WorldWideScience

Sample records for benthic optical properties

  1. Coastal Benthic Optical Properties (CoBOP): Optical Properties of Benthic Marine Organisms and Substrates

    National Research Council Canada - National Science Library

    Mazel, Charles

    2002-01-01

    ...). The long-term objective of our research is to gain an understanding of the nature and significance of fluorescence and reflectance characteristics of benthic marine organisms in general, and coral...

  2. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  3. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS

    Directory of Open Access Journals (Sweden)

    Tara Blakey

    2016-10-01

    Full Text Available This study evaluated the ability to improve Sea-Viewing Wide Field-of-View Sensor (SeaWiFS chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels’ benthic class. The form of the Ocean Color (OC algorithm was assumed for this study. The operational atmospheric correction producing Level 2 SeaWiFS data was retained since the focus of this study was on establishing the benefit from the alternative specification of the bio-optical algorithm. Benthic class was determined through satellite image-based classification methods. Accuracy of the chl-a algorithms evaluated was determined through comparison with coincident in situ measurements of chl-a. The regionally-tuned models that were allowed to vary by benthic class produced more accurate estimates of chl-a than the single, unified regionally-tuned model. Mean absolute percent difference was approximately 70% for the regionally-tuned, benthic class-specific algorithms. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Atmospheric correction procedures specialized to coastal environments were recognized as areas for future improvement as these procedures would improve both classification and algorithm tuning.

  4. Estimation of sediment properties during benthic impact experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R

    Sediment properties, such as water content and density, have been used to estimate the dry and wet weights, as well as the volume of sediment recovered and discharged, during benthic impact experiments conducted in the Pacific and Indian Oceans...

  5. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2011-08-01

    Full Text Available In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P of benthic algae (Spirogyra sp. and Zygnema sp. and the submerged macrophyte (Myriophyllum quitense from a high latitude wetland (local name: mallín. Besides we performed laboratory experiments in order to study the effect of ultraviolet radiation (UVR on the optical properties and nutrient release of DOM from leachates of these benthic algae and submerged macrophyte. The obtained results indicated that macrophyte leachates could contribute significantly to changes in the optical characteristics of the wetlands while benthic algae contribute with leachates with low photoreactivity. Finally, nutrient release differs among plant species and season: benthic algae leachates release more P in spring, while M. quitense releases more of this nutrient in autumn. These results suggested that the different colonization may contribute differentially to the chemical environment of the wetland.

  6. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  7. Watermass structure at benthic disturbance site (INDEX area) and anticipated mining effects on hydro-physical properties

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Murty, V.S.N.; Suryanarayana, A.; Beena, B.S.; Niranjan, K,

    Watermass properties were obtained in the Indian Deep Sea Experiment (INDEX) area during pre- (27 May-8 July 1997) and post- (22 July-5 September, 1997) benthic disturbance periods respectively. Watermass (Temperature-Salinity: T-S) structure...

  8. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  9. Species diversity variations in Neogene deep-sea benthic

    Indian Academy of Sciences (India)

    Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is ...

  10. Optical adhesive property study

    Energy Technology Data Exchange (ETDEWEB)

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  11. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  12. The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties

    Science.gov (United States)

    Bustamante, María; Tajadura, Javier; Díez, Isabel; Saiz-Salinas, José Ignacio

    2017-12-01

    Canopy-forming seaweeds provide specific habitats with key ecological properties and are facing severe declines worldwide with unforeseeable consequences for ecosystem processes. Investigating the loss of such natural habitats in order to develop management strategies for conservation is a major challenge in marine ecological research. This study investigated the shallow rocky bottoms of the southern Bay of Biscay at two sampling times with a view to identifying the effect of canopy seaweed availability on the taxonomic and functional properties of invertebrate multivariate structure, abundance, density, diversity and evenness. The multivariate taxonomic and functional structure of assemblages changed significantly according to canopy availability in terms of taxa and functional groups abundance, but no substantial change was observed in composition. Biogenic habitat simplification resulted in a decrease in total invertebrate abundance and in taxonomic and functional density and diversity, whilst no effects were observed in taxonomic and functional evenness. Loss of canopy involved an impoverishment of the whole community particularly for epiphytic colonial sessile suspension-feeders, but it also extended to non-epiphytic forms. Our results emphasize the importance of canopy decline as a major driver of changes in benthic ecosystem properties and highlight that biogenic space provided by canopy is a limiting resource for the development of rocky subtidal invertebrates.

  13. Coastal Benthic Optical Properties (CoBOP): Optical Properties of Benthic Marine Organisms and Substrates

    Science.gov (United States)

    2001-09-30

    et al., 2000), or that the fluorescence might act to provide extra photons for photosynthesis (Schlichter and Fricke, 1990). Our measurements of...biological systems and will be used in radiative transfer modeling. TRANSITIONS Spectral measurements of sediment and seagrass reflectance from... photosynthesis of endosymbiotic algae. Naturwissenschaften 77: 447-450. PUBLICATIONS Fux, E., and C. H. Mazel, 1999. Unmixing coral fluorescence

  14. Radiative properties of optical board embedded with optical black holes

    International Nuclear Information System (INIS)

    Qiu, J.; Liu, L.H.; Hsu, P.-F.

    2011-01-01

    Unique radiative properties, such as wavelength-selective transmission or absorption, have been intensively studied. Historically, geometries for wavelength-selective of light absorption were developed based on metallic periodical structures, which were only applied in the case of TM wave incidence due to the excitation of surface plasmons. In this paper, we develop an alternative approach to selective wavelength of light absorption (both TE and TM waves), based on an optical board periodical embedded with optical black holes. Numerical work was carried out to study such structure's radiative properties within the wavelength range of 1-100 μm. The electromagnetic wave transmission through such a structure is predicted by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. Spectral absorptance varies with the period of optical black holes. When the incidence wavelength is much larger than the inner core radius, most of the light energy will be transmitted through the inner core. Otherwise, the energy will be mainly absorbed. Numerical results of the radiative properties of the optical board with different incidence wavelengths are also obtained. The effect of the oblique incidence wave is investigated. This study helps us gain a better understanding of the radiative properties of an optical board embedded with optical black holes and develop an alternative approach to selective light absorption.

  15. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  16. Inferring community properties of benthic macroinvertebrates in streams using Shannon index and exergy

    Science.gov (United States)

    Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo

    2014-03-01

    Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.

  17. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  18. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering....

  19. Optical properties of graphene superlattices.

    Science.gov (United States)

    Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam

    2014-10-08

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.

  20. Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi

    Science.gov (United States)

    Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.

    2017-12-01

    Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in

  1. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  2. Optical properties of graphene superlattices

    International Nuclear Information System (INIS)

    Le, H Anh; Do, V Nam; Ho, S Ta; Nguyen, D Chien

    2014-01-01

    In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, U b ), where U b is the potential barrier height. In the higher photon energy range, i.e. Ω > U b , the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism. (paper)

  3. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...... parameters, maybe by altering growth conditions of the diatoms tailor their optical properties....

  4. Optical limiting properties of optically active phthalocyanine derivatives

    Science.gov (United States)

    Wang, Peng; Zhang, Shuang; Wu, Peiji; Ye, Cheng; Liu, Hongwei; Xi, Fu

    2001-06-01

    The optical limiting properties of four optically active phthalocyanine derivatives in chloroform solutions and epoxy resin thin plates were measured at 532 nm with 10 ns pulses. The excited state absorption cross-section σex and refractive-index cross-section σr were determined with the Z-scan technique. These chromophores possess larger σex than the ground state absorption cross-section σ0, indicating that they are the potential materials for reverse saturable absorption (RSA). The negative σr values of these chromophores add to the thermal contribution, producing a larger defocusing effect, which may be helpful in further enhancing their optical limiting performance. The optical limiting responses of the thin plate samples are stronger than those of the chloroform solutions.

  5. Benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Nigam, R.

    (Nolet and Corliss, 1990). Differences in the abundance of oxygen-sensitive and dissolution-prone benthic foraminiferal species between the Last Glacial Maximum (LGM) and the Holocene in the abyssal waters of the southwestern Gulf of Mexico were used... (2009) Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep Sea Research Part I: Oceanographic Research Papers 56: 835-841. Culver S (1988) New foraminiferal depth zonation of the northwestern Gulf of Mexico. Palaios 3: 69...

  6. Flagging optically shallow pixels for improved analysis of ocean color data

    Science.gov (United States)

    McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.

    2016-02-01

    Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.

  7. Optical properties of marine waters and the development of bio-optical algorithms

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    This paper presents the primary optical variables used in the measurement of the optical properties of marine waters. How can in-situ measurements be used in the optical recognition of coastal and open ocean waters. We then look at bio...

  8. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Anuj Kumar

    2017-06-20

    Jun 20, 2017 ... Department of Physics, Jaypee University of Engineering and Technology, Raghogarh,. Guna 473 226, India. ∗ ... properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p- toluenesulphonate ... nal processing, optical limiting, optical logic gates, laser radiation ...

  9. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  11. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  12. Optical Properties of Nanoparticle Systems Mie and Beyond

    CERN Document Server

    Quinten, Michael

    2011-01-01

    Unlike other books who concentrate on metallic nanoparticles with sizes less than 100 nm, the author discusses optical properties of particles with (a) larger size and (b) of any material. The intention of this book is to fill the gap in the description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter. The author concentrates on the linear optical properties elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter

  13. Benthic protists: the under-charted majority.

    Science.gov (United States)

    Forster, Dominik; Dunthorn, Micah; Mahé, Fréderic; Dolan, John R; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Edvardsen, Bente; Egge, Elianne; Eikrem, Wenche; Gobet, Angélique; Kooistra, Wiebe H C F; Logares, Ramiro; Massana, Ramon; Montresor, Marina; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Richards, Thomas A; Santini, Sébastien; Sarno, Diana; Siano, Raffaele; Vaulot, Daniel; Wincker, Patrick; Zingone, Adriana; de Vargas, Colomban; Stoeck, Thorsten

    2016-08-01

    Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions. Despite a similar number of OTUs in both realms, richness estimations indicated that we recovered at least 70% of the diversity in planktonic protist communities, but only 33% in benthic communities. There was also little overlap of OTUs between planktonic and benthic communities, as well as between separate benthic communities. We argue that these patterns reflect the heterogeneity and diversity of benthic habitats. A comparison of all OTUs against the Protist Ribosomal Reference database showed that a higher proportion of benthic than planktonic protist diversity is missing from public databases; similar results were obtained by comparing all OTUs against environmental references from NCBI's Short Read Archive. We suggest that the benthic realm may therefore be the world's largest reservoir of marine protist diversity, with most taxa at present undescribed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  15. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  16. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  17. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  18. Optical properties and photoluminescence of tetrahexyl-sexithiophene allotropes

    NARCIS (Netherlands)

    Botta, C; Destri, S; Porzio, W; Bongiovanni, G; Loi, MA; Mura, A; Tubino, R

    2001-01-01

    The optical absorption, Raman scattering and photoluminescence of two phases of tetrahexyl-sexithiophene (4HT6) display properties coherently related to the different molecular conformations imposed by the chain packing. We analyse the temperature dependence of the optical properties of a sample in

  19. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  20. Ex vivo investigation of tissue optical properties using an optical fibre sensor

    OpenAIRE

    Warncke, Dennis

    2014-01-01

    peer-reviewed Biomedical research has become a strong growing sector in recent years. Moreover the interdisciplinary background involves novel possibilities and measurement techniques. Light propagation in turbid media like human tissue is a central aspect to many medical and biomedical applications. This is a very complex process and depends on parameters, which are called optical properties. The spatial distribution of light is determined by those optical properties. A maj...

  1. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  2. Quantum optical properties in plasmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  3. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  4. Optical properties of the human round window membrane

    Science.gov (United States)

    Höhl, Martin; DeTemple, Daphne; Lyutenski, Stefan; Leuteritz, Georg; Varkentin, Arthur; Schmitt, Heike Andrea; Lenarz, Thomas; Roth, Bernhard; Meinhardt-Wollweber, Merve; Morgner, Uwe

    2017-10-01

    Optical techniques are effective tools for diagnostic applications in medicine and are particularly attractive for the noninvasive analysis of biological tissues and fluids in vivo. Noninvasive examinations of substances via a fiber optic probe need to consider the optical properties of biological tissues obstructing the optical path. This applies to the analysis of the human perilymph, which is located behind the round window membrane. The composition of this inner ear liquid is directly correlated to inner ear hearing loss. In this work, experimental methods for studying the optical properties of the human round window membrane ex vivo are presented. For the first time, a comprehensive investigation of this tissue is performed, including optical transmission, forward scattering, and Raman scattering. The results obtained suggest the application of visible wavelengths (>400 nm) for investigating the perilymph behind the round window membrane in future.

  5. Structural and optical properties of electro-optic material. Sputtered (Ba,Sr)TiO3

    International Nuclear Information System (INIS)

    Suzuki, Masato; Xu, Zhimou; Tanushi, Yuichiro; Yokoyama, Shin

    2006-01-01

    In order to develop a novel ring resonator optical switch, we have studied the structural and optical properties of the electro-optic material (Ba,Sr)TiO 3 (BST) deposited by RF sputtering on a SiO 2 cladding layer (1.0 μm). The crystallinity of the BST films is evaluated by X-ray diffraction and the optical propagation loss of the waveguides is measured using a He-Ne laser. As a result, it is found that there is a strong relationship between the optical propagation loss and crystallinity of the sputtered film. It is suggested that the propagating light is influenced by the crystal property, for example, the grain size and density of the polycrystalline BST film. (author)

  6. Optical properties of metals by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Arakawa, E.T.; Inagaki, T.; Williams, M.W.

    1979-01-01

    The use of spectroscopic ellipsometry for the accurate determination of the optical properties of liquid and solid metals is discussed and illustrated with previously published data for Li and Na. New data on liquid Sn and Hg from 0.6 to 3.7 eV are presented. Liquid Sn is Drude-like. The optical properties of Hg deviate from the Drude expressions, but simultaneous measurements of reflectance and ellipsometric parameters yield consistent results with no evidence for vectorial surface effects

  7. Investigation of optical properties of Ag: PMMA nanocomposite structures

    Science.gov (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.

    2010-05-01

    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  8. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  9. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  10. Preparation, optical properties and 1 Multiplication-Sign 2 polymeric thermo-optic switch of polyurethane-urea

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Zhijuan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Guorong; Guan, Yijun; Shen, Qiang [Department of Physics, Jiangsu University, Zhenjiang 212013 (China); Wang, Qing; Yang, Dongya [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-08-15

    A polyurethane-urea (PUU) containing azo chromophore, polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) was prepared. The structure, thermal property and mechanical properties of obtained PUU were characterized and measured by the UV-visible spectroscopy, Fourier transform infrared, Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The refractive index (n) of PUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique, and the thermo-optic coefficients (dn/dT) were -5.3643 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, -5.2500 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1} and -4.6071 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, respectively. Using the Charge Coupled Device (CCD) digital imaging devices, transmission loss of PUU was measured and the value was 0.659 dB cm{sup -1}. A 1 Multiplication-Sign 2 polymeric thermo-optic switch based on the thermo-optic effect of PUU film was proposed. With branching angle of 0.143 Degree-Sign and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The result showed that the power consumption of the thermo-optic switch could be only 0.72 mW, and the response time of the switch was about 3.0 ms. The obtained PUU has a significant improvement in reducing the power consumption and response time compared with those of the normal polymeric thermo-optic switches. -- Highlights: Black-Right-Pointing-Pointer Preparation and structural characterization of a novel azo polyurethane-urea (PUU). Black-Right-Pointing-Pointer The mechanical performance and thermal property of PUU film. Black-Right-Pointing-Pointer The thermo-optic property, transmission loss and dispersion property of PUU. Black-Right-Pointing-Pointer Proposed a new 1 Multiplication-Sign 2 polymeric thermo-optic switch.

  11. Coupled nanopillar waveguides: optical properties and applications

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei

    2007-01-01

    , while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...

  12. Food and disturbance effects on Arctic benthic biomass and production size spectra

    Science.gov (United States)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  13. Observation and analysis of water inherent optical properties

    Science.gov (United States)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  14. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  15. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  16. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...

  17. Optical properties on thermally evaporated and heat-treated ...

    Indian Academy of Sciences (India)

    Administrator

    of the intra-molecular bonds between the powder compounds and thin films. The optical ... Keywords. Phthalocyanine; thin films; optical properties; absorption spectra. 1. .... Leica Cambridge scanning electron microscope (model. Stereoscan ...

  18. The offshore benthic fish community

    Science.gov (United States)

    Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael

    2014-01-01

    Lake Ontario’s offshore benthic fish community includes primarily slimy sculpin, lake whitefish, rainbow smelt, lake trout, burbot, and sea lamprey. Of these, lake trout have been the focus of an international restoration effort for more than three decades (Elrod et al. 1995; Lantry and Lantry 2008). The deepwater sculpin and three species of deepwater ciscoes (Coregonus spp.) that were historically important in the offshore benthic zone became rare or were extirpated by the 1960s (Christie 1973; Owens et al. 2003; Lantry et al. 2007b; Roth et al. 2013). Ecosystem changes continue to influence the offshore benthic fish community, including the effects of dreissenid mussels, the near disappearance of burrowing amphipods (Diporeia spp.) (Dermott et al. 2005; Watkins et al. 2007), and the increased abundance and expanded geographic distribution of round goby (see Nearshore Fish Community chapter) (Lantry et al. 2007b). The fish-community objectives for the offshore benthic fish community, as described by Stewart et al. (1999), are:

  19. Human tissue optical properties measurements and light propagation modelling

    CSIR Research Space (South Africa)

    Dam, JS

    2006-07-01

    Full Text Available Biomedical Optics is the study of the optical properties of living biological material, especially its scattering and absorption characteristics, and their significance to light propagation within the material. Determination of tissue optical...

  20. The CLASS blazar survey - II. Optical properties

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJ; Anton, S; Mack, KH; Neeser, MJ

    2002-01-01

    This paper presents the optical properties of the objects selected in the CLASS blazar survey. Because an optical spectrum is now available for 70 per cent of the 325 sources present in the sample, a spectral classification, based on the appearance of the emission/absorption lines, is possible. A

  1. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  2. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  3. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    Science.gov (United States)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased

  4. Temperature dependence of PZT film optical properties

    Czech Academy of Sciences Publication Activity Database

    Deineka, Alexander; Jastrabík, Lubomír; Suchaneck, G.; Gerlach, G.

    11-12, - (2001), s. 352-354 ISSN 0447-6441 R&D Projects: GA ČR GA202/00/1425; GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : refractive index profile * PZT film * temperature dependence of optical properties Subject RIV: BH - Optics, Masers, Lasers

  5. Handbook of the Properties of Optical Materials

    Science.gov (United States)

    1984-01-01

    EFFECTIVE MASS - - MOBILITY - - A-2 ARSEWIC SELENIOE (As2 Se3 ) OPTICAL PROPERTIES TRANSMISSION RANGE: 9 - 11n Optical Absorption Coefficient = 0.079...of 55 KRS-5 as a function of wavelength. A-2120 ZINC SELENIOE ZnSe 0 STRUCTURE CRYSTALLINE SYMMETRY = Cubic, 43m LATTICE CONSTANTS (A) = a = 5.667

  6. Theoretical Studies of Optical Properties of Silver Nanoparticles

    International Nuclear Information System (INIS)

    Ye-Wan, Ma; Zhao-Wang, Wu; Li-Hua, Zhang; Jie, Zhang

    2010-01-01

    Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization. (fundamental areas of phenomenology(including applications))

  7. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  8. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  9. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  10. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  11. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  12. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)

    Structural, optical and electrical properties of chemically deposited nonstoichiometric copper ... One of these compounds, CuInSe2, with its optical absorption .... is clear from SEM images that the number of grains goes on increasing with the ...

  13. Optical properties of GaAs

    International Nuclear Information System (INIS)

    Akinlami, J. O.; Ashamu, A. O.

    2013-01-01

    We have investigated the optical properties of gallium arsenide (GaAs) in the photon energy range 0.6–6.0 eV. We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV; an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV; the dielectric constant, the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV; the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV; the absorption coefficient which has a maximum value of 0.22 × 10 8 m −1 at a photon energy of 4.8 eV, the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV; the real part of optical conductivity has a maximum value of 14.2 × 10 15 at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8 × 10 15 at 5.0 eV. The values obtained for the optical properties of GaAs are in good agreement with other results. (semiconductor physics)

  14. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  15. Radiation-optical properties of the glasses for the space application

    International Nuclear Information System (INIS)

    Akishin, A.I.; Tseplyaev, L.I.

    2006-01-01

    The data are presented and generalized on variations of optical properties of glass and light guides under simulative cosmic ionizing radiation. It is shown that changes in optical properties (coloration, bleaching, opacity, luminescence) under ionizing radiation are associated with color centers formation and annealing [ru

  16. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  17. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...... contains papers which cover other themes thus continuing with the spirit of the meetings in the Nordic Benthological Society (NORBS) by being an open forum for exchanging knowledge on all aspects of benthic ecology. Overall, we feel the proceeding contains a wide selection of very interesting papers...... representing the state-of-the-art of benthic ecology research within, and to a lesser degree, outside the Nordic countries. We wish to thank all the authors for their inspirational contributions to the proceeding, but we feel that a special thanks is due to the invited speakers for their readiness to produce...

  18. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    Science.gov (United States)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  19. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  20. Structural, optical and thermal properties of nanoporous aluminum

    International Nuclear Information System (INIS)

    Ghrib, Taher

    2015-01-01

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties

  1. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    the applicability of optical techniques for this purpose, the fermentation of milk into yogurt has been used as a model system. Studies have been conducted on commercially available products, but also of on-line measurement of the fermentation process. The second process is from the aquaculture industry...... reports on the design and operation of the different measurement techniques together with the necessary theoretical background for the industrial applications. For the purpose of milk fermentation this work has demonstrated that the reduced scattering properties of milk change significantly throughout...... the fermentation process. It has also been shown that the optical inspection methods sense changes to structural properties before any are detected by traditional mechanical rheology. Finally, the developed hyperspectral imaging system was used to quantify the content of astaxanthin in fish feed, and performed...

  2. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Optical properties of cells with melanin

    Science.gov (United States)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  4. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  5. Gold nanorods-silicone hybrid material films and their optical limiting property

    Science.gov (United States)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  6. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  7. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  8. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea

    NARCIS (Netherlands)

    Provoost, P.; Braeckman, U.; Van Gansbeke, D.; Moodley, L.; Soetaert, K.; Middelburg, J.J.; Vanaverbeke, J.

    2013-01-01

    A time-series of benthic oxygen consumption, water-column and sediment chlorophyll concentrations, and temperature in the southern North Sea was subjected to inverse modelling in order to study benthic-pelagic coupling in this coastal marine system. The application of a Markov Chain Monte Carlo

  10. Dispersion properties of plasma cladded annular optical fiber

    Science.gov (United States)

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  11. Frictional and Optical Properties of Diamond-Like-Carbon Coatings on Polycarbonate

    International Nuclear Information System (INIS)

    Lin Zeng; Gao Ding; Ba Dechun; Wang Feng; Liu Chunming

    2013-01-01

    In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced chemical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp 2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp 3 content of the coatings

  12. Test of the Capability of Laser Line Scan Technology to Support Benthic Habitat Mapping in Coral Reef Ecosystems, Maui Island, November 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The utility of Laser Line Scan (LLS) Technology for optical validation of benthic habitat map data from coral reef ecosystems was tested with a deployment of a...

  13. A Servicewide Benthic Mapping Program for National Parks

    Science.gov (United States)

    Moses, Christopher S.; Nayegandhi, Amar; Beavers, Rebecca; Brock, John

    2010-01-01

    In 2007, the National Park Service (NPS) Inventory and Monitoring Program directed the initiation of a benthic habitat mapping program in ocean and coastal parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With 74 ocean and Great Lakes parks stretching over more than 5,000 miles of coastline across 26 States and territories, this Servicewide Benthic Mapping Program (SBMP) is essential. This program will deliver benthic habitat maps and their associated inventory reports to NPS managers in a consistent, servicewide format to support informed management and protection of 3 million acres of submerged National Park System natural and cultural resources. The NPS and the U.S. Geological Survey (USGS) convened a workshop June 3-5, 2008, in Lakewood, Colo., to discuss the goals and develop the design of the NPS SBMP with an assembly of experts (Moses and others, 2010) who identified park needs and suggested best practices for inventory and mapping of bathymetry, benthic cover, geology, geomorphology, and some water-column properties. The recommended SBMP protocols include servicewide standards (such as gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). SBMP Mapping Process. The SBMP calls for a multi-step mapping process for each park, beginning with a gap assessment and data mining to determine data resources and needs. An interagency announcement of intent to acquire new data will provide opportunities to leverage partnerships. Prior to new data acquisition, all involved parties should be included in a scoping meeting held at network scale. Data collection will be followed by processing and interpretation, and finally expert review and publication. After publication, all digital materials will be archived in a common format. SBMP Classification Scheme. The SBMP will map using the Coastal and Marine Ecological

  14. Linear and nonlinear optical properties of borate crystals as ...

    Indian Academy of Sciences (India)

    Unknown

    crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.

  15. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available of ceria nanoparticles and degradation of Congo red (CR) dye under the visible light irradiation. We are very much happy to note the research progress on the techniques of synthesis, characterization, and optical properties of nanostructured materials. Also...

  16. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    Science.gov (United States)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  17. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  18. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    Science.gov (United States)

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  19. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  20. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    Science.gov (United States)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  1. Anomalous optical and electronic properties of dense sodium

    International Nuclear Information System (INIS)

    Li Dafang; Liu Hanyu; Wang Baotian; Shi Hongliang; Zhu Shaoping; Yan Jun; Zhang Ping

    2010-01-01

    Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.

  2. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  3. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  4. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  5. The bio-optical properties of CDOM as descriptor of lake stratification.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo

    2006-11-01

    Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.

  6. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  7. Quasiparticle and optical properties of strained stanene and stanane.

    Science.gov (United States)

    Lu, Pengfei; Wu, Liyuan; Yang, Chuanghua; Liang, Dan; Quhe, Ruge; Guan, Pengfei; Wang, Shumin

    2017-06-20

    Quasiparticle band structures and optical properties of two dimensional stanene and stanane (fully hydrogenated stanene) are studied by the GW and GW plus Bethe-Salpeter equation (GW-BSE) approaches, with inclusion of the spin-orbit coupling (SOC). The SOC effect is significant for the electronic and optical properties in both stanene and stanane, compared with their group IV-enes and IV-anes counterparts. Stanene is a semiconductor with a quasiparticle band gap of 0.10 eV. Stanane has a sizable band gap of 1.63 eV and strongly binding exciton with binding energy of 0.10 eV. Under strain, the quasiparticle band gap and optical spectrum of both stanene and stanane are tunable.

  8. Complex yet translucent: the optical properties of sea ice

    International Nuclear Information System (INIS)

    Perovich, Donald K.

    2003-01-01

    Sea ice is a naturally occurring material with an intricate and highly variable structure consisting of ice platelets, brine pockets, air bubbles, and precipitated salt crystals. The optical properties of sea ice are directly dependent on this ice structure. Because sea ice is a material that exists at its salinity determined freezing point, its structure and optical properties are significantly affected by small changes in temperature. Understanding the interaction of sunlight with sea ice is important to a diverse array of scientific problems, including those in polar climatology. A key optical parameter for climatological studies is the albedo, the fraction of the incident sunlight that is reflected. The albedo of sea ice is quite sensitive to surface conditions. The presence of a snow cover enhances the albedo, while surface meltwater reduces the albedo. Radiative transfer in sea ice is a combination of absorption and scattering. Differences in the magnitude of sea ice optical properties are ascribable primarily to differences in scattering, while spectral variations are mainly a result of absorption. Physical changes that enhance scattering, such as the formation of air bubbles due to brine drainage, result in more light reflection and less transmission

  9. Optical properties of quasiperiodically arranged semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Werchner, Marco

    2009-12-18

    This work consists of two parts which are entitled ''One-Dimensional Resonant Fibonacci Quasicrystals'' and ''Resonant Tunneling of Light in Silicon Nanostructures''. A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL.. The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically.Light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close

  10. Benthic macroinvertebrate assemblages in mangroves and open ...

    African Journals Online (AJOL)

    Benthic macroinvertebrate assemblages in mangroves and open intertidal areas on the Dar es Salaam coast, Tanzania. ... it is recommended that conservation efforts along the Tanzanian coast should focus here. Keywords: benthic macrofauna, community structure, littoral zone, Tanganyika, Western Indian Ocean ...

  11. Classification of threespine stickleback along the benthic-limnetic axis.

    Science.gov (United States)

    Willacker, James J; von Hippel, Frank A; Wilton, Peter R; Walton, Kelly M

    2010-11-01

    Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.

  12. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  13. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  14. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Zhou, W.

    2010-01-01

    Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA) method, and finite-difference time domain (FDTD) method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL) and focused ion beam (FIB) are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs)-potential Alzheimer's disease (AD) biomarkers, and staphylococcal enterotoxin B (SEB) in nano-Moore per liter (nM) concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  15. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  16. Some properties of point processes in statistical optics

    International Nuclear Information System (INIS)

    Picinbono, B.; Bendjaballah, C.

    2010-01-01

    The analysis of the statistical properties of the point process (PP) of photon detection times can be used to determine whether or not an optical field is classical, in the sense that its statistical description does not require the methods of quantum optics. This determination is, however, more difficult than ordinarily admitted and the first aim of this paper is to illustrate this point by using some results of the PP theory. For example, it is well known that the analysis of the photodetection of classical fields exhibits the so-called bunching effect. But this property alone cannot be used to decide the nature of a given optical field. Indeed, we have presented examples of point processes for which a bunching effect appears and yet they cannot be obtained from a classical field. These examples are illustrated by computer simulations. Similarly, it is often admitted that for fields with very low light intensity the bunching or antibunching can be described by using the statistical properties of the distance between successive events of the point process, which simplifies the experimental procedure. We have shown that, while this property is valid for classical PPs, it has no reason to be true for nonclassical PPs, and we have presented some examples of this situation also illustrated by computer simulations.

  17. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  18. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  19. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    Science.gov (United States)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    Reservoirs located in highly populated and industrialized regions receive discharges of nutrients and pollutants from the watershed that have great potential to impair water quality and threaten aquatic life. The Euiam reservoir is a multiple-purpose water body used for tourism, fishery, and water supply and has been reported as eutrophic since 1990s. The external nutrients loading is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms often continue even after external nutrients loading has been controlled, being benthic nutrient loading the main source of nutrients in the water column. Attempts to quantify benthic nutrients fluxes and their role as a source of nutrients to the water column have produced ambiguous results. Benthic flux is dependent on the upward flow of pore water caused by hydrostatic pressure, molecular diffusion, and mixing of sediment and water. In addition, it is controlled by dissolved oxygen (DO) levels, pH values and temperature in the overlying water. Therefore, linking a benthic flux to a water quality model should give us more insight on the effects of benthic fluxes to better quantify nutrient concentration within an entire reservoir system where physical, chemical, biological properties are variable. To represent temporal and spatial variations in the nutrient concentrations of the reservoir, a three-dimensional time variable model, Generalized Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) was selected. The GLLVHT model is imbedded within the Generalized Environmental Modeling System for Surface waters (GEMSS). The computational grid of the three-dimensional model was developed using the GIS. The horizontal grid is composed of 580 active cells at the surface layer with spacing varies from 54.2 m to 69.8 m. There are 15 vertical layers with uniform thickness of 1.9 m resolution. To calibrate the model, model prediction for

  20. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  1. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra

    2011-10-25

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  2. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  3. Unraveling the size-dependent optical properties of dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Stedmon, Colin; Tranvik, Lars

    2018-01-01

    The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...

  4. Optical and Electrical Properties of Ar+ Implanted PET

    Science.gov (United States)

    Kumar, Rajiv; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2011-07-01

    In the present work, the effect of 100 keV argon ion implantation on the optical and electrical properties of PET has been studied. A continuous reduction in optical band gap (from 3.63 to 1.93 eV) with increasing implantation dose has been observed as analyzed using UV-Visible absorption spectroscopy. Current-Voltage (I-V) characteristics have been studied which clearly indicate the enhancement in the conductivity of PET specimens as an effect of implantation. This increase in conductivity has been correlated with the decrease in optical band gap.

  5. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  6. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  7. Relevant optical properties for direct restorative materials.

    Science.gov (United States)

    Pecho, Oscar E; Ghinea, Razvan; do Amaral, Erika A Navarro; Cardona, Juan C; Della Bona, Alvaro; Pérez, María M

    2016-05-01

    To evaluate relevant optical properties of esthetic direct restorative materials focusing on whitened and translucent shades. Enamel (E), body (B), dentin (D), translucent (T) and whitened (Wh) shades for E (WhE) and B (WhB) from a restorative system (Filtek Supreme XTE, 3M ESPE) were evaluated. Samples (1 mm thick) were prepared. Spectral reflectance (R%) and color coordinates (L*, a*, b*, C* and h°) were measured against black and white backgrounds, using a spectroradiometer, in a viewing booth, with CIE D65 illuminant and d/0° geometry. Scattering (S) and absorption (K) coefficients and transmittance (T%) were calculated using Kubelka-Munk's equations. Translucency (TP) and opalescence (OP) parameters and whiteness index (W*) were obtained from differences of CIELAB color coordinates. R%, S, K and T% curves from all shades were compared using VAF (Variance Accounting For) coefficient with Cauchy-Schwarz inequality. Color coordinates and optical parameters were statistically analyzed using one-way ANOVA, Tukey's test with Bonferroni correction (α=0.0007). Spectral behavior of R% and S were different for T shades. In addition, T shades showed the lowest R%, S and K values, as well as the highest T%, TP an OP values. In most cases, WhB shades showed different color and optical properties (including TP and W*) than their corresponding B shades. WhE shades showed similar mean W* values and higher mean T% and TP values than E shades. When using whitened or translucent composites, the final color is influenced not only by the intraoral background but also by the color and optical properties of multilayers used in the esthetic restoration. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  9. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2017-01-01

    To derive the bulk radiative properties of ice clouds, aircraft contrails and snow grains, which are fundamental to atmospheric radiative transfer calculations in downstream applications, it is necessary to accurately simulate the scattering of light by individual ice particles. An ice particle optical property database reported in 2013 (hereafter, TAMUice2013) is updated (hereafter, TAMUice2016) to incorporate recent advances in computation of the optical properties of nonspherical particles. Specifically, we employ the invariant imbedding T-matrix (II-TM) method to compute the optical properties of particles with small to moderate size parameters. Both versions use the Improved Geometric Optics Method (IGOM) to compute the optical properties of large ice crystals, but TAMUice2016 improves the treatment of inhomogeneous waves inside the scattering particles in the case where ice is absorptive such as at infrared wavelengths. To bridge the gap between the extinction efficiencies computed from the II-TM and the IGOM, TAMUice2016 includes spectrally dependent higher order terms of the edge effect in addition to the first order counterpart considered in TAMUice2013. Furthermore, the differences between TAMUice2013 and TAMUice2016 are quantified with respect to the computation of the bulk optical properties of ice clouds. - Highlights: • A previous database of the single-scattering properties of ice crystals is improved. • A combination of the invariant imbedding T-matrix and improved geometric optics methods is used. • The treatment of inhomogeneous waves in an absorptive ice crystal is improved. • Higher order terms of the edge effect are considered in the updated database.

  10. Effect of capping agents on optical and antibacterial properties of ...

    Indian Academy of Sciences (India)

    Administrator

    unique optical properties resulting from quantum con- finement ... them suitable in application such as biomedical label- ling,4 solar ... All optical measurements were carried out at ..... QDs with biomolecules and to use them as biosensors,.

  11. Optical properties of silver composite metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Orbons, S.M. [School of Physics, University of Melbourne, Victoria 3010 (Australia)]. E-mail: sorbons@ph.unimelb.edu.au; Freeman, D. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Luther-Davies, B. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Gibson, B.C. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Huntington, S.T. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Roberts, A. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2007-05-15

    We present a computational and experimental study investigating the optical properties of nanoscale silver composite metamaterials fabricated by ion beam lithography. Both simulations and experimental results demonstrate high transmission efficiencies in the near infra-red through these devices. Implications for experimentally verifying the calculated near-field distributions of these materials are also discussed.

  12. Lake Malawi cichlid evolution along a benthic/limnetic axis.

    Science.gov (United States)

    Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T

    2013-07-01

    Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.

  13. Benthic percent cover derived from analysis of benthic images collected at coral reef sites in Timor-Leste in 2013 and 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The benthic cover data described here result from benthic photo-quadrat surveys conducted by the NOAA Coral Reef Ecosystem Program (CREP) in hard bottom shallow...

  14. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  15. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  16. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  17. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering

    Science.gov (United States)

    Müllerová, Jarmila; Šutta, Pavol; Medlín, Rostislav; Netrvalová, Marie; Novák, Petr

    2017-12-01

    In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.

  18. Strain induced optical properties of BaReO3

    Science.gov (United States)

    Kumavat, Sandip R.; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    Here, we have performed strain induce optical properties of BaReO3 by using density functional theory (DFT). We noticed that after applying intrinsic and extrinsic strain to the BaReO3, it shows the metallic behavior. We also studied optical properties, which show good activity in the ultraviolet region. The results show that after applying intrinsic and extrinsic strain to BaReO3 the absorption peaks are shifted towards the high UV region of the spectrum. Thus, we concluded that, BaReO3 material with extrinsic strain can be useful for high frequency UV device and optoelectronic devices.

  19. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  20. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  1. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  2. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Since the late 1970’s, Lake Ontario benthic prey fish status was primarily assessed using bottom trawl observations confined to the lake’s south shore, in waters from 8 – 150 m (26 – 492 ft). In 2015, the Benthic Prey Fish Survey was cooperatively adjusted and expanded to address resource management information needs including lake-wide benthic prey fish population dynamics. Effort increased from 55 bottom trawl sites to 135 trawl sites collected in depths from 8 - 225m (26 – 738 ft). The spatial coverage of sampling was also expanded and occurred in all major lake basins. The resulting distribution of tow depths more closely matched the available lake depth distribution. The additional effort illustrated how previous surveys were underestimating lake-wide Deepwater Sculpin, Myoxocephalus thompsonii, abundance by not sampling in areas of highest density. We also found species richness was greater in the new sampling sites relative to the historic sites with 11 new fish species caught in the new sites including juvenile Round Whitefish, Prosopium cylindraceum, and Mottled sculpin, Cottus bairdii. Species-specific assessments found Slimy Sculpin, Cottus cognatus abundance increased slightly in 2015 relative to 2014, while Deepwater Sculpin and Round Goby, Neogobius melanostomus, dramatically increased in 2015, relative to 2014. The cooperative, lake-wide Benthic Prey Fish Survey expanded our understanding of benthic fish population dynamics and habitat use in Lake Ontario. This survey’s data and interpretations influence international resource management decision making, such as informing the Deepwater Sculpin conservation status and assessing the balance between sport fish consumption and prey fish populations. Additionally a significant Lake Ontario event occurred in May 2015 when a single

  3. Electronic properties and optical absorption of a phosphorene quantum dot

    Science.gov (United States)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  4. Shift in optical properties of Mn doped CdS (A DFT+U study)

    Science.gov (United States)

    khan, M. Junaid Iqbal; Kanwal, Zarfishan; Nauman Usmani, M.

    2018-01-01

    Current study is based on PBE-GGA and GGA+U computational approach for calculating optical properties of Mn doped CdS. Cd atom in host CdS lattice (rocksalt structure) are substituted with Mn at various lattice positions and shift in optical properties is observed by increasing supercell size by employing PBE-GGA and Hubbard term. Optical properties vary with changing supercell size and show significant change for GGA+U. Blue shift in absorption spectrum and plots for PDOS, TDOS are in accordance with existing reported work. Moreover strong p-d hybridization is observed due to Mn and S orbital interactions and localization of d-states are scrutinized in vicinity of Fermi level or conduction band minima. GGA+U absorption curve shows redshift and a tremendous change in optical properties is observed due to different bonding. Doping Mn into CdS host lattice illustrates enhancement in Opto-electrical properties which maximizes CdS:Mn system scope in optoelectronic devices.

  5. Electronic structure and optical properties of prominent phases of T i ...

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... ... in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of ( T i O 2 ) may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.

  6. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  7. Structural and optical properties of Na-doped ZnO films

    Science.gov (United States)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  8. Inherent optical properties of pollen particles: a case study for the morning glory pollen.

    Science.gov (United States)

    Liu, Chao; Yin, Yan

    2016-01-25

    Biological aerosols, such as bacteria, fungal spores, and pollens, play an important role on various atmospheric processes, whereas their inherent optical property is one of the most uncertainties that limit our ability to assess their effects on weather and climate. A numerical model with core-shell structure, hexagonal grids and barbs is developed to represent one kind of realistic pollen particles, and their inherent optical properties are simulated using a pseudo-spectral time domain method. Both the hexagonal grids and barbs substantially affect the modeled pollen optical properties. Results based on the realistic particle model are compared with two equivalent spherical approximations, and the significant differences indicate the importance of considering pollen geometries for their optical properties.

  9. Density functional study of : Electronic and optical properties

    Indian Academy of Sciences (India)

    K C Bhamu

    3Department of Physics, Swami Keshvanand Insitute of Technology, Management and Gramothan, ... Published online 20 June 2017. Abstract. This paper focusses on the electronic and optical properties of scandium-based silver delafossite.

  10. Novel optical properties of CdS:Zn rocksalt system (a theoretical study)

    Science.gov (United States)

    Khan, M. Junaid Iqbal; Nauman Usmani, M.; Kanwal, Zarfishan

    2017-11-01

    In present computational study, we focus on optical properties of Zn doped CdS for 1  ×  1  ×  2 and 2  ×  2  ×  2 supercell configurations. Cd atoms are substituted with Zn atoms and results for optical properties demonstrate different trends due to interaction of Zn with S atoms. The study has been performed by PBE-GGA approach using Wien2K within framework of DFT. TDOS and PDOS represent that S-3p states are responsible for conduction. For large supercell configuration, a tremendous change in optical properties has been observed due to different bonding. Optical absorption tends to increase in visible range which supports candidacy of Zn doped CdS for enhanced optoelectronic and nanotechnology applications.

  11. Benthic ecological status of Algerian harbours.

    Science.gov (United States)

    Dauvin, J C; Bakalem, A; Baffreau, A; Grimes, S

    2017-12-15

    This work is an overview of all available benthic data collected in the Algerian harbours between 1983 and 2001. So, total of 571 stations were reported in the 10 major Algerian harbours along the Algerian coast (1200km). Two main categories of harbours were distinguished according to their hydrodynamic regime and volume of water exchange between inner harbour basins and the entrance of the harbours. Univariate, multivariate, benthic indices and Biological Traits of Life approaches were applied on stations sampled in the late 1990s and long-term observations in six out of these ten harbours. These approaches assessed the main characteristics and ecological statuses from these south Mediterranean harbours. One of the main characteristics of the Algerian harbours was the very high species diversity (847 species). Although all the fauna was dominated by pollution-tolerant species; some harbours such as Bethioua and Djendjen hosted normal benthic communities as found in the open sea, but also included some pollution indicator species typical of a slight polluted system. On the contrary, the newly constructed port of Skikda showed perturbed benthic communities in relation to hydrocarbon pollution. Biological Traits of Life analysis reinforced the separation of benthic species along a gradient reflecting their sensitivity or tolerance to pollution. This response was related to an increase in organic matter content, probably associated with a general organic and metal contamination, from the entrance of the harbour to the innermost basins in areas with weak circulation, high sedimentation rate and concentrations of pollutants. Except for Oran harbour, where the poor to moderate ecological status remained unchanged with time, the other harbours showed an improvement or a slight degradation. A strategy of long-term monitoring should be promoted, based on a restricted and selected number of stations characteristic of the different basins and water masses occupying the

  12. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  13. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  14. EXTRACTION OF BENTHIC COVER INFORMATION FROM VIDEO TOWS AND PHOTOGRAPHS USING OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. T. L. Estomata

    2012-07-01

    Full Text Available Mapping benthic cover in deep waters comprises a very small proportion of studies in the field of research. Majority of benthic cover mapping makes use of satellite images and usually, classification is carried out only for shallow waters. To map the seafloor in optically deep waters, underwater videos and photos are needed. Some researchers have applied this method on underwater photos, but made use of different classification methods such as: Neural Networks, and rapid classification via down sampling. In this study, accurate bathymetric data obtained using a multi-beam echo sounder (MBES was attempted to be used as complementary data with the underwater photographs. Due to the absence of a motion reference unit (MRU, which applies correction to the data gathered by the MBES, accuracy of the said depth data was compromised. Nevertheless, even with the absence of accurate bathymetric data, object-based image analysis (OBIA, which used rule sets based on information such as shape, size, area, relative distance, and spectral information, was still applied. Compared to pixel-based classifications, OBIA was able to classify more specific benthic cover types other than coral and sand, such as rubble and fish. Through the use of rule sets on area, less than or equal to 700 pixels for fish and between 700 to 10,000 pixels for rubble, as well as standard deviation values to distinguish texture, fish and rubble were identified. OBIA produced benthic cover maps that had higher overall accuracy, 93.78±0.85%, as compared to pixel-based methods that had an average accuracy of only 87.30±6.11% (p-value = 0.0001, α = 0.05.

  15. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  16. Optical properties of tetrapod nanostructured zinc oxide by chemical ...

    African Journals Online (AJOL)

    ... deposited onto indium tin oxide (ITO) coated glass substrate by thermal chemical vapor deposition (TCVD) technique. This work studies the effects of annealing temperature ranging from 100–500 ºC towards its physical and optical properties. FESEM images showed that the structural properties of tetrapod nanostructured ...

  17. Non-linear optical techniques and optical properties of condensed molecular systems

    Science.gov (United States)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  18. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  19. Differences in composition of shallow-water marine benthic communities associated with two ophiolitic rock substrata

    Science.gov (United States)

    Bavestrello, Giorgio; Bo, Marzia; Betti, Federico; Canessa, Martina; Gaggero, Laura; Rindi, Fabio; Cattaneo-Vietti, Riccardo

    2018-01-01

    On marine rocky shores, several physical, chemical and biological processes operate to maintain the benthic assemblages' heterogeneity, but among the abiotic factors, the composition and texture of the rocky substrata have been only sporadically considered. However, biomineralogical studies have demonstrated an unsuspected ability of the benthic organisms to interact at different levels with rocky substrata. Therefore, the mineralogy of the substratum can affect the structure of benthic communities. To evaluate this hypothesis, the macrobenthic assemblages developed on two different ophiolitic rocks (serpentinites and metagabbros) in contact at a restricted stretch of the western Ligurian Riviera (western Mediterranean Sea), with identical environmental and climatic conditions, were analysed. Samplings were carried out at four bathymetric levels (+1m, 0m, -1m, and -3m respect to the mean sea level) and the analysis of the data evidenced differences in terms of species distribution and percent coverage. Algal communities growing on metagabbros were poorer in species richness and showed a much simpler structure when compared to the assemblages occurring on the serpentinites. The most widely distributed animal organism, the barnacle Chthamalus stellatus, was dominant on serpentinites, and virtually absent on metagabbros. Our results suggest a complex pattern of interactions between lithology and benthic organisms operating through processes of inhibition/facilitation related to the mineral properties of the substratum.

  20. Correlation between the structural and optical properties of ion-assisted hafnia thin films

    Science.gov (United States)

    Scaglione, Salvatore; Sarto, Francesca; Alvisi, Marco; Rizzo, Antonella; Perrone, Maria R.; Protopapa, Maria L.

    2000-03-01

    The ion beam assistance during the film growth is one of the most useful method to obtain dense film along with improved optical and structural properties. Afnia material is widely used in optical coating operating in the UV region of the spectrum and its optical properties depend on the production method and the physical parameters of the species involved in the deposition process. In this work afnia thin films were evaporated by an e-gun and assisted during the growth process. The deposition parameters, ion beam energy, density of ions impinging on the growing film and the number of arrival atoms from the crucible, have been related to the optical and structural properties of the film itself. The absorption coefficient and the refractive index were measured by spectrophotometric technique while the microstructure has been studied by means of x-ray diffraction. A strictly correlation between the grain size, the optical properties and the laser damage threshold measurements at 248 nm was found for the samples deposited at different deposition parameters.

  1. Influence Al doped ZnO nanostructure on structural and optical properties

    International Nuclear Information System (INIS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-01-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  2. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  3. Benthic foraminiferal biocoenoses in the estuarine regimes of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Benthic Foraminifera are highly responsive to subtle changes in the estuarine environment. Keeping this in view, a qualitative analysis of living benthic Foraminifera was made of the samples collected from the Mandovi-Zuari estuaries...

  4. Effect of gamma radiation on the optical properties of intraocular lenses

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2006-01-01

    The effect of gamma rays in the range of doses up to 150 gray on optical and thermal properties of the intraocular lenses (IOL) made of polymethyl methacrylate (PMMA) was studied. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) have been performed to study the effect of gamma irradiation on the IOL. The results indicate that irradiation up to 150 Gy did not affect greatly the optical and thermal properties of the investigated IOL

  5. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Marianas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  6. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  7. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  8. Optical properties of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aspnes, D.E.; Kelly, M.K.

    1989-01-01

    The authors summarize the present status of optical spectroscopy of high-T c superconductors. The optical properties of these materials resemble those of the more common transition metal oxides except for being highly anisotropic in the infrared (IR). This large IR anisotrophy and a need to rely solely on reflectance techniques has hindered progress in obtaining accurate IR data and interpreting these data in terms of microscopic mechanisms. However, experimental consistency is now being approached with single-crystal samples, although interpretations of these data remain controversial and an unequivocal demonstration of a superconducting gap structure has not yet been achieved. The mid IR exhibits an absorption band whose systematics are neither well established nor understood. The situation in the visible-near-ultraviolet (V-NUV) is better, partly because of greatly reduced optical anisotropy and the availability of alternative measurement techniques that are not strongly affected by the lower optical quality of sintered material. As polycrystalline, sintered samples can be prepared relatively easily over wide ranges of composition, doping, and chemical substitution, most work on studying the chemical systematics of these materials has been done in this spectral range and some of the structure that appears here has been positively identified

  9. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  10. Electronic and optical properties of finite carbon nanotubes in an electric field

    International Nuclear Information System (INIS)

    Chen, R B; Lee, C H; Chang, C P; Lin, M F

    2007-01-01

    The effects, caused by the geometric structure and an electric field (E), on the electronic and optical properties of quasi-zero-dimensional finite carbon nanotubes are explored by employing the tight-binding model coupled with curvature effects. Electronic properties (state energies, symmetry of electronic states, energy spacing and state degeneracy) are significantly affected by the magnitude and the direction of the electric field and the geometric structure (radius, length and chirality). The electric field, by lowering the symmetry of finite carbon nanotubes, modifies the electronic properties. Thus, the optical excitation spectra, excited by electric polarization parallel to the nanotube axis, exhibit rich delta-function-like peaks, which reveal the characteristics of the electronic properties. Therefore it follows that geometric structure and E influence the low-energy absorption spectra, i.e. the change of frequency of the first peak, the alternation of the peak height and the production of the new peaks. There are more absorption peaks when E is oriented closer to the cross-section plane. Moreover, the very complicated optical absorption spectra are characteristic for the individual chiral carbon nanotube due to its specific geometric structure. Above all, the predicted absorption spectra and the associated electronic properties could be verified by optical measurements

  11. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  12. Lanthanides-clay nanocomposites: Synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Celedon, Salvador; Quiroz, Carolina; Gonzalez, Guillermo; Sotomayor Torres, Clivia M.; Benavente, Eglantina

    2009-01-01

    Complexes of Europium(III) and Terbium(III) with 2,2-bipyridine and 1,10-phenanthroline were inserted into Na-bentonite by ion exchange reactions at room temperature. The products display interlaminar distances and stoichiometries in agreement with the ion exchange capacity and the interlayer space available in the clay. The optical properties of the intercalates, being qualitatively similar to those of the free complexes, are additionally improved with respect to exchange processes with the medium, especially in a moist environment. The protection again hydrolysis, together with the intensity of the optical transition 5 D 0 - 5 F 2 observed in the nanocomposite, makes these products promising for the development of novel optical materials

  13. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  14. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    Science.gov (United States)

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  15. Optical properties of implanted Xe color centers in diamond

    Science.gov (United States)

    Sandstrom, Russell; Ke, Li; Martin, Aiden; Wang, Ziyu; Kianinia, Mehran; Green, Ben; Gao, Wei-bo; Aharonovich, Igor

    2018-03-01

    Optical properties of color centers in diamond have been the subject of intense research due to their promising applications in quantum photonics. In this work we study the optical properties of Xe related color centers implanted into nitrogen rich (type IIA) and an ultrapure, electronic grade diamond. The Xe defect has two zero phonon lines at ∼794 nm and 811 nm, which can be effectively excited using both green and red excitation, however, its emission in the nitrogen rich diamond is brighter. Near resonant excitation is performed at cryogenic temperatures and luminescence is probed under strong magnetic field. Our results are important towards the understanding of the Xe related defect and other near infrared color centers in diamond.

  16. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    Science.gov (United States)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  17. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  18. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas

    2014-01-01

    Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists...... of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...... the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange...

  19. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  20. Benthic Foraminifera as ecological indicators for water quality on the Great Barrier Reef

    Science.gov (United States)

    Uthicke, Sven; Nobes, Kristie

    2008-07-01

    Benthic foraminifera are established indicators for Water Quality (WQ) in Florida and the Caribbean. However, nearshore coral reefs of the Great Barrier Reef (GBR) and other Pacific regions are also subjected to increased nutrient and sediment loads. Here, we investigate the use of benthic foraminifera as indicators to assess status and trends of WQ on GBR reefs. We quantified several sediment parameters and the foraminiferan assemblage composition on 20 reefs in four geographic regions of the GBR, and along a water column nutrient and turbidity gradient. Twenty-seven easily recognisable benthic foraminiferan taxa (>63 μm) were distinguished. All four geographic regions differed significantly ( p turbid inner shelf towards clearer outer shelf reefs. A RDA separated symbiotic and aposymbiotic (heterotrophic) taxa. In addition, total suspended solid and water column chlorophyll a concentrations were negatively correlated, and optical depth and distance to the mainland were positively correlated, with the abundance of symbiont-bearing taxa. Several large foraminifera were identified as indicators for offshore, clear water conditions. In contrast, heterotrophic rotaliids and a species retaining plastids ( Elphidium sp.) where highly characteristic for low light, higher nutrient conditions. Application of the FORAM index to GBR assemblage composition showed a significant increase in the value of this index with increased distance from the mainland in the Whitsunday region ( r2 = 0.75, p < 0.001), and therefore with increasing light and decreased nutrient availability. We conclude that it will be possible to apply this index to GBR and possibly other Pacific reefs after some adaptations and additional experimental work on species-specific limiting factors.

  1. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo; Rhee, J. Y.

    2011-01-01

    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method

  2. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  3. The latest Paleocene benthic extinction event: Punctuated turnover in outer neritic benthic foraminiferal faunas from Gebel Aweina, Egypt

    OpenAIRE

    Speijer, Robert; Schmitz, B; Aubry, MP; Charisi, SD

    1995-01-01

    We investigated the benthic foraminiferal record of the neritic sequence at Gebel Aweina (Nile Valley, Egypt) in relation to the latest Paleocene deep-sea benthic extinction event (BEE). At Gebel Aweina an expanded sequence, spanning calcareous nannofossil Zones NP8-NPlO, is continuously exposed and yields calcareous microfauna throughout. The BEE level is situated about halfway through Zone NP9 at 17m above the base of the Esna Formation. Detailed biostratigraphic and isotopic studies have i...

  4. Optical properties of Cd Se thin films obtained by pyrolytic dew

    International Nuclear Information System (INIS)

    Perez G, A.M.; Tepantlan, C.S.; Renero C, F.

    2006-01-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na 2 SSeO 3 ) and Cadmium Chloride (CdC 12 ) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  5. Fish stomach contents in benthic macroinvertebrate assemblage assessments

    Directory of Open Access Journals (Sweden)

    TH. Tupinambás

    Full Text Available The choice of sampling gears to assess benthic macroinvertebrate communities depends on environmental characteristics, study objectives, and cost effectiveness. Because of the high foraging capacity and diverse habitats and behaviors of benthophagous fishes, their stomach contents may offer a useful sampling tool in studies of benthic macroinvertebrates, especially in large, deep, fast rivers that are difficult to sample with traditional sediment sampling gear. Our objective was to compare the benthic macroinvertebrate communities sampled from sediments with those sampled from fish stomachs. We collected benthic macroinvertebrates and fish from three different habitat types (backwater, beach, riffle in the wet season, drying season, and dry season along a single reach of the Grande River (Paraná River Basin, southeast Brazil. We sampled sediments through use of a Petersen dredge (total of 216 grabs and used gill nets to sample fish (total of 36 samples. We analyzed the stomach contents of three commonly occurring benthophagous fish species (Eigenmannia virescens, Iheringichthys labrosus, Leporinus amblyrhynchus. Chironomids dominated in both sampling methods. Macroinvertebrate taxonomic composition and abundances from fish stomachs differed from those from sediment samples, but less so from riffles than from backwater and beach habitats. Macroinvertebrate taxa from E. virescens stomachs were more strongly correlated with sediment samples from all three habitats than were those from the other two species. The species accumulation curves and higher mean dispersion values, compared with with sediment samples suggest that E. virescens is more efficient than sediment samples and the other fish studied at collecting benthic taxa. We conclude that by analyzing the stomach contents of benthophagous fishes it is possible to assess important characteristics of benthic communities (dispersion, taxonomic composition and diversity. This is especially true

  6. Predicting estuarine benthic production using functional diversity

    Directory of Open Access Journals (Sweden)

    Marina Dolbeth

    2014-05-01

    Full Text Available We considered an estuarine system having naturally low levels of diversity, but attaining considerable high production levels, and being subjected to different sorts of anthropogenic impacts and climate events to investigate the relationship between diversity and secondary production. Functional diversity measures were used to predict benthic production, which is considered as a proxy of the ecosystem provisioning services. To this end, we used a 14-year dataset on benthic invertebrate community production from a seagrass and a sandflat habitat and we adopted a sequential modeling approach, where abiotic, trait community weighted means (CWM and functional diversity indices were tested by generalized linear models (GLM, and their significant variables were then combined to produce a final model. Almost 90% of variance of the benthic production could be predicted by combining the number of locomotion types, the absolute maximum atmospheric temperature (proxy of the heat waves occurrence, the type of habitat and the mean body mass, by order of importance. This result is in agreement with the mass ratio hypothesis, where ecosystem functions/services can be chiefly predicted by the dominant trait in the community, here measured as CWM. The increase of benthic production with the number of locomotion types may be seen as greater possibility of using the resources available in the system. Such greater efficiency would increase production. The other variables were also discussed in line of the previous hypothesis and taking into account the general positive relationship obtained between production and functional diversity indices. Overall, it was concluded that traits representative of wider possibilities of using available resources and higher functional diversity are related with higher benthic production.

  7. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Hawaiian Archipelago in 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  8. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  9. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.; Mukhopadhyay, Sukrit; Shiring, Stephen B.; Risko, Chad; Bredas, Jean-Luc

    2014-01-01

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  10. Synthesis, field emission properties and optical properties of ZnSe nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, S.L., E-mail: slxue@dhu.edu.cn [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Wu, S.X.; Zeng, Q.Z.; Xie, P.; Gan, K.X.; Wei, J.; Bu, S.Y.; Ye, X.N.; Xie, L. [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Zou, R.J. [State Key Laboratory for Modification and Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhang, C.M.; Zhu, P.F. [Department of Physics, School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-03-01

    Graphical abstract: Unique ZnSe nanoflowers have been successfully synthesized by reaction of Se powder with Zn substrates. They are characterized by XRD, SEM, TEM, XPS, EDS and Raman spectroscopy and were single crystals with cubic zinc blende (ZB) structure. They also have excellent field emission properties and optical properties. - Highlights: • Novel ZnSe nanoflowers are grown on Zn foils. • ZnSe nanoflowers are characterized by XRD, SEM, TEM, XPS and Raman spectra. • ZnSe nanoflowers on Zn foils as cathodes possess good FE properties. - Abstract: ZnSe nanoflowers have been synthesized by reaction of Se powder with Zn substrates at low temperature. The as-prepared ZnSe nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray energy dispersive spectroscope (EDS) and Raman spectroscopy measurements. It was found that the morphologies of the as-prepared samples highly depended on reaction time. ZnSe nanoclusters and nanoflowers formed at 573 K when the reaction time was 20 and 60 min, respectively. The as-prepared ZnSe nanoflowers were composed of radically aligned ZnSe nanorods with smooth surfaces. The results of XRD, XPS, EDS, TEM and Raman showed that the as-prepared ZnSe nanocrystals were single crystals with cubic zinc blende (ZB) structure. The formation mechanism of the as-prepared ZnSe nanoflowers was also discussed. In addition, the as-prepared ZnSe nanoflowers had excellent electron emission properties. The turn-on field of the as-prepared ZnSe nanoflowers was 3.5 V/μm and the enhancement factor was 3499. The optical properties of the as-prepared ZnSe nanoflowers were also investigated. The results demonstrated that the as-prepared ZnSe nanoflowers were potential candidates for optoelectronic devices.

  11. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  13. Investigation of the electronic, magnetic and optical properties of newest carbon allotrope

    Science.gov (United States)

    Kazemi, Samira; Moradian, Rostam

    2018-05-01

    We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.

  14. Proton disorder in cubic ice: Effect on the electronic and optical properties

    International Nuclear Information System (INIS)

    Garbuio, Viviana; Pulci, Olivia; Cascella, Michele; Kupchak, Igor; Seitsonen, Ari Paavo

    2015-01-01

    The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation

  15. Ultrathin and Nanostructured Au Films with Gradient of Effective Thickness. Optical and Plasmonic Properties

    International Nuclear Information System (INIS)

    Tomilin, S V; Berzhansky, V N; Shaposhnikov, A N; Prokopov, A R; Milyukova, E T; Karavaynikov, A V; Tomilina, O A

    2016-01-01

    In present work the results of investigation of optical (transmission spectra) and plasmonic (surface plasmon-polariton resonance) properties of ultrathin and nanostructured Au films are presents. Methods and techniques for the syntheses of samples of ultrathin and nanostructured metallic films, and for the experimental studies of optical and plasmonic properties are representative. Au films on SiO 2 (optic glass) substrates were investigated. (paper)

  16. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  17. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  18. Climatological aspects of aerosol optical properties in Northern Greece

    Directory of Open Access Journals (Sweden)

    E. Gerasopoulos

    2003-01-01

    Full Text Available Measurements of aerosol optical properties (aerosol optical depth, scattering and backscattering coefficients have been conducted at two ground-based sites in Northern Greece, Ouranoupolis (40° 23' N, 23° 57' E, 170 m a.s.l. and Thessaloniki (40° 38' N, 22° 57' E, 80 m a.s.l., between 1999 and 2002. The frequency distributions of the observed parameters have revealed the presence of individual modes of high and low values, indicating the influence from different sources. At both sites, the mean aerosol optical depth at 500 nm was 0.23. Values increase considerably during summer when they remain persistently between 0.3 and 0.5, going up to 0.7-0.8 during specific cases. The mean value of 65±40 Mm-1 of the particle scattering coefficient at 550 nm reflects the impact of continental pollution in the regional boundary layer. Trajectory analysis has shown that higher values of aerosol optical depth and the scattering coefficient are found in the east sector (former Soviet Union countries, eastern Balkan countries, whereas cleaner conditions are found for the NW direction. The influence of Sahara dust events is clearly reflected in the Ångström exponents. About 45-60% of the observed diurnal variation of the optical properties was attributed to the growth of aerosols with humidity, while the rest of the variability is in phase with the evolution of the sea-breeze cell. The contribution of local pollution is estimated to contribute 35±10% to the average aerosol optical depth at the Thessaloniki site during summer. Finally, the aerosol scale height (aerosol optical depth divided by scattering coefficient was found to be related to the height of the boundary layer with values between 0.5-1 km during winter and up to 2.5-3 km during summer.

  19. Mixing rules for optical and transport properties of warm, dense matter

    International Nuclear Information System (INIS)

    Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  20. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-01-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  1. Optical properties of carbon nanotubes

    Science.gov (United States)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  2. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  3. Structural and optical properties of furfurylidenemalononitrile thin films

    Science.gov (United States)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  4. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  5. Potentiality of benthic dinoflagellate cultures and screening of their ...

    African Journals Online (AJOL)

    Taken together, this is the first report on the growth potential and biomass production of benthic dinoflagellate strains isolated from Jeju Island in appropriate culture medium as well as their importance in potential pharmacological applications. Key words: Amphidinium carterae, benthic dinoflagellates, biomass, bioactivities, ...

  6. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  7. Side Effect of Good's Buffers on Optical Properties of Gold Nanoparticle Solutions

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Wagner, Michal; Undall-Behrend Christiansen, Mikkel

    2016-01-01

    spectroscopy. Distinct absorption features at ca. 290 and 360 nm and fluorescence emission in the 408-484 nm range are observed in filtered AuNP-free solutions. Electrochemical oxidation of these buffers generates similar optical properties, suggesting that the degradation products of the buffers contribute...... to the optical properties of AuNP solutions. This work indicates deeper evaluation of fluorescence signals based on metal NPs or NCs is needed....

  8. Structural and optical properties of Si-doped GaN

    OpenAIRE

    Cremades Rodríguez, Ana Isabel; Gorgens, L.; Ambacher, O.; Stutzmann, M.; Scholz, F.

    2000-01-01

    Structural and optical properties of Si-doped GaN thin films grown by metal-organic chemical vapor deposition have been studied by means of high resolution x-ray diffraction (XRD), atomic force microscopy, photoluminescence, photothermal deflection spectroscopy, and optical transmission measurements. The incorporation of silicon in the GaN films leads to pronounced tensile stress. The energy position of the neutral donor bound excitonic emission correlates with the measured stress. The stress...

  9. Marine benthic faunal successional stages and related sedimentary activity

    Directory of Open Access Journals (Sweden)

    Rutger Rosenberg

    2001-12-01

    Full Text Available This paper is a brief review of successional stages and activity of benthic soft-bottom communities. Benthic communities was first described by Petersen in the 1910s and further developed by Molander, Thorson and Margalef. Successional stages of benthic communities chance in a predictable way in relation to environmental disturbance and food availability. Food supply to the bottom can occur as a vertical flux, but transport through lateral advection is more important in some areas. While at the bottom, the infauna processes the food in many different ways, and the feeding modes can be categorised into more than 20 functional groups, but fewer are present in brackish water. This categorisation is based on animal mobility and where and how they ingest the food. Animal activity in the sediment, bioturbation, has a significant effect on redox conditions and diagenetic processes. Structures in the sediment due to infaunal presence and activity can be observed in situ by sediment profile imaging, and the biogenic structures and redox conditions can be parameterised and have been shown to correlate to benthic community successional stages. The largest threat to benthic faunal biodiversity is the spread of near-bottom oxygen deficiency in many enclosed are stratified coastal areas.

  10. Synthesis and Optical Properties of Trioxatriangulenium Dyes with One and Two Peripheral Amino Substituents

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Laursen, Bo Wegge

    2010-01-01

    -substituted triphenylmethylium (TPM) compounds by aromatic nucleophilic substitution with secondary amines and subsequent intramolecular ring closure. The optical properties of the new triangulenium dyes and their TPM precursors were investigated and compared to those of known TPM and xanthenium dyes. The optical properties...

  11. Optical properties of amyloid stained by Congo red: history and mechanisms.

    Science.gov (United States)

    Howie, Alexander J; Brewer, Douglas B

    2009-04-01

    Amyloid stained by Congo red has striking optical properties that generally have been poorly described and inadequately explained, although they can be understood from principles of physical optics. Molecules of Congo red are orientated on amyloid fibrils, and so the dye becomes dichroic and birefringent. The birefringence varies with wavelength in accordance with a fundamental property of all light-transmitting materials called anomalous dispersion of the refractive index around an absorption peak. The combination of this and absorption of light, with modification by any additional birefringence in the optical system, explains the various colours that can be seen in Congo red-stained amyloid between crossed polariser and analyser, and also when the polariser and analyser are progressively uncrossed. These are called anomalous colours.

  12. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  13. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  14. Hydrologic controls on basin-scale distribution of benthic macroinvertebrates

    Science.gov (United States)

    Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.

    2013-12-01

    The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial

  15. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  16. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  17. Orientation-averaged optical properties of natural aerosol aggregates

    International Nuclear Information System (INIS)

    Zhang Xiaolin; Huang Yinbo; Rao Ruizhong

    2012-01-01

    Orientation-averaged optical properties of natural aerosol aggregates were analyzed by using discrete dipole approximation (DDA) for the effective radius in the range of 0.01 to 2 μm with the corresponding size parameter from 0.1 to 23 for the wavelength of 0.55 μm. Effects of the composition and morphology on the optical properties were also investigated. The composition show small influence on the extinction-efficiency factor in Mie scattering region, scattering- and backscattering-efficiency factors. The extinction-efficiency factor with the size parameter from 9 to 23 and asymmetry factor with the size parameter below 2.3 are almost independent of the natural aerosol composition. The extinction-, absorption, scattering-, and backscattering-efficiency factors with the size parameter below 0.7 are irrespective of the aggregate morphology. The intrinsic symmetry and discontinuity of the normal direction of the particle surface have obvious effects on the scattering properties for the size parameter above 4.6. Furthermore, the scattering phase functions of natural aerosol aggregates are enhanced at the backscattering direction (opposition effect) for large size parameters in the range of Mie scattering. (authors)

  18. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  19. Far- and near-field optical properties of gold nanoparticle ensembles

    International Nuclear Information System (INIS)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-01-01

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  20. Far- and near-field optical properties of gold nanoparticle ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T

    2012-12-31

    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  1. On the optical properties of carbon nanotubes. Part I. A general formula for the dynamical optical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Morten Grud, E-mail: morteng@math.aau.dk [Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 9220 Aalborg (Denmark); Ricaud, Benjamin, E-mail: benjamin.ricaud@epfl.ch [Laboratoire de Traitement des Signaux 2, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud (Switzerland); Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com [Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Road, Dublin 04 (Ireland)

    2016-02-15

    This paper is the first one in a series of two articles in which we revisit the optical properties of single-walled carbon nanotubes (SWNTs). Produced by rolling up a graphene sheet, SWNTs owe their intriguing properties to their cylindrical quasi-one-dimensional (quasi-1D) structure (the ratio length/radius is experimentally of order of 10{sup 3}). We model SWNT by circular cylinders of small diameters on the surface of which the conduction electron gas is confined by the electric field generated by the fixed carbon ions. The pair-interaction potential considered is the 3D Coulomb potential restricted to the cylinder. To reflect the quasi-1D structure, we introduce a 1D effective many-body Hamiltonian which is the starting-point of our analysis. To investigate the optical properties, we consider a perturbation by a uniform time-dependent electric field modeling an incident light beam along the longitudinal direction. By using Kubo’s method, we derive within the linear response theory an asymptotic expansion in the low-temperature regime for the dynamical optical conductivity at fixed density of particles. The leading term only involves the eigenvalues and associated eigenfunctions of the (unperturbed) 1D effective many-body Hamiltonian and allows us to account for the sharp peaks observed in the optical absorption spectrum of SWNT.

  2. Algorithm of extraction optics properties from the measurement of spatially resolved diffuse reflectance

    International Nuclear Information System (INIS)

    Cunill Rodriguez, Margarita; Delgado Atencio, Jose Alberto; Castro Ramos, Jorge; Vazquez y Montiel, Sergio

    2009-01-01

    There are several methods to obtain the optical parameters of biological tissues from the measurement of spatially resolved diffuse reflectance. One of them is well-known as Video Reflectometry in which a camera CCD is used as detection and recording system of the lateral distribution of diffuse reflectance Rd(r) when an infinitely narrow light beam impinges on the tissue. In this paper, we present an algorithm that we have developed for the calibration and application of an experimental set-up of Video Reflectometry destined to extract the optical properties of models of biological tissues with optical properties similar to the human skin. The results of evaluation of the accuracy of the algorithm for optical parameters extraction is shown for a set of proofs reflectance curves with known values of these parameters. In the generation of these curves the simulation of measurement errors was also considered. The results show that it is possible to extract the optical properties with an accuracy error of less than 1% for all the proofs curves. (Author)

  3. Benthic nitrogen loss in the Arabian Sea off Pakistan

    Directory of Open Access Journals (Sweden)

    Sarah eSokoll

    2012-11-01

    Full Text Available A pronounced deficit of nitrogen (N in the oxygen minimum zone (OMZ of theArabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagicprocesses. However, the OMZ water is in direct contact with sediments on three sides of thebasin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largelyunassessed. In October 2007, we sampled the water column and surface sediments along atransect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering arange of station depths from 360 to 1430 m. Benthic denitrification and anammox rates weredetermined by using 15N-stable isotope pairing experiments. Intact core incubations showeddeclining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m-2 d-1.While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmolN m-2 d-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m-2 d-1.Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to40% at 1430 m. This trend is further supported by the quantification of nirS, the biomarkerfunctional gene encoding for cytochrome cd1-nitrite reductases of microorganisms involved inboth N-loss processes. Anammox-like nirS genes within the sediments increased in proportionto total nirS gene copies with water depth. Moreover, phylogenetic analyses of nirS revealeddifferent communities of both denitrifying and anammox bacteria between shallow and deepstations. Together, rate measurement and nirS analyses showed that anammox, determined forthe first time in the Arabian Sea sediments, is an important benthic N-loss process at thecontinental margin off Pakistan, especially in the sediments at deeper water depths.Extrapolation from the measured benthic N-loss to all shelf sediments within the basinsuggests that benthic N-loss may be responsible for about half of the overall N-loss in theArabian Sea.

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BENTHIC (Benthic Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains benthic habitats, including coral reef and hardbottom, seagrass, algae, and others in [for] South Florida. Vector polygons in the data set...

  5. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations

    International Nuclear Information System (INIS)

    Lashgari, Hamed; Boochani, Arash; Shekaari, Ashkan; Solaymani, Shahram; Sartipi, Elmira; Mendi, Rohollah Taghavi

    2016-01-01

    Graphical abstract: - Highlights: • DFT has been applied to investigate the optical properties of 2D-ZnS and 3D-ZnS. • The electronic and the optical properties of 3D-ZnS and 2D-ZnS are compared. • At visible range of energies the transparency of 2D-ZnS is more than the 3D. - Abstract: Density-functional theory has been applied to investigate the electronic and optical properties of graphene-like two-dimensional ZnS in the (0001) direction of its Wurtzite phase. A comparison with 3D-ZnS has been carried out within the PBE- and EV-GGA. The electronic properties of 2D- and 3D-ZnS have been derived by the examination of the electronic band structures and density of states. The optical properties have been determined through the study of the dielectric function, reflectivity, electron loss function, refractive and extinction indices, the absorption index and optical conductivity. It is found that the transparency of 2D-ZnS is greater than the 3D over the visible range. A thorough study of the dielectric function has been performed so that the peaks and the transition bands have been specified. The electron loss function demonstrates that the plasmonic frequency for 2D- and 3D-ZnS is accrued at 11.22 and 19.93 eV within the PBE-GGA, respectively.

  6. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Otanicar, Todd, E-mail: todd-otanicar@utulsa.edu; Hoyt, Jordan; Fahar, Maryam [University of Tulsa, Department of Mechanical Engineering (United States); Jiang, Xuchuan [University of New South Wales, School of Materials Science and Engineering (Australia); Taylor, Robert A. [University of New South Wales, School of Mechanical and Manufacturing Engineering (Australia)

    2013-11-15

    Nanoparticles have garnered significant interest because of their ability to enhance greatly the optical properties of the base fluid in which they are suspended. The optical properties of nanoparticles are sensitive to the materials used, as well as to the host medium. Most fluids exhibit refractive indices that are highly temperature-dependent, resulting in nanoparticle suspensions which also exhibit temperature-dependent optical properties. Previous work has shown that temperature increases result in decreased absorption in nanoparticle suspensions. Here, we expand previous work to include core–shell particles due to the potential spectral shifts in optical properties that will arise from the base fluid with temperature changes and the role of agglomeration under temperature cycling through both experimental and numerical efforts. Thermal cycling tests for silica and gold, the constituents of the core–shell nanoparticles used in this study, were tested to determine the extent of particle agglomeration resulting from up to 200 accelerated heating cycles. Optical properties were recorded after heating two base fluids (water and ethylene glycol) with multiple surfactants for silver nanospheres and silica–gold core–shell nanoparticles. It was found that the temperature results in a small increase in the transmittance for both particle types and a blue shift in the spectral transmittance for core–shell nanoparticles. Further, the coupling effect of temperature and agglomeration played a significant role in determining both the spectral properties—particularly the resulting transmittance—of the silver nanoparticle suspensions.

  7. Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, A., E-mail: yildizab@gmail.com [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Cansizoglu, H. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Turkoz, M. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Electrical-Electronic Engineering, Faculty of Engineering, University of Karabuk, Karabuk (Turkey); Abdulrahman, R.; Al-Hilo, Alaa; Cansizoglu, M.F.; Demirkan, T.M.; Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2015-08-31

    Al-doped ZnO (AZO) nanostructure arrays with different shapes (tilted rods, vertical rods, spirals, and zigzags) were fabricated by utilizing glancing angle deposition (GLAD) technique in a DC sputter growth unit at room temperature. During GLAD, all the samples were tilted at an oblique angle of about 90° with respect to incoming flux direction. In order to vary the shapes of nanostructures, each sample was rotated at different speeds around the substrate normal axis. Rotation speed did not only affect the shape but also changed the microstructural and optical properties of GLAD AZO nanostructures. The experimental results reveal that GLAD AZO nanostructures of different shapes each have unique morphological, crystal structure, mechanical, and optical properties determined by scanning electron microscopy, X-ray diffraction, transmission, and reflectance measurements. Vertical nanorods display the largest grain size, minimum strain, lowest defect density, and highest optical transmittance compared to the other shapes. Growth dynamics of GLAD has been discussed to explain the dependence of structural and optical properties of nanostructures on the substrate rotation speed. - Highlights: • Al-doped ZnO (AZO) nanostructures with different shapes were fabricated. • They have unique morphological, crystal structure, and optical properties. • Vertical AZO nanorods show an enhanced optical transmittance.

  8. Influence of sputtering power on the optical properties of ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    K, Aijo John; M, Deepak, E-mail: manju.thankamoni@gmail.com; T, Manju, E-mail: manju.thankamoni@gmail.com [Department of Physics, Sree Sankara College, Kalady P. O., Ernakulam Dist., Kerala (India); Kumar, Vineetha V. [Dept. of Physics, K. E. College, Mannanam, Kottayam Dist., Kerala (India)

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  9. Contribution to the study of the biodiversity of benthic invertebrates ...

    African Journals Online (AJOL)

    Contribution to the study of the biodiversity of benthic invertebrates and the biological quality of some rivers in the watershed boumerzoug (east of Algeria) ... benthic macro invertebrates, allows characterizing the biological quality of river water.

  10. Structural and optical properties of CdSe nanosheets

    Science.gov (United States)

    Solanki, Rekha Garg; Rajaram, P.; Arora, Aman

    2018-04-01

    Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.

  11. Benthic nutrient cycling and diagenetic pathways in the North-western Black Sea

    NARCIS (Netherlands)

    Friedrich, J.; Dinkel, C.; Friedl, G.; Pimenov, N.; Wijsman, J.W.M.; Gomoiu, M-T.; Cociasu, A.; Popa, L.; Wehrli, B.

    2002-01-01

    Benthic fluxes of nutrients and metals were measured in the coastal zone of the north-western Black Sea, which is influenced by the Danube and Dniestr rivers. The results from the benthic flux chambers deployed during two EROS 21 cruises in summer 1995 and in spring 1997 yield information on benthic

  12. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    Science.gov (United States)

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  13. Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties

    International Nuclear Information System (INIS)

    Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M

    2011-01-01

    The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.

  14. Electronic structure and optical properties of thorium monopnictides

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 165. Electronic structure and optical properties of thorium monopnictides. S KUMAR* and S AULUCK†. Physics Department, Institute of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243 006,. India. †Department of Physics, Indian Institute of Technology, Roorkee 247 667, ...

  15. Benthic Light Availability Improves Predictions of Riverine Primary Production

    Science.gov (United States)

    Kirk, L.; Cohen, M. J.

    2017-12-01

    Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.

  16. Modifications of optical properties with ceramic coatings

    International Nuclear Information System (INIS)

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  17. Ion-optical properties of Wien's filters with inhomogeneous fields

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.

    1991-01-01

    Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown

  18. Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas

    Science.gov (United States)

    Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry

    2017-04-01

    Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable

  19. Thermotropic and optical properties of chiral nematic polymers

    International Nuclear Information System (INIS)

    Tsai, M.L.; Chen, S.H.; Marshall, K.L.; Jacobs, S.D.

    1988-09-01

    The thermotropic and optical properties of methacrylate copolymers and chemically modified poly(γ-benzyl L-glutamate) were investigated as part of our effort to explore the optical applications of these materials. It was found that besides the commonly cited comonomer ratio, physical blending and annealing followed by quenching represent a new and more flexible means to tune the selective reflection wavelength. In the poly (γ-benzyl L-glutamate) systems, it appears that the relatively high melt viscosity is capable of sustaining the cholesteric mesophase, generated by annealing and quenching, up to 100/degree/C. 22 refs., 8 figs

  20. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Science.gov (United States)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  1. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  2. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    Science.gov (United States)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  3. National Benthic Infaunal Database (NBID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NBID is a quantitative database on abundances of individual benthic species by sample and study region, along with other synoptically measured environmental...

  4. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  5. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  6. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation

    Science.gov (United States)

    Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul

    2018-05-01

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  7. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  8. Piezoelectric photothermal study of the optical properties of microcrystalline silicon near the bandgap

    International Nuclear Information System (INIS)

    Fukuyama, A.; Sakamoto, S.; Sonoda, S.; Wang, P.; Sakai, K.; Ikari, T.

    2006-01-01

    The optical absorption spectra of hydrogenated microcrystalline silicon (μc-Si:H) films deposited on glass and transparent conductive oxide (TCO) covered glass substrates were measured by using the piezoelectric photothermal (PPT) technique. The effects of the deposition rate on the optical absorption of μc-Si:H thin films were investigated from the nonradiative transition point of view. It was found that increasing the deposition rate resulted in a decrease of optical absorption and a shift of effective energy gap to the higher photon energy side. These changes in the optical properties of μc-Si:H cause the decrease of the number of carriers optically generated by absorbing sunlight, and results in a reduction in the photovoltaic conversion efficiency of the solar cells for high deposition rate samples. The usefulness of the PPT method for investigating the optical properties of thin and transparent μc-Si:H films was also demonstrated

  9. Optical Properties of Airborne Soil Organic Particles

    Energy Technology Data Exchange (ETDEWEB)

    Veghte, Daniel P. [William; China, Swarup [William; Weis, Johannes [Chemical; Department; Kovarik, Libor [William; Gilles, Mary K. [Chemical; Laskin, Alexander [Department

    2017-09-27

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. The particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.

  10. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  11. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    Science.gov (United States)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  12. The electronic and optical properties of warm dense nitrous oxide using quantum molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zhang Yujuan; Wang Cong; Zhang Ping

    2012-01-01

    First-principles molecular-dynamics simulations based on density-functional theory have been used to study the electronic and optical properties of fluid nitrous oxide under extreme conditions. Systematic descriptions of pair-correlation function, atomic structure, and the charge density distribution are used to investigate the dissociation of fluid nitrous oxide. The electrical and optical properties are derived from the Kubo-Greenwood formula. It is found that the nonmetal-metal transition for fluid nitrous oxide can be directly associated to the dissociation and has significant influence on the optical properties of the fluid.

  13. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  14. Some optical properties of the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan; Subotic, Krunoslav

    1999-01-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (author)

  15. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    Science.gov (United States)

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-12-13

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  16. Correlation of optical properties with the fractal microstructure of black molybdenum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique; Gonzalez, Federico [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Rodriguez, Eduardo [Area de Computacion y Sistemas, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Alvarez-Ramirez, Jose, E-mail: jjar@xanum.uam.mx [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico)

    2010-01-01

    Coating is commonly used for improving the optical properties of surfaces for solar collector applications. The coating morphology depends on the deposition conditions, and this determines the final optical characteristics. Coating morphologies are irregular and of fractal nature, so a suitable approach for its characterization should use methods borrowed from fractal analysis. The aim of this work is to study the fractal characteristics of black molybdenum coatings on copper and to relate the fractal parameters to the optical properties. To this end, coating surfaces were prepared via immersion in a solution of ammonium paramolybdate for different deposition periods. The fractal analysis was carried out for SEM and AFM images of the coating surface and the fractal properties were obtained with a recently developed high-dimensional extension of the well-known detrended fluctuation analysis (DFA). The most salient parameter drawn from the application of the DFA is the Hurst index, a parameter related to the roughness of the coating surface, and the multifractality index, which is related to the non-linearity features of the coating morphology. The results showed that optical properties, including absorptance and emittance, are decreasing functions of the Hurst and multifractality indices. This suggests that coating surfaces with high absorptance and emittance values are related to complex coating morphologies conformed within a non-linear structure.

  17. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  18. Electronic and optical properties of defect CdIn_2Te_4 chalcopyrite semiconductor: A first principle approach

    International Nuclear Information System (INIS)

    Mishra, S.; Ganguli, B.

    2016-01-01

    We present detailed study of structural, electronic and optical properties of CdIn_2Te_4 compound. The calculations are carried out using Density Functional theory based Tight Binding Linear Muffin Tin Orbital method. The compound is found to be direct band gap semiconductor with a band gap of 1.03 eV. The band gap is within the limit of LDA underestimation. The calculated structural parameters agree well with the available experimental values. We find a decrements of 9.6% in band gap and significant effects on overall electronic and optical properties due to structural distortions. These effects on optical properties come mainly from the change in transition probability. An-isotropic nature of optical properties get enhanced due to structural distortion. The Calculated real & imaginary parts of dielectric constant and static dielectric constant agree well with the available experimental result. - Highlights: • We present ab-initio calculations of electronic & optical properties of CdIn_2Te_4. • Band gap get reduced by 9.6% due to structural distortion. • Structural distortion has significant effects on optical properties. • Anisotropic nature of optical response functions get enhanced by structural distortion. • Calculated dielectric constant agrees with experimental value.

  19. Aerosol Optical Properties in Southeast Asia From AERONET Observations

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Boonjawat, J.; Le, H. V.; Schafer, J. S.; Reid, J. S.; Dubovik, O.; Smirnov, A.

    2003-12-01

    There is little published data available on measured optical properties of aerosols in the Southeast Asian region. The AERONET project and collaborators commenced monitoring of aerosol optical properties in February 2003 at four sites in Thailand and two sites in Viet Nam to measure the primarily anthropogenic aerosols generated by biomass burning and fossil fuel combustion/ industrial emissions. Automatic sun/sky radiometers at each site measured spectral aerosol optical depth in 7 wavelengths from 340 to 1020 nm and combined with directional radiances in the almucantar, retrievals were made of spectral single scattering albedo and aerosol size distributions. Angstrom exponents, size distributions and spectral single scattering albedo of primarily biomass burning aerosols at rural sites are compared to measurements made at AERONET sites in other major biomass burning regions in tropical southern Africa, South America, and in boreal forest regions. Additionally, the aerosol single scattering albedo and size distributions measured in Bangkok, Thailand are compared with those measured at other urban sites globally. The influences of aerosols originating from other regions outside of Southeast Asia are analyzed using trajectory analyses. Specifically, cases of aerosol transport and mixing from Southern China and from India are presented.

  20. Regulation of nitrous oxide emission associated with benthic invertebrates

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    2010-01-01

    1. A number of freshwater invertebrate species emit N2O, a greenhouse gas that is produced in their gut by denitrifying bacteria (direct N2O emission). Additionally, benthic invertebrate species may contribute to N2O emission from sediments by stimulating denitrification because of their bioirrig......1. A number of freshwater invertebrate species emit N2O, a greenhouse gas that is produced in their gut by denitrifying bacteria (direct N2O emission). Additionally, benthic invertebrate species may contribute to N2O emission from sediments by stimulating denitrification because...... of their bioirrigation behaviour (indirect N2O emission). 2. Two benthic invertebrate species were studied to determine (i) the dependence of direct N2O emission on the preferred diet of the animals, (ii) the regulation of direct N2O emission by seasonally changing factors, such as body size, temperature and NO3...... emitted by benthic invertebrates can be partially consumed in the sediment (E. danica), non-emitting species can still indirectly contribute to total N2O emission from sediment (S. lutaria)....

  1. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  2. Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication

    Science.gov (United States)

    Yang, Xuan; Gilroy, Kyle D.; Vara, Madeline; Zhao, Ming; Zhou, Shan; Xia, Younan

    2017-09-01

    Because of their unique optical properties, gold nanocages are excellent candidates for biomedical applications. Traditionally, they are prepared using a method that involves the galvanic replacement reaction between Ag nanocubes and HAuCl4. Here we demonstrate a different approach for the facile synthesis of Au icosahedral nanocages containing twin boundaries, as well as a compact size below 15 nm and ultrathin walls of only a few atomic layers thick. Their optical properties could be tuned by simply controlling the etching time, a result that was also validated by computational modeling. We further evaluated the feasibility of fragmenting the nanocages using ultrasonication.

  3. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  4. Effective optical constants and effective optical properties of ultrathin trilayer structures

    International Nuclear Information System (INIS)

    Haija, A.J.; Larry Freeman, W.; Umbel, Rachel

    2011-01-01

    This work presents an extension of the characteristic effective medium approximation (CEMA) to ultrathin trilayer systems. The extension has been carried out analytically and is supported by corresponding calculations of the effective optical constants of Cu-Au-Cu and Ag-SiO-Ag trilayer systems using the CEMA approximation. This work is in essence a generalization of the characteristic effective medium approximation introduced earlier for ultrathin bilayer structures. This method is used to derive the effective optical constants of a trilayer system, consisting of three thin layers with each constituent layer of thickness much less than the wavelength of the incident radiation. Within this regime a trilayer system is viewed as one effective layer referred to as an effective stack (ES) with well defined effective optical constants, which can be used to calculate the optical properties of the trilayer stack within a specified wavelength range. The CEMA based calculations of the effective optical constants are applied to two trilayer systems with a total of five stacks. Three are Cu-Au-Cu and two are Ag-SiO-Ag stacks. The thicknesses of the parent layers in the Cu-Au-Cu stack range from 3 to 30 nm for Cu and 4 to 40 nm for Au; in the Ag-SiO-Ag stack the constituent layers are 6 nm for Ag, but range from 5 to 10 nm for SiO. This study is for normal or near normal incidence spectroscopy in a wavelength range that extends from visible to near infrared. The agreement between CEMA based ES stack results and those of the standard CMT technique is very satisfactory.

  5. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    Inherent optical properties, absorption and began attenuation were measured in situ using a reflective tube absorption meter at nint wavelength, 412, 440, 488, 510, 555, 630, 650, 676 and 715 nm, in the Arabian Sea during March. Since inherent...

  6. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    Science.gov (United States)

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  7. Benthic oxygen consumption on continental shelves off eastern Canada

    Science.gov (United States)

    Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.

    1991-08-01

    The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large

  8. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  9. Optical properties of new 5-(4-phenylethynyl)-substituted-1,10-phenanthroline derivatives

    International Nuclear Information System (INIS)

    Guerin, Juliette; Aronica, Christophe; Boeuf, Gaelle; Chauvin, Jerome; Moreau, Juliette; Lemercier, Gilles

    2011-01-01

    The synthesis and optical properties of a novel family of 5-substituted-1,10-phenanthroline derivatives are reported herein. One carbon-carbon triple-bond function was introduced using a Sonogashira cross-coupling reaction. The effects on optical properties, of the substitution with electro-withdrawing or -donating substituents in the 5th position of the 1,10-phenanthroline are investigated. Experimental chemical structure-polarisability relationship is analyzed according to the Lippert-Mataga correlation and compared to a theoretical study carried out with DFT calculations. These compounds are promising candidates for a fine-tuning of the internal charge-transfers but also as potential nonlinear chromophores and ligands within multifunctional coordination complexes. - Highlights: → Synthesis and optical properties of new 5-substituted-1,10-phenanthroline derivatives. → Sonogashira reaction was used for the substitution. → Structure-polarisability relationship analyzed according to Lippert-Mataga correlation. → Theoretical study was carried out with DFT calculations. → Fine-tuning of the internal charge-transfers within nonlinear compounds.

  10. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) ... In addition, the TEM images show that the average particle size of ... of both compounds decreases exponentially by increasing the temperature.

  11. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved

  12. Explosive diversification following a benthic to pelagic shift in freshwater fishes.

    Science.gov (United States)

    Hollingsworth, Phillip R; Simons, Andrew M; Fordyce, James A; Hulsey, C Darrin

    2013-12-17

    Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America's most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift. Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift. A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems.

  13. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  14. Optical properties of Sb(Se,Te)I and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2016-09-05

    SbXI (X = Se, Te) are ferroelectric semiconductors that allow a variety of applications including optoelectronic and photovoltaic applications. An analysis of the optical properties is carried out starting from first-principles density-functional theory with orbital-dependent one-electron potentials. To go into the contributions to the optical properties more deeply, the absorption coefficients have been split into inter- and intra-species contributions and into atomic angular momentum contributions. The optical results are used to evaluate the efficiencies when this material is used to absorb sunlight at several sunlight concentrations and the usual radiative and the ferroelectric photovoltaic mechanisms. The results indicate their applicability in photovoltaic devices as absorbent of the solar spectrum with high conversion efficiency. - Highlights: • The SbXI (X = Se, Te) are ferroelectric semiconductors with a high optical absorption. • The absorption coefficients have been split into different contributions to understand the cause of the high absorption. • Using the first-principles results the maximum efficiency of this photovoltaic absorber material has been estimated. • The efficiency of this compound is near the maximum efficiency for single-gap solar cells even using small-width devices. • The coexistence of the R-PV and R-PV effects has been evaluated.

  15. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  16. Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2017-02-01

    Full Text Available In this work, using large-sized single crystals of high optical quality, the optical properties of Ba2TiSi2O8 were systematically investigated, including transmission spectra, refractive indices and nonlinear absorption properties. The crystal exhibits a high transmittance (>84% over a wide wavelength range from 340 to 2500 nm. The refractive indices in the range from 0.31256 to 1.01398 μm were measured, and Sellmeier’s equations were fitted by the least squares method. The nonlinear absorption properties were studied by using the open-aperture Z-scan technique, with a nonlinear absorption coefficient measured to be on the order of 0.257 cm/GW at the peak power density of 16.4 GW/cm2. Such high transmittance and wide transparency indicate that optical devices using the Ba2TiSi2O8crystal can be applied over a wide wavelength range. Furthermore, the small nonlinear absorption observed in Ba2TiSi2O8 will effectively increase the optical conversion efficiency, decreasing the generation of laser damage of the optical device.

  17. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    Science.gov (United States)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  18. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.

    Directory of Open Access Journals (Sweden)

    Anna Villnäs

    Full Text Available Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential, gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH(4(+ and dissolved Si. Although effluxes of PO(4(3- were not altered significantly, changes were observed in sediment PO(4(3- sorption capability. The duration of hypoxia (i.e. number of days of stress explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the

  19. Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, M.D.; Collins, N.C.; Purchase, C.F. [Toronto Univ., ON (Canada). Dept. of Biology; Tremblay, A. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-12-01

    In both North America and Europe, high levels of mercury have been reported in lakes that do not receive obvious point-source mercury inputs. Concern over high contaminant levels in waterfowl and fish have prompted several government-issued advisories on safe levels of fish and wildlife intake for humans. Although the primary source of mercury in pristine lakes is directly through atmospheric deposition or indirectly via terrestrial runoff, there can be large variations in mercury concentrations in organisms in neighbouring lakes. Therefore, factors other than atmospheric deposition must influence bioavailability and accumulation of mercury in aquatic organisms. For that reason, multivariate analyses on benthic invertebrate methylmercury concentrations and water chemistry from 12 Quebec water bodies were used to construct simple, predictive models of benthic invertebrate methylmercury in 23 lakes in Ontario and Quebec. The study showed that the primary means of mercury accumulation for organisms in higher trophic positions is dietary through the assimilation of organic forms of mercury, principally methylmercury. The data from 12 Quebec water bodies, revealed that benthic invertebrates in reservoirs have higher methylmercury than those in natural lakes, and methylmercury is generally higher in predatory invertebrates. Reservoir age was found to correlate with fish, benthic invertebrate methylmercury, and also with lake chemistry parameters such as pH and dissolved organic carbon (DOC). The objective of the study was to determine the appropriate level of taxonomic or functional resolution for generating benthic invertebrate methylmercury models, and to identify which environmental variables correlate most with benthic invertebrate methylmercury. Empirical models using these correlations were constructed and their predicted efficiency was tested by cross-validation. In addition, the effect of exposure to fish digestive enzymes on invertebrate methylmercury was

  20. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  1. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  2. Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures

    Science.gov (United States)

    Zhang, An-Qi; Qian, Dong-Jin; Chen, Meng

    2013-11-01

    The optical properties of nanostructured architectures are highly sensitive to their compositions, structures, dimensions, geometries and embedding mediums. Nanopolyhedra, including homogeneous metal nanoparticles and core-shell structures, have unique optical properties. In the beginning of this study, Discrete Dipole Approximation (DDA) method has been introduced. Then the simulated extinction spectra of single-component metal nanoparticles and Au@Ag polyhedra were calculated using both Mie and DDA methods. The influence of morphology and components on the optical response is discussed and well-supported by previously published experimental results. It is observed that the Localized Surface Plasmon Resonance peaks are mainly decided by sharp vertexes and symmetry of noble metallic polyhedra, as well as the structure of the Au@Ag core-shell nanoparticles.

  3. The structural and optical properties of metal ion-implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Řež (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, České Mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Sofer, Z.; Šimek, P.; Sedmidubský, D. [Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Veselý, M. [Dept. of Organic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Böttger, R. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden – Rossendorf, 01328 Dresden (Germany)

    2016-03-15

    The practical development of novel optoelectronic materials with appropriate optical properties is strongly connected to the structural properties of the prepared doped structures. We present GaN layers oriented along the (0 0 0 1) crystallographic direction that have been grown by low-pressure metal–organic vapour-phase epitaxy (MOVPE) on sapphire substrates implanted with 200 keV Co{sup +}, Fe{sup +} and Ni{sup +} ions. The structural properties of the ion-implanted layers have been characterised by RBS-channelling and Raman spectroscopy to obtain a comprehensive insight into the structural modification of implanted GaN layers and to study the subsequent influence of annealing on crystalline-matrix recovery. Photoluminescence was measured to control the desired optical properties. The post-implantation annealing induced the structural recovery of the modified GaN layer depending on the introduced disorder level, e.g. depending on the ion implantation fluence, which was followed by structural characterisation and by the study of the surface morphology by AFM.

  4. Optical and optoelectronic properties of nanostructures based on wide-bandgap semiconductors

    International Nuclear Information System (INIS)

    Kalden, Joachim

    2010-01-01

    Recently, more and more research is done on nitride nanostructures in order to control the electrical and optical properties in a more sophisticated manner for optimized light-matter-interaction and extraction efficiency. In this context, the work presented in this thesis has been carried out, concentrating on two main topics. One aspect is the characterization of InGaN quantum dots (QDs). QDs possess a unique atom-like density of states for electrons, allowing for generation and manipulation of discrete electronic states. This thesis contains the analysis of QDs embedded in optoelectronic devices such as LEDs. Measurements of the electroluminescence (EL) of QD ensembles as well as single QDs are presented. Especially QD EL obtained at higher temperatures up to 150 K is a main achievement of this work. Furthermore, the photoluminescence (PL) of QD multilayer structures has been examined and discussed in detail. Experiments on the optical amplification in these multilayers have been carried out for the first time, yielding a maximum optical gain of g(max)/(mod)=50/cm. Another main aspect of solid state lighting is the efficient light extraction from light sources. For this purpose, pillar microcavities based on nitrides have been investigated. This type of optical resonator possesses a discrete optical mode structure due to the three-dimensional optical confinement in these structures. For optimal light-matter coupling conditions, this leads to an enhanced extraction efficiency. In this context, studies on QD pillar microcavities (MCs) processed by focused ion beam milling from planar MC structures are presented. After a detailed analysis of the photonic properties of these pillar MCs, a temperature-variation method to tune the cavity in resonance with QD emission is demonstrated, yielding a five-fold enhancement of the extraction efficiency. These experiments were carried out on selenide-based structures which possess a very high structural quality. An alternative

  5. Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria

    2004-05-01

    Spectroscopic ellipsometry is used to study the optical properties of nanostructured semiconductor oxide thin films. Various examples of models for the dielectric function, based on Lorentzian oscillators combined with the Drude model, are given based on the band structure of the analyzed oxide. With this approach, the optical properties of thin films are determined independent of the dielectric functions of the corresponding bulk materials, and correlation between the optical properties and nanostructure of thin films is investigated. In particular, in order to discuss the dependence of optical constants on grain size, CeO{sub 2} nanostructured films are considered and parameterized by two-Lorentzian oscillators or two-Tauc-Lorentz model depending on the nanostructure and oxygen deficiency. The correlation among anisotropy, crystalline fraction and optical properties parameterized by a four-Lorentz oscillator model is discussed for nanocrystalline V{sub 2}O{sub 5} thin films. Indium tin oxide thin films are discussed as an example of the presence of graded optical properties related to interfacial reactivity activated by processing conditions. Finally, the example of ZnO shows the potential of ellipsometry in discerning crystal and epitaxial film polarity through the analysis of spectra and the detection of surface reactivity of the two polar faces, i.e. Zn-polarity and O-polarity.

  6. Press forging and optical properties of lithium fluoride

    Science.gov (United States)

    Ready, J. F.; Vora, H.

    1980-07-01

    Lithium fluoride is an important candidate material for windows on high power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals were press forged in one step over the temperature range 300 to 600 C to obtain fine grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40 percent at 400 C to 65 percent at 600 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 C, to total deformations of 69 to 76 percent, with intermediate annealing at 700 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one step forging. The results of characterization of various optical and mechanical properties of single crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described.

  7. Press forging and optical properties of lithium fluoride

    International Nuclear Information System (INIS)

    Ready, J.F.; Vora, H.

    1979-01-01

    Lithium fluoride is an important candidate material for windows on high-power, short-pulse ultraviolet and visible lasers. Lithium fluoride crystals have been press forged in one step over the temperature range 300 to 600 0 c to obtain fine-grained polycrystalline material with improved mechanical properties. The deformation that can be given to a lithium fluoride crystal during forging is limited by the formation of internal cloudiness (veiling) with the deformation limit increasing with increasing forging temperature from about 40% at 400 0 C to 65% at 600 0 C. To suppress veiling, lithium fluoride crystals were forged in two steps over the temperature range 300 to 600 0 C, to total deformations of 69-76%, with intermediate annealing at 700 0 C. This technique yields a material which has lower scattering with more homogeneous microstructure than that obtained in one-step forging. The results of characterization of various optical and mechanical properties of single-crystal and forged lithium fluoride, including scattering, optical homogeneity, residual absorption, damage thresholds, environmental stability, and thresholds for microyield are described

  8. Benthic fauna of mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    distribution of benthic communities in mangrove environment is governEd. by tidal amplitude, light penetration, nature of substratum and distance from the sea. The littoral zone, neritic zone, Barnacle-oyster zone, Uca zone, Polychaeta zone have been delineated...

  9. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    metal-xanthate thin films' production, nor their optical, electrical properties and .... vibration of –CH3 at 894 cm–1, (vii) the symmetric bend- ing vibration of C–O–C at 458 .... vity values are the two most important factors, affecting band width.

  10. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids

  11. Non-equilibrium carrier efect in the optical properties of semiconductors

    International Nuclear Information System (INIS)

    Teschke, O.

    1980-01-01

    The time-resolved reflectivity of picosecond pulses from optically excited carrier distributions can provide important information about the energy relaxation rates of hot electrons and holes in semiconductors. the basic optical properties of non-equilibrium carrier distributions of GaAs are discussed. A semi-empirical analysis of the reflectivity spectrum is presented and the contributions of different effects are estimated. The results are in qualitative agreement with recent experiments employing dye lasers. (Author) [pt

  12. Theoretical study on the electronic and optical properties of bulk and surface (001) InxGa1-xAs

    Science.gov (United States)

    Liu, XueFei; Ding, Zhao; Luo, ZiJiang; Zhou, Xun; Wei, JieMin; Wang, Yi; Guo, Xiang; Lang, QiZhi

    2018-05-01

    The optical properties of surface and bulk InxGa1-xAs materials are compared systematically first time in this paper. The band structures, density of states and optical properties including dielectric function, reflectivity, absorption coefficient, loss function and refractive index of bulk and surface InxGa1-xAs materials are investigated by first-principles based on plane-wave pseudo-potentials method within the LDA approximation. The results agree well with the available theoretical and experimental studies and indicate that the electronic and optical properties of bulk and surface InxGa1-xAs materials are much different, and the results show that the considered optical properties of the both materials vary with increasing indium composition in an opposite way. The calculations show that the optical properties of surface In0.75Ga0.25As material are unexpected to be far from the other two indium compositions of surface InxGa1-xAs materials while the optical properties of bulk InxGa1-xAs materials vary with increasing indium composition in an expected regular way.

  13. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  14. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  15. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    Science.gov (United States)

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  16. Investigation on surface, electrical and optical properties of ITO-Ag-ITO coated glass

    International Nuclear Information System (INIS)

    Aslan Necdet; Sen, Tuba; Coruhlu Turgay; Senturk Kenan; Keskin Sinan; Seker Sedat; Dobrovolskiy Andrey

    2015-01-01

    The aim of this work was to study the optical and electrical properties of thick ITO-Ag-ITO multilayer coating onto glass. ITO-Ag-ITO coatings with thickness of ITO layers 110 nm, 185 nm and intermediate Ag layer thickness 40 nm were prepared by magnetron sputtering. The optical, electrical and atomic properties of the coating were examined by scanning electron microscope, atomic force microscope, X-ray diffraction analysis and ultraviolet-visible spectroscopy

  17. 3D printing of optical materials: an investigation of the microscopic properties

    Science.gov (United States)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  18. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  19. Optical properties of opal photonic crystals

    Science.gov (United States)

    Eradat-Oskouei, Nayer

    2001-10-01

    Photonic crystals (PC) are a class of artificial structures with a periodic dielectric function in one, two, or three dimensions, in which the propagation of electromagnetic waves within a certain frequency band is forbidden. This forbidden frequency band has been dubbed photonic band gap (PBG). The position, width, depth, and shape of the PBG strongly depend on the periodicity, symmetry properties, dielectric constant contrast, and internal lattice structure of the unit cell. There is a common belief that PCs will perform many functions with light that ordinary crystals do with electrons. At the same time, PCs are of great promise to become a laboratory for testing fundamental processes involving interactions of radiation with matter in novel conditions. We have studied the optical properties of opal PCs that are infiltrated with metals, laser dyes, π-conjugated polymers, and J-aggregates. Opals are self-assembled structures of silica (SiO2) spheres mostly packed in a face centered cubic (fcc) lattice. Our research is summarized in the following six chapters. Chapter 1 is a review on the concepts related to PBG and PC, eigenvalue problem of electromagnetism, material systems that exhibit PBG. Chapter 2 covers all the fabrication and measurement techniques including angle resolved reflectivity, transmission, photoluminescence, photo-induced absorption, and coherent backscattering. Chapter 3 focuses on the relationship between a polaritonic gap and a photonic stop-band when they resonantly coexist in the same structure. Infiltration of opal with polarizable molecules combines the polaritonic and Bragg diffractive effects. The experimental results on reflectivity and its dependence on the impinging angle and concentration of the polarizable medium are in agreement with the theoretical calculations. In Chapter 4, the optical studies of three-dimensional metallic mesh composites are reported. Photonic and electronic properties of these PCs strongly depend on their

  20. Benthic Macroinvertebrate Assemblages in the Near Coastal Zone of Lake Erie

    Science.gov (United States)

    Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...

  1. Optical and electrical properties of some electron and proton irradiated polymers

    International Nuclear Information System (INIS)

    Mishra, R.; Tripathy, S.P.; Sinha, D.; Dwivedi, K.K.; Ghosh, S.; Khathing, D.T.; Mueller, M.; Fink, D.; Chung, W.H.

    2000-01-01

    Ion beam treatment studies have been carried out to investigate the potential for improvements in conductivity properties of the polymers Polytetrafluroethylene (PTFE), Polyimide (PI), Polyethyleneterepthalate (PET) and Polypropylene (PP), after 2 MeV electron and 62 MeV proton irradiation. The shift in optical absorption edges as observed by UV-VIS spectra of the irradiated polymers has been correlated to the optical band-gap using Tauc's expression. A decrease in the optical band-gap has been observed in irradiated PP and PTFE, but no considerable change was found for the optical band-gaps of PET and PI. Further AC conductivity measurements confirmed an increase in conductivity in electron irradiated PP

  2. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries

    Directory of Open Access Journals (Sweden)

    Erik eKristensen

    2014-09-01

    Full Text Available We identify how ecosystem functioning in shallow estuaries is affected by shifts in benthic fauna communities. We use the shallow estuary, Odense Fjord, Denmark, as a case study to test our hypotheses that (1 shifts in benthic fauna composition and species functional traits affect biogeochemical cycling with cascading effects on ecological functioning, which may (2 modulate pelagic primary productivity with feedbacks to the benthic system. Odense Fjord is suitable because it experienced dramatic shifts in benthic fauna community structure from 1998 to 2008. We focused on infaunal species with emphasis on three dominating burrow-dwelling polychaetes: the native Nereis (Hediste diversicolor and Arenicola marina, and the invasive Marenzelleria viridis. The impact of functional traits in the form of particle reworking and ventilation on biogeochemical cycles, i.e. sediment metabolism and nutrient dynamics, was determined from literature data. Historical records of summer nutrient levels in the water column of the inner Odense Fjord show elevated concentrations of NH4+ and NO3- (DIN during the years 2004-2006, exactly when the N. diversicolor population declined and A. marina and M. viridis populations expanded dramatically. In support of our first hypothesis, we show that excess NH4+ delivery from the benthic system during the A. marina and M. viridis expansion period enriched the overlying water in DIN and stimulated phytoplankton concentration. The altered benthic-pelagic coupling and stimulated pelagic production may, in support of our second hypothesis, have feedback to the benthic system by changing the deposition of organic material. We therefore advice to identify the exact functional traits of the species involved in a community shift before studying its impact on ecosystem functioning. We also suggest studying benthic community shifts in shallow environments to obtain knowledge about the drivers and controls before exploring deep

  3. Preparation and optical properties of gold-dispersed BaTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kineri, T; Mori, M [TDK Corp., Tokyo (Japan). R and D Center; Kadono, K; Sakaguchi, T; Miya, M; Wakabayashi, H [Osaka National Research Inst., Osaka (Japan); Tsuchiya, T [Science Univ. of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1993-12-01

    Recently, metal or semiconductor-doped glasses were widely studied because of their large resonant third-order nonlinearity. These glasses are utilized in an optical information field as all optical logic devices in the future. The gold-doped glass films or thin layers have a large third-order nonlinear susceptibility [chi] and are prepared by r.f. sputtering method, etc. The optical properties, particularly the refractive index or dielectric constant of the matrix, are very important for the optical nonlinearity of these materials. In this study, gold-dispersed BaTiO3 thin films and gold-dispersed SiO2 thin films are prepared using r.f. magnetron sputtering method, and the optical properties of the films are compared. The [chi] of the films are measured and the effect of the matrix of the films on [chi] is investigated. The headings in the paper are: Introduction, Experimental procedure, Results, Discussion, and Conclusion. 13 refs., 9 figs.

  4. Benthic cover derived from analysis of benthic images collected at coral reef sites in Batangas, Philippines from 2015-05-23 to 2015-06-03 (NCEI Accession 0162828)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The benthic cover data described here result from benthic photo-quadrat surveys conducted by the NOAA Coral Reef Ecosystem Program (CREP) in 2015 along transects at...

  5. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  6. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  7. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy

    Science.gov (United States)

    De Luca, Marta; Polimeni, Antonio

    2017-12-01

    Thanks to their peculiar shape and dimensions, semiconductor nanowires (NWs) are emerging as building components of novel devices. The presence of wurtzite (WZ) phase in the lattice structure of non-nitride III-V NWs is one of the most surprising findings in these nanostructures: this phase, indeed, cannot be found in the same materials in the bulk form, where the zincblende (ZB) structure is ubiquitous, and therefore the WZ properties are poorly known. This review focuses on WZ InP NWs, because growth techniques have reached a high degree of control on the structural properties of this material, and optical studies performed on high-quality samples have allowed determining the most useful electronic properties, which are reviewed here. After an introduction summarizing the reasons for the interest in WZ InP nanowires (Sec. I), we give an overview on growth process and structural and optical properties of WZ InP NWs (Sec. II). In Sec. III, a complete picture of the energy and symmetry of the lowest-energy conduction and valence bands, as assessed by polarization-resolved photoluminescence (PL) and photoluminescence-excitation (PLE) studies is drawn and compared to all the available theoretical information. The elastic properties of WZ InP (determined by PL under hydrostatic pressure) and the radiative recombination dynamics of spatially direct and indirect (namely, occurring across the WZ/ZB interfaces) transitions are also discussed. Section IV, focuses on the magneto-optical studies of WZ InP NWs. The diagram of the energy levels of excitons in WZ materials—with and without magnetic field—is first provided. Then, all theoretical and experimental information available about the changes in the transport properties (i.e., carrier effective mass) caused by the ZB→WZ phase variation are reviewed. Different NW/magnetic field geometrical configurations, sensitive to polarization selection rules, highlight anisotropies in the diamagnetic shifts, Zeeman splitting

  8. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  9. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  10. Benthic Carbon Mineralization and Nutrient Turnover in a Scottish Sea Loch

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Berg, Peter; Stahl, Henrik

    2016-01-01

    Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the b......Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated....... The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m−2 day−1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly...... ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic...

  11. Classification of threespine stickleback along the benthic-limnetic axis

    OpenAIRE

    Willacker, James J.; von Hippel, Frank A.; Wilton, Peter R.; Walton, Kelly M.

    2010-01-01

    Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have b...

  12. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    Science.gov (United States)

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  13. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.

    Science.gov (United States)

    Brothers, Soren; Vadeboncoeur, Yvonne; Sibley, Paul

    2016-12-01

    Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5-45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near-shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. © 2016 John Wiley & Sons Ltd.

  14. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  15. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  16. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  17. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  18. Modifying the electronic and optical properties of carbon nanotubes

    Science.gov (United States)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III

  19. Optical properties of metallic multi-layer films

    International Nuclear Information System (INIS)

    Dimmich, R.

    1991-09-01

    Optical properties of multi-layer films consisting of alternating layers of two different metals are studied on the basis of the Maxwell equations and the Boltzmann transport theory. The influence of free-electron scattering at the film external surface and at the interfaces is taken into account and considered as a function of the electromagnetic field frequency and the structure modulation wavelength. Derived formulas for optical coefficients are valid at low frequencies, where the skin effect is nearly classical, as well as in the near-infrared, visible and ultraviolet spectral ranges, where the skin effect has the anomalous nature. It is shown that the obtained results are apparently dependent on the values of the scattering parameters. What is more, the oscillatory nature of analyzed spectra is observed, where the two oscillation periods may appear on certain conditions. The oscillations result from the electron surface and interface scattering and their amplitudes and periods depend on the boundary conditions for free-electron scattering. Finally, the application of the interference phenomenon in dielectric layers is proposed to obtain the enhancement of the non distinct details which can appear in optical spectra of metallic films. (author). 31 refs, 6 figs

  20. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  1. Historical data reveal 30-year persistence of benthic fauna associations in heavily modified waterbody

    Directory of Open Access Journals (Sweden)

    Ruth Callaway

    2016-08-01

    Full Text Available Baseline surveys form the cornerstone of coastal impact studies where altered conditions, for example through new infrastructure development, are assessed against a temporal reference state. They are snapshots taken before construction. Due to scarcity of relevant data prior to baseline surveys long-term trends can often not be taken into account. Particularly in heavily modified waterbodies this would however be desirable to control for changes in anthropogenic use over time as well as natural ecological variation. Here, the benthic environment of an industrialized embayment was investigated (Swansea Bay, Wales, UK where it is proposed to build a tidal lagoon that would generate marine renewable energy from the tidal range. Since robust long-term baseline data was not available, the value of unpublished historical benthos information from 1984 by a regional water company was assessed with the aim to improve certainty about the persistence of current benthic community patterns. A survey of 101 positions in 2014 identified spatially discrete benthic communities with areas of high and low diversity. Habitat characteristics including sediment properties and the proximity to a sewage outfall explained 17-35% of the variation in the community structure. Comparing the historical information from 1984 with 2014 revealed striking similarity in the benthic communities between those years, not just in their spatial distribution but also to a large extent in the species composition. The 30-year-old information confirmed spatial boundaries of discrete species associations and pinpointed a similar diversity hotspot. A group of five common species was found to be particularly persistent over time (Nucula nitidosa, Spisula elliptica, Spiophanes bombyx, Nephtys hombergii, Diastylis rathkei. According to the Infauna Quality Index (IQI linked to the EU Water Framework Directive (WFD the average ecological status for 2014 was ‘moderate’, but eleven samples

  2. Structural and optical properties of Gd implanted GaN with various crystallographic orientations

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Jagerová, Adéla; Sofer, Z.; Klímová, K.; Sedmidubský, D.; Pristovsek, M.; Mikulics, M.; Lorinčík, Jan; Bottger, R.; Akhmadaliev, S.

    2017-01-01

    Roč. 638, SEP (2017), s. 63-72 ISSN 0040-6090 R&D Projects: GA ČR GA13-20507S; GA ČR GA15-01602S; GA MŠk LM2015056 Institutional support: RVO:67985882 ; RVO:61389005 Keywords : GaN implantation * RBS channelling * optical properties of Gd implanted GaN Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BH - Optics, Masers, Lasers (URE-Y) OBOR OECD: 1.3 Physical sciences; Optics (including laser optics and quantum optics) (URE-Y) Impact factor: 1.879, year: 2016

  3. The effect of Sm-doping on optical properties of LaB6 nanoparticles

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Shi, Junjie; Wei, Wei; Tegus, O.; Zhang, Zhidong

    2015-01-01

    Highlights: • Nanoparticles of Sm-doped LaB 6 have been prepared by solid state reaction. • All samples exhibit high absorbance in NIR range and UV range. • The increase of Sm-doping amount shifts the position of minimum absorptance value. • The optical properties of Sm-doped LaB 6 were interpreted by DFT theory. - Abstract: Nanocrystalline particles of LaB 6 , SmB 6 and Sm-doped LaB 6 have been prepared by a solid-state reaction in order to investigate the optical properties of ternary rare-earth hexaborides. The sizes of prepared nanoparticles range from dozens to more than 200 nm, as confirmed by XRD, SEM and TEM examinations. The optical property concerning the absorption spectra was tested with ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum. All samples exhibit high absorbance in NIR range and UV range. The increase of Sm-doping amount shifts the position of minimum absorptance value of LaB 6 to the long-wave direction. Density functional theory (DFT) is employed to interpret the optical properties of Sm-doped LaB 6 , and results indicate that Sm 4f states change the DOS at near Fermi surface of LaB 6 after Sm doping and the reduced number of conduction electrons results into the change of absorption spectra

  4. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    International Nuclear Information System (INIS)

    Johansson, Malin B; Niklasson, Gunnar A; Österlund, Lars; Baldissera, Gustavo; Persson, Clas; Valyukh, Iryna; Arwin, Hans

    2013-01-01

    The optical and electronic properties of nanocrystalline WO 3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P tot ) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E g ≈ 3.1 eV, which increase with increasing P tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO 3 , and monoclinic γ- and ε-WO 3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO 3 and γ-WO 3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E g in ε-WO 3 is higher than in the δ-WO 3 and γ-WO 3 phases, which provides an explanation for the P tot dependence of the optical data. (paper)

  5. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    Science.gov (United States)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  6. Louisiana waterthrush and benthic macroinvertebrate response to shale gas development

    Science.gov (United States)

    Wood, Petra; Frantz, Mack W.; Becker, Douglas A.

    2016-01-01

    Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of

  7. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  8. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  9. Electronic structure and optical properties of (BeTen/(ZnSem superlattices

    Directory of Open Access Journals (Sweden)

    Caid M.

    2016-03-01

    Full Text Available The structural, electronic and optical properties of (BeTen/(ZnSem superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA. The ground state properties of (BeTen/(ZnSem binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω, the refractive index n(ω and the refractivity R(ω, are calculated for radiation energies up to 35 eV.

  10. The Power of Computer-aided Tomography to Investigate Marine Benthic Communities

    Science.gov (United States)

    Utilization of Computer-aided-Tomography (CT) technology is a powerful tool to investigate benthic communities in aquatic systems. In this presentation, we will attempt to summarize our 15 years of experience in developing specific CT methods and applications to marine benthic co...

  11. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Agata Siarkowska

    2017-12-01

    Full Text Available Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs, 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic–isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  12. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles.

    Science.gov (United States)

    Siarkowska, Agata; Chychłowski, Miłosz; Budaszewski, Daniel; Jankiewicz, Bartłomiej; Bartosewicz, Bartosz; Woliński, Tomasz R

    2017-01-01

    Thermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.3, 0.5 and 1.0 wt %, for direct comparison of the influence of the dopant on the properties of the PLCF. The thermo-optical effects of the liquid crystal doped with gold NPs were compared in three setups, an LC cell, a microcapillary and within the PLCF, to determine if the observed responses to external factors are caused by the properties of the infiltration material or due to the setup configuration. The results obtained indicated that with increasing NP doping a significant reduction of the rise time under an external electric field occurs with a simultaneous decrease in the nematic-isotropic phase transition temperature, thus improving the thermo- and electro-optical properties of the PLCF.

  13. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  14. Effects of hydrogen and helium irradiation on optical property of tungsten

    International Nuclear Information System (INIS)

    Kazutoshi Tokunaga; Tadashi Fujiwara; Naoaki Yoahida; Koichiro Ezato; Satoshi Suzuki; Masato Akiba

    2006-01-01

    Plasma-wall interactions cause surface modification, compositional and structural change on material surface due to sputtering, impurity deposition and radiation damage, etc. As a result, optical property (response of electron and lattice on material for electromagnetic wave) on surface of the plasma facing components would be changed. In particular, diagnostic components, such as metallic mirrors, mounted close to the plasma will be subjected by plasma particles such as hydrogen isotope and helium in the fusion devices. It is well recognized that decrease of optical reflectivity of the metallic mirrors due to the plasma-material interaction will be critical issues for the plasma diagnosis. In the present work, tungsten has been irradiated by hydrogen and helium beam. After that, optical reflectivity and surface modification have been measured to investigate fundamental process of optical property change due to hydrogen and helium beam irradiation. Samples used in the present experiment are powder metallurgy tungsten. Hydrogen and helium irradiations are performed in an ion beam facility at JAEA, the Particle Beam Engineering Facility (PBEF). The energy of hydrogen and helium is 19.0 and 18.7 keV, respectively. Beam duration is 1.3 - 3.5 s. The samples are irradiated up to a fluence of the orders between 10 22 and 10 24 He/m 2 by the repeated pulse irradiations of 14-450 cycles. The surface temperature is measured with an optical pyrometer. After the repeated irradiation experiments, surface modification and composition are examined with a scanning electron microscope (SEM) and a scanning probe microscope (SPM), etc. In addition, the optical reflectivity is measured in the wavelength range of 190 - 2400 nm using an ultraviolet-visible and near-infrared spectrophotometer. The reflectivity after the irradiation decreases depending on fluence and a peak temperature of the samples during the irradiation. In addition, their reflectivity spectra also change. This means

  15. Electrical and optical properties of silicon-doped gallium nitride

    Indian Academy of Sciences (India)

    Si-doped GaN films in polycrystalline form were deposited on quartz substrates at deposition temperatures ranging from 300–623 K using r.f. sputtering technique. Electrical, optical and microstructural properties were studied for these films. It was observed that films deposited at room temperature contained mainly ...

  16. Effective-mass model and magneto-optical properties in hybrid perovskites

    Science.gov (United States)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  17. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  18. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  19. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  20. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    Science.gov (United States)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  1. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    International Nuclear Information System (INIS)

    Bhagat, D. J.; Dhokane, G. R.; Bajaj, N. S.

    2016-01-01

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  2. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R. [Arts, Science and Commerce College, Chikhaldara, 444807, Maharashtra (India); Bajaj, N. S. [Toshniwal Arts, Science and Commerce College, Sengaon, Maharashtra (India)

    2016-05-06

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DC plot.

  3. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Science.gov (United States)

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are

  4. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Stefan G H Simis

    Full Text Available Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM, properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession and physical (thermal stratification processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90 no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively, characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing

  5. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea

    Science.gov (United States)

    Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms

  6. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard

    Science.gov (United States)

    Jernas, Patrycja; Klitgaard-Kristensen, Dorthe; Husum, Katrine; Koç, Nalan; Tverberg, Vigdis; Loubere, Paul; Prins, Maarten; Dijkstra, Noortje; Gluchowska, Marta

    2018-04-01

    The relationships between modern Arctic benthic foraminifera and their ecological controls, along with their sensitivity to rapid environmental changes, is still poorly understood. This study examines how modern benthic foraminifera respond to annual environmental changes in the glaciated Arctic fjord Kongsfjorden, western Svalbard. Large environmental gradients due to the inflow of warm and saline Atlantic Water and the influence of tidewater glaciers characterise the fjord hydrography. A transect of six multi-corer stations, from the inner to the outer fjord, was sampled in the late summers of 2005 to 2008 to study the distribution of living (rose Bengal stained) benthic foraminifera. Physical properties of the water masses were measured concurrently. In general, nearly the entire Kongsfjorden region was dominated by ubiquitous N. labradorica foraminiferal assemblage that successfully exploited the local food resources and thrived particularly well in the presence of Atlantic-derived Transformed Atlantic Water (TAW). Further, the annual investigation revealed that Kongsfjorden underwent large interannual hydrological changes during the studied years related to variable inflow of warm and saline Atlantic Water. This led to a strong fauna variability particularly at the two marginal sites: the glacially influenced inner fjord and marine influenced shelf region. We also observed significant species shift from the 'cold' to 'warm' years and an expansion of widespread and sub-arctic to boreal species into the fjord.

  7. Manipulating the optical properties of dual implanted Au and Zn nanoparticles in sapphire

    Science.gov (United States)

    Epie, E. N.; Scott, D.; Chu, W. K.

    2017-11-01

    We have synthesized and manipulated the optical properties of metallic nanoparticles (NPs) by using a combination of low-energy high-fluence dual implantation and thermal annealing. We demonstrated that by implanting Zn before Au, the resulting absorption peak is enormously blue-shifted by 120 nm with respect to that of Au-only implanted samples. This magnitude of optical shift is not characteristic of unalloyed Au and to the best of our knowledge cannot be attributed to NP size change alone. On the other hand, the absorption peak for samples implanted with Au followed by Zn is blue-shifted about 20 nm. Additionally, by carefully annealing all implanted samples, both NP size distribution and corresponding optical properties can be further modified in a controlled manner. We attribute these behaviours to nanoalloy formation. This work provides a direct method for synthesizing and manipulating both the plasmonic and structural properties of metallic alloy NP in various transparent dielectrics for diverse applications.

  8. Electronic and optical properties of bilayer PbI2: a first-principles study

    Science.gov (United States)

    Shen, Chenhai; Wang, Guangtao

    2018-01-01

    By employing first-principles methods, we investigate the effects of stacking patterns and interlayer coupling on the electronic structures and optical properties of bilayer (BL) PbI2. For optical properties, excitonic effects are considered. The results show that crystal-type BL PbI2 stacking pattern is the most stable bilayer structures with the equilibrium interlayer distance of 3.27 Å and a direct band structure. Moreover, for all considered patterns, the interlayer coupling can induce the band structures to transform from indirect to direct and also the band gap values to vary from 2.56 eV to 2.62 eV. In addition, our calculations show that the exciton binding energy of the most stable pattern is 0.81 eV, and excitonic effects have obvious influences on optical responses of BL PbI2. These results may be useful to future experimental studies on optoelectronic properties of two-dimensional BL PbI2 nanosheets.

  9. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  10. Aerosol optical properties of Western Mediterranean basin from multi-year AERONET data

    Science.gov (United States)

    Benkhalifa, Jamel; Léon, Jean François; Chaabane, Mabrouk

    2017-11-01

    Aerosol optical properties including the total and coarse mode aerosol extinction optical depth (AODt and AODc respectively), Angstrom exponent (AE), size distribution, single scattering albedo (SSA) were examined using long-term ground-based radiometric measurements at 9 sites in the Western Mediterranean: Oujda, Malaga, Barcelona, Carpentras, Rome Tor Vergata, Ersa, Ispra, Venice and Evora, during the 4-year study period (2010-2013). The South-North gradient in the fraction of AODc represents the signature of the increasing influence of coarse particles on the optical properties at southern stations. This fraction has a daily mean ranging from 48 ± 18% at the southern site Oujda and to 8 ± 8% at Ispra. The low average AE444-870 value (<0.7) at Oujda confirms the major influence of large dust particles. Conversely, the AOD at urban stations are dominated by fine mode particles. The Angstrom Exponent (AE444-870) above 1.5 in Ispra and Venice indicates an atmospheric situation corresponding to the urban pollution controlled by small particles. We have analyzed the intrinsic dust optical properties by selecting the dusty days corresponding to a total optical depth above 0.3 and a fraction of the coarse mode optical depth above 30%. For these cases, the mean AODt during dusty days was shown to be close to 0.4. During dusty days, the coarse mode fraction represents 88% of the total volume at Oudja and above 83% for all other sites. There is a weak variability in the mean coarse mode volume median radius, showing an average of 1.98 ± 0.1. A maximum in the AODc was observed in the summer of 2012, with particular high events on June 27. The forward trajectory starting at Evora on June 27 clearly indicates that all the sites were affected by such dust events in the following days.

  11. Human exploitation and benthic community structure on a tropical intertidal mudflat

    NARCIS (Netherlands)

    Boer, de W.F.; Prins, H.H.T.

    2002-01-01

    Human exploitation of intertidal marine invertebrates is known to alter benthic community structure. This study describes the impact that harvesting by women and children has on the intertidal community structure of the mudflats of the Saco on Inhaca Island, Mozambique, by comparing the benthic

  12. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET)

    Science.gov (United States)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-01

    In the present paper we have discussed the effect of 200 keV Ar+ ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar+ ions to various doses ranging from 1×1015 to 1×1017 Ar+ cm2. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  13. Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Amézaga-Madrid, P.; Hurtado-Macías, A.; Antúnez-Flores, W.; Estrada-Ortiz, F.; Pizá-Ruiz, P.; Miki-Yoshida, M.

    2012-01-01

    Highlights: ► Thin films of YSZ obtained by AACVD have high quality. ► They are uniform, very transparent, and have high hardness. ► Optical characterization were performed in detail, optical constants and band gap energy were determined as a function of dopant content. - Abstract: Thin films of yttria-stabilized zirconia (YSZ) exhibit exceptional properties, such as high thermal, chemical and mechanical stability. Here, we report the synthesis of YSZ thin films by aerosol assisted chemical vapour deposition onto borosilicate glass and fused silica substrates. Optimum deposition temperature was 673 ± 5 K. In addition, different Y content was tried to analyse its influence in the microstructure and properties of the films. The films were uniform, transparent and non-light scattering. Surface morphology and cross sectional microstructure were studied by field emission scanning electron microscopy. The microstructure of the films was characterized by grazing incidence X-ray diffraction. Crystallite size and lattice parameter were obtained. Optical properties were analysed from reflectance and transmittance spectra; from these measurements, optical constants and band gap were obtained. Quantum confinement effect, due to the small grain size of the films, was evident in the high band gap energy obtained. Nanoindentation tests were realized at room temperature employing the continuous stiffness measurement method, to determine the hardness and elastic modulus as a function of Y content.

  14. The effects of thermal annealing in structural and optical properties of RF sputtered amorphous silicon

    International Nuclear Information System (INIS)

    Abdul Fatah Awang Mat

    1988-01-01

    The effect of thermal annealing on structural and optical properties of amorphous silicon are studied on samples prepared by radio-frequency sputtering. The fundamental absorption edge of these films are investigated at room temperature and their respective parameters estimated. Annealing effect on optical properties is interpreted in terms of the removal of voids and a decrease of disorder. (author)

  15. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    electronic applications such as photo detection or solar energy conversion, due to its optical and electrical properties, as well as its good chemical and mechanical stability. In order to explore the possibility of using this in optoelectronics, ...

  16. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-01-01

    Full Text Available Underwater inherent optical properties (IOPs are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  17. Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.

    Science.gov (United States)

    Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui

    2017-01-01

    Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.

  18. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    Science.gov (United States)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  19. Effect of Ar bombardment on the electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1 × 10 15 cm − 2 . Electrical properties of LDPE films were measured and the effect of ion ...

  20. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  1. The intriguing relationship between coiling direction and reproductive mode in benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Rao, A

    direction changes. The relationship between mode of reproduction and coiling directions in benthic foraminifera is explored. Benthic foraminiferal species Cavarotalia annectens (Paarker & Jones) in 58 samples obtained from a core off Karwar, west coast...

  2. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.

  3. Synthesis, structural and optical properties of nanoparticles (Al, V ...

    Indian Academy of Sciences (India)

    The synthesis by the sol–gel method, structural and optical properties of ZnO, Zn0.99Al0.01O (AlZ),. Zn0.9V0.1O (VZ) ... drops of the resulting suspension containing the synthesized .... ZnO films on silicon substrate, they thought that this emis-.

  4. Effect of sample thickness on the extracted near-infrared bulk optical properties of Bacillus subtilis in liquid culture.

    Science.gov (United States)

    Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N

    2011-11-01

    In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.

  5. Optical properties of Amorphous Semiconductors Part- II: Theory and analysis of optical properties

    International Nuclear Information System (INIS)

    Hogarth, C. A.

    1997-01-01

    The atomic and band structural properties of solids have been studied. Reflectance is concerned in spectroscopic measurement of transmission and absorption, since the incident light intensity must be corrected for the loss of light by reflection and which does not penetrate beyond the surface of the material studied.The procedure for estimating E opt and n from the absorption edge of an amorphous semiconductor has been discussed. In high refractive index glasses there is a general correlation between n and the density of the glasses and in designing a particular glass for an optical purpose this can provide a useful guide to composition. The Gladstone-Dale refractivity and the Newton-Drude refractivity have been calculated for different value of b and these relations have been tested for telluride semiconducting glasses and give reasonable agreement in estimations of n directly from the density ρ. 33 refs., 10 figs

  6. Pacific Reef Assessment and Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of the U.S. Pacific Reefs from 2000 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  7. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  8. Application of Tietz potential to study optical properties of spherical ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 85, No. 4. — journal of. October 2015 ... The physical properties of semiconductors such as optical, electronic, and thermodynamic .... can be used to reproduce the interaction potential energy curve of the A1.

  9. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world

    DEFF Research Database (Denmark)

    Griffiths, Jennifer R.; Kadin, Martina; Nascimento, Francisco J. A.

    2017-01-01

    and function is strongly affected by anthropogenic pressures, however there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling...... processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study, and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic......Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure...

  10. Aspects of the biology of three benthic-feeding teleosts from King's ...

    African Journals Online (AJOL)

    Aspects of the biology of three benthic-feeding teleosts from King's Beach, Algoa Bay. Theresa A. Lasiak. Department of Zoology, University of Port Elizabeth, Port Elizabeth. The lengths, abundance pattems and feeding habits of three species of benthic·feeding teleosts, Lithognathus mormyrus,. Lithognathus lithognathus ...

  11. Optical properties of CeO 2 thin films

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10-6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly ...

  12. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    Science.gov (United States)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  13. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    Science.gov (United States)

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  14. Synthesis, Characterization, and Nonlinear Optical Properties of P-Substituted Poly Gamma-Benzyl

    Science.gov (United States)

    Choi, Dong-Hoon

    Poly gamma-benzyl-L-glutamate (PBLG), poly gamma-p-fluorobenzyl -L-glutamate (PGLU(pFB)), poly gamma -p-nitrobenzyl-L-glutamate (PGLU(pNB)), and poly gamma-p-trifluoromethylbenzyl-L-glutamate (PGLU(pTFMB)) have been synthesized. These PBLG polymers show variations in the side chain conformations in the solid state and solution state. In the solid state, the side chain orientation was assigned to a longitudinal or transverse direction by virtue of the polarized infrared spectrum of each PBLG analogue. The characteristics of the lyotropic liquid crystalline behavior could be observed. The optical waveguiding property of these polymers facilitated measurement of the refractive index and the thickness of each polymer film. Poling the polymer films and using the simple reflection technique, the electro -optic coefficients of the PBLG analogues could be determined. The effect of the para substitution on benzyl ester as it effected the electro-optic coefficient and the relation between the dielectric properties and the electro-optic effect of each polymer were investigated. These studies were able to demonstrate which conformation of the side chain in para substituted poly gamma-benzyl -L-glutamates is a more favorable conformation for enhancing the electro-optic behavior of these polymers.

  15. Compact All Solid State Oceanic Inherent Optical Property Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  16. Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai; Fan, Zhaoyang

    2017-01-01

    Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI3due to a change of the ion activation energy from 0.7 eV to 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.

  17. Optical properties of tungsten oxide thin films by non-reactive sputtering

    International Nuclear Information System (INIS)

    Acosta, M.; Gonzalez, D.; Riech, I.

    2008-01-01

    Tungsten oxide thin films were grown on glass substrates by RF sputtering at room temperature using a tungsten trioxide target for several values of the Argon pressure (PAr). The structural and morphological properties of these films were studied using X-ray diffraction and Atomic Force Microscopy. The as-deposited films were amorphous irrespective of the Argon pressure, and crystallized in a mixture of hexagonal and monoclinic phases after annealing at a temperature of 3500 C in air. Surface-Roughness increased by an order of magnitude (from 1 nm to 20 nm) after thermal treatment. The Argon pressure, however, had a strong influence on the optical properties of the films. Three different regions are clearly identified: deep blue films for PAr 40 mTorr with high transmittance values. We suggest that the observed changes in optical properties are due to an increasing number of Oxygen vacancies as the growth Argon pressure decreases. (Full text)

  18. Optical Remote Sensing of Benthic Habitats and Bathymetry in Coastal Environments at Lee Stocking Island, Bahamas: A Comparative Spectral Classification Approach

    National Research Council Canada - National Science Library

    Louchard, Eric M; Reid, R. P; Stephens, F. C; Davis, Curtiss O; Leathers, Robert A; Downes, T. V

    2002-01-01

    .... R sub rs spectra were calculated for water depths ranging from 0.5 to 20 m at 0.5- to 1.0-m depth intervals using measured reflectance spectra from sediment, seagrass, and pavement bottom types and inherent optical properties of the water...

  19. Enhancement of nonlinear optical properties of compounds of silica

    Indian Academy of Sciences (India)

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...

  20. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Maleki, E. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Banihashemian, S.M. [Low Dimensional Materials Research Center, Department of Physics, Science Faculty, University Malaya, 50603 Kuala Lumpur (Malaysia); Park, J.W. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Y.B. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Sarraf, M.; Sarhan, A.A.D.M.; Ramesh, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolyte containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.

  1. Measurement of optical properties of nano-cement using THz electromagnetic waves

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kang, Dong Hoon; Joo, Chulmin; Oh, Seung Jae

    2016-01-01

    Enhancing mechanical strength of concrete has been fascinated using carbon-based nanomaterials such as CNT and graphene. The key to improving strength is a dispersion of nanomaterials. A novel method is required to investigate the dispersion inner concrete nondestructively. In this study, the optical optical properties such as refractive index and absorption coefficient are measured in nano-cement mortar specimens containing MWCNT and GO using THz electro-magnetic waves. From the results, the properties of nano-cement mortar are confirmed to be 1.0% to 2.5% higher in refractive index, and -14% to 28% higher in absorption coefficient than those of cement mortar at the average values. Using these characteristics, visualizing the dispersion of nano-concrete structures seems possible in future

  2. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  3. Sol-gel synthesis and optical properties of titanium dioxide thin film

    Science.gov (United States)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  4. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    Science.gov (United States)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  5. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  6. Production by intertidal benthic animals and limits to their predation by shorebirds : a heuristic model

    NARCIS (Netherlands)

    Piersma, Theunis

    1987-01-01

    This review examines the question whether the cumulative amount of benthic biomass removed by feeding shorebirds on a certain intertidal area is limited by the renewal rate of benthic food stocks. Limitations of current methods to estimate both predatory impact by shorebirds and harvestable benthic

  7. Optical and electrochromic properties of Sn:WO3 cermets

    International Nuclear Information System (INIS)

    Ashrit, P.V.; Bader, G.; Girouard, F.E.; Truong, V.V.

    1989-01-01

    This paper discusses optical and electrochromic properties of Sn:WO 3 cermets deposited by alternate layer thermal deposition. These cermets exhibit electrical and optical behavior in the as deposited state. The inclusion of Sn in the WO 3 matrix enhances the Electrical conductivity of the system and renders them fairly transparent in the visible region. The electrochromic behavior of such systems is studied under both proton and Li + ion injection. The good conductivity and good transmission combined with good electrochromic characteristics of these systems indicate the possibility of utilizing this type of cermet for the dual role of transparent conductor (TC) and electrochromic (EC) layer

  8. Optical properties of cosmic dust analogs: a review

    Science.gov (United States)

    Henning, Thomas; Mutschke, Harald

    2010-04-01

    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.

  9. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    OpenAIRE

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on ...

  10. Analysis of intensive aerosol optical properties measured at the Jungfraujoch station

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Nyeki, S.; Baltensperger, U.; Weingartner, E.; Lugauer, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Characterisation of atmospheric aerosol optical properties at the Jungfraujoch has been conducted to deliver basic data for comparison with those from NOAA baseline atmospheric monitoring stations. (author) 2 figs., 2 refs.

  11. Benthic studies in south Gujarat estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Govindan, K.; Varshney, P.K.; Desai, B.N.

    Benthic biomass and faunal composition in relation to various environmental conditions of the four South Gujarat estuaries namely the Auranga, Ambika, Purna and Mindola were studied and compared. Mean population density of benthos in Auranga, Ambika...

  12. A decline in benthic foraminifera following the deepwater horizon event in the northeastern Gulf of Mexico.

    Science.gov (United States)

    Schwing, Patrick T; Romero, Isabel C; Brooks, Gregg R; Hastings, David W; Larson, Rebekka A; Hollander, David J

    2015-01-01

    Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹⁰Pb, ²³⁴Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long

  13. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  14. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  15. Magneto-optical and magnetic properties in a Co/Pd multilayered thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nwokoye, Chidubem A. [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States); Bennett, Lawrence H., E-mail: lbennett@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Della Torre, Edward, E-mail: edt@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Ghahremani, Mohammadreza [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Narducci, Frank A. [Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States)

    2017-01-01

    The paper describes investigation of ferromagnetism at low temperatures. We explored the magneto-optical properties, influenced by photon–magnon interactions, of a ferromagnetic Co/Pd multilayered thin film below and above the magnon Bose–Einstein Condensation (BEC) temperature. Analyses of SQUID and MOKE low temperature experimental results reveal a noticeable phase transition in both magnetic and magneto-optical properties of the material at the BEC temperature. - Highlights: • The results show the effect of a non-zero chemical potential on the magnetization. • The MOKE and SQUID results show a phase transition point at the same temperature. • Magnon BEC is a major influence of the observed phase transition temperature.

  16. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    Science.gov (United States)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  17. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  18. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  19. Pressure tuning of the optical properties of GaAs nanowires

    NARCIS (Netherlands)

    Zardo, I.; Yazji, S.; Marini, C.; Uccelli, E.; Morral, A.F.I.; Abstreiter, G.; Postorino, P.

    2012-01-01

    The tuning of the optical and electronic properties of semiconductor nanowires can be achieved by crystal phase engineering. Zinc-blende and diamond semiconductors exhibit pressure-induced structural transitions as well as a strong pressure dependence of the band gaps. When reduced to nanoscale

  20. Determination of optical properties of tissue and other bio-materials

    CSIR Research Space (South Africa)

    Singh, A

    2008-11-01

    Full Text Available appears less diffusively scattered. Determination of optical properties of tissue and other bio-materials A SINGH, AE KARSTEN, JS DAM CSIR National Laser Centre, Biophotonics Group PO Box 395, Pretoria, 0001, South Africa Email: ASingh1@csir.co.za K...

  1. BENTHIC MACROFAUNAL ALIENS IN WILLAPA BAY

    Science.gov (United States)

    Benthic macrofaunal samples were collected at random stations in Willapa Bay, WA, in four habitats [eelgrass (Zostera marina), Atlantic cordgrass (Spartina alterniflora), mud shrimp (Upogebia pugettensis), ghost shrimp (Neotrypaea californiensis)] in 1996 and in seven habitats (Z...

  2. Optical and Magneto-Optical Properties of Gd22Fe78 Thin Films in the Photon Energy Range From 1.5 to 5.5 eV

    Directory of Open Access Journals (Sweden)

    Eva Jesenská

    2016-01-01

    Full Text Available Optical and magneto-optical properties of amorphous Gd22Fe78 (GdFe thin films prepared by direct current (DC sputtering on thermally oxidized substrates were characterized by the combination of spectroscopic ellipsometry and magneto-optical spectroscopy in the photon energy range from 1.5 to 5.5 eV. Thin SiNx and Ru coatings were used to prevent the GdFe surface oxidation and contamination. Using advanced theoretical models spectral dependence of the complete permittivity tensor and spectral dependence of the absorption coefficient were deduced from experimental data. No significant changes in the optical properties upon different coatings were observed, indicating reliability of used analysis.

  3. FDTD simulations of near-field mediated semiconductor molecular optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dai; Sakrow, Marcus; Mihaljevic, Josip; Meixner, Alfred J. [Institute of Physical and Theoretical Chemistry, University Tuebingen, Auf der Morgenstelle 8, Tuebingen (Germany)

    2010-07-01

    The optical properties of molecules can be dramatically altered when they are in a close proximity of an excited metal antenna. In order to get insight into how the antenna generated near-field influences the optical properties of low quantum yield molecules, we carried out FDTD simulations of a sharp laser-illuminated Au tip approaching to a semiconductor thin film. The time-averaged field distribution between the semiconductor thin film and the tip antenna is calculated regarding to different distances. Our calculation demonstrates that the coupling between the localized plasmon at the tip apex and semiconductor polariton can be achieved building up a distance-dependent high field enhancement. Our experimental results show that such a high field strength enhances not only the excitation process by a factor of 104, but alters the radiative: non-radiative decay rate giving approx. 15 times stronger photoluminescence emission.

  4. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups

    International Nuclear Information System (INIS)

    Zhang, Xiao-Liang; Li, Xiao-Chun; Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Chen, Yong-Sheng

    2015-01-01

    Nonlinear optical properties (NLO) and optical limiting effect of fullerene (C 60 ), multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO) and their oxygenated derivatives were investigated by open-aperture Z-scan technique with nanosecond pulses at 532 nm. C 60 functionalized by oxygen-containing functional groups exhibits weaker NLO properties than that of pristine C 60 . Graphene oxide (GO) with many oxygen-containing functional groups also shows weaker NLO properties than that of RGO. That can be attributed to the disruption of conjugative structures of C 60 and graphene by oxygen-containing functional groups. However, MWNTs and their oxygenated derivatives exhibit comparable NLO properties due to the small weight ratio of these oxygen-containing groups. To investigate the correlation between structures and NLO response for these carbon nanomaterials with different dimensions, nonlinear scattered signal spectra versus input fluence were also measured. (paper)

  5. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  6. Optical and magneto-optical properties of the electron-doped and hole-doped C{sub 82} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rostampour, E., E-mail: el_rostampour@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Koohi, A. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-01-15

    The optical and magnetic properties of the doped C{sub 82} crystal have been investigated by Su–Schrieffer–Heeger (SSH) model, which is based on the Ewald method. When the C{sub 82} molecule is doped with one electron (or hole), a single electron is remained in the energy level that affects the optical and magnetic properties of the C{sub 82} crystal. The lattice and electronic structures of C{sub 82} changed with doping electron (or hole) in the molecule of C{sub 82}. Therefore, polarons are predicted in doped fullerenes. The obtained results showed that the dielectric tensor of the C{sub 82} crystal increased with doping electron (or hole) in the molecule of C{sub 82}. The spectral shapes of the dielectric tensor, circular dichroism and birefringence coefficient of the C{sub 82} crystal turn out to be determined mainly by the geometrical distributions of the pentagons in the fullerene structures.

  7. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    Science.gov (United States)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: BENTHIC (Benthic habitat polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains known locations of patchy and continuous seagrass and oyster reef habitat for the Upper Coast of Texas benthic habitat data. This data set...

  9. Optical properties of likely constituents of interstellar dust

    International Nuclear Information System (INIS)

    Dayawansa, I.J.

    1977-07-01

    Optical properties of polyoxymethylene (POM) at room temperature have been measured from the near ultra-violet to infrared as an initial stage of a link between interstellar dust and organic matter, and the results, which are particularly relevant to interstellar extinction, are reported. There is a strong possibility of a more complex organic component which could significantly contribute to the interstellar extinction. Measurements have also been made of the effect of fast neutron bombardment on the optical properties of quartz (SiO 2 ). At a high total flux of neutrons the crystalline quartz will change to its amorphous form which has extinction properties that resemble the interstellar extinction. Extinction due to small particles of several forms of SiO 2 has been measured and among them the hydrated mineral, opal, behaved like an amorphous silica. Neutron irradiated olivine showed a stronger and a broader 10μm band in addition to weaker bands towards the longer wavelengths which indicated that atomic damage has been produced. At high fluxes more atomic damage is expected to change the crystalline structure and thereby cause changes in the infrared absorption properties. Extinction measurements were also made for smoke particles of MgO in the infrared. When the measurements were made with the particles deposited on substrates, in addition to a very broad surface mode absorption feature around 20μm an extinction maximum was observed typical of the bulk mode at 25μm. Extinction measurements for MgO smoke particles in air also showed similar results. However when the particles were dispersed in a non-absorbing medium, the bulk absorption mode was not observed. This implies that the appearance of the bulk mode is due to clumping. (author)

  10. Electronic and optical properties of GaN under pressure: DFT calculations

    Science.gov (United States)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  11. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting

  12. Ab initio calculation of the electronic and optical properties of solid pentacene

    International Nuclear Information System (INIS)

    Tiago, Murilo L.; Northrup, John E.; Louie, Steve G.

    2002-01-01

    The optical and electronic properties of crystalline pentacene are studied, using a first-principles Green's-function approach. The quasiparticle energies are calculated within the GW approximation and the electron-hole excitations are computed by solving the Bethe-Salpeter equation. We investigate the role of polymorphism on the electronic energy gap and linear optical spectrum by studying two different crystalline phases: the solution-phase structure and the vapor-phase structure. charge-transfer excitons are found to dominate the optical spectrum. Excitons with sizable binding energies are predicted for both phases

  13. Optical properties, electronic structure and magnetism of alpha '-NaxV2O5

    NARCIS (Netherlands)

    Konstantinovic, MI; Popovic, ZV; Presura, C; Gajic, R; Isobe, M; Ueda, Y; Moshchalkov, VV

    2002-01-01

    The optical properties of sodium-deficient alpha'-NaxV2O5 (0.85 less than or equal to x less than or equal to 1.00) single crystals are analyzed using ellipsometry, and infrared reflectivity techniques. In sodium deficient samples, the optical absorption peak associated to the fundamental electronic

  14. An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound

    International Nuclear Information System (INIS)

    Ali, M A; Nasir, M T; Khatun, M R; Naqib, S H; Islam, A K M A

    2016-01-01

    The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc 2 AlC are calculated using density functional theory (DFT). The structural properties of Sc 2 AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy ( F ), internal energy ( E ), entropy ( S ), and specific heat capacity ( C v ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector. (paper)

  15. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding

    DEFF Research Database (Denmark)

    Pawlowski, Jan; Esling, Philippe; Lejzerowicz, Franck

    2016-01-01

    The rapid growth of the salmon industry necessitates the development of fast and accurate tools to assess its environmental impact. Macrobenthic monitoring is commonly used to measure the impact of organic enrichment associated with salmon farm activities. However, classical benthic monitoring can...... of macrofauna-based benthic monitoring. Here, we tested the application of foraminiferal metabarcoding to benthic monitoring of salmon farms in Norway. We analysed 140 samples of eDNA and environmental RNA (eRNA) extracted from surface sediment samples collected at 4 salmon farming sites in Norway. We sequenced...... of Foraminifera as bioindicators of organic enrichment associated with salmon farming. The foraminiferal diversity increased with the distance to fish cages, and metabarcoding provides an assessment of the ecological quality comparable to the morphological analyses. The foraminiferal metabarcoding approach...

  16. Effect of Zn doping on optical properties and photoconductivity of ...

    Indian Academy of Sciences (India)

    Keywords. Thin film; spray pyrolysis; tin sulfide; optical properties; photoluminescence; photoconductivity. 1. ... ber of compounds with CdI2 structure, has interesting proper- ties such .... STM images of 0, 2·5, 5 and 7·5 at% Zn-doped SnS2 films.

  17. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  18. Composition dependence of the optical and structural properties of Eu-doped oxyfluoride glasses

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wu, D.Q.; Zhang, Y.F.

    2015-01-01

    Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L'Eclairage chromaticity coordinates, X...... compositions. Finally, we propose a mechanism to explain how the glass structure affects the reduction of Eu ions as well as optical properties of the glasses.......Europium doped oxyfluoride glasses were prepared by the melt quenching method for the light emitting diodes applications. The optical and structural properties of these glasses were studied by means of photoluminescence spectra, Commission Internationale de L'Eclairage chromaticity coordinates, X...... on the base glass compositions. For certain base glass compositions, CaF2 crystals can form during the melt cooling process, and thereby enhance the conversion from Eu3+ to Eu2+. The formation of CaF2 crystals can be suppressed by adding CaO, Al2O3 and B2O3, but enhanced by adding Na2O and K2O in glass...

  19. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  20. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  1. Mid-IR optical properties of silicon doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Norrman, Kion

    2017-01-01

    of growth conditions on the optical and electrical properties of silicon doped InP (InP:Si) in the wavelength range from 3 to 40 μm was studied. The carrier concentration of up to 3.9 × 1019 cm-3 is achieved by optimizing the growth conditions. The dielectric function, effective mass of electrons and plasma...

  2. Optical properties and electron transport in low-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2011-01-01

    Roč. 54, 2-2 (2011), s. 4-13 ISSN 0021-3411 R&D Projects: GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : quantum dots * electron -photon interaction * optical properties * electron relaxation * DNA molecule Subject RIV: BE - The oretical Physics http://elibrary.ru/contents.asp?issueid=1010336

  3. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  4. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Yang, Xiaoyuan [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kopacz, Adrian M [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Geier, Manfred [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  5. Optical and dielectric properties of neutron irradiated MgAl2O4 spinels

    International Nuclear Information System (INIS)

    Ibarra, A.

    1996-01-01

    The radiation effects on the optical and electrical properties of stoichiometric MgAl 2 O 4 spinel specimens irradiated in FFTF-MOTA at temperatures between 385 and 750 C to fluence ranging from 5.3 to 24.9 x 10 26 n m -2 (E>0.1 McV) are measured. In the optical properties a strong absorption in the ultraviolet range is observed together with a small band around 20 000 cm -1 (510 nm). Two strong luminescence emissions are also observed around 700 nm, with excitation spectra in the ultraviolet region. In the electrical properties a strong decrease of conductivity is observed in the temperature range from 0 to 500 C. Other techniques (like dielectric spectroscopy and EPR) have been used. (orig.)

  6. Optical properties and electronic band structure of AgInSe2

    International Nuclear Information System (INIS)

    Ozaki, Shunji; Adachi, Sadao

    2006-01-01

    Optical properties of a chalcopyrite semiconductor AgInSe 2 have been studied by optical absorption, spectroscopic ellipsometry (SE), and thermoreflectance (TR) measurements. The measurements reveal distinct structures at energies of the critical points in the Brillouin zone. By performing the band-structure calculation, these critical points have been successfully assigned to specific points in the Brillouin zone. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Morphology, structure and optical properties of sol-gel ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Teodorescu, V.S.; Blanchin, M.G.; Stoica, T.A.; Gartner, M.; Losurdo, M.; Zaharescu, M

    2003-08-15

    The alkoxidic route and the spinning deposition were used to prepare monolayer sol-gel indium tin oxide (ITO) films. The morphology and crystalline structure were investigated by cross-section transmission electron microscopy (XTEM) and atomic force microscopy (AFM). The ITO sol-gel mono-layer contains three regions of different porosities. The basic crystalline structure is that of the In{sub 2}O{sub 3} lattice. The optical properties have been studied by optical transmission and spectroscopic ellipsometry.

  8. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Energy Technology Data Exchange (ETDEWEB)

    Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others

    2015-06-15

    Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  9. Benthic carbonate factories of the Phanerozoic

    NARCIS (Netherlands)

    Schlager, W.

    2003-01-01

    Marine carbonate precipitation occurs in three basic modes: abiotic (or quasi-abiotic), biotically induced, and biotically controlled. On a geologic scale, these precipitation modes combine to form three carbonate production systems, or "factories" in the benthic environment: (1) tropical

  10. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  11. Food web flows through a sub-arctic deep-sea benthic community

    Science.gov (United States)

    Gontikaki, E.; van Oevelen, D.; Soetaert, K.; Witte, U.

    2011-11-01

    The benthic food web of the deep Faroe-Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m -2 d -1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.

  12. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  13. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  14. Do benthic biofilters contribute to sustainability and restoration of the benthic environment impacted by offshore cage finfish aquaculture?

    International Nuclear Information System (INIS)

    Aguado-Gimenez, F.; Piedecausa, M.A.; Carrasco, C.; Gutierrez, J.M.; Aliaga, V.; Garcia-Garcia, B.

    2011-01-01

    Highlights: → Benthic biofilters were deployed under an offshore fish farm and in control locations. → We checked the farm influence on fouling, wild fish and sediment near the biofilters. → Fouling under the cages used fish farm-derived wastes, but at low efficiency. → Wild fish were more abundant in the biofilters located below the cages. → Despite these clear benefits, sediment quality around the biofilters did not improve. - Abstract: Benthic biofilters were deployed under a cage fish farm and in two reference locations to assess the influence of the farm on the biofilters and the surroundings, as well as to verify the usefulness of this technology as a mitigation tool. The biofilters underneath the farm recruited a fouling community practically identical to that of the control biofilters, which included a variety of trophic strategies. The former showed a higher 15 N enrichment, indicating that fouling beneath the farm was benefiting from the farm waste. The waste retention efficiency was low (0.02 g N m -2 month -1 ) beneath the farm. Benthic biofilters aggregated demersal wild fish around and within them. Pelagic wild fish also frequently used the biofilters beneath the farm, forming compact shoals around them. The increased complexity of the habitat below the fish farm enhanced biodiversity, but this improvement did not lead to the recovery of the sediments around the biofilters.

  15. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    Science.gov (United States)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  16. Benthic plastic debris in marine and fresh water environments.

    Science.gov (United States)

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  17. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  18. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrehim, N; El-Samahy, A E; Kassem, M E [Physics Department, Faculty of Science, Alexandria University. (Egypt); Abou-Taleb, W M [Physics and Chemistry Department, Faculty of Education, Alexandria University. (Egypt)

    1996-03-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E{sub op}, absorption coefficient {alpha} , absorption index K, mobility energy gap E{sub g}, absorption band edge {lambda}{sub g} and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E{sub p}, is dose dependent. 7 figs.

  19. Gamma-irradiation effects on optical properties of lexan film. Vol. 2

    International Nuclear Information System (INIS)

    Abd-Elrehim, N.; El-Samahy, A.E.; Kassem, M.E.; Abou-Taleb, W.M.

    1996-01-01

    The optical absorption method is a powerful tool for studying the optically induced transitions and for determining the energy gap in crystalline and non-crystalline materials. The absorption spectra in the lower energy part sheds light on the atomic vibrations. While the higher energy parts of the spectrum manifest the electronic states in the atoms. Effect of gamma-irradiation on the optical properties of plastic detector (Lexan film) has been studied. These investigations were carried out for gamma-doses from 10 kGy -2 mGy to determine the optical parameters; optical energy gap E op , absorption coefficient α , absorption index K, mobility energy gap E g , absorption band edge λ g and the absorbance at wavelength 340 nm. The results showed that both direct and indirect transitions existed in lexan detector, and because highly sensitive to gamma-irradiation doses. The variations of optical energy gap with gamma-irradiation doses can be explained as the change in the degree of disorder and the phonon energy E p , is dose dependent. 7 figs

  20. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  1. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    Science.gov (United States)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  2. X-ray, optical, and radio properties of quasars

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Keel, W.C.; Miller, J.S.

    1982-01-01

    We have examined a sample of 26 low-redshift quasars for the relationships between X-ray luminosity and optical spectroscopic features. All quasars were observed with the Einstein Observatory and with the IDS on the Lick 3 meter telescope. We find evidence for correlations between quasar X-ray luminosity and both optical continuum luminosity and Hβ luminosity. In the latter case, there is a smooth relationship connecting quasars, Seyfert 1, and Seyfert 2 galaxies. For the quasars in this sample, there is also a strong correlation between optical continuum luminosity and both the Hβ luminosity and equivalent width. Unlike the case for Seyfert 1 nuclei, there is no evidence for a correlation between X-ray luminosity and either the Hβ/[O III] ratio or the width at zero intensity of the Hβ line. However, we do find some evidence for a weak correlation between α'/sub o/x, the mean continuum spectral index between 5000 A and 2 keV, and Fe II equivalent width, Hβ equivalent width, Hβ line width at zero intensity, and the ratio of Hβ equivalent width to its line width at zero intensity. Overall, we found few strong correlations between optical spectroscopic quanitites and X-ray properties of quasars. Some of the implications of these results for models of quasars and quasar emission line regions are discussed

  3. Benthic ecological mapping of the Ayeyarwady delta shelf off Myanmar, using foraminiferal assemblages

    Digital Repository Service at National Institute of Oceanography (India)

    Panchang, R.; Nigam, R.

    Information on benthic ecologies is a prerequisite to evaluate marine resources, their management and monitoring the impact arising from their exploitation. In the present study, benthic foraminiferal distributions from 124 surface sediment samples...

  4. Optical properties of the semiconductor quantum structure

    International Nuclear Information System (INIS)

    Haratizadeh, H.; Holtz, P.O.; Monemar, B.; Karlsoon, K.F.; Moskalenko, E.S.; Amano, H.; Akasaki, I.; Schoenfeld, W.V.; Garcia, J.M.; Petroff, P.M.

    2004-01-01

    Optical properties of the quantum structures have been discussed with emphasize of the AlGaN/GaN multiple quantum wells and InAs/GaAs quantum dot structures. We report on a detailed study of low temperature photoluminescence in Al 0 .07Ga 0 .93 N/GaN multiple quantum wells. The structures were nominally undoped multiple quantum well grown on sapphire substrate. The structure from discrete well width variations is here resolved in photoluminescence spectra. The results demonstrate that the theoretically estimated fields in this work are consistent with the experimental spectra

  5. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.

    Science.gov (United States)

    Thennadil, Suresh N; Chen, Yi-Chieh

    2017-02-01

    The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.

  6. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  7. Optical properties of a single free standing nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K W; Wang, C Y [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 300, Taiwan (China)

    2007-12-15

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm.

  8. Optical properties of a single free standing nanodiamond

    International Nuclear Information System (INIS)

    Sun, K W; Wang, C Y

    2007-01-01

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm

  9. Modeling food web interactions in benthic deep-sea ecosystems. A practical guide

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Van Oevelen, D.J.

    2009-01-01

    Deep-sea benthic systems are notoriously difficult to sample. Even more than for other benthic systems, many flows among biological groups cannot be directly measured, and data sets remain incomplete and uncertain. In such cases, mathematical models are often used to quantify unmeasured biological

  10. Environmental drivers of the benthic macroinvertebrates community in a hypersaline estuary (Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Carlinda Railly Ferreira Medeiros

    Full Text Available Abstract Introduction The estuarine community of benthic macroinvertebrates spatially varies in response to changes in environmental variables in these ecosystems. Understanding this variability helps our understanding the mechanisms structuring these communities. Aim Assess the structural aspects of the benthic macroinvertebrate community in a hypersaline estuary, and to relate to environmental variables that influence the community structure along the estuary. Methods The study was conducted at Tubarão river estuary in May 2015. We sampled two estuarine areas (upper and lower, and in each zone were sampled six points composed of two replicas, one sampled in sandy bottom and the other in muddy bottom. Samples of benthic macroinvertebrates and estuarine environmental variables were collected. Environmental drivers of the benthic macroinvertebrate community were determined by Distance-based Linear Models analysis. The contribution of individual species to the dissimilarity between the areas and substrate types were determined by analysis of the percentage of similarity. Results The composition of benthic macroinvertebrate community differed between the upper and lower areas, although it was similar between the muddy and sandy bottoms. The variation in the benthic community between areas was mainly related to the influence of salinity in the upper area. In the lower area, the variation of the macroinvertebrates was related to salinity, associated with other variables in the sandy (temperature, turbidity and dissolved oxygen and muddy (temperature, total dissolved solids and dissolved oxygen substrates. Taxa which contributed most to the dissimilarity between the upper and lower areas were Nereididae (17.89%, Anomalocardia brasiliana (15% and Cirratulidae (10.43%. Conclusions Salinity was the main driver of the structural aspects of the benthic macroinvertebrate community in the upper area of the estuary, although in the lower area a set of

  11. Contribution of benthic microalgae to the temporal variation in phytoplankton assemblages in a macrotidal system.

    Science.gov (United States)

    Hernández Fariñas, Tania; Ribeiro, Lourenço; Soudant, Dominique; Belin, Catherine; Bacher, Cédric; Lampert, Luis; Barillé, Laurent

    2017-10-01

    Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms. © 2017 Phycological Society of America.

  12. Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?

    Science.gov (United States)

    This study investigated phototoxicity of TiO2 nanoparticles (nano-TiO2) to a freshwater benthic amphipod (Hyalella azteca) using 48-h and 96-h bioassays. Thorough monitoring of particle interactions with exposure media (Lake Superior water, LSW) and the surface of organisms was p...

  13. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  14. Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films

    Science.gov (United States)

    Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; Ramana, C. V.

    2017-09-01

    An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg ∼ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.

  15. Quasiparticle electronic and optical properties of the Si-Sn system

    International Nuclear Information System (INIS)

    Jensen, Rasmus V S; Pedersen, Thomas G; Larsen, Arne N

    2011-01-01

    The Si 1-x Sn x material system is an interesting candidate for an optically active material compatible with Si. Based on density functional theory with quasiparticle corrections we calculate the electronic band structure of zinc-blende SiSn under both compressive and tensile strain. At 2.2% tensile strain the band gap becomes direct with a magnitude of 0.85 eV. We develop an accurate tight-binding parameterization of the electronic structure and calculate the optical properties of SiSn. Furthermore, the silicide SiSn 2 is investigated and found to have metallic character. (paper)

  16. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  17. Optical properties of tungsten oxide thin films by non-reactive sputtering

    International Nuclear Information System (INIS)

    Acosta, M.; Gonzalez, D.; Riech, I.

    2009-01-01

    Tungsten oxide thin films were grown on glass substrates by RF sputtering at room temperature using a tungsten trioxide target for several values of the argon pressure (P Ar ). The structural and morphological properties of these films were studied using X-ray diffraction and atomic force microscopy. The as-deposited films were amorphous irrespective of the argon pressure, and crystallized in a mixture of hexagonal and monoclinic phases after annealing at a temperature of 350 o C in air. Surface-roughness increased by an order of magnitude (from 1 nm to 20 nm) after thermal treatment. The argon pressure, however, had a strong influence on the optical properties of the films. Three different regions are clearly identified: deep blue films for P Ar ≤ 2.67 Pa with low transmittance values, light blue films for 2.67 Pa Ar Ar ≥ 6 Pa with high transmittance values. We suggest that the observed changes in optical properties are due to an increasing number of oxygen vacancies as the growth argon pressure decreases.

  18. The role of pelagic-benthic coupling in structuring littoral benthic communities at Terra Nova Bay (Ross Sea and in the Straits of Magellan

    Directory of Open Access Journals (Sweden)

    Riccardo Cattaneo-Vietti

    1999-12-01

    Full Text Available In Antarctic and peri-Antarctic regions, benthic communities are persistent in time and show high biomass and large numbers of individuals, mainly consisting of suspension and deposit feeders. In fact, apart from recruitment, the major factor structuring these communities is the high flow of organic matter from the pelagic domain to the bottom, representing an important energy source for the benthic organisms. The aim of this paper is to review, compile and compare the data from earlier investigations in Terra Nova Bay (Ross Sea and the Straits of Magellan, in order to come to a more general conclusion about the role of the pelagic-benthic coupling in structuring littoral benthic communities in southern coastal areas. Few measurements of flux rates and the biochemical composition of the sinking particles occurring in Antarctic and peri-Antarctic shallow waters are available, but a compilation of our own data and others allows a comparison of these two systems. The different environmental conditions between Antarctica and the Straits of Magellan lead to differences in the origin of the particulate organic matter and in its biochemical composition, and consequently in the coupling between pelagic and benthic domains. At Terra Nova Bay the summer particulate matter shows a high labile fraction of a good food value: its flux has been evaluated at about 0.67 g m-2d-1. Conversely, the Straits of Magellan show multi-structured ecosystems where the quality and quantity of the organic matter flux towards the bottom change according to the local geomorphology and current dynamics. Moreover, the three-dimensional assemblages of suspension-feeders, so common in Antarctic shallow waters, seem to be absent in the Magellan area. In particular sponges, gorgonarians and bryozoans play a secondary role inside the Straits of Magellan, where polychaetes (60% and molluscs (9-10% are dominant on soft bottoms, and where they reach high values in density and biomass

  19. Atlantic Deep-Water Canyons (Benthic Landers) 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  20. Fatigue Property of Oxidized Photochromic Dithienylethene Derivative for Permanent Optical Recording

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Kwang Hyun; Yang, Sung Ik; Kim, Eun Kyoung

    2005-01-01

    We have synthesized and characterized the photophysical and fatigue properties of DMTFO4. The results have shown that the photo-stability of DMTFO4 was significantly decreased compared with the unoxidized DMTF6. The possible application of DMTFO4 would be the development of permanent recording material based on a non-reversible photochromic conversion. Photochromic diarylethenes, such as 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene (BTF6) and 1,2-bis(2,5-dimethylthien-3-yl)perfluorocyclopentene (DMTF6), have been extensively investigated in recent years in order to develop materials for molecular photonic devices such as optical memory and switch. In the design of photochromic materials, thermal stability and fatigue resistant are important features to be considered. The thiophene analogues undergo photochromic ring closure efficiently but the fatigue property is generally low, resulting irreversible photochromism. If the photochromism is in an irreversible manner it could be applied in the permanent optical recording such as write once read many (WORM) memory. This motivates us to examine the effect of oxidation in the photophysical properties of diarylethenes with thiophene unit. As the thiophene analogues, we chose DMTF6 and its oxidized analogue, 1,2-bis(2,5-dimethylthien-1,1-dioxide-3-yl)perfluorocyclopentene (DMTFO4). Herein we report the synthesis and characterization of the photochromic properties including the fatigue property of DMTFO4

  1. Electronic and Optical Properties of CuO Based on DFT+U and GW Approximation

    International Nuclear Information System (INIS)

    Ahmad, F; Agusta, M K; Dipojono, H K

    2016-01-01

    We report ab initio calculations of electronic structure and optical properties of monoclinic CuO based on DFT+U and GW approximation. CuO is an antiferromagnetic material with strong electron correlations. Our calculation shows that DFT+U and GW approximation sufficiently reliable to investigate the material properties of CuO. The calculated band gap of DFT+U for reasonable value of U slightly underestimates. The use of GW approximation requires adjustment of U value to get realistic result. Hybridization Cu 3dxz, 3dyz with O 2p plays an important role in the formation of band gap. The calculated optical properties based on DFT+U and GW corrections by solving Bethe-Salpeter are in good agreement with the calculated electronic properties and the experimental result. (paper)

  2. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  3. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  4. Structural, electronic, and optical properties of GaInO{sub 3}: A hybrid density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, V., E-mail: wangvei@icloud.com; Ma, D.-M.; Liu, R.-J.; Yang, C.-M. [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xiao, W. [State Key Lab of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2014-01-28

    The structural, electronic, and optical properties of GaInO{sub 3} have been studied by first-principles calculations based on Heyd-Scuseria-Ernzerhof hybrid functional theory. The optical properties, including the optical reflectivity, refractive index, extinction coefficient, absorption coefficient, and electron energy loss are discussed for radiation up to 60 eV together with the calculated electronic structure. Our results predicted that GaInO{sub 3} displays good transparency over the whole vision region, which is in good agreement with the experimental data available in the literature.

  5. Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Ansari, Z.A.; Matondkar, S.G.P.; Rodrigues, N.

    The probable impact of nodule mining on benthic biota was studied by creating a benthic disturbance. During the predisturbance study in the Central Indian Basin, box core samples were analyzed for the distribution, composition and abundance...

  6. Effect of strain on the structural and optical properties of Cu-N co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Zhao Yue; Zhou Mintao; Li Zhao; Lv Zhiyong; Liang Xiaoyan; Min Jiahua; Wang Linjun; Shi Weimin

    2011-01-01

    Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra. - Highlights: →Cu-N co-doped ZnO is first prepared by the wet chemical method. → Stress is produced by the introduction of Cu and N atoms. → Effect of stress on the structural and optical properties of ZnO film is investigated. → Cu concentration will be used to control the structural and optical properties.

  7. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  8. Optical and electronic properties of polyvinyl alcohol doped with pairs of mixed valence metal ions

    International Nuclear Information System (INIS)

    Bulinski, Mircea; Kuncser, Victor; Plapcianu, Carmen; Krautwald, Stefan; Franke, Hilmar; Rotaru, P; Filoti, George

    2004-01-01

    The electronic mechanisms induced by the UV exposure of thin films of polyvinyl alcohol doped with pairs of mixed valence metal ions were studied in relation to their optical behaviour by Moessbauer spectroscopy and optical absorption. The results obtained definitely point to the role of each element from the pair in the electronic mechanism involved, with influence on the optical properties regarding applications in real-time holography and integrated optics

  9. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil.

    Science.gov (United States)

    Bissoli, Lorena B; Bernardino, Angelo F

    2018-01-01

    Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.

  10. Study on time of flight property of electron optical systems by differential algebraic method

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Yao Zhenhua

    2002-01-01

    Differential algebraic method is a powerful and promising technique in computer numerical analysis. When applied to nonlinear dynamics systems, the arbitrary high-order transfer properties of the systems can be computed directly with high precision. In this paper, the principle of differential algebra is applied to study on the time of flight (TOF) property of electron optical systems and their arbitrary order TOF transfer properties can be numerically calculated out. As an example, TOF transfer properties of a uniform magnetic sector field analyzer have been studied by differential algebraic method. Relative errors of the first-order and second-order TOF transfer coefficients of the magnetic sector field analyzer are of the order 10 -11 or smaller compared with the analytic solutions. It is proved that differential algebraic TOF method is of high accuracy and very helpful for high-order TOF transfer property analysis of electron optical systems. (author)

  11. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    Wintec

    , optical sensors, optical data communication and optical ... our filters (Leon et al 2001), solar cells and optical sen- sors (Tanaka et al 1991; Tokizaki et .... volume fractions (Top panel: tanψ for volume fractions, 1⋅2%. (dash) and 0⋅6% (dot); ...

  12. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    International Nuclear Information System (INIS)

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  13. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    Science.gov (United States)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the

  14. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    Science.gov (United States)

    2002-09-30

    CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired

  15. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  16. Late Glacial–Holocene record of benthic foraminiferal ...

    Indian Academy of Sciences (India)

    K Verma

    2018-03-06

    Mar 6, 2018 ... influence of oxygen-rich Antarctic Intermediate Water (AAIW). Keywords. Paleontology; benthic ..... nent changes at millennial scale are noticed during certain intervals ...... become environmental change? The proxy record of ...

  17. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  18. Towards standardized testing methodologies for optical properties of components in concentrating solar thermal power plants

    Science.gov (United States)

    Sallaberry, Fabienne; Fernández-García, Aránzazu; Lüpfert, Eckhard; Morales, Angel; Vicente, Gema San; Sutter, Florian

    2017-06-01

    Precise knowledge of the optical properties of the components used in the solar field of concentrating solar thermal power plants is primordial to ensure their optimum power production. Those properties are measured and evaluated by different techniques and equipment, in laboratory conditions and/or in the field. Standards for such measurements and international consensus for the appropriate techniques are in preparation. The reference materials used as a standard for the calibration of the equipment are under discussion. This paper summarizes current testing methodologies and guidelines for the characterization of optical properties of solar mirrors and absorbers.

  19. The optical, vibrational, structural and elasto-optic properties of Zn_0_._2_5Cd_0_._7_5S_ySe_1_-_y quaternary alloys

    International Nuclear Information System (INIS)

    Paliwal, U.; Swarkar, C. B.; Sharma, M. D.; Joshi, K. B.

    2016-01-01

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn_0_._2_5Cd_0_._7_5S_0_._2_5Se_0_._7_5, Zn_0_._2_5Cd_0_._7_5S_0_._5_0Se_0_._5_0 and Zn_0_._2_5Cd_0_._7_5S_0_._7_5Se_0_._2_5 are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ε_0) and high frequency dielectric (ε_∞) constants are calculated to reveal optical behavior of alloys. The longitudinal ω_L_O(0) and transverse ω_T_O(0) optical frequencies are obtained to see vibrational characteristics. Moreover, the elastic constants (c_i_j) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.

  20. Effect of 200 keV Ar+ implantation on optical and electrical properties of polyethyleneterepthalate (PET)

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-01-01

    In the present paper we have discussed the effect of 200 keV Ar + ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar + ions to various doses ranging from 1×10 15 to 1×10 17 Ar + cm 2 . The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET

  1. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  2. Structural and Optical Properties of Nanocrystalline 3,4,9,10-Perylene-Tetracarboxylic-Diimide Thin Film

    Directory of Open Access Journals (Sweden)

    M. M. El-Nahhas

    2012-01-01

    Full Text Available Thin films of nanocrystalline 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI were prepared on quartz substrates by thermal evaporation technique. The structural properties were identified by transmission electron microscopy (TEM and the X-ray diffraction (XRD. The optical properties for the films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The optical constants (refractive index n and absorption index k were calculated and found to be independent on the film thickness in the measured film thickness range 117–163 nm. The dispersion energy (Ed, the oscillator energy (Eo, and the high-frequency dielectric constant ε∞ were obtained. The energy band model was applied, and the types of the optical transitions responsible for optical absorption were found to be indirect allowed transition. The onset and optical energy gaps were calculated, and the obtained results were also discussed.

  3. Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data

    Science.gov (United States)

    Sheibley, Richard W.; Paulson, Anthony J.

    2014-01-01

    Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.

  4. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    Science.gov (United States)

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  5. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.

    Science.gov (United States)

    Zhang, Xiufeng; Taylor, William D; Rudstam, Lars G

    2017-11-01

    Eutrophication in shallow lakes is characterized by a switch from benthic to pelagic dominance of primary productivity that leads to turbid water, while benthification is characterized by a shift in primary production from the pelagic zone to the benthos associated with clear water. A 12-week mesocosm experiment tested the hypothesis that the herbivorous snail Bellamya aeruginosa stimulates the growth of pelagic algae through grazing on benthic algae and through accelerating nutrient release from sediment. A tube-microcosm experiment using 32 P-PO 4 as a tracer tested the effects of the snails on the release of sediment phosphorus (P). The mesocosm experiment recorded greater total nitrogen (TN) concentrations and a higher ratio of TN:TP in the overlying water, and a higher light intensity and biomass of benthic algae as measured by chlorophyll a (Chl a) in the snail treatment than in the control. Concentrations of total phosphorus (TP), total suspended solids (TSSs), and inorganic suspended solids (ISSs) in the overlying water were lower in the snail treatment than in the control, though no significant difference in Chl a of pelagic algae between the snail treatment and control was observed. In the microcosm experiment, 32 P activity in the overlying water was higher in the snail treatment than in the control, indicating that snails accelerated P release from the sediment. Our interpretation of these results is that snails enhanced growth of benthic algae and thereby improved water clarity despite grazing on the benthic algae and enhancing P release from the sediment. The rehabilitation of native snail populations may therefore enhance the recovery of eutrophic shallow lakes to a clear water state by stimulating growth of benthic algae.

  6. Application of TSL Underwater Robots (AUV) for Investigation of Benthic Ecosystems and Quantification of Benthic Invertebrate Reserves

    Science.gov (United States)

    Golikov, S. Yu; Dulepov, V. I.; Maiorov, I. S.

    2017-11-01

    The issues on the application of autonomous underwater vehicles for assessing the abundance, biomass, distribution and reserves of invertebrates in the marine benthic ecosystems and on the environmental monitoring are discussed. An example of the application of methodology to assess some of the quantitative characteristics of macrobenthos is provided based upon using the information obtained from the TSL AUV in the Peter the Great Gulf (the Sea of Japan) in the Bay of Paris and the Eastern Bosphorus Strait within the area of the bridge leading to the Russian island. For the quantitative determination of the benthic invertebrate reserves, the values of biomass density of specific species are determined. Based on the data of direct measurements and weightings, the equations of weight dependencies on the size of animals are estimated according to the studied species that are well described by the power law dependence.

  7. Computation of the optical properties of turbid media from slope and curvature of spatially resolved reflectance curves

    International Nuclear Information System (INIS)

    Jäger, Marion; Foschum, Florian; Kienle, Alwin

    2013-01-01

    The optical properties of turbid media were calculated from the curvature at the radial distance ρ O and the slope at the radial distance ρ* of simulated spatially resolved reflectance curves (ρ O (ρ*) denotes a decrease of the spatially resolved reflectance curve of 0.75 (2.4) orders of magnitude relative to the reflectance value at 1.2 mm). We found correlations between the curvature at ρ O and the reduced scattering coefficient as well as the slope at ρ* and the absorption coefficient. For the determination of the optical properties we used these two correlations. The calculation of the reduced scattering coefficient from the curvature at ρ O is practically independent from the absorption coefficient. Knowing the reduced scattering coefficient within a certain accuracy allows the determination of the absorption coefficient from the slope at ρ*. Additionally, we investigated the performance of an artificial neural network for the determination of the optical properties using the above explained correlations. This means we used the derivatives as input data. Our artificial neural network was capable to learn the mapping between the optical properties and the derivatives. In effect, the results for the determined optical properties improved in comparison to the above explained method. Finally, the procedure was compared to an artificial neural network that was trained without using the derivatives. (note)

  8. Shallow-water Benthic Habitats in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...

  9. Optical and Physical Properties of ONP Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Iman Akbarpoor

    2012-01-01

    Full Text Available Enzymes are protein molecules with complex structures that accelerate the biochemical reactions. Activity of these chemical compounds is accomplished at limited range of pH, temperature and concentration. In this study, the effects of different concentrations of cellulose enzyme were investigated on deinking of old newsprint. Old newsprint (ONP was repulped at 5% consistency for 10 minutes in disintegrator with total revolution number of 26500. Enzymatic treatments of recycled ONP pulp were done under constant conditions (10% consistency,treatment time of 15 minutes, pH range of 5-5.5 at different cellulose concentrations of 0.025, 0.05, 0.1 and 0.2% (based on oven-dry waste paper. The optical and physical properties of the standard paper (60g/m2 made at different concentrations of cellulose were evaluated in comparison with control pulp (untreated ONP pulp with cellulase. Overall, the results achieved by comparison the optical properties of the paper produced indicated that using cellulase in deinking of ONP led to increase the brightness and the yellowness and decrease the opacity. The brightness was improved to a maximum level of 47.5 ISO %, but the yellowness was decreased to a minimum level of 11.3 ISO %, while the brightness reduced and the yellowness increased at higher concentrations than 0.05% cellulase. The highest opacity of 99.3 ISO % was achieved using 0.1% cellulase even higher than control pulp. The results gained by comparison the physical properties of the paper showed that using cellulase resulted in decrease of paper calliper, air resistance and density and improve the freeness of pulp

  10. Comparison of the properties of various optically stimulated luminescence signals from potassium feldspar

    International Nuclear Information System (INIS)

    Fu Xiao; Zhang Jiafu; Zhou Liping

    2012-01-01

    Various optically stimulated luminescence signals from K-feldspar have been used to determine the equivalent doses of sediment samples. Understanding the properties of these optical signals is critical to evaluate their applicability and limitations to optical dating. In this paper, some properties of IRSL, post-IR OSL and post-IR IRSL signals (detected in the UV region using U-340 filters) from a museum sample of K-feldspar were investigated by analyzing the relationships between optical and TL signals, and the effect of optical bleaching and heating on optical signals. The trap parameters of the different optical signals were calculated using the pulse annealing method. The results show that this sample exhibits two regenerated TL peaks at ∼140 and ∼330 °C. Corresponding to the low temperature TL peak, the OSL and post-IR OSL signals appear to be more associated with lower temperature TL than the IRSL signal measured at 50 °C. Corresponding to the high temperature TL peak, the post-IR IRSL signals mainly originate from the more thermally stable traps associated with the high temperature TL, compared with the IRSL and post-IR OSL signals. However, the post-IR IRSL 225°C signal is shown to be hard to be bleached by blue light and simulated sunlight, compared with the IRSL 50°C and low temperature post-IR IRSL signals. The implication for optical dating is that the elevated temperature post-IR IRSL signals can be preferentially applied over other signals from K-feldspar, but it is desirable that the effectiveness of the pre-depositional zeroing of these signals is assessed.

  11. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of American Samoa from 2015-02-15 to 2015-03-23 (NCEI Accession 0157566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  12. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  13. Composition-controlled optical properties of colloidal CdSe quantum dots

    International Nuclear Information System (INIS)

    Ayele, Delele Worku; Su, Wei-Nien; Chou, Hung-Lung; Pan, Chun-Jern; Hwang, Bing-Joe

    2014-01-01

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties

  14. Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion

    NARCIS (Netherlands)

    Budhiman, S.; Salama, M.S.; Vekerdy, Z.; Verhoef, W.

    2012-01-01

    The development of an operational water quality monitoring method based on remote sensing data requires information on the apparent and inherent optical properties of water (AOP and IOP respectively). This study was performed to determine the apparent and inherent optical properties of coastal

  15. Towed Optical Assessment Device (TOAD) Data to Support Benthic Habitat Mapping since 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Optical validation data were collected using a Tethered Optical Assessment Device (TOAD), an underwater sled equipped with an underwater digital video camera and...

  16. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  17. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  18. Structural, optical and electrical properties of ZnO thin films prepared ...

    Indian Academy of Sciences (India)

    Administrator

    of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical pro- perties has ... dependence of photoresponse properties of sprayed ZnO thin films on ... randomly oriented flake-like grains. The grains ...

  19. Effect of nanoclay on optical properties of PLA/clay composite films

    CSIR Research Space (South Africa)

    Cele, HM

    2014-06-01

    Full Text Available function of the clay loading. The optical properties of the PLA/OMMT composites were studied using variable angle spectroscopic ellipsometry (VASE) and ultra-violet (UV-Vis) spectroscopy. VASE revealed that the refractive index and extinction coefficient (n...

  20. Optical properties and electronic structure of the Cu–Zn brasses

    International Nuclear Information System (INIS)

    Keast, V.J.; Ewald, J.; De Silva, K.S.B.; Cortie, M.B.; Monnier, B.; Cuskelly, D.; Kisi, E.H.

    2015-01-01

    The color of Cu–Zn brasses range from the red of copper through bright yellow to grey-silver as the Zn content increases. Here we examine the mechanism by which these color changes occur. The optical properties of this set of alloys has been calculated using density functional theory (DFT) and compared to experimental spectroscopy measurements. The optical response of the low Zn content α-brasses is shown to have a distinctly different origin to that in the higher content β′, γ and ε-brasses. The response of β′-brass is unique in that it is strongly influenced by an overdamped plasmon excitation and this alloy will also have a strong surface plasmon response. - Highlights: • Study of the electronic structure and optical response of the Cu–Zn brasses. • Agreement between experiment and calculation of the dielectric functions. • α-brasses optical response is dominated by transitions from the top of the d-band. • In the other brasses it is transitions around the Fermi level. • β′-brass response is dominateed by an overdamped bulk plasmonic response