15 mmol/L H2O2, 0.50 g/L catalyst dosage, initial pH 3.0, 11 W UV lamp power and 60 min reaction time. However, the removal rate decreases after adding some anions. The hydroxyl radical plays an important role in heterogeneous photo-assisted Fenton degradation of tetracycline. The catalyst is very stable and can be recycled many times.

  18. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Directory of Open Access Journals (Sweden)

    Valquíria Campos

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol–1 is thermally more stable than 3,6 ionene (E = 115.52 kJ mol–1 complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  19. Effect of Heating/Hydratation on Compacted Bentonite: Tests in 60-cm Long Cells

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Fernandez, A. M.; Martin, P. L.; Barcala, J. M.; Gomez-Espina, R.; Rivas, P.

    2008-07-01

    The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal have been simulated in a series of tests. Cylindrical cells with an inner length of 60 cm and a diameter of 7 cm were constructed. Inside the cells, blocks of compacted FEBEX bentonite were put one on top of the other. the bottom surface of the material was heated at 100 degree centigree and the top surface was injected with granitic water. the duration of the tests was 0.5, 1,2 and 7,6 years. The temperatures and water intake were measured during the tests and, at the end, the cells were dismounted and the dry density, water content, mineralogy, geochemistry and some hydro-mechanical properties of the clay (permeability, swelling) were measured at different positions. the values obtained are compared among them and to those of the untreated FEBEX bentonite. The study has run over for 10 years in the context of the projects FEBEX I and II and NF-PRO. (Author) 50 refs.

  20. Verification of substitution of bentonites by montmorillonitic clays summary report on Czech montmorillonitic clays

    International Nuclear Information System (INIS)

    Czech bentonites and smectite-rich clays were characterised in order to study if they could be used as buffer and backfill materials instead of non-Czech commercial bentonites. The characterisation work was orgnized by RAWRA (the Czech Radioactive Waste Repository Authority) and the main part of the work was performed in the Czech Republic at Charles University and at Czech Technical University. Parallel and complementary characterisation was conducted in Finland in Sweden. This report was compiled with the aim to summarise the results, and to compare the methods and results gained in different testing laboratories. The characterisation included mineralogical, chemical and geotechnical investigations and experiments on thermal stability and sorption. There were some variations between the results gained in different laboratories. This was mainly due to differences between the testing methods used but also due to heterogeneity of the samples. The Czech bentonite-clays from Rokle and Strance clay deposits contained relatively high amount of swelling minerals and thus can be considered as potential buffer and backfill materials. (orig.)

  1. Effect of sodium nitrate on the diffusion of Cl- and I- in compacted bentonite

    International Nuclear Information System (INIS)

    For safety assessment of TRU waste disposal, the effective diffusion coefficients (De) for Cl- and I- in compacted bentonite (Kunigel V1) were determined as a function of NaNO3 concentration, ranging from 0.01 to 5 mol/dm3. The De values for Cl- and I- increased from approximately 10-12 to 10-11 m2/s with increasing NaNO3 concentration. The capacity factor α, indicative of the effective porosity, also increased with increasing NaNO3 concentration. The maximum α values of 0.21 for Cl- and 0.24 for I- at 5 mol/dm3 NaNO3 concentration were lower than the total porosity of compacted bentonite (0.40), suggesting an anion exclusion effect. Therefore, the increases in the De values were interpreted in terms of the decrease in anion exclusion. The De values for Cl- and I-, normalized by their diffusivities in bulk water, were found to increase in proportion to the α values in a log-log plot, while the De values in porous media generally increase in proportion to the total porosity. This relationship between the log De and the log α is considered to be derived from the lower effective porosities for Cl- and I- than the total porosity in compacted bentonite due to anion exclusion. (author)

  2. Effect of humic acid on the diffusion of ReO4- in GMZ bentonite

    International Nuclear Information System (INIS)

    Humic acid is ubiquitous in soils and water. It affects the migration of radionuclides by complexation or redox reactions. The effect of humic acid on the diffusion of ReO4- in GMZ bentonite was investigated at dry density from 1,300 to 1,800 kg/m3. The effective diffusion coefficient De and rock capacity factor α were measured by through-diffusion method. The De decreased from 5.5 to 0.59 × 10-11 m2/s and α decreased from 0.2 to 0.12 with the dry density increasing from 1,300 to 1,800 kg/m3. The retardation factor R in GMZ bentonite at three dry densities was obtained, which were less than one. Archie's law was used to describe the relationship between accessible porosity εacc and De. An empirical parameter n (n = 2.2 ± 0.2) was obtained for Re diffusion in GMZ bentonite in the presence of humic acid. (author)

  3. Adsorption and solid phase extraction of 8-hydroxyquinoline from aqueous solutions by using natural bentonite

    International Nuclear Information System (INIS)

    The nitrogen-heterocyclic compound 8-hydroxyquinoline (8HQ) is one of the components of coal tar and has a wide variety of uses in industry. Because of its toxicity for aquatic organisms and harmful effects for human health, the removal of 8HQ from aqueous solutions by adsorption onto natural bentonite was investigated in the present work. The experimental results show that the optimum pH value of 2.5 is favourable for the 8HQ adsorption. The experimental data were fitted well with the pseudo-second-order kinetic and Langmuir adsorption isotherm models at all studied temperatures. The maximum adsorption capacity obtained from the Langmuir isotherm model at 20 deg. C was 120.6 mg g-1. The calculated thermodynamic results such as ΔGo (-24.3 kJ mol-1) and ΔHo (-9.56 kJ mol-1) indicate that the adsorption process is spontaneous and exothermic in nature. Solid phase extraction of 8HQ was also performed. The X-ray diffractometry (XRD), Fourier Transform Infrared (FTIR) and thermogravimetric (TG) analyses were carried out in order to confirm the 8HQ adsorption onto bentonite. According to the obtained results, natural bentonite can be a reusable and effective adsorbent for the removal of 8HQ.

  4. Geochemical processes and compacted bentonite FEBEX with a thermohydraulic gradient with a thermohydraulic gradient

    International Nuclear Information System (INIS)

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all sep of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR), based on the concept of multi barrier. According to this concept, the wastes is isolated from biosphere by the interposition of confinement barrier. In the context of an investigation of the near field for a repository of HLW, the FEBEX Project, a set of laboratory test has been designed to give a better understanding of the thermo-hydro-mechanical and geochemical behaviour of the compacted bentonite as a confinement barrier. The object of these work is to analyse the properties of the bentonite and its behaviour under conditions that will be found in a repository. The precipitation of mineral phases, due to local changes in the chemical equilibrium and the hydration itself, can produce changes in the salinity of the interstitial water and in the microstructural organisation of the clay particles. the hydraulic and mechanical properties of the bentonite can be modified by the special conditions of the barrier. (Author)

  5. Compacted bentonite provides long-term solution for roadway stopping at Sondershausen mine. Langzeitfunktionstuechtiger Streckenverschluss aus kompaktiertem Bentonit im Bergwerk Sondershausen

    Energy Technology Data Exchange (ETDEWEB)

    Aland, H.J. (Arbeitsgemeinschaft Proterra, Jena (Germany)); Handke, N. (Thyssen Schachtbau GmbH, Muelheim an der Ruhr (Germany)); Leuschner, J.; Bodenstein, J. (Ercosplan Ingenieurgesellschaft Geotechnik und Bergbau mbH, Erfurt (Germany)); Sitz, P.; Gruner, M. (Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau); Springer, H. (GSES mbH, Sondershausen (Germany)); Maelzer, K. (GVV mbH, Sondershausen (Germany))

    1999-01-01

    The aim of the project was to reinforce the geological barrier between two salt mines by installing a long-term geotechnical barrier in a mineral-salt roadway of circular cross-section. This geotechnical barrier was composed of a preliminary short-term stopping, comprising a concrete pier in the shape of a truncated cone with a pre-fitted membrane, and a permanent stopping for the long term. To create a durable seal and to produce a stopping which would remain stable for many years, highly-compacted, dry-placed cast bentonite blocks were used for the first time. The material quality and geometry of the blocks was controlled through the admixture of specially graded sand. The effectiveness of the seal was determined using three criteria (technical soundness, air circulation around the excavation zone and ability to transfer axial loads) which were based on material characterstics for cast blocks of natural compacted calcium bentonite, namely hydraulic conductivity, swelling pressure, strength and susceptibility to fracturing, which were established in a saliniferous environment. The entire operation, which included the excavation work, the side-wall treatment, the concreting phase and the installation of the individual sealing elements, was monitored and inspected according to a specified quality maintenance programme. (orig.)

  6. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  7. Organophilic treatments of bentonite increase the adsorption of aflatoxin B1 and protect stem cells against cellular damage.

    Science.gov (United States)

    Nones, Janaína; Nones, Jader; Poli, Anicleto; Trentin, Andrea Gonçalves; Riella, Humberto Gracher; Kuhnen, Nivaldo Cabral

    2016-09-01

    Bentonite clays exhibit high adsorptive capacity for contaminants, including aflatoxin B1 (AFB1), a mycotoxin responsible for causing severe toxicity in several species including pigs, poultry and man. Organophilic treatments is known to increase the adsorption capacity of bentonites, and the primary aim of this study was to evaluate the ability of Brazilian bentonite and two organic salts - benzalkonium chloride (BAC) and cetyltrimethylammonium bromide (CTAB) to adsorb AFB1. For this end, 2(2) factorial designs were used in order to analyze if BAC or CTAB was able to increase AFB1 adsorption when submitted in different temperature and concentration. Both BAC and CTAB treatment (at 30°C and 2% of salt concentration) were found to increase the adsorption of AFB1 significantly compared with untreated bentonite. After organophilic bentonite treatments with BAC or CTAB, a vibration of CH stretch (2850 and 2920cm(-1)) were detected. A frequency of the SiO stretch (1020 and 1090cm(-1)) was changed by intercalation of organic cation. Furthermore, the interlayer spacing of bentonite increases to 1.23nm (d001 reflection at 2θ=7.16) and 1.22 (d001 reflection at 2θ=7.22) after the addition of BAC and CTAB, respectively. Another aim of the study was to observe the effects of these two bentonite salts in neural crest stem cell cultures. The two materials that were created by organophilic treatments were not found to be toxic to stem cells. Furthermore the results indicate that the two materials tested may protect the neural crest stem cells against damage caused by AFB1. PMID:27281241

  8. Sorption of metal cations on suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.

    2014-07-01

    Batch sorption experiments have been carried out to understand the interaction of different metal cations such as Am(III), Eu(III), Sr(II), and Cs(I) with bentonite clay at varying pH (1-9). The effects of other experimental parameters such as ionic strength (0.01-1 M (NaClO{sub 4})), clay to metal ion concentration ratio, and the presence of complexing anions such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), ethylenediaminetetraacetic acid (EDTA), and humic acid (HA) on Eu(III) sorption have also been investigated. The sorption of Eu(III) has been found to be invariant with the change in ionic strength suggesting inner-sphere complexation on the bentonite surface. Near quantitative sorption of Eu(III) and Am(III) has been observed in the entire pH range and there is marginal influence of the presence of 1 x 10{sup -4} M of ox and CO{sub 3}{sup 2-} on the sorption profile. However, the presence of 1 x 10{sup -4} M EDTA suppresses the sorption of Eu(III) ion onto bentonite. Desorption studies of Eu(III) loaded onto bentonite using varying concentrations of HClO{sub 4} (0.01-1.0 M) solutions reveal that higher acidity favors the process. The sorption of Eu(III) on bentonite followed the Langmuir isotherm suggesting monolayer sorption process. The data fitting to D-R isotherm suggested that the Eu(III) sorption on bentonite follows ion exchange mechanism. The sorption capacity of bentonite clay was determined to be 3.8(±0.1) x 10{sup -4} moles/g using Langmuir and D-R isotherms. (orig.)

  9. Analog Systems for Gravity Duals

    OpenAIRE

    Hossenfelder, S.

    2014-01-01

    We show that analog gravity systems exist for charged, planar black holes in asymptotic Anti-de Sitter space. These black holes have been employed to describe, via the gauge-gravity duality, strongly coupled condensed matter systems on the boundary of AdS-space. The analog gravity system is a different condensed matter system that, in a suitable limit, describes the same bulk physics as the theory on the AdS boundary. This combination of the gauge-gravity duality and analog gravity therefore ...

  10. Molecular modeling of fentanyl analogs

    Directory of Open Access Journals (Sweden)

    LJILJANA DOSEN-MICOVIC

    2004-11-01

    Full Text Available Fentanyl is a highly potent and clinically widely used narcotic analgesic. A large number of its analogs have been synthesized, some of which (sufentanil and alfentanyl are also in clinical use. Theoretical studies, in recent years, afforded a better understanding of the structure-activity relationships of this class of opiates and allowed insight into the molecular mechanism of the interactions of fentanyl analogs with their receptors. An overview of the current computational techniques for modeling fentanyl analogs, their receptors and ligand-receptor interactions is presented in this paper.

  11. Sulfonimidamide analogs of oncolytic sulfonylureas.

    Science.gov (United States)

    Toth, J E; Grindey, G B; Ehlhardt, W J; Ray, J E; Boder, G B; Bewley, J R; Klingerman, K K; Gates, S B; Rinzel, S M; Schultz, R M; Weir, L C; Worzalla, J F

    1997-03-14

    A series of sulfonimidamide analogs of the oncolytic diarylsulfonylureas was synthesized and evaluated for (1) in vitro cytotoxicity against CEM cells, (2) in vivo antitumor activity against subaxillary implanted 6C3HED lymphosarcoma, and (3) metabolic breakdown to the o-sulfate of p-chloroaniline. The separated enantiomers of one sulfonimidamide analog displayed very different activities in the in vivo screening model. In general, several analogs demonstrated excellent growth inhibitory activity in the 6C3HED model when dosed orally or intraperitoneally. A correlative structure-activity relationship to the oncolytic sulfonylureas was not apparent.

  12. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Horseman, S.T. [British Geological Survey, Nottingham (United Kingdom)

    2003-01-01

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  13. Gas migration in KBS-3 buffer bentonite. Sensitivity of test parameters to experimental boundary conditions

    International Nuclear Information System (INIS)

    In the current Swedish repository design concept, hydrogen gas can be generated inside a waste canister by anaerobic corrosion of the ferrous metal liner. If the gas generation rate exceeds the diffusion rate of gas molecules in the buffer porewater, gas will accumulate in the void-space of a canister until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. Three long tenn gas injection tests have been performed on cylinders of pre-compacted MX80 bentonite. Two of these tests were undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. Gas was injected at a centrally located porous filter installed in the clay before hydration. Arrangements were made for gas to flow to three independently monitored sink-filter arrays mounted around the specimen. Axial and radial total stresses and internal porewater pressures were continuously monitored. Breakthrough and peak gas pressures were substantially larger than the sum of the swelling pressure and the external porewater. The third test was performed. using an apparatus which radially constrains the specimen during gas flow. Observed sensitivity of the breakthrough and peak gas pressures to the test boundary conditions suggests that gas entry must be accompanied by dilation of the bentonite fabric. In other words, there is a tendency for the volume of the specimen to increase during this process. The experimental evidence is consistent with the flow of gas along a relatively small number of crack-like pathways which propagate through the clay as gas pressure increases. Gas entry and breakthrough under constant volume boundary conditions causes a substantial increase in the total stress and the internal porewater pressure. It is possible to determine the point at which gas enters the clay by monitoring changes in these parameters. Localisation of gas flow within multiple pathways results, in nonuniform discharge rates at the sinks. When gas injection

  14. Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture

    Directory of Open Access Journals (Sweden)

    Simona Saba

    2014-04-01

    Full Text Available Pre-compacted elements (disks, torus of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT. Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by

  15. 22nd Workshop on Advances in Analog Circuit Design

    CERN Document Server

    Makinwa, Kofi; Harpe, Pieter

    2014-01-01

    This book is based on the 18 tutorials presented during the 22nd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including frequency reference, power management for systems-on-chip, and smart wireless interfaces.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of frequency reference, power management for systems-on-chip, and smart wireless interfaces.

  16. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  17. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay

    Energy Technology Data Exchange (ETDEWEB)

    Motshekga, Sarah C. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa); Ray, Suprakas S. [DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Onyango, Maurice S., E-mail: OnyangoMS@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa); Momba, Maggie N.B. [Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Pretoria 0001 (South Africa)

    2013-11-15

    Highlights: • A facile, fast and effective method was used for preparing metal–clay composites. • The metal/oxide loaded on clay exhibited narrow size range at nano scale. • The composites deactivate both Gram negative and Gram positive bacteria. • A combination of metal and metal oxide provides the best antibacterial property. -- Abstract: Composites of silver–zinc oxide nanoparticles supported on bentonite clay were synthesized by the microwave-assisted synthesis method for use as an antibacterial material. Silver nitrate was used as the precursor of silver nanoparticles while zinc oxide nanoparticles were commercially sourced. The composites were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and BET surface area measurements. XRD spectra showed peaks of silver confirming the formation of the silver and not of the silver nitrate or any other impurity of the metal. Meanwhile TEM confirmed the formation of silver and zinc oxide nanoparticles on the clay layers, with particle sizes ranging from 9–30 nm and 15–70 nm, respectively. The antibacterial activities of the composites were evaluated against Gram negative Escherichia coli bacteria and Gram positive Enterococcus faecalis bacteria by the disc diffusion method. Whereas both composites of Ag-clay and ZnO-clay showed good antibacterial activity against bacteria, a better antibacterial activity was observed with Ag/ZnO-clay composite. The results therefore reveal that Ag/ZnO-clay composite is a promising bactericide that can be used for deactivating microbes in water.

  18. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites

    International Nuclear Information System (INIS)

    Phosphorus removal is important for the control of eutrophication, and adsorption is an efficient treatment process. In this study, three modified inorganic-bentonites: hydroxy-aluminum pillared bentonite (Al-Bent), hydroxy-iron pillared bentonite (Fe-Bent), and mixed hydroxy-iron-aluminum pillared bentonite (Fe-Al-Bent), were prepared and characterized, and their phosphate adsorption capabilities were evaluated in batch experiments. The results showed a significant increase of interlayer spacing, BET surface area and total pore volume which were all beneficial to phosphate adsorption. Phosphate adsorption capacity followed the order: Al-Bent > Fe-Bent > Fe-Al-Bent. The adsorption rate of phosphate on the adsorbents fits pseudo-second-order kinetic models (R2 = 1.00, 0.99, 1.00, respectively). The Freundlich and Langmuir models both described the adsorption isotherm data well. Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. Finally, phosphate adsorption on the inorganic pillared bentonites significantly raised the pH, indicating an anion/OH- exchange reaction.

  19. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites

    Energy Technology Data Exchange (ETDEWEB)

    Yan Liangguo, E-mail: yanyu-33@163.com [College of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Xu Yuanyuan [College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yu Haiqin [College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Xin Xiaodong [College of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China); Wei Qin [College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Du Bin, E-mail: sdjndb@263.com [College of Resources and Environmental Sciences, University of Jinan, Jinan 250022 (China)

    2010-07-15

    Phosphorus removal is important for the control of eutrophication, and adsorption is an efficient treatment process. In this study, three modified inorganic-bentonites: hydroxy-aluminum pillared bentonite (Al-Bent), hydroxy-iron pillared bentonite (Fe-Bent), and mixed hydroxy-iron-aluminum pillared bentonite (Fe-Al-Bent), were prepared and characterized, and their phosphate adsorption capabilities were evaluated in batch experiments. The results showed a significant increase of interlayer spacing, BET surface area and total pore volume which were all beneficial to phosphate adsorption. Phosphate adsorption capacity followed the order: Al-Bent > Fe-Bent > Fe-Al-Bent. The adsorption rate of phosphate on the adsorbents fits pseudo-second-order kinetic models (R{sup 2} = 1.00, 0.99, 1.00, respectively). The Freundlich and Langmuir models both described the adsorption isotherm data well. Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. Finally, phosphate adsorption on the inorganic pillared bentonites significantly raised the pH, indicating an anion/OH{sup -} exchange reaction.

  20. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  1. Effect of pH, foreign ions and temperature on radionickel sorption onto bentonite from Inner Mongolia, China

    International Nuclear Information System (INIS)

    The development of nuclear power releases large amounts of radionuclides into the natural environment. Herein, the sorption of radionuclide 63Ni on bentonite from Gaomiaozi county (Inner Mongolia, China) at different experimental conditions such as pH, contact time, ionic strength, foreign cations and anions, and temperatures were investigated by using batch technique. The results indicated that the sorption of 63Ni on the bentonite was quickly at first contact time and then increased slowly with increasing contact time. The sorption of 63Ni was strongly dependent on ionic strength at low pH values and independent of ionic strength at high pH values. The sorption of 63Ni on bentonite was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms of 63Ni at three different temperatures, and the thermodynamic parameters (i.e., ΔH deg, ΔS deg and ΔG deg) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 63Ni on bentonite was an endothermic and spontaneous process. Experimental results indicate that the bentonite is a suitable material for the preconcentration and solidification of 63Ni from large volume of solutions in radionickel pollution cleanup. (author)

  2. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite

    International Nuclear Information System (INIS)

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  3. Effect of pH, ionic strength, foreign ions and humic substances on Th(IV) sorption to GMZ bentonite studied by batch experiments

    International Nuclear Information System (INIS)

    Bentonite has been studied extensively because of its strong sorption and complexation ability. Herein, GMZ bentonite from Gaomiaozi county (Inner Mongolia, China) was investigated as the candidate of backfill material for the removal of Th(IV) ions from aqueous solutions. The results indicate that the sorption of Th(IV) is strongly dependent on pH and ionic strength at pH 5. Outer-sphere surface complexation or ion-exchange are the main mechanism of Th(IV) sorption on GMZ bentonite at low pH values, whereas the sorption of Th(IV) at pH > 5 is mainly dominated by inner-sphere surface complexation or surface precipitation. Soil fulvic acid (FA) and humic acid (HA) have a positive influence on the sorption of Th(IV) on bentonite at pH < 5. The different addition sequences of HA and Th(IV) to GMZ bentonite suspensions have no obvious effect on Th(IV) sorption to HA-bentonite hybrids. The high sorption capacity of Th(IV) on GMZ bentonite suggests that the GMZ bentonite can remove Th(IV) ions from large volumes of aqueous solutions in real work. (author)

  4. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells

    Institute of Scientific and Technical Information of China (English)

    Kangni Chen; Jing Zhang; (O)mür Yilmaz Tastan; Zillah Anne Deussen; Mayte Yu-Yin Siswick; Ji-Long Liu

    2011-01-01

    CTP synthase is compartmentalized within a subcellular structure,termed the cytoophidium,in a range of organisms including bacteria,yeast,fruit fly and rat.Here we show that CTP synthase is also compartmentalized into cytoophidia in human cells.Surprisingly,the occurrence of cyloophidia in human cells increases upon treatment with a glutamine analog 6-diazo-5-oxo-L-norleucine (DON),an inhibitor of glutaminedependent enzymes including CTP synthase.Experiments in flies confirmned that DON globally promotes cytoophidium assembly.Clonal analysis via CTP synthase RNA interference in somatic cells indicates that CTP synthase expression level is critical for the formation of cytoophidia.Moreover,DON facilitates cytoophidium assembly even when CTP synthase level is low.A second glutamine analog azaserine also promotes cytoophidum formation.Our data demonstrate that glutamine analogs serve as useful tools in the study of cytoophidia.

  5. Antarctic Analog for Dilational Bands on Europa

    Science.gov (United States)

    Hurford, T. A.; Brunt, K. M.

    2014-01-01

    Europa's surface shows signs of extension, which is revealed as lithospheric dilation expressed along ridges, dilational bands and ridged bands. Ridges, the most common tectonic feature on Europa, comprise a central crack flanked by two raised banks a few hundred meters high on each side. Together these three classes may represent a continuum of formation. In Tufts' Dilational Model ridge formation is dominated by daily tidal cycling of a crack, which can be superimposed with regional secular dilation. The two sources of dilation can combine to form the various band morphologies observed. New GPS data along a rift on the Ross Ice Shelf, Antarctica is a suitable Earth analog to test the framework of Tufts' Dilational Model. As predicted by Tufts' Dilational Model, tensile failures in the Ross Ice Shelf exhibit secular dilation, upon which a tidal signal can be seen. From this analog we conclude that Tufts' Dilational Model for Europan ridges and bands may be credible and that the secular dilation is most likely from a regional source and not tidally driven.

  6. Composition and diagenetic processes of sandstone and tuff deposits of the Cenomanian Cardiel Formation, Cardiel Lake area, province of Santa Cruz Composición y procesos diagenéticos de los depósitos de arenisca y toba de la Formación Cardiel (Cenomaniano), área Lago Cardiel, provincia de Santa Cruz

    OpenAIRE

    R.R. Andreis; P.E. Zalba; M.E. Morosi

    2007-01-01

    The Cardiel Formation (Cenomanian), around 200 m in thickness in the studied area, includes different types of volcaniclastic deposits, mainly represented by fine tuffs and massive bentonites, and subordinated epiclastics such as lithic sandstones of yellowish-brown, dusky yellow, or light olive hues, siltstones and claystones. Reddened paleosols with some small axial roots and weak prismatic structures appear on top of siltstones, tuffs and bentonites. Tufites and tuffs contain the same neov...

  7. Post-treatment of hydrocarbon-burdened effluents by means of adsorption to bentonites; Nachbehandlung kohlenwasserstoffhaltiger Abwaesser durch Adsorption an Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Breuker, F. [Fachhochschule Muenster, Burgsteinfurt (Germany). Fachbereich Chemieingenieurwesen; Nussbaumer, A. [Edelhoff Entsorgung West GmbH und Co., Hagen (Germany)

    1996-06-01

    During chemical/physical treatment of liquid toxic waste, e.g. emulsions or oil/water mixtures, a separate process stage of hydrocarbon adsorption may be necessary after hydroxide precipitation of the metal salts as soon as the metal freight is reduced by the application of anaerobic biological processes. This is possible, in principle, with the aid of bentonites. Instead of the discontinuous process investigated here, a continuous process would be better suited in practice. (orig.) [Deutsch] Bei der chemisch-physikalischen Behandlung fluessiger Sonderabfaelle wie Emulsionen oder Oel-Wasser-Gemischen kann nach einer Hydroxidfaellung der Metallsalze ein separates Verfahren zur Adsorption von Kohlenwasserstoffen erforderlich sein, sobald die Metallfracht durch den Einsatz einer anaeroben Biologie reduziert wird. Dies ist durch den Einsatz von Bentoniten grundsaetzlich moeglich. Anstelle der hier untersuchten diskontinuierlichen Verfahrensweise waere fuer die betriebliche Praxis ein kontinuierliches Verfahren guenstiger. (orig.)

  8. Adsorption of trace elements on a bentonite sample: experimental study and modelling; Retention d'elements trace sur une bentonite: etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Hurel, Ch

    2002-12-15

    Radioactive waste storage in deep underground is studied in France. The alteration of the radioactive waste can mobilize the elements that can migrate to the geosphere. Clays (bentonite) are investigated as major materials constituting the barriers because of their low permeability and high retention capacity. A thermodynamic surface complexation model, based on the component additivity principle was investigated, in order to predict the adsorption behaviour of pollutants in contact with clay. This principle allows an independent determination of each parameter of the model, limiting the fitting procedure of correlated data, and it allows the use of an adsorption thermodynamic database for a solid. The predictions obtained were in good accordance with experimental data. The model could then be applied successfully in performance assessment. (author)

  9. 膨润土增强的黄土和红土的性质%Properties of Bentonite Enhanced Loess and Laterite

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 白庆中; 聂永丰

    2004-01-01

    Loess and laterite distributed widely in the northern and southern China cannot be directly used as the natural barrier to isolate the solid waste because of their high hydraulic conductivity. In this paper, they are enhanced by bentonite to improve their hydraulic performance. The impact of bentonite content and water content on compressive strength of the compacted soil was investigated. The effects of bentonite content, water content,dry density and hydraulic graiient on the hydraulic conductivity were studied in detail. For the laterite and the laterite with 8% of bentonite, the experimental results of hydraulic conductivity can be applied in the engineering design. However, for the loess and the bentonite enhanced loess, those of hydraulic conductivity can not be directly applied in the engineering design because their hydraulic performance does not comply with the Darcy's law. These experimental results have to be carefully modified before application.

  10. Formation of a Phyllosilicate-, K-feldspar-, and Sulfate-Bearing Hematite Ridge on Mauna Kea Volcano, Hawaii, Under Hydrothermal, Acid-Sulfate Conditions: Process and Mineralogical Analog for the Hematite Ridge on Mt. Sharp, Gale Crater, Mars.

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Adams, M. E.; Catalano, J. G.; Graff, T. G.; Arvidson, R. E.; Guinness, E. A.; Hamilton, J. C.; Mertzman, S. A.; Fraeman, A.

    2015-12-01

    The Mars Science Laboratory rover Curiosity is currently moving upslope on Mt. Sharp in Gale Crater toward a hematite-bearing ridge. This hematite exposure was originally detected in CRISM spectra and subsequently mapped as part of a ~200 m wide, 6.5 km long ridge extending roughly parallel to the base of Mt. Sharp. CRISM spectra in the region suggest that hematite, smectite, and hydrated sulfates occur as secondary phases in lower layers of Mt. Sharp, separated by an unconformity from overlying anhydrous strata. A potential process and mineralogical analog is a hematite-bearing and weathering-resistant stratum (ridge) is exposed on the Puu Poliahu cinder cone on Mauna Kea (MK) volcano, Hawaii. The MK ridge is the product of hydrothermal alteration of basaltic precursors under acid-sulfate conditions. We are acquiring chemical and mineralogical (VNIR, Mid-IR, and backscatter Moessbauer spectroscopy, and transmission XRD) data on the MK ridge area that correspond to rover and orbiting spacecraft measurements at Gale Crater and elsewhere. The hematite-bearing stratum does not have detectable sulfate minerals by XRD, and hematite is variably present as up to mm-sized black crystals which, together with associated trioctahedral smectite and K-feldspar (from XRD), imply hydrothermal conditions. Adjacent to the MK hematite-bearing stratum are sulfates (jarosite and alunite) that are evidence for aqueous alteration under acid-sulfate conditions, and more soluble sulfates are absent but such phases would not persist if formed because of annual precipitation. Dioctahedral smectite is associated with red hematite and alunite-rich samples. The black and red hematite zones have the highest and lowest MgO/Al2O3 and K2O/Na2O ratios, respectively. Hematite, smectite, jarosite, and K-feldspar have been detected by Curiosity XRD downslope from the Mt. Sharp hematite ridge. MK field work and samples were obtained with PISCES partnership and OMKM, MKMB, BLNR, and KKMC permissions.

  11. Decantation time of evaluation on bentonite clays fractionation; Avaliacao do tempo de decantacao no fracionamento de argilas bentonitas

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.; Menezes, R.R.; Neves, G.A.; Lira, H.L; Santana, L.N.L., E-mail: lisiane@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  12. Precision-analog fiber-optic transmission system

    International Nuclear Information System (INIS)

    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters

  13. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  14. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    Directory of Open Access Journals (Sweden)

    Tilak B. Vidya

    2015-06-01

    Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  15. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite.

    Science.gov (United States)

    Chakir, Achraf; Bessiere, Jacques; Kacemi, Kacem E L; Marouf, Bouchaïb

    2002-11-11

    Local bentonite and expanded perlite (Morocco) have been characterised and used for the removal of trivalent chromium from aqueous solutions. The kinetic study had showed that the uptake of Cr(III) by bentonite is very rapid compared to expanded perlite. To calculate the sorption capacities of the two sorbents, at different pH, the experimental data points have been fitted to the Freundlich and Langmuir models, respectively, for bentonite and expanded perlite. For both sorbents the sorption capacity increases with increasing the pH of the suspensions. The removal efficiency has been calculated for both sorbents resulting that bentonite (96% of Cr(III) was removed) is more effective in removing trivalent chromium from aqueous solution than expanded perlite (40% of Cr(III) was removed). In the absence of Cr(III) ions, both bentonite and expanded perlite samples yield negative zeta potential in the pH range of 2-11. The changes of expanded perlite charge, from negative to positive, observed after contact with trivalent chromium(III) solutions was related to Cr(III) sorption on the surface of the solid. Thus, it was concluded that surface complexation plays an important role in the sorption of Cr(III) species on expanded perlite. In the case of bentonite, cation-exchange is the predominate mechanism for sorption of trivalent chromium ions, wherefore no net changes of zeta potential was observed after Cr(III) sorption. X-ray photoelectron spectroscopy measurements, at different pH values, were also made to corroborate the zeta potential results.

  16. Report on hydro-mechanical and chemical-mineralogical analyses of the bentonite buffer in Canister Retrieval Test

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Johannesson, Lars-Erik; Kristensson, Ola; Olsson, Siv [Clay Technology AB (Sweden)

    2011-12-15

    The effect of five years of exposure to repository-like conditions on compacted Wyoming bentonite was determined by comparing the hydraulic, mechanical, and mineralogical properties of samples from the bentonite buffer of the Canister Retrieval Test (CRT) with those of reference material. The CRT, located at the Swedish Aspo Hard Rock Laboratory (HRL), was a full-scale field experiment simulating conditions relevant for the Swedish KBS-3 concept for disposal of high-level radioactive waste in crystalline host rock. The compacted bentonite, surrounding a copper canister equipped with heaters, had been subjected to heating at temperatures up to 95 deg C and hydration by natural Na-Ca-Cl type groundwater for almost five years at the time of retrieval. Under the thermal and hydration gradients that prevailed during the test, sulfate in the bentonite was redistributed and accumulated as anhydrite close to the canister. The major change in the exchangeable cation pool was a loss in Mg in the outer parts of the blocks, suggesting replacement of Mg mainly by Ca along with the hydration with groundwater. Close to the copper canister, small amounts of Cu were incorporated in the bentonite. A reduction of strain at failure was observed in the innermost part of the bentonite buffer, but no influence was seen on the shear strength. No change of the swelling pressure was observed, while a modest decrease in hydraulic conductivity was found for the samples with the highest densities. No coupling was found between these changes in the hydro-mechanical properties and the montmorillonite . the X-ray diffraction characteristics, the cation exchange properties, and the average crystal chemistry of the Na-converted < 1 {mu}m fractions provided no evidence of any chemical/structural changes in the montmorillonite after the 5-year hydrothermal test.

  17. Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate.

    Science.gov (United States)

    Razakamanantsoa, Andry Rico; Djeran-Maigre, Irini

    2016-07-01

    An experimental program is carried out to investigate the long term hydro-mechanical behavior correlated with chemical one of compacted soils with low concentration of Ca-bentonite and Ca-bentonite polymer mixture. The effect of prehydration on the hydraulic performance is compared to the polymer adding effect. All specimens are submitted to synthetic leachate (LS) under different permeation conditions. Several issues are studied: mechanical stability, hydraulic performance, chemical exchange of cations validated with microstructure observations. Scanning Electron Microscope (SEM) observations demonstrate two distinct behaviors: dispersive for Bentonite (B) and B with Polymer P1 (BP1) and flocculated for B with Polymer P2 (BP2). Direct shear tests show that bentonite adding increases the Soil (S) cohesion and decreases the friction angle. Polymer adding behaves similarly by maintaining the soil cohesion and increasing the friction angle. Hydraulic conductivity of prehydrated soil bentonite (SB) and direct permeation of polymer added soil bentonite are studied (SBP1 and SBP2). Hydraulic test duration are in range of 45days to 556days long. Prehydration allows to delay the aggressive effect of the LS in short term but seems to increase its negative effect on the hydraulic conductivity value in long term exposure. SB and SBP1 behave similarly and seem to act in the long term as a granular filler effect. SBP2 presents positive results comparing to the other mixtures: it maintains the hydraulic conductivity and the chemical resistance. Chemical analysis confirms that all specimens are subjected to Na(+) dissolution and Ca(2+) retention which are more pronounced for prehydrated specimen. The short term effect of prehydration and the positive effect of SBP2 are also confirmed. PMID:27156365

  18. Effects of high grade bentonite on performance, organ weights and serum biochemistry during aflatoxicosis in broilers

    Directory of Open Access Journals (Sweden)

    H. C. Indresh

    2013-12-01

    Full Text Available Aim: To evaluate the effect of different levels of High Bentonite on growth performance, organ weight and serum biochemistry in broiler fed on diets containing aflatoxin. Materials and Methods: A total of 360 day-old commercial broiler chicks were divided at random into 8 dietary treatment groups of 42 chicks each having 3 replicates. Dietary levels of aflatoxin (0.5 ppm and High-grade bentonite (0.5, 0.75 and 1.00% were tested in a completely randomized design manner, forming a total of 8 dietary treatments each with three replicates. Body weight and feed intake were recorded weekly. At 5 wk, six birds from each treatment were sacrificed and liver, kidney, gizzard, pancreas, spleen, bursa of Fabricius and thymus were extracted and weighed. The serum samples were analyzed for total proteins, uric acid, serum albumin, serum globulin and the activities of gamma glutamyl transferase (GGT, alanine amino transferase (ALT and for antibody titers against Newcastle disease (ND and infectious bursal disease (IBD using ELISA technique. Results: A significant (P<0.05 decrease in body weight, feed consumption, relative weights of bursa, thymus, serum protein, anti body titers against NDV and IBDV, and increase in FCR, mortality, relative weight of liver, kidney, and the activity of Gamma Glutamyl Transferase (GGT was observed. However, the relative weights of gizzard, pancreas, spleen, serum albumin, uric acid and the activity of Alanine Amino Transferase (ALT were not influenced by inclusion of AF or HGB. Conclusion: The addition of HGB restored the harmful effects of AF on body weight, feed consumption, FCR, mortality, relative weight of liver, kidney, serum protein, IBDV and NDV. Supplementation of high grade bentonite at 1.0 per cent level was found to be beneficial in ameliorating the adverse effects of aflatoxin (AF in broiler chickens. [Vet World 2013; 6(6.000: 313-317

  19. The effect of zeolite,bentonite and sepiolite minerals onheavy metal uptake by sunflower

    Directory of Open Access Journals (Sweden)

    N . Esmaeilpour Fard

    2015-06-01

    Full Text Available Mining, industrial and agricultural activities can result in considerable soil pollution by heavy metals (HMs. One of the methods to control this pollution is application of adsorbent minerals. The purpose of this study was to compare the effects of adsorbent minerals (bentonite, zeolite and sepiolite on transfer of some heavy metals (i.e., Pb, Zn and Cd from soil to tissues of sunflower (Heliantus annuus L.. Treatments included: Non-polluted soil, HM-polluted soil, polluted soil + bentonite, polluted soil + zeolite, and polluted soil + sepiolite. Sunflower seeds were planted in different pots containing the above treated soils. After 70 days of growth, plants were harvested and HMs content was measured. Results revealed that the uptake of HMs from non-polluted soil was lower than that of other treatments. In the polluted soil + sepiolite treatment, the added sepiolite increased plant Cd and Zn uptake by 0.37 and 7.17 mg/kg, respectively. However, the differences in HMs uptake were not significant for other treatments. Zeolite addition decreased plant uptake of Zn and Cd by about 12 and 0.21 mg/kg, respectively, while bentonite addition reduced Pb uptake by about 3.05 mg/kg, without any significant difference for the other treatments. Zn uptake was higher by about 12.2 mg/kg in plant shoots as compared to plant roots. On the contrary, the roots took up higher amounts of Cd and Pb, as compared to the shoots. Despite high concentration of the HMs in the polluted soils, considerable tendency of sunflower for uptake, and a high adsorption capacity of the applied minerals, the HMs uptake by sunflower and surface adsorption by the minerals were very low, probably due to HMs precipitation in the soil.

  20. Development of polymer nanocomposites with regional bentonite clay; Desenvolvimento de nanocompositos polimericos com argila bentonitica regional

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A., E-mail: edcleide@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais da UFCG, Campina Grande, PB (Brazil); Barbosa, Josiane D.V. [SENAI/CIMATEC, Salvador, BA (Brazil); Barbosa, Renata [Universidade Federal do Piaui, UFPI, Teresina, PI (Brazil)

    2011-07-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  1. Survey on current status of laboratory test method and experimental consideration for material containing bentonite

    International Nuclear Information System (INIS)

    In the joint study between CRIEPI and JAEA, in order to establish laboratory test method of bentonite, literature survey as well as laboratory tests were conducted to find factors affecting the results of laboratory tests for bentonite and to estimate their degree of influence. Countermeasures against the factors are also investigated in this joint study. This report showed hydraulic conductivity tests and swelling pressure tests those are important in the low-level radioactive waste disposal. 1. Hydraulic conductivity. According to the results of literature survey, it is revealed that constant pressure permeability test and consolidation test are currently used for measuring hydraulic conductivity of bentonite and that (1) hydraulic gradient, (2) local seepage flow between lateral surface of the specimen and lateral wall of the container, (3) water pressure which is applied to the specimen, (4) degree of saturation and (5) size of the specimen possibly affect the results of the constant pressure permeability test, (6) friction between lateral surface of the specimen and lateral wall of the container accompanied by deformation of the specimen, (7) consolidation pressure together with factors (8), (9) affect the results of the consolidation test. As a result of investigation, it is concluded that it is currently desirable to use the constant pressure permeability test for compacted bentonite because there seems no major affecting factor which cannot be removed. 2. Swelling pressure. According to the literature survey, confined type testing apparatuses and apparatuses which are similar to the consolidation test apparatuses are used for measuring swelling pressure. Factors affecting results of swelling pressure tests are saturation of the specimen, size of the specimen and difference of apparatus. Saturation of the specimen set in confined type testing apparatus can be raised easily by one-dimensional infiltration of water through the specimen and by applying

  2. Thermo-Mechanical Behavior of Bentonite Buffer in a Deep Geological HLW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J.; Lee, J. O

    2008-08-15

    This work aims to investigate the influence of bentonite buffer and backfill, which will role as important engineered barriers, on the thermo-mechanical behaviors of a disposal system at a deep underground HLW repository. It will contribute to the disposal system development and performance assessment of the system. In this study, three-dimensional computer simulations were carried out with a consideration of the thermal and mechanical characteristics of the buffer and backfill for the investigation of the behavior of buffer and backfill under different disposal conditions. The understanding of the near field response to the variation of buffer and backfill properties will contribute to the development of an adequate buffer and backfill design in disposal conditions as well as the selection of a disposal site. The following conclusions could be drawn from the three-dimensional thermo-mechanical coupling analysis for investigating the possible influence of the bentonite buffer on the thermo-mechanical behavior around an underground repository, which is located at several hundred meters deep underground. o The bentonite swelling pressure can influence on the mechanical behavior of canister. Further detailed modeling is required in the future. o It is required to consider the water content and density of bentonite as important design parameters, because it was found that those influence the thermo-mechanical behavior of near field significantly. o A horizontal deposition hole and multi-level repository can results different maximum temperatures, stress concentration, and the required time for the maximum temperatures of canister, buffer, and rock compared to those of vertical deposition hole and single level repository. o Even though, the same laboratory results were used for driving the parameters for the plastic models used in the modeling, the mechanical behaviors were different. It is, therefore, required to use adequate plastic models for buffer and backfill

  3. Advancement of experimentation for measuring hydraulic conductivity of bentonite using high-pressure consolidation test apparatus

    International Nuclear Information System (INIS)

    In the geological disposal facility of high-level radioactive wastes, it is important to grasp the hydraulic conductivity characteristic of bentonite. The purpose of this study is the advancement of the examination method for the measurement of a more reliable hydraulic conductivity using high-pressure consolidation test apparatus (maximum consolidation pressure 10MPa). Consequently, it succeeded in improving the reliability of data by raising the resolution of displacement used for an examination, increasing to 80 the number of measurement data for 2 minutes after making each consolidation pressure act on the occasion of measurement and adopting the data of a high consolidation pressure (more than 5.88MPa) stage. (author)

  4. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  5. Chemistry of isoflavone heterocyclic analogs. 10. Synthesis of pyrimidines by recyclization of isoflavones and their heterocyclic analogs

    Energy Technology Data Exchange (ETDEWEB)

    Khilya, V.P.; Kornilov, M.Yu.; Gorbulenko, N.V.; Golubushina, G.M.; Kovtun, E.N.; Kolotusha, N.V.; Panasenko, G.V.

    1986-05-01

    Isoflavones and their thiazole and pyrazole analogs are recyclized into the corresponding 4-(2-hydroxyphenyl)-pyrimidine derivatives under the effect of amidines. Their PMR spectra were studied. The effects related to the formation and strength of the intramolecular hydrogen bond were examined.

  6. Multilateral Collaborations in Analog Research

    Science.gov (United States)

    Cromwell, R. l.

    2016-01-01

    International collaborations in studies utilizing ground-based space flight analogs are an effective means for answering research questions common to participating agencies. These collaborations bring together worldwide experts to solve important space research questions. By collaborating unnecessary duplication of science is reduced, and the efficiency of analog use is improved. These studies also share resources among agencies for cost effective solutions to study implementation. Recently, NASA has engaged in collaborations with international partners at a variety of analog sites. The NASA Human Exploration Research Analog (HERA) is currently hosting investigator studies from NASA and from the German Space Agency (DLR). These isolation studies will answer questions in the areas of team cohesion, sleep and circadian rhythms, and neurobehavioral correlates to function. Planning for the next HERA campaign is underway as proposal selections are being made from the International Life Sciences Research Announcement (ILSRA). Studies selected from the ILSRA will be conducted across 4 HERA missions in 2017. NASA is planning collaborative studies with DLR at the :envihab facility in Cologne, Germany. Investigations were recently selected to study the effects of 0.5% CO2 exposure over 30 days of bed rest. These studies will help to determine the fidelity of this ground-based analog for studying the visual impairment intracranial pressure syndrome. NASA is also planning a multilateral collaboration at :envihab with DLR and the European Space Agency (ESA) to examine artificial gravity as a countermeasure to mitigate the effects of 60 days of bed rest. NASA is also considering collaborations with the Russian Institute for Biomedical Problems (IBMP) in studies that will utilize their Ground-based Experimental Facility (NEK). The NEK is comprised of 4 interconnected modules and a Martian surface simulator. This isolation analog can support 3 -10 crew members for long duration

  7. Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications.

    Science.gov (United States)

    Urbanski, Marika; Bréchemier, Marie-Laure; Garcin, Béatrice; Bendetowicz, David; Thiebaut de Schotten, Michel; Foulon, Chris; Rosso, Charlotte; Clarençon, Frédéric; Dupont, Sophie; Pradat-Diehl, Pascale; Labeyrie, Marc-Antoine; Levy, Richard; Volle, Emmanuelle

    2016-06-01

    SEE BURGESS DOI101093/BRAIN/AWW092 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Analogical reasoning is at the core of the generalization and abstraction processes that enable concept formation and creativity. The impact of neurological diseases on analogical reasoning is poorly known, despite its importance in everyday life and in society. Neuroimaging studies of healthy subjects and the few studies that have been performed on patients have highlighted the importance of the prefrontal cortex in analogical reasoning. However, the critical cerebral bases for analogical reasoning deficits remain elusive. In the current study, we examined analogical reasoning abilities in 27 patients with focal damage in the frontal lobes and performed voxel-based lesion-behaviour mapping and tractography analyses to investigate the structures critical for analogical reasoning. The findings revealed that damage to the left rostrolateral prefrontal region (or some of its long-range connections) specifically impaired the ability to reason by analogies. A short version of the analogy task predicted the existence of a left rostrolateral prefrontal lesion with good accuracy. Experimental manipulations of the analogy tasks suggested that this region plays a role in relational matching or integration. The current lesion approach demonstrated that the left rostrolateral prefrontal region is a critical node in the analogy network. Our results also suggested that analogy tasks should be translated to clinical practice to refine the neuropsychological assessment of patients with frontal lobe lesions. PMID:27076181

  8. A convenient synthesis of ezetimibe analogs as cholesterol ab sorption inhibitors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A convenient method for the synthesis of ezetimibe analogs as cholesterol absorption inhibitors was described.The key step in the synthesis was the intramolecular ring formation through Mitsunobu reaction.Furthermore,a new series of analogs was designed and synthesized.

  9. 49205 ANALOGE OG DIGITALE FILTRE

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    1997-01-01

    Theese lecture notes treats the fundamental theory and the most commonly used design methods for passive- active and digital filters with special emphasis on microelectronic realizations. The lecture notes covers 75% of the material taught in the course 49205 Analog and Digital Filters...

  10. Analog Input Data Acquisition Software

    Science.gov (United States)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  11. Multichannel analog temperature sensing system

    Science.gov (United States)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer.

  12. International Alligator Rivers Analog Project

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organization (ANSTO), the Japan Atomic Energy Research Institute, the Swedish Nuclear Power Inspectorate, the U.K. Department of the Environment, the US Nuclear Regulatory Commission (NRC), and the Power Reactor and Nuclear Fuel Development Corporation of Japan are participating under the aegis of the Nuclear Energy Agency in the International Alligator Rivers Analog Project. The project has a duration of 3 yr, starting in 1988. The project has grown out of a research program on uranium ore bodies as analogs of high-level waste (HLW) repositories undertaken by ANSTO supported by the NRC. A primary objective of the project is to develop an approach to radionuclide transport model validation that may be used by the participants to support assessments of the safety of radioactive waste repositories. The approach involves integrating mathematical and physical modeling with hydrological and geochemical field and laboratory investigations of the analog site. The Koongarra uranium ore body has been chosen as the analog site because it has a secondary ore body that has formed over the past million years as a result of leaching by groundwater flowing through fractures in the primary ore body

  13. Analogy between Thermodynamics and Mechanics.

    Science.gov (United States)

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  14. Multichannel analog temperature sensing system

    International Nuclear Information System (INIS)

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer

  15. Simulation of Water Percolation in a FEBEX Bentonite Block Using TOUGH2 Program; Simulacion de la Percolacion de Agua en un Bloque de Bentonite Febex Utilizando el Programa TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Bru, A.

    2001-07-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs.

  16. Electrochemical behavior of H3PW12O40/ acid-activated bentonite powders

    Directory of Open Access Journals (Sweden)

    Mojović Zorica

    2012-01-01

    Full Text Available Electrochemical behavior of 12-tungstophosphoric acid (HPW/acid-activated bentonite (AAB powders with various loadings of HPW was investigated. The physicochemical properties of the prepared powders were examined by X-ray powder diffraction, nitrogen adsorption-desorption isotherms, atomic force microscopy and cyclic voltammetry measurements. The results indicated that the prepared powders are composed mainly of oriented domains of large rock blocks, probably resulting from a preferable deposition of bentonite particles having a face-to-face interaction. The particles had a mainly disordered mesoporous structure with a pore volume that varied according to the pore size in the range of 2-50 nm. In addition, the particles had crystallite size between 4.9 and 9.0 nm. The electrocatalytic activities of prepared HPW/Aelectrodes were studied in the oxidation of NO2-ions and the results revealed that the electrodes possessed relatively higher nitrite oxidation currents than Aelectrode. The best electroactivity was observed for HPW3/Aelectrode (AAB+20 wt. % HPW and the limit of detection (3σ was determined as 8 μM.

  17. Removal of nickel on Bofe bentonite calcined clay in porous bed

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, M.G.A.; Neto, A.F. Almeida [UNICAMP/FEQ/DTF, Campinas, SP (Brazil); Gimenes, M.L. [UEM/CTC/DEQ, Campinas, SP (Brazil); Silva, M.G.C. da, E-mail: meuris@feq.unicamp.br [UNICAMP/FEQ/DTF, Campinas, SP (Brazil)

    2010-04-15

    Bentonite clays have been showing good adsorbing characteristics and are used as an alternative material in the removal of heavy metals. The purpose of this study is to evaluate the removal of nickel on Bofe bentonite calcined clay in porous bed. Firstly, a study was conducted to define the operation outflow, based on the minimum mass transfer zone (MTZ) obtained, useful (q{sub U}) and total adsorbed (q{sub T}) removal amounts and total nickel removal percentage (Rem (%)). Assays of nickel adsorption on clay were conducted according to a 2{sup 2} factorial design with three central points to evaluate the effect of the particle diameter and initial adsorbate concentration on variables q{sub U}, q{sub T} and Rem (%). Tests to obtain the adsorbent physical and chemical characteristics were performed on samples of Bofe clay in natura, calcined, and calcined submitted to nickel adsorption. This clay was characterized according to the following techniques: Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Physisorption of N{sub 2} (BET), Helium Picnometry and Scanning Electron Microscope (SEM) with metal mapping.

  18. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media

    International Nuclear Information System (INIS)

    Highlights: • A phosphate adsorbent was prepared from unpurified natural bentonite. • Physisorption was found to the main phosphate interaction mechanism. • The retention has reached 95% of the phosphate present in solution at room temperature. • The rate sorption was about 4 times faster than commercial phosphate adsorbents. - Abstract: A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L−1. A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate was best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g−1. Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents

  19. Diffusion of strongly sorbing cations (60Co and 152Eu) in compacted Febex bentonite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Compacted bentonite is used as an engineered barrier in high-level radioactive waste (HLRW) repositories because is a swelling clay of very low permeability and high sorption capability for many solutes. The transport of radionuclides through compacted bentonite is a diffusion-controlled process retarded by sorption. Performance assessment calculations of a repository need diffusion coefficients data of relevant radionuclides. Several studies on diffusion behaviour of neutral, anionic and weakly sorbing elements on clay exist while very few studies are available for moderately sorbing elements, and almost no studies for Eu, a highly sorbing element are reported. In this study, diffusion experiments with strongly sorbing radionuclides, as 60Co and 152Eu, have been performed through compacted FEBEX bentonite. Diffusion essays with these strongly sorbing radionuclides are not straightforward to carry out because they are very time consuming essays, but also because sorption on the diffusion cells, tubing, filters and reservoirs, typically used in the classical through-diffusion or in-diffusion methods make hard the interpretation of the experimental results and the calculation of the diffusion coefficients. FEBEX bentonite was selected as Spanish reference buffer materials, and used in many national and international projects. The clay comes from the Cortijo de Archidona deposit (Almeria, Spain), and has a smectite content greater than 90% (93 ± 2%), with quartz (2 ± 1%), plagioclase (3 ± 1%), cristobalite (2 ± 1%), potassic feldspar, calcite, and trydimite as accessory minerals. The specific weight of the FEBEX bentonite is 2.7 g/cm3. Diffusion experiments were performed using the instantaneous plane source method. In this setup, a paper filter tagged with a tracer is introduced between two compacted tablets, avoiding contact between the tracer and the experimental vessels. The tracer can diffuse into both

  20. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.