WorldWideScience

Sample records for benthic invertebrates structure

  1. Structure and function of a benthic invertebrate stream community as influenced by beaver (Castor canadensis).

    Science.gov (United States)

    McDowell, Donald M; Naiman, Robert J

    1986-03-01

    Beaver (Castor canadensis) affect the benthic invertebrate community of small woodland streams in Quebec through habitat modifications. Their activities influence community structure through the replacement of lotic taxa by lentic forms and community function by increasing the absolute importance of collectors and predators while decreasing the relative importance of shredders and scrapers in impounded sites. At our study site during the 1983 ice-free season, standing stocks of coarse particulate organic matter (>1 mm) were 2-5 times greater (Podonates, Tubificidae, and filtering pelycopods. Our results suggest that current paradigms applied to lotic ecosystems need to be reevaluated to incorporate the influence of beaver upon invertebrate communities.

  2. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, J.L.T., E-mail: jpestana@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Alexander, A.C., E-mail: alexa.alexander@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Culp, J.M., E-mail: jculp@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Baird, D.J., E-mail: djbaird@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Cessna, A.J., E-mail: asoares@ua.p [Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK (Canada); Soares, A.M.V.M., E-mail: asoares@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2009-08-15

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  3. Relations Between the Structure of Benthic Macro-Invertebrates and the Composition of Adult Water Beetle Diets from the Dytiscidae Family.

    Science.gov (United States)

    Frelik, Anna; Pakulnicka, Joanna

    2015-10-01

    This paper investigates the relations between the diet structure of predaceous adult water beetles from the Dytiscidae family and the structure of macrofauna inhabiting the same environments. The field studies were carried out from April until September in 2012 and 2013 in 1-mo intervals. In total, >1,000 water beetles and 5,115 benthic macro-invertebrates were collected during the whole period of the study. Subsequently, 784 specimens of adult water beetles (70.6% out of the total sampled) with benthic macro-invertebrates found in their proventriculi, were subject to analysis. The predators were divided into three categories depending on their body size: small beetles (2.3-5.0 mm), medium-sized beetles (13-15 mm), and large beetles (27-37 mm). All adult Dytiscidae consumed primarily Ephemeroptera and Chironomidae larvae. Although Asellidae were numerically dominant inhabitants of the sites, the adult water beetles did not feed on them. The analysis of feeding relations between predators and their prey revealed that abundance of Ephemeroptera, Chironomidae, and larval Dytiscidae between the environment and the diet of adult Dytiscidae were strongly correlated.

  4. Scientometric trends of freshwater benthic invertebrates studies in Brazil

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Brandimarte

    Full Text Available Abstract: Aim The aim of this paper is to analyze trends in the literature concerning benthic invertebrates in Brazil, mainly the number of published papers and approaches used. Methods The Ph.D. database of the Lattes Platform (CNPq was used as the source of information for the period 1970-2014. We searched for the terms “benthos”, “macroinvertebrates”, and “zoobenthos” in the titles and keywords of the papers listed on the platform. Papers were classified into the following categories: Systematics, Life History, Ecology, and Divulgation. These categories were further divided into subcategories. The percentage of papers in every major category and subcategory was calculated. Results The search introduced 1,573 papers, which were mainly related to Ecology and Systematics. From 1970 to 2009, the number of papers published per decade increased exponentially, and the upward trend continues. The number of papers concerning Systematics, especially in Taxonomy, is increasing. Of the papers in Ecology category, those about Structure, Dynamics, and Distribution of the fauna have been increasing since the 1980s, and there has been an evident increase in the production of papers related to environmental damage in the last decade. The rate of production of papers concerning the role of invertebrates in ecosystems and the effects of different Spatial Scales has been increasing since the 2000s. Conclusion There is a clear tendency towards the increased continuity of paper production concerning freshwater benthic invertebrates, and relatively new approaches as Conservation and Exotic Species are becoming relevant.

  5. Methods for collecting benthic invertebrate samples as part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic invertebrate communities are evaluated as part of the ecological survey component of the U.S. Geological Survey's National Water-Quality Assessment Program. These biological data are collected along with physical and chemical data to assess water-quality conditions and to develop an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. The objectives of benthic invertebrate community characterizations are to (1) develop for each site a list of tax a within the associated stream reach and (2) determine the structure of benthic invertebrate communities within selected habitats of that reach. A nationally consistent approach is used to achieve these objectives. This approach provides guidance on site, reach, and habitat selection and methods and equipment for qualitative multihabitat sampling and semi-quantitative single habitat sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data within and among study units.

  6. Do lake littoral benthic invertebrates respond differently to eutrophication, hydromorphological alteration, land use and fish stocking?

    Directory of Open Access Journals (Sweden)

    Šiling Rebeka

    2016-01-01

    Full Text Available In order to provide adequate guidelines in freshwater management, managers need reliable bioindicators that can respond differently to varied stressors. Managers also have to consider hierarchical structure of environmental factors. Thus, our research aims to test the independence of taxa responses along environmental gradients and to examine in what order natural and anthropogenic factors constrain the structure of littoral benthic assemblages. The rank of explained variance of littoral benthic assemblage's variable group hierarchy was: land use > landscape characteristics > eutrophication > fish stocking > hydromorphological alteration. We determined nine gradients (two natural and seven stressor gradients, separated into five groups based on statistically significant differences in responsiveness of taxa. Apart from responsiveness to natural factors, littoral benthic invertebrates could be used as bioindicators for stressors reflecting urbanization, eutrophication, hydromorphological alteration and fish stocking. The taxonomical composition of littoral benthic invertebrates, especially when taxa with preference for certain relatively narrow environmental conditions along gradients are present, can be used to identify effects of key stressors. Our findings have profound implications for ecological assessment and management of lakes, as they indicate that benthic invertebrates can be used when the effects of multiple stressors need to be disentangled.

  7. [Starvation and chemoreception in Antarctic benthic invertebrates].

    Science.gov (United States)

    Rakusa-Suszczewski, S; Janecki, T; Domanov, M M

    2010-01-01

    Sensitivity (chemoreception) to different amino acids was studied in six invertebrate species: Serolis polita, Glyptonotus antarcticus, Abyssochromene plebs, Waldeckia obesa, Odontaster validus, and Sterechinus neumayeri. The sensitivity was estimated by the changes in basic metabolism (respiration rate). Starvation increased the sensitivity in all the species. The metabolism rates increased in the presence of L-glutamic acid in G. antarcticus, A. plebs, O. validus, and S. neumayeri. The serine and arginine amino acids had a significant impact on the metabolism of the necrophagous species S. polita and W. obesa. The chemical information may be mediated by means of L-glutamic acid via glutamate receptors, which can be blocked by kynurenic acid, as occurs in the experiments with G. antarcticus and A. plebs.

  8. Early invasion population structure of quagga mussel and associated benthic invertebrate community composition on soft sediment in a large reservoir

    Science.gov (United States)

    Wittmann, Marion E.; Chandra, Sudeep; Caires, Andrea; Denton, Marianne; Rosen, Michael R.; Wong, Wai Hing; Teitjen, Todd; Turner, Kent; Roefer, Peggy; Holdren, G. Chris

    2010-01-01

    In 2007 an invasive dreissenid mussel species, Dreissena bugensis (quagga mussel), was discovered in Lake Mead reservoir (AZ–NV). Within 2 years, adult populations have spread throughout the lake and are not only colonizing hard substrates, but also establishing in soft sediments at depths ranging from 1 to >100 m. Dreissena bugensis size class and population density distribution differs between basins; cluster analysis revealed 5 adult cohorts within Boulder Basin and Overton Arm but low densities and low cohort survival in the Las Vegas Basin. Regression analysis suggests depth and temperature are not primary controllers of D. bugensis density in Lake Mead, indicating other factors such as sediment type, food availability or other resource competition may be important. Monthly veliger tows showed at least 2 major spawning events per year, with continuous presence of veligers in the water column. Adult mussels have been found in spawn or post-spawn condition in soft sediments in shallow to deep waters (>80 m) indicating the potential for reproduction at multiple depths. Comparisons to a 1986 benthic survey suggest there have been shifts in nondreissenid macroinvertebrate composition; however, it is unclear if this is due to D. bugensis presence. Current distribution of nondreissenid macroinvertebrates is heterogeneous in all 3 basins, and their biodiversity decreased when D. bugensis density was 2500/m2 or greater.

  9. A newly developed dispersal metric indicates the succession of benthic invertebrates in restored rivers.

    Science.gov (United States)

    Li, Fengqing; Sundermann, Andrea; Stoll, Stefan; Haase, Peter

    2016-11-01

    Dispersal capacity plays a fundamental role in the riverine benthic invertebrate colonization of new habitats that emerges following flash floods or restoration. However, an appropriate measure of dispersal capacity for benthic invertebrates is still lacking. The dispersal of benthic invertebrates occurs mainly during the aquatic (larval) and aerial (adult) life stages, and the dispersal of each stage can be further subdivided into active and passive modes. Based on these four possible dispersal modes, we first developed a metric (which is very similar to the well-known and widely used saprobic index) to estimate the dispersal capacity for 802 benthic invertebrate taxa by incorporating a weight for each mode. Second, we tested this metric using benthic invertebrate community data from a) 23 large restored river sites with substantial improvements of river bottom habitats dating back 1 to 10years, b) 23 unrestored sites very close to the restored sites, and c) 298 adjacent surrounding sites (mean±standard deviation: 13.0±9.5 per site) within a distance of up to 5km for each restored site in the low mountain and lowland areas of Germany. We hypothesize that our metric will reflect the temporal succession process of benthic invertebrate communities colonizing the restored sites, whereas no temporal changes are expected in the unrestored and surrounding sites. By applying our metric to these three river treatment categories, we found that the average dispersal capacity of benthic invertebrate communities in the restored sites significantly decreased in the early years following restoration, whereas there were no changes in either the unrestored or the surrounding sites. After all taxa had been divided into quartiles representing weak to strong dispersers, this pattern became even more obvious; strong dispersers colonized the restored sites during the first year after restoration and then significantly decreased over time, whereas weak dispersers continued to increase

  10. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula.

    Science.gov (United States)

    McClintock, James B; Amsler, Charles D; Baker, Bill J

    2010-12-01

    Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the

  11. Chemoreception of the Seagrass Posidonia Oceanica by Benthic Invertebrates is Altered by Seawater Acidification.

    Science.gov (United States)

    Zupo, Valerio; Maibam, Chingoileima; Buia, Maria Cristina; Gambi, Maria Cristina; Patti, Francesco Paolo; Scipione, Maria Beatrice; Lorenti, Maurizio; Fink, Patrick

    2015-08-01

    Several plants and invertebrates interact and communicate by means of volatile organic compounds (VOCs). These compounds may play the role of infochemicals, being able to carry complex information to selected species, thus mediating inter- or intra-specific communications. Volatile organic compounds derived from the wounding of marine diatoms, for example, carry information for several benthic and planktonic invertebrates. Although the ecological importance of VOCs has been demonstrated, both in terrestrial plants and in marine microalgae, their role as infochemicals has not been demonstrated in seagrasses. In addition, benthic communities, even the most complex and resilient, as those associated to seagrass meadows, are affected by ocean acidification at various levels. Therefore, the acidification of oceans could produce interference in the way seagrass-associated invertebrates recognize and choose their specific environments. We simulated the wounding of Posidonia oceanica leaves collected at two sites (a control site at normal pH, and a naturally acidified site) off the Island of Ischia (Gulf of Naples, Italy). We extracted the VOCs and tested a set of 13 species of associated invertebrates for their specific chemotactic responses in order to determine if: a) seagrasses produce VOCs playing the role of infochemicals, and b) their effects can be altered by seawater pH. Our results indicate that several invertebrates recognize the odor of wounded P. oceanica leaves, especially those strictly associated to the leaf stratum of the seagrass. Their chemotactic reactions may be modulated by the seawater pH, thus impairing the chemical communications in seagrass-associated communities in acidified conditions. In fact, 54% of the tested species exhibited a changed behavioral response in acidified waters (pH 7.7). Furthermore, the differences observed in the abundance of invertebrates, in natural vs. acidified field conditions, are in agreement with these behavioral

  12. Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea.

    Science.gov (United States)

    Rivetti, Irene; Fraschetti, Simonetta; Lionello, Piero; Zambianchi, Enrico; Boero, Ferdinando

    2014-01-01

    Satellite data show a steady increase, in the last decades, of the surface temperature (upper few millimetres of the water surface) of the Mediterranean Sea. Reports of mass mortalities of benthic marine invertebrates increased in the same period. Some local studies interpreted the two phenomena in a cause-effect fashion. However, a basin-wide picture of temperature changes combined with a systematic assessment on invertebrate mass mortalities was still lacking. Both the thermal structure of the water column in the Mediterranean Sea over the period 1945-2011 and all documented invertebrate mass mortality events in the basin are analysed to ascertain if: 1- documented mass mortalities occurred under conditions of positive temperature trends at basin scale, and 2- atypical thermal conditions were registered at the smaller spatial and temporal scale of mass mortality events. The thermal structure of the shallow water column over the last 67 years was reconstructed using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS programme. A review of the mass mortality events of benthic invertebrates at Mediterranean scale was also carried out. The analysis of in situ temperature profiles shows that the Mediterranean Sea changed in a non-homogeneous fashion. The frequency of mass mortalities is increasing. The areas subjected to these events correspond to positive thermal anomalies. Statistically significant temperature trends in the upper layers of the Mediterranean Sea show an increase of up to 0.07°C/yr for a large fraction of the basin. Mass mortalities are consistent with both the temperature increase at basin scale and the thermal changes at local scale, up to 5.2°C. Our research supports the existence of a causal link between positive thermal anomalies and observed invertebrate mass mortalities in the Mediterranean Sea, invoking focused mitigation initiatives in sensitive areas.

  13. Marine Benthic Invertebrates in Mamala Bay, Oahu, Hawaii 1994 (NODC Accession 9900151)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Planktonic larval stages of many benthic marine invertebrates are especially susceptible to environmental stress, such as the presence of pollution. Recruitment of...

  14. Regulation of nitrous oxide emission associated with benthic invertebrates

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    2010-01-01

    of their bioirrigation behaviour (indirect N2O emission). 2. Two benthic invertebrate species were studied to determine (i) the dependence of direct N2O emission on the preferred diet of the animals, (ii) the regulation of direct N2O emission by seasonally changing factors, such as body size, temperature and NO3....... In contrast, larvae of the alderfly Sialis lutaria, which prefer a bacteria-poor carnivorous diet, emitted N2O at invariably low rates of 0–20 pmol Ind.-1 h-1. The N2O emission rate of E. danica larvae was positively correlated with seasonally changing factors (body size, temperature and NO3- availability......- availability and (iii) the quantitative relationship between direct and indirect N2O emission. 3. Larvae of the mayfly Ephemera danica, which prefer a bacteria-rich detritus diet, emitted N2O at rates of up to 90 pmol Ind.-1 h-1 under in situ conditions and 550 pmol Ind.-1 h-1 under laboratory conditions...

  15. Species Diversity of Macro-benthic Invertebrates in Mangrove and Seagrass Ecosystems of Eastern Bohol, Philippines

    Directory of Open Access Journals (Sweden)

    Marichu C. Libres

    2015-12-01

    Full Text Available Descriptive survey method through actual resource assessment was conducted to determine the species diversity of macro-benthic invertebrates in the mangrove forest and seagrass beds of Eastern Bohol, Philippines namely: Anda, Candijay, Mabini, and Ubay. The 4 representative sites were chosen through random sampling. In each municipality, the researcher selected a representative area wherein 3 transects were laid perpendicular to the shoreline. The assessment in each transect covered a strip of 4 m by 50 m. All macro-benthic invertebrates intercepted within 4-meter to the left and right of the transect line were identified, counted and listed in a slate board. The data gathered were subjected to Shannon-Weiner Index and Kruskal Wallis Test. In mangrove forests, results revealed that Anda got the highest species diversity index of 1.66 with 11 species. The lowest value which is 1.15 was recorded in Candijay having only five macro-benthic invertebrate species. In the 4 municipalities, a total of 12 species representing 3 phyla were identified. In seagrass beds, 19 taxa of macro-benthic invertebrates were recorded belonging to three phyla. Based on the findings, the researcher concluded that macro-benthic invertebrates in eastern part of Bohol is diverse both in mangrove forests and seagrass beds. Moreover, there is no significant difference in the species diversity among the four representative sites.

  16. Benthic invertebrate bioassays with toxic sediment and pore water

    Science.gov (United States)

    Giesy, John P.; Rosiu, Cornell J.; Graney, Robert L.; Henry, Mary G.

    1990-01-01

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. The assays studied were: (a) Microtox®, a 15-min assay ofPhotobacterium phosphoreum bioluminescence inhibition by pore water; (b) 48-h Daphnia magnalethality test in pore water; (c) 10-d subchronic assay of lethality to and reduction of weight gain by Chironomus tentans performed in either whole sediment or pore water; (d) 168-h acute lethality assay of Hexagenia limbata in either whole sediment or pore water. The three methods of diluting sediments were: (a) extracting pore water from the toxic location and dilution with pore water from the control station; (b) diluting whole sediment from the toxic location with control whole sediment from a reference location, then extracting pore water; and (c) diluting toxic, whole sediment with whole sediment from a reference location, then using the whole sediment in bioassays. Based on lethality, H. limbata was the most sensitive organism to the toxicity of Detroit River sediment. Lethality of D. magna in pore water was similar to that of H. limbata in whole sediment and can be used to predict effects of whole sediment toxicity to H. limbata. The concentration required to cause a 50% reduction in C. tentans growth (10-d EC50) was approximately that which caused 50% lethality of D. magna (48-h LC50) and was similar to the toxicity that restricts benthic invertebrate colonization of contaminated sediments. While the three dilution techniques gave similar results with some assays, they gave very different results in other assays. The dose-response relationships determined by the three dilution techniques would be expected to vary with sediment, toxicant and bioassay type, and the dose-response relationship derived from each technique needs to be interpreted accordingly.

  17. Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Castela, Jose [Departamento de Zoologia and IMAR-CIC, Universidade de Coimbra, Largo Marques de Pombal, 3004-517 Coimbra (Portugal)], E-mail: jcccastela@gmail.com; Ferreira, Veronica [Departamento de Zoologia and IMAR-CIC, Universidade de Coimbra, Largo Marques de Pombal, 3004-517 Coimbra (Portugal)], E-mail: veronica@ci.uc.pt; Graca, Manuel A.S. [Departamento de Zoologia and IMAR-CIC, Universidade de Coimbra, Largo Marques de Pombal, 3004-517 Coimbra (Portugal)], E-mail: mgraca@ci.uc.pt

    2008-05-15

    Biomonitoring programs to access the ecological integrity of freshwaters tend to rely exclusively on structural parameters. Here we evaluated stream ecological integrity using (a) benthic macroinvertebrate derived metrics and a biotic index as measures of structural integrity and (b) oak litter decomposition and associated fungal sporulation rates as measures of functional integrity. The study was done at four sites (S1, S2, S3 and S4) along a downstream increasing phosphorus and habitat degradation gradient in a small stream. The biotic index, invertebrate metrics, invertebrate and fungal communities' structure and sporulation rates discriminated upstream and downstream sites. Decomposition rates classified sites S4 and S2 as having a compromised ecosystem functioning. Although both functional and structural approaches gave the same results for the most impacted site (S4), they were complementary for moderately impacted sites (S2 and S3), and we therefore support the need for incorporating functional measures in evaluations of stream ecological integrity. - This study supports the need for incorporating functional measures in evaluations of stream ecological integrity.

  18. Evaluation of coal-mining impacts using numerical classification of benthic invertebrate data from streams draining a heavily mined basin in eastern Tennessee

    Science.gov (United States)

    Bradfield, A.D.

    1986-01-01

    Coal-mining impacts on Smoky Creek, eastern Tennessee were evaluated using water quality and benthic invertebrate data. Data from mined sites were also compared with water quality and invertebrate fauna found at Crabapple Branch, an undisturbed stream in a nearby basin. Although differences in water quality constituent concentrations and physical habitat conditions at sampling sites were apparent, commonly used measures of benthic invertebrate sample data such as number of taxa, sample diversity, number of organisms, and biomass were inadequate for determining differences in stream environments. Clustering algorithms were more useful in determining differences in benthic invertebrate community structure and composition. Normal (collections) and inverse (species) analyses based on presence-absence data of species of Ephemeroptera, Plecoptera, and Tricoptera were compared using constancy, fidelity, and relative abundance of species found at stations with similar fauna. These analyses identified differences in benthic community composition due to seasonal variations in invertebrate life histories. When data from a single season were examined, sites on tributary streams generally clustered separately from sites on Smoky Creek. These analyses compared with differences in water quality, stream size, and substrate characteristics between tributary sites and the more degraded main stem sites, indicated that numerical classification of invertebrate data can provide discharge-independent information useful in rapid evaluations of in-stream environmental conditions. (Author 's abstract)

  19. Nearshore marine benthic invertebrates moving north along the U.S. Atlantic coast

    Science.gov (United States)

    Numerous species have shifted their ranges north in response to global warming. We examined 21 years (1990-2010) of marine benthic invertebrate data from the National Coastal Assessment’s monitoring of nearshore waters along the US Atlantic coast. Data came from three bioge...

  20. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  1. Frequency of injury and the ecology of regeneration in marine benthic invertebrates.

    Science.gov (United States)

    Lindsay, Sara M

    2010-10-01

    Many marine invertebrates are able to regenerate lost tissue following injury, but regeneration can come at a cost to individuals in terms of reproduction, behavior and physiological condition, and can have effects that reach beyond the individual to impact populations, communities, and ecosystems. For example, removal and subsequent regeneration of clams' siphons, polychaetes' segments, and brittlestars' arms can represent significant energetic input to higher trophic levels. In marine soft-sediment habitats, injury changes infaunal bioturbation rates and thus secondarily influences sediment-mediated competition, adult-larval interactions, and recruitment success. The importance of injury and regeneration as factors affecting the ecology of marine invertebrate communities depends on the frequency of injury, as well as on individual capacity for, and speed of, regeneration. A key question to answer is: "How frequently are marine benthic invertebrates injured?" Here, I review the sources and the frequencies of injury in a variety of marine invertebrates from different benthic habitats, discuss challenges, and approaches for accurately determining injury rates in the field, consider evidence for species-specific, temporal and geographic variation in injury rates, and present examples of indirect effects of injury on marine invertebrates to illustrate how injury and regeneration can modify larger-scale ecological patterns and processes.

  2. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    Science.gov (United States)

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  3. Field Report: Anna Plains and Roebuck Bay Benthic Invertebrate Mapping 2016

    OpenAIRE

    Piersma, Theunis; Pearson, Grant B.; Marc S S Lavaleye; Hickey, Robert; Rogers, Danny; Holthuijsen, Sander; Estrella, Sora-Marin; de Goeij, Petra; Findlay, Naomi; Storey, Andrew W.

    2016-01-01

    This project has been funded by the Department of Parks and Wildlife partnership with BHP Billiton “Eighty Mile Beach and Walyarta Conservation Program”, with in-kind support from NIOZ and Wetland Research & Management This report was produced at the Broome Bird Observatory in late October 2016. Abstract 1. This is a report on repeat surveys on the state of the benthic invertebrates at two internationally important areas of intertidal mudflats in northwest Australia (Roebuck Bay and Eighty Mi...

  4. Antifouling activity in some benthic Antarctic invertebrates by "in situ" experiments at Deception Island, Antarctica.

    Science.gov (United States)

    Angulo-Preckler, Carlos; Cid, Cristina; Oliva, Francesc; Avila, Conxita

    2015-04-01

    Competition for space is a remarkable ecological force, comparable to predation, producing a strong selective pressure on benthic invertebrates. Some invertebrates, thus, possess antimicrobial compounds to reduce surface bacterial growth. Antimicrobial inhibition is the first step in avoiding being overgrown by other organisms, which may have a negative impact in feeding, respiration, reproduction … The in situ inhibition of bacterial biofilm was used here as an indicator of antifouling activity by testing hydrophilic extracts of twelve Antarctic invertebrates. Using two different approaches (genetics and confocal techniques) different levels of activity were found in the tested organisms. In fact, differences within body parts of the studied organisms were determined, in agreement with the Optimal Defense Theory. Eight out of 15 extracts tested had negative effects on fouling after 28 days submerged in Antarctic waters. Thus, although chemical defenses may be quite species-specific in their ecological roles, these results suggest that different chemical strategies exist to deal with space competition.

  5. Estrutura da comunidade de invertebrados bentônicos em dois cursos d'água do Rio Grande do Sul, Brasil Community structure of benthic invertebrates in two watercourses in Rio Grande do Sul State, southern Brazil

    Directory of Open Access Journals (Sweden)

    Alessandra A. P. Bueno

    2003-03-01

    Full Text Available The benthic fauna has an important role in the trophic chain of limnic environments, serving as food for fishes and crustaceans. This work aimed to identify and compare, quantitative and qualitatively, the macrobenthic communities from two watercourses in Rio Grande do Sul State. Samplings were done with a Surber sampler, monthly, from September 1999 to August 2000, in one of the creeks forming Tainhas River(29º15'30,2"S, 50º13'12,5"W, around São Francisco de Paula city and in Mineiro Creek (29º30'0,2"S, 50º46'50"W, around Taquara city. At each sampling point, physical and chemical variables of the waters were registered. In the laboratory, the samples were sorted out and the animals identified and quantified. Dissolved oxigen, pH and stream speed were very similar for both environments, whilst conductivity had extreme values. Insects, crustaceans, acari and molluscs dominated in the samples. Abundance, richness and diversity indexes in Tainhas subsidiary had relatively higher average values than Mineiro Creek. Similarity matrix groupings between sampling units indicate three groups. Our research revealed important characteristics of the ecology and distribution of benthic invertebrates, information that can subsidise future environmental monitoring in the region of São Francisco de Paula and Taquara.

  6. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States

    Science.gov (United States)

    Konrad, C.P.; Brasher, A.M.D.; May, J.T.

    2008-01-01

    1. Human use of land and water resources modifies many streamflow characteristics, which can have significant ecological consequences. Streamflow and invertebrate data collected at 111 sites in the western U.S.A. were analysed to identify streamflow characteristics (magnitude, frequency, duration, timing and variation) that are probably to limit characteristics of benthic invertebrate assemblages (abundance, richness, diversity and evenness, functional feeding groups and individual taxa) and, thus, would be important for freshwater conservation and restoration. Our analysis investigated multiple metrics for each biological and hydrological characteristic, but focuses on 14 invertebrate metrics and 13 streamflow metrics representing the key associations between streamflow and invertebrates.

  7. Effects on water chemistry, benthic invertebrates and brown trout following forest fertilization in central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, L.; Soederberg, H.; Sjoelander, E. (County Administrative Board of Vaesternorrland, Haernoesand (Sweden). Environmental Unit); Nohrstedt, H.Oe. (Inst. for Forest Improvement, Uppsala (Sweden))

    1993-01-01

    Two coniferous forest drainage areas in central Sweden were partially fertilized with ammonium nitrate and calcium ammonium nitrate respectively, both at a dose of 150 kg N per ha. During the following years observations were made on stream water chemistry, invertebrates and brown trout (Salmo trutta L.). Upstream stations were used as controls. Very high concentrations of inorganic N (up to 45 mg l[sup -1]) were recorded immediately after the fertilization. Thereafter, concentration decreased rapidly but remained elevated during the whole study period. Acidity conditions (pH, alkalinity, aluminium) were unaffected by both treatments. The only registered effect on the benthic fauna was a three- to five-fold increase of drifting invertebrates during the first four-five days after the treatment. However, this did not reduce the population density at the treated stations. No effects on population of trout were recorded. (22 refs., 6 figs., 3 tabs.).

  8. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  9. Meet the Arctic Benthos. Arctic Ocean Exploration--Grades 7-8. Benthic Invertebrate Groups in the Deep Arctic Ocean.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity introduces students to major groups of invertebrates that have been found in other polar ocean expeditions and acquaints them with the feeding habits of these animals as a basis for making inferences about benthic communities and their connection to other components of the Artic Ocean ecosystem. The activity provides learning…

  10. Scale-dependent effects of river habitat quality on benthic invertebrate communities--Implications for stream restoration practice.

    Science.gov (United States)

    Stoll, Stefan; Breyer, Philippa; Tonkin, Jonathan D; Früh, Denise; Haase, Peter

    2016-05-15

    Although most stream restoration projects succeed in improving hydromorphological habitat quality, the ecological quality of the stream communities often remains unaffected. We hypothesize that this is because stream communities are largely determined by environmental properties at a larger-than-local spatial scale. Using benthic invertebrate community data as well as hydromorphological habitat quality data from 1087 stream sites, we investigated the role of local- (i.e. 100 m reach) and regional-scale (i.e. 5 km ring centered on each reach) stream hydromorphological habitat quality (LQ and RQ, respectively) on benthic invertebrate communities. The analyses showed that RQ had a greater individual effect on communities than LQ, but the effects of RQ and LQ interacted. Where RQ was either good or poor, communities were exclusively determined by RQ. Only in areas of intermediate RQ, LQ determined communities. Metacommunity analysis helped to explain these findings. Species pools in poor RQ areas were most depauperated, resulting in insufficient propagule pressure for species establishment even at high LQ (e.g. restored) sites. Conversely, higher alpha diversity and an indication of lower beta dispersion signals at mass effects occurring in high RQ areas. That is, abundant neighboring populations may help to maintain populations even at sites with low LQ. The strongest segregation in species co-occurrence was detected at intermediate RQ levels, suggesting that communities are structured to the highest degree by a habitat/environmental gradient. From these results, we conclude that when restoring riverine habitats at the reach scale, restoration projects situated in intermediate RQ settings will likely be the most successful in enhancing the naturalness of local communities. With a careful choice of sites for reach-scale restoration in settings of intermediate RQ and a strategy that aims to expand areas of high RQ, the success of reach-scale restoration in promoting the

  11. [Effects of benthic macro-invertebrate on decomposition of Acer buergerianum leaf litter in streams].

    Science.gov (United States)

    Jiang, Li-Hong; Wang, Bei-Xin; Chen, Ai-Qing; Lan, Ce-Jie

    2009-05-01

    By using composite mesh bag method, the effects of benthic macro-invertebrate in an undisturbed stream and an ecologically restored stream on the decomposition process of Acer buergerianum leaf litter from the Purple Mountain of Nanjing in winter were studied. After 112 days of decomposition, the remaining rate of A. buergerianum leaf litter based on ash-free dry mass was 31-62%, and the decomposition rate followed a declined exponential equation (P Shredders (mainly Asellus sp.) had the highest abundance (70.4%) in the flowing water of undisturbed stream, while filterers (mainly Tanytarsus sp.) were dominant (37.8%) in the flowing water of ecologically restored stream. The decomposition rate of the leaf litter was significantly correlated with the richness and abundance of shredder species in flowing water (P shredders, suggesting that the decomposition of A. buergerianum leaf litter in streams in winter was more dependent on the richness and abundance of shredders.

  12. Effects of sewage on benthic invertebrates in the lake of Zurich

    Energy Technology Data Exchange (ETDEWEB)

    Lubini-Ferlin, V.

    1986-01-01

    In 1981-83 sublittoral macroinvertebrates were collected by means of SCUBA diving from artificial substrates submerged near the outfalls from eight sewage treatment plants in Lake Zurich. Pollution around the outfall resulted on the one hand in a reduction of pollution intolerant benthic invertebrates, on the other hand in a considerable increase in the relative abundance of pollution tolerant taxa such as leeches, flatworms and crustaceans. Changes in the faunal composition were related to nutrient enrichment and changes in the nature of the substratum due to sedimentation of sewage sludge. Species diversity (Simpson index) showed low values near the outfall from some plants, high values near the outfall from others. Low species diversity did not always mark the sites where greatest pollution has been observed.

  13. Eco-Environmental Impact Assessment of Pre-Leisure Beach Nourishment on the Benthic Invertebrate Community at Anping Coast

    Institute of Scientific and Technical Information of China (English)

    Chun-Han SHIH; Yi-Yu KUO; Ta-Jen CHU; Wen-Chieh CHOU; Wei-Tse CHANG; Ying-Chou LEE

    2011-01-01

    In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion.This study reveals that the composition of benthic invertebrates changed over the study period, and two groups oforganisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion.

  14. Eco-environmental impact assessment of pre-leisure beach nourishment on the benthic invertebrate community at Anping coast

    Science.gov (United States)

    Shih, Chun-Han; Kuo, Yi-Yu; Chu, Ta-Jen; Chou, Wen-Chieh; Chang, Wei-Tse; Lee, Ying-Chou

    2011-06-01

    In recent years, owing to global warming and the rising sea levels, beach nourishment and groin building have been increasingly employed to protect coastal land from shoreline erosion. These actions may degrade beach habitats and reduce biomass and invertebrate density at sites where they were employed. We conducted an eco-environmental evaluation at the Anping artificial beach-nourishment project area. At this site, sand piles within a semi-enclosed spur groin have been enforced by use of eco-engineering concepts since 2003. Four sampling sites were monitored during the study period from July 2002 to September 2008. The environmental impact assessment and biological investigations that we conducted are presented here. The results from this study indicate that both biotic (number of species, number of individual organisms, and Shannon-Wiener diversity) and abiotic parameters (suspended solids, biological oxygen demand, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, total phosphorus, total organic carbon, median diameter, and water content) showed significant differences before and after beach engineering construction. Biological conditions became worse in the beginning stages of the engineering but improved after the restoration work completion. This study reveals that the composition of benthic invertebrates changed over the study period, and two groups of organisms, Bivalvia and Gastropoda, seemed to be particularly suitable to this habitat after the semi-enclosed artificial structures completion.

  15. Uptake and speciation of vanadium in the benthic invertebrate Hyalella azteca.

    Science.gov (United States)

    Jensen-Fontaine, Madeleine; Norwood, Warren P; Brown, Mitra; Dixon, D George; Le, X Chris

    2014-01-01

    Vanadium has the potential to leach into the environment from petroleum coke, an oil sands byproduct. To determine uptake of vanadium species in the biota, we exposed the benthic invertebrate Hyalella azteca with increasing concentrations of two different vanadium species, V(IV) and V(V), for seven days. The concentrations of vanadium in the H. azteca tissue increased with the concentration of vanadium in the exposure water. Speciation analysis revealed that V(IV) in the exposure water was oxidized to V(V) between renewal periods, and therefore the animals were mostly exposed to V(V). Speciation analysis of the H. azteca tissue showed the presence of V(V), V(IV), and an unidentified vanadium species. These results indicate the uptake and metabolism of vanadium by H. azteca. Because H. azteca are widely distributed in freshwater systems and are an important food supply for many fish, determining the uptake and metabolism of vanadium allows for a better understanding of the potential environmental effects on invertebrates.

  16. Settling distances of benthic invertebrates in a sediment mobilization simulation in semi-natural flumes

    Directory of Open Access Journals (Sweden)

    Maria Cristina Bruno

    2015-10-01

    Full Text Available Drift time and distance depend on the ability of the drifting invertebrates to alter their body posture or by swimming, and these behaviors may change according to the local hydraulic environment, resulting in different distances travelled before exiting the drift. Such drift and settlement mediated invertebrate movement determine dispersal processes and ultimately generates distribution patterns within streams. We conducted an experiment in an open-air, artificial flume system directly fed by an Alpine stream, where we disturbed the sediment in the flumes, inducing catastrophic drift in the benthic community, and then assessed the settlement distances of benthic invertebrates. For each flume, we collected drift samples by disturbing the substrate at 1.5 m intervals, at increasing distance from the downstream end, for a total of 7 disturbances and a maximum settling distance of 10 m in each flume, with five replicates (i.e., five flumes for each disturbance. The disturbances induced a massive catastrophic drift in Ephemeroptera, Plecoptera and Trichoptera, always higher than the behaviorally-occurring basedrift. The Settling Index calculated over the total drift collected at each distance increased with increasing distance, and after 10 m, 90% of the drifting animals had settled. Evenness and taxa richness progressively decrease with increasing settling distance. All drifting taxa were represented mainly by young instars. We used the drift collected at 1 m from the disturbance to standardize the remaining samples, based on the assumption that 1 m is not a distance long enough to allow animals to settle at that water velocity. We calculated the percentage of possible drifters which settled by computing a Settling Index for each taxon. The drifting taxa listed by decreasing Settling Index scores were Epeorus sp., Rhithrogena semicolorata, Isoperla spp., Sericostoma spp., Ecdyonurus spp., Nemoura spp., Leuctra spp., Baetis spp., Hydropsyche spp

  17. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone?

    Science.gov (United States)

    Zerlin, R A; Henry, R

    2014-05-01

    Benthic macro-invertebrates are important components of freshwater ecosystems which are involved in ecological processes such as energy transfer between detritus and consumers and organic matter recycling. The aim of this work was to investigate the variation in organism richness, diversity and density of benthic fauna during the annual cycle in Camargo Lake, a lake marginal to Paranapanema River, southeast Brazil. The correlation of environmental factors with community attributes of the macro-benthic fauna was assessed. Since Camargo Lake is connected to the river, we tested the hypothesis that water level variation is the main regulating factor of environmental variables and of the composition and abundance of benthic macro-invertebrates. The results indicated that lake depth varied with rainfall, being the highest at the end of the rising water period and the lowest at the beginning of this period. The sediment granulometry was more heterogeneous at the bottom of the lake by the end of the high water period. The benthic macro-invertebrate fauna was composed by 15 taxa. The Diptera order was represented by seven taxa and had greater richness in relation to other taxa. This group was responsible for 60% of the total abundance of organisms, followed by Ephemeroptera (22%) and Anellida (16%). Significant differences were observed over time in total richness and, in density of Narapa bonettoi, Chaoborus, Ablabesmyia gr. annulata, Chironomus gigas, Larsia fittkau, and Procladius sp. 2. Total taxa richness correlated negatively with water pH, transparency, conductivity, and bottom water oxygen. Higher positive correlations were found between the densities of some taxa and bottom water oxygen, conductivity and very fine sand, silt + clay of sediment, while negative correlations were recorded with organic matter, and fine, medium and coarse sand, bottom water temperature, mean temperature and rainfall. The significant temporal difference in water level was associated

  18. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure

    Science.gov (United States)

    Turschak, Benjamin A; Bunnell, David B.; Czesny, Sergiusz J.; Höök, Tomas O.; Janssen, John; Warner, David M.; Bootsma, Harvey A

    2014-01-01

    Aquatic food webs that incorporate multiple energy channels (e.g. nearshore benthic or pelagic) with varying productivity and turnover rates convey stability to biological communities by providing multiple independent energy sources. Within the Lake Michigan food web, invasive dreissenid mussels have caused rapid changes to food web structure and potentially altered the channels through which consumers acquire energy. We used stable C and N isotopes to determine how Lake Michigan food web structure has changed in the past decade, coincident with the expansion of dreissenid mussels, decreased pelagic phytoplankton production and increased nearshore benthic algal production. Fish and invertebrate samples collected from sites around Lake Michigan were analyzed to determine taxa-specific 13C:12C (delta 13C) and 15N:14N (delta 15N) ratios. Sampling took place during two distinct periods, 2002-2003 and 2010-2012, that spanned the period of dreissenid expansion, and included nearshore, pelagic and profundal fish and invertebrate taxa. Magnitude and direction of the 13C shift indicated significantly greater reliance upon nearshore benthic energy sources among nearly all fish taxa as well as profundal invertebrates. Although the mechanisms underlying this 13C shift likely varied among species, possible causes include the transport of benthic algal production to offshore waters and an increased reliance on nearshore prey items. Delta 15N shifts were more variable and of smaller magnitude across taxa although declines in delta 15N among some pelagic fishes may indicate a shift to alternative prey resources. Lake Michigan fishes and invertebrates appear to have responded to dreissenid induced changes in nutrient and energy pathways by switching from pelagic to alternative nearshore energy subsidies. Although large shifts in energy allocation (i.e. pelagic to nearshore benthic) resulting from invasive species appear to have affected total production at upper trophic

  19. Temporal abiotic variability structures invertebrate communities in agricultural drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2015-01-01

    Abiotic variability is known to structure lotic invertebrate communities, yet its influence on lentic invertebrates is not clear. This study tests the hypothesis that variability of nutrients and macro-ions are structuring invertebrate communities in agricultural drainage ditches. This was determine

  20. Drifting algal mats as an alternative habitat for benthic invertebrates: Species specific responses to a transient resource.

    Science.gov (United States)

    Norkko; Bonsdorff; Norkko

    2000-05-18

    Patchy occurrences of benthic drift algae (i.e. loose lying macroalgal mats) may increase habitat complexity on normally bare soft bottoms, but at the same time, extensive amounts of drifting algal mats are known to stress the benthic fauna. This paper presents results of the first detailed study of the fauna associated with drift algal mats in the northern Baltic Sea. In order to assess the importance of drifting algae as an alternative habitat for benthic fauna, benthic drift algal mats were sampled on shallow (2-9 m) sandy soft bottoms in the outer archipelago of the Åland Islands (Finland). Species composition, abundance and biomass of the macrofauna associated with algal mats were recorded. The results show that drifting algae at times can harbour very high abundances of invertebrates (up to 1116 individuals/g algal dryweight), surpassing invertebrate densities recorded in seagrass communities. The algal fauna varied between sites and over time, and factors such as ambient benthic fauna, exposure to wind-wave disturbance, depth, and algal coverage and condition influenced the invertebrate community composition of the algal mats. Abundance increased while individual biomass of the animals decreased over time (summer season; July-October). A series of laboratory experiments were conducted in order to test the ability of a few important benthic species to move up into, and survive in a drifting algal mat. Macoma balthica, Hydrobia spp., Nereis diversicolor and Bathyporeia pilosa were used in the experiments, and significant differences in their survival and mobility within drifting algae were recorded. This study shows that benthic species differ significantly in their ability to utilise the algal mats, with mainly opportunistic and mobile taxa such as Hydrobia spp., Chironomidae and Ostracoda benefiting from the algae, whereas infaunal species such as M. balthica and B. pilosa are negatively affected. The occurrence of eutrophication induced drifting macroalgal

  1. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions.

  2. Benthic invertebrate metals exposure, accumulation, and community-level effects downstream from a hard-rock mine site

    Energy Technology Data Exchange (ETDEWEB)

    Beltman, D.J.; Lipton, J.; Cacela, D. [Hagler Bailly, Boulder, CO (United States); Clements, W.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1999-02-01

    This study quantitatively evaluated the relationships among As, Co, and Cu concentrations in exposure media (surface water, sediment, and aufwuchs), As, Co, and Cu concentrations in aquatic macroinvertebrates, and invertebrate community structure in a mine-affected stream. Concentrations of As, Co, and Cu were significantly elevated in both exposure media and invertebrate tissue downstream from the mine. Copper in invertebrates was significantly correlated only with Cu in aufwuchs, and Co in invertebrates was significantly correlated only with dissolved Co in water, suggesting different mechanisms of invertebrate accumulation for these two metals. The invertebrate community was severely affected downstream from the mine, with a loss of metals-sensitive species and reductions in both total biomass and number of species. Total abundance was not affected. Principal components analysis was performed on the invertebrate community data to develop a simplified description of community response to mine inputs. Based on this index, metal concentrations in invertebrates were poor predictors of community structure. Copper concentrations in water, combined with an estimate of invertebrate drift from clean tributaries, were statistically significant predictors of community structure.

  3. Metals-contaminated benthic invertebrates in the Clark Fork River, Montana: Effects on age-0 brown trout and rainbow trout

    Science.gov (United States)

    Woodward, Daniel F.; Farag, Aïda M.; Bergman, Harold L.; Delonay, Aaron J.; Little, Edward E.; Smiths, Charlie E.; Barrows, Frederic T.

    1995-01-01

    Benthic organisms in the upper Clark Fork River have recently been implicated as a dietary source of metals that may be a chronic problem for young-of-the-year rainbow trout (Oncorhynchus mykiss). In this present study, early life stage brown trout (Salmo trutta) and rainbow trout were exposed for 88 d to simulated Clark Fork River water and a diet of benthic invertebrates collected from the river. These exposures resulted in reduced growth and elevated levels of metals in the whole body of both species. Concentrations of As, Cd, Cu, and Pb increased in whole brown trout; in rainbow trout, As and Cd increased in whole fish, and As also increased in liver. Brown trout on the metals-contaminated diets exhibited constipation, gut impaction, increased cell membrane damage (lipid peroxidation), decreased digestive enzyme production (zymogen), and a sloughing of intestinal mucosal epithelial cells. Rainbow trout fed the contaminated diets exhibited constipation and reduced feeding activity. We believe that the reduced standing crop of trout in the Clark Fork River results partly from chronic effects of metals contamination in benthic invertebrates that are important as food for young-of-the-year fish.

  4. Impact of gravel mining on benthic invertebrate communities in a highly dynamic gravel-bed river: an integrated methodology to link geomorphic disturbances and ecological status

    Science.gov (United States)

    Béjar, María; Gibbins, Chris; Vericat, Damià; Batalla, Ramon J.; Buendia, Cristina; Lobera, Gemma

    2014-05-01

    Water and sediments are transported along river channels. Their supply, transport and deposition control river morphology and sedimentary characteristics, which in turn support habitat. Floods disturb river channels naturally although anthropogenic impacts may also contribute. River channel disturbance is considered the main factor affecting the organization of riverine communities and contributes to key ecological processes. In this paper we present an integrated methodology designed to analyze the impacts of in-channel gravel mining on benthic invertebrate communities. The study is conducted in the Upper River Cinca (Southern Pyrenees). A 11 km river reach is being monitored in order to understand the effects of floods and gravel mining on channel morphodynamics and invertebrate communities. The study reach is located in and upland gravel-bed system historically and currently affected by periodical episodes of in-channel sediment mining. This methodology has been developed in the background of the research project MorphSed. An integrated methodology of four components (Co) has been designed and is being implemented: (Co1) acquisition of high resolution imagery to generate topographic models before and after channel disturbances. Floods and in-channel gravel mining are considered natural and anthropogenic disturbances, respectively. Topographic models are obtained by means of combining automated digital photogrammetry (SfM) and optical bathymetric models. Event-scale models are used to assess the spatial extent and magnitude of bed disturbance. (Co2) Invertebrate sampling in 5 representative reaches along the study site. Invertebrate surber samples are providing data to define assemblages and their characteristics (composition, density, distribution, traits). These data is used to assess the spatial extent of channel disturbance impacts on the taxonomic and trait structure of communities. (Co3) Monitoring flow and sediment transport in the upstream and downstream

  5. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates.

    Science.gov (United States)

    Villamor, Adriana; Costantini, Federica; Abbiati, Marco

    2014-01-01

    Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic) was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology.

  6. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates.

    Directory of Open Access Journals (Sweden)

    Adriana Villamor

    Full Text Available Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology.

  7. Radiological impact of TEPCO's Fukushima Dai-ichi Nuclear Power Plant accident on invertebrates in the coastal benthic food web.

    Science.gov (United States)

    Sohtome, Tadahiro; Wada, Toshihiro; Mizuno, Takuji; Nemoto, Yoshiharu; Igarashi, Satoshi; Nishimune, Atsushi; Aono, Tatsuo; Ito, Yukari; Kanda, Jota; Ishimaru, Takashi

    2014-12-01

    Radioactive cesium ((134)Cs and (137)Cs) concentrations in invertebrates of benthic food web (10 taxonomic classes with 46 identified families) collected from wide areas off Fukushima Prefecture (3-500 m depth) were inspected from July 2011, four months after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, to August 2013 to elucidate time-series trends among taxa and areas. Cesium-137 was detected in seven classes (77% of 592 specimens). Higher (137)Cs concentrations within detected data were often found in areas near or south of the FDNPP, which is consistent with the reported spatial distribution of (137)Cs concentrations in highly contaminated seawater and sediments after the FDNPP accident. Overall (137)Cs concentrations in invertebrates, the maxima of which (290 Bq kg(-1)-wet in the sea urchin Glyptocidaris crenularis) were lower than in many demersal fishes, had decreased exponentially with time, and exhibited taxon-specific decreasing trends. Concentrations in Bivalvia and Gastropoda decreased clearly with respective ecological half-lives of 188 d and 102 d. In contrast, decreasing trends in Malacostraca and Polychaeta were more gradual, with longer respective ecological half-lives of 208 d and 487 d. Echinoidea showed no consistent trend, presumably because of effects of contaminated sediments taken into their digestive tract. Comparison of (137)Cs concentrations in the invertebrates and those in seawater and sediments suggest that contaminated sediments are the major source of continuing contamination in benthic invertebrates, especially in Malacostraca and Polychaeta.

  8. Free-living benthic marine invertebrates in Chile Invertebrados bentónicos marinos de vida libre en Chile

    Directory of Open Access Journals (Sweden)

    MATTHEW R LEE

    2008-03-01

    Full Text Available A comprehensive literature review was conducted to determine the species richness of all the possible taxa of free-living benthic marine invertebrates in Chile. In addition, the extent of endemism to the Pacific Islands and deep-sea, the number of non-indigenous species, and the contribution that the Chilean benthic marine invertebrate fauna makes to the world benthic marine invertebrate fauna was examined. A total of 4,553 species were found. The most speciose taxa were the Crustacea, Mollusca and Polychaeta. Species richness data was not available for a number of taxa, despite evidence that these taxa are present in the Chilean benthos. The Chilean marine invertebrate benthic fauna constitutes 2.47 % of the world marine invertebrate benthic fauna. There are 599 species endemic to the Pacific Islands and 205 in the deep-sea. There are 25 invasive or non-indigenous species so far identified in Chile. Though the Chilean fauna is speciose there is still a considerable amount of diversity yet to be described, particularly amongst the small bodied invertebrates and from the less well explored habitats, such as the deep-seaSe realizó una revisión exhaustiva de la literatura para determinar la riqueza de especies de todos los taxa de invertebrados bentónicos de vida libre en Chile. Además, se analizó el endemismo de invertebrados marinos bentónicos para las islas chilenas del Pacífico y el mar profundo y el número de especies no indígenas; del mismo modo que la contribución de estos invertebrados a la riqueza mundial de invertebrados bentónicos marinos. Para Chile se acumuló un total de 4.553 especies de invertebrados bentónicos. Los taxa con más especies fueron Crustacea, Mollusca y Polychaeta. En algunos taxa de invertebrados no se encontró información sobre la diversidad de especies presentes en Chile, a pesar de existir evidencia de que éstos están presentes en el bentos marino chileno. Los invertebrados bentónicos marinos

  9. Benthic-invertebrate, fish-community, and streambed-sediment-chemistry data for streams in the Indianapolis metropolitan area, Indiana, 2009–2012

    Science.gov (United States)

    Voelker, David C.

    2014-01-01

    Aquatic-biology and sediment-chemistry data were collected at seven sites on the White River and at six tributary sites in the Indianapolis metropolitan area of Indiana during the period 2009 through 2012. Data collected included benthic-invertebrate and fish-community information and concentrations of metals, insecticides, herbicides, and semivolatile organic compounds adsorbed to streambed sediments. A total of 120 benthic-invertebrate samples were collected, of which 16 were replicate samples. A total of 26 fish-community samples were collected in 2010 and 2012. Thirty streambed-sediment chemistry samples were collected in 2009 and 2011, of which four were concurrent duplicate samples

  10. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources

    NARCIS (Netherlands)

    Riera, P.; Stal, L.J.; Nieuwenhuize, J.; Richard, P.; Blanchard, G.F.; Gentil, F.

    1999-01-01

    delta(13)C and delta(15)N were measured in benthic invertebrates and food sources collected in the salt marsh of the Aiguillon Bay, France. The results showed that, although Spartina anglica was dominant, this marine phanerogame did not contribute significantly to the carbon and nitrogen requirement

  11. Profundal benthic invertebrates in an oligotrophic tropical lake: different strategies for coping with anoxia

    Directory of Open Access Journals (Sweden)

    María del Carmen Hernández

    2014-05-01

    Full Text Available The deep benthic communities of tropical lakes are poorly understood with respect to their composition, abundance, biomass and regulatory factors. Whereas the hypolimnia of temperate oligotrophic lakes remain oxygenated, the higher temperatures in tropical lakes frequently lead to the rapid development of hypolimnetic anoxia independent of trophic status. The deep benthic communities of tropical lakes must therefore develop strategies to respond to anoxic conditions. The dynamics of the deep benthic community of Lake Alchichica were studied over 15 months. We hypothesized that the sedimentation of the winter diatom bloom constitutes an input of high-quality food that contributes to the establishment and development of the deep benthic community. However, the remineralization of this organic matter leads to the prompt development of hypolimnetic anoxia, thus limiting the establishment and/or persistence of the deep benthic community. In contrast with the diverse littoral benthic community (50 taxa in Lake Alchichica, only two species constitute its deep benthic community, the ostracod Candona cf. patzcuaro and the chironomid Chironomus cf. austini, which combined exhibit a low density (1197±1976 ind m-2 and biomass (16.13±30.81 mg C m-2. C. patzcuaro is dominant and is present throughout the year, whereas Ch. austini is recorded only when the bottom water of the lake is oxygenated. A comparison with the analogous but temperate Lake Mergozzo in Italy illustrates the role that anoxia plays in tropical lakes by diminishing not only taxonomic richness (13 versus 2 spp. in temperate versus tropical lakes, respectively but also abundance (1145 versus 287 ind m-2, respectively. C. patzcuaro is found throughout the annual cycle of the lake’s profundal zone, entering into diapause during the anoxic period and recovering as soon as the profundal zone reoxygenates. Ch. austini has adjusted its life cycle to use the habitat and available resources while

  12. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  13. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: Finding adverse effects using multiple lines of evidence

    Science.gov (United States)

    Fairchild, J.F.; Kemble, N.E.; Allert, A.L.; Brumbaugh, W.G.; Ingersoll, C.G.; Dowling, B.; Gruenenfelder, C.; Roland, J.L.

    2012-01-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States–Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ΣSEM - AVS); and (3) ΣSEM - AVS normalized to the fractional organic carbon (foc) (i.e., ΣSEM - AVS/foc). The most highly metal-contaminated sample (ΣPEQTRM = 132; ΣPEQSEM = 54; ΣSEM - AVS = 323; and ΣSEM - AVS/foc = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ΣAVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ΣSEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate colonization

  14. Comparative Glycoproteome Analysis: Dynamics of Protein Glycosylation during Metamorphic Transition from Pelagic to Benthic Life Stages in Three Invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2012-02-03

    The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.

  15. Identification of threshold body burdens of metals for the protection of the aquatic ecological status using two benthic invertebrates.

    Science.gov (United States)

    Bervoets, Lieven; De Jonge, Maarten; Blust, Ronny

    2016-03-01

    In this study accumulated concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in two benthic invertebrate taxa, Chironomus sp. and Tubificidae are related to ecological responses expressed as changes in macro invertebrate communities. In addition critical body burdens were estimated above which ecological quality was always lower than a certain threshold. Data from existing studies on bioaccumulation of the metals in both taxa were combined with different biological water quality indices. For all metal-endpoint combinations threshold values could be calculated above which ecological quality was always low. Safe threshold body burdens could be estimated for both species for all metals although the data set was more extended for Chrionomus sp. with estimated threshold values being 65, 3.2, 10, 57, 6.5, 73 and 490 μg/g dw for As, Cd, Cr, Cu, Ni, Pb and Zn. This study demonstrated that metal accumulation in resistant species such as chironomids and tubificid worms have the potential to be used as predictors of ecological effects in aquatic ecosystems. However, the estimated threshold values have to be validated and supported by more lines of evidence before they can be used by regulators.

  16. Trophic relationship of benthic invertebrate fauna from the continental slope of the Sea of Japan

    Science.gov (United States)

    Kharlamenko, Vladimir I.; Brandt, Angelika; Kiyashko, Serguei I.; Würzberg, Laura

    2013-02-01

    The Sea of Japan continental slope food web was examined by analysis of stable C and N isotopes and fatty acid compositions in ten species of common benthic organisms and in sediment and particulate organic matter. A considerable range of δ13C and δ15N values was found for benthic species, with δ13C values of -22.3‰ in crinoids (Heliometra glacialis) to -16.1‰ in asteroids (Ctenodiscus crispatus) and with δ15N values of 5.3‰ in foraminifera (Elphidium sp.) to 15.5‰ in C. crispatus. Polyunsaturated fatty acids were the most abundant of the fatty acids in the total lipids of all investigated species. The organisms' individual fatty acid compositions show the importance of a variety of food sources, including phytoplankton, detritus, foraminiferans and zooplankton, for megabenthic species. Additionally, the presence of considerable amounts of the 20:4(n-6) and 20:1(n-13) fatty acids indicates the importance of the benthic microbial loop in the nutrition of some of the studied animals.

  17. The importance of spatial variation of benthic invertebrates for the ecological assessment of European lakes

    DEFF Research Database (Denmark)

    Solimini, Angelo G.; Sandin, Leif Leonard

    2012-01-01

    at multiple spatial scales needs to be assessed and efficiently quantified, in order to set up reliable assessment tools of ecological status. Driven by the research activity carried out within the European project Wiser (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery......Lake assessment systems based on benthic macroinvertebrates critically depend on the amount of spatial variation of organisms within and between lakes. Investigators need to distinguish between community changes that are related to human pressures and those that are caused by inherent natural...

  18. BENTHIC INVERTEBRATES AS PAPAGAIO RIVER WATER QUALITY INDICATOR – CAMPO MOURÃO – PR

    Directory of Open Access Journals (Sweden)

    Alexandre Monkolski, Janet Higuti, Luiz Alberto Vieira, Roger Paulo Mormul e Sidnei Pressinatte Junior

    2006-06-01

    Full Text Available The pollutant substance poured in the environment causes negative impacts for life forms that inhabit the sources. The biological monitoring of aquatic ecosystems has as objective the evaluation of the quality of water, in function of alterations of the community of macroinvertebrates. Among these communities Benthic is distinguished, because it reflects the state of conservation or degradation of the sources, changing their morphophysiological characteristics and its presence or absence in water. The quality of Papagaios’ river water was evaluated by physical-chemistry analysis and by density of Benthic macroinvertebrates. Four colleting stations from a stretch of the river were analyzed and samples of sediment and water were collected. At 2nd and 3rd stations there are two cold storage rooms installed at the river’s margins, which treat their effluents in stabilizing lagoons. The 4th station receives the ousting directly from a textile after it has passed by a treatment. Results obtained by biological methods indicated the presence of polluting elements in water. The river’s longitudinal gradient showed a typical sucessorial process of macroinvertebrates from polluted environments, with a significant increase in the density of Oligochaeta and Chironidade, organisms that are tolerant to impacts in water. Considering the four stations that were analyzed, the unwished impacts are occurring in three last ones with more intensity.

  19. Bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca.

    Science.gov (United States)

    Dussault, Eve B; Balakrishnan, Vimal K; Borgmann, Uwe; Solomon, Keith R; Sibley, Paul K

    2009-09-01

    The present study investigated the bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol (EE2) in the benthic invertebrates Chironomus tentans and Hyalella azteca, in water-only and spiked sediment assays. Water and sediment residue analysis was performed by LC/MS-MS, while biota extracts were analyzed using both LC/MS-MS and a recombinant yeast estrogen receptor assay. At the lowest exposure concentration, C. tentans accumulated less EE2 than H. azteca in the water-only assays (p=0.0004), but due to different slopes, this difference subsided with increasing concentrations; at the exposure concentration of 1mg/L, C. tentans had a greater body burden than H. azteca (p=0.02). In spiked sediments, C. tentans had the greatest EE2 accumulation (1.2+/-0.14 vs. 0.5+/-0.05 microg/gdw, n=4). Measurements in H. azteca indicated a negligible contribution from the sediments to the uptake of EE2 in this species. These differences were likely due to differences in the behavior and life history of the two species (epibenthic vs. endobenthic). Water-only bioaccumulation factors (BAFs) calculated at the lowest exposure concentration were significantly smaller in C. tentans than in H. azteca (31 vs. 142, respectively; pazteca (0.8 vs. 0.3; p<0.0001). Extracts of the exposed animals caused a response in a recombinant yeast estrogen receptor assay, thus confirming the estrogenic activity of the samples, presumably from EE2 and its estrogenic metabolites. The results of the present study suggest that consumption of invertebrate food items could provide an additional source of exposure to estrogenic substances in vertebrate predators.

  20. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river

    DEFF Research Database (Denmark)

    Graeber, Daniel; Pusch, Martin T.; Lorenz, Stefan;

    2013-01-01

    on dissolved oxygen concentrations (DO) have not yet received much attention. We compared the macroinvertebrate composition between reference conditions and a situation after several years of discharge reduction in the Spree River (Brandenburg, Germany). Community composition shifted from rheophilic species...... concentration minima of less than 5 mg l−1 which prevailed 74% of the days in summer. This depletion of DO after flow reduction presumably caused the observed species turnover. Hence, flow reduction in lowland rivers may not only directly impair the ecological functions provided by benthic macroinvertebrates...... to species indifferent to flow conditions. Filter feeders were partially replaced by collector/gatherers, which likely reduces the retention of organic matter, and thus the self-purification capacity of the river section. These shifts were associated with low discharge during summer, cascading into daily DO...

  1. Effect of seasonality on trophic functional groups of benthic invertebrates in rocky substrate in Rio Palmital, União da Vitória-PR

    Directory of Open Access Journals (Sweden)

    Edina Costa Delonzek

    2016-09-01

    Full Text Available This study aimed to determine the benthic invertebrates found in the rocky substrate in seasonal periods in Rio Palmital, União da Vitória, Parana, Brazil, characterizing the trophic functional groups (collectors, collectors-gatherers, collectors-filterers, shredders, predators and scrapers. Sampling was carried out during the dry (June/July-2011 and rainy (November/December-2011 seasons. The data indicate that the functional group of collectors was the most frequent. The results suggest that there are influences of the disturbances caused by precipitation on the invertebrate fauna during the rainy season, and certain trophic species found may be related to the presence of organic matter as a food source in the diet of invertebrates present there.

  2. Recovery of benthic-invertebrate communities in the White River near Indianapolis, Indiana, USA, following implementation of advanced treatment of municipal wastewater

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1992-01-01

    The City of Indianapolis, Indiana, USA, completed construction of advanced-wastewater-treatment systems to enlarge and upgrade existing secondary-treatment processes at the City’s two municipal wastewater-treatment plants in 1983. These plants discharge their effluent to the White River. A study was begun in 1981 to evaluate the effects of municipal wastewater on the quality of the White River near Indianapolis. As part of this study, benthic-invertebrate samples were collected from one riffle upstream and two riffles downstream from the treatment plants annually from 1981 through 1987 (2 times before and 5 times after the plant improvements became operational). Samples were collected during periods of late-summer or early-fall low streamflow with a Surber sampler. Upstream from the wastewater-treatment plants, mayflies and caddisflies were the predominant organisms in the benthic-invertebrate community (from 32 to 93 percent of all organisms; median value is 67 percent) with other insects and mollusks also present. Before implementation of advanced wastewater-treatment, the benthic-invertebrate community downstream from the wastewater treatment plants was predominantly chironomids and oligochaetes (more than 98 percent of all organisms)-organisms that generally are tolerant of organic wastes. Few intolerant species, such as mayflies or caddisflies were found. Following implementation of advanced wastewater treatment, mayflies and caddisflies became numerically dominant in samples collected downstream from the plants. By 1986, these organisms accounted for more than 90 percent of all organisms found at the two downstream sites. The diversity of benthic invertebrates found in these samples resembled that at the upstream site. The improvement in the quality of municipal wastewater effluent resulted in significant improvements in the water quality of the White River downstream from Indianapolis. These changes in river quality, in turn, have resulted in a shift from

  3. Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast

    KAUST Repository

    Steckbauer, Alexandra

    2015-07-10

    Ocean acidification (OA) and hypoxic events are an increasing worldwide problem, but the synergetic effects of these factors are seldom explored. However, this synergetic occurrence of stressors is prevalent. The coastline of Chile not only suffers from coastal hypoxia but the cold, oxygen-poor waters in upwelling events are also supersaturated in CO2, a study site to explore the combined effect of OA and hypoxia. We experimentally evaluated the metabolic response of different invertebrate species (2 anthozoans, 9 molluscs, 4 crustaceans, 2 echinoderms) of the coastline of central Chile (33°30′S, 71°37′W) to hypoxia and OA within predicted levels and in a full factorial design. Organisms were exposed to 4 different treatments (ambient, low oxygen, high CO2, and the combination of low oxygen and high CO2) and metabolism was measured after 3 and 6 days. We show that the combination of hypoxia and increased pCO2 reduces the respiration significantly, compared to a single stressor. The evaluation of synergistic pressures, a more realistic scenario than single stressors, is crucial to evaluate the effect of future changes for coastal species and our results provide the first insight on what might happen in the next 100 years.

  4. Toxicokinetics of sediment-associated polybrominated diphenylethers (flame retardants) in benthic invertebrates (Lumbriculus variegatus, Oligochaeta).

    Science.gov (United States)

    Leppänen, Matti T; Kukkonen, Jussi V K

    2004-01-01

    Polybrominated diphenylethers (PBDEs) are ubiquitous environmental contaminants showing rapid temporal increase in some sample types. The compounds are known to biomagnify in aquatic food webs and are assumed to archive into sediments and soils. Currently, no direct evidence indicates whether sediment-associated PBDEs are available for biota. The aim of the present study was to explore the uptake and elimination of two common congeners (47 and 99) in sediment-inhabiting invertebrates to shed light on possible bioavailability of sediment-associated PBDEs. Two clean lake sediments were spiked with environmentally relevant concentrations of 14C-labeled tetra- and pentabromo diphenylether, and oligochaetes (Lumbriculus variegatus) were exposed for three or four weeks to allow kinetic accumulation calculations. Subsequent depuration tests were performed after three weeks of exposure to obtain depuration rates. Both congeners were clearly bioavailable, and only slight differences in steady-state tissue concentrations were found between the four sediment-ingesting oligochaete treatments (biota sediment accumulation factors [BSAFs], 3.0-3.7). The tetrabromo diphenylether-exposed oligochaetes that did not ingest sediment had clearly lower influx rates (0.1 vs 1-3 nmol h(-1)) than sediment-ingesting worms. Also, the estimated BSAF (1.8) was statistically different from that of the sediment-ingesting oligochaetes. These findings support the significance of feeding behavior in bioaccumulation of very hydrophobic organic contaminants. Depuration of both congeners was biphasic, indicating two kinetically different compartments in L. variegatus. Compartment A made up 73 to 92% of total radioactivity in tissues and had relatively fast depuration rates (half-lives, 10.5-47.5 h); the smaller compartment B had very slow depuration rates. No significant biotransformation of PBDEs was evident. The present study clearly demonstrates that the sediment-associated PBDEs, like other

  5. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  6. Invertebrate grazing during the regenerative phase affects the ultimate structure of macrophyte communities

    NARCIS (Netherlands)

    Elger, A.F.; Willby, N.; Cabello-Martinez, M.

    2009-01-01

    1. Although the biomass of freshwater macrophytes consumed by invertebrate herbivores (excluding crayfish) is usually low, there is growing evidence that invertebrates do exert a structuring effect on macrophyte communities. To explain this, we postulated that the effect of invertebrates may be conc

  7. The impact of the Cyanamid Canada Co. discharges to benthic invertebrates in the Welland River in Niagara falls, Canada.

    Science.gov (United States)

    Dickman, M; Rygiel, G

    1993-06-01

    : In 1986, the International Joint Commission (IJC) recommended that the Niagara River watershed should be declared an Area of Concern (AOC). This IJC recommendation was ratified by the 4 signatories of the Great Lakes Water Quality Agreement. In order to delist an AOC, it is necessary to locate any areas of impairment within the watershed and carry out remediation projects that permit uses that were previously impaired. To this end we attempted to determine whether or not the sediments at 7 study sites near the Cyanamid Canada (Chemical) Co. were contaminated at levels that would result in the impairment of the natural biota which inhabit the watershed.The Cyanamid Canada (Chemical) Co. discharges ammonia wastes, cyanide, arsenic and a variety of heavy metals into treatment systems which ultimately discharge to the Welland River, the major Canadian tributary to the Niagara River. This portion of the Welland River near the factory was designated a Provincially significant (Class one) wetlands by the Ontario Ministry of Natural Resources. In 1986, the mean discharge to a creek from Cyanamid Canada Co. was 27,342 m(3) per day (MOE, 1987). Similar discharge volumes occurred in 1989. In 1991, the total discharge was 25,000 m(3) per day (MOE, 1991).The majority of the benthic invertebrates collected from the study area were pollution tolerant taxa (e.g., sludge worms constituted 68% of all the organisms collected). The lowest chironomid densities were observed at stations 1, 2, and 4, which were the only stations situated close to Cyanamid's discharge pipes. The absence, of clams and mayflies which burrow to greater depths than do chironomids and sludge worms, probably reflects the inability of the deeper dwelling burrowers to tolerate the contaminants which we recorded at these 3 stations. The absence of all crustaceans from these same 3 stations (stations 1, 2 and 4) when coupled with their low biotic diversity and the elevated heavy metal concentrations in the

  8. Distinguishing the effects of habitat degradation and pesticide stress on benthic invertebrates using stressor-specific metrics.

    Science.gov (United States)

    von der Ohe, Peter Carsten; Goedkoop, Willem

    2013-02-01

    Hydromorphological degradation is a well known stressor for running waters, while the effects of elevated levels of pesticides are widely ignored. Hence, distinguishing between the effects of these two stressors is an urgent task for water managers that aim at appropriate remediation measures. We used a large monitoring data set on benthic invertebrates, habitat descriptors, and physico-chemical variables to develop the SPEAR[%](habitat) metric that indicates the effects of in-stream habitat degradation. SPEAR[%](habitat) correlated significantly with the habitat degradation score (HDS; based on substratum and vegetation coverage), while it did not respond to any physico-chemical variables (r(2)=0.20). This relationship improved for streams with low modeled pesticide inputs (r(2)=0.33), and improved even further for a subset of streams dominated by soft-bottom substrata, i.e. for similar stream-types (r(2)=0.65). These relationships were confirmed for an independent dataset that was not used in the derivation of the HDS (r(2)=0.57 and r(2)=0.65, respectively). These findings show that the SPEAR[%](habitat) had a high degree of specificity for the effects of habitat degradation. Conversely, neither the commonly used EPT and ASPT metrics, nor the German Fauna Index or SPEAR[%](pesticides) showed significant relationships with HDS. These metrics instead correlated significantly with the run-off potential (RP), a proxy of pesticide contamination of streams. Similarly, RP was also the most important explanatory variable for SPEAR[%](pesticides), followed by alkalinity and the number of forested upstream stretches (r(2)=0.61). The latter are expected to alleviate pesticide effects, as indicated by higher SPEAR[%](pesticides) values. These findings show that an integrated analysis of the two stressor-specific SPEAR-metrics in combination with the metrics of general ecological degradation can help water managers to distinguish between the effects of habitat degradation and

  9. The structure and host entry of an invertebrate parvovirus.

    Science.gov (United States)

    Meng, Geng; Zhang, Xinzheng; Plevka, Pavel; Yu, Qian; Tijssen, Peter; Rossmann, Michael G

    2013-12-01

    The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.

  10. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers.

    Science.gov (United States)

    Pisanello, Francesca; Marziali, Laura; Rosignoli, Federica; Poma, Giulia; Roscioli, Claudio; Pozzoni, Fiorenzo; Guzzella, Licia

    2016-06-01

    DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary

  11. Trait-based structure of invertebrates along a gradient of sediment colmation: benthos versus hyporheos responses.

    Science.gov (United States)

    Descloux, S; Datry, T; Usseglio-Polatera, P

    2014-01-01

    Streambed colmation by fine sediment, e.g. the deposition, accumulation and storage of fines in the substrate, is known to have severe effects on invertebrate assemblages in both the benthic and hyporheic zones but the changes in biological attributes of invertebrate assemblages related to colmation have never been considered simultaneously for these two zones. We studied the effects of colmation on the invertebrate assemblages of three rivers, testing a priori hypotheses on the biological attributes that should be more selected in communities subjected to different levels of colmation in both zones. Only the proportion of organisms with high fecundity increased and the proportion of small-sized organisms decreased along the colmation gradient in both zones simultaneously. As expected, a higher number of traits were significantly modified with colmation in the benthic vs. hyporheic assemblages. Most of the biological attributes impaired were different in the two zones. In the benthic zone, colmation mainly selected particular physiological or trophic characteristics of species and features related to their resistance or resilience capacities. In contrast, the morphological attributes of species were much more impaired by colmation in the hyporheic zone than in the benthic zone. In clogged benthic habitats, traits seemed to be more impaired by an increase in physico-chemical constraints (e.g. the reduction of oxygen availability) and a reduction of potential exchanges (including exchanges of food resources) due to a decline in stream bed conductivity. The morphological attributes of the hyporheic species were probably more influenced by changes in interstitial space characteristics. A potential indicator of the effects of colmation on river health may be based on the functional traits of benthic communities because they (i) satisfy the WFD recommendations, (ii) respond consistently along a colmation gradient and (iii) are comparable among assemblages even across

  12. Associations among land-use, habitat characteristics, and invertebrate community structure in nine streams on the island of Oahu, Hawaii

    Science.gov (United States)

    Brasher, Anne M.D.; Wolff, Reuben H.; Luton, Corene D.

    2003-01-01

    The island of Oahu is one of 51 study units established as part of the U.S. Geological Surveys National Water-Quality Assessment (NAWQA) program to assess the status and trends of the Nations surface and ground-water resources, and to link status and trends with an understanding of the natural and human factors that affect water quality. As part of the NAWQA program, benthic invertebrate communities were surveyed at ten sites in nine streams representing the three main types of land use on Oahu: urban, agriculture, and forested. At each sampling site, habitat characteristics were determined at a range of spatial scales including drainage basin, segment, reach, transect, and point. Associations among land use, habitat characteristics, and benthic invertebrate community structure were examined. The rapid population growth and increasing urbanization on Oahu has resulted in substantial stream habitat alteration. Instream habitat characteristics at the urban and mixed (urban and agriculture) land-use sites were markedly different from those at the forested sites. Urban and mixed land-use sites, most of which were channelized, tended to have less riparian vegetation, higher water temperatures, smaller substrate, and higher levels of embeddedness and siltation than sites in forested watersheds. The majority of invertebrate taxa identified during this study were non-native. Invertebrate abundance was lower at urban and mixed land-use sites than at forested sites, while species richness (the number of different species) showed the opposite pattern. Multivariate analyses indicated that invertebrate species composition was similar at sites with similar land use. Aquatic insects of the orders Diptera and Trichoptera were the most common insects in all samples. The ratio of Diptera to Trichoptera abundance varied with urbanization. Forested sites were dominated by Trichoptera, and urban and mixed land-use sites were dominated by Diptera. Molluscs typically occurred in

  13. In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea.

    Science.gov (United States)

    Jessen, Christian; Voolstra, Christian R; Wild, Christian

    2014-01-01

    In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea.

  14. In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea

    Directory of Open Access Journals (Sweden)

    Christian Jessen

    2014-04-01

    Full Text Available In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea.

  15. In situ effects of simulated overfishing and eutrophication on settlement of benthic coral reef invertebrates in the Central Red Sea.

    KAUST Repository

    Jessen, Christian

    2014-04-08

    In the Central Red Sea, healthy coral reefs meet intense coastal development, but data on the effects of related stressors for reef functioning are lacking. This in situ study therefore investigated the independent and combined effects of simulated overfishing through predator/grazer exclusion and simulated eutrophication through fertilizer addition on settlement of reef associated invertebrates on light-exposed and -shaded tiles over 4 months. At the end of the study period invertebrates had almost exclusively colonized shaded tiles. Algae were superior settling competitors on light-exposed tiles. On the shaded tiles, simulated overfishing prevented settlement of hard corals, but significantly increased settlement of polychaetes, while simulated eutrophication only significantly decreased hard coral settlement relative to controls. The combined treatment significantly increased settlement of bryozoans and bivalves compared to controls and individual manipulations, but significantly decreased polychaetes compared to simulated overfishing. These results suggest settlement of polychaetes and hard corals as potential bioindicators for overfishing and eutrophication, respectively, and settlement of bivalves and bryozoans for a combination of both. Therefore, if the investigated stressors are not controlled, phase shifts from dominance by hard corals to that by other invertebrates may occur at shaded reef locations in the Central Red Sea.

  16. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.

    Science.gov (United States)

    Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong

    2016-08-01

    Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.

  17. CTD, marine invertebrate pathology, benthic organisms, and marine toxic substances and pollutants data collected using CTD casts and other instruments from SEA TRANSPORTER and other platforms in Gulf of Mexico from 20 May 1978 to 15 January 1979 (NODC Accession 8000022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, marine invertebrate pathology, benthic organisms, and marine toxic substances and pollutants data were collected using CTD, net casts, and other instruments...

  18. Distribution of benthic invertebrates at different depths in a shallow reservoir in the KwaZulu-Natal Midlands

    Directory of Open Access Journals (Sweden)

    M.J. Samways

    1996-02-01

    Full Text Available The bottom of a freshwater reservoir in the KwaZulu-Natal Midlands was sampled for macro-invertebrates and macrophytes at depths of 0.5 m, 1 m, 2 m, and 3 m. The water plants Elodea spp. which did not occur much beyond 1 m appeared to be a major deter-minant for the presence of invertebrates. At 2 m and 3 m, when temperature and light decreased greatly, it was replaced by the algae Chara spp. Over 98 of the macroinvertebrate individuals in 21 species and 14 families occurred in water 1 m or less in depth. At 2 m and deeper, there was a rapid decline of species, with only one, a snail, occurring at 3 m. Odonata species occurred only in water 1 m or less in depth. Among the Ephemeroptera, Caenis sp. was abundant at 0.5 m and the most dominant species of all. At 1 m, the most dominant species was Cleon palidulosum of the Baetidae. Both in terms of food for waterfowl and trout, and as a reserve for aquatic macroin vertebrates, the shallow fringe of the reservoir was playing by far the major role compared with the deeper, open water. It is recommended both for biotic conservation and fishing that reservoirs have a shallow rim and constant water levels.

  19. Mapping of marine benthic invertebrates in the Oslofjord and the Skagerrak: sampling data of museum collections from 1950-1955 and from recent investigations

    Directory of Open Access Journals (Sweden)

    Eivind Oug

    2015-12-01

    Full Text Available Data from large sampling programmes for the mapping of marine invertebrates in the Oslofjord, Norway, and the Skagerrak, spanning more than six decades, are compiled and digitized to provide easy access in modern data repositories. Two sampling programmes undertaken in the period 1950–55 are still the most extensive mapping of marine benthic fauna in the area. Information from a total of more than 900 localities, or sampling events, covering all benthic habitats in the Oslofjord and coastal waters to Kvitsøy in Rogaland county, have been carefully digitized from field notes, original sea charts, and primary observations from sample handling in the field. Geographical coordinates referred to WGS84 chart datum have been fixed with a general accuracy of 20 m in the Oslofjord and 100–250 m in coastal areas, based on precise map sketches with cross-bearings to land objects and chart annotations. Most samples were collected using triangular, Agassiz and lightweight dredges. The collected material has been deposited in the collections of the Natural History Museum, University of Oslo. Two recent projects, ‘Polyskag’ and ‘Bioskag’ (2006–2014, are briefly described. The projects focused on the diversity of marine bristle worms (Polychaeta, inter alia providing material for molecular genetic analyses. Type localities for early described species and generally understudied biotopes were visited. The data from the 1950s, together with recent studies, constitute a considerable resource for studies of biodiversity, facilitated through the sharing of species records from the museum collections in modern data repositories. The accurate positioning of sampling localities in the 1950s is of particular value for documenting species distributions over long time spans, thus providing a reference base for studying present and future species changes and assessing the effects of human influence and environmental changes in the Oslofjord and the Skagerrak.

  20. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.

    Science.gov (United States)

    Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.

  1. Guidelines for the processing and quality assurance of benthic invertebrate samples collected as part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Cuffney, T.F.; Gurtz, M.E.; Meador, M.R.

    1993-01-01

    Benthic invertebrate samples are collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This is a perennial, multidisciplinary program that integrates biological, physical, and chemical indicators of water quality to evaluate status and trends and to develop an understanding of the factors controlling observed water quality. The Program examines water quality in 60 study units (coupled ground- and surface-water systems) that encompass most of the conterminous United States and parts of Alaska and Hawaii. Study-unit teams collect and process qualitative and semi-quantitative invertebrate samples according to standardized procedures. These samples are processed (elutriated and subsampled) in the field to produce as many as four sample components: large-rare, main-body, elutriate, and split. Each sample component is preserved in 10-percent formalin, and two components, large-rare and main-body, are sent to contract laboratories for further processing. The large-rare component is composed of large invertebrates that are removed from the sample matrix during field processing and placed in one or more containers. The main-body sample component consists of the remaining sample materials (sediment, detritus, and invertebrates) and is subsampled in the field to achieve a volume of 750 milliliters or less. The remaining two sample components, elutriate and split, are used for quality-assurance and quality-control purposes. Contract laboratories are used to identify and quantify invertebrates from the large-rare and main-body sample components according to the procedures and guidelines specified within this document. These guidelines allow the use of subsampling techniques to reduce the volume of sample material processed and to facilitate identifications. These processing procedures and techniques may be modified if the modifications provide equal or greater levels of accuracy and precision. The intent of sample processing is to

  2. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    CERN Document Server

    Mehrabani, Homayun; Tse, Kyle; Evangelista, Dennis

    2014-01-01

    Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g. plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artifical samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe featur...

  3. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    Directory of Open Access Journals (Sweden)

    Homayun Mehrabani

    2014-09-01

    Full Text Available Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice, or in environments with moisture and cold air (e.g., plants, intertidal begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli. The geometric dimensions of the features have only a small (∼6% effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their

  4. Benthic data for corals, macroalgae, invertebrates, and non-living bottom types from 12 sites in American Samoa, 2005-2009. (NODC Accession 0068364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic transects were repeated at 12 sites around Tutuila at various depths on the reef slopes and flats. Benthic coverage categories include coral species,...

  5. Soil invertebrate/micro-invertebrate interactions: disproportionate effects of species on food web structure and function.

    Science.gov (United States)

    Moore, J C; DeRuiter, P C; Hunt, H W

    1993-06-01

    The preservation of biodiversity requires an appreciation of food web structure and an understanding of how disturbance alters their structure and function. Theoretical and empirical studies of food webs demonstrate that food webs possess a regular structure. Food chain length appears limited to three to four transfers, and, complexity and diversity are constrained. When ecosystem energetics are considered, species within food webs are seen to form interactive assemblages that process matter at different rates and respond to disturbance differently. Disturbance may affect the diversity of a system, or, may influence the relative importance of one species assemblage over another. Moreover, predicting the impact of disturbance on a system is difficult as species that comprise and process a small fraction of the system's biomass may control a disproportionate fraction of the system's biomass and diversity. Seven food webs at four sites were used in a modeling exercise to demonstrate this point. Field studies involving the role of mycorrhizal fungi yielded results consistent with the modeling studies as the types of plant species present, the level of production and the diversity of production were related to the levels of mycorrhizal fungi in the soils following disturbance. The results indicate that all species are important to ecosystem structure and function and that the monitoring of ecosystems and conservation efforts should expand their emphasis to the preservation of ecosystem integrity as well as that of individual species.

  6. Structure and function of invertebrate Kazal-type serine proteinase inhibitors.

    Science.gov (United States)

    Rimphanitchayakit, Vichien; Tassanakajon, Anchalee

    2010-04-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.

  7. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    Science.gov (United States)

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  8. Influence of biotic variables on invertebrate size structure and diversity in coastal wetlands of Southeastern Spain

    Science.gov (United States)

    Antón-Pardo, María; Armengol, Xavier

    2016-10-01

    Biomass and size-based estimations provide relevant information regarding ecosystem functioning and biotic interactions. Our aims were to study the effect of fish and macrophytes on the size structure of invertebrate assemblages (from rotifers to insects) in a set of coastal water bodies, estimating the biomass (total and main invertebrate groups), the biomass-size spectra (model of Pareto) and size diversity. In fishless ponds, cladoceran and ostracod biomass were higher, and they presented greater size diversity. In fish ponds, rotifer biomass presented greater proportion; while in fishless ponds, cladocerans were usually the most abundant taxa and the largest organisms. The biomass size spectra showed more irregularities in fishless ponds, due to the low densities of small taxa (rotifers and copepod juveniles) and big taxa (malacostraceans or insects). Differences is size structure and diversity were also observed between spring and summer, suggesting a higher recruitment of juveniles in spring, and thus, a higher predation pressure upon zooplankton at that moment. Macrophyte cover did not apparently influence those parameters, except for the biomass of ostracods, copepods, and insects. Therefore, predation by fish strongly affected invertebrate biomass, reflecting their selective feeding, and allowing high densities of small taxa. Predation pressure decreased size diversity, by limiting the abundance of vulnerable taxa of specific size. Seasonal changes were likely related to the spring recruitment of fish juveniles. The presence of small fish and invertebrate predator taxa among the macrophytes, restrict their role as refuges for prey invertebrates.

  9. Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae).

    Science.gov (United States)

    Colombo, Valentina; Pettigrove, Vincent J; Hoffmann, Ary A; Golding, Lisa A

    2016-09-01

    Classical laboratory-based single-species sediment bioassays do not account for modifications to toxicity from bioturbation by benthic organisms which may impact predictions of contaminated sediment risk to biota in the field. This study aims to determine the effects of bioturbation on the toxicity of zinc measured in a standard laboratory bioassay conducted with chironomid larvae (Chironomus tepperi). The epi-benthic chironomid larvae were exposed to two different levels of sediment contamination (1600 and 1980 mg/kg of dry weight zinc) in the presence or absence of annelid worms (Lumbriculus variegatus) which are known to be tolerant to metal and to have a large impact on sediment properties through bioturbation. Chironomids had 5-6x higher survival in the presence of L. variegatus which shows that bioturbation had a beneficial effect on the chironomid larvae. Chemical analyses showed that bioturbation induced a flux of zinc from the pore water into the water column, thereby reducing the bioavailability of zinc in pore water to the chironomid larvae. This also suggested that pore water was the major exposure path for the chironomids to metals in sediment. During the study, annelid worms (Oligochaetes) produced a thin layer of faecal pellets at the sediment surface, a process known to: (i) create additional adsorption sites for zinc, thus reducing its availability, (ii) increase the microbial abundance that in turn could represent an additional food source for opportunistic C. tepperi larvae, and (iii) modify the microbial community's structure and alter the biogeochemical processes it governs thus indirectly impact zinc toxicity. This study represents a contribution in recognising bioturbating organisms as "ecological engineers" as they directly and indirectly influence metal bioavailability and impact other sediment-inhabiting species. This is significant and should be considered in risk assessment of zinc levels (and other metals) in contaminated sediment

  10. Diversity and network structure of invertebrate communities associated to Heliconia species in natural and human disturbed tropical rain forests

    Directory of Open Access Journals (Sweden)

    Julieta Benítez-Malvido

    2014-12-01

    Full Text Available We analyzed the influence of natural and anthropogenic habitat disturbance on the structure of invertebrate communities living on two species of Heliconia herbs. We compared the invertebrate community structure associated to both species growing in natural forest gaps, on road edges for H. latispatha, and in riparian vegetation for H. collinsiana. We assessed the topological structure of individual-based Heliconia–invertebrate networks. Species richness was greater in H. collinsiana inhabiting riparian vegetation but no differences were found in the diversity of invertebrates for any Heliconia species and habitat. Invertebrate abundance was greater in gaps for H. latispatha and in riparian vegetation for H. collinsiana showing a species turnover in human disturbed habitats. The invertebrate community was not randomly assembled but highly nested, revealing a structured pattern for all habitat conditions. Heliconia–invertebrate network properties appear to be maintained in human disturbed habitats, despite differences in species richness, abundance and composition and host number and quality. Our study contributes to the understanding of the structure of ecological interactions in contrasting habitats. Because they provide food and habitat for the associated fauna and several microhabitats for colonization, heliconias could be used as habitat elements for invertebrate conservation in human impacted landscapes.

  11. Photographic Images of Benthic Coral, Algae, and Invertebrate Species in Marine Habitats and Subhabitats around Offshore Islets in the Main Hawaiian Islands 2007 (NODC Accession 0043046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lanai, (Puu...

  12. Influence of benthic macro-invertebrate bioturbation on the biogeochemical behaviour of uranium within freshwater sediments; Influence de la bioturbation des macro-invertebres benthiques sur le comportement biogeochimique de l'uranium au sein des sediments d'eau douce

    Energy Technology Data Exchange (ETDEWEB)

    Lagauzere, S.

    2008-06-15

    In freshwater ecosystems, sediments act as an accumulation compartment for metallic pollutants as uranium. Secondary, there can also represent endogenous sources of contamination by resuspension (e.g. flood, bioturbation) or changes of metal speciation that acts upon their bioavailability. Indeed, metallic compounds can be transformed in more or less toxic or inert compounds through physico-chemical (e.g. pH, redox conditions, ionic force) and microbiological variations. These conditions are themselves under the effects of benthic macro-invertebrate activities via bioturbation processes. The main objective of this PhD was to determinate the influence of two benthic macro-invertebrate species (Chironomus riparius and Tubifex tubifex) on the distribution and the transfers of uranium within freshwater sediments. To reach this goal, laboratory experiments were performed in order to (i) assess the effects of uranium on benthic macro-invertebrates, more particularly on their bioturbation activity, (ii) determine the influence of these organisms on uranium behaviour through high resolution physico-chemical measurements (e.g. oxygen optodes, DET gel probes), and (iii) estimate the consequences of these interactions on pelagic organisms via genotoxicity measurements (micronuclei assay and molecular bio-markers analysis on Xenopus laevis). The results demonstrate that bioturbation intensity of macro-invertebrates can be affected in uranium-contaminated sediments, but the two species studied in this work show a relative tolerance. For high uranium concentrations (>100 times the geochemical background level), corresponding however to realistic concentrations in highly contaminated sites, T. tubifex worms are able to maintain a sufficient bioturbation activity that induces a high remobilization of uranium initially associated with sediments to the overlying water (factor 2 to 10). That represents therefore a potential risk for the remaining aquatic biocenose. However, by

  13. Invertebrate metacommunity structure and dynamics in an andean glacial stream network facing climate change

    DEFF Research Database (Denmark)

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio

    2015-01-01

    theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico...... community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects...

  14. Effect of mesohabitats on responses of invertebrate community structure in streams under different land uses.

    Science.gov (United States)

    da Silva, Marcos Vinícius Dias; Rosa, Beatriz F J V; Alves, Roberto G

    2015-11-01

    Riparian vegetation is one of the most important abiotic components determining the water flow pattern in lotic ecosystems, influencing the composition, richness, and diversity of invertebrates. We have identified whether differences in the structure of the assemblages of invertebrates between riffles and pools may influence the responses of fauna to the effects of land use. In addition, we investigated which fauna metrics are responsible for the differentiation between riffles and pools in streams subject to different land uses. During the dry season of 2012, the main substrates of riffles and pools were sampled (Surber collector) from nine streams within forest, pasture, and urban areas. Principal component analysis (PCA) and Permanova showed differences in the set of environmental variables between streams and mesohabitats. The first PCA axis distinguished the forest and pasture streams from the urban area streams and was related to variables indicative of nutrient enrichment and land use, while the second axis was formed by velocity flow and by the quantities of ultrafine and coarse sand, which distinguished the riffles and pools of the streams. The faunal composition distinguished the streams in pasture and forest areas from the urban streams. Riffles and pools were not concordant in the representation of the invertebrate fauna, indicating the importance of sampling both mesohabitats in the types of streams investigated. The richness, taxonomic composition, and relative abundance of families of Ephemeroptera, Plecoptera, and Trichoptera showed robust responses in riffles to the effects of environmental changes, while in pools, only the richness showed a significant response. It was possibly concluded that riffles were more sensitive in detecting the effects of land use. The information from this study help to understand how the community of invertebrates and the types of habitats in streams may be affected by anthropogenic impacts.

  15. Marine Invertebrate assemblages in southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a point file of invertebrate site clusters calculated from benthic trawls completed by the Southern California Coastal Water Research Project (SCCWRP). Data...

  16. Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles

    NARCIS (Netherlands)

    Hunting, E.R.; Whatley, M.H.; van der Geest, H.G.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W.

    2012-01-01

    Detritus processing is driven by a complex interplay between macroinvertebrate and microbial activities. Bioturbation/feeding activities of invertebrates in sediments are known to influence decomposition rates. However, direct effects of invertebrates on bacterial communities and detritus processing

  17. Photothermal and Structural Comparative Analysis of Chitinous Exoskeletons of Marine Invertebrates

    Science.gov (United States)

    Juárez-de la Rosa, B. A.; Yañez-Limón, J. M.; Tiburcio-Moreno, J. A.; Zambrano, M.; Ardisson, P.-L.; Quintana, P.; Alvarado-Gil, J. J.

    2012-11-01

    Chitinous materials are common in nature and provide different functions including protection and support of many invertebrate animals. Exoskeletons in these organisms constitute the boundary regulating interaction between the animal and the external environment. For this reason, it is important to study the physical properties of these skeletons, in particular, thermal properties. The objective of this study is to investigate the thermal diffusivity of the skeletons of four species of marine invertebrates, Antipathes caribbeana (black coral), Panulinus argus (lobster), Callinectes sapidus (crab), and Limulus polyphemus (xiphosure). Thermal characterization is performed using photothermal radiometry (PTR) and laser-flash techniques. The measurements are complemented with structural characterization using X-ray diffraction. The results using both laser flash and PTR are consistent. These indicate that the thermal properties are strongly dependent on the presence of biogenic minerals (calcium and/or magnesium) and on the crystallinity index of the structure. The thermal-diffusivity values show an increase as a function of the crystallinity index.

  18. Structure-function relationship of anticoagulant and antithrombotic well-defined sulfated polysaccharides from marine invertebrates.

    Science.gov (United States)

    Pomin, Vitor H

    2012-01-01

    Marine sulfated polysaccharides (MSPs), such as sulfated fucans (SFs), sulfated galactans (SGs), and glycosaminoglycans (GAGs) isolated from invertebrate animals, are highly anionic polysaccharides capable of interacting with certain cationic proteins, such as (co)-factors of the coagulation cascade during clotting-inhibition process. Primarily, these molecular complexes between MSPs and coagulation-related proteins seem to be driven mostly by electrostatic interactions. However, through a systematic comparison using several novel well-defined sulfated polysaccharides composed of repetitive oligosaccharides with clear sulfation patterns, it was proved that those molecular interactions are essentially regulated by the stereochemistry of the glycans (which depends on a conjunction of anomeric configurations, sugar types, conformational preferences, glycosylation, and sulfation sites), rather than just a mere consequence of the electronegative density charges (mainly from number of sulfate groups). Here, we present an overview about the structure-function relationship of the invertebrate MSPs with regular structures as potential anticoagulant and antithrombotic agents, as pathologies related to the cardiovascular system are one of the major causes of mortality in the world.

  19. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly

    Science.gov (United States)

    Podobnik, Marjetka; Savory, Peter; Rojko, Nejc; Kisovec, Matic; Wood, Neil; Hambley, Richard; Pugh, Jonathan; Wallace, E. Jayne; McNeill, Luke; Bruce, Mark; Liko, Idlir; Allison, Timothy M.; Mehmood, Shahid; Yilmaz, Neval; Kobayashi, Toshihide; Gilbert, Robert J. C.; Robinson, Carol V.; Jayasinghe, Lakmal; Anderluh, Gregor

    2016-05-01

    The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ~10 nm long and 1.6-2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria.

  20. Chemical, Physical, and Biological Factors Shape Littoral Invertebrate Community Structure in Coal-Mining End-Pit Lakes

    Science.gov (United States)

    Luek, Andreas; Rasmussen, Joseph B.

    2017-04-01

    Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.

  1. Distribution pattern of benthic invertebrates in Danish estuaries: The use of Taylor's power law as a species-specific indicator of dispersion and behavior

    DEFF Research Database (Denmark)

    Kristensen, Erik; Delefosse, Matthieu; Quintana, Cintia Organo

    2013-01-01

    The lack of a common statistical approach describing the distribution and dispersion pattern of marine benthic animals has often hampered the comparability among studies. The purpose of this study is therefore to apply an alternative approach, Taylor's power law, to data on spatial and temporal...... that this relationship is an inherent characteristic of Taylor's power law, and that b as a dispersion index may be biased by e.g. sampling errorswhen this relationship is weak. The correlation strength between b and log(a) could therefore be envisioned as a data quality check....

  2. Watermass structure at benthic disturbance site (INDEX area) and anticipated mining effects on hydro-physical properties

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Murty, V.S.N.; Suryanarayana, A.; Beena, B.S.; Niranjan, K,

    Watermass properties were obtained in the Indian Deep Sea Experiment (INDEX) area during pre- (27 May-8 July 1997) and post- (22 July-5 September, 1997) benthic disturbance periods respectively. Watermass (Temperature-Salinity: T-S) structure...

  3. Invertebrate metacommunity structure and dynamics in an andean glacial stream network facing climate change

    DEFF Research Database (Denmark)

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio;

    2015-01-01

    theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico......-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.......g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained...

  4. Historical changes in the structure and functioning of the benthic community in the lagoon of Venice

    Science.gov (United States)

    Pranovi, Fabio; Da Ponte, Filippo; Torricelli, Patrizia

    2008-03-01

    One of the main challenges in environmental management is how to manage the dynamics of natural environments. In this context, having information about historical changes of the structure of the biological communities could represent a useful tool to improve management strategies, contributing to refine the policy objectives, since it gives reference states with which to compare the present. The Venice lagoon represents an interesting case study, since it is a highly dynamic, but sensitive, environment which requires the adoption of prudent management. In its recent history the lagoon ecosystem has been exposed to different kinds of disturbance, from the discharge of pollutants and nutrients, to the invasion of alien species and the exploitation of its biological resources by using highly impacting fishing gears. The analysis of available data about the macro-benthic community, from 1935 to 2004, allows the description of changes of the community structure over almost 70 years, showing a sharp decrease in its diversity. In order to obtain information about its functioning, it is necessary to know how these changes have affected processes at the community and system level. In shallow water ecosystems, as the control is mainly due to the benthic compartment, variations in the structure of the benthic community can induce modifications in processes at different hierarchical levels. The trophic structure analysis has revealed major changes during the period; from a well-assorted structure in 1935, to an herbivore-detritivore dominated one in the 1990s, and finally to a filter feeder dominated structure during the last decade. This has produced variations in the secondary production and it has induced modifications in the type of the ecosystem control. These changes are discussed in the light of the dynamics of the main driving forces.

  5. Ecological Effects of Biochar on the Structure and Function of Stream Benthic Communities.

    Science.gov (United States)

    Clements, William H; Stahl, Ralph G; Landis, Richard C

    2015-12-15

    The introduction of biochar, activated carbon, and other carbonaceous materials to aquatic ecosystems significantly reduces the toxicity and bioavailability of contaminants. However, previous studies have shown that these materials can have negative effects on aquatic organisms. We conducted field and mesocosm experiments to test the hypothesis that biochar altered the structure and function of stream benthic communities. After 30 d in the field, colonization by stoneflies (Plecoptera) was significantly lower in trays containing biochar compared to the results from the controls. In stream mesocosms, biochar increased macroinvertebrate drift and significantly reduced community metabolism. However, most measures of community composition showed little variation among biochar treatments, and significant responses were limited to a single stonefly species (Capnia confusa). When benthic communities were simultaneously exposed to biochar and Cu, effects were primarily associated with metal exposure. Because it is unlikely that biochar treatments would be employed in uncontaminated areas, these moderately negative effects should be considered within the context of the positive benefits associated with reduced contaminant bioavailability and toxicity. Additional research is necessary to improve our understanding of the mechanisms responsible for biochar effects on benthic communities and to identify the optimal application rates and size fractions that will maximize contaminant sorption but minimize potential negative effects.

  6. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    Science.gov (United States)

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the

  7. Benthic data for corals, macroalgae, invertebrates, and non-living bottom types from Fagatele Bay National Marine Sanctuary, South Pacific Ocean, 2007-04-02 to 2008-12-31 (NCEI Accession 0068364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic transects were repeated at 12 sites around Tutuila at various depths on the reef slopes and flats. Benthic coverage categories include coral species,...

  8. Disjoint geographical distribution of intertidal and nearshore benthic invertebrates in the Southern Hemisphere Distribuciones geográficas disyuntas de invertebrados bentónicos intermareales y del submareal somero en el Hemisferio Sur

    Directory of Open Access Journals (Sweden)

    JUAN C CASTILLA

    2000-12-01

    Full Text Available Biogeographical explanations for the extant and paleo disjoint geographical distribution in the southern hemisphere of five species of nearshore marine benthic invertebrates: Gaimardia trapesina, Ostrea chilensis, Pyura stolonifera taxonomic complex, Aulacomya ater and Concholepas concholepas, showing distinctive reproductive strategies and early life history characteristics are reviewed and analyzed. Through the use of published and new information we contrasted the following hypotheses: a vicariance-historical process, b epiplanktonic larval dispersal, c juvenile/adult dispersal through rafting and d planned or accidental anthropogenic dispersal mechanisms. The juvenile/adult transoceanic dispersal hypothesis by rafting was the only one impossible to be rejected for the species analyzed. The implication and future direction for research in this area are discussedSe revisa y analiza las posibles explicaciones para la distribución geográfica disyunta, presente y pasada, en el hemisferio sur de cinco especies de invertebrados bentónicos marinos litorales: Gaimardia trapesina, Ostrea chilensis, el complejo taxonómico Pyura stolonifera, Aulacomya ater y Concholepas concholepas, con estrategias reproductivas y características de historia de vida distintas. Se discute y pone a prueba, usando información original o publicada, las siguientes hipótesis: a procesos históricos de vicarianza, b dispersión de larvas epi-planctónicas, c dispersión de juveniles o adultos por transporte pasivo y d dispersión antropogénica planificada o accidental. La hipótesis de dispersión transoceánica de juveniles o adultos fue la única imposible de rechazar para las especies analizadas. Se discute las direcciones futuras de investigación en esta área

  9. The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment

    Science.gov (United States)

    Kędra, Monika; Kuliński, Karol; Walkusz, Wojciech; Legeżyńska, Joanna

    2012-12-01

    Seasonality, quality and quantity of food resources strongly affect fitness and survival of polar fauna. Most research conducted in polar areas has been carried out during the summer, rarely including aspects of seasonality; therefore, there are gaps in our knowledge of the structure of food webs in the Arctic, particularly information is lacking on the possible shifts in winter feeding strategies of organisms. This study is the first to compare potential shifts in benthic food-web structure between winter and summer in a shallow-water Arctic fjord (Kongsfjorden, Svalbard). Winter data were collected in March when conditions are representative of winter and when Arctic shallow benthic fauna is likely to be most affected by absence of fresh food supply as opposed to summer (August). Samples of particulate suspended organic matter (POM), settled organic matter, surface sediment and benthic organisms were taken and analyzed for stable isotopes signatures (δ13C and δ15N). Four relative trophic levels (TL) were distinguished in both winter and summer, and no differences in the structure of benthic food web were found between seasons. Our study shows that the shallow sublittoral benthos depends on primary production, fresh and reworked settled organic matter and, to a certain degree, on terrestrial input. We also demonstrate that shallow water polar benthic fauna is characterized by a high level of omnivory and feeds at multiple trophic levels showing strong resilience to changing seasonal conditions.

  10. Infaunal and megafaunal benthic community structure associated with cold seeps at the Vestnesa Ridge (79 N°)

    Science.gov (United States)

    Åström, Emmelie K. L.; Carroll, Michael L.; Sen, Arunima; Ambrose, William G., Jr.; Silyakova, Anna; Carroll, JoLynn

    2016-04-01

    Cold seeps are locations where hydrocarbons, sulfide or reduced compounds emanate from the seafloor, which may fuel chemoautotrophic production and form additional hard bottom substrate through carbonate precipitation. Chemosynthetic symbiosis, trophic interactions, and additional bottom substrate types can provide a heterogeneous environment for deep-sea organisms supporting macrofaunal communities including increased biodiversity and biomass. We combined quantitative benthic faunal samples with sea floor photographs from an active, methane seeping pockmark at Vestnesa Ridge (1200 meters depth) to examine community structure and biodiversity in a high Arctic deep cold seep. Quantitative data were compared with samples from the nearby inactive Svyatogor Ridge (1577-1706 meters depth). We measured highly elevated methane concentrations (up to 100x background levels) in the sediment at Vestnesa Ridge. Faunal abundance, species richness and biomass were significantly higher at the Vestnesa pockmark compared to inactive Svyatogor Ridge. Seabed photos from Vestnesa Ridge reveal high megafaunal diversity and biomass and cold seep features including carbonate crust and microbial mats. Our observations indicate that chemoautotrophic production enhances deep-sea biomass and diversity at Vestnesa Ridge. The focused methane emissions create a heterogeneous deep-sea habitat for chemo-associated organisms coexisting with heterotrophic conventional fauna in a high Arctic seep. Keywords: Arctic, benthic ecology, biodiversity, chemosynthesis, methane

  11. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ 13C and δ 15N analysis

    Science.gov (United States)

    Fanelli, E.; Papiol, V.; Cartes, J. E.; Rumolo, P.; Brunet, C.; Sprovieri, M.

    2011-01-01

    The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean δ 13C values ranged from -21.0‰ (small Calocaris macandreae and Amphipholis squamata) to -14.5‰ ( Sipunculus norvegicus). Values of δ 15N ranged from 4.0‰ ( A. squamata) to 12.1‰ ( Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. δ 15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders ( Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower δ 15N. High annual mean δ 15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in δ 15N. Carnivorous polychaetes ( Nephtys spp., Oenonidae and Polynoidae) and large decapods ( Geryon longipes and Paromola cuvieri) also displayed high δ 15N values. δ 13C ranges were particularly wide among surface deposit feeders (ranging from -21.0‰ to -16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between δ 13C and δ 15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM

  12. Laboratory measurements of scalar and momentum structure in turbulent aquatic benthic boundary layers

    Science.gov (United States)

    Dombroski, Daniel Edward

    In aquatic benthic environments, hydrodynamic transport of mass and momentum have shaped the evolution of form-function relationships. Animals whose life cycle depends on success in such environments have developed the biological structure and behavioral mechanisms to sustain dynamic stresses and complex chemical signals. It has become increasingly clear that understanding the ecology of these organisms is dependent on examining the complexities of the turbulent environment. In this dissertation, hydrodynamics and the structure of chemical signals within turbulent boundary layer flows are examined in the context of natural and biological systems. Experiments were conducted in the benthic region of a water flume using a combination of point-measurement and full-field imaging techniques. There are three areas of focus within the complete body of work: (1) The accuracy of an acoustic measurement technique commonly used in natural flows was evaluated. Errors in the technique, primarily attributed to a sampling volume that is large relative to the scales of motion in turbulent flows, were found to be larger than and extend farther from the bed than previously reported. (2) A three-dimensional laser-based imaging system was developed for quantifying turbulent scalar structure. The system was employed to study the topology and orientation of structure within a bed-level, passively released scalar plume. (3) Hydrodynamic stresses were measured near marine fouling communities in a study aimed at predicting larval settlement probabilities. Turbulent stresses, and by extension, the suitability of microhabitats, were found to be highly dependent on local topography and outer-scale flow conditions. This body of work advances the field of experimental fluid mechanics by contributing to the development of methods for quantifying turbulent flows, as well as furthering current understanding of the capabilities and limitations associated with new and existing techniques. Statistical

  13. The Structure and Distribution of Benthic Communities on a Shallow Seamount (Cobb Seamount, Northeast Pacific Ocean)

    Science.gov (United States)

    Curtis, Janelle M. R.; Clarke, M. Elizabeth

    2016-01-01

    Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782

  14. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  15. Benthic Ammonia Oxidizers Differ in Community Structure and Biogeochemical Potential Across a Riverine Delta

    Directory of Open Access Journals (Sweden)

    Julian eDamashek

    2015-01-01

    Full Text Available Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California’s Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the massive discharge of ammonium into the Sacramento River has altered this ecosystem by increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (encoding the α-subunit of ammonia monooxygenase. There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB outnumbering ammonia-oxidizing archaea (AOA only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The community structure and biogeochemical function of benthic ammonia oxidizers appears related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.

  16. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs.

    Directory of Open Access Journals (Sweden)

    Nichole N Price

    Full Text Available Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events and ocean acidification (OA, the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C and pH (>0.2 similar to the magnitude of 'warming' and 'acidification' expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH.

  17. Roebuck Bay Invertebrate and bird Mapping 2006

    NARCIS (Netherlands)

    Piersma, Theunis; Pearson, Grant B.; Hickey, Robert; Dittmann, Sabine; Rogers, Danny I.; Folmer, Eelke; Honkoop, Pieter; Drent, Jan; Goeij, Petra de; Marsh, Loisette

    2006-01-01

    1. This is a report on a survey of the benthic ecology of the intertidal flats along the northern shores of Roebuck Bay in June 2006. In the period 11-20 June we mapped both the invertebrate macrobenthic animals (those retained by a 1 mm sieve) over the whole of the northern intertidal area of Roebu

  18. Photographic images of benthic coral, algae and invertebrate species in marine habitats and subhabitats around offshore islets in the main Hawaiian Islands, April 2 - September 20, 2007 (NODC Accession 0043046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lanai, (Puu...

  19. Land use and the structure of western US stream invertebrate assemblages: Predictive models and ecological traits

    Science.gov (United States)

    Carlisle, D.M.; Hawkins, C.P.

    2008-01-01

    Inferences drawn from regional bioassessments could be strengthened by integrating data from different monitoring programs. We combined data from the US Geological Survey National Water-Quality Assessment (NAWQA) program and the US Environmental Protection Agency Wadeable Streams Assessment (WSA) to expand the scope of an existing River InVertebrate Prediction and Classification System (RIVPACS)-type predictive model and to assess the biological condition of streams across the western US in a variety of landuse classes. We used model-derived estimates of taxon-specific probabilities of capture and observed taxon occurrences to identify taxa that were absent from sites where they were predicted to occur (decreasers) and taxa that were present at sites where they were not predicted to occur (increasers). Integration of 87 NAWQA reference sites increased the scope of the existing WSA predictive model to include larger streams and later season sampling. Biological condition at 336 NAWQA test sites was significantly (p development, habit, and thermal preference, but we were unable to predict the type of basin land use from trait states present in invertebrate assemblages. Refined characterization of traits might be required before bioassessment data can be used routinely to aid in the diagnoses of the causes of biological impairment. ?? 2008 by The North American Benthological Society.

  20. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.

    Science.gov (United States)

    Davies, A; Gowen, B E; Krebs, A M; Schertler, G F; Saibil, H R

    2001-11-30

    Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.

  1. Structure of benthic macroinvertebrate assemblages on a gradient of environmental integrity in Neotropical streams

    Directory of Open Access Journals (Sweden)

    Marcia Thais Suriano

    2013-12-01

    Full Text Available AIM: This study investigated the taxonomic composition of the benthic macroinvertebrates in streams to evaluate how this fauna reflects the various uses of the soil and to identify which groups of macroinvertebrates might be taken as characterizing each situation under study. METHODS: To achieve these objectives, 29 streams were collected and inserted in regions with different conservation using Surber sampler. Analyzes were performed of environmental variables (Principal Components Analysis - PCA and taxonomic structure of the community (taxon richness, numerical abundance and Multidimensional scaling - MDS. RESULTS: EPT group (orders Ephemeroptera, Plecoptera and Trichoptera and the Coleoptera exhibited greater numerical abundance and taxon richness in streams located in reference areas. In contrast, dipteran larvae, especially the chironomids, along with immature odonates, were more abundant in streams in areas suffering from a lack of riparian forest. Multidimensional scaling analysis (MDS revealed an environmental gradient, on which the streams within the Atlantic forest formed a tightly clustered group, as did those in semideciduous forests. However, the latter group occupied an intermediate position between the Atlantic forest streams and those in areas disturbed by human activity. Among these areas there were no specific clusters by monoculture. CONCLUSIONS: Among the groups of streams defined by the types of land use in the adjacent areas, the state of integrity was found to decline from Atlantic rainforest, through semi-deciduous forest and then pasture, to the monocultures of eucalypts and sugarcane.

  2. Relationships among sea-floor structure and benthic communities in Long Island Sound at regional and benthoscape scales

    Science.gov (United States)

    Zajac, Roman N.; Lewis, Ralph S.; Poppe, Larry J.; Twichell, David C.; Vozarik, Joseph; DiGiacomo-Cohen, Mary L.

    2000-01-01

    Long Island Sound is comprised of a rich and spatially heterogeneous mix of sea-floor environments which provide habitat for an equally diverse set of assemblages of soft-sediment communities. Information from recent research on the geomorphological and chemical attributes of these environments, as well as from studies of the hydrodynamics of the Sound, provide the opportunity to develop a landscape, or "benthoscape" framework for understanding the soft-sediment ecology of this estuary and for guiding future research focusing on structure and function at multiple spatial scales. This contribution reviews past research on benthic communities in Long Island Sound and addresses how they may be shaped by sea-floor characteristics at regional and benthoscape scales. At the regional scale (i.e. the entire Sound), differences in benthic community composition correspond to the distribution of general sedimentary environments. However, significant variation in community structure also occurs at the benthoscape scale (within regions) related to local variations in sediment properties, and physical and biogenic topographic features. Several topical areas in particular need further research in Long Island Sound, including temporal dynamics of benthic communities relative to sea-floor structure and the interaction between the dynamics of benthoscapes and hydrologic seascapes.

  3. Natural disturbance shapes benthic intertidal macroinvertebrate communities of high latitude river deltas

    Science.gov (United States)

    Churchwell, Roy T.; Kendall, Steve J.; Blanchard, Amy L.; Dunton, Kenneth H.; Powell, Abby N.

    2016-01-01

    Unlike lower latitude coastlines, the estuarine nearshore zones of the Alaskan Beaufort Sea are icebound and frozen up to 9 months annually. This annual freezing event represents a dramatic physical disturbance to fauna living within intertidal sediments. The main objectives of this study were to describe the benthic communities of Beaufort Sea deltas, including temporal changes and trophic structure. Understanding benthic invertebrate communities provided a baseline for concurrent research on shorebird foraging ecology at these sites. We found that despite continuous year-to-year episodes of annual freezing, these estuarine deltas are populated by a range of invertebrates that represent both marine and freshwater assemblages. Freshwater organisms like Diptera and Oligochaeta not only survive this extreme event, but a marine invasion of infaunal organisms such as Amphipoda and Polychaeta rapidly recolonizes the delta mudflats following ice ablation. These delta sediments of sand, silt, and clay are fine in structure compared to sediments of other Beaufort Sea coastal intertidal habitats. The relatively depauperate invertebrate community that ultimately develops is composed of marine and freshwater benthic invertebrates. The composition of the infauna also reflects two strategies that make life on Beaufort Sea deltas possible: a migration of marine organisms from deeper lagoons to the intertidal and freshwater biota that survive the 9-month ice-covered period in frozen sediments. Stable isotopic analyses reveal that both infaunal assemblages assimilate marine and terrestrial sources of organic carbon. These results provide some of the first quantitative information on the infaunal food resources of shallow arctic estuarine systems and the long-term persistence of these invertebrate assemblages. Our data help explain the presence of large numbers of shorebirds in these habitats during the brief summer open-water period and their trophic importance to migrating

  4. The structure of soft-bottom benthic communities in the vicinity of the Texas Flower Garden Banks, Gulf of Mexico

    Science.gov (United States)

    Yingst, Josephine Y.; Rhoads, Donald C.

    1985-05-01

    disturbance. In the Texas-Louisiana shelf region, dilution of an already food limited system by inert barium sulphate would be expected to result in even lower standing stocks of benthic infaunal invertebrates.

  5. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons.

    Science.gov (United States)

    Spafford, J David; Munno, David W; Van Nierop, Pim; Feng, Zhong-Ping; Jarvis, Scott E; Gallin, Warren J; Smit, August B; Zamponi, Gerald W; Syed, Naweed I

    2003-02-01

    We report here that unlike what was suggested for many vertebrate neurons, synaptic transmission in Lymnaea stagnalis occurs independent of a physical interaction between presynaptic calcium channels and a functional complement of SNARE proteins. Instead, synaptic transmission in Lymnaea requires the expression of a C-terminal splice variant of the Lymnaea homolog to mammalian N- and P/Q-type calcium channels. We show that the alternately spliced region physically interacts with the scaffolding proteins Mint1 and CASK, and that synaptic transmission is abolished following RNA interference knockdown of CASK or after the injection of peptide sequences designed to disrupt the calcium channel-Mint1 interactions. Our data suggest that Mint1 and CASK may serve to localize the non-L-type channels at the active zone and that synaptic transmission in invertebrate neurons utilizes a mechanism for optimizing calcium entry, which occurs independently of a physical association between calcium channels and SNARE proteins.

  6. Role of Recruitment Processes in Structuring Coralligenous Benthic Assemblages in the Northern Adriatic Continental Shelf

    Science.gov (United States)

    Abbiati, Marco

    2016-01-01

    Coralligenous biogenic reefs are among the most diverse marine habitats in the Mediterranean Sea. The northern Adriatic mesophotic coralligenous outcrops host very rich and diverse epibenthic assemblages. Several studies quantified the low temporal variability and high spatial heterogeneity of these habitats, while processes driving structuring and differentiation are still poorly understood. To shed light on these processes, temporal and spatial patterns of colonisation were investigated using travertine tiles deployed on three coralligenous outcrops, corresponding to the main typologies of benthic assemblages described in previous studies. Three years after deployment, assemblages colonising travertine tiles resembled the differentiation among sites revealed by the natural assemblages in terms of major ecological groups. Processes structuring and maintaining species diversity have been explored. Pioneer species with high reproduction rate, long distance larval dispersal and fast growth (e.g. the serpulid polychaete Spirobranchus triqueter and the bivalve Anomia ephippium), were the most abundant in the early stages of recruitment on the two outcrops further away from the coast and with lower sedimentation. Their success may vary according to larval availability and environmental conditions (e.g., sedimentation rates). At these sites early-stage lasted 10–12 months, during which even species from natural substrates began colonising tiles by settlement of planktonic propagules (e.g., encrusting calcareous Rhodophyta) and lateral encroachment (e.g., sponges and ascidians). On coastal outcrop, exposed to a higher sedimentation rates, tiles were colonised by fast-growing algal turfs. Resilience of northern Adriatic coralligenous assemblages, and maintenance of their diversity, appeared largely entrusted to asexual reproduction. Exploring the mechanisms that underlie the formation and maintenance of the species diversity is crucial to improve our understanding of

  7. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    Directory of Open Access Journals (Sweden)

    Karyna eRosario

    2015-07-01

    Full Text Available Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA viruses that encode a conserved replication initiator protein (Rep in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs, which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.

  8. Nearshore morphology, benthic structure, hydrodynamics, and coastal groundwater discharge near Kahekili Beach Park, Maui, Hawaii

    Science.gov (United States)

    Swarzenski, Peter W.; Storlazzi, Curt D.; Presto, M. Katherine; Gibbs, Ann E.; Smith, Christopher G.; Dimova, Natasha T.; Dailer, Meghan L.; Logan, Joshua B.

    2012-01-01

    This report presents a brief summary of recent fieldwork conducted off Kahekili Beach Park, Maui, Hawaii, the site of the newly established U.S. Coral Reef Task Force priority study area at Kaanapali and the Hawaii Department of Land and Natural Resources, Division of Aquatic Resources, Kahekili Herbivore Fisheries Management Area (HFMA). The goals of this fieldwork are to provide new baseline information to help guide future studies and to provide first insights into rates and drivers of coastal groundwater discharge and associated constituent loadings into the priority study area's coastal waters. This study presents the first swath acoustic mapping information, in situ oceanographic instrument measurements, and coastal groundwater discharge estimates at this site based on the submarine groundwater discharge tracer radon-222 (222Rn). Coastal groundwater discharge rates ranged from about 22 to 50 centimeters per day, depending on proximity of the sampling mooring to the primary discharge vent. The water chemistry of the discharging groundwater was at times dramatically different than ambient seawater. For example, at the primary vent site at Kahekili, the concentrations of total dissolved nitrogen (TDN), dissolved silicate (DSi), and total dissolved phosphorus (TDP) in the discharging groundwater were 43.75 micromolar (μM), 583.49 μM, and 12.04 μM, respectively. These data extend our basic understanding of the morphology, benthic structure, and oceanographic setting of this vent site and provide a first estimate of the magnitude and physical forcings of submarine groundwater discharge and associated trace metals and nutrient loads here.

  9. Influence of seabird colonies and other environmental variables on benthic community structure, Lancaster Sound Region, Canadian Arctic

    Science.gov (United States)

    Bouchard Marmen, Mariève; Kenchington, Ellen; Ardyna, Mathieu; Archambault, Philippe

    2017-03-01

    The Canadian Arctic shelters millions of seabirds each year during the breeding season. By the excretion of important quantities of guano, seabirds locally concentrate nutrient-rich organic matter in the marine areas surrounding colonies. Seabirds, acting as biological vectors of nutrients, can markedly affect terrestrial ecosystems, but their influence on the structure of marine benthic communities is still under-studied. Sessile and long-lived megabenthic species can integrate environmental variation into marine food webs over long time frames. The objectives of this study were (1) to characterize the epifaunal and infaunal communities of the Lancaster Sound Region (LSR) and (2) to test the influence of the presence of seabird colonies and other environmental parameters on the structure of those benthic communities. Our prediction was that benthic diversity, number of taxa, total biomass of infauna and total density of epifauna and infauna, would be higher in areas with colonies present. Photos of the seafloor (data on epifauna) and grab samples (data on infauna) were taken at three control areas and at five areas near seabird colonies, within a depth range of 122 to 442 m. A database of 26 environmental parameters was built to study the environment-benthos relationships. Infauna, which was relatively uniform across the LSR, was numerically dominated by Annelida. Epifauna was much patchier, with each study area having unique epibenthic assemblages. Brittle stars were highly abundant in epifaunal communities, reaching 600 individuals per square meter. The presence of seabird colonies was not a major driver of benthic community structure in the LSR at the depths studied. Negative effects of colonies were detected on the density and number of taxa of infauna, perhaps due to top-down effects transmitted by the seabirds which feed in the water column and can directly reduce the quantity of food reaching the seabed. Sediment concentration of pigment, percent cover of

  10. Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Luciane A. Chimetto Tonon

    2015-02-01

    Full Text Available We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO, including St. Peter and St. Paul Archipelago (SPSPA, Abrolhos Bank (AB and the St. Sebastian region (SS, between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals, were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br. The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment and sampling site regions (SPSPA, AB and SS. Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively. On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both

  11. Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean.

    Science.gov (United States)

    Chimetto Tonon, Luciane A; Silva, Bruno Sergio de O; Moreira, Ana Paula B; Valle, Cecilia; Alves, Nelson; Cavalcanti, Giselle; Garcia, Gizele; Lopes, Rubens M; Francini-Filho, Ronaldo B; de Moura, Rodrigo L; Thompson, Cristiane C; Thompson, Fabiano L

    2015-01-01

    We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and

  12. Introduction: Invertebrate Neuropeptides XVI

    Science.gov (United States)

    This publication represents an introduction to the sixteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  13. Introduction: Invertebrate Neuropeptides XIV

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  14. Introduction: Invertebrate Neuropeptides XV

    Science.gov (United States)

    This publication represents an introduction to the fifteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide seque...

  15. Introduction: Invertebrate Neuropeptides XIII

    Science.gov (United States)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  16. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  17. Benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Nigam, R.

    (Nolet and Corliss, 1990). Differences in the abundance of oxygen-sensitive and dissolution-prone benthic foraminiferal species between the Last Glacial Maximum (LGM) and the Holocene in the abyssal waters of the southwestern Gulf of Mexico were used... (2009) Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep Sea Research Part I: Oceanographic Research Papers 56: 835-841. Culver S (1988) New foraminiferal depth zonation of the northwestern Gulf of Mexico. Palaios 3: 69...

  18. Eutrophication induced changes in benthic community structure of a flow-restricted tropical estuary (Cochin backwaters), India

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, G.D.; Nisha, P.A.; Balachandran, K.K.; Madhu, N.V.; Nair, M.; Shaiju, P.; Joseph, T.; Srinivas, K.; Gupta, G.V.M.

    stream_size 36013 stream_content_type text/plain stream_name Environ_Monit_Assess_176_427a.pdf.txt stream_source_info Environ_Monit_Assess_176_427a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... Author version: Environ. Monit. Assess., vol.176(1-4); 2011; 427-438 Eutrophication induced changes in benthic community structure of a flow-restricted tropical estuary (Cochin backwaters), India * a Martin G. D., a Nisha P. A., a Balachandran K. K...

  19. Relationships between aquatic invertebrates, water quality and vegetation in an Andean peatland system

    Directory of Open Access Journals (Sweden)

    E. Oyague Passuni

    2015-12-01

    Full Text Available Peatlands (known as bofedales in the Peruvian Andes provide important social and environmental services in the Peruvian Puna ecoregion, especially as sources of water and forage for domestic livestock. In biological terms, these peatlands are key habitats with their own community structure, dynamics and interactions; and they serve as biodiversity hotspots within the High Andes. In this article we assess the relationships between: (i physical structure, (ii water quality, (iii plant communities and (iv the assemblages of aquatic invertebrates (benthic macroinvertebrates in three peatlands located in Cuzco Region, southern Peru. The results suggest that the benthic macroinvertebrate assemblage is a good indicator of the trophic status of the small pools that are typically present in bofedales. Trophic status is, in turn, primarily related to spatial and seasonal water availability and the types of plant communities present in each peatland.

  20. Nutrient availability modifies species abundance and community structure of Fucus-associated littoral benthic fauna.

    Science.gov (United States)

    Korpinen, Samuli; Jormalainen, Veijo; Pettay, Esko

    2010-01-01

    The brown alga Fucus vesiculosus is a foundation species in the Baltic Sea littoral, hosting a rich faunal community. We compared the species composition and diversity of invertebrate macrofauna living on F. vesiculosus between sites differing in their eutrophication status and exposure to waves at three different times during a season. We determined the size, nitrogen and phlorotannin content of the alga. The invertebrate community differed substantially between sites near fish farms and those in more pristine environment. Snails and bivalves were more abundant on the Fucus stands near fish farms than on control stands, where crustaceans were more abundant. The abundance of molluscs decreased with the increasing shore exposure, while gammaridean amphipods dominated on the exposed shores. Abundance of several taxa increased during the proceeding growing season. The density of the most important herbivore of F. vesiculosus, Idotea balthica, varied 100-fold during the season being the lowest in June and the highest in August when the generation born in the summer started to feed on Fucus. Thus, the diversity and composition of Fucus-associated invertebrate fauna varies both with environmental conditions of the stand and seasonally. Although the negative effects of eutrophication on distribution and abundance of Fucus stands are well documented, a moderate increase of nutrients was found to increase the species richness of Fucus-associated fauna in early summer.

  1. Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, U.S.A., and fed artificially contaminated Artemia

    Science.gov (United States)

    Farag, A.M.; Suedkamp, M.J.; Meyer, J.S.; Barrows, R.; Woodward, D.F.

    2000-01-01

    The concentrations of essential amino acids in three, undigested invertebrate diets collected from the Clark Fork River (CFR) for cutthroat trout were similar to each other, but were c. 25–75% less than Artemia that were exposed to a mixture of arsenic, copper, cadmium, lead and zinc in the laboratory. The Artemia diet appeared less palatable and the texture, quantity and appearance of the intestinal contents differed between fish fed the Artemia and CFR diets. The Pb% in the fluid fraction of the intestinal contents was greater for the Artemia (29%) than for the CFR diets (10–17%), and the Cu% in the amino acid plus metal fraction of the intestinal contents was greater for the Artemia (78%) than for two of the three CFR diets (67% and 70%). Intestinal contents of fish fed invertebrate diets collected from various sites on the Coeur d'Alene River (CDA), Idaho, were similar in texture, quantity, and appearance. For fish fed the CDA diets, differences in the distribution of metals among fractions of the digestive fluids appeared to be related to concentrations of metals in the invertebrate diets. Pb% was lowest of all metals in the fluid portion of the intestinal contents. However, >80% of all metals in the hind gut were associated with the particulate fraction where they may still be available for uptake through pinocytosis.

  2. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  3. Abundance, population structure and production of macro-invertebrate shredders in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia

    Science.gov (United States)

    Casagranda, Caterina; Dridi, Mohamed Sadok; Boudouresque, Charles François

    2006-02-01

    Abundance, population structure and production of the macro-invertebrates belonging to the functional feeding group of the shredders were studied in the Ichkeul wetland, northern Tunisia, from July 1993 to April 1994. Mean above-ground macrophyte biomass was at a maximum in September followed by a complete breakdown of the Potamogeton pectinatus L. meadow from October onward due to high salinity following an exceptionally dry winter. Only the meadow of Ruppia cirrhosa (Petagna) Grande at Tinja remained in place. Abundance of Gammarus aequicauda (Martynov 1931), Idotea chelipes (Pallas 1766) and Sphaeroma hookeri Leach 1814 was significantly related to the R. cirrhosa biomass. Gammarus aequicauda presented two recruitment periods in spring and autumn, and S. hookeri a third one in winter. The population of I. chelipes was renewed during winter by continued reproduction without any spring generation. Recruitment of all three species was not very successful during the study period. Life span of all three species was between 12 and 15 months. Despite their relatively low biomass and production rate, the shredders have a key function in processing macrophyte matter to different trophic levels through fragmentation and accelerating the decomposition of macrophyte biomass accumulated at the end of the growth season in the Ichkeul lagoon.

  4. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    Science.gov (United States)

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  5. Thermal analysis and structural characterization of chitinous exoskeleton from two marine invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-de la Rosa, B.A., E-mail: balej05@yahoo.com.mx [Laboratory of Natural Polymers, CIAD – Coordinación Guaymas, Carretera al Varadero Nacional km. 6.6, Col. Las Playitas, 85480 Guaymas, Sonora (Mexico); Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); May-Crespo, J.; Quintana-Owen, P.; Gónzalez-Gómez, W.S. [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico); Yañez-Limón, J.M. [Materials and Engineering Science, CINVESTAV-IPN, Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Querétaro, Querétaro (Mexico); Alvarado-Gil, J.J., E-mail: jjag@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Unidad Mérida, Carretera antigua a Progreso, km. 6. Apdo, Postal 73, Cordemex, 97310 Mérida, Yucatan (Mexico)

    2015-06-20

    Highlights: • Thermal analysis of exoskeletons: Antipathes caribbeana and Limulus polyphemus. • DMTA revealed Limulus has a stronger structure with a stepper glass transition. • DSC measurements exhibited a much larger water holding capacity in Antipathes. • X-ray diffraction analysis shows a higher crystallinity index in Limulus • FTIR showed α-chitin structures and high temperature C–N groups prevalence. - ABSTRACT: Thermomechanical and structural properties of two marine species exoskeletons, Antipathes caribbeana (black coral) and Limulus polyphemus (xiphosure), were studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). DMTA curves indicate the viscoelastic behavior and glass transition around 255 °C, black coral presented a second transition (175 °C) associated to the acetamide group attached to the α-chitin chain. DSC measurements showed a endothermic peak around 100 °C, with enthalpies of 4.02 and 118.04 J/g, indicating strong differences between exoskeletons respect to their water holding capacity and strength water–polymer interaction. A comparative analysis involving DSC and X-ray diffraction showed that lower values ΔH in xiphosure correspond to a material with a higher crystallinity (30), in contrast black coral exhibits higher values ΔH and a lower crystallinity (19). FTIR confirmed α-chitin based structure, at higher temperature diminishes the amide bands and a new one appears, related to C–N groups.

  6. Relationships between benthic macroinvertebrate community structure and geospatial habitat, in-stream water chemistry, and surfactants in the effluent-dominated Trinity River, Texas, USA.

    Science.gov (United States)

    Slye, Jaime L; Kennedy, James H; Johnson, David R; Atkinson, Sam F; Dyer, Scott D; Ciarlo, Michael; Stanton, Kathleen; Sanderson, Hans; Nielsen, Allen M; Price, Bradford B

    2011-05-01

    Over the past 20 years, benthic macroinvertebrate community structure studies have been conducted on the upper Trinity River, Texas, USA, which is dominated by municipal wastewater treatment plant (WWTP) and industrial effluents. The Trinity River is located in the Dallas-Fort Worth metropolitan area, and is the most highly populated and industrialized watershed in Texas. As such, the Trinity River represents a near-worst-case scenario to examine the environmental effects of domestic-municipal and industrial effluents on aquatic life. A 1987 to 1988 study concluded that many stretches of the river supported a diverse benthic community structure; however, a decline in taxa richness occurred immediately downstream of WWTPs. A 2005 study designed to parallel the 1987 to 1988 efforts evaluated how changes in water quality, habitat, and increased urbanization impacted benthic community structure. Physicochemical measurements, habitat quality, geospatial variables, and benthic macroinvertebrates were collected from 10 sites. Surfactants were measured and toxic units (TUs) were calculated for surface water and pore water as indicators of domestic/household use of cleaning products. Total TUs indicated a low potential for biological impacts. Toxic unit distribution was not dependent on WWTP location and did not correlate with any benthic variable. Eight environmental parameters were determined to be useful for predicting changes in benthic macroinvertebrate community structure: surfactant surface water TUs (SWTU), in-stream habitat cover, and surface water total organic carbon were the top three parameters. Abundance, taxa richness, and taxa similarity in 2005 had increased since the earlier study throughout the immediate vicinity of the metropolitan area.

  7. Vicariance and dispersal effects on phylogeographic structure and speciation in a widespread estuarine invertebrate.

    Science.gov (United States)

    Kelly, David W; MacIsaac, Hugh J; Heath, Daniel D

    2006-02-01

    Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat

  8. Caracterización preliminar de los invertebrados bentónicos capturados accidentalmente en la pesca de camarones en el norte del estado de Río de Janeiro, sudeste de Brasil Preliminary characterization of benthic invertebrates caught as by-catch in the shrimp fishery in the north of the Rio de Janeiro State, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Igor David da Costa

    2009-01-01

    Full Text Available Para caracterizar la biodiversidad de invertebrados bentónicos que componen la fauna asociada a la pesca de camarones en el puerto del Farol de Sao Thomé, costa norte del estado de Río de Janeiro, se realizaron 11 pescas mensuales en el año 2004 con redes de arrastre de fondo, cuya área de operaciones comprende 3-5 mn desde la línea de costa, entre 22°00'S y 22°20'S. Los datos registrados de cada taxon y/o especie se refieren a la frecuencia de ocurrencia, frecuencia numérica, biomasa, índice de Importancia Relativa y abundancia. En total se registraron 27 especies de invertebrados bentónicos de Porifera, Cnidaria, Mollusca, Annelida, Crustácea, Echinodermata y Bryozoa. Crustácea fue el más representativo, tanto en número de ejemplares de Petrochirus diogenes, Hepatus pudibundus y Callinectes ornatos, como en biomasa de P. diogenes y H. pudibundas. En términos de frecuencia de ocurrencia en los muéstreos, 11 especies (40,7% fueron constantes; 6 (22,2% accesorias y 10 (37,0% accidentales.In order to characterize the biodiversity of the benthic invertebrate by-catch associated with the shrimp fishery at Farol de Sao Thome harbor, northern Rio de Janeiro State, Brazil, in 2004, 11 monthly trawls were conducted using bottom trawl nets between 22°00'S and 22°20'S and from 3 to 5 nm from the shoreline. The analyzed data for each talon and/or species include frequency of occurrence, numeric frequency, biomass, index of Relative Importance, and abundance. In total, 27 benthic invertebrate species were recorded, including Peripheral, Cnidarians, Mollusk, Annelid, Crustacea, Echinodermata, and Bryozoa. The most representative group was Crustacea, both in number of specimens (Petrochirus diogenes, Hepatus pudibundus, Callinectes ornatus and in biomass (P. diogenes, H. pudibundus. In terms of the frequency of occurrence in the samples, 11 species (40.7% were constant, 6 species (22.2% were accessories, and 10 species (37.0% were by-catch.

  9. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    Science.gov (United States)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  10. Hydrologic variability enhances stream biofilm grazing by invertebrates

    Science.gov (United States)

    Ceola, S.; Hödl, I.; Adlboller, M.; Singer, G.; Bertuzzo, E.; Mari, L.; Botter, G.; Battin, T. J.; Gatto, M.; Rinaldo, A.

    2012-12-01

    The temporal variability of streamflows is a key feature structuring and controlling ecological communities and ecosystem processes. The magnitude, frequency and predictability of streamflows, and thus of velocity and near-bed shear stress fields, control structure and function of benthic invertebrates and biofilms - attached and matrix-enclosed microbial communities at the base of the food chain. Although alterations of streamflow regime due to climate change, habitat fragmentation or other anthropogenic factors are ubiquitous, their ecological implications remain poorly understood. Here, by experimenting with two contrasting flow regimes in stream microcosms, we show how flow variability affects invertebrate grazing of phototrophic biofilms (i.e. periphyton). In both flow regimes, we manipulated light availability as a key control on biofilm algal productivity and grazer activity, thereby allowing the test of flow regime effects across various biofilm biomass to grazing activity ratios. Average grazing rates were significantly enhanced under variable flow conditions and highest at intermediate light availability. Our results suggest that stochastic flow regime offers increased opportunity for grazing under more favorable shear stress conditions, with implications for trophic carbon transfer in stream food webs.

  11. Pacific Remote Islands MNM: Initial Survey Instructions for Benthic Marine Cryptobiota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the survey is to expand knowledge of the biodiversity of benthic marine invertebrates that are poorly known and are generally not identified in more...

  12. Preservation of benthic foraminifera and reliability of deep-sea temperature records: Importance of sedimentation rates, lithology, and the need to examine test wall structure

    Science.gov (United States)

    Sexton, Philip F.; Wilson, Paul A.

    2009-06-01

    Preservation of planktic foraminiferal calcite has received widespread attention in recent years, but the taphonomy of benthic foraminiferal calcite and its influence on the deep-sea palaeotemperature record have gone comparatively unreported. Numerical modeling indicates that the carbonate recrystallization histories of deep-sea sections are dominated by events in their early burial history, meaning that the degree of exchange between sediments and pore fluids during the early postburial phase holds the key to determining the palaeotemperature significance of diagenetic alteration of benthic foraminifera. Postburial sedimentation rate and lithology are likely to be important determinants of the paleoceanographic significance of this sediment-pore fluid interaction. Here we report an investigation of the impact of extreme change in sedimentation rate (a prolonged and widespread Upper Cretaceous hiatus in the North Atlantic Ocean) on the preservation and δ18O of benthic foraminifera of Middle Cretaceous age (nannofossil zone NC10, uppermost Albian/lowermost Cenomanian, ˜99 Ma ago) from multiple drill sites. At sites where this hiatus immediately overlies NC10, benthic foraminifera appear to display at least moderate preservation of the whole test. However, on closer inspection, these tests are shown to be extremely poorly preserved internally and yield δ18O values substantially higher than those from contemporaneous better preserved benthic foraminifera at sites without an immediately overlying hiatus. These high δ18O values are interpreted to indicate alteration close to the seafloor in cooler waters during the Late Cretaceous hiatus. Intersite differences in lithology modulate the diagenetic impact of this extreme change in sedimentation rate. Our results highlight the importance of thorough examination of benthic foraminiferal wall structures and lend support to the view that sedimentation rate and lithology are key factors controlling the paleoceanographic

  13. Colonization of benthic organisms on different artificial substratum in Ilha Grande bay, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Azevedo Flávia Beatriz Beserra

    2006-01-01

    Full Text Available The aim of this work was to evaluate the influence of three different types of artificial substrates - concrete, metal and rubber - on the colonization of benthic organisms, using a structure called Multiple Disc Sampling Apparatus or MDSA. The results confirmed the hypothesis that the communities of incrusting invertebrates have preferences in relation to the type and orientation of the substratum to be colonized. Concrete and rubber, rougher surfaces, were more attractive to the organisms than the metal used. The orientation also had big influence because of the sedimentation that probably acted on the superior face of the materials, hindered the colonization.

  14. Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat

    Science.gov (United States)

    Agatz, M.; Asmus, R. M.; Deventer, B.

    1999-11-01

    In the mud- and sandflat region of the outer Königshafen off List on Sylt, the effects of the outflow from a sewage treatment plant on the benthic diatom flora were investigated. The spectrum of shapes, biomass, and diversity was determined in relation to the concentrations of phosphate, silicate, and nitrogen compounds in the overlying and pore water. The biomass increased with the available quantities of nutrients, while the diversity reached a maximum at the intermediate concentrations. Every different set of nutrient concentrations is characterized by a different diatom community. Slight inputs of nutrients led to changes in the relative abundances of forms typical of the habitat. Moderate concentrations permitted the species that are normally present in winter to occur in summer as well. In the strongly eutrophic region, nutrient-loving species that are not locally present under normal conditions formed nearly monospecific populations. A relatively constant input of nutrients almost eliminated the seasonal variations. Navicula gregaria, Nitzschia sigma, and Nitzschia tryblionella proved to be tolerant of pollution, while the genera Achnanthes and Amphora were typical in the nutrient-poor regions. The nutrient budget, particularly that of the nitrogen compounds, was found to be predominant among the physical and chemical factors.

  15. Local structuring factors of invertebrate communities in ephemeral freshwater rock pools and the influence of more permanent water bodies in the region

    Science.gov (United States)

    Jocque, M.; Graham, T.; Brendonck, L.

    2007-01-01

    We used three isolated clusters of small ephemeral rock pools on a sandstone flat in Utah to test the importance of local structuring processes on aquatic invertebrate communities. In the three clusters we characterized all ephemeral rock pools (total: 27) for their morphometry, and monitored their water quality, hydrology and community assemblage during a full hydrocycle. In each cluster we also sampled a set of more permanent interconnected freshwater systems positioned in a wash, draining the water from each cluster of rock pools. This design allowed additional testing for the potential role of more permanent water bodies in the region as source populations for the active dispersers and the effect on the community structure in the rock pools. Species richness and community composition in the rock pools correlated with level of permanence and the ammonia concentration. The length of the rock pool inundation cycle shaped community structure, most probably by inhibiting colonization by some taxa (e.g. tadpoles and insect larvae) through developmental constraints. The gradient in ammonia concentrations probably reflects differences in primary production. The more permanent water bodies in each wash differed both environmentally and in community composition from the connected set of rock pools. A limited set of active dispersers was observed in the rock pools. Our findings indicate that aquatic invertebrate communities in the ephemeral rock pools are mainly structured through habitat permanence, possibly linked with biotic interactions and primary production. ?? 2007 Springer Science+Business Media B.V.

  16. The effect of a biologically produced structure on the benthic copepods of a deep-sea site

    Science.gov (United States)

    Thistle, David; Eckman, James E.

    1990-04-01

    In deep-sea soft bottoms, a variety of organisms produce structures that persist for long periods, even after the structures are vacated. It has been hypothesized that these structures are a major source of patchiness in these communities and are important in maintaining the high diversities that characterize the deep sea. Although several studies have shown species' abundances to be correlated with structures, the mechanisms underlying the associations are not known. We attempted to discover these mechanisms, focusing on the responses of benthic copepods to mudballs made by the polychaete Tharyx luticastellus at a site at 1050 m depth in San Diego Trough (32° 52.4'N, 117°45.5'W). It was found that seven out of 40 species responded. Four were more abundant around the structure only when the worm was in residence. These species apparently benefit from some consequences of the worm's presence. Given that bacterial abundance is higher about occupied Tharyx mudballs than nearby controls, it may be that the attractiveness occupied Tharyx mudballs arises from the provision of food. Three species responded to unoccupied mudballs. We measured responses to various types of mudball mimics to determine whether responses were to a habitat provided by the mudball, to a refuge from predation in its vicinity, or to hydrodynamically mediated increases in local food availability. Two of the species appeared to use the mudball as a habitat, the third as a refuge from infaunal predators. The results indicate that biologically produced structures can persist long enough to be viewed as habitat heterogeneity by other species in the community and that this source of patchiness is important to deep-sea species.

  17. Benthic community structure and biomarker responses of the clam Scrobicularia plana in a shallow tidal creek affected by fish farm effluents (Rio San Pedro, SW Spain).

    Science.gov (United States)

    Silva, Claudio; Mattioli, Mattia; Fabbri, Elena; Yáñez, Eleuterio; Delvalls, T Angel; Martín-Díaz, M Laura

    2012-10-15

    The effects of solid organic wastes from a marine fish farm on sediments were tested using benthic community as ecological indicators and biomarkers in native clam (Scrobicularia plana) as biochemical indicators. The benthic fauna and clam samples were collected in the intertidal sediment in October 2010 from five sites of the Rio San Pedro (RSP) creek, following a gradient of contamination from the aquaculture effluent to the control site. Numbers of species, abundance, richness and Shannon diversity were the biodiversity indicators measured in benthic fauna. Morphological and reproduction status of clams were assessed using the condition factor and gonado-somatic index, respectively. Phase I and Phase II detoxification enzymatic activities (ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST)), antioxidant enzymatic activities (glutathione peroxidase (GPX), glutathione reductase (GR)) and oxidative stress parameters (Lipid Peroxidation (LPO) and DNA strand breaks) were measured in clams' digestive gland tissues. In parallel, temperature and salinity in the adjacent water, redox potential, pH and organic matter in sediment, and dissolved oxygen in the interstitial water were measured. The results suggested that RSP showed a spatial gradient characterised by hypoxia/anoxia, reduced potential, acidic conditions and high organic enrichment in sediments at the most contaminated sites. Significant (pbiodiversity indicators were observed in the areas impacted by the aquaculture discharges. Biomarkers did not show a clear pattern and of all biochemical responses tested, GPX, DNA damage and LPO were the most sensitive ones and showed significant (ppolluted sites. Benthic biodiversity indicators were significantly (pchanges of the benthic population structure and health status of the exposed organisms.

  18. Tumors in invertebrates

    Directory of Open Access Journals (Sweden)

    F Tascedda

    2014-06-01

    Full Text Available Tumors are ectopic masses of tissue formed by due to an abnormal cell proliferation. In this review tumors of several invertebrate species are examined. The description of tumors in invertebrates may be a difficult task, because the pathologists are usually inexperienced with invertebrate tissues, and the experts in invertebrate biology are not familiar with the description of tumors. As a consequence, the terminology used in defining the tumor type is related to that used in mammalian pathology, which can create misunderstandings in some occasions.

  19. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure

    OpenAIRE

    Louati, H.; Ben Said, O.; A. Soltani; Got, P; Mahmoudi, E.; Cravo-Laureau, C.; Duran, R.; Aissa, P.; Pringault, Olivier

    2013-01-01

    Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30...

  20. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    Science.gov (United States)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  1. In situ effects of titanium dioxide nanoparticles on community structure of freshwater benthic macroinvertebrates.

    Science.gov (United States)

    Jovanović, Boris; Milošević, Djuradj; Piperac, Milica Stojković; Savić, Ana

    2016-06-01

    For the first time in the current literature, the effect of titanium dioxide (TiO2) nanoparticles on the community structure of macroinvertebrates has been investigated in situ. Macroinvertebrates were exposed for 100 days to an environmentally relevant concentration of TiO2 nanoparticles, 25 mg kg(-1) in sediment. Czekanowski's index was 0.61, meaning 39% of the macroinvertebrate community structure was affected by the TiO2 treatment. Non-metric multidimensional scaling (NMDS) visualized the qualitative and quantitative variability of macroinvertebrates at the community level among all samples. A distance-based permutational multivariate analysis of variance (PERMANOVA) revealed the significant effect of TiO2 on the macroinvertebrate community structure. The indicator value analysis showed that the relative frequency and abundance of Planorbarius corneus and Radix labiata were significantly lower in the TiO2 treatment than in the control. Meanwhile, Ceratopogonidae, showed a significantly higher relative frequency and abundance in the TiO2 treatment than in the control.

  2. Structures of benthic prokaryotic communities and their hydrolytic enzyme activities resuspended from samples of intertidal mudflats: An experimental approach

    Science.gov (United States)

    Mallet, Clarisse; Agogué, Hélène; Bonnemoy, Frédérique; Guizien, Katell; Orvain, Francis; Dupuy, Christine

    2014-09-01

    Resuspended sediment can increase plankton biomass and the growth of bacteria, thus influencing the coastal planktonic microbial food web. But little is known about resuspension itself: is it a single massive change or a whole series of events and how does it affect the quantity and quality of resuspended prokaryotic cells? We simulated the sequential erosion of mud cores to better understand the fate and role of benthic prokaryotes resuspended in the water column. We analyzed the total, attached and free-living prokaryotic cells resuspended, their structure and the activities of their hydrolytic enzymes in terms of the biotic and abiotic factors that affect the composition of microphytobenthic biofilm. Free living prokaryotes were resuspended during the fluff layer erosion phase (for shear velocities below 5 cm · s- 1) regardless of the bed sediment composition. At the higher shear velocities, resuspended prokaryotes were attached to particulate matter. Free and attached cells are thus unevenly distributed, scattered throughout the organic matter (OM) in the uppermost mm of the sediment. Only 10-27% of the total cells initially resuspended were living and most of the Bacteria were Cyanobacteria and Gamma-proteobacteria; their numbers increased to over 30% in parallel with the hydrolytic enzyme activity at highest shear velocity. These conditions released prokaryotic cells having different functions that lie deep in the sediment; the most important of them are Archaea. Finally, composition of resuspended bacterial populations varied with resuspension intensity, and intense resuspension events boosted the microbial dynamics and enzyme activities in the bottom layers of sea water.

  3. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  4. The Expansion of Dreissena and Long-term Shifts in Benthic Macroinvertebrate Community Structure in Lake Ontario, 1998-2008

    Science.gov (United States)

    The introduction of Dreissena to the Great lakes has profoundly impacted benthic ecosystems, resulting in the decline of native species and dramatic community restructuring. In Lake Ontario, long-term monitoring has yielded a wealth of detailed information regarding both the exp...

  5. Status and trends in the structure of Arctic benthic food webs

    Directory of Open Access Journals (Sweden)

    Monika Kędra

    2015-05-01

    Full Text Available Ongoing climate warming is causing a dramatic loss of sea ice in the Arctic Ocean, and it is projected that the Arctic Ocean will become seasonally ice-free by 2040. Many studies of local Arctic food webs now exist, and with this review paper we aim to synthesize these into a large-scale assessment of the current status of knowledge on the structure of various Arctic marine food webs and their response to climate change, and to sea-ice retreat in particular. Key drivers of ecosystem change and potential consequences for ecosystem functioning and Arctic marine food webs are identified along the sea-ice gradient, with special emphasis on the following regions: seasonally ice-free Barents and Chukchi seas, loose ice pack zone of the Polar Front and Marginal Ice Zone, and permanently sea-ice covered High Arctic. Finally, we identify knowledge gaps in different Arctic marine food webs and provide recommendations for future studies.

  6. Evaluation of Environmental Factors to Determine the Distribution of Functional Feeding Groups of Benthic Macroinvertebrates Using an Artificial Neural Network

    NARCIS (Netherlands)

    Verdonschot, P.F.M.

    2008-01-01

    Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of

  7. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates

    NARCIS (Netherlands)

    Sidney, L.A.; Diepens, N.J.; Guo, X.; Koelmans, A.A.

    2016-01-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We us

  8. Habitat variation and life history strategies of benthic invertebrates

    NARCIS (Netherlands)

    Franken, R.J.M.

    2008-01-01

    The thesis considers two key aspects of lotic freshwater ecosystems, the physical microhabitat and organic matter dynamics. The first part focuses on the indirect effects of light and riparian canopy cover on shredder growth and productivity through the effect on the nutritional quality of the food

  9. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    Science.gov (United States)

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests.

  10. Benthic fauna of extremely acidic lakes (pH 2-3)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G.G.

    2001-07-01

    The structure of the benthic invertebrate communities were investigated in terms of composition, abundance, and biomass from extremely acidic lakes with pH values from 2 to 3 in areas where coal was intensively mined in the Lusatian region in the eastern region of Germany. Benthic invertebrates colonisation on leaves and the breakdown rate processing of the three deciduous leaf: Betula pendula (birch), Fraxinus excelsior (ash), and Juglans regia (walnut) were investigated. Also, the main key-species of these acidic environments were investigated, in terms of description of pupal exuviae of Chironomus crassimanus and the feeding habit of this acid-resistant species through analysis of their gut content. The benthic food web in extremely acidic mining Lusatian lakes is very short in terms of species richness, trophic relationship, guilds and functional feeding groups. Collector-filters and scraper-grazers were absent in extremely acidic mining lakes (AML 107, AML 111 and AML 117). Shredders as Limnophyes minimus (Diptera, Chironomidae, Orthocladiinae) and Hydrozetes lacustris (Acari, Hydrozetidae) occurred in low abundance in AML 107 and AML 111, and it may be in response to slow leaf breakdown process in these ecosystems, except in AML 117 where the H. lacustris contributed most to ecosystems functioning via the processing of litter. Aquatic insects as Sialis lutaria (Megaloptera, Sialidae), Orectochilus villosus (Coleoptera, Gyrinidae), Coenagrion mercuriale (Odonata, Coenagrionidae), and Phryganeidae (Trichoptera) are the top-predators of these ecosystems. They did not depend on the level of pH in the lakes, but on the availability of food resources. (orig.)

  11. Effects of neonicotinoids and fipronil on non-target invertebrates.

    Science.gov (United States)

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    -scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.

  12. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera)

    Energy Technology Data Exchange (ETDEWEB)

    Henrikson, B.-I. (Dept. of Zoology, Sect. of Animal Ecology, Univ. of Goeteborg, Goeteborg (Sweden))

    1993-01-01

    The increase of peat mosses, Sphagnum spp., in acidified lakes leads to a changed microhabitat structure for benthic invertebrates. The importance of this change was investigated for some benthic invertebrates. Comparisons between quantitative samples of Sphagnum and debris within the acidified Lake Stora Haestevatten, in the Lake Gaardsjoen catchment of SW Sweden, showed significantly higher abundances of Chironomidae, Ceratopogonidae, Odonata, Trichoptera, Cladocera and Argyroneta aquatica (Araneae) in Sphagnum. For chironomidae and Cladocera the differences were tenfold. Special reference was made to the libellulid Leucorrhinia dubia which is common in acid lakes. In a laboratory test, late instar larvae of L. dubia were shown to change colour to correspond to the brown and green colour of Sphagnum. This result was completed with a field test where larvae of L. dubia were significantly more common in Sphagnum of the same colour as the larvae. The ability to change colour may have an adaptive value when coexisting with visual predators. Small larvae were more prevalent in Sphagnum and they also showed a preference for this substrate in the laboratory test. Laboratory tests showed mediumsized larvae preferred Sphagnum. Larvae of L. dubia were more successful as predators on Asellus aquaticus in Sphagnum substrate than in debris in the laboratory test. Laboratory predation tests with notonecta glauca, Corixa dentipes, Acilius sulcatus, Hyphydrus ovatus and L. dubia showed that they could all feed on larvae of L. dubia. The complex habitat structure of Sphagnum is probably the reason for the high abundance of invertebrates since it may serve as both shelter against predation and as foraging sites. it is probably important as a key habitat for young instars of, for example, L. dubia. In lakes with large Sphagnum mats, L. dubia can coexist with fish. The expansion of Sphagnum due to acidification will probably benefit many acid-tolerant invertebrate species. (au)

  13. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  14. Invertebrate distribution patterns and river typology for the implementation of the water framework directive in Martinique, French Lesser Antilles

    Directory of Open Access Journals (Sweden)

    Bernadet C.

    2013-03-01

    Full Text Available Over the past decade, Europe’s Water Framework Directive provided compelling reasons for developing tools for the biological assessment of freshwater ecosystem health in member States. Yet, the lack of published study for Europe’s overseas regions reflects minimal knowledge of the distribution patterns of aquatic species in Community’s outermost areas. Benthic invertebrates (84 taxa and land-cover, physical habitat and water chemistry descriptors (26 variables were recorded at fifty-one stations in Martinique, French Lesser Antilles. Canonical Correspondence Analysis and Ward’s algorithm were used to bring out patterns in community structure in relation to environmental conditions, and variation partitioning was used to specify the influence of geomorphology and anthropogenic disturbance on invertebrate communities. Species richness decreased from headwater to lowland streams, and species composition changed from northern to southern areas. The proportion of variation explained by geomorphological variables was globally higher than that explained by anthropogenic variables. Geomorphology and land cover played key roles in delineating ecological sub-regions for the freshwater biota. Despite this and the small surface area of Martinique (1080 km2, invertebrate communities showed a clear spatial turnover in composition and biological traits (e.g., insects, crustaceans and molluscs in relation to natural conditions.

  15. Benthic macrofauna variations and community structure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England

    DEFF Research Database (Denmark)

    Lauridsen, Bodil Wesenberg; Gale, A. S.; Surlyk, Finn

    2009-01-01

    Cenomanian chalk-marl couplets from England represent the 20 ka Milankovitch precession cycle. Fossil communities from both chalk and marl are identified to test if the orbital fluctuations and the associated changes in substrate lithology and climate exerted any control on the benthic macrofauna...... adapted to both facies and thus to the fine grain size of the substrate rather than to lithology. The systematic difference in diversity between chalk and marl samples was possibly caused by long-term climatic and oceanographic changes and thus could represent a biological response to Milankovitch...

  16. Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates

    DEFF Research Database (Denmark)

    Ramskov, Tina; Forbes, Valery E; Gilliland, Douglas;

    2015-01-01

    are in high demand. Here, we examine the effects of exposure to sediment mixed with either aqueous Ag (administered as AgNO3) or Ag NPs (13 nm, citrate-capped) at a nominal exposure concentration of 100 μg Ag/g dry weight sediment on four benthic invertebrates: two clones of the gastropod Potamopyrgus...

  17. Hawaii ESI: INVERTPT (Invertebrate Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for native stream invertebrates, anchialine pool invertebrates, and threatened/endangered terrestrial...

  18. Invasive dreissenid mussels and round gobies: a benthic pathway for the trophic transfer of microcystin.

    Science.gov (United States)

    Poste, Amanda E; Ozersky, Ted

    2013-09-01

    In the present preliminary study, the authors identify 2 pathways through which invasive dreissenid mussels can transfer microcystin to higher trophic levels: either directly, through consumption by benthivorous fish such as the round goby; or indirectly, through their biodeposits, which are an important food source for benthic invertebrates. The results suggest that dreissenid mussels represent a potentially important benthic pathway for the food web transfer of microcystin.

  19. Nitrogen dose-response relationships: benthic algae and macroinvertebrates in running water

    OpenAIRE

    R Wright; Eriksen, T.; Schneider, S.

    2013-01-01

    Nitrogen deposition affects freshwater biodiversity in two ways: by contributing to acidification via nitrate in runoff, and by acting as a nutrient. We used data for two organism groups, benthic algae (224 sites) and benthic invertebrates (62 sites), to test if N as a nutrient affects the species numbers of these groups in running water. Neither of these groups showed significant relationships with nitrogen, except for a positive relationship between nitrate concentration and the number of b...

  20. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Science.gov (United States)

    Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon

    2016-01-01

    Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  1. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Directory of Open Access Journals (Sweden)

    Rachel D Simons

    Full Text Available Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  2. Relative influence of chemical and non-chemical stressors on invertebrate communities: a case study in the Danube River.

    Science.gov (United States)

    Rico, Andreu; Van den Brink, Paul J; Leitner, Patrick; Graf, Wolfram; Focks, Andreas

    2016-11-15

    A key challenge for the ecological risk assessment of chemicals has been to evaluate the relative contribution of chemical pollution to the variability observed in biological communities, as well as to identify multiple stressor groups. In this study we evaluated the toxic pressure exerted by >200 contaminants to benthic macroinvertebrates in the Danube River using the Toxic Unit approach. Furthermore, we evaluated correlations between several stressors (chemical and non-chemical) and biological indices commonly used for the ecological status assessment of aquatic ecosystems. We also performed several variation partitioning analyses to evaluate the relative contribution of contaminants and other abiotic parameters (i.e. habitat characteristics, hydromorphological alterations, water quality parameters) to the structural and biological trait variation of the invertebrate community. The results of this study show that most biological indices significantly correlate to parameters related to habitat and physico-chemical conditions, but showed limited correlation with the calculated toxic pressure. The calculated toxic pressure, however, showed little variation between sampling sites, which complicates the identification of pollution-induced effects. The results of this study show that the variation in the structure and trait composition of the invertebrate community are mainly explained by habitat and water quality parameters, whereas hydromorphological alterations play a less important role. Among the water quality parameters, physico-chemical parameters such as suspended solids, nutrients or dissolved oxygen explained a larger part of the variation in the invertebrate community as compared to metals or organic contaminants. Significant correlations exist between some physico-chemical measurements (e.g. nutrients) and some chemical classes (i.e. pharmaceuticals, chemicals related to human presence) which constitute important multiple stressor groups. This study

  3. Abundance and Diversity of Crypto- and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages

    Science.gov (United States)

    Thiriet, Pierre D.; Cheminée, Adrien; Guidetti, Paolo; Bianchimani, Olivier; Basthard-Bogain, Solène; Cottalorda, Jean-Michel; Arceo, Hazel; Moranta, Joan; Lejeune, Pierre; Francour, Patrice; Mangialajo, Luisa

    2016-01-01

    In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called ‘Cystoseira forests’, are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the ‘hard to spot’ CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery

  4. Benthic community structure and composition in sediment from the northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Strom, Douglas G.

    2012-01-01

    From April 20 through July 15, 2010, approximately 4.93 million barrels of crude oil spilled into the Gulf of Mexico from the British Petroleum Macondo-1 well, representing the largest spill in U.S. waters. Baseline benthic community conditions were assessed from shoreline sediment samples collected from 56 stations within the swash zone (for example, sample depth ranged from 0 to 1.5 feet) along the northern Gulf of Mexico coastline. These sites were selected because they had a high probability of being impacted by the oil. Cores collected at 24 stations contained no sediment infauna. Benthic community metrics varied greatly among the remaining stations. Mississippi stations had the highest mean abundances (38.9 ± 23.9 individuals per 32 square centimeters (cm2); range: 0 to 186), while Texas had the lowest abundances, 4.9 ± 3 individuals per 32 cm2 (range: 0 to 25). Dominant phyla included Annelida, Arthropoda, and Mollusca, but proportional contributions of each group varied by State. Diversity indices Margalef's richness (d) and Shannon-Wiener diversity (H') were highest at Louisiana and Mississippi stations (0.4 and 0.4, for both, respectively) and lowest at Texas (values for both indices were 0.1 ± 0.1). Evenness (J') was low for all the States, ranging from 0.2 to 0.3, indicating a high degree of patchiness at these sites. Across stations within a State, average similarity ranged from 11.1 percent (Mississippi) to 41.1 percent (Louisiana). Low within-state similarity may be a consequence of differing habitat and physical environment conditions. Results provide necessary baseline information that will facilitate future comparisons with post-spill community metrics.

  5. The role of epibenthic predators in structuring the marine invertebrate community of a British coastal salt marsh

    Science.gov (United States)

    Frid, C. L. J.; James, R.

    The marine fauna of salt marshes are subjected to predation by birds, tidally feeding flatfish, crabs, prawns and small gobiid fish. The role of these epibenthic predators in structuring the community was investigated using cages to exclude predators. A range of designs of cages and partial cages was employed to control for artefacts due to caging, and sufficient cages were employed so that each cage was only sampled once to prevent the compounding of disturbance due to predation and sampling. Two mesh sizes were employed, a fine mesh excluding epibenthic predators and a coarse mesh allowing access by small crabs, prawns and gobiid fish but excluding birds and larger fish. The exclusion was maintained for 2 years. The presence of any experimental structure had a significant effect on the sedimentary regime within the cage. Epibentic predator exclusion let to an increase in infaunal predator density, but had no significant effect on the infaunal deposit feeders. There was some evidence that predators limit the surface deposit feeding gastropood Hydrobia ulvae during the winter. The gastropod Littorina littorea responded positively to the presence of any caging structure; this may be the result of changes in the availability of food, as the sides of a cage support a diatom flora which this species can exploit. The lack of a response from the infaunal deposit feeders is attributed to their horizontal mobility within the sediment. The possible interactions between epibenthic and infaunal predators are discussed.

  6. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.

    Science.gov (United States)

    Murray, Fiona; Widdicombe, Stephen; McNeill, C Louise; Solan, Martin

    2013-08-30

    Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning.

  7. How does predation from fish influence the benthic invertebrates’ species composition in the Phragmites australis and Chara vegetation of Lake Takern?

    OpenAIRE

    Aigbavbiere, Ernest

    2011-01-01

    Predation is one of the important selective factors that regulate the species composition of benthic invertebrate communities. The study objective was to investigate the invertebrate distribution in two contrasting habitats in Lake Takern, southern Sweden, submerged Chara vegetation and emergent Phragmites australis vegetation, and to investigate the influence of predation from fish on certain invertebrates. Laboratory studies were used to estimate handling time and the intake rate (mg/sec) b...

  8. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal......-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen...... that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen....

  9. Invertebrate models of alcoholism.

    Science.gov (United States)

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  10. Using invertebrate remains and pigments in the sediment to infer changes in trophic structure after fish introduction in Lake Fogo: a crater lake in the Azores

    DEFF Research Database (Denmark)

    Skov, Tue; Buchaca, T; Amsinck, Susanne Lildal;

    2010-01-01

    Fish introduction may have marked effects on the trophic dynamics and ecological state of former fishless lakes, but due to scarcity of historical data this can seldom be documented. We used remains of cladoceran, chironomid and pigment assemblages in the sediment archive to unravel the effect...... to a pelagic dominated ecosystem, as cryptophytes became markedly more abundant at the expense of benthic diatoms. Trout introduction was followed by a return to a more benthic cladoceran and benthic algae (pigments) dominated state, which we attribute to trout predation on carp leading to improved water...... clarity. A steady increase in the abundance of pigments and cladoceran remains followed, suggesting enhanced productivity, which may be attributed to enhanced atmospheric nitrogen deposition and introduction of C. oligolepis. We conclude that fish introduction has profoundly altered the trophic dynamics...

  11. Benthic processes on and around artificial structures in Swedish coastal waters; Bentiska processer paa och runt artificiella strukturer i Sveriges kustvatten

    Energy Technology Data Exchange (ETDEWEB)

    Malm, Torleif (Stockholms Universitet, Stockholms marina forskningscentrum (Sweden)); Engkvist, Roland (Linneuniversitetet, Institutionen foer Naturvetenskap, Vaexjoe (Sweden))

    2011-03-15

    Within the next few decades, wind farms with an extension of many square kilometres probably will be built in Swedish coastal waters. These installations may affect the ecological communities in various ways, e.g.; by the already known reef-effect, by changing the population structure of key predators such as fish and birds and thereby cause trophic cascades down into the benthic community or by causing changes in the hydrology that may benefit some species, mainly soft bottom species, while others may be disadvantaged. How the wind farms will affect the ecological communities depends probably very much on the initial conditions. During the period 2005-2009 a study was carried out with the aim to investigate the benthic community structure on hard bottoms, before and after larger wind farms have been constructed. The areas explored were Skottarevet in Kattegat, Lillgrund in Oeresund, Utgrunden II in southern Kalmar Strait, Kaarehamn off north-eastern Oeland and Klasaadern off south-western Gotland. For legal and economic reasons, only one farm, Lillgrund was constructed during the project period. Significant differences were found at both species and functional level. The largest divergence was found between the Kattegat and the Baltic Sea with large differences in species composition and in part also with other functional groups. Furthermore, between the Baltic Sea sites, significant differences were also found. The natural communities in the two straits had significantly higher biomass of blue mussels (M. edulis) per square meter compared with the open areas at Gotland and Oeland. In addition,the algal flora differed significantly. Filamentous brown algae favoured by eutrophication dominated the substrate in the straits while the bottoms along the open coastlines were covered with perennial red algae. The wind farm at Lillgrund affected the benthic communities moderately but significant. Mussels and barnacles colonized the surface of the towers and the granite

  12. The influence of oceanographic processes on pelagic-benthic coupling in polar regions: A benthic perspective

    Science.gov (United States)

    Grebmeier, Jacqueline M.; Barry, James P.

    1991-08-01

    Benthic community abundance and biomass in polar marine systems is directly influenced by food supply from the overlying water column. Variability in hydrographic regimes, ice coverage, light, water column temperature and pelagic food web structure limit the amount of organic carbon reaching the benthos. Data from the high Arctic and Antarctic indicate that a large percentage of surface-produced organic matter is consumed by both macro- and micro-zooplankton as well as recycled in the water column via the microbial loop. This results in food-limited regimes for the underlying benthos. The few exceptions are nearshore continental shelf systems, such as in the Bering and Chukchi Seas in the western Arctic and portions of the Canadian Archipelago and Barents Sea in the eastern Arctic, where high benthic abundance and biomass occurs due to a tight coupling between water column primary production and benthic secondary production. A major difference between the Antarctic and Arctic is that the nearshore deep Antarctic is characterized by relatively high benthic abundance and biomass despite low water column production, suggesting that stability, low disturbance levels and cold temperatures enable benthic organisms to grow larger than in the Arctic. Both physical and biological disturbance levels are high in the marginal seas of the Arctic may directly influence benthic productivity. The relationship between primary production and sedimentation of organic material to the benthos is nonlinear due to its dependence on the role of the pelagic food web. Therefore, in this review we will only discuss the pelagic system with respect to how it impacts the net food supply reachig the benthos. A major objective of this review paper is demonstrate the influence of oceanographic processes on pelagic-benthic coupling in polar regions from a "bottom-up" perspective, using benthic studies from various regions in both the Arctic and Antarctic. Similarities and differences in

  13. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish

    Directory of Open Access Journals (Sweden)

    W. Ekau

    2010-05-01

    Full Text Available Dissolved oxygen (DO concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 mL O2 L−1 through impacted growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 mL O2 L−1. A change in the average or the range of DO may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity.

    Evidence for the deleterious effects of oxygen depletion on pelagic species is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with variable DOs and exploit adaptive mechanisms, nektonic species may avoid areas of unfavourable DO and develop adapted migration strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ. In shallow areas only the surface layer can serve as a refuge, but in deep waters many organisms have developed vertical migration strategies to use, pass through and cope with the OMZ.

    This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity. We describe processes in two contrasting systems, the semi-enclosed Baltic Sea and the coastal upwelling system of the Benguela Current to demonstrate the consequences of increasing hypoxia on ecosystem functioning and services.

  14. Impacts of hypoxia on the structure and processes in the pelagic community (zooplankton, macro-invertebrates and fish

    Directory of Open Access Journals (Sweden)

    W. Ekau

    2009-05-01

    Full Text Available Dissolved oxygen (DO concentration in the water column is an environmental parameter that is crucial for the successful development of many pelagic organisms. Hypoxia tolerance and threshold values are species- and stage-specific and can vary enormously. While some fish species may suffer from oxygen values of less than 3 ml L−1 and show impact on growth, development and behaviour, other organisms such as euphausiids may survive DO levels as low as 0.1 ml L−1. A change in the average or the minimum or maximum DO in an area may have significant impacts on the survival of certain species and hence on the species composition in the ecosystem with consequent changes in trophic pathways and productivity.

    Evidence of the deleterious effects of oxygen depletion on species of the pelagic realm is scarce, particularly in terms of the effect of low oxygen on development, recruitment and patterns of migration and distribution. While planktonic organisms have to cope with different DOs and find adaptive mechanisms, nektonic species may avoid areas of inconvenient DO and develop adapted migrational strategies. Planktonic organisms may only be able to escape vertically, above or beneath the Oxygen Minimum Zone (OMZ. In shallow areas only the surface layer can serve as a refuge, in deep waters many organisms have developed vertical migration strategies to use, pass and cope with the OMZ.

    This paper elucidates the role of DO for different taxa in the pelagic realm and the consequences of low oxygen for foodweb structure and system productivity.

  15. Temporal and altitudinal variations in benthic macroinvertebrate assemblages in an Andean river basin of Argentina

    Directory of Open Access Journals (Sweden)

    Erica E. Scheibler

    2014-02-01

    Full Text Available Environmental variables and benthic macroinvertebrate assemblages were spatially and seasonally examined over two consecutive years (2000-2002 along a glacier and snowmelt river in the central-west of Argentina where lies the highest peak in America, Mount Aconcagua (6956 m elevation. The goal was to assess seasonal and altitudinal variability in benthic community structure and to define whether physical-chemical variables affect distribution of aquatic insects. The Mendoza river basin was characterised by high variability in flow and transparency, high conductivity, hard calcium sulphate water, neutral and alkaline pH, and dominant substrate composed of small blocks, cobbles, pebbles, and sand-silt. Richness of invertebrates was low, with the lowest taxonomic richness being recorded at the mouth. The dominant group with highest taxonomic richness was Diptera, although caddisflies, mayflies, beetles, and stoneflies were present. Seasonal and spatial variations in biotic and abiotic variables were detected. Maximal densities and taxonomic richness were recorded in autumn and winter. From Modified Morisita’s Cluster analysis it was found that the system is divided into two groupings of sites related to each other by faunal composition. INDVAL revealed species turnover along the altitudinal gradient of some taxa: Andesiops, Massartellopsis, Edwarsina, Chelifera, and Ceratopogonidae had preference for the headwaters (2835-2425 m elevation, Smicridea murina and Baetodes for the lower section (1413-1085 m elevation, and Austrelmis for the middle and lower sections. The middle section (1846-1727 m elevation was a transition area where taxa from the headwaters and the lower section coexisted. Generalised Linear Models evidenced that altitude was the major factor determining macroinvertebrate assemblages along the large arid Mendoza River and that the physical-chemical variables that most influenced variation in community structure were: transparency

  16. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephansen, Diana Agnete, E-mail: das@civil.aau.dk [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Nielsen, Asbjørn Haaning [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Hvitved-Jacobsen, Thorkild [Department of Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9200 Aalborg East (Denmark); Pedersen, Morten Lauge; Vollertsen, Jes [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark)

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  17. Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus

    DEFF Research Database (Denmark)

    Rajala, Juho Elias; Mäenpää, Kimmo; Vehniäinen, Eeva-Riikka;

    2016-01-01

    The increased use of silver nanoparticles (AgNP) in industrial and consumer products worldwide has resulted in their release to aquatic environments. Previous studies have mainly focused on the effects of AgNP on pelagic species, whereas few studies have assessed the risks to benthic invertebrate...

  18. Invertebrate welfare: an overlooked issue

    Directory of Open Access Journals (Sweden)

    Kelsey Horvath

    2013-03-01

    Full Text Available While invertebrates make up the majority of animal species, their welfare is overlooked compared to the concern shown to vertebrates. This fact is highlighted by the near absence of regulations in animal research, with the exception of cephalopods in the European Union. This is often justified by assumptions that invertebrates do not experience pain and stress while lacking the capacity for higher order cognitive functions. Recent research suggests that invertebrates may be just as capable as vertebrates in experiencing pain and stress, and some species display comparable cognitive capacities. Another obstacle is the negative view of invertebrates by the public, which often regards them as pests with no individual personalities, gastronomic entities, or individuals for scientific experimentation without rules. Increasingly, studies have revealed that invertebrates possess individual profiles comparable to the personalities found in vertebrates. Given the large economic impact of invertebrates, developing certain attitude changes in invertebrate welfare may be beneficial for producers while providing higher welfare conditions for the animals. While the immense number and type of species makes it difficult to suggest that all invertebrates will benefit from increased welfare, in this review we provide evidence that the topic of invertebrate welfare should be revisited, more thoroughly investigated, and in cases where appropriate, formally instituted.

  19. Spatial-temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River basin, Kenya

    Science.gov (United States)

    Kilonzo, Fidelis; Masese, Frank O.; Van Griensven, Ann; Bauwens, Willy; Obando, Joy; Lens, Piet N. L.

    Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify

  20. Functional neuropeptidomics in invertebrates.

    Science.gov (United States)

    De Haes, Wouter; Van Sinay, Elien; Detienne, Giel; Temmerman, Liesbet; Schoofs, Liliane; Boonen, Kurt

    2015-07-01

    Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  1. Invertebrate community composition differs between invasive herb alligator weed and native sedges

    Science.gov (United States)

    Bassett, Imogen E.; Paynter, Quentin; Beggs, Jacqueline R.

    2012-05-01

    Chemical and/or architectural differences between native and exotic plants may influence invertebrate community composition. According to the enemy release hypothesis, invasive weeds should host fewer and less specialised invertebrates than native vegetation. Invertebrate communities were compared on invasive Alternanthera philoxeroides (alligator weed) and native sedges (Isolepis prolifer and Schoenoplectus tabernaemontani) in a New Zealand lake. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Lower invertebrate abundance, richness and proportionally fewer specialists were predicted on A. philoxeroides compared to native sedges, but with greatest differences between A. philoxeroides and S. tabernaemontani. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Invertebrate abundance showed taxa-specific responses, rather than consistently lower abundance on A. philoxeroides. Nevertheless, as predicted, invertebrate fauna of A. philoxeroides was more similar to that of I. prolifer than to S. tabernaemontani. The prediction of a depauperate native fauna on A. philoxeroides received support from some but not all taxa. All vegetation types hosted generalist-dominated invertebrate communities with simple guild structures. The enemy release hypothesis thus had minimal ability to predict patterns in this system. Results suggest the extent of architectural and chemical differences between native and invasive vegetation may be useful in predicting the extent to which they will host different invertebrate communities. However, invertebrate ecology also affects whether invertebrate taxa respond positively or negatively to weed invasion. Thus, exotic vegetation may support distinct invertebrate communities despite similar overall invertebrate abundance to native vegetation.

  2. Abundance, size composition and benthic assemblages of two Mediterranean echinoids off the

    Directory of Open Access Journals (Sweden)

    Elzahrae Elmasry

    2015-12-01

    Full Text Available This study is concerned with the variability in abundance, size composition and benthic assemblages of two echinoid species, the common sea urchin Paracentrotus lividus (Lamarck, 1816 and black urchin Arbacia lixula (Linnaeus, 1758 in the Southeastern Mediterranean (SEM along the coast of Alexandria, Egypt. Four seasonal trips were made during the years 2014–2015 covering 55 km of the shore with depths ranging between 3 and 9 m. The sea urchin species composition, density and size structure and distribution were compared. The associated macrobenthic invertebrates with prominent presence and biomass were observed as well as other benthic fauna and flora associations. The present results showed that P. lividus was the dominant echinoid spatially and temporally. A. lixula showed frequent occurrence in Sidi Bishr and Sidi Gaber stations in the spring season. The most dominant size class was the medium to large-sized classes for P. lividus and large-sized classes for A. lixula. The commercial size for the edible P. lividus represented 33% of the sampled population. Furthermore, the most dominant macrobenthic assemblages beside the echinoid population were primarily oysters, sea cucumbers, and mussels. Beside these, assemblage of seaweeds (red, green, brown and crustose algae, Porifera, Cnidaria, Crustacea, other Echinodermata, Bivalvia, Gastropoda, Tunicata, Bryozoa and Annelida were found. The present study shows that the investigated area represents stable habitats for the echinoid population with rich and diversified algal assemblages as well as other potential food resources.

  3. Structural and functional effects of conventional and low pesticide input crop-protection programs on benthic macroinvertebrate communities in outdoor pond mesocosms.

    Science.gov (United States)

    Auber, Arnaud; Roucaute, Marc; Togola, Anne; Caquet, Thierry

    2011-11-01

    The impacts of current and alternative wheat crop protection programs were compared in outdoor pond mesocosms in a 10-month long study. Realistic exposure scenarios were built based upon the results of modelling of drift, drainage and runoff of pesticides successively applied under two environmental situations characteristics of drained soils of northern France. Each situation was associated to two crop protection programs ("Conventional" and "Low-input") differing in the nature of pesticides used, number of treatments and application rate. Both programs induced significant direct negative effects on various invertebrate groups. Bifenthrin and cyprodynil were identified as the main responsible for these effects in conventional and low-input program, respectively. Indirect effects were also demonstrated especially following treatments with cyprodynil. Litter breakdown was significantly reduced in all treated mesocosms as the functional consequence of the decrease in the abundance of shredders (asellids, Gammarus pulex) illustrating the link between structural and functional effects of pesticides on macroinvertebrate communities. Recovery was observed for many taxa before the end of the study but not for the most sensitive non mobile taxa such as G. pulex. No influence of the agropedoclimatic situation on the effects was shown, suggesting than the main impacts were associated to inputs from drift. The results confirm that the proposed low-input program was less hazardous than the conventional program but the observed structural and functional impact of the low-input program suggest that further improvement of alternative crop protection programs is still needed.

  4. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates.

    Science.gov (United States)

    Farias, W R; Valente, A P; Pereira, M S; Mourão, P A

    2000-09-22

    We have characterized the structure of a sulfated d-galactan from the red algae Botryocladia occidentalis. The following repeating structure (-4-alpha-d-Galp-1-->3-beta-d-Galp-1-->) was found for this polysaccharide, but with a variable sulfation pattern. Clearly one-third of the total alpha-units are 2,3-di-O-sulfated and another one-third are 2-O-sulfated. The algal sulfated d-galactan has a potent anticoagulant activity (similar potency as unfractionated heparin) due to enhanced inhibition of thrombin and factor Xa by antithrombin and/or heparin cofactor II. We also extended the experiments to several sulfated polysaccharides from marine invertebrates with simple structures, composed of a single repeating structure. A 2-O- or 3-O-sulfated l-galactan (as well as a 2-O-sulfated l-fucan) has a weak anticoagulant action when compared with the potent action of the algal sulfated d-galactan. Possibly, the addition of two sulfate esters to a single alpha-galactose residue has an "amplifying effect" on the anticoagulant action, which cannot be totally ascribed to the increased charge density of the polymer. These results indicate that the wide diversity of polysaccharides from marine alga and invertebrates is a useful tool to elucidate structure/anticoagulant activity relationships.

  5. Anti-inflammatory activity in selected Antarctic benthic organisms

    Directory of Open Access Journals (Sweden)

    Juan eMoles

    2014-07-01

    Full Text Available Antarctic benthos was prospected in search for anti-inflammatory activity in polar benthic invertebrates, in two different geographical areas: deep-bottoms of the Eastern Weddell Sea and shallow-waters of the South Shetland Islands. A total of 36 benthic algae and invertebrate species were selected to perform solubility tests in order to test them for anti-inflammatory activity. From these, ethanol extracts of ten species from five different phyla resulted suitable to be studied in cell macrophage cultures (RAW 264.7. Cytotoxicity (MTT method and production of inflammatory mediators (prostaglandin E2, leukotriene B4, interleukin-1 were determined at three extract concentrations (50, 125, 250 g/mL. Bioassays resulted in four different species showing anti-inflammatory activity corresponding to three sponges: Mycale (Oxymycale acerata, Isodictya erinacea, and I. toxophila; and one hemichordate: Cephalodiscus sp. These results show that Antarctic sessile invertebrates may have great value as a source of lead compounds with potential pharmaceutical applications.

  6. Benthic communities on hard substrates covered by Limnoperna fortunei Dunker (Bivalvia, Mytilidae at an estuarine beach (Río de la Plata, Argentina

    Directory of Open Access Journals (Sweden)

    Fernando G. Spaccesi

    2012-01-01

    Full Text Available The structure and composition of benthic communities on hard substrates covered by the nonindigenous bivalve Limnoperna fortunei Dunker, the golden mussel, were quantified in the middle zone of the Río de la Plata Estuary (Argentina from April 2001 through March 2002. A total of 26 taxa were recorded. L. fortunei and Nematoda were the central and dominant groups, with a prodigious abundance of over 80%. The prevalence of L. fortunei, rather than the environmental variables, regulated the dynamics of the associated invertebrate fauna. The golden mussel alters both the structure and function of benthic native communities on hard substrates, allows a higher surface available for colonization and refuge, and provides food source to deposit-feeding organisms in the form of organic or residual material. The mussel also increases the abundance and diversity of taxa on hard substrata - such as Oligochaeta, Hirudinea, Tardigrada, Chironomidae, Copepoda, Tanaidacea, and Hydrachnidia. Similarities and nonparametric multidimensional-scaling analyses indicated that the benthic composition had a seasonal variation. L. fortunei has an environmental impact, an ability to invade new freshwater ambiences worldwide and ecological characteristic comparable to those of Dreissena polymorpha Pallas (the zebra mussel of North America and Europe.

  7. Invertebrate Paleontology of the Wilson Grove Formation (Late Miocene to Late Pliocene), Sonoma and Marin Counties, California, with some Observations on Its Stratigraphy, Thickness, and Structure

    Science.gov (United States)

    Powell, Charles L.; Allen, James R.; Holland, Peter J.

    2004-01-01

    The Wilson Grove Formation is exposed from Petaluma north to northern Santa Rosa, and from Bennett Valley west to Bodega Bay. A fauna of at least 107 invertebrate taxa consisting of two brachiopods, 95 mollusks (48 bivalves and 46 gastropods), at least eight arthropods, and at least two echinoids have been collected, ranging in age from late Miocene to late Pliocene. Rocks and fossils from the southwest part of the outcrop area, along the Estero de San Antonio, were deposited in a deep-water marine environment. At Meacham Hill, near the Stony Point Rock Quarry, and along the northern margin of the outcrop area at River Road and Wilson Grove, the Wilson Grove Formation was deposited in shallow marine to continental environments. At Meacham Hill, these shallow water deposits represent a brackish bay to continental environment, whereas at River Road and Wilson Grove, fossils suggest normal, euhaline (normal marine salinity) conditions. A few taxa from the River Road area suggest water temperatures slightly warmer than along the adjacent coast today because their modern ranges do not extend as far north in latitude as River Road. In addition, fossil collections from along River Road contain the bivalve mollusks Macoma addicotti (Nikas) and Nuttallia jamesii Roth and Naidu, both of which are restricted to the late Pliocene. The late Miocene Roblar tuff of Sarna-Wojcicki (1992) also crops out northeast of the River Road area and underlies the late Pliocene section at Wilson Grove by almost 300 m. Outcrops in the central part of the region are older than those to the northeast, and presumably younger than deposits to the southwest. The Roblar tuff of Sarna-Wojcicki (1992) occurs at Steinbeck Ranch in the central portion of the outcrop area. At Spring Hill, also in the central part of the outcrop area, the sanddollar Scutellaster sp., cf. S. oregonensis (Clark) has been recently collected. This species, questionably identified here, is restricted to the late Miocene from

  8. Invertebrate diversity in southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile displays mean invertebrate diversity within 5 minute grid cells. The Shannon Index of diversity was calculated from Southern California Coastal Water...

  9. Alabama ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in Alabama. Vector polygons in this data set represent...

  10. Louisiana ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species, and major concentration areas for harvested or potentially...

  11. Virginia ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, and rare invertebrate species in Virginia. Vector polygons in this data set...

  12. Assessment of Missouri River floodplain invertebrates during historic inundation: implications for river restoration

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2014-01-01

    Full Text Available Floodplain connectivity is important to aquatic organisms in large rivers. Anthropogenic alterations regulating the Missouri River have limited connectivity and negatively affected native fauna. Determining the biological response to rare inundation events may be important when considering potential restoration options on a regulated river; thus, we assessed benthic invertebrate and zooplankton communities at three floodplain sites during a historic Missouri River high-water event. Chironomid larvae dominated during most sampling trips and densities were often highest during initial sampling trips with lower densities as high water persisted. Similar trends were evident for rotifer, cladoceran, and copepod densities. Nonmetric multidimensional scaling also showed relatively high dissimilarity of densities between early and late sampling trips for benthic invertebrate and zooplankton communities. As such, short-term inundation may be more beneficial to Missouri River benthic invertebrate (mainly chironomid larvae and zooplankton production than more prolonged inundation lasting a month or more. Furthermore, restoration projects may be designed at elevations allowing more short-term inundation, which would likely benefit native fishes with additional spawning, nursery, and foraging habitat. Levee setbacks may be an effective restoration option for increasing the amount of habitat available for short-term inundation while potentially providing socioeconomic, flood-risk reduction benefits by enhancing flow conveyance.

  13. Leachability of protein and metals incorporated into aquatic invertebrates: are species and metals-exposure history important?

    Science.gov (United States)

    Meyer, J.S.; Suedkamp, M.J.; Morris, J.M.; Farag, A.M.

    2005-01-01

    To partially simulate conditions in fish intestinal tracts, we leached six groups of metals-contaminated invertebrates at pH 2 and pH 7, and analyzed the concentrations of four metals (Cd, Cu, Pb, and Zn) and total protein in the leachates. Four of the groups of invertebrates were benthic macroinvertebrates collected from metals-contaminated rivers (the Clark Fork River in Montana and the Coeur d'Alene River in Idaho, USA); the other two groups of invertebrates (one of which was exposed to metals in the laboratory) were laboratory-reared brine shrimp (Artemia sp.). Additionally, we fractionated the pH 2 leachates using size-exclusion chromatography (SEC). Protein content was 1.3 to 1.4x higher in Artemia than in the benthic macroinvertebrates, and leach-ability of metals and protein differed considerably among several of the groups of invertebrates. In SEC fractions of the pH 2 leachates from both groups of Artemia, Cu and protein co-eluted; however, Cu and protein did not co-elute in SEC fractions of the leachates from any of the benthic macroinvertebrate groups. Although none of the other three metals co-eluted with protein in any of the pH 2 leachates, one or more of the metals co-eluted with lower-molecular-weight molecules in the leachates from all of the groups of invertebrates. These results suggest fundamental differences in metal-binding properties and protein leachability among some invertebrates. Thus, different invertebrates and different histories of metals exposure might lead to different availability of metals and protein to predators. ?? 2006 Springer Science+Business Media, Inc.

  14. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...

  15. Polychlorinated biphenyls in aquatic invertebrates and fish and observations about nitrogen and carbon isotope composition in relation to trophic structure and bioaccumulation patterns, Lake Worth and Meandering Road Creek, Fort Worth, Texas, 2007-08

    Science.gov (United States)

    Moring, J. Bruce

    2010-01-01

    with all other aquatic invertebrate and fish. The relative depletion of 13C might indicate the carbon sources consumed by true midge larvae are different from the carbon sources consumed by all other taxon that were sampled. Ratios of stable nitrogen isotopes nitrogen-15 to nitrogen-14 (delta15N) were similar between taxa from the Lake Worth site and Woods Inlet sites. The sum of 15 PCB-congener concentrations, however, was an order of magnitude higher in largemouth bass from the upper Woods Inlet site, indicating that PCB-congener concentrations in lake bed sediment likely controls biomagnification within the lake because of the similarities in trophic structure of the resident aquatic community. The biota at the Lake Worth reference site, where PCBs were not detected in the surficial sediment during previous studies, were less contaminated than the biota at sites where PCBs had been detected in the surficial sediment. The highest trophic-level consumers (as evidenced by the most 15N-enriched delta15N values) showed the maximum bioaccumulation.

  16. Coral reef microbes : the influences of benthic primary producers, nutrient availability, and anthropogenic stressors on community structure and metabolism

    OpenAIRE

    Kelly, Linda Ellen Wegley

    2013-01-01

    Genomic studies of marine microbes have advanced our understanding of community ecology and the vast array of metabolisms microbes utilize for acquiring energy and nutrients in the ocean. The structure of microbial communities overlying coral reefs have been shown to reflect ecosystem health. For example, algal-dominated reefs are inhabited by more pathogen-like microbes. The objective of my PhD thesis was to use metagenomics to investigate the microbial communities associated with the coral ...

  17. Shear Stress Drives Local Variation in Invertebrate Drift in a Large River

    Science.gov (United States)

    Muehlbauer, J. D.; Kennedy, T.; Yackulic, C. B.

    2013-12-01

    Recent advances in physical stream flow measurements using acoustic Doppler current profilers (ADCPs) have yielded important insights in hydrology and geomorphology related to discharge and processes such as bed sediment incipient motion. These measurements also have underappreciated potential for use in ecological studies. For example, invertebrate drift, or the downstream transport of benthic-derived invertebrates, is a fundamental process in streams and rivers: it is both critical to the maintenance of benthic invertebrate populations and provides a key mechanism of resource delivery to drift-feeding fishes. However, there is substantial uncertainty regarding the factors that drive spatial variation in invertebrate drift, particularly in large rivers. While laboratory studies in flumes have demonstrated the importance of shear stress in initiating invertebrate drift (similar to studies of bed sediment critical shear stress in fluvial geomorphology), field-based evaluations of the relationship between shear stress and drift would be beneficial. Such field studies, however, are rare. Here, we evaluate the relationship between localized shear stress (N/m2) and invertebrate drift concentrations (#/m3) for the Colorado River downstream of Glen Canyon Dam (steady discharge of 228 m3/s during study). Invertebrate drift was quantified at 25 stations throughout the 25 km long Glen Canyon tailwater segment. We link these drift measurements to empirical measurements of water column shear stress derived from ADCP data, taken at the location of each drift sample and 250 m upstream of each drift sampling location (50 total profiles). Invertebrate drift concentrations varied strongly throughout the 25 km reach, and much of this variation can be explained by localized differences in shear stress. Species composition in the drift also varied with shear stress, suggesting that shear stress exerts a differential control on drift initiation for individual taxa. These results

  18. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, K.; Hannah, D.M. [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, L.E. [School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Tiberti, R. [DSTA, Dipartimento di Scienze della Terra e dell' Ambiente, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy); Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, I-1101 Valsavarenche, Aosta (Italy); Milner, A.M., E-mail: a.m.milner@bham.ac.uk [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 (United States)

    2014-09-15

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  19. How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

    Science.gov (United States)

    Elliott, Jennifer; Patterson, Mark; Summers, Natalie; Miternique, Céline; Montocchio, Emma; Vitry, Eugene

    2016-09-01

    Terpios hoshinota is an encrusting sponge and a fierce space competitor. It kills stony corals by overgrowing them and can impact reefs on the square kilometer scale. We investigated an outbreak of T. hoshinota in 2014 at the island of Mauritius to determine its impacts on coral community structure. Surveys were conducted at the putative outbreak center, an adjacent area, and around the island to determine the extent of spread of the sponge and which organisms it impacted. In addition, quadrats were monitored for 5 months (July-December) to measure the spreading rates of T. hoshinota and Acropora austera in areas both with and without T. hoshinota. The photosynthetic capabilities of T. hoshinota and A. austera were also measured. Terpios hoshinota was well established, covering 13% of an estimated 416 m2 of available hard coral substrate at the putative outbreak center, and 10% of an estimated 588 m2 of available hard coral substrate at the adjacent area. The sponge was observed at only one other site around Mauritius. Terpios hoshinota and A. austera increased their planar areas by 26.9 and 13.9%, respectively, over five months. No new colonies of T. hoshinota were recorded in adjacent sponge-free control areas, suggesting that sponge recruitment is very low during austral winter and spring. The sponge was observed to overgrow five stony corals; however, it showed a preference for branching corals, especially A. austera. This is the first time that a statistically significant coral substrate preference by T. hoshinota has been reported. Terpios hoshinota also had a significantly higher photosynthetic capacity than A. austera at irradiance >500 μmol photons m-2 s-1, a possible explanation for its high spreading rate. We discuss the long-term implications of the proliferation of T. hoshinota on community structure and dynamics of our study site.

  20. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    Science.gov (United States)

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the

  1. Benthic Communities of Low-Order Streams Affected by Acid Mine Drainages: A Case Study from Central Europe

    Directory of Open Access Journals (Sweden)

    Marek Svitok

    2014-05-01

    Full Text Available Only little attention has been paid to the impact of acid mine drainages (AMD on aquatic ecosystems in Central Europe. In this study, we investigate the physico-chemical properties of low-order streams and the response of benthic invertebrates to AMD pollution in the Banská Štiavnica mining region (Slovakia. The studied streams showed typical signs of mine drainage pollution: higher conductivity, elevated iron, aluminum, zinc and copper loads and accumulations of ferric precipitates. Electric conductivity correlated strongly with most of the investigated elements (weighted mean absolute correlation = 0.95 and, therefore, can be recommended as a good proxy indicator for rapid AMD pollution assessments. The diversity and composition of invertebrate assemblages was related to water chemistry. Taxa richness decreased significantly along an AMD-intensity gradient. While moderately affected sites supported relatively rich assemblages, the harshest environmental conditions (pH < 2.5 were typical for the presence of a limited number of very tolerant taxa, such as Oligochaeta and some Diptera (Limnophyes, Forcipomyiinae. The trophic guild structure correlated significantly with AMD chemistry, whereby predators completely disappeared under the most severe AMD conditions. We also provide a brief review of the AMD literature and outline the needs for future detailed studies involving functional descriptors of the impact of AMD on aquatic ecosystems.

  2. Aquatic Invertebrate Development Working Group

    Science.gov (United States)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  3. Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure

    Directory of Open Access Journals (Sweden)

    Kop Anna

    2008-12-01

    Full Text Available Abstract Background The Falkland Islands and Patagonia are traditionally assigned to the Magellan Biogeographic Province. Most marine species in Falkland waters are also reported from southern Patagonia. It remains unclear if relatively immobile, marine benthic, shallow-water species maintain gene flow, and by what mechanism. Recurrent fluctuations in sea level during glacial cycles are regarded as a possible mechanism that might have allowed genetic exchange between the regions. However, the realized genetic exchange between the Falkland Islands and Patagonia has never been estimated. Results This study analyses the genetic structure of three populations of the marine shallow-water isopod Serolis paradoxa (Fabricius, 1775 from the Falkland Islands and southern Patagonia (central Strait of Magellan and the Atlantic opening applying seven nuclear microsatellites and a fragment of the mitochondrial 16S rRNA gene. Both marker systems report highest genetic diversity for the population from the central Strait of Magellan and lowest for the Falkland Islands. The estimated effective population sizes were large for all populations studied. Significant differentiation was observed among all three populations. The magnitude of differentiation between Patagonia and the Falkland Islands (16S: uncorrected p-distance 2.1%; microsatellites: standardized F'ST > 0.86 was an order of magnitude higher than between populations from within Patagonia. This indicates that there is currently no effective gene flow for nominal S. paradoxa between these two regions and it has been absent for time exceeding the last glacial maximum. We argue that specimens from the Strait of Magellan and the Falkland Islands very likely represent two distinct species that separated in the mid-Pleistocene (about 1 MY BP. Conclusion The results of this study indicate limited gene flow between distant populations of the brooding isopod Serolis paradoxa. The patterns of genetic diversity

  4. Population Genetic Structure, Abundance, and Health Status of Two Dominant Benthic Species in the Saba Bank National Park, Caribbean Netherlands: Montastraea cavernosa and Xestospongia muta.

    Directory of Open Access Journals (Sweden)

    Didier M de Bakker

    Full Text Available Saba Bank, a submerged atoll in the Caribbean Sea with an area of 2,200 km2, has attained international conservation status due to the rich diversity of species that reside on the bank. In order to assess the role of Saba Bank as a potential reservoir of diversity for the surrounding reefs, we examined the population genetic structure, abundance and health status of two prominent benthic species, the coral Montastraea cavernosa and the sponge Xestospongia muta. Sequence data were collected from 34 colonies of M. cavernosa (nDNA ITS1-5.8S-ITS2; 892 bp and 68 X. muta sponges (mtDNA I3-M11 partition of COI; 544 bp on Saba Bank and around Saba Island, and compared with published data across the wider Caribbean. Our data indicate that there is genetic connectivity between populations on Saba Bank and the nearby Saba Island as well as multiple locations in the wider Caribbean, ranging in distance from 100s-1000s km. The genetic diversity of Saba Bank populations of M. cavernosa (π = 0.055 and X. muta (π = 0.0010 was comparable to those in other regions in the western Atlantic. Densities and health status were determined along 11 transects of 50 m2 along the south-eastern rim of Saba Bank. The densities of M. cavernosa (0.27 ind. m-2, 95% CI: 0.12-0.52 were average, while the densities of X. muta (0.09 ind. m-2, 95% CI: 0.02-0.32 were generally higher with respect to other Caribbean locations. No disease or bleaching was present in any of the specimens of the coral M. cavernosa, however, we did observe partial tissue loss (77.9% of samples as well as overgrowth (48.1%, predominantly by cyanobacteria. In contrast, the majority of observed X. muta (83.5% showed signs of presumed bleaching. The combined results of apparent gene flow among populations on Saba Bank and surrounding reefs, the high abundance and unique genetic diversity, indicate that Saba Bank could function as an important buffer for the region. Either as a natural source of larvae to

  5. Utilization of food sources by invertebrates in a man-made intertidal ecosystem (Westerschelde, the Netherlands a d13C and d15 N study

    NARCIS (Netherlands)

    Riera, P.; Stal, L.J.; Nieuwenhuize, J.

    2004-01-01

    The trophic interactions between primary consumers and the organic matter sources in a man-made intertidal ecosystem were investigated. The most representative invertebrates that occupied the different habitat types tend to use similar food sources, namely benthic diatoms and suspended particulate o

  6. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic).

    Science.gov (United States)

    Danise, Silvia; Twitchett, Richard J; Little, Crispin T S; Clémence, Marie-Emilie

    2013-01-01

    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of "dead zones" in modern oceans.

  7. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    Science.gov (United States)

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P 0·05).

  8. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping

    Science.gov (United States)

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie

    2012-01-01

    Backscatter information from multibeam echosounders (MBES) have been shown to contain useful information for the characterisation of benthic habitats. Compared to backscatter imagery, angular response of backscatter has shown advantages for feature discrimination. However its low spatial resolution inhibits the generation of fine scale habitat maps. In this study, angular backscatter response was combined with image segmentation of backscatter imagery to characterise benthic biological habitats in Discovery Bay Marine National Park, Victoria, Australia. Angular response of backscatter data from a Reson Seabat 8101 MBES (240 kHz) was integrated with georeferenced underwater video observations for constructing training data. To produce benthic habitat maps, decision tree supervised classification results were combined with mean shift image segmentation for class assignment. The results from mean angular response characteristics show effects of incidence angle at the outer angle for invertebrates (INV) and mixed red and invertebrates (MRI) classes, whilst mixed brown algae (MB) and mixed brown algae and invertebrates (MBI) showed similar responses independent from incidence angle. Automatic segmentation processing produce over segmented results but showed good discrimination between heterogeneous regions. Accuracy assessment from habitat maps produced overall accuracies of 79.6% (Kappa coefficient = 0.66) and 80.2% (Kappa coefficient = 0.67) for biota and substratum classifications respectively. MRI and MBI produced the lowest average accuracy while INV the highest. The ability to combine angular response and backscatter imagery provides an alternative approach for investigating biological information from acoustic backscatter data.

  9. Molecules and cognition: the latterday lessons of levels, language, and lac. Evolutionary overview of brain structure and function in some vertebrates and invertebrates.

    Science.gov (United States)

    Miklos, G L

    1993-06-01

    The characteristics of the nervous systems of a number of organisms in different phyla are examined at the recombinant DNA, protein, neuroanatomic, neurophysiological, and cognitive levels. Among the invertebrates, special attention is paid to the advantages as well as the shortcomings of the fly Drosophila melanogaster, the worm Caenorhabditis elegans, the honey bee Apis mellifera, the sea hare Aplysia californica, the octopus Octopus vulgaris, and the squid Loligo pealei. Among vertebrates, the focus is on Homo sapiens, the mouse Mus musculus, the rat Rattus norvegicus, the cat Felis catus, the macaque monkey Macaca fascicularis, the barn owl Tyto alba, and the zebrafish Brachydanio rerio. Vertebrate nervous systems have also been compared in fossil vs. extant organisms. I conclude that complex nervous systems arose in the Early Cambrian via a big bang that was underpinned by a modular method of construction involving massive pleiotropy of gene circuits. This rapidity of construction had enormous implications for the degrees of freedom that were subsequently available to evolving nervous systems. I also conclude that at the level of neuronal populations and interactions of neuropiles there is no model system between phyla except at the basic macromolecular level. Further, I argue that to achieve a significant understanding of the functions of extant nervous systems we need to concentrate on fewer organisms in greater depth and manipulate genomes via transgenic technologies to understand the behavioral outputs that are possible from an organism. Finally, I analyze the concepts of "perceptual categorization" and "information processing" and the difficulties involved in the extrapolation of computer analogies to sophisticated nervous systems.

  10. Brain and behavioural lateralization in invertebrates.

    Directory of Open Access Journals (Sweden)

    Elisa eFrasnelli

    2013-12-01

    Full Text Available Traditionally, only humans were thought to exhibit brain and behavioural asymmetries, but several studies have revealed that most vertebrates are also lateralized. Recently, evidence of left-right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. Here I present some examples in invertebrates of sensory and motor asymmetries, as well as asymmetries in the nervous system. I illustrate two cases where an asymmetric brain is crucial for the development of some cognitive abilities. The first case is the nematode C. elegans, which has asymmetric odour sensory neurons and taste perception neurons. In this worm left/right asymmetries are responsible for the sensing of a substantial number of salt ions, and lateralized responses to salt allow the worm to discriminate between distinct salt ions. The second case is the fruit fly D. melanogaster, where the presence of asymmetry in a particular structure of the brain is important in the formation or retrieval of long-term memory. Moreover, I distinguish two distinct patterns of lateralization that occur in both vertebrates and invertebrates: individual-level and population-level lateralization. Theoretical models on the evolution of lateralization suggest that the alignment of lateralization at the population level may have evolved as an evolutionary stable strategy in which individually-asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. This implies that lateralization at the population-level is more likely to have evolved in social rather than in solitary species. I evaluate this new hypothesis with specific focus on insects showing different level of sociality. In particular, I present a series of studies on antennal asymmetries in honeybees and other related species of bees, showing how insects may be extremely useful to test evolutionary

  11. Tropical seaweed beds are important habitats for mobile invertebrate epifauna

    Science.gov (United States)

    Tano, Stina; Eggertsen, M.; Wikström, S. A.; Berkström, C.; Buriyo, A. S.; Halling, C.

    2016-12-01

    Marine macrophyte habitats in temperate regions provide productive habitats for numerous organisms, with their abundant and diverse invertebrate epifaunal assemblages constituting important linkages between benthic primary production and higher trophic levels. While it is commonly also recognized that certain vegetated habitats in the tropics, such as seagrass meadows, can harbour diverse epifaunal assemblages and may constitute important feeding grounds to fish, little is known about the epifaunal assemblages associated with tropical seaweed beds. We investigated the abundance, biomass and taxon richness of the mobile epifaunal community (≥1 mm) of tropical East African seaweed beds, as well as the abundance of invertivorous fishes, and compared it with that of closely situated seagrass meadows, to establish the ecological role of seaweed beds as habitat for epifauna as well as potential feeding grounds for fish. The results showed that seaweed beds had a higher abundance of mobile epifauna (mean ± SD: 10,600 ± 6000 vs 3700 ± 2800 per m2) than seagrass meadows, as well as a higher invertebrate biomass (35.9 ± 46.8 vs 1.9 ± 2.1 g per m2) and taxon richness (32.7 ± 11.8 vs 19.1 ± 6.3 taxa per sample), despite having a lower macrophyte biomass. Additionally, the high abundance of invertivorous fishes found in seaweed beds indicates that they act as important feeding grounds to several fish species in the region.

  12. Spatiotemporal variation in community structure of marine benthic ciliates in the Yellow Sea during and after macroalgal and giant jellyfish blooms

    Science.gov (United States)

    Zhou, Bailing; Xu, Kuidong

    2016-07-01

    The annual bloom of the green macroalgal Ulva prolifera from May through July since 2008 and another of giant jellyfish Nemopilema nomurai from June through September have been frequent events in the Yellow Sea. However, the patterns of benthic ciliate communities during and after the blooms are still not known. In combination with analyses of benthic environmental factors, we investigated the distribution and community composition of benthic ciliates in the Yellow Sea in July and November 2011. In July, ciliates had high standing crops and diversity in the northern Yellow Sea, and in the inshore area off the southern Shandong Peninsula, where large numbers of green macroalgae accumulated. In November, the abundance, biomass and diversity of ciliates were high in the sea areas off the Shandong Peninsula and Changjiang estuary, where a large quantity of jellyfish occurred in August. Neither the abundance nor the biomass had significant difference between seasons, or between different compartments of the Yellow Sea. The species number, and both Margalef and Shannon-Wiener indices of ciliates were all significantly higher in November than in July. In both seasons, prostomateans and karyorelicteans consistently constituted the first and second most important ciliate groups in biomass; and carnivorous ciliates constituted the primary feeding type in terms of biomass as well as species richness, followed by bacterivores, algivores and omnivores. Compared with that in June 2007 when no macroalgae occurred, the percentage of small-sized bacterivores (e.g. Metacystis spp., Euplotes spp. and scuticociliates) increased in July 2011. The proportion of carnivorous ciliates increased in November, and this increased dominance of carnivorous ciliates may be a response to the increase in predominance of heterotrophic nanoflagellates, which might in turn be ascribed to an effect of green macroalgal and giant jellyfish blooms in the Yellow Sea.

  13. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure

    Directory of Open Access Journals (Sweden)

    Deric R Learman

    2016-03-01

    Full Text Available Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5,500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP and Western Antarctica (WA, including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, nitrogen, and δ13C. Overall, samples from the AP were higher in nutrient content (TOC, nitrogen, and NH4+ and communities in these samples had higher relative abundances of operational taxonomic units (OTUs classified as the diatom, Chaetoceros, a marine cercozoan and four OTUs classified as Cytophaga or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a

  14. Trends in Children's Concepts of Vertebrate and Invertebrate.

    Science.gov (United States)

    Braund, Martin

    1998-01-01

    Presents the results of a cross-age study of 7- to 15-year-old children on their thinking about vertebrate and invertebrate animals. Suggests experiences that could be included in the school science curriculum and argues for more classroom work relating structure with function in order to address students' conceptual difficulties. (Contains 18…

  15. GPCRs in invertebrate innate immunity.

    Science.gov (United States)

    Reboul, Jerome; Ewbank, Jonathan J

    2016-08-15

    G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom.

  16. Marine Invertebrates: Communities at Risk

    Directory of Open Access Journals (Sweden)

    Jennifer Mather

    2013-06-01

    Full Text Available Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  17. Alternative adaptive immunity in invertebrates

    DEFF Research Database (Denmark)

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticit...... and memory has long been a matter of debate. A recent study on Anopheles gambiae mosquitoes now establishes Down syndrome cell adhesion molecule (Dscam) as a key immune surveillance factor with characteristics analogous to antibodies....

  18. The effects of riparian forestry on invertebrate drift and brown trout in upland streams of contrasting acidity

    Directory of Open Access Journals (Sweden)

    S. J. Ormerod

    2004-01-01

    Full Text Available Variations in macroinvertebrate drift and benthic invertebrate abundance were assessed in 30 upland Welsh streams of varying acidity (pH Salmo trutta were also assessed. As expected from previous studies, there were significant reductions in benthic invertebrate abundance, aquatic drift density (by >60%, aquatic drift biomass (by >35%, total drift density (by >35% and total drift biomass (by >20% at acid sites by comparison with circumneutral sites due largely to the scarcity of mayflies. Absolute drift from terrestrial sources was unrelated to stream pH but formed a significantly greater proportion of total drift at acid sites (30-65% of density than at circumneutral sites (20-40% as aquatic contributions declined. Most of this apparent land use effect reflected significantly increased terrestrial drift under broadleaves. There was no significant reduction in terrestrial or aquatic drift at conifer forest sites per se after accounting for low pH. Trout diet varied substantially between locations partly reflecting variations in drift: significantly fewer mayflies and stoneflies were eaten at acid sites, and significantly more terrestrial prey were eaten under broadleaves. However, acidity did not reduce trout condition or gut-fullness. Unexpectedly, trout condition was significantly enhanced at conifer sites, irrespective of their pH. Hence, acidity has greater effects on the benthic abundance and drift density of invertebrates in upland streams than does riparian land use. However, trout forage flexibly enough to offset any possible food deficit, for example by switching to chironomids and terrestrial invertebrates. Enhanced terrestrial contributions to invertebrate drift from riparian broadleaf trees may be important in supplementing foraging opportunities for trout where aquatic prey are scarce. These data illustrate the value of native tree species in riparian locations in upland Britain and the energy subsidy they provide might well be

  19. American Samoa ESI: BENTHIC (Benthic Marine Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for benthic habitats in American Samoa. Vector polygons in this data set represent the distribution of...

  20. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  1. National Benthic Infaunal Database (NBID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NBID is a quantitative database on abundances of individual benthic species by sample and study region, along with other synoptically measured environmental...

  2. Benthic fauna of mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    The distribution, abundance and importance of benthic fauna in a mangrove environment has been discussed. This ecosystem is enriched with terrestrial, aquatic, marshy and mudflat species mangrove environment. Qualitative and quantitative...

  3. Movement of carbon among estuarine habitats and its assimilation by invertebrates.

    Science.gov (United States)

    Connolly, Rod M; Gorman, Daniel; Guest, Michaela A

    2005-08-01

    We measured the extent of movement of carbon and its assimilation by invertebrates among estuarine habitats by analysing carbon stable isotopes of invertebrates collected along transects crossing the boundary of two habitats. The habitats were dominated by autotrophs with distinct isotope values: (1) mudflats containing benthic microalgae (mean -22.6, SE 0.6 per thousand) and (2) seagrass and its associated epiphytic algae (similar values, pooled mean -9.8, 0.5 per thousand). Three species of invertebrates were analysed: a palaemonid shrimp, Macrobrachium intermedium, and two polychaete worms, Nephtys australiensis and Australonereis ehlersi. All species had a similar narrow range of isotope values (-9 to -14 per thousand), and showed no statistically significant relationship between position along transect and isotope values. Animals were relying on carbon from seagrass meadows whether they were in seagrass or on mudflats hundreds of metres away. Particulate organic matter collected from superficial sediments along the transects had similar values to animals (mean -11.1, SE 1.3 per thousand) and also showed no significant relationship with position. The isotope values of these relatively immobile invertebrates and the particulate detritus suggest that carbon moves from subtidal seagrass meadows to mudflats as particulate matter and is assimilated by invertebrates. This assimilation might be direct in the case of the detritivorous worm, A. ehlersi, but must be via invertebrate prey in the case of the carnivorous worm, N. australiensis and the scavenging shrimp, M. intermedium. The extent of movement of carbon among habitats, especially towards shallower habitats, is surprising since in theory, carbon is more likely to move offshore in situations such as the current study where habitats are in relatively open, unprotected waters.

  4. Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages.

    Science.gov (United States)

    Carpenter, Kurt D; Kuivila, Kathryn M; Hladik, Michelle L; Haluska, Tana; Cole, Michael B

    2016-06-01

    Insecticide use in urban areas results in the detection of these compounds in streams following stormwater runoff at concentrations likely to cause toxicity for stream invertebrates. In this 2013 study, stormwater runoff and streambed sediments were analyzed for 91 pesticides dissolved in water and 118 pesticides on sediment. Detections included 33 pesticides, including insecticides, fungicides, herbicides, degradates, and a synergist. Patterns in pesticide occurrence reveal transport of dissolved and sediment-bound pesticides, including pyrethroids, from upland areas through stormwater outfalls to receiving streams. Nearly all streams contained at least one insecticide at levels exceeding an aquatic-life benchmark, most often for bifenthrin and (or) fipronil. Multiple U.S. EPA benchmark or criterion exceedances occurred in 40 % of urban streams sampled. Bed sediment concentrations of bifenthrin were highly correlated (p transport of pesticides from urban landscapes and linking impaired benthic invertebrate assemblages in urban streams with exposure to pyrethroid insecticides.

  5. Population ecology and community structure of sub-tidal soft sediment dwelling macro-invertebrates of Konkan, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Vizakat, L.; Harkantra, S.N.; Parulekar, A.H.

    (Shannon Wiener index) varied from 0.44 to 3.58 (X = 1.94, SD = + or - 0.89). Population and community structure were more stable in premonsoon months. Carnivorous species Glycera alba modified the community structure mainly due to prey...

  6. Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages

    Science.gov (United States)

    Carpenter, Kurt; Kuivila, Kathryn M.; Hladik, Michelle L.; Haluska, Tana L.; Michael B. Cole,

    2016-01-01

    Insecticide use in urban areas results in the detection of these compounds in streams following stormwater runoff at concentrations likely to cause toxicity for stream invertebrates. In this 2013 study, stormwater runoff and streambed sediments were analyzed for 91 pesticides dissolved in water and 118 pesticides on sediment. Detections included 33 pesticides, including insecticides, fungicides, herbicides, degradates, and a synergist. Patterns in pesticide occurrence reveal transport of dissolved and sediment-bound pesticides, including pyrethroids, from upland areas through stormwater outfalls to receiving streams. Nearly all streams contained at least one insecticide at levels exceeding an aquatic-life benchmark, most often for bifenthrin and (or) fipronil. Multiple U.S. EPA benchmark or criterion exceedances occurred in 40 % of urban streams sampled. Bed sediment concentrations of bifenthrin were highly correlated (p flatworms, nematodes, and oligochaetes dominated streams with relatively high concentrations of bifenthrin in bed sediments, whereas insects, sensitive invertebrates, and mayflies were much more abundant at sites with no or low bifenthrin concentrations. The abundance of sensitive invertebrates, % EPT, and select mayfly taxa were strongly negatively correlated with organic-carbon normalized bifenthrin concentrations in streambed sediments. Our findings from western Clackamas County, Oregon (USA), expand upon previous research demonstrating the transport of pesticides from urban landscapes and linking impaired benthic invertebrate assemblages in urban streams with exposure to pyrethroid insecticides.

  7. Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms

    Science.gov (United States)

    Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.

    2015-12-01

    The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant

  8. Hydra and Niccolo Paganini (1782-1840)--two peas in a pod? The molecular basis of extracellular matrix structure in the invertebrate, Hydra.

    Science.gov (United States)

    Sarras, M P; Deutzmann, R

    2001-08-01

    The body wall of Hydra is organized as an epithelial bilayer with an intervening extracellular matrix (ECM). Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrates such as human. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. A more rigid ECM, as in vertebrates, would not be compatible with this degree of movement. The flexible nature of Hydra ECM can now be explained in part by the unique structure of the organism's collagens. Interestingly, some aspects of the structural features of Hydra collagens mimic what is seen in Ehlers-Danlos syndrome, an inherited condition in humans that results in an abnormally flexible ECM that can be debilitating in extreme cases. This review will focus on structure-function relationships of the ECM of Hydra.

  9. An invertebrate stomach's view on vertebrate ecology

    DEFF Research Database (Denmark)

    Calvignac-Spencer, Sebastien; Leendertz, Fabian H.; Gilbert, M. Thomas P.

    2013-01-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population...

  10. Effects of Pollution on Freshwater Invertebrates.

    Science.gov (United States)

    Buikema, A. L., Jr.; Herricks, E. E.

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater invertebrates, covering publications of 1976-77. Some of the areas covered are: (1) toxicant effects on invertebrates; (2) microcosm and community effects, and (3) biological control of aquatic life. A list of 123 references is also presented. (HM)

  11. Benthic food web structure in the Comau fjord, Chile (∼42°S): Preliminary assessment including a site with chemosynthetic activity

    Science.gov (United States)

    Zapata-Hernández, Germán; Sellanes, Javier; Mayr, Christoph; Muñoz, Práxedes

    2014-12-01

    Using C and N stable isotopes we analyzed different trophic aspects of the benthic fauna at two sites in the Comau fjord: one with presence of venting of chemically reducing fluids and extensive patches of bacterial mats (XH: X-Huinay), and one control site (PG: Punta Gruesa) with a typical fjord benthic habitat. Due to the widespread presence of such microbial patches in the fjord and their recognized trophic role in reducing environments, we hypothesize that these microbial communities could be contributing to the assimilated food of consumers and transferring carbon into high trophic levels in the food web. Food sources in the area included macroalgae with a wide range of δ13C values (-34.7 to -11.9‰), particulate organic matter (POM, δ13C = -20.1‰), terrestrial organic matter (TOM, δ13C = -32.3‰ to -27.9‰) and chemosynthetic filamentous bacteria (δ13C = ∼-33‰). At both sites, fauna depicted typical values indicating photosynthetic production as a main food source (>-20‰). However, at XH selected taxa reported lower δ13C values (e.g. -26.5‰ in Nacella deaurata), suggesting a partial use of chemosynthetic production. Furthermore, enhanced variability at this site in δ13C values of the polyplacophoran Chiton magnificus, the limpet Fissurella picta and the tanaid Zeuxoides sp. may also be responding to the use of a wider scope of primary food sources. Trophic position estimates suggest three trophic levels of consumers at both sites. However, low δ15N values in some grazer and suspension-feeder species suggest that these taxa could be using other sources still to be identified (e.g. bacterial films, microalgae and organic particles of small size-fractions). Furthermore, between-site comparisons of isotopic niche width measurements in some trophic guilds indicate that grazers from XH have more heterogenic trophic niches than at PG (measured as mean distance to centroid and standard deviation of nearest neighbor distance). This last could be

  12. 黄河口海域无脊椎动物群落结构及其变化%Community structure of invertebrate and its change in Huanghe (Yellow River) Estuary

    Institute of Scientific and Technical Information of China (English)

    张焕君; 李凡; 丛日翔; 丛旭日; 任中华; 吕振波

    2014-01-01

    ,1996. The water and sediment discharge regulation (WSDR) project has been carried out since 2002 by artificially releasing a large amount of water in a short time, which would affect the invertebrate community somewhat to some extent. In order to know the community structure and its seasonal changes of inverte-brate community, the characteristic such as species composition, dominant species, biomass distribution, diversity, and community similarity were studied. Survey were conducted in May, June, early July, late July, August and September, 2012. In the investigated area, 3 sections of 15 sample stations were set up. The distance of the estuary mouth to section A, section B and section C was 10, 20 and 40 km respectively. The 15 stations were radial distributed in the survey area. Data were collected using a beam trawl with a 2.5 m width and a 2 cm net mesh. The trawling speed was~3 knots and each tow lasted~30 min. The results showed that a total number of 45 species, which belongs to 9 orders, 29 class and 39 genus, were collected. The number of species was between 28 and 35 in each survey. Nassarius variciferus, Oratos-quilla oratoria, Diogenes edwardsii, Palaemon gravieri and Neverita didyma were the main species in Huanghe Estuary. Gastropods (a total biomass of 8.4%to 45.8%) and crabs (10.8%–58.6%) were the dominant category of invertebrate by biomass. The trends of seasonal change of biomass and abundance were most similar. Biomass was highest in August and abundance was highest in early July. The Shannon-Wiener diversity index was between 1.482 (in May) and 1.719 (in June). The results of Bray-Curtis similarity and ANOSIM showed that community was more similarly in the adja-cent surveys. But the community in May and June was low similarly with that in August and September. According to the results, we can draw the following conclusions:1) The community was mainly dominated by small low-valued spe-cies. Compared with 1980s, the quality of invertebrate

  13. Estrutura da comunidade de macroinvertebrados bentônicos de um riacho de serra em Itatinga, São Paulo, Brasil Structure of a benthic macroinvertebrates community in a mountain stream in Itatinga, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Ludmilla O. Ribeiro

    2005-09-01

    Full Text Available A comunidade de macroinvertebrados bentônicos de um riacho de terceira ordem foi analisada em duas estações do ano, chuvosa e seca. Substratos artificiais foram amostrados semanalmente, ao longo de 56 dias para a coleta de macroinvertebrados, nas duas estações do ano. A composição da comunidade foi caracterizada por uma baixa diversidade, ou seja, presença de muitas espécies raras e poucas espécies abundantes nas duas estações do ano. Uma alta dominância de Chironomidae (Diptera nas duas estações, seguida de Baetidae (Ephemeroptera e Ancylidae (Mollusca, respectivamente nas estações chuvosa e seca, foi característico. Os resultados obtidos reforçam a grande importância de Chironomidae na comunidade bentônica de riachos e salientam a influência da sazonalidade sobre a estruturação destes organismos.The benthic macroinvertebrates community of a third order stream was studied during the wet and dry seasons. The community was analyzed using artificial substrates sampled weekly during 56 days in each season. The community composition was characterized by low species diversity, with high number of rare species and few abundant species for both seasons. A high dominance of Chinonomidae (Diptera for both seasons, followed by Baetidae (Ephemeroptera and Ancylidae (Mollusca, respectively for the wet and dry seasons, was found. The results reinforced the high importance of Chironomidae and the seasonal effect determining the stream benthic community structure.

  14. The complement C3 protein family in invertebrates

    Directory of Open Access Journals (Sweden)

    M Nonaka

    2011-01-01

    Full Text Available Complement C3 plays a pivotal role in the innate immune system of mammals as the central component of the complement system essential for its activation mechanism and effecter function. C3 has a unique intra-chain thioester bond that is shared by some complement and non-complement proteins forming a thioester protein (TEP family. Phylogenetic analysis of TEP family genes of vertebrates and invertebrates revealed that the TEP family is divided into two subfamilies, the C3 subfamily and the alpha-2-macroglobulin (A2M subfamily. The establishment of the TEP genes and differentiation of them into the C3 and A2M subfamilies occurred prior to the divergence of Cnidaria and Bilateria, in a common ancestor of Eumetazoa more than 600 MYA. Since then the A2M subfamily has been retained by all metazoan lineages analyzed thus far. In contrast, the C3 subfamily has been retained only by deuterostomes and some protostomes, and has been lost in multiple protostome lineages. Although the direct functional analysis of the most invertebrate TEPs is still to be performed, conservation of the basic domain structure and functionally important residues for each molecule suggests that the basic function is also conserved. Functional analyses performed on a few invertebrate C3 support this conclusion. The gene duplication events that generated C4 and C5 from C3 occurred in a common ancestor of jawed vertebrates, indicating that invertebrate and cyclostome C3s represent the pre-duplication state. In addition to C3, complement Bf and MASP involved in the activation of C3 are also identified in Cnidaria and some invertebrates, indicating that the complement system is one of the most ancient innate immune systems of Eumetazoa.

  15. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.

    Science.gov (United States)

    Ruder, Tim; Ali, Syed Abid; Ormerod, Kiel; Brust, Andreas; Roymanchadi, Mary-Louise; Ventura, Sabatino; Undheim, Eivind A B; Jackson, Timothy N W; Mercier, A Joffre; King, Glenn F; Alewood, Paul F; Fry, Bryan G

    2013-09-01

    It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.

  16. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave

    Directory of Open Access Journals (Sweden)

    Benjamin W. Tobin

    2013-09-01

    Full Text Available Seasonality in surface weather results in seasonal temperature and humidity changes in caves. Ecological and physiological differences among trogloxenes, troglophiles, and troglobionts result in species-dependent responses to this variability. To investigate these responses, we conducted five biological inventories in a marble cave in the Sierra Nevada Range, California, USA between May and December 2010. The cave was divided into six quadrats and temperature was continuously logged in each (humidity was logged at the entrance and in the deep cave. With increasing distance from the entrance, temperature changes were increasingly attenuated and lagged relative to surface temperature. Linear regressions were created to determine the relationship between measured environmental variables and diversity for cavernicoles (troglobionts and troglophiles and trogloxenes cave– wide and in the transition zone. Diversity for cavernicoles and trogloxenes peaked in the entrance and deep cave zones, respectively. Quadrat, date, 2-week antecedent temperature average, 2-week antecedent temperature range, and trogloxene abundance explained 76% of cavernicole diversity variability. Quadrat explained 55% of trogloxene diversity variability. In the transition zone, trogloxene abundance explained 26% of cavernicole variability and 2-week antecedent temperature and 2-week antecedent temperature range explained 40% of trogloxene variability. In the transition zone, trogloxene diversity was inversely related to 2-week antecedent temperature average and 2-week antecedent temperature range, suggesting that species were moving into the transition zone when temperature was most stable. In a CCA of cavernicoles distribution data and environmental variables, 35% of variation in species-specific distributions was attributable to quadrat, and non-significant percentages were explained by date and environmental variables. Differences in assemblage structure among quadrats were

  17. Dietary effects of metals-contaminated invertebrates from the Coeur d'Alene River, Idaho, on cutthroat trout

    Science.gov (United States)

    Farag, A.M.; Woodward, D.F.; Brumbaugh, W.; Goldstein, J.N.; MacConnell, E.; Hogstrand, C.; Barrows, F.T.

    1999-01-01

    Benthic macroinvertebrates with elevated concentrations of metals were collected from the Coeur d'Alene (CDA) River, Idaho, pasteurized, and fed to cutthroat trout Oncorhynchus clarki in the laboratory from start of feeding until 90 d posthatch. Invertebrates were collected from two sites known to contain elevated concentrations of metals: near Pinehurst in the South Fork of the CDA River and at Cataldo, approximately 5 km below the confluence of the South Fork and the North Fork. Invertebrates collected from a relatively clean site in the North Fork were used as a reference diet. We performed measurements of fish health that indicate reduced fitness of fish fed the South Fork and Cataldo diets. Effects measured were reduced feeding activity, increased number of macrophage aggregates and hyperplasia of cells in the kidney, degeneration of mucosal epithelium in the pyloric caecae, and metallothionein induction. These effects would likely reduce growth and survival of fish in the wild. Vacuolization of glial cells were also observed in fish fed the Cataldo diet. Metals in the water often exacerbated the histological effects observed. Although the invertebrates collected near Cataldo had lower concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) than the invertebrates from the South Fork, fish fed the Cataldo diet had equally high or higher concentrations of all metals except as by day 44. The Cataldo diet also caused the most deleterious effects on survival and growth. These findings are especially important for early life stage fish, whose diet consists wholly of benthic macroinvertebrates. Therefore, fish feeding on invertebrates in the CDA River below the Bunker Hill smelting complex are at risk of reduced fitness.

  18. Deep-sea benthic footprint of the deepwater horizon blowout.

    Directory of Open Access Journals (Sweden)

    Paul A Montagna

    Full Text Available The Deepwater Horizon (DWH accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

  19. Viral diseases of marine invertebrates

    Science.gov (United States)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  20. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.

    Science.gov (United States)

    Pacioglu, Octavian; Moldovan, Oana Teodora

    2016-03-01

    Whereas the response of lotic benthic macroinvertebrates to different environmental stressors is a widespread practice nowadays in assessing the water and habitat quality, the use of hyporheic zone invertebrates is still in its infancy. In this study, classification and regression trees analysis were employed in order to assess the ecological requirements and the potential as bioindicators for the hyporheic zone invertebrates inhabiting four lowland chalk rivers (south England) with contrasting eutrophication levels (based on surface nitrate concentrations) and magnitude of land use (based on percentage of fine sediments load and median interstitial space). Samples of fauna, water and sediment were sampled twice, during low (summer) and high (winter) groundwater level, at depths of 20 and 35 cm. Certain groups of invertebrates (Glossosomatidae and Psychomyiidae caddisflies, and riffle beetles) proved to be good indicators of rural catchments, moderately eutrophic and with high fine sediment load. A diverse community dominated by microcrustaceans (copepods and ostracods) were found as good indicators of highly eutrophic urban streams, with moderate-high fine sediment load. However, the use of other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, water mites and the amphipod Gammarus pulex), very widespread in the hyporheic zone of all sampled rivers, is of limited use because of their high tolerance to the analysed stressors. We recommend the use of certain taxonomic groups (comprising both meiofauna and macroinvertebrates) dwelling in the chalk hyporheic zone as indicators of eutrophication and colmation and, along with routine benthic sampling protocols, for a more comprehensive water and habitat quality assessment of chalk rivers.

  1. Ecotoxicological effect of grounded MV River Princess on the intertidal benthic organisms off Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Sivadas, S.; Goltekar, R.; Clemente, S.; Nanajkar, M.; Sawant, R.; DeSilva, C.; Sarkar, A.; Ansari, Z.A.

    to them, the aromatics present in the fuel oil get quickly evaporated, leaving only residual component in the sediment. Therefore, it is worth mentioning that the values of TPH observed during the present study were high as compared to the previous data... associated with seep is a function of bacteria adapting to utilize petroleum as a source of carbon and energy and this in turn is consumed by benthic invertebrates specially nematodes (Montagna et al. 1987). Lee and Page (1997) have reported that at lower...

  2. American Samoa ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for estuarine, reef-associated, and terrestrial invertebrate species in American Samoa. Vector polygons in...

  3. Columbia River ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for clams, oysters, crabs, and other invertebrate species in Columbia River. Vector polygons in this data...

  4. Trace element contamination in benthic macroinvertebrates from a small stream near a uranium mill tailings site.

    Science.gov (United States)

    Peterson, M J; Smith, J G; Southworth, G R; Ryon, M G; Eddlemon, G K

    2002-03-01

    Direct measurement of the accumulation of non-radioactive trace elements in aquatic biota near uranium mining or processing sites has been relatively rare, with greater focus on the radiological activity in the adjacent soils and groundwater. To evaluate the potential ecological concern associated with trace elements at a former uranium mill site in southeastern Utah, benthic macroinvertebrates were collected and analyzed for 17 trace elements from multiple locations within a small on-site stream, Montezuma Creek, and a nearby reference stream. Key questions of this study relate to the spatial and temporal extent of contamination in aquatic biota, the potential ecological risks associated with that contamination, and the usefulness of benthic macroinvertebrates as a monitoring tool at this site. Composite samples of similar macroinvertebrate taxa and functional feeding groups were collected from each site over a two year period that was representative of normal and dry-year conditions. In both years, mean concentrations of arsenic, molybdenum, selenium, and vanadium were significantly higher (a factor of 2-4 times: P mill tailing site in comparison to concentrations from reference locations. Mean uranium concentrations in invertebrates immediately downstream of the mill site were more than 10 times higher than at reference sites. The site-to-site pattern of contamination in Montezuma Creek invertebrates was similar in 1995 and 1996, with mill-related trace elements showing a downstream decreasing trend. However, nine of seventeen contaminant concentrations were higher in the second year of the study, possibly due to a higher influx of deep groundwater during the drier second year of the study. A preliminary assessment of ecological risks, based on the benthic macroinvertebrate bioaccumulation data, suggests that aquatic and terrestrial population risks are low. Benthic macroinvertebrates appeared to be sensitive integrators of trace element inputs to the aquatic

  5. Potential for parasite-induced biases in aquatic invertebrate population studies

    Science.gov (United States)

    Fisher, Justin D.L.; Mushet, David M.; Stockwell, Craig A.

    2014-01-01

    Recent studies highlight the need to include estimates of detection/capture probability in population studies. This need is particularly important in studies where detection and/or capture probability is influenced by parasite-induced behavioral alterations. We assessed potential biases associated with sampling a population of the amphipod Gammarus lacustris in the presence of Polymorphus spp. acanthocephalan parasites shown to increase positive phototaxis in their amphipod hosts. We trapped G. lacustris at two water depths (benthic and surface) and compared number of captures and number of parasitized individuals at each depth. While we captured the greatest number of G. lacustris individuals in benthic traps, parasitized individuals were captured most often in surface traps. These results reflect the phototaxic movement of infected individuals from benthic locations to sunlit surface waters. We then explored the influence of varying infection rates on a simulated population held at a constant level of abundance. Simulations resulted in increasingly biased abundance estimates as infection rates increased. Our results highlight the need to consider parasite-induced biases when quantifying detection and/or capture probability in studies of aquatic invertebrate populations.

  6. Invertebrate Iridovirus Modulation of Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Trevor Williams; Nllesh S. Chitnis; Sh(a)n L. Bilimoria

    2009-01-01

    Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inh ibitor(SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana ceils. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 iap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.

  7. Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca.

    Science.gov (United States)

    Norwood, W P; Alaee, M; Sverko, E; Wang, D; Brown, M; Galicia, M

    2013-10-01

    Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857μgD5g(-1) dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821μgg(-1)dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570μg D5g(-1) sand dw were determined to be statistically the same.

  8. Chemical monitoring in the Dutch Wadden Sea by means of benthic invertebrates and fish

    Science.gov (United States)

    Essink, Karel

    1989-09-01

    In monitoring, it is of utmost importance to carefully define the purpose, the sampling strategy, as well as the analytical chemical and statistical requirements. Surveys are appropriate for describing the geographical variation in environmental contaminant levels. Repeated surveys and recurrentdata collection at permanent locations provide means of detecting temporal trends. Results are presented here of surveys on pollution by trace metals, polychlorinated biphenyls and organochlorine pesticides in the Ems Estuary and Dutch Wadden Sea using Mytilus edulis, Mya arenaria, Arenicoia marina, Nereis diversicolor and Crangon crangon as test organisms. Trends towards decreasing pollution by mercury are illustrated by monitoring data on Mytilus edulis and Zoarces viviparus. It is stressed that the results of chemical monitoring in organisms may be interpreted only in termser the biological effects on the basis of relevant toxicological knowledge and/or additional bio-assays.

  9. Trace element exposure in benthic invertebrates from Grove Pond, Plow Shop Pond, and Nonacoicus Brook

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Remedial investigations associated with the Superfund Program of the U.S. Environmental Protection Agency (EPA) found highly elevated levels of several trace...

  10. Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient

    Science.gov (United States)

    Linse, Katrin; Barnes, David K. A.; Enderlein, Peter

    2006-04-01

    Much has been made of body-size variability with latitude, and extreme body sizes in polar waters, but body size has never been investigated along a latitudinal gradient within polar waters. The Scotia arc and Antarctic Peninsula are ideal for latitudinal studies, and a number of species extend along the length of this region. We studied body size in two gastropod molluscs, Margarella antarctica and Nacella concinna, an echinoid, Sterechinus neumayeri, and two bryozoans, Celleporella bougainvillea and Inversiula nutrix, at six sites from South Georgia to Adelaide Island (54-68°S). We hypothesised that size, age, and growth would not correlate with latitude, given the uniformity of conditions (i.e. temperature, dissolved oxygen, etc.) within the Polar Frontal Zone. We found significant differences in size of all five species among our study sites, but not a linear trend, nor one that correlated with latitude. In bryozoans, this result was because growth was positively and age negatively correlated with latitude—resulting in little difference in overall size. In the grazer organisms (the two gastropods and the echinoid) a correlation with local food availability (chlorophyll a concentration) did not correlate with latitude. Fecundity in the gastropod M. antarctica was positively correlated with body size, and body size also was influenced by food availability. We conclude that variation in body size in all five study taxa was governed by local factors such as food availability and competition and not by latitude.

  11. A Characterization of the Phytoplankton, Zooplankton, and Benthic Invertebrate Communities of Lake Elsinore

    OpenAIRE

    Tobin, Michelle Elaine

    2011-01-01

    Lake Elsinore is a shallow, polymictic lake in the southwest corner of Riverside County in Southern California. It has a history of poor water quality (algal blooms, low DO, and periodic fish kills) and was listed on the State of California's 303d list for impairments due to nutrients and other factors. Water column measurements and nutrient concentrations have been closely monitored since 2000. Less is known about the biological condition of the lake. A 1-yr biological monitoring study was...

  12. Field Report : Anna Plains and Roebuck Bay Benthic Invertebrate Mapping 2016

    NARCIS (Netherlands)

    Piersma, Theunis; Pearson, Grant B.; Lavaleye, Marc S. S.; Hickey, Robert; Rogers, Danny; Holthuijsen, Sander; Estrella, Sora-Marin; de Goeij, Petra; Findlay, Naomi; Storey, Andrew W.

    2016-01-01

    This project has been funded by the Department of Parks and Wildlife partnership with BHP Billiton “Eighty Mile Beach and Walyarta Conservation Program”, with in-kind support from NIOZ and Wetland Research & Management This report was produced at the Broome Bird Observatory in late October 2016. Abs

  13. Macrophyte loss drives decadal change in benthic invertebrates in peatland drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.; van Dam, H.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    1. Agricultural peatlands and their associated drainage systems are often highly managed and exposed to anthropogenic pressures, such as eutrophication and stable water tables, maintained via drainage during periods of high rainfall and inlet of, alkaline-rich, waters during dry periods. These press

  14. Field Report: Anna Plains and Roebuck Bay Benthic Invertebrate Mapping 2016 : AnnRoeBIM16

    NARCIS (Netherlands)

    Piersma, Theunis; Pearson, Grant B.; Lavaleye, Marc S. S.; Hickey, Robert; Rogers, Danny; Holthuijsen, Sander; Estrella, Sora-Marin; de Goeij, Petra; Findlay, Naomi; Storey, Andrew W.

    2016-01-01

    This project has been funded by the Department of Parks and Wildlife partnership with BHP Billiton “Eighty Mile Beach and Walyarta Conservation Program”, with in-kind support from NIOZ and Wetland Research & Management This report was produced at the Broome Bird Observatory in late October 2016. Abs

  15. Toll-like receptors of deuterostome invertebrates

    Directory of Open Access Journals (Sweden)

    Honoo eSatake

    2012-02-01

    Full Text Available Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates including a sea urchin (222 TLR-related gene candidates and amphioxus (72 TLR-related gene candidates. Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, an ascidian, Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and -2, were shown to possess hybrid functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating the confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates of deuterostome invertebrates, and provide insight into an evolutionary process of TLRs.

  16. Complexity and simplification in understanding recruitment in benthic populations

    KAUST Repository

    Pineda, Jesús

    2008-11-13

    Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify "macroecological" patterns or attempt to identify and model the essential, "first-order" elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it

  17. Spatial and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA)

    Science.gov (United States)

    Mattila, Johanna; Chaplin, Glen; Eilers, Michele R.; Heck, Kenneth L.; O'Neal, Jonathan P.; Valentine, John F.

    1999-06-01

    Fish, epibenthos and macroinfauna were collected in a Zostera marina bed and nearby unvegetated sediments in the estuary of the Damariscotta River, on the mid-coast of Maine. Samples of epibenthic fauna and fish were collected at low tides both during day and night, and samples of infauna at low tides during the day. The mean density of Zostera shoots in the study area was 335 m -2. Abundance and species number of fish were greater at night than during the day and greater in eelgrass beds ( Z. marina) than in unvegetated habitats. Daytime fish collections were dominated by Atlantic silversides ( Medinia medinia), while juvenile winter flounder ( Pseudopleuronectes americanus) dominated night collections. Also Zostera-associated epifaunal abundances and number of species were significantly higher at night than during the day. Mysis stenolepis, Idotea balthica and Littorina obtusata were dominant species in the epifauna samples. Of the total of 37 invertebrate species encountered, only five occurred both in the infaunal and epifaunal samples. Nineteen different taxa were collected from the benthic core samples. The most abundant invertebrate infaunal taxa were sipunculids, the polychaete Nereis virens, and oligochaetes. Infaunal invertebrate abundances and species diversity were significantly higher in eelgrass beds than in unvegetated sediments. The abundance and number of species of benthic invertebrates were also positively correlated to seagrass biomass. Community diversity values ( H') were relatively low but fit well in the general pattern of decreasing diversity towards northern latitudes.

  18. Soil macrofauna (invertebrates of Kazakhstanian Stipa lessingiana dry steppe

    Directory of Open Access Journals (Sweden)

    Bragina Tatyana М.

    2016-12-01

    Full Text Available Stipa lessingiana steppes used to be prevalent on the dry Trans-Ural denudation plains, particularly, on the Sub-Ural and the Turgay Plateau. But, most of them have been lost because they were plowed up during the Virgin Land campaign in the second part of 20th century. This paper presents a detailed study of the faunistic composition and the structure of soil-dwelling invertebrate communities (macrofauna of a temperate-dry bunch feather grass steppe in the Turgai Plateau (Northern-Turgai physical-geographical province of steppe Kazakhstan, Kostanay Oblast. The study site is located in the territory of the Naurzum State Nature Reserve, a part of the UNESCO World Heritage site “Saryarka Steppe and Lakes of Northern Kazakhstan”, where remnants of Virgin S. lessingiana steppes have been preserved to the present day. This region is the driest and most continental in climate of all the dry steppes of Kazakhstan. The total abundance and biomass of soil invertebrate communities in the investigated site were lower than in the northern and western steppe areas. Soil invertebrates are among the major components that determine the functioning of terrestrial natural ecosystems.

  19. Benthic Epiphytic Diatoms in Deep-sea Southern Ocean Sediments as a New Tool for Reconstructing Antarctic Paleoclimatic and Paleoceanographic History: Implications of Floating 'Macroalgal Biotic Oases'

    Science.gov (United States)

    Harwood, D. M.; Porter, N.; OConnell, S.

    2014-12-01

    A new paleobiological proxy for Antarctic paleoclimate history provides insight into past extent of open marine shelves on Wilkes Land margin, and calls for reassessment of IRD interpretations in the deep-sea. Marine, epiphytic benthic diatoms that grow attached to macroalgae (seaweed) are recovered in Miocene sediment from DSDP Site 269. They suggest periodic presence of floating rafts or 'biotic oases' in the Southern Ocean comprising buoyant macroalgae, attached benthic diatoms, and biota associated with this displaced coastal community. Macroalgae attach to the substrate with a holdfast, a multi-fingered structure that serves as an anchor. Uprooted holdfasts attached to buoyant macroalgae can raft sedimentary particles, some large (>50 kg), into the deep-sea. In addition, a rich biota of associated invertebrates live in cavities within the holdfast, the dispersal of which may explain the biogeographic distribution of organisms on Subantarctic islands. The stratigraphic occurrence of large, benthic epiphytic diatoms of genera Arachnoidiscus, Isthmia, Rhabdonema, Gephyra, Trigonium, and smaller Achnanthes, Cocconeis, Grammatophora, and Rhaphoneis in sediment cores from DSDP Site 269 reflect a rich, productive epiphytic diatom flora that maintained its position in the photic zone attached to their buoyant seaweed hosts. Amphipods and other herbivores grazed the benthic diatoms and produced diatom-rich fecal pellets that were delivered to the sea-floor. The discontinuous stratigraphic occurrence of the epiphytic diatoms, amongst the background of planktonic diatoms in Core 9 of DSDP Site 269, suggests environmental changes induced by either warm or cold events may have controlled the production and/or release of the macroalgae into the deep-sea. Warm events led to increased shelf areas, and cold events led to formation of ice on the macroalgae to increase their buoyancy and lift-off. Complicating the distinction between warm and cold events is the potential for the

  20. Aspects of Benthic Biology in Support of HEBBLE (High Energy Benthic Boundary Layer Experiment).

    Science.gov (United States)

    1985-01-08

    Banis in the Gulf of Mexico (Yingst and Rhoads, in press), and at the Deep station in 40 m of water in Long Island Sound (Aller and Yingst, 1980...community structure in the vicinity of the Texas Flower Gardens, Gulf of Mexico . Estuarine, Coastal, and Shelf 9cience. Young, R.N. and J.B. Southard...tubes of benthic agglutinated foraminifera . Physical properties The vane shear strength is very uniform at 0.4 kPa through the soft brown mud but

  1. The Global Invertebrate Genomics Alliance (GIGA). 2014. Developing Community Resources to Study Diverse Invertebrate Genomes

    NARCIS (Netherlands)

    Pomponi, S.A.

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major cha

  2. Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions.

    Science.gov (United States)

    Kroll, Alexandra; Matzke, Marianne; Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas; Svendsen, Claus

    2016-03-01

    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.

  3. Are invertebrates relevant models in ageing research?

    DEFF Research Database (Denmark)

    Erdogan, Cihan Suleyman; Hansen, Benni Winding; Vang, Ole

    2016-01-01

    Ageing is the organisms increased susceptibility to death, which is linked to accumulated damage in the cells and tissues. Ageing is a complex process regulated by crosstalk of various pathways in the cells. Ageing is highly regulated by the Target of Rapamycin (TOR) pathway activity. TOR...... the molecular mechanisms underlying the ageing process faster than mammal systems. Inhibition of the TOR pathway activity via either genetic manipulation or rapamycin increases lifespan profoundly in most invertebrate model organisms. This contribution will review the recent findings in invertebrates concerning...... the TOR pathway and effects of TOR inhibition by rapamycin on lifespan. Besides some contradictory results, the majority points out that rapamycin induces longevity. This suggests that administration of rapamycin in invertebrates is a promising tool for pursuing the scientific puzzle of lifespan...

  4. An ecological model of the Northern and Central Adriatic Sea: Analysis of ecosystem structure and fishing impacts

    Science.gov (United States)

    Coll, Marta; Santojanni, Alberto; Palomera, Isabel; Tudela, Sergi; Arneri, Enrico

    2007-08-01

    A trophic mass-balance model was developed to characterise the food web structure and functioning of the Northern and Central Adriatic Sea and to quantify the ecosystem impacts of fishing during the 1990s. Forty functional groups were described, including target and non-target fish and invertebrate groups, and three detritus groups (natural detritus, discards and by-catch of cetaceans and marine turtles). Results highlighted that there was an important coupling between pelagic-benthic production of plankton, benthic invertebrates and detritus. Organisms located at low and medium trophic levels, (i.e. benthic invertebrates, zooplankton and anchovy), as well as dolphins, were identified as keystone groups of the ecosystem. Jellyfish were an important element in terms of consumption and production of trophic flows within the ecosystem. The analysis of trophic flows of zooplankton and detritus groups indirectly underlined the importance of the microbial food web in the Adriatic Sea. Fishing activities inflicted notable impacts on the ecosystem during the 1990s, with a high gross efficiency of the fishery, a high consumption of fishable production, high exploitation rates for various target and non target species, a low trophic level of the catch and medium values of primary production required to sustain the fishery. Moreover, the analysis of Odum's ecological indicators highlighted that the ecosystem was in a low-medium developmental stage. Bottom trawling ( Strascico), mid-water trawling ( Volante) and beam trawling ( Rapido) fleets had the highest impacts on both target and non target ecological groups. On the contrary, purse seining ( Lampara) showed medium to low impacts on the ecosystem; cetaceans, marine turtles and sea birds were not significantly involved in competition with fishing activity.

  5. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    Science.gov (United States)

    Elskus, Adria A.

    2012-01-01

    organic matter in sediment and soils, it is particularly important to determine their effects on freshwater mussels and other freshwater benthic invertebrates in contact with sediments, as available toxicity studies with pelagic species, mainly Daphnia magna, may not be representative of these benthic organisms. Finally, there is a critical need for studies of the chronic effects of fungicides on reproduction, immunocompetence, and ecosystem function; sublethal endpoints with population and community-level relevance.

  6. Identifying the components of ecological variation in a marine benthic megafauna

    Directory of Open Access Journals (Sweden)

    Ana Maria Setubal Pires-Vanin

    2001-01-01

    Full Text Available Current work in benthic ecology highlights the importance of the temporal component of ecological variation for distribution and abundance of organisms. However, this approach is limited by the difficulty in separating and measure the constituents of such variation. The present study aims to separate and identify the environmental and temporal components of ecological variation in the abundance of the benthic invertebrate community from the São Sebastião Channel, southeastern Brazil, by canonical correspondence analysis. The area is seasonally submitted to the intrusion of a cold and saline water mass, an important factor influencing benthic communities. The composition and abundance of the megafauna were investigated at five sites from November 1993 to August 1994. A total of 93 species were collected. Average density reached 187 individuals per catch with highest numbers in summer. A striking difference in species composition and abundance was observed in the catches through the year and the results suggested a different structure of the assemblages for each season. Four independent components of the species variation could be separated and identified: pure environmental, pure temporal, environmental with temporal structure and undetermined. The large amount of environmental variation is related to sandy bottoms and depth influence, whereas the time factor can be interpreted as both the seasonal intrusion of the South Atlantic Central Water and the biological cycles of some key-species.Os estudos atuais em ecologia bêntica apontam para a importância do componente temporal da variação ecológica na distribuição e abundância dos organismos. Entretanto, a abordagem temporal é limitada pela dificuldade na separação e quantificação dos constituintes dessa variação. O presente estudo visa separar e quantificar os componentes ambiental e temporal da variação ecológica na distribuição da megafauna bêntica no Canal de São Sebasti

  7. A bio-engineered soft-bottom environment: The impact of Lanice conchilega on the benthic species-specific densities and community structure

    NARCIS (Netherlands)

    Rabaut, M.; Guilini, K.; Van Hoey, V.H.; Vincx, M.; Degraer, S.

    2007-01-01

    This paper evaluates the effect of the tube-building, habitat structuring polychaete Lanice conchilega on the macrobenthic community and sediment characteristics of its habitat. To investigate which factors make species occur in a well-known bio-engineered habitat, macrofaunal and sedimentological d

  8. Burrowing seabird effects on invertebrate communities in soil and litter are dominated by ecosystem engineering rather than nutrient addition.

    Science.gov (United States)

    Orwin, Kate H; Wardle, David A; Towns, David R; St John, Mark G; Bellingham, Peter J; Jones, Chris; Fitzgerald, Brian M; Parrish, Richard G; Lyver, Phil O'B

    2016-01-01

    Vertebrate consumers can be important drivers of the structure and functioning of ecosystems, including the soil and litter invertebrate communities that drive many ecosystem processes. Burrowing seabirds, as prevalent vertebrate consumers, have the potential to impact consumptive effects via adding marine nutrients to soil (i.e. resource subsidies) and non-consumptive effects via soil disturbance associated with excavating burrows (i.e. ecosystem engineering). However, the exact mechanisms by which they influence invertebrates are poorly understood. We examined how soil chemistry and plant and invertebrate communities changed across a gradient of seabird burrow density on two islands in northern New Zealand. Increasing seabird burrow density was associated with increased soil nutrient availability and changes in plant community structure and the abundance of nearly all the measured invertebrate groups. Increasing seabird densities had a negative effect on invertebrates that were strongly influenced by soil-surface litter, a positive effect on fungal-feeding invertebrates, and variable effects on invertebrate groups with diverse feeding strategies. Gastropoda and Araneae species richness and composition were also influenced by seabird activity. Generalized multilevel path analysis revealed that invertebrate responses were strongly driven by seabird engineering effects, via increased soil disturbance, reduced soil-surface litter, and changes in trophic interactions. Almost no significant effects of resource subsidies were detected. Our results show that seabirds, and in particular their non-consumptive effects, were significant drivers of invertebrate food web structure. Reductions in seabird populations, due to predation and human activity, may therefore have far-reaching consequences for the functioning of these ecosystems.

  9. The phylogeny of invertebrates and the evolution of myelin.

    Science.gov (United States)

    Roots, Betty I

    2008-05-01

    Current concepts of invertebrate phylogeny are reviewed. Annelida and Arthropoda, previously regarded as closely related, are now placed in separate clades. Myelin, a sheath of multiple layers of membranes around nerve axons, is found in members of the Annelida, Arthropoda and Chordata. The structure, composition and function of the sheaths in Annelida and Arthropoda are examined and evidence for the separate evolutionary origins of myelin in the three clades is presented. That myelin has arisen independently at least three times, namely in Annelids, Arthropodas and Chordates, provides a remarkable example of convergent evolution.

  10. Alkaloids from Marine Invertebrates as Important Leads for Anticancer Drugs Discovery and Development

    Directory of Open Access Journals (Sweden)

    Concetta Imperatore

    2014-12-01

    Full Text Available The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines, together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery.

  11. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  12. HISTOLOGICAL PREPARATION OF INVERTEBRATES FOR EVALUATING CONTAMINANT EFFECTS

    Science.gov (United States)

    Although many studies in toxicologic pathology evaluate the effects of toxicants on fishes because of their similarities with other vertebrates, invertebrates can also provide insights into toxicant impacts on ecosystems. Invertebrates not only serve as food resources (e.g., ...

  13. The Early Years: An Invertebrate Garden

    Science.gov (United States)

    Ashbrook, Peggy

    2008-01-01

    For farmers and gardeners, slugs and snails may be serious pests that will limit the amount of harvest, but for a child, they represent a world to be explored. To teachers, however, invertebrates are tools for broadening students' understanding about animals, the connections between animals and habitats or plants, and an engaging subject to write…

  14. Neuroexcitatory Drug Receptors in Mammals and Invertebrates

    Science.gov (United States)

    1990-03-16

    T.A. Miller and R.W. Olsen (1988) Quantitative autoradiography of GABA receptors in locust (Schistocerca americana). Brain Pestic . Sci. 24, 299-309. 6... Pestic . Scl. 24, 299-309 (1988). Olsen, R.W., Szamraj, 0. and Miller, T. [35S]t-Butyl Bicyclophosphorothionate (TBPS) Binding Sites in Invertebrate

  15. THE STUDY OF WATER QUALITY USING BENTHIC MACROINVERTEBRATES AS BIOINDICATORS IN THE CATCHMENT AREAS OF THE RIVERS JIU, OLT AND IALOMIŢA

    Directory of Open Access Journals (Sweden)

    Elena Daniela MITITELU

    2012-01-01

    Full Text Available The wide distribution of benthic invertebrates and their different sensitivity shown upon modifying the qualitative parameters of aquatic ecosystems led to a frequent use of these group as bioindicators in different studies. The present study aims at presenting a list concerning the different macroinvertebrates identified in the larva stage in three watersheds (Jiu, Olt, Ialomiţa and establishing the water quality of the monitored sections using this benthic macroinvertebrates. The sample collecting points were represented by 23 stations. The abundance and frequency values recorded for benthic communities varied according to the physical-chemical conditions specific to each sample collecting station. There were identified 15 groups in total. The most frequent were Ephemeroptera, Plecoptera, Trichoptera, Diptera (Chironomidae and others. The deterioration of water quality is marked by the decrease in the biotic index EPT/Ch value.

  16. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.

    Directory of Open Access Journals (Sweden)

    Anna Villnäs

    Full Text Available Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential, gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH(4(+ and dissolved Si. Although effluxes of PO(4(3- were not altered significantly, changes were observed in sediment PO(4(3- sorption capability. The duration of hypoxia (i.e. number of days of stress explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the

  17. The Early Shorebird Will Catch Fewer Invertebrates on Trampled Sandy Beaches.

    Science.gov (United States)

    Schlacher, Thomas A; Carracher, Lucy K; Porch, Nicholas; Connolly, Rod M; Olds, Andrew D; Gilby, Ben L; Ekanayake, Kasun B; Maslo, Brooke; Weston, Michael A

    2016-01-01

    Many species of birds breeding on ocean beaches and in coastal dunes are of global conservation concern. Most of these species rely on invertebrates (e.g. insects, small crustaceans) as an irreplaceable food source, foraging primarily around the strandline on the upper beach near the dunes. Sandy beaches are also prime sites for human recreation, which impacts these food resources via negative trampling effects. We quantified acute trampling impacts on assemblages of upper shore invertebrates in a controlled experiment over a range of foot traffic intensities (up to 56 steps per square metre) on a temperate beach in Victoria, Australia. Trampling significantly altered assemblage structure (species composition and density) and was correlated with significant declines in invertebrate abundance and species richness. Trampling effects were strongest for rare species. In heavily trafficked plots the abundance of sand hoppers (Amphipoda), a principal prey item of threatened Hooded Plovers breeding on this beach, was halved. In contrast to the consistently strong effects of trampling, natural habitat attributes (e.g. sediment grain size, compactness) were much less influential predictors. If acute suppression of invertebrates caused by trampling, as demonstrated here, is more widespread on beaches it may constitute a significant threat to endangered vertebrates reliant on these invertebrates. This calls for a re-thinking of conservation actions by considering active management of food resources, possibly through enhancement of wrack or direct augmentation of prey items to breeding territories.

  18. The Early Shorebird Will Catch Fewer Invertebrates on Trampled Sandy Beaches

    Science.gov (United States)

    Schlacher, Thomas A.; Carracher, Lucy K.; Porch, Nicholas; Connolly, Rod M.; Olds, Andrew D.; Gilby, Ben L.; Ekanayake, Kasun B.; Maslo, Brooke; Weston, Michael A.

    2016-01-01

    Many species of birds breeding on ocean beaches and in coastal dunes are of global conservation concern. Most of these species rely on invertebrates (e.g. insects, small crustaceans) as an irreplaceable food source, foraging primarily around the strandline on the upper beach near the dunes. Sandy beaches are also prime sites for human recreation, which impacts these food resources via negative trampling effects. We quantified acute trampling impacts on assemblages of upper shore invertebrates in a controlled experiment over a range of foot traffic intensities (up to 56 steps per square metre) on a temperate beach in Victoria, Australia. Trampling significantly altered assemblage structure (species composition and density) and was correlated with significant declines in invertebrate abundance and species richness. Trampling effects were strongest for rare species. In heavily trafficked plots the abundance of sand hoppers (Amphipoda), a principal prey item of threatened Hooded Plovers breeding on this beach, was halved. In contrast to the consistently strong effects of trampling, natural habitat attributes (e.g. sediment grain size, compactness) were much less influential predictors. If acute suppression of invertebrates caused by trampling, as demonstrated here, is more widespread on beaches it may constitute a significant threat to endangered vertebrates reliant on these invertebrates. This calls for a re-thinking of conservation actions by considering active management of food resources, possibly through enhancement of wrack or direct augmentation of prey items to breeding territories. PMID:27564550

  19. Invertebrate response to nutrient-driven epiphytic load increase in Posidonia oceanica meadows

    Science.gov (United States)

    Castejón-Silvo, Inés; Domínguez, Marta; Terrados, Jorge; Tomas, Fiona; Morales-Nin, Beatriz

    2012-10-01

    Nutrient increases in coastal systems are becoming a world-wide concern since they promote strong structural and functional changes in shallow ecosystems. Increased nutrient availability in the water column may strongly enhance the leaf epiphytic communities of key habitat-forming species such as seagrasses through a bottom-up mechanism, competing for light and nutrients with the leaves. Epiphytes support an abundant and diverse community of resident invertebrates which fuel higher trophic levels in Posidonia oceanica food webs. We evaluated the response of seagrass, epiphytes and the invertebrate community to an experimental increase of water column nutrient availability. Nutrient increase was followed by a rise of epiphyte biomass. The increase in epiphytic biomass promoted invertebrate abundance, but appeared to have negative effects on P. oceanica shoot size. On the other hand, the increase in invertebrate abundance did not seem to control epiphytic biomass, which was not reversed to pre-nutrient enrichment levels. This work suggests that the abundance of invertebrate populations is limited by epiphyte biomass, through food or habitat provision, in P. oceanica systems and points to nutrients as the main driver of epiphyte biomass during summer. The results illustrate the control mechanisms at community level in P. oceanica meadows and the possible responses of a threatened ecosystem to human impact such as eutrophication.

  20. Proteomics Insights: Proteins related to Larval Attachment and Metamorphosis of Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    KONDETHIMMANAHALLI eCHANDRAMOULI

    2014-10-01

    Full Text Available The transition in an animal from a pelagic larval stage to a sessile benthic juvenile typically requires major morphological and behavioral changes. Larval competency, attachment and initiation of metamorphosis are thought to be regulated by intrinsic chemical signals and specific sets of proteins. However, the molecular mechanisms that regulate larval attachment and metamorphosis in marine invertebrates have yet to be fully elucidated. Despite the many challenges associated with analysis of the larvae proteome, recent proteomic technologies have been used to address specific questions in larval developmental biology. These and other molecular studies have generated substantial amount of information of the proteins and molecular pathways involved in larval attachment and metamorphosis. Furthermore, the results of these studies have shown that systematic changes in protein expression patterns and post-translational modifications (PTM are crucial for the transition from larva to juvenile. The degeneration of larval tissues is mediated by protein degradation, while the development of juvenile organs may require PTM. In terms of application, the identified proteins may serve as targets for antifouling compounds, and biomarkers for environmental stressors. In this review we highlight the strengths and limitations of proteomic tools in the context of the study of marine invertebrate larval biology.

  1. Proteomics insights: proteins related to larval attachment and metamorphosis of marine invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2014-10-31

    The transition in an animal from a pelagic larval stage to a sessile benthic juvenile typically requires major morphological and behavioral changes. Larval competency, attachment and initiation of metamorphosis are thought to be regulated by intrinsic chemical signals and specific sets of proteins. However, the molecular mechanisms that regulate larval attachment and metamorphosis in marine invertebrates have yet to be fully elucidated. Despite the many challenges associated with analysis of the larvae proteome, recent proteomic technologies have been used to address specific questions in larval developmental biology. These and other molecular studies have generated substantial amount of information of the proteins and molecular pathways involved in larval attachment and metamorphosis. Furthermore, the results of these studies have shown that systematic changes in protein expression patterns and post-translational modifications (PTMs) are crucial for the transition from larva to juvenile. The degeneration of larval tissues is mediated by protein degradation, while the development of juvenile organs may require PTM. In terms of application, the identified proteins may serve as targets for antifouling compounds, and biomarkers for environmental stressors. In this review we highlight the strengths and limitations of proteomic tools in the context of the study of marine invertebrate larval biology.

  2. A New Approach in Teaching the Features and Classifications of Invertebrate Animals in Biology Courses

    Directory of Open Access Journals (Sweden)

    Fatih SEZEK

    2013-08-01

    Full Text Available This study examined the effectiveness of a new learning approach in teaching classification of invertebrate animals in biology courses. In this approach, we used an impersonal style: the subject jigsaw, which differs from the other jigsaws in that both course topics and student groups are divided. Students in Jigsaw group were divided into five “subgroups” since teaching the features and classification of invertebrate animals is divided into five subtopics (modules A, B, C, D and E. The subtopics are concerning characteristics used in classification of invertebrate animals and fundamental structures of: phyla porifera and cnidarians (module A, annelid (module B, mollusks (module C, arthropods (module D and Echinodermata (module E. The data obtained in the tests indicated that the the new learning approach was more successful than teacher-centered learning.

  3. Early detection of potentially invasive invertebrate species in Mytilus galloprovincialis Lamarck, 1819 dominated communities in harbours

    Science.gov (United States)

    Preda, Cristina; Memedemin, Daniyar; Skolka, Marius; Cogălniceanu, Dan

    2012-12-01

    Constanţa harbour is a major port on the western coast of the semi-enclosed Black Sea. Its brackish waters and low species richness make it vulnerable to invasions. The intensive maritime traffic through Constanţa harbour facilitates the arrival of alien species. We investigated the species composition of the mussel beds on vertical artificial concrete substrate inside the harbour. We selected this habitat for study because it is frequently affected by fluctuating levels of temperature, salinity and dissolved oxygen, and by accidental pollution episodes. The shallow communities inhabiting it are thus unstable and often restructured, prone to accept alien species. Monthly samples were collected from three locations from the upper layer of hard artificial substrata (maximum depth 2 m) during two consecutive years. Ten alien macro-invertebrate species were inventoried, representing 13.5% of the total number of species. Two of these alien species were sampled starting the end of summer 2010, following a period of high temperatures that triggered hypoxia, causing mass mortalities of benthic organisms. Based on the species accumulation curve, we estimated that we have detected all benthic alien species on artificial substrate from Constanţa harbour, but additional effort is required to detect all the native species. Our results suggest that monitoring of benthic communities at small depths in harbours is a simple and useful tool in early detection of potentially invasive alien species. The selected habitat is easily accessible, the method is low-cost, and the samples represent reliable indicators of alien species establishment.

  4. Plasticity of hatching and the duration of planktonic development in marine invertebrates.

    Science.gov (United States)

    Oyarzun, Fernanda X; Strathmann, Richard R

    2011-07-01

    Plasticity in hatching potentially adjusts risks of benthic and planktonic development for benthic marine invertebrates. The proportionate effect of hatching plasticity on duration of larval swimming is greatest for animals that can potentially brood or encapsulate offspring until hatching near metamorphic competence. As an example, early hatching of the nudibranch mollusk Phestilla sibogae is stimulated by scattering of encapsulated offspring, as by a predator feeding on the gelatinous egg ribbon. When egg ribbons are undisturbed, hatching is at or near metamorphic competence. Disturbance of an unguarded benthic egg mass can insert 4 or more days of obligate larval dispersal into the life history. As another example, the spionid annelid Boccardia proboscidea broods capsules, each with both cannibalistic and developmentally arrested planktivorous siblings plus nurse eggs. Early hatching produces mainly planktivorous larvae with a planktonic duration of 15 days. Late hatching produces mainly adelphophages who have eaten their planktivorous siblings and metamorphose with little or no period of swimming. Mothers actively hatch their offspring by tearing the capsules, and appeared to time hatching in response to their environment and not to the stage of development of their offspring. Higher temperature increased the variance of brooding time. Females appeared to hatch capsules at an earlier developmental stage at lower temperatures. Species that release gametes or zygotes directly into the plankton have less scope for plasticity in stage at hatching. Their embryos develop singly with little protection and hatch at early stages, often as blastulae or gastrulae. Time of hatching cannot be greatly advanced, and sensory capabilities of blastulae may be limited.

  5. Benthic Macroinvertebrate Communities in the Northern Tributaries of the “Iron Gates” Gorge (Danube River

    Directory of Open Access Journals (Sweden)

    Curtean-Bănăduc Angela

    2014-12-01

    Full Text Available The paper presents the structure of the benthonic macro-invertebrates communities in the Berzasca, Sirinia, Liubcova, and Mraconia rivers. The results are based on quantitative benthos samples (95 samples, collected in July 2014 from 19 sampling stations within the study area. In longitudinal profile, the benthonic macro-invertebrate communities of the Sirinia, Liubcova and Berzasca rivers displays relatively large structural variability, while the communities of the Mraconia River displays smaller structural variability. The structure of the benthonic macro-invertebrate communities correlated with the biotope characteristics indicates the good ecological status of the analysed rivers, with the exception of the Berzasca River sector downstream of the town of Berzasca and immediately upstream of the Danube junction, a sector with moderate ecological status due to negative effects from man-made modifications in the lotic biotope of the sector.

  6. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries

    Directory of Open Access Journals (Sweden)

    Erik eKristensen

    2014-09-01

    Full Text Available We identify how ecosystem functioning in shallow estuaries is affected by shifts in benthic fauna communities. We use the shallow estuary, Odense Fjord, Denmark, as a case study to test our hypotheses that (1 shifts in benthic fauna composition and species functional traits affect biogeochemical cycling with cascading effects on ecological functioning, which may (2 modulate pelagic primary productivity with feedbacks to the benthic system. Odense Fjord is suitable because it experienced dramatic shifts in benthic fauna community structure from 1998 to 2008. We focused on infaunal species with emphasis on three dominating burrow-dwelling polychaetes: the native Nereis (Hediste diversicolor and Arenicola marina, and the invasive Marenzelleria viridis. The impact of functional traits in the form of particle reworking and ventilation on biogeochemical cycles, i.e. sediment metabolism and nutrient dynamics, was determined from literature data. Historical records of summer nutrient levels in the water column of the inner Odense Fjord show elevated concentrations of NH4+ and NO3- (DIN during the years 2004-2006, exactly when the N. diversicolor population declined and A. marina and M. viridis populations expanded dramatically. In support of our first hypothesis, we show that excess NH4+ delivery from the benthic system during the A. marina and M. viridis expansion period enriched the overlying water in DIN and stimulated phytoplankton concentration. The altered benthic-pelagic coupling and stimulated pelagic production may, in support of our second hypothesis, have feedback to the benthic system by changing the deposition of organic material. We therefore advice to identify the exact functional traits of the species involved in a community shift before studying its impact on ecosystem functioning. We also suggest studying benthic community shifts in shallow environments to obtain knowledge about the drivers and controls before exploring deep

  7. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon.

    Directory of Open Access Journals (Sweden)

    Martin Ubertini

    Full Text Available The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter and biological parameters (flora and fauna assemblages, chlorophyll were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher

  8. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.

    Directory of Open Access Journals (Sweden)

    Eric K Moody

    Full Text Available Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima, but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia or hydric Fremont cottonwood (Populus fremontii and Gooding's willow (Salix goodingii. Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems.

  9. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). SHEEPSHEAD.

    Science.gov (United States)

    GULF , MOLLUSCA , NORTH(DIRECTION), OFFSHORE, PROFILES, RANGE(EXTREMES), RATES, RECREATION, REQUIREMENTS, STRUCTURES, TAXONOMY, TEMPERATURE, TROPICAL REGIONS, WATER, YOUTH, LIFE CYCLES, REPRODUCTION(PHYSIOLOGY)...IMPACT STATEMENTS, ENVIRONMENTS, ESTUARIES, GRASSES, GROWTH(GENERAL), HABITATS, HISTORY, INSHORE AREAS, INVERTEBRATES, LANDING, LIFE(BIOLOGY), MEXICO

  10. Trophic interactions among invertebrates in termitaria in the African savanna : a stable isotope approach

    NARCIS (Netherlands)

    De Visser, Sarah N.; Freymann, Bernd P.; Schnyder, Hans

    2008-01-01

    1. Termites (Isoptera) in tropical savannas are known as ecosystem engineers, affecting the spatial and temporal distribution of water, carbon, cations, and nutrients through their mound structures. Their mounds, however, also offer habitation to diverse taxa and feeding guilds of other invertebrate

  11. Benthic habitat data for Wawaloi and Keei, Kona Coast, Island of Hawaii, August 2004 (NODC Accession 0070530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Transects were made at two locations on the west side of the Island of Hawaii in August 2004 to study the structure and composition of the benthic habitat....

  12. Benthic habitat data of Wawaloi and Keei, Kona Coast, Island of Hawaii, August 2004 (NODC Accession 0070530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Transects were made at two locations on the west side of the Island of Hawaii in August 2004 to study the structure and composition of the benthic habitat....

  13. The benthic macroinvertebrate fauna of highland streams in southern Brazil: composition, diversity and structure Fauna de macro-invertebrados bentônicos de rios de montanha no sul do Brasil: composição, diversidade e estrutura

    Directory of Open Access Journals (Sweden)

    Ludwig Buckup

    2007-06-01

    Full Text Available Benthic macroinvertebrate in four rivers, three in the Pelotas River basin (Divisa, Marco and Silveira rivers, in the headwaters of the Uruguai River and one in the Taquari-Antas system (Antas River, a tributary in the Guaíba basin, in the state of Rio Grande do Sul, were identified. Two samples were collected in summer, autumn and spring, with one replicate in each river. The total of 28,961 specimens included members of Platyhelminthes, Annelida, Acarina, Insecta, Crustacea and Mollusca. The Silveira and Marco rivers showed significant differences in the indices of Shannon-Weaver (H’, Simpson’s Reciprocal (1/D, Margalef (DMg and Equitability (E. The Silveira River showed the highest means of diversity and the EPT index (Ephemeroptera, Plecoptera, Trichoptera. Comparison among the diversity indices, considered individually, were insufficient to show differences in community structure, for the purpose of ecological characterization of the rivers. The EPT values characterized the Divisa River as having the highest abundance (73%, followed by the Marco (71%, Antas (48% and Silveira (36%. These results suggest that the Silveira River is subject to moderate environmental stress, from human impact, although it showed the highest diversity of the major macrobenthic groups.Os macro-invertebrados bentônicos que ocorrem em quatro rios, três pertencentes à bacia do Rio Pelotas (Rios Divisa, Marco e Silveira nas cabeceiras do Rio Uruguai e um ao sistema Taquari-Antas (Rio Antas, tributário da bacia do Guaíba, no Estado do Rio Grande do Sul, foram identificados. Duas amostras foram coletadas no verão, outono e primavera, com uma réplica em cada rio. Foram coletados 28961 espécimes de macro-invertebrados compreendendo Platyhelminthes, Annelida, Acarina, Insecta, Crustacea e Mollusca. Na comparação entre os rios, Silveira e Marco mostraram diferenças significativas nos índices de Shannon-Weaver (H’, no Recíproco de Simpson (1/D, de

  14. Predation limits spread of Didemnum vexillum into natural habitats from refuges on anthropogenic structures.

    Science.gov (United States)

    Forrest, Barrie M; Fletcher, Lauren M; Atalah, Javier; Piola, Richard F; Hopkins, Grant A

    2013-01-01

    Non-indigenous species can dominate fouling assemblages on artificial structures in marine environments; however, the extent to which infected structures act as reservoirs for subsequent spread to natural habitats is poorly understood. Didemnum vexillum is one of few colonial ascidian species that is widely reported to be highly invasive in natural ecosystems, but which in New Zealand proliferates only on suspended structures. Experimental work revealed that D. vexillum established equally well on suspended artificial and natural substrata, and was able to overgrow suspended settlement plates that were completely covered in other cosmopolitan fouling species. Fragmentation led to a level of D. vexillum cover that was significantly greater than was achieved as a result of ambient larval recruitment. The species failed to establish following fragment transplants onto seabed cobbles and into beds of macroalgae. The establishment success of D. vexillum was greatest in summer compared with autumn, and on the underside of experimental settlement plates that were suspended off the seabed to avoid benthic predators. Where benthic predation pressure was reduced by caging, D. vexillum establishment success was broadly comparable to suspended treatments; by contrast, the species did not establish on the face-up aspect of uncaged plates. This study provides compelling evidence that benthic predation was a key mechanism that prevented D. vexillum's establishment in the cobble habitats of the study region. The widespread occurrence of D. vexillum on suspended anthropogenic structures is consistent with evidence for other sessile invertebrates that such habitats provide a refuge from benthic predation. For invasive species generally, anthropogenic structures are likely to be most important as propagule reservoirs for spread to natural habitats in situations where predation and other mechanisms do not limit their subsequent proliferation.

  15. Predation limits spread of Didemnum vexillum into natural habitats from refuges on anthropogenic structures.

    Directory of Open Access Journals (Sweden)

    Barrie M Forrest

    Full Text Available Non-indigenous species can dominate fouling assemblages on artificial structures in marine environments; however, the extent to which infected structures act as reservoirs for subsequent spread to natural habitats is poorly understood. Didemnum vexillum is one of few colonial ascidian species that is widely reported to be highly invasive in natural ecosystems, but which in New Zealand proliferates only on suspended structures. Experimental work revealed that D. vexillum established equally well on suspended artificial and natural substrata, and was able to overgrow suspended settlement plates that were completely covered in other cosmopolitan fouling species. Fragmentation led to a level of D. vexillum cover that was significantly greater than was achieved as a result of ambient larval recruitment. The species failed to establish following fragment transplants onto seabed cobbles and into beds of macroalgae. The establishment success of D. vexillum was greatest in summer compared with autumn, and on the underside of experimental settlement plates that were suspended off the seabed to avoid benthic predators. Where benthic predation pressure was reduced by caging, D. vexillum establishment success was broadly comparable to suspended treatments; by contrast, the species did not establish on the face-up aspect of uncaged plates. This study provides compelling evidence that benthic predation was a key mechanism that prevented D. vexillum's establishment in the cobble habitats of the study region. The widespread occurrence of D. vexillum on suspended anthropogenic structures is consistent with evidence for other sessile invertebrates that such habitats provide a refuge from benthic predation. For invasive species generally, anthropogenic structures are likely to be most important as propagule reservoirs for spread to natural habitats in situations where predation and other mechanisms do not limit their subsequent proliferation.

  16. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods

    Science.gov (United States)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2016-05-01

    After the earthquake and tsunami on 11 March 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past 5 years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms, and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain biological uptake model of radionuclides (BURN) has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit-feeding invertebrates, demersal fishes fed by benthic invertebrates, and bottom omnivorous predators for the benthic food chain; crustaceans, mollusks, and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the north-western Pacific for the period of 1945-2010, and then for the period of 2011-2020 to assess the radiological consequences of 137Cs released due to the FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011-2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit-feeding invertebrates (0.45 yr-1

  17. Feasibility of remote sensing benthic microalgae

    Science.gov (United States)

    Zingmark, R. G.

    1979-01-01

    Results of data analyses from multispectral scanning data are presented. The data was collected in July 1977 for concentration of chlorophyll in benthic microalgae (mainly diatoms) on an estuary mudflat.

  18. Benthic Habitats of the Florida Keys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The benthic habitats of the Florida Keys were mapped from a series of 450 aerial photographs. Ecologists outlined the boundaries of specific habitat types by...

  19. BENTHIC MACROFAUNAL ALIENS IN WILLAPA BAY

    Science.gov (United States)

    Benthic macrofaunal samples were collected at random stations in Willapa Bay, WA, in four habitats [eelgrass (Zostera marina), Atlantic cordgrass (Spartina alterniflora), mud shrimp (Upogebia pugettensis), ghost shrimp (Neotrypaea californiensis)] in 1996 and in seven habitats (Z...

  20. Priority wetland invertebrates as conservation surrogates.

    Science.gov (United States)

    Ormerod, S J; Durance, Isabelle; Terrier, Aurelie; Swanson, Alisa M

    2010-04-01

    Invertebrates are important functionally in most ecosystems, but seldom appraised as surrogate indicators of biological diversity. Priority species might be good candidates; thus, here we evaluated whether three freshwater invertebrates listed in the U.K. Biodiversity Action Plan indicated the richness, composition, and conservation importance of associated wetland organisms as defined respectively by their alpha diversity, beta diversity, and threat status. Sites occupied by each of the gastropods Segmentina nitida, Anisus vorticulus, and Valvata macrostoma had greater species richness of gastropods and greater conservation importance than other sites. Each also characterized species assemblages associated with significant variations between locations in alpha or beta diversity among other mollusks and aquatic macrophytes. Because of their distinct resource requirements, conserving the three priority species extended the range of wetland types under management for nature conservation by 18% and the associated gastropod niche-space by around 33%. Although nonpriority species indicated variations in richness, composition, and conservation importance among other organisms as effectively as priority species, none characterized such a wide range of high-quality wetland types. We conclude that priority invertebrates are no more effective than nonpriority species as indicators of alpha and beta diversity or conservation importance among associated organisms. Nevertheless, conserving priority species can extend the array of distinct environments that are protected for their specialized biodiversity and environmental quality. We suggest that this is a key role for priority species and conservation surrogates more generally, and, on our evidence, can best be delivered through multiple species with contrasting habitat requirements.

  1. Coastal Benthic Boundary Layer (CBBL) Research Program

    Science.gov (United States)

    1998-09-01

    Ecologic Atlas of Benthic Foraminifera of the Gulf of Mexico . Marine Science International, Woods Hole, MA, 174 p. Shiller, Alan, M., Brunner, Charlotte A...implications for the preservation of skeletal carbonates. Sedimentology, 45:39-51. Poag, C. Wylie, 1981. Ecologic Atlas of Benthic Foraminifera of the Gulf of...of the inner continental shelf. The shelf of the northeastern Gulf of Mexico is currently sediment-starved with most material deposited by the

  2. Potential biocontrol agents for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Hopkins, Grant A; Forrest, Barrie M

    2014-09-01

    The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.

  3. Development of invertebrate community indexes of stream quality for the islands of Maui and Oahu, Hawaii

    Science.gov (United States)

    Wolff, Reuben H.

    2012-01-01

    In 2009-10 the U.S. Geological Survey (USGS) collected physical habitat information and benthic macroinvertebrates at 40 wadeable sites on 25 perennial streams on the Island of Maui, Hawaiʻi, to evaluate the relations between the macroinvertebrate assemblages and environmental characteristics and to develop a multimetric invertebrate community index (ICI) that could be used as an indicator of stream quality. The macroinvertebrate community data were used to identify metrics that could best differentiate among sites according to disturbance gradients such as embeddedness, percent fines (silt and sand areal coverage), or percent agricultural land in the contributing basin area. Environmental assessments were conducted using land-use/land-cover data and reach-level physical habitat data. The Maui data were first evaluated using the previously developed Preliminary-Hawaiian Benthic Index of Biotic Integrity (P-HBIBI) to determine if existing metrics would successfully differentiate stream quality among the sites. Secondly, a number of candidate invertebrate metrics were screened and tested and the individual metrics that proved the best at discerning among the sites along one or more disturbance gradients were combined into a multimetric invertebrate community index (ICI) of stream quality. These metrics were: total invertebrate abundance, Class Insecta relative abundance, the ratio of Trichoptera abundance to nonnative Diptera abundance, native snail (hihiwai) presence or absence, native mountain shrimp (′δpae) presence or absence, native torrent midge (Telmatogeton spp.) presence or absence, and native Megalagrion damselfly presence or absence. The Maui ICI classified 15 of the 40 sites (37.5 percent) as having "good" quality communities, 17 of the sites (42.5 percent) as having "fair" quality communities, and 8 sites (20 percent) as having "poor" quality communities, a classification that may be used to initiate further investigation into the causes of the poor

  4. Seasonal variation in species composition and abundance of demersal fish and invertebrates in a Seagrass Natural Reserve on the eastern coast of the Shandong Peninsula, China

    Science.gov (United States)

    Xu, Qiang; Guo, Dong; Zhang, Peidong; Zhang, Xiumei; Li, Wentao; Wu, Zhongxin

    2016-03-01

    Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve (SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August-October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.

  5. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand.

    Science.gov (United States)

    Stuhldreier, Ines; Bastian, Pepe; Schönig, Eike; Wild, Christian

    2015-03-15

    Coral reefs in the Gulf of Thailand are highly under-investigated regarding responses to anthropogenic stressors. Thus, this study simulated overfishing and eutrophication using herbivore exclosure cages and slow-release fertilizer to study the in-situ effects on benthic algae and invertebrate settlement in a coral reef of Koh Phangan, Thailand. Settlement of organisms and the development of organic matter on light-exposed and shaded tiles were quantified weekly/biweekly over a study period of 12 weeks. Simulated eutrophication did not significantly influence response parameters, while simulated overfishing positively affected dry mass, turf algae height and fleshy macroalgae occurrence on light-exposed tiles. On shaded tiles, settlement of crustose coralline algae decreased, while abundances of ascidians increased compared to controls. An interactive effect of both stressors was not observed. These results hint to herbivory as actual key controlling factor on the benthic community, and fleshy macroalgae together with ascidians as potential bioindicators for local overfishing.

  6. Fossil invertebrates records in cave sediments and paleoenvironmental assessments: a study of four cave sites from Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    O. T. Moldovan

    2015-06-01

    Full Text Available Fossil invertebrates from cave sediments have been recently described as a potential new proxy for paleoenvironment and used in cross-correlations with alternate proxy records from cave deposits. Here we present the results of a fossil invertebrates study in four caves from two climatically different regions of the Romanian Carpathians, to complement paleoenvironmental data previously reported. Oribatid mites and ostracods are the most common invertebrates in the studied cave sediments. Some of the identified taxa are new for science, and most of them are indicative for either warm/cold stages or dry/wetter oscillations. In two caves the fossil invertebrates records indicate rapid climate oscillations during times known for a relatively stable climate. By corroborating the fossil invertebrates' record with the information given by magnetic properties and sediment structures, complementary data on past vegetation, temperatures, and hydraulic regimes could be gathered. This paper analyses the potential of fossil invertebrate records as a paleoenvironmental proxy, potential problems and pitfalls.

  7. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region. These

  8. Production of marine trematode cercariae: a potentially overlooked path of energy flow in benthic systems

    DEFF Research Database (Denmark)

    Thieltges, David W.; de Montaudouin, Xavier; Fredensborg, Brian

    2008-01-01

    reported for free-living invertebrates inhabiting benthic ecosystems. These estimates would be much higher if they included all trematode species in an ecosystem, and not just single-species values. Overall, results suggest that trematode cercariae represent potentially important paths of energy flow....... We use published data on rates at which trematodes produce free-swimming infective larvae (cercariae) that are released from their gastropod intermediate hosts to investigate patterns in cercarial output as a function of different variables, and to calculate the annual production of cercariae...... of cercariae, and was influenced by the type of downstream host sought by cercariae, being highest when this host was a vertebrate. Our estimates of annual cercarial production (kJ m-2 yr-1), which take into account the density of infected snails in the habitat, were within the range of production values...

  9. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    Science.gov (United States)

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  10. Invertebrates Collected on and around Carroll Island, Maryland.

    Science.gov (United States)

    INVERTEBRATES, *MARYLAND, *WATER POLLUTION, TEST FACILITIES, TEST FACILITIES, ECOLOGY, CHESAPEAKE BAY, WATER POLLUTION, AIR POLLUTION, ANNELIDA, MOLLUSCA, PROTOZOA, ARTHROPODA, CRUSTACEA, ARACHNIDA , PLANKTON, WORMS.

  11. Natural invertebrate hosts of iridoviruses (Iridoviridae)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Trevor [Instituto de Ecologia A.C., Veracruz (Mexico)]. E-mail: trevor.williams@inecol.edu.mx

    2008-11-15

    Invertebrate iridescent viruses (IIVs) are icosahedral DNA viruses that infect invertebrates, mainly insects and terrestrial isopods, in damp and aquatic habitats. Exhaustive searches of databases resulted in the identification of 79 articles reporting 108 invertebrate species naturally infected by confirmed or putative iridoviruses. Of these, 103 (95%) were arthropods and the remainder were molluscs, an annelid worm and a nematode. Nine species were from marine habitats. Of the 99 non-marine species, 49 were from terrestrial habitats and 50 were aquatic, especially the aquatic stages of Diptera (44 species). The abundance of records from species of Aedes, Ochlerotatus and Psorophora contrasts markedly with a paucity of records from species of Anopheles, Culex and Culiseta. Records from terrestrial isopods are numerous (19 species), although the diversity of IIVs that infect them is mostly unstudied. IIV infections have been reported from every continent, except Antarctica, but there are few records from Africa, southern Asia and Latin America. Most reports describe patent IIV infections as rare whereas inapparent (covert) infection may be common in certain species. The relationship between particle size and iridescent colour of the host is found to be consistent with optical theory in the great majority of cases. Only 24 reported IIVs from insect hosts have partial characterization data and only two have been subjected to complete genome sequencing. I show that the rate of publication on IIVs has slowed from 1990 to the present, and I draw a number of conclusions and suggestions from the host list and make recommendations for future research efforts. (author)

  12. Phenotypic plasticity and morphological integration in a marine modular invertebrate

    Directory of Open Access Journals (Sweden)

    Manrique Nelson

    2007-07-01

    Full Text Available Abstract Background Colonial invertebrates such as corals exhibit nested levels of modularity, imposing a challenge to the depiction of their morphological evolution. Comparisons among diverse Caribbean gorgonian corals suggest decoupling of evolution at the polyp vs. branch/internode levels. Thus, evolutionary change in polyp form or size (the colonial module sensu stricto does not imply a change in colony form (constructed of modular branches and other emergent features. This study examined the patterns of morphological integration at the intraspecific level. Pseudopterogorgia bipinnata (Verrill (Octocorallia: Gorgoniidae is a Caribbean shallow water gorgonian that can colonize most reef habitats (shallow/exposed vs. deep/protected; 1–45 m and shows great morphological variation. Results To characterize the genotype/environment relationship and phenotypic plasticity in P. bipinnata, two microsatellite loci, mitochondrial (MSH1 and nuclear (ITS DNA sequences, and (ITS2 DGGE banding patterns were initially compared among the populations present in the coral reefs of Belize (Carrie Bow Cay, Panama (Bocas del Toro, Colombia (Cartagena and the Bahamas (San Salvador. Despite the large and discrete differentiation of morphotypes, there was no concordant genetic variation (DGGE banding patterns in the ITS2 genotypes from Belize, Panama and Colombia. ITS1–5.8S-ITS2 phylogenetic analysis afforded evidence for considering the species P. kallos (Bielschowsky as the shallow-most morphotype of P. bipinnata from exposed environments. The population from Carrie Bow Cay, Belize (1–45 m was examined to determine the phenotypic integration of modular features such as branch thickness, polyp aperture, inter-polyp distance, internode length and branch length. Third-order partial correlation coefficients suggested significant integration between polypar and colonial traits. Some features did not change at all despite 10-fold differences in other integrated

  13. The Dicistroviridae: An Emerging Family of Invertebrate Viruses

    Institute of Scientific and Technical Information of China (English)

    Bryony C. Bonning

    2009-01-01

    Dicistroviruses comprise a newly characterized and rapidly expanding family of small RNA viruses of invertebrates. Several features of this virus group have attracted considerable research interest in recent years. In this review I provide an overview of the Dicistroviridae and describe progress made toward the understanding and practical application of dicistroviruses, including (i) construction of the first infectious clone of a dicistrovirus, (ii) use of the baculovirus expression system for production of an infectious dicistrovirus, (iii) the use of Drosophila C virus for analysis of host response to virus infection, and (iv) correlation of the presence of Israeli acute paralysis virus with honey bee colony collapse disorder. The potential use of dicistroviruses for insect pest management is also discussed. The structure, mechanism and practical use of the internal ribosome entry site (IRES) elements has recently been reviewed elsewhere.

  14. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  15. Anabaenolysins, novel cytolytic lipopeptides from benthic Anabaena cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    Full Text Available Two novel cyclic lipopeptides, anabaenolysin A and anabaenolysin B, were isolated from two benthic cyanobacterial strains of the genus Anabaena. This novel class of cyanobacterial lipopeptides has a general structure of a small peptide ring consisting of four amino acids from which two are proteinogenic and two unusual; glycine(1, glycine(2, 2-(3-amino-5-oxytetrahydrofuran-2-yl-2-hydroxyacetic acid(3 and a long unsaturated C(18 β-amino acid(4 with a conjugated triene structure. They are distinguished by the presence of a conjugated dienic structure in the C18 β-amino acid present in anabaenolysin A but not in anabaenolysin B. Conjugated triene structure generates a typical UV spectrum for anabaenolysins for easy recognition. Anabaenolysin A constituted up to 400 ppm of the cyanobacterial dry weight. We found evidence of thirteen variants of anabaenolysins in one cyanobacterial strain. This suggests that the anabaenolysins are an important class of secondary metabolites in benthic Anabaena cyanobacteria. Both anabaenolysin A and B had cytolytic activity on a number of mammalian cell lines.

  16. ECOLOGICAL ASPECTS OF BENTHIC COMMUNITIES FROM SOMESUL CALD CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Karina Battes

    2001-01-01

    Full Text Available The present paper represents a preliminary study of periphyton and zoobenthos community from the Someşul Cald catchment area. Zoobenthos was sampled seasonally during 2000. Benthic community structure was similar at the five sampling sites. Thus, mayflies and chironomids recorded high numerical percentage abundances and densities. Oligochaetes, water mites and caddisflies were identified to species level. 38 Oligochaeta, 28 water mite and 12 caddis fly species were found in the sampling period. The samplings collected in the year 2001 included 80 algal species belonging to 5 phyla. Diatoms (Bacillariophyta dominated both qualitatively and quantitatively at all sampling sites.

  17. Benthic Food Webs of the Chukchi and Beaufort Seas: Relative Importance of Ultimate Carbon Sources in a Changing Climate

    Science.gov (United States)

    Dunton, K. H.; Schonberg, S. V.; Mctigue, N.; Bucolo, P. A.; Connelly, T. L.; McClelland, J. W.

    2014-12-01

    Changes in sea-ice cover, coastal erosion, and freshwater run-off have the potential to greatly influence carbon assimilation pathways and affect trophic structure in benthic communities across the western Arctic. In the Chukchi Sea, variations in the duration and timing of ice cover affect the delivery of ice algae to a relatively shallow (40-50 m) shelf benthos. Although ice algae are known as an important spring carbon subsidy for marine benthic fauna, ice algal contributions may also help initiate productivity of an active microphytobenthos. Recent studies provide clear evidence that the microphytobenthos are photosynthetically active, and have sufficient light and nutrients for in situ growth. The assimilation of benthic diatoms from both sources may explain the 13C enrichment observed in benthic primary consumers throughout the northern Chukchi. On the eastern Beaufort Sea coast, shallow (2-4 m) estuarine lagoon systems receive massive subsidies of terrestrial carbon that is assimilated by a benthic fauna of significant importance to upper trophic level species, but again, distinct 13C enrichment in benthic primary consumers suggests the existence of an uncharacterized food source. Since ice algae are absent, we believe the 13C enrichment in benthic fauna is caused by the assimilation of benthic microalgae, as reflected in seasonally high benthic chlorophyll in spring under replete light and nutrient conditions. Our observations suggest that changes in ice cover, on both temporal and spatial scales, are likely to have significant effects on the magnitude and timing of organic matter delivery to both shelf and nearshore systems, and that locally produced organic matter may become an increasingly important carbon subsidy that affects trophic assimilation and secondary ecosystem productivity.

  18. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate.

    Science.gov (United States)

    Patananan, Alexander N; Budenholzer, Lauren M; Pedraza, Maria E; Torres, Eric R; Adler, Lital N; Clarke, Steven G

    2015-03-01

    l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.

  19. Environmental Quality and Aquatic Invertebrate Metrics Relationships at Patagonian Wetlands Subjected to Livestock Grazing Pressures

    Science.gov (United States)

    2015-01-01

    Livestock grazing can compromise the biotic integrity and health of wetlands, especially in remotes areas like Patagonia, which provide habitat for several endemic terrestrial and aquatic species. Understanding the effects of these land use practices on invertebrate communities can help prevent the deterioration of wetlands and provide insights for restoration. In this contribution, we assessed the responses of 36 metrics based on the structural and functional attributes of invertebrates (130 taxa) at 30 Patagonian wetlands that were subject to different levels of livestock grazing intensity. These levels were categorized as low, medium and high based on eight features (livestock stock densities plus seven wetland measurements). Significant changes in environmental features were detected across the gradient of wetlands, mainly related to pH, conductivity, and nutrient values. Regardless of rainfall gradient, symptoms of eutrophication were remarkable at some highly disturbed sites. Seven invertebrate metrics consistently and accurately responded to livestock grazing on wetlands. All of them were negatively related to increased levels of grazing disturbance, with the number of insect families appearing as the most robust measure. A multivariate approach (RDA) revealed that invertebrate metrics were significantly affected by environmental variables related to water quality: in particular, pH, conductivity, dissolved oxygen, nutrient concentrations, and the richness and coverage of aquatic plants. Our results suggest that the seven aforementioned metrics could be used to assess ecological quality in the arid and semi-arid wetlands of Patagonia, helping to ensure the creation of protected areas and their associated ecological services. PMID:26448652

  20. Environmental Quality and Aquatic Invertebrate Metrics Relationships at Patagonian Wetlands Subjected to Livestock Grazing Pressures.

    Directory of Open Access Journals (Sweden)

    Luis Beltrán Epele

    Full Text Available Livestock grazing can compromise the biotic integrity and health of wetlands, especially in remotes areas like Patagonia, which provide habitat for several endemic terrestrial and aquatic species. Understanding the effects of these land use practices on invertebrate communities can help prevent the deterioration of wetlands and provide insights for restoration. In this contribution, we assessed the responses of 36 metrics based on the structural and functional attributes of invertebrates (130 taxa at 30 Patagonian wetlands that were subject to different levels of livestock grazing intensity. These levels were categorized as low, medium and high based on eight features (livestock stock densities plus seven wetland measurements. Significant changes in environmental features were detected across the gradient of wetlands, mainly related to pH, conductivity, and nutrient values. Regardless of rainfall gradient, symptoms of eutrophication were remarkable at some highly disturbed sites. Seven invertebrate metrics consistently and accurately responded to livestock grazing on wetlands. All of them were negatively related to increased levels of grazing disturbance, with the number of insect families appearing as the most robust measure. A multivariate approach (RDA revealed that invertebrate metrics were significantly affected by environmental variables related to water quality: in particular, pH, conductivity, dissolved oxygen, nutrient concentrations, and the richness and coverage of aquatic plants. Our results suggest that the seven aforementioned metrics could be used to assess ecological quality in the arid and semi-arid wetlands of Patagonia, helping to ensure the creation of protected areas and their associated ecological services.

  1. Comparative and Evolutionary Analysis of the Interleukin 17 Gene Family in Invertebrates.

    Directory of Open Access Journals (Sweden)

    Xian-De Huang

    Full Text Available Interleukin 17 (IL-17 is an important pro-inflammatory cytokine and plays critical roles in the immune response to pathogens and in the pathogenesis of inflammatory and autoimmune diseases. Despite its important functions, the origin and evolution of IL-17 in animal phyla have not been characterized. As determined in this study, the distribution of the IL-17 family among 10 invertebrate species and 7 vertebrate species suggests that the IL-17 gene may have originated from Nematoda but is absent from Saccoglossus kowalevskii (Hemichordata and Insecta. Moreover, the gene number, protein length and domain number of IL-17 differ widely. A comparison of IL-17-containing domains and conserved motifs indicated somewhat low amino acid sequence similarity but high conservation at the motif level, although some motifs were lost in certain species. The third disulfide bond for the cystine knot fold is formed by two cysteine residues in invertebrates, but these have been replaced by two serine residues in Chordata and vertebrates. One third of invertebrate IL-17 proteins were found to have no predicted signal peptide. Furthermore, an analysis of phylogenetic trees and exon-intron structures indicated that the IL-17 family lacks conservation and displays high divergence. These results suggest that invertebrate IL-17 proteins have undergone complex differentiation and that their members may have developed novel functions during evolution.

  2. The role of histones in the immune responses of aquatic invertebrates

    Directory of Open Access Journals (Sweden)

    C Nikapitiya

    2013-10-01

    Full Text Available Histones are primary components of eukaryotic chromatin and highly abundant in all animal cells. In addition to their important role in chromatin structure and transcriptional regulation, histones contribute to innate immune responses. In several aquatic invertebrate species, as well as in many other invertebrate and vertebrate species, the transcripts for core histones are upregulated in response to immune challenge and exposure to environmental stressors. Histones show antimicrobial activity against bacteria and parasites in vitro and in vivo and have the ability to bind bacterial lipopolysaccharide and other pathogen-associated molecules. Several mechanisms regulating and facilitating the antimicrobial action of histones against pathogens have been described in vertebrate and some invertebrate species, including the production of Extracellular Traps (ETs and the accumulation of histones in lipid droplets that can be selectively released in response to immune stimuli. Further studies are needed to determine the mechanisms of action of histones in immune responses in aquatic invertebrates and investigate the potential use of histones in the treatment of infectious diseases in aquaculture

  3. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions

    Science.gov (United States)

    Bernardino, Angelo F.; Netto, Sérgio A.; Pagliosa, Paulo R.; Barros, Francisco; Christofoletti, Ronaldo A.; Rosa Filho, José S.; Colling, André; Lana, Paulo C.

    2015-12-01

    Estuaries are threatened coastal ecosystems that support relevant ecological functions worldwide. The predicted global climate changes demand actions to understand, anticipate and avoid further damage to estuarine habitats. In this study we reviewed data on polychaete assemblages, as a surrogate for overall benthic communities, from 51 estuaries along five Marine Ecoregions of Brazil (Amazonia, NE Brazil, E Brazil, SE Brazil and Rio Grande). We critically evaluated the adaptive capacity and ultimately the resilience to decadal changes in temperature and rainfall of the polychaete assemblages. As a support for theoretical predictions on changes linked to global warming we compared the variability of benthic assemblages across the ecoregions with a 40-year time series of temperature and rainfall data. We found a significant upward trend in temperature during the last four decades at all marine ecoregions of Brazil, while rainfall increase was restricted to the SE Brazil ecoregion. Benthic assemblages and climate trends varied significantly among and within ecoregions. The high variability in climate patterns in estuaries within the same ecoregion may lead to correspondingly high levels of noise on the expected responses of benthic fauna. Nonetheless, we expect changes in community structure and productivity of benthic species at marine ecoregions under increasing influence of higher temperatures, extreme events and pollution.

  4. Mussel colonization of a high flow artificial benthic habitat: byssogenesis holds the key.

    Science.gov (United States)

    Rajagopal, S; Venugopalan, V P; van der Velde, G; Jenner, H A

    2006-08-01

    Water flow is an important characteristic determining the settlement and growth of macro-invertebrates in the marine environment. Intake systems of coastal power stations offer a unique opportunity to study the effect of water flow on benthic organisms under field conditions. The cooling water intake system of a tropical coastal power station is used as an experimental facility to study the effect of flow on the recruitment and growth of three mussel species, viz, Brachidontes variabilis, B. striatulus, and Modiolus philippinarum. The study was prompted by earlier observation that these mussels were numerically abundant in the biofouling community present inside the seawater intake tunnel of the power station, even though their occurrence in the benthic community in the coastal waters outside was only nominal. Recruitment data showed that the three mussel species very successfully colonised surfaces exposed to the intake mouth (characterised by relatively high flow) of the power station. Significant difference was observed in the recruitment recorded at the intake point and the ambient environment outside. Under high flow condition, the growth rates of all the three mussel species were uniformly enhanced. It is argued that recruitment of the different species is related to the number of byssus threads produced by each mussel and the strength of the byssus threads. The results indicate that byssus number and byssus strength of the mussels are important criteria that decide successful colonization and establishment in high flow environments.

  5. Complexity in benthic-pelagic marine ecosystems in the late Ordovician (central New York)

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, S.M.

    1985-01-01

    Cisne and Chandlee (1982) outlined a paleogeographic model for marine invertebrates collected from Middle Ordovician strata in central New York. Subsequent interpretations of their stratigraphic and geographic distributions were based on control by levels of oxygen. Especially critical were the presumed distribution of the trilobite Triarthus and three graptolites, Orthograptus, Climacograptus, and Corynoides, which were supposed to have occupied vertically stratified habitats in the water column. In order to test this general thesis 42 stratigraphically discrete samples were collected from continuously exposed Late Ordovician mudstones in central New York, which contained taxa virtually identically to those employed by Cisne. The sampling interval spanned about 1.5 million years and over 1/4 of the samples contained relatively large numbers of graptolites. Over 3000 graptolite rhabdosomes were identified. The later Ordovician Orthograptus are preserved both with and without Climacograptus and with various benthic taxa. However neither Orthograptus nor Climacograptus display a consistent stratigraphic pattern, and Triarthus co-occurred with both graptolites, introducing a discordant note into any attempt at a simple modeling of early Paleozoic benthic/pelagic ecosystems.

  6. Community shelter use in response to two benthic decapod predators in the Long Island Sound

    Science.gov (United States)

    Reagan, Dugan; Crivello, Joseph F.

    2016-01-01

    To investigate community shelter effects of two invasive decapod species, Hemigrapsus sanguineus and Carcinus maenas, in the Long Island Sound (LIS), we deployed artificial shelters in the intertidal and immediate subtidal zones. These consisted of five groups during the summer: a control, a resident H. sanguineus male or female group, and a resident C. maenas male or female group. We quantified utilization of the shelters at 24 h by counting crabs and fish present. We found significant avoidance of H. sanguineus in the field by benthic hermit crabs (Pagurus spp.) and significant avoidance of C. maenas by the seaboard goby (Gobiosoma ginsburgi). The grubby (Myoxocephalus aenaeus) avoided neither treatment, probably since it tends to be a predator of invertebrates. H. sanguineus avoided C. maenas treatments, whereas C. maenas did not avoid any treatment. Seasonal deployments in the subtidal indicated cohabitation of a number of benthic species in the LIS, with peak shelter use corresponding with increased predation and likely reproductive activity in spring and summer for green crabs (C. maenas), hermit crabs (Pagurus spp.), seaboard gobies (G. ginsburgi), and grubbies (Myoxocephalus aenaeus). PMID:27547570

  7. Toxicity of Derosal (active ingredient carbendazim) to aquatic invertebrates

    NARCIS (Netherlands)

    Wijngaarden, R.P.A.; Crum, S.J.H.; Decraene, K.; Hattink, J.; Kammen, van A.

    1998-01-01

    Short- and long-term laboratory single species toxicity tests were performed with eleven invertebrate species and the fungicide Derosal(R) (a.i. carbendazim). Toxicity values differed widely between the tested invertebrates. The most sensitive species we found was the flatworm Dugesia lugubris (96hr

  8. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    Science.gov (United States)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  9. Dinoflagellate cysts and benthic foraminifera in surface sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy)

    Science.gov (United States)

    Ferraro, L.; Rubino, F.; Frontalini, F.; Belmonte, M.; Di Leo, A.; Giandomenico, S.; Greco, M.; Lirer, F.; Spada, L.; Vallefuoco, M.

    2012-12-01

    Coastal areas have traditionally been places of human settlement, with the increasing development of cities, industries and other human-related activities possibly having an impact on the aquatic ecosystem. These impacts may take the form of pollution from industrial, domestic, agricultural or mining activities. For this reason, attention to marine environmental problems has recently increased and the search for new methodologies and techniques for the monitoring of coastal-marine areas become more and more active and accurate. In this context biological indicators result a useful tool to provide indication of environmental conditions including the presence or absence of contaminants; in fact biological monitoring is more directly related to the ecological health of an ecosystem than are chemical data. The increasing importance of bioindicators is also encouraged within the European Union's Water Framework Directive (WFD), which aims to achieve a good ecological status in all European water bodies (i.e., rivers, lakes and coastal waters). Among the wide range of bioindicators, 5 biological elements are listed within the WFD: phytoplankton, macroalgae, angiosperms, benthic invertebrates and fishes. Benthic invertebrates as foraminifera represent a group of protozoa widely distributed in all brackish and marine environments which are used in studies assessing the environmental quality of areas subject to intense human activity. Moreover in coastal marine environments benthic and pelagic domain present several relationships, one of these is represented by the life cycles of phytoplankton species, as Dinoflagellates, which include the production of benthic stages (cysts). These dormant stages, which accumulate in confined marine muddy areas, such as ports, lagoons or estuaries, can reach high densities, similar to the seed banks of terrestrial plants. The cysts have a high preservation potential and can rest in/on the sediments for decades. Due to this peculiar

  10. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.

    Science.gov (United States)

    Schwalbe, Margot A B; Sevey, Benjamin J; Webb, Jacqueline F

    2016-04-01

    The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.

  11. Roles of epiphytes associated with macroalgae in benthic food web of a eutrophic coastal lagoon

    Science.gov (United States)

    Zheng, Xinqing; Huang, Lingfeng; Lin, Rongcheng; Du, Jianguo

    2015-11-01

    Macroalgae perform a significant function in the trophic dynamics in many coastal lagoons, and conventionally, they are the key trophic base that fuels the overall aquatic food web. However, few studies have considered the trophic contribution of epiphytes that attach to macroalgae in the diet of benthic primary consumers or their contribution to the trophic base of the aquatic food web. In this study, macrobenthic invertebrate biomass was combined with multiple-isotope-mixing models to distinguish the trophic importance of macroalgae and their associated epiphytic assemblages in the benthic food web during Ulva lactuca bloom in the Yundang Lagoon, a eutrophic coastal lagoon in Xiamen, China. Amphipods primarily dominated the zoobenthos, with the biomass varied from 40.9 g/m2 in January to 283.9 g/m2 in March. They mainly fed on U. lactuca and its associated epiphytes, which jointly contributed more than 60% to amphipod diets, but species-specific feeding habits were exhibited among amphipods. Using the zoobenthos biomass as a weighting factor, the contribution of U. lactuca and its epiphytes to total benthic communities during U. lactuca bloom exceeded 65%.The epiphytes were clearly utilized more than U. lactuca, with a median contribution ranging from 48.5% in January to 66.6% in March. Our findings demonstrate the trophic importance of the epiphytes in macroalgae-based coastal habitats, as found in many seagrass beds. Therefore, we propose that further food web studies of macroalgae-based ecosystems should pay greater attention to the role of epiphytes.

  12. Invertebrate availability and vegetation characteristics explain use of nonnesting cover types by mature-forest songbirds during the postfledging period

    Science.gov (United States)

    Streby, Henry M.; Peterson, Sean M.; Andersen, D.E.

    2011-01-01

    Some species of mature-forest-nesting songbirds use regenerating clearcuts and forested wetlands during the postfledging period (between nesting and migration). Relatively dense vegetation structure and abundant food resources in non-mature-forest cover types have been hypothesized to explain this phenomenon. We examined the relative importance of vegetation structure and invertebrate availability on use of nonnesting cover types by adult and hatch-year Ovenbirds (Seiurus aurocapilla) and American Redstarts (Setophaga ruticilla) during the postfledging period of 2009 in northern Minnesota. We used mist nets to sample bird use of forested wetlands and regenerating clearcuts of three age groups: 1-6, 7-12, and 16-19 yr after harvest. We modeled captures of birds using vegetation characteristics and invertebrate availability sampled around nets as explanatory variables. For all birds studied, captures were best explained by food availability and secondarily by vegetation characteristics including litter depth and woody debris for Ovenbirds and canopy height for American Redstarts. Shrub-level invertebrate availability received a cumulative weight of 0.74-0.99 in Akaike's information criterion corrected ranked models for adult and hatch-year birds of both species. Vegetation density and variation in vegetation density explained almost no variation in captures of either species. We conclude that both invertebrate availability and some vegetation characteristics influence use of nonnesting cover types by Ovenbirds and American Redstarts during the postfledging period, but that invertebrate availability is generally the stronger predictor of that use. ?? 2011 Association of Field Ornithologists.

  13. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod, Orchomenella franklini.

    Science.gov (United States)

    Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean

    2012-01-01

    Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1-10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F(ST) = 0.086, R(ST) = 0.139, pbenthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos.

  14. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.

    Science.gov (United States)

    Hay, Mark E

    2009-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized.

  15. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range?

    Directory of Open Access Journals (Sweden)

    Russell G. DEATH

    2011-09-01

    from the sources. In conclusion, water temperature range was highly correlated with number of taxa, although other factors, such as substratum composition, stability and invertebrate drift, may also play an important role in the determination of longitudinal changes in invertebrate community composition and structure along spring-fed streams.

  16. Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin

    Digital Repository Service at National Institute of Oceanography (India)

    Hunter, W.R.; Oguri, K.; Kitazato, H.; Ansari, Z.A.; Witte, U.

    changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800–1100 m) and below the OMZ (2000 m), between September and November 2008. Structural changes...

  17. Habitat modification drives benthic trophic diversity in an intertidal soft-bottom ecosystem

    NARCIS (Netherlands)

    van der Zee, Els M.; Tielens, Elske; Holthuijsen, Sander; Donadi, Serena; Eriksson, Britas Klemens; van der Veer, Henk W.; Piersma, Theunis; Olff, Han; van der Heide, Tjisse

    2015-01-01

    In intertidal soft-bottom ecosystems, ecosystem engineers such as reef-building bivalves, can strongly affect the associated benthic community by providing structure and stabilizing the sediment. Although several engineering species have declined dramatically in the past centuries, the consequences

  18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BENTHIC (Benthic Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains benthic habitats, including coral reef and hardbottom, seagrass, algae, and others in [for] South Florida. Vector polygons in the data set...

  19. COMMUNITY STRUCTURE OF BENTHIC MOLLUSCA AND ITS RELATIONSHIP WITH ENVIRONMENTAL FACTORS IN THE MAINSTREAM OF HUAIHE RIVER%淮河干流软体动物群落结构及其与环境因子的关系

    Institute of Scientific and Technical Information of China (English)

    丁建华; 周立志; 邓道贵; 金显文

    2013-01-01

    2011年3月、6月、9月和12月对淮河干流11个采集点的底栖软体类动物群落结构进行了调查研究,共记录了软体类动物9科26种,其中位于最上游的桐柏金庄种类最少,仅有3种分布,而位于中下游的新城口种类达到15种.总体上看,自上游至下游,软体动物种类的数量呈现一定的增多趋势.Pearson相关性检验结果表明软体动物种类数量和生物密度与河道深度间分别存在显著的正相关(r = 0.617,P = 0.043,n = 11)和负相关关系(r = -0.654,P = 0.029,n = 11).方差分析(One-way ANOVA)结果表明,Shannon-Wiener多样性指数[F(3,40) = 0.225,P = 0.879]、Margalef丰富度指数[F(3,40) = 0.902,P = 0.449]、Pielou均匀性指数[F(3,40) = 0.841,P = 0.479]这3种指数以及生物量[F(3,40) = 1.931,P = 0.14]不存在显著的季节性变化,但生物密度[F(3,40) = 5.45,P = 0.003]却存在极显著的季节性变化.其中,生物密度在6月份出现峰值[(90.13 ± 36.31) ind./m2],最低值出现在12月份[(14.42 ± 2.78) ind./m2];生物量的变化不与生物密度变化同步,其峰值出现在9月份[(155.08 ± 50.43) g/m2],最低值则出现在3月份[(39.15 ± 14.08) g/m2].相似性分析(One-way ANOSIM)结果表明,软体类动物群落在生物密度和生物量方面的优势物种组成上均无显著的季节性差异,其P值分别为0.082和0.514.生物密度在不同月份间的不相似百分比变化幅度从53.87%至59.12%,而生物量的不相似百分比变化幅度则从58.76%至68.58%.冗余分析(Redundancy Analysis RDA)结果表明,河宽、水深和砂质型底质为影响淮河干流底栖软体类动物分布的主要环境因子.%The benthic mollusca community structure at eleven sampling sites in Huaihe River was investigated in March, June, September and December 2011. A total of 26 species from 9 families were recorded. Thereinto, only 3 species occurred in the first upriver site: Tongbaijinzhuang, and 15 species occurred in the downriver

  20. Spatial dynamics of benthic competition on coral reefs.

    Science.gov (United States)

    Sandin, Stuart A; McNamara, Dylan E

    2012-04-01

    The community structure of sedentary organisms is largely controlled by the outcome of direct competition for space. Understanding factors defining competitive outcomes among neighbors is thus critical for predicting large-scale changes, such as transitions to alternate states within coral reefs. Using a spatially explicit model, we explored the importance of variation in two spatial properties in benthic dynamics on coral reefs: (1) patterns of herbivory are spatially distinct between fishes and sea urchins and (2) there is wide variation in the areal extent into which different coral species can expand. We reveal that the size-specific, competitive asymmetry of corals versus fleshy algae highlights the significance of spatial patterning of herbivory and of coral growth. Spatial dynamics that alter the demographic importance of coral recruitment and maturation have profound effects on the emergent structure of the reef benthic community. Spatially constrained herbivory (as by sea urchins) is more effective than spatially unconstrained herbivory (as by many fish) at opening space for the time needed for corals to settle and to recruit to the adult population. Further, spatially unconstrained coral growth (as by many branching coral species) reduces the number of recruitment events needed to fill a habitat with coral relative to more spatially constrained growth (as by many massive species). Our model predicts that widespread mortality of branching corals (e.g., Acropora spp) and herbivorous sea urchins (particularly Diadema antillarum) in the Caribbean has greatly reduced the potential for restoration across the region.

  1. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    Science.gov (United States)

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  2. Antarctic Porifera database from the Spanish benthic expeditions

    Directory of Open Access Journals (Sweden)

    Pilar Rios

    2014-04-01

    Full Text Available The information about the sponges in this dataset is derived from the samples collected during five Spanish Antarctic expeditions: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using va­rious sampling gears.The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides in­formation for an under-explored region of the Southern Ocean (Bellingshausen Sea. It fills an information gap on Antarctic deep-sea sponges, for which there were previously very few data.This phylum is an important part of the Antarctic biota and plays a key role in the structure of the Antarctic marine benthic community due to its considerable diversity and predominance in different areas. It is often a dominant component of Southern Ocean benthic communities.The quality of the data was controlled very thoroughly with GPS systems onboard the R/V Hesperides and by checking the data against the World Porifera Database (which is part of the World Register of Marine Species, WoRMS. The data are therefore fit for completing checklists, inclusion in biodivers­ity pattern analysis and niche modelling. The authors can be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.The dataset currently contains 767 occurrence data items that have been checked for systematic reliability. This database is not yet complete and the collection is growing. Specimens are stored in the author’s collection at the Spanish Institute of Oceanography (IEO in the city of Gijón (Spain. The data are available in GBIF.

  3. Quo vadis NW Black Sea benthic ecosystems?

    Science.gov (United States)

    Traian Gomoiu, Marian

    2016-04-01

    / thalasoterapy. Black Sea ecosystem restoration - Certainties and Uncertainties: Pressure on the Danube and other rivers has decreased, chemical discharges have decreased obviously, and yet there appear phenomena of water flowering - "red waters", hypoxia is still present at times and there is mass mortality of fish and other benthic organisms. Why? Signs of recovery should be considered cautiously and uncertainties may be resolved only in a longer time by increasing our scientific efforts. The results of the EU FP7 Project PERSEUS led to the identification of three important issues that should be resolved in order to achieve good environmental status: • Applying an adaptive management to increase the resilience of the ecosystems and to diminish the vulnerability of biodiversity; • Necessity of participative approach by stakeholders; • Identifying and obtaining adequate financial support for new R-D-I projects. Who are the actors in addressing and implementing the actions? • Academic educational and research institutions for adequate working condition; • More specialists trained for taxonomic groups; • Reasonable diversity of coordinating specialists, capable team leaders / satisfactory work packages; • Attracting NGO members towards nature conservation issues; • Resonable stakeholders committed to environmental issues. Studying the results of researches carried out by GeoEcoMar on the Romanian Black Sea coast in recent years, the author concluded that the major problems hampering progress towards a good ecosystem in NW Bent Black Sea are: • lack of diversity in the fields of research, both in theoretical and applied realms; • structural and functional consequences of ecological pressures and the disordered state of the ecosystems in the periods of paroxysmal eutrophication / pollution at the end of the 20th Century; • scarcity of data and knowledge on the Social-Economic System; • high costs of the new marine technology used directly in the sea and

  4. Community structure characters of benthic algae community on littoral zone of the lakes in the middle reaches of Yangtze River%长江中游湖泊沿岸带的底栖藻类群落结构特征

    Institute of Scientific and Technical Information of China (English)

    裴国凤; 刘国祥

    2011-01-01

    测定和分析湖北省21个浅水湖泊沿岸带底柄藻类的现存量,底柄硅藻的种类组成、细胞密度、多样性指数及其群落结构特征,并结合理化指标对水质状况进行评价.结果表明:调查期间,不同湖泊底柄藻类的现存量和底柄硅藻细胞密度分别介于1.01-40.82μg/cm2和0.09×106-14.20×106cells/cm2之间,它们在所研究的富营养化湖泊中的含量均相对较高.在发现的181种(变种)底柄硅藻中,极细微曲壳藻分布广泛,是中营养、中-富营养湖泊的绝对优势种或主要优势种之一.TWINSPAN和DCA分析结果显示这些湖泊样点被分成3组,第一组中一富营养型湖泊的主要优势种是曲壳藻属的一些种类;第二组中营养湖泊同时存在分布相对均匀的多个优势种;第三组主要是城区富营养湖泊.南湖处于超富营养水平,小形异极藻占绝对优势(相对丰富度为43%).%Species composition, cell density, Shannon-Weaver diversity index, community structures of benthic diatoms and standing crops of benthic algae were investigated in the littoral zone of 21 shallow lakes in Hubei Province, and the water quality was evaluated combined with chemical parameters. The standing crops( Chl. a) of benthic algae and the density of benthic diatoms, with the range of 1.01 -40. 82μg/cm2 and 0.09 × 106 - 14.20 × 106 cells/cm2, respectively, exhibited higher values in eutrophic lakes during the studying period. Among the 181 taxa (variety) of benthic diatom observed, Achnanthes minutissima distributed widely and was absolutely dominant or sub-dominant species in mesotrophic and meso-eutrophic lakes. The results of two-way indicator species analysis and detrended correspondence analysis catalogued these lakes into three groups: the dominant species were taxa of Achnanthes genus in meso-eutrophic lakes of the first group; several dominant species existed at the same time in mesotrophic lake of the second group; the third group were the

  5. Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses

    Science.gov (United States)

    Marti, Romain; Ribun, Sébastien; Aubin, Jean-Baptiste; Colinon, Céline; Petit, Stéphanie; Marjolet, Laurence; Gourmelon, Michèle; Schmitt, Laurent; Breil, Pascal; Cottet, Marylise; Cournoyer, Benoit

    2017-01-01

    Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was

  6. Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses.

    Science.gov (United States)

    Marti, Romain; Ribun, Sébastien; Aubin, Jean-Baptiste; Colinon, Céline; Petit, Stéphanie; Marjolet, Laurence; Gourmelon, Michèle; Schmitt, Laurent; Breil, Pascal; Cottet, Marylise; Cournoyer, Benoit

    2017-01-01

    Rivers are often challenged by fecal contaminations. The barrier effect of sediments against fecal bacteria was investigated through the use of a microbial source tracking (MST) toolbox, and by Next Generation Sequencing (NGS) of V5-V6 16S rRNA gene (rrs) sequences. Non-metric multi-dimensional scaling analysis of V5-V6 16S rRNA gene sequences differentiated bacteriomes according to their compartment of origin i.e., surface water against benthic and hyporheic sediments. Classification of these reads showed the most prevalent operating taxonomic units (OTU) to be allocated to Flavobacterium and Aquabacterium. Relative numbers of Gaiella, Haliangium, and Thermoleophilum OTU matched the observed differentiation of bacteriomes according to river compartments. OTU patterns were found impacted by combined sewer overflows (CSO) through an observed increase in diversity from the sewer to the hyporheic sediments. These changes appeared driven by direct transfers of bacterial contaminants from wastewaters but also by organic inputs favoring previously undetectable bacterial groups among sediments. These NGS datasets appeared more sensitive at tracking community changes than MST markers. The human-specific MST marker HF183 was strictly detected among CSO-impacted surface waters and not river bed sediments. The ruminant-specific DNA marker was more broadly distributed but intense bovine pollution was required to detect transfers from surface water to benthic and hyporheic sediments. Some OTU showed distribution patterns in line with these MST datasets such as those allocated to the Aeromonas, Acinetobacter, and Pseudomonas. Fecal indicators (Escherichia coli and total thermotolerant coliforms) were detected all over the river course but their concentrations were not correlated with MST ones. Overall, MST and NGS datasets suggested a poor colonization of river sediments by bovine and sewer bacterial contaminants. No environmental outbreak of these bacterial contaminants was

  7. Rapid change with depth in megabenthic structure-forming communities of the Makapu'u deep-sea coral bed

    Science.gov (United States)

    Long, Dustin J.; Baco, Amy R.

    2014-01-01

    Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.

  8. The ecology of chalk-stream invertebrates studied in a recirculating stream

    OpenAIRE

    1984-01-01

    To study and qualify the factors influencing interactions between various trophic levels in natural hard-water streams, a recirculating artificial stream channel was constructed. This structure has enabled patterns of population change of stream fauna to be observed under partially controlled physical and chemical conditions. Initial colonization of the substratum by invertebrates and subsequent succession was studied along with depth distribution and growth and production studies of inverteb...

  9. Long term cultivation of larger benthic Foraminifera

    Science.gov (United States)

    Wöger, Julia; Eder, Wolfgang; Kinoshita, Shunichi; Antonino, Briguglio; Carles, Ferrandes-Cañadell; Hohenegger, Johann

    2015-04-01

    Benthic Foraminifera are used in a variety of applications employing numerous different methods, i.e. ecological monitoring, studying the effects of ocean acidification, reconstructing palaeo-bathymetry or investigating palaeo-salinity and palaeo-temperature to name only a few. To refine our understanding of ecological influences on larger benthic foraminiferal biology and to review inferences from field observations, culture experiments have become an indispensable tool. While culture experiments on smaller benthic foraminifera have become increasingly frequent in the past century, reports of the cultivation of symbiont bearing larger Foraminifera are rare. Generally, cultivation experiments can be divided into two groups: Culturing of populations and cultivation of single specimens allowing individual investigation. The latter differ form the former by several restrictions resulting from the need to limit individual motility without abridging microenvironmental conditions in the Foraminiferans artificial habitat, necessary to enable the individual to development as unfettered as possible. In this study we present first experiences and preliminary results of the long-term cultivation of larger benthic Foraminifera conducted at the 'Tropical Biosphere Research Station Sesoko Island, University of the Ryukyus', Japan, trying to reproduce natural conditions as closely as possible. Individuals of three species of larger benthic Foraminifera (Heterostegina depressa, Palaeonummulites venosus and Operculina complanata) have been cultured since April 2014. At the time of the general assembly the cultivation experiments will have been going on for more than one year, with the aim to investigate growth rates, longevities and reproduction strategies for comparison with results statistically inferred from application of the of the 'natural laboratory' method. The most important factor influencing foraminiferal health and development was found to be light intensity and light

  10. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    N. Glock

    2012-12-01

    Full Text Available The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ. Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250 m water depth. They are still important denitrifiers in the centre of the OMZ around 320 m (29–56% of the benthic denitrification but play only a minor role at the lower OMZ boundary and below the OMZ between 465 and 700 m (3–7% of total benthic denitrification. Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmol m−2 d−1. Furthermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 µmol L−1 can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin

  11. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    N. Glock

    2013-07-01

    Full Text Available The discovery that foraminifera are able to use nitrate instead of oxygen as an electron acceptor for respiration has challenged our understanding of nitrogen cycling in the ocean. It was thought before that only prokaryotes and some fungi are able to denitrify. Rate estimates of foraminiferal denitrification have been very sparse and limited to specific regions in the oceans, not comparing stations along a transect of a certain region. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ. Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both surface and subsurface sediments, as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera probably account for the total denitrification in shelf sediments between 80 and 250 m water depth. The estimations also imply that foraminifera are still important denitrifiers in the centre of the OMZ around 320 m (29–50% of the benthic denitrification, but play only a minor role at the lower OMZ boundary and below the OMZ between 465 and 700 m (2–6% of total benthic denitrification. Furthermore, foraminiferal denitrification has been compared to the total benthic nitrate loss measured during benthic chamber experiments. The estimated foraminiferal denitrification rates contribute 2 to 46% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates range from 0.01 to 1.3 mmol m−2 d−1. Furthermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 3955 μmol L−1 can be higher by three orders of magnitude as compared to the ambient pore waters in near-surface sediments sustaining an important nitrate reservoir in

  12. Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling

    Science.gov (United States)

    Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.

    2015-12-01

    The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully

  13. Chronic Effects of Coated Silver Nanoparticles on Marine Invertebrate Larvae: A Proof of Concept Study.

    Directory of Open Access Journals (Sweden)

    Christine Ying Shan Chan

    Full Text Available Silver nanoparticles (AgNPs, owing to their unique physical and chemical properties, have become increasingly popular in consumer products. However, data on their potential biological effects on marine organisms, especially invertebrates, remain very limited. This proof of principle study reports the chronic sub-lethal toxicity of two coated AgNPs (oleic acid coated AgNPs and polyvinylpyrrolidone coated AgNPs on marine benthic invertebrate larvae across three phyla (i.e., the barnacle Balanus Amphitrite, the slipper-limpet Crepidula onyx, and the polychaete Hydroides elegans in terms of growth, development, and metamorphosis. Bioaccumulation and biodistribution of silver were also investigated. Larvae were also exposed to silver nitrate (AgNO3 in parallel to distinguish the toxic effects derived from nano-silver and the aqueous form of silver. The sub-lethal effect of chronic exposure to coated AgNPs resulted in a significant retardation in growth and development, and reduction of larval settlement rate. The larval settlement rate of H. elegans was significantly lower in the coated AgNP treatment than the AgNO3 treatment, suggesting that the toxicity of coated AgNPs might not be solely evoked by the release of silver ions (Ag+ in the test medium. The three species accumulated silver effectively from coated AgNPs as well as AgNO3, and coated AgNPs were observed in the vacuoles of epithelial cell in the digestive tract of C. onyx. Types of surface coatings did not affect the sub-lethal toxicity of AgNPs. This study demonstrated that coated AgNPs exerted toxic effects in a species-specific manner, and their exposure might allow bioaccumulation of silver, and affect growth, development, and settlement of marine invertebrate larvae. This study also highlighted the possibility that coated AgNPs could be taken up through diet and the toxicity of coated AgNPs might be mediated through toxic Ag+ as well as the novel modalities of coated AgNPs.

  14. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    Science.gov (United States)

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over

  15. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing.

    Science.gov (United States)

    Dahms, Hans-Uwe; Won, Eun-Ji; Kim, Hui-Su; Han, Jeonghoon; Park, Heum Gi; Souissi, Sami; Raisuddin, Sheikh; Lee, Jae-Seong

    2016-11-01

    Aquatic invertebrates contribute significantly to environmental impact assessment of contaminants in aquatic ecosystems. Much effort has been made to identify viable and ecologically relevant invertebrate test organisms to meet rigorous regulatory requirements. Copepods, which are ecologically important and widely distributed in aquatic organisms, offer a huge opportunity as test organisms for aquatic toxicity testing. They have a major role not only in the transfer of energy in aquatic food chains, but also as a medium of transfer of aquatic pollutants across the tropic levels. In this regard, a supratidal and benthic harpacticoid copepod Tigriopus japonicus Mori (order Harpacticoida) has shown promising characteristics as a test organism in the field of ecotoxicology. Because there is a need to standardize a battery of test organisms from species in different phylogenetic and critical ecosystem positions, it is important to identify another unrelated planktonic species for wider application and comparison. In this regard, the cyclopoid copepod Paracyclopina nana Smirnov (order Cyclopoida) has emerged as a potential test organism to meet such requirements. Like T. japonicus, it has a number of features that make it a candidate worth consideration in such efforts. Recently, the genomics of P. nana has been unraveled. Data on biochemical and molecular responses of P. nana against exposure to environmental chemicals and other stressors have been collected. Recently, sequences and expression profiles of a number of genes in P. nana encoding for heat shock proteins, xenobiotic-metabolizing enzymes, and antioxidants have been reported. These genes serve as potential biomarkers in biomonitoring of environmental pollutants. Moreover, the application of gene expression techniques and the use of its whole transcriptome have allowed evaluation of transcriptional changes in P. nana with the ultimate aim of understanding the mechanisms of action of environmental stressors

  16. Community structure and trophic ecology of megabenthic fauna from the deep basins in the Interior Sea of Chiloé, Chile (41-43° S)

    Science.gov (United States)

    Zapata-Hernández, Germán; Sellanes, Javier; Thiel, Martin; Henríquez, Camila; Hernández, Sebastián; Fernández, Julio C. C.; Hajdu, Eduardo

    2016-11-01

    Estuarine environments are complex ecological systems, which depend on multiple inputs of organic sources that could support their benthic communities. The deep-water megabenthic communities of the Interior Sea of Chiloé (ISCh, northern part of the fjord region of Chile) were studied to characterize their taxonomic composition and to trace the energy pathways supporting them by using stable isotope analysis (SIA). Megabenthic and demersal organisms as well as sunken macroalgal debris and terrestrial organic matter (TOM: wood, leaves, branches) were obtained by bottom trawling along an estuarine gradient covering 100-460 m water depth. Additionally, particulate organic matter (POM) and the sedimentary organic matter (SOM) were sampled and carbon (δ13C) and nitrogen (δ15N) isotope ratios were determined for all these organisms and potential food sources. A total of 140 taxa were obtained, including invertebrates (e.g. polychaetes, mollusks, crustaceans and echinoderms) bony fishes, rays and sharks. Based on the stable isotope values it was possible to infer a strong dependence on primary production derived from phytoplankton which is exported to the benthos. A potentially important contribution from sunken macroalgae to megabenthic consumers was established only for some invertebrates, such as the irregular echinoid Tripylaster philippii and the decapod Eurypodius latreillii. The trophic structure metrics suggest a similar isotopic niche width, trophic diversity and species packaging in the food webs among the major basins in the ISCh. It is thus concluded that the benthic food webs are supported principally by surface primary production, but macroalgal subsidies could be exploited by selected invertebrate taxa (e.g. detritivores) and terrestrial carbon pathways are important for certain specialized taxa (e.g. Xylophaga dorsalis).

  17. NOAA Point Shapefile- Benthic Habitat Classifications from Phantom S2 ROV Underwater Video, US Virgin Islands, Project NF-05-05, 2005, UTM 20N WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a point shapefile with benthic habitat classifications of vertical relief, geomorphological structure, substrate, and biological cover for...

  18. NOAA Point Shapefile- Benthic Habitat Classifications from Phantom S2 ROV Underwater Video, US Virgin Islands, Project NF-06-03, 2006, UTM 20N WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a point shapefile with benthic habitat classifications of vertical relief, geomorphological structure, substrate, and biological cover for...

  19. NOAA Point Shapefile- Benthic Habitat Classifications from Minibat ROV Underwater Video, US Virgin Islands, Project NF-04-06, 2004, UTM 20N WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a point shapefile with benthic habitat classifications of vertical relief, geomorphological structure, substrate, and biological cover for...

  20. DENSITY-DEPENDENT IMPACTS OF BIOIRRIGATION BY THE BURROWING SHRIMP UPOGEBIA PUGETTENSIS ON BENTHIC FLUXES AND POREWATER SOLUTE DISTRIBUTIONS IN PACIFIC NORTHWEST ESTUARIES

    Science.gov (United States)

    Burrowing thalassinid shrimp are major ecosystem engineering species of Pacific estuaries and can structure the physical, chemical, and biotic properties of sediments. Feeding and burrow irrigation by benthic organisms can increase the remineralization rates of organic material (...

  1. History of benthic research in the English Channel: From general patterns of communities to habitat mosaic description

    Science.gov (United States)

    Dauvin, Jean-Claude

    2015-06-01

    Benthic studies in the English Channel (EC), a shallow megatidal and epicontinental sea, began in the 1960s and 1970s with the work of teams led by Norman Holme (UK) and Louis Cabioch (F). During this period, benthic sampling was mainly qualitative, i.e. using a device such as the 'Rallier du Baty' dredge in the case of the French team and a modified anchor dredge in the case of the British team. Studies were focused on acquiring knowledge of the main distributions of benthic communities and species. Surveys on the scale of the whole EC led to the recognition of general features and two main patterns were identified: 1) the role of hydrodynamics on the spatial distribution of sediment, benthic species and communities; 2) the presence of a west-east climatic gradient of faunal impoverishment. Benthic studies in the 1980s-1990s were focused on the beginning of the implementation of long-term survey at a limited number of sites to identify seasonal and multi-annual changes. In the first decade of the 2000s, the implementation of the European Water Framework Directive and the Marine Strategy Framework Directive to define the Ecological Quality Status of marine environments increased the need to acquire better information of the structure and functioning of benthic communities, since benthic species and habitats were recognised as good indicators of human pressure on marine ecosystems. Faced with the increase of human maritime activities, the appearance of invasive species and the need to preserve sensitive marine habitats, benthic studies have been focused on developing a 'toolkit' to help in the decision-making and planning for both sound governance and sustainable management of marine resources and human activities in the English Channel. Multidisciplinary approaches were used to differentiate habitats in a more precise detail. Both indirect (side-scan sonar, ROV) and direct (grab sampling with benthos identification and grain-size analyses) approaches were used and

  2. Assessing and monitoring cryptic reef diversity of colonizing marine invertebrates across the U.S.-affiliated islands and atolls in the Pacific since 2008 using the Autonomous Reef Monitoring Structure (ARMS) method

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  3. Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content.

    Science.gov (United States)

    Karimi, Roxanne; Chen, Celia Y; Folt, Carol L

    2016-09-15

    Mercury (Hg) bioaccumulation in fish poses well-known health risks to wildlife and humans through fish consumption. Yet fish Hg concentrations are highly variable, and key factors driving this variability remain unclear. One little studied source of variation is the influence of habitat-specific feeding on Hg accumulation in lake fish. However, this is likely important because most lake fish feed in multiple habitats during their lives, and the Hg and caloric content of prey from different habitats can differ. This study used a three-pronged approach to investigate the extent to which habitat-specific prey determine differences in Hg bioaccumulation in fish. This study first compared Hg concentrations in common nearshore benthic invertebrates and pelagic zooplankton across five lakes and over the summer season in one lake, and found that pelagic zooplankton generally had higher Hg concentrations than most benthic taxa across lakes, and over a season in one lake. Second, using a bioenergetics model, the effects of prey caloric content from habitat-specific diets on fish growth and Hg accumulation were calculated. This model predicted that the consumption of benthic prey results in lower fish Hg concentrations due to higher prey caloric content and growth dilution (high weight gain relative to Hg from food), in addition to lower prey Hg levels. Third, using data from the literature, links between fish Hg content and the degree of benthivory, were examined, and showed that benthivory was associated with reduced Hg concentrations in lake fish. Taken together, these findings support the hypothesis that higher Hg content and lower caloric content make pelagic zooplankton prey greater sources of Hg for fish than nearshore benthic prey in lakes. Hence, habitat-specific foraging is likely to be a strong driver of variation in Hg levels within and between fish species.

  4. [The benthic fauna of Sabancuy Estuary, Campeche, Mexico].

    Science.gov (United States)

    González Solís, A; Torruco Gómez, D

    2001-03-01

    The fish and invertebrates community structure in the Sabancuy estuary was analyzed in two seasons and 14 sampling stations (13 along the estuary and one in the marine adjacent coast). No significant differences were found between seasons. The environmental frame defines two zones within the estuary, the first extends from the access highway to Sabancuy town until the Pujo mouth in the west; the second from the bridge to the estuary head in the east. The most abundant invertebrates were mollusks (51.8% of the total), in biomass the crustaceans dominated. The fish included 21 families and 33 species; the most abundant were Gerridae, Scianidae, Sparidae, Lutjanidae and Ciprinodontidae. The highest diversities of both communities correspond to the central part of the estuary. These communities include three sections with notable differences in faunal distribution: one is influenced by the exit to Terminos lagoon, the secondary in the estuary head and a third is in a transition zone defined by the proximity of the town access bridge. The ecological organization suggests a strong division caused by the bridge, both sides are scarce in habitats and nutrient resources and this is reflected in the low species counts.

  5. Ultrastructural features of the benthic dinoflagellate Ostreopsis cf. ovata (Dinophyceae).

    Science.gov (United States)

    Escalera, Laura; Benvenuto, Giovanna; Scalco, Eleonora; Zingone, Adriana; Montresor, Marina

    2014-05-01

    The toxic benthic dinoflagellate Ostreopsis cf. ovata has considerably expanded its distribution range in the last decade, posing risks to human health. Several aspects of this species are still poorly known. We studied ultrastructural features of cultivated and natural populations of Ostreopsis cf. ovata from the Gulf of Naples (Mediterranean Sea) using confocal laser scanning, and scanning and transmission electron microscopy. New information on the morphology and location of several sulcal plates was gained and a new plate designation is suggested that better fits the one applied to other Gonyaulacales. The microtubular component of the cytoskeleton, revealed using an anti-β-tubulin antibody, consisted of a cortical layer of microtubules arranged asymmetrically in the episome and in the hyposome, complemented by a complex inner microtubular system running from the sulcal area towards the internal part of the cell. The conspicuous canal was delimited by two thick, burin-shaped lobes ending in a tubular ventral opening. The canal was surrounded by mucocysts discharging their content into it. A similar structure has been reported in other benthic and planktonic dinoflagellates and may be interpreted as an example of convergent evolution in species producing large amounts of mucus.

  6. Coastal benthic diversity in the Black and Aegean Seas

    Directory of Open Access Journals (Sweden)

    A. ZENETOS

    2012-12-01

    Full Text Available Quantitative data pertaining to the composition of macrobenthic communities of soft bottoms along the coastal zones of the Black and Aegean Seas are reviewed. The study area includes one site in the Russian coastal zone, four sites in Ukraine (at depths 3-125 m, four sites in Bulgaria (at depths 12-83 m, and four sites in Greece (at depths 9-90 m. The species variety, population density and community diversity are compared between Seas, among regions and among stations. The fluctuation of these parameters in connection to anthropogenic impact (ranging from open undisturbed sites to those receiving heavy organic and chemical effluent are discussed. The low species number of benthic fauna in the Black Sea, as opposed to the richness of the Aegean Sea (three times higher a ratio well established for other marine groups, is not reflected in the overall abundance. Thus, the average population density of benthic organisms may reach 12352 ind per m2 in the Black Sea (Cocketrice sandy bank while in the Aegean it did not exceed 4,000 ind per m2 (Saronikos Gulf. Community diversity was always lower in the Black Sea than similar sites in the Aegean Sea. Within the various regions examined, the protected areas exhibited the most complex community structure.

  7. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    Science.gov (United States)

    Lebrato, M.; Andersson, A. J.; Ries, J. B.; Aronson, R. B.; Lamare, M. D.; Koeve, W.; Oschlies, A.; Iglesias-Rodriguez, M. D.; Thatje, S.; Amsler, M.; Vos, S. C.; Jones, D. O. B.; Ruhl, H. A.; Gates, A. R.; McClintock, J. B.

    2016-07-01

    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.

  8. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    Science.gov (United States)

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-06-09

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies.

  9. Species-specific responses of two benthic invertebrates explain their distribution along environmental gradients in freshwater habitats

    NARCIS (Netherlands)

    Haas, E.M.de; Kraak, M.H.S.

    2008-01-01

    The absence of species in polluted sediments does not necessarily imply exclusion due to toxicity. Other factors, like for instance food availability and oxygen content, could also partly cause their absence. Hence, knowledge of the (combinations of) factors acting on individual organisms is essenti

  10. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels.

  11. Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates.

    Science.gov (United States)

    Gorelova, Olga A; Baulina, Olga I; Solovchenko, Alexei E; Chekanov, Konstantin A; Chivkunova, Olga B; Fedorenko, Tatiana A; Lobakova, Elena S

    2015-03-01

    Similarity and diversity of the phenotype and nucleotide sequences of certain genome loci among the single-celled microalgae isolated from White Sea benthic invertebrates were studied to extend the knowledge of oxygenic photoautotrophs forming microbial communities associated with animals. We compared four Desmodesmus isolates (1Hp86E-2, 1Pm66B, 3Dp86E-1, 2Cl66E) from the sponge Halichondria panicea, trochophore larvae of the polychaete Phyllodoce maculata, and the hydroids Dynamena pumila and Coryne lovenii, respectively. The microalgae appeared to be very similar featuring the phenotypic and genetic traits characteristics of unicellular representatives of the genus Desmodesmus. At the same time, isolates from different animal species displayed certain differences in (i) the epistructure morphology; (ii) type and number of the inclusions such as interthylakoid starch grains and cytoplasmic oil bodies and (iii) fatty acid composition; in Desmodesmus sp. 1Hp86E-2, these differences were most pronounced. Phylogenetic analysis based on ITS1-5.8S rRNA-ITS2 and rbcL sequences showed that all isolates studied differ from known classified representatives of Desmodesmus combining a deletion in the conservative 5.8S rRNA gene and long AC-microsatellite repeats in the ITS1 whereas 1Hp86E-2 represented a distinct branch within this group.

  12. Effects of short-term exposure to dispersed oil in Arctic invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Mageau, C.; Englehardt, F.R.; Gilfillan, E.S.; Boehm, P.D.

    1987-01-01

    A series of experimental studies was carried out as part of the Baffin Island Oil Spill (BIOS) Project to define the behavioural, physiological and biochemical reactions of three arctic marine benthic invertebrate species exposed to chemically dispersed crude oil. Behavioural responses and patterns of hydrocarbon accumulation and release observed in the bivalves and the urchin during the 1981 field spill were similar to those observed during the laboratory simulations. Ostial closure, loss of responsiveness to mechanical stimuli and narcosis were characteristic of the bivalves. Exposed urchins displayed a functional loss of tube foot and spine behaviour. Detailed hydrocarbon analysis indicated different uptake dynamics among the species. The effects of dispersed oil were immediate and short lived and resulted in temporary accumulation of hydrocarbons. Depuration of these stored hydrocarbons occurred during the experimental recovery period. In vivo biodegradation of hydrocarbons was indicated in the bivalves. Physiological parameters measured in bivalves exposed to oil included elements of scope for growth, activity of aspartate aminotransferase and glucose-6-phosphate dehydrogenase. Dose-response relationships between physiological rates and hydrocarbon body burden were apparent.

  13. Long-term change in limnology and invertebrates in Alaskan boreal wetlands

    Science.gov (United States)

    Corcoran, R.M.; Lovvorn, J.R.; Heglund, P.J.

    2009-01-01

    Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985-1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001-2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985-1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002-2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002-2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest. ?? 2008 Springer Science+Business Media B.V.

  14. Comparison of the effects of drilling fluid on macrobenthic invertebrates associated with the seagrass, Thalassia testudinum, in the laboratory and field

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.E.; Flemer, D.A.; Bundick, C.M.

    1992-01-01

    The structure of a macrobenthic invertebrate community associated with the seagrass, Thalassia testudinum, was evaluated under laboratory and field conditions. The research focused on: (1) the effects of pollution stress from a representative drilling fluid used in offshore oil and gas operations, and (2) a comparison of responses of the seagrass-invertebrate community in the laboratory and field. The numbers of macrobenthic invertebrates were suppressed by drilling fluid at both exposure periods in the laboratory, but inhibitory effects were absent in the field. Invertebrate densities in the field were similar among control and treated plots, and were much lower than densities occurring in the laboratory control. In most instances, species richness values were similar in the field and laboratory at the end of each 6 and 12 week period.

  15. Invertebrate sampling at Fish Springs National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document presents results from an invertebrate study conducted on Fish Springs National Wildlife Refuge. The purposes of this study were to: 1) quanitify...

  16. Immune-neuroendocrine biology of invertebrates: a collection of methods

    Directory of Open Access Journals (Sweden)

    L Ballarin

    2008-12-01

    Full Text Available In the last decade there has been a considerable increase of interest towards the elucidation of several aspects of invertebrate biology, including immunity and neuroendocrinology. However, due to the difficulties connected to the great variety of morphology and adaptations displayed by invertebrates, and also in consideration of the number of techniques that are applied in the various laboratories, research on invertebrates still suffers from hampering that have been substantially overcome in vertebrate models, especially in mammals. The aim of this Technical Report is to provide the reader a useful list of well-established morphological and morpho-functional protocols in order to facilitate the design and make more homogeneous the realization of experiments in the field of invertebrate immune-neuroendocrinology.

  17. Guam and the Northern Mariana Islands ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for intertidal-, reef-, and mangrove-associated invertebrate species in Guam and the Northern Mariana...

  18. Bristol Bay, Alaska Subarea ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in the Bristol Bay Subarea. The Subarea includes marine and...

  19. Aquatic invertebrates doubly suspect in spreading duck malady : 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A 1958 news release providing a brief overview of the U.S. Fish and Wildlife Service's findings regarding the role aquatic invertebrates play in the spread of avian...

  20. Coastal Resources Atlas: Long Island: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for coastal, estuarine, and marine invertebrate species for Long Island, New York. Vector polygons in this...

  1. South Florida Seagrass Fish and Invertebrate Assessment Network (FIAN)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The South Florida Fish and Invertebrate Assessment Network (FIAN) is a monitoring project within the Comprehensive Everglades Restoration Plan (CERP). It is an...

  2. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    Science.gov (United States)

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning.

  3. An invertebrate model for CNS drug discovery

    DEFF Research Database (Denmark)

    Al-Qadi, Sonia; Schiøtt, Morten; Hansen, Steen Honoré

    2015-01-01

    BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple,...... barriers. CONCLUSION: Findings suggest a conserved mechanism of brain efflux activity between insects and vertebrates, confirming that this model holds promise for inexpensive and high-throughput screening relative to in vivo models, for CNS drug discovery......., high-throughput and predictive screening models are required. The grasshopper (locust) has been developed as an invertebrate in situ model for BBB permeability assessment, as it has shown similarities to vertebrate models. METHODS: Transcriptome profiling of ABC efflux transporters in the locust brain......BACKGROUND: ABC efflux transporters at the blood brain barrier (BBB), namely the P-glycoprotein (P-gp), restrain the development of central nervous system (CNS) drugs. Consequently, early screening of CNS drug candidates is pivotal to identify those affected by efflux activity. Therefore, simple...

  4. Long-term effects of beach nourishment on intertidal invertebrates

    OpenAIRE

    Wooldridge, Tyler Brock

    2015-01-01

    Although beach nourishment is an increasingly popular means to remediate coastal erosion, no consensus exists regarding how long nourishment affects sandy beach intertidal invertebrates, key components of sandy beach ecosystems. We monitored the intertidal invertebrate community for fifteen months following a nourishment project at eight beaches across San Diego County. Each beach was split into nourished and control sections. Nearly all taxa showed major declines in abundance immediately fol...

  5. Benthic habitat mapping using hyperspectral remote sensing

    Science.gov (United States)

    Vélez-Reyes, Miguel; Goodman, James A.; Castrodad-Carrau, Alexey; Jiménez-Rodriguez, Luis O.; Hunt, Shawn D.; Armstrong, Roy

    2006-09-01

    Benthic habitats are the different bottom environments as defined by distinct physical, geochemical, and biological characteristics. Remote sensing is increasingly being used to map and monitor the complex dynamics associated with estuarine and nearshore benthic habitats. Advantages of remote sensing technology include both the qualitative benefits derived from a visual overview, and more importantly, the quantitative abilities for systematic assessment and monitoring. Advancements in instrument capabilities and analysis methods are continuing to expand the accuracy and level of effectiveness of the resulting data products. Hyperspectral sensors in particular are rapidly emerging as a more complete solution, especially for the analysis of subsurface shallow aquatic systems. The spectral detail offered by hyperspectral instruments facilitates significant improvements in the capacity to differentiate and classify benthic habitats. This paper reviews two techniques for mapping shallow coastal ecosystems that both combine the retrieval of water optical properties with a linear unmixing model to obtain classifications of the seafloor. Example output using AVIRIS hyperspectral imagery of Kaneohe Bay, Hawaii is employed to demonstrate the application potential of the two approaches and compare their respective results.

  6. Chemical elements in invertebrate orders for environmental quality studies

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcelo R.L.; Franca, Elvis J.; Paiva, Jose D.S.; Hazin, Clovis A., E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: dan-paiva@hotmail.com, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fonseca, Felipe Y.; Fernandes, Elisabete A. de Nadai; Bacchi, Marcio A., E-mail: felipe-yamada@hotmail.com, E-mail: lis@cena.usp.br, E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)

  7. Conservation and monitoring of invertebrates in terrestrial protected areas

    Directory of Open Access Journals (Sweden)

    Melodie A. McGeoch

    2011-05-01

    Full Text Available Invertebrates constitute a substantial proportion of terrestrial and freshwater biodiversity and are critical to ecosystem function. However, their inclusion in biodiversity monitoring and conservation planning and management has lagged behind better-known, more widely appreciated taxa. Significant progress in invertebrate surveys, systematics and bioindication, both globally and locally, means that their use in biodiversity monitoring and conservation is becoming increasingly feasible. Here we outline challenges and solutions to the integration of invertebrates into biodiversity management objectives and monitoring in protected areas in South Africa. We show that such integration is relevant and possible, and assess the relative suitability of seven key taxa in this context. Finally, we outline a series of recommendations for mainstreaming invertebrates in conservation planning, surveys and monitoring in and around protected areas.Conservation implications: Invertebrates constitute a substantial and functionally significant component of terrestrial biodiversity and are valuable indicators of environmental condition. Although consideration of invertebrates has historically been neglected in conservation planning and management, substantial progress with surveys, systematics and bioindication means that it is now both feasible and advisable to incorporate them into protected area monitoring activities.

  8. The evolutionary ecology of offspring size in marine invertebrates.

    Science.gov (United States)

    Marshall, Dustin J; Keough, Michael J

    2007-01-01

    development: bigger offspring generally have higher post-metamorphic survival, higher growth rates and sometimes greater fecundity. Although there is limited evidence for the mechanisms underlying these effects, the size of post-metamorphic feeding structures and resistance to low-food availability appear to be good candidates. There was limited evidence to assess the effects of offspring size on post-metamorphic performance in planktotrophs but surprisingly, initial indications suggest that such effects do exist and in the same direction as for species with other developmental modes. Overall, we suggest that for direct developers and species with non-feeding larvae, the post-metamorphic effects of offspring size will be greatest source of selection. Offspring-size variation can arise through a variety of sources, both within and among populations. Stress, maternal size and nutrition, and habitat quality all appear to be major factors affecting the size of offspring, but more work on sources of variation is necessary. While theoretical considerations of offspring size can now account for variation in offspring size among mothers, they struggle to account for within-brood variation. We suggest alternative approaches such as game theoretic models that may be useful for reconciling within-clutch variation. While some of the first theoretical considerations of offspring size were based on marine invertebrates, many of the assumptions of these models have not been tested, and we highlight some of the important gaps in understanding offspring-size effects. We also discuss the advantages of using offspring size as a proxy for maternal investment and review the evidence used to justify this step. Overall, offspring size is likely to be an important source of variation in the recruitment of marine invertebrates. The quality of offspring entering a population could be as important as the quantity and further work on the ecological role of offspring size is necessary. From an

  9. Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, C.W. [National Inst. of Water and Atmospheric Research, Hamilton (New Zealand); Clements, W.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1998-11-01

    The authors performed chemical analyses of heavy metals in water and periphyton, toxicity tests with Daphnia magna and an indigenous mayfly (Deleatidium sp.), and field surveys of benthic macroinvertebrates to estimate the degree of metal pollution in three catchments in the Coromandel Peninsula of New Zealand. Good agreement was found between toxicity tests and measures of benthic community structure, particularly at stations with the highest metal levels. Responses of benthic communities at stations with low or moderate levels of metal contamination were variable and were probably confounded by factors other than heavy metals. Effects of heavy metals on benthic communities in New Zealand streams were similar to those reported for metal-polluted streams in North America and Europe, suggesting that responses to metal contamination are predictable. Abundance and species richness of mayflies, number of taxa in the orders Ephemeroptera, Plecoptera, and Trichoptera, and total taxonomic richness were the best indicators of heavy metals in New Zealand streams. In contrast, the quantitative macroinvertebrate community index (QMCI), a biotic index proposed for assessing effects of organic enrichment in New Zealand streams, could not distinguish between reference and metal-polluted streams. The poor performance of the QMCI was primarily due to incorrect tolerance scores for some taxa to heavy metals. Because of concerns regarding the subjective assignment of tolerance values to species, the authors recommend that tolerance values for dominant species in New Zealand streams should be verified experimentally in stream microcosms.

  10. Size structure of a heavily fished benthic/demersal community by shrimp trawling in the Colombian Caribbean Sea Estructura de tamaños de una comunidad bentónica/demersal fuertemente impactada por la pesca de arrastre camaronero en el Mar Caribe de Colombia

    Directory of Open Access Journals (Sweden)

    Paúl Gómez-Canchong

    2011-01-01

    Full Text Available The benthic and demersal communities in the Colombian Caribbean Sea (CCS are heavily fished by the shrimp trawling fishery, which presents very high discard levels. Here, we conducted an analysis of the size structure of these benthic and demersal communities in the northern and southern zones of the CCS. Sampling was conducted onboard shrimp trawlers throughout an entire year. No significant differences were found in the size distributions of the two zones, among sites within southern ecoregions, or among the analyzed cruises. This homogeneity in size structure is remarkable since the zones analyzed possess very different species compositions and environmental conditions. The observed size structures were adequately described by non-linear distributions rather than the traditionally employed linear normalized biomass size spectra. It is hypothesized that the non-linearity is due to the effect of fishing and particularly, of discarding. This study emphasizes the need for a greater understanding of the impacts that trawl fishing has on community size structure and the applicability of this knowledge towards fishery resource management in ecosystems with high diversity.Las comunidades bentónico-demersales en el Mar Caribe de Colombia (MCC son fuertemente explotadas por la pesca de arrastre camaronero, presentando niveles de descarte muy altos. Se efectuó un análisis de la estructura de tamaños de estas comunidades bentónico-demersales en las zonas norte y sur del MCC. Se realizaron muéstreos a bordo de las embarcaciones de arrastre de camarón a lo largo de un año. No se encontraron diferencias significativas entre las distribuciones de tamaños de las diferentes zonas, ecorregiones de la zona sur y cruceros analizados. Esta homogeneidad en la estructura de tamaños es destacable ya que las areas analizadas difieren en composición de especies y condiciones medioambientales. Las estructuras de tamaño observadas, fueron descritas

  11. Venus kinase receptors: prospects in signaling and biological functions of these invertebrate kinases.

    Science.gov (United States)

    Dissous, Colette; Morel, Marion; Vanderstraete, Mathieu

    2014-01-01

    Venus kinase receptors (VKRs) form a family of invertebrate receptor tyrosine kinases (RTKs) initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors that contain an extracellular venus fly trap structure similar to the ligand-binding domain of G protein-coupled receptors of class C, and an intracellular tyrosine kinase domain close to that of insulin receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. VKR gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in S. mansoni. VKRs are activated by amino acids and are highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates or in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens, and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  12. Venus Kinase Receptors: prospects in signalling and biological functions of these invertebrate receptors

    Directory of Open Access Journals (Sweden)

    Colette eDissous

    2014-05-01

    Full Text Available Venus Kinase Receptors (VKRs form a family of invertebrate receptor tyrosine kinases (RTKs initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors which contain an extracellular Venus Flytrap (VFT structure similar to the ligand binding domain of G Protein Coupled Receptors of class C, and an intracellular Tyrosine Kinase domain close to that of Insulin Receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms, and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. Vkr gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in Schistosoma .mansoni. VKRs are activated by amino-acids, and highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates, nor in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/ control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  13. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil.

    Science.gov (United States)

    Egler, M; Buss, D F; Moreira, J C; Baptista, D F

    2012-08-01

    Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture) on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.

  14. Evaluation of the composition of terrestrial invertebrates in a rural area of Campina Grande do Sul, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Marta Luciane Fischer

    2008-03-01

    Full Text Available The terrestrial invertebrates participate actively in the formation of the soil, and can be utilized as bioindicators of environmental disturbance. Thus, the objective of this research was to evaluate the fauna composition of terrestrial invertebrates, in a rural area of Campina Grande do Sul. The collection was carried out in a single fragment of Araucaria Forest, with structurally differentiated two-point samplings, through pitfall traps. A total of 1,776 invertebrates was captured, pertaining to Arthropoda, Annelida, Mollusca and Plathyhelminthes phyla, of which Arthropoda and Hexapoda were the most representative groups. In Hexapoda, eleven orders were registered, and of those, Coleoptera, Hymenoptera, Collembola and Diptera were the most abundant. Although the studied fragment had been under recuperation for about 10 years after approximately 40 years of antropic interference, and was therefore surrounded by areas utilized for farming, agriculture and highways, it contained different groups of terrestrial invertebrates on wide-ranging thropic levels, which were important for the spatial structure and the composition of litterfall of the fragment.

  15. Relationship between sedimentation rates and benthic impact on Maërl beds derived from fish farming in the Mediterranean.

    Science.gov (United States)

    Sanz-Lázaro, Carlos; Belando, María Dolores; Marín-Guirao, Lázaro; Navarrete-Mier, Francisco; Marín, Arnaldo

    2011-02-01

    The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions.

  16. Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level

    Directory of Open Access Journals (Sweden)

    B. Riedel

    2013-08-01

    Full Text Available Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded wordwide. By triggering cascading effects from the individual organism to the community and ecosystem-level, oxygen depletions threat marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early-warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea, Mediterranean. We experimentally induced small-scale anoxia with a benthic chamber in 24 m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups. Most atypical (stress behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (2 L−1, the emergence of polychates on the sediment surface with moderate hypoxia (2 L−1, the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (2 L−1 and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, i.e. circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra- and

  17. A generalized model for estimating the energy density of invertebrates

    Science.gov (United States)

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  18. Key factors for the emergence of collective decision in invertebrates.

    Science.gov (United States)

    Jeanson, Raphaël; Dussutour, Audrey; Fourcassié, Vincent

    2012-01-01

    In many species of group living invertebrates, in particular arthropods, collective decisions can emerge from the combined actions of individuals and the direct or indirect interactions between individuals. These decisions allow groups of individuals to respond quickly and accurately to changes that occur in their environment. Examples of such decisions are found in a variety of invertebrate taxa and in many different contexts, e.g., exploring a new territory, foraging for food, finding a suitable location where to aggregate or to establish a nest, defending oneself against predators, etc. In this paper we review the collective decisions that have been documented in different invertebrate taxa where individuals are known to live temporarily or permanently in social or gregarious groups. We first present some simple examples of collective decisions involving the choice between two alternatives. We then define the fundamental rules required for these collective decisions to emerge throughout the invertebrate taxon, from simple organisms such as caterpillars, to animals endowed with highly developed perceptive and cognitive capacities such as ants and bees. The presentation of these rules gives us the opportunity to illustrate one of the pitfalls of the study of collective choice in animals by showing through computer simulations how a choice between two alternatives can be misinterpreted as the result of the action of self-organized mechanisms. In the second part, we discuss the peculiarities of collective decisions in invertebrates, their properties, and characteristics. We conclude by discussing the issue of individual complexity in collective decision-making process.

  19. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  20. Benthic macroinvertebrates in Italian rice fields

    Directory of Open Access Journals (Sweden)

    Daniela Lupi

    2013-02-01

    Full Text Available Rice fields can be considered man-managed temporary wetlands. Five rice fields handled with different management strategies, their adjacent channels, and a spring were analysed by their benthic macroinvertebrate community to i evaluate the role of rice agroe- cosystem in biodiversity conservation; ii find indicator species which can be used to compare the ecological status of natural wetlands with rice agroecosystems; and iii find the influence of environmental variables on biodiversity. Different methods of data analysis with increasing degree of complexity – from diversity index up to sophisticated multivariate analysis – were used. The investigation provided a picture of benthic macroinvertebrates inhabiting rice agroecosystems where 173 taxa were identified, 89 of which detected in rice paddies. Among them, 4 phyla (Mollusca, Annelida, Nematomorpha, and Arthropoda, 8 classes (Bivalvia, Gastropoda, Oligochaeta, Hirudinea, Gordioida, Insecta, Branchiopoda, and Malacostraca, 24 orders, 68 families, 127 genera and 159 species have been found. Ten threatened and 3 invasive species were detected in the habitats examined. The information obtained by the different methods of data analysis allowed a more comprehensive view on the value of the components of rice agroecosystems. Data analyses highlighted significant differences between habitats (feeding channel and rice field, with higher diversity observed in channels, and emphasised the role of the water chemical-physical parameters. The period of water permanence in rice fields resulted to be only one of the factors influencing the community of benthic macroinvertebrates. The presence of rare/endangered species allowed characterising some stations, but it was less informative about management strategies in rice paddies because most of these species were absent in rice fields.

  1. Benthic carbon mineralization in hadal trenches

    DEFF Research Database (Denmark)

    Wenzhöfer, F.; Oguri, K.; Middelboe, Mathias;

    2016-01-01

    consumption rates and sediment characteristics from the trench axis of two contrasting trench systems in the Pacific Ocean; the Izu-Bonin Trench underlying mesotrophic waters and the Tonga Trench underlying oligotrophic waters. In situ oxygen consumption at the Izu-Bonin Trench axis site (9200 m; 746 +/- 103...... mu mol m(-2) d(-1); n=27) was 3-times higher than at the Tonga Trench axis site (10800 m; 225 +/- 50 pmol m(-2) d(-1); n=7) presumably reflecting the higher surface water productivity in the Northern Pacific. Comparing benthic O-2 consumption rates measured in the central hadal Tonga Trench...

  2. Molecular mechanisms of heavy metal tolerance and evolution n invertebrates

    Institute of Scientific and Technical Information of China (English)

    Thierry K.S.Janssens; Dick Roelofs; Nico M.van Straalen

    2009-01-01

    Following the genomics revolution,our knowledge of the molecular mechanisms underlying defenses against stress has been greatly expanded.Under strong selective pressure many animals may evolve an enhanced stress tolerance.This can be achieved by altering the structure of proteins(through mutations in the coding regions of genes)or by altering the amount of protein(through changes in transcriptional regulation).The latter type of evolution Can be achieved by substitutions in the promoter of the gene of interest(cis-regulatory change)or by altering the structure or anaount of transcriptional regulator proteins (trans-regulatory change).The metallothionein system is one of the best studied stress response systems in the context of heavy metals.Metallothionein expression is assumed to be regulated by metal transcription factor 1(MTF-1);however,up to now the involvement of MTF-1 has only been proven for some vertebrates and Drosophila.Data on invertebrates such as nematodes and earthworms suggest that other mechanisms of metallothionein induction may be present.A detailed study of Cd tolerance was done for a species of soilliving springtail,Orchesella cincta.The metallothionein gene of this species is overexpressed in metal-exposed field populations.Analysis of the metallothionein promoter has demonstrated extensive polymorphisills that have a functional significance,as shown in bioreporter assays.In a study comparing 20 different populations,the frequency of a high-expresser promoter allele Was positively correlated with the concentration of metals in soil,especially Cd.The springtail study shows that cis-regulatory change of genes involved in the cellular stress response may contribute to evolution of metal tolerance.

  3. State of the benthic ecosystem on western Black Sea shelf in spring 2008

    Science.gov (United States)

    Friedrich, J.; Aleynik, D.; Eulenburg, A.; Kusch, St.; Mee, L. D.; Minicheva, G.; Stevens, T. F.; Teaca, A.; Shapiro, G. I.; Soloviev, D.

    2009-04-01

    : thermal heating and freshwater input created a double front structure on the western shelf, and intrusion of the Cold Intermediate Layer (CIL) into shelf waters was observed. Surface distribution of dissolved nutrients reflects clear signals of silica and total dissolved nitrogen input from the Danube River. Phosphate appears to have a different source, e.g. benthic and/or from the CIL. The benthic ecosystem remains fragile; diversity indices reflect small recovery, quantities in biomass of both zoo- and phytobenthos indicate ongoing perturbations in nearshore areas. A full recovery of historical beds of Phyllophora is not evident, coverage both in winter and summer is less than 10%, and its role as habitat could be compromised by overgrowth of filamentous algae. The benthic system with an epibenthic community in balance releases less nutrients than a disturbed system without benthic life. Nutrients release from the sediment is lower in winter than in summer. The oxygen penetration depth in the sediment triggers denitrification. A spectacular population development of opportunistic species both in zoo- and phytobenthos was observed. The question remains whether or not those opportunistic species can ensure ecosystem functionality and stability. Our findings will help to identify locations crucial for the functioning for the benthic shelf ecosystem, to define "Good Environmental Status" and help to provide recommendations for Marine protected areas on the western Black Sea shelf. It is hoped that the data will make an important contribution to the information base underpinning the new European Marine Strategy Directive and the Bucharest Convention for the Protection of the Black Sea.

  4. Benthic Habitat Variations Over Tidal Ridges, North Sea, The Netherlands

    NARCIS (Netherlands)

    Dijk, T.A.G.P. van; Dalfsen, J.A. van; Lancker, V. van; Overmeeren, R.A. van; Heteren, S. van; Doornenbal, P.J.

    2012-01-01

    Marine ecosystems on continental shelves endure an increasing burden of human activity offshore, and the impacts on benthic habitats are not well known. An improved understanding of how benthic habitats vary in relation to substrate types and seabed features is therefore essential to both scientists

  5. Tolerance of benthic foraminifera (Protista : Sarcodina) to hydrogen sulphide

    NARCIS (Netherlands)

    Moodley, L.; Schaub, B.; Van der Zwaan, G.J.; Herman, P.M.J.

    1998-01-01

    Benthic foraminifera are dominant members of tb meiofauna, commonly occurring below the anoxic-oxic interface in marine sediments. The absence of oxygen in marine coastal sediments is often correlated with the formation of hydrogen sulphide. In this study the tolerance of benthic foraminifera (from

  6. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas

    2014-01-01

    of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...

  7. Environmental conditions and biotic interactions influence ecosystem structure and function in a drying stream

    Science.gov (United States)

    Ludlam, J.P.; Magoulick, D.D.

    2010-01-01

    Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek's crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (kexposed = 0.038 ?? 0.013, kexclusion = 0.007 ?? 0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions. ?? US Government: USGS 2010.

  8. Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil

    Directory of Open Access Journals (Sweden)

    M. Callisto

    Full Text Available The main goals of this study were: 1 to evaluate the structure, diversity, and functional trophic group composition of benthic macroinvertebrate communities; 2 to characterize water quality in the headwaters of the Doce river watershed, based on physical, chemical, and biological parameters (benthic macroinvertebrates, fecal coliforms, heterotrophic bacteria, and yeasts; and 3 to contribute to the knowledge of the structure and function of longitudinal gradients in lotic ecosystems in Brazil. A total of 60 benthic macroinvertebrate taxa were identified, the dominant group being the aquatic insects, with 50 families distributed in 8 orders. The dry period presented higher values of taxonomic richness and total density of benthic macroinvertebrates. A decreasing gradient was observed in these variable values from the 3rd order stretch down to the 6th order stretch. The highest Shannon-Wiener diversity values were found in the rainy period in the 3rd order stretches, which presented well-developed riparian forest. Besides the 3rd order stretches, the Pielou evenness index values were also high in the 6th order stretch. The collectors, together with the scrapers, predominated in the benthic macroinvertebrate communities in all river stretches, except in the 2nd, 4th, and 5th order stretches in the rainy period, where communities were dominated by filterers. The shredders and predators presented low densities for all river stretches. All microbiological variables presented low levels. Due to the high counts of heterotrophic bacteria and coliforms, the studied river stretches presented inadequate potability but adequate balneability levels. The results suggest that the structure, diversity, and composition of the benthic macroinvertebrate communities are influenced by the trophic resource availability, seasonality, and sediment heterogeneity. The microbiological results of this study allow inferring that the waters from Serra do Cipó have excellent

  9. Benthic ecosystem functioning in the severely contaminated Mar Piccolo of Taranto (Ionian Sea, Italy): focus on heterotrophic pathways.

    Science.gov (United States)

    Franzo, A; Auriemma, R; Nasi, F; Vojvoda, J; Pallavicini, A; Cibic, T; Del Negro, P

    2016-07-01

    The benthic ecosystem functioning is a rarely applied holistic approach that integrates the main chemical and biological features of the benthic domain with the key processes responsible for the flux of energy and C through the system. For the first time, such conceptual model, with an emphasis on the heterotrophic pathways, has been applied to the sediments at four stations within one of the most polluted coastal areas in Italy: the Mar Piccolo of Taranto. The functioning of the benthic ecosystem was different according to the investigated site. Nearby the military arsenal, i.e., the main source of organic contaminants and heavy metals, the system seemed inhibited at all the investigated structural and functional levels. Slow microbial processes of C reworking together with very limited densities of benthic fauna suggested a modest transfer of C both into a solid microbial loop and to the higher trophic levels. On the other hand, the ingression of marine water through the "Navigabile" channel seemed to stimulate the organic matter degradation and, consequently, the proliferation of meiofauna and macrofauna. In the innermost part of the basin, the system functioning, to some extent, is less impacted by contaminants and more influenced by mussel farms. The organic matter produced by these bivalves fueled faster C reworking by benthic prokaryotes and enhanced the proliferation of filter feeders.

  10. Autofluorescence imaging system to discriminate and quantify the distribution of benthic cyanobacteria and diatoms

    DEFF Research Database (Denmark)

    Carreira, Cátia; Staal, Marc Jaap; Middelboe, Mathias

    2015-01-01

    successfully to (mixed) laboratory cultures as well as natural photosynthetic microbial mats. Cultures of the diatom Nitzschia capitellata and the cyanobacterium Geitlerinema sp. showed close correlation between autofluorescence and cell abundance. This simple and cheap imaging system allows fast observations...... of the fine-scale (μm–mm) spatial heterogeneities of live benthic microbial photoautotrophs both in culture and natural photosynthetic biofilms structure (e.g., microphytobenthos and photosynthetic microbial mats). © 2014 Association for the Sciences of Limnology and Oceanography...

  11. The genetics of host-virus coevolution in invertebrates.

    Science.gov (United States)

    Obbard, Darren J; Dudas, Gytis

    2014-10-01

    Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.

  12. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  13. Isolation of key retinoid signalling and metabolic modules in invertebrates

    Directory of Open Access Journals (Sweden)

    Ana André

    2014-05-01

    Full Text Available Retinoids are a class of molecules related to vitamin A (Retinol that are required for regulation of critical chordate ndocrine-mediated process, such as embryonic development, reproduction, and vision. To maintain such physiological process, chordates have a complex mechanism to regulate the spatial and temporal distribution of retinoids that includes metabolic and signalling modules. Initially, retinoid modules were seen as a chordate novelty. However, emerging biochemical and genomic evidences have challenged this view, clearly pointing to a more basal ancestry than previously thought. However, for the majority of non-chordate invertebrate lineages a clearly characterization of the main enzymatic/molecular players is still missing. Despite limited, the available evidence supports the presence of biologically active retinoid pathways in invertebrates. In order to enhance our insights on retinoid biology, evolution, and its putative disruption by environmental chemicals, the isolation and functional characterization of key retinoid metabolic players in marine invertebrates has been carried out.

  14. Assessment of Streamside Management Zones for Conserving Benthic Macroinvertebrate Communities Following Timber Harvest in Eastern Kentucky Headwater Catchments

    Directory of Open Access Journals (Sweden)

    Joshua K. Adkins

    2016-06-01

    Full Text Available Headwater streams generally comprise the majority of stream area in a watershed and can have a strong influence on downstream food webs. Our objective was to determine the effect of altering streamside management zone (SMZ configurations on headwater aquatic insect communities. Timber harvests were implemented within six watersheds in eastern Kentucky. The SMZ configurations varied in width, canopy retention and best management practice (BMP utilization at the watershed scale. Benthic macroinvertebrate samples collected one year before and four years after harvest indicated few differences among treatments, although post-treatment abundance was elevated in some of the treatment streams relative to the unharvested controls. Jaccard index values were similar across SMZ treatments after logging, indicating strong community overlap. These findings suggest that stream invertebrate communities did respond to the timber harvest, though not negatively. Results also suggest that SMZ criteria for aquatic habitats in steeply sloping topography, including at least 50 percent canopy retention and widths of at least 16.8 m, appear to be adequate for protecting benthic macroinvertebrate communities from logging impacts.

  15. Trace Elements in Calcifying Marine Invertebrates Indicate Diverse Sensitivities to the Seawater Carbonate System

    Science.gov (United States)

    Doss, W. C.

    2015-12-01

    Surface ocean absorption of anthropogenic CO2 emissions resulting in ocean acidification may interfere with the ability of calcifying marine organisms to biomineralize, since the drop in pH is accompanied by reductions in CaCO3 saturation state. However, recent experiments show that net calcification rates of cultured benthic invertebrate taxa exhibit diverse responses to pCO2-induced changes in saturation state (Ries et al., 2009). Advancement of geochemical tools as biomineralization indicators will enable us to better understand these results and therefore help predict the impacts of ongoing and future decrease in seawater pH on marine organisms. Here we build upon previous work on these specimens by measuring the elemental composition of biogenic calcite and aragonite precipitated in four pCO2 treatments (400; 600; 900; and 2850 ppm). Element ratios (including Sr/Ca, Mg/Ca, Li/Ca, B/Ca, U/Ca, Ba/Ca, Cd/Ca, and Zn/Ca) were analyzed in 18 macro-invertebrate species representing seven phyla (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida), then compared to growth rate data and experimental seawater carbonate system parameters: [CO32-], [HCO3-], pH, saturation state, and DIC. Correlations between calcite or aragonite composition and seawater carbonate chemistry are highly taxa-specific, but do not resemble trends observed in growth rate for all species. Apparent carbonate system sensitivities vary widely by element, ranging from strongly correlated to no significant response. Interpretation of these results is guided by mounting evidence for the capacity of individual species to modulate pH and/or saturation state at the site of calcification in response to ambient seawater chemistry. Such biomineralization pathways and strategies in turn likely influence elemental fractionation during CaCO3 precipitation. Ries, J.B., A.L. Cohen, A.L., and D.C. McCorkle (2009), Marine calcifiers exhibit mixed responses to CO2-induced ocean

  16. Bioassessment of Choghakhor Wetland using Benthic Macroinvertebrates

    Directory of Open Access Journals (Sweden)

    P. Fathi

    2016-05-01

    Full Text Available In present study, besides investigating benthic communities and their demographics in Choghakhor wetland, the water quality has been evaluated and classified. Then, 10 stations were selected and sampling of benthos was done every 45 days since April 2010 to March 2011, with 3 replications at each station. Samples were obtained by Ekman grab Sampler (surface 400 cm2. The collected samples were separated and fixed by formalin (4%. The Macroinvertebrates samples were identified and counted in laboratory. Generally 25 families of benthic macroinvertebrates belonging to 5 classes and 12 orders were identified. The results were calculated as community measures, including total richness, Shannon - Wiener diversity index and Hilsenhoff Biological index at family level. The results obtained from temporal and spatial changes of data (Statgeraphics software and water qualitative classification using Shannon diversity index conformed to biological Hilsenhoff index. And finally, water quality of wetland was assessed to be polluted in average to high level. According to this study findings, it seems that, these indicators could be used as useful tools for evaluating water supplies quality.

  17. Benthic Macroinvertebrate Communities in Agriculturally Impaired Streams

    Directory of Open Access Journals (Sweden)

    Virginija Pliuraite

    2009-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE This work presents research into the taxonomic composition of macroinvertebrate communities in streams that are under the influence of agricultural pollution A total of 67 macroinvertebrate taxa (including 61 identified species belonging to 40 families have been identified in the explored streams. The greatest species richness is recorded for the Trichoptera (18 species/1 taxa and Mollusca (12 species. The molluscs Gyraulus albus, amphipods Gammarus pulex, caddisflies Hydropsyche pellucidula and oligochaetes are detected in all examined streams. There, the number of total benthic macroinvertebrate taxa is highly variable, ranging from 16 to 40. Results show that the examined streams depending on the benthic macroinvertebrate taxonomic composition and predominance of seperate macroinvertebrate groups undergo different pollution. Intolerant to pollution taxa such as Plecoptera, which are the most sensitive to pollution insects, have been found only in 5 of 12 examined streams and in low abundances. The richness and diversity of macrozoobenthos in some streams appear to respond to the water quality deterioration. The present study has found out that in the stream where the total macroinvertebrate taxa, EPT taxa richness are the lowest and a relative abundance of gatherers is the highest, the values of NH4-N, NO3-N, total N, PO4-P and total P in the stream water are the highest, too.

  18. The geological, isotopic, botanical, invertebrate, and lower vertebrate contexts for aripithecus ramidus

    Energy Technology Data Exchange (ETDEWEB)

    Woldegabriel, Giday [Los Alamos National Laboratory; Ambrose, Stanley H [UNIV OF ILLINOIS; Barboni, Doris [CEREGE, FRANCE; Bonneffille, Raymond [CEREGE, FRANCE; Bremond, Laurent [MONTPELLIER, FRANCE; Currie, Brian [MIAMI UNIV, OXFORD, OHIO; Degusta, David [STANFORD UNIV.; Hart, William K [MIAMI UNIV, OXFORD, OHIO; Murray, Alison M [UNIV OF ALBERTA; Renne, Paul R [UC/BERKELEY; Jolly - Saad, M C [NANTERRE, FRANCE; Stewart, Kathlyn M [CANADA; White, Tim D [UC/BERKELEY

    2009-01-01

    Sediments containing Ardipithecus ramidus were deposited 4.4 million years ago on an alluvial floodplain in Ethiopia's western Afar rift. The Lower Aramis Member hominid-bearing unit, now exposed across a >9-kilometer structural arc, is sandwiched between two volcanic tuffs that have nearly identical {sup 40}Ar/{sup 39}Ar ages. Geological data presented here, along with floral, invertebrate, and vertebrate paleontological and taphonomic evidence associated with the hominids, suggest that they occupied a wooded biotope over the western three-fourths of the paleotransect. Phytoliths and oxygen and carbon stable isotopes of pedogenic carbonates provide evidence of humid cool woodlands with a grassy substrate.

  19. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  20. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae.

    Science.gov (United States)

    Smith, Valerie J; Desbois, Andrew P; Dyrynda, Elisabeth A

    2010-04-14

    All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.

  1. Invertebrate resources in Mississippi hardwood bottomlands, moist-soil habitat, and flooded cropland: Completion report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Assessment of invertebrate resources in green tree reservoirs and seasonally-flooded crop fields at Noxubee National Wildlife Refuge. Mean winter invertebrate...

  2. Controlling factors of benthic macroinvertebrates distribution in a small tropical pond, lateral to the Paranapanema River (São Paulo, Brazil Macroinvertebrados bentônicos e fatores controladores de sua distribuição em uma pequena lagoa tropical adjacente ao rio Paranapanema (São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Erika Mayumi Shimabukuro

    2011-06-01

    Full Text Available AIM: The aim of the present study was to examine the benthic fauna in a marginal pond lateral to the Paranapanema River and to identify the main controlling factors of its distribution. Considering the small size of the lacustrine ecosystem, we expected that seasonal variations of the benthic community attributes are more important than spatial variations; METHODS: Two samplings, one in March and another in August, were carried out at nine sites in the pond. Sediment samples were obtained through a Van Veen grab for invertebrate sorting, granulometric analysis, and for quantification of organic matter in sediment. Other abiotic factors were measured, such as water transparency, dissolved oxygen, pH, electric conductivity, temperature, and depth of sediment sampling sites. Regarding the comparative analysis at spatial scale, no significant variations in density of the benthic invertebrate community were found. RESULTS: In relation to the studied abiotic factors, only depth presented significant differences among sampling sites; All the measured environmental parameters presented significant differences among sampling months, except depth and the physical and chemical characteristics of the sediment. The abundance of Chaoboridae and Chironomidae was the unique attribute with a significant difference in comparing the two months. A higher abundance of taxa occurred in August, especially for Oligochaeta, Nematoda, Chaoboridae, and Chironomidae; CONCLUSIONS: Because of the low structural complexity of the studied pond, we concluded that the changes in benthic macroinvertebrate community attributes were mainly due to seasonal effects.OBJETIVO: O presente estudo tem por objetivo examinar a fauna bentônica em lagoa marginal ao rio Paranapanema e os principais fatores reguladores da sua distribuição. Devido ao pequeno tamanho do ambiente lacustre, procurou-se mostrar que as variações sazonais dos atributos da comunidade bentônica são mais

  3. Transfer of radionuclides from high polluted bottom sediments to marine organisms through benthic food chain in post Fukushima period

    Science.gov (United States)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2015-04-01

    A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide

  4. Evolutionary concepts in ecotoxicology: tracing the genetic background of differential cadmium sensitivities in invertebrate lineages.

    Science.gov (United States)

    Dallinger, Reinhard; Höckner, Martina

    2013-07-01

    In many toxicological and ecotoxicological studies and experimental setups, the investigator is mainly interested in traditional parameters such as toxicity data and effects of toxicants on molecular, cellular or physiological functions of individuals, species or statistical populations. It is clear, however, that such approaches focus on the phenotype level of animal species, whilst the genetic and evolutionary background of reactions to environmental toxicants may remain untold. In ecotoxicological risk assessment, moreover, species sensitivities towards pollutants are often regarded as random variables in a statistical approach. Beyond statistics, however, toxicant sensitivity of every species assumes a biological significance, especially if we consider that sensitivity traits have developed in lineages of species with common evolutionary roots. In this article, the genetic and evolutionary background of differential Cd sensitivities among invertebrate populations and species and their potential of adaptation to environmental Cd exposure will be highlighted. Important evolutionary and population genetic concepts such as genome structure and their importance for evolutionary adaptation, population structure of affected individuals, as well as micro and macroevolutionary mechanisms of Cd resistance in invertebrate lineages will be stressed by discussing examples of work from our own laboratory along with a review of relevant literature data and a brief discussion of open questions along with some perspectives for further research. Both, differences and similarities in Cd sensitivity traits of related invertebrate species can only be understood if we consider the underlying evolutionary processes and genetic (or epigenetic) mechanisms. Keeping in mind this perception can help us to better understand and interpret more precisely why the sensitivity of some species or species groups towards a certain toxicant (or metal) may be ranked in the lower or higher range of

  5. Organism activity levels predict marine invertebrate survival during ancient global change extinctions.

    Science.gov (United States)

    Clapham, Matthew E

    2017-04-01

    Multistressor global change, the combined influence of ocean warming, acidification, and deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that organisms with higher levels of activity should be more resilient, but testing this prediction and understanding organism vulnerability at a global scale, over evolutionary timescales, and in natural ecosystems remain challenging. The fossil record, which contains multiple extinctions triggered by multistressor global change, is ideally suited for testing hypotheses at broad geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for survival of well-skeletonized benthic marine invertebrates over a 100-million-year-long interval (Permian to Jurassic periods) containing four global change extinctions, including the end-Permian and end-Triassic mass extinctions. More active organisms, based on a semiquantitative score incorporating feeding and motility, were significantly more likely to survive during three of the four extinction events (Guadalupian, end-Permian, and end-Triassic). In contrast, activity was not an important control on survival during nonextinction intervals. Both the end-Permian and end-Triassic mass extinctions also triggered abrupt shifts to increased dominance by more active organisms. Although mean activity gradually returned toward pre-extinction values, the net result was a permanent ratcheting of ecosystem-wide activity to higher levels. Selectivity patterns during ancient global change extinctions confirm the hypothesis that higher activity, a proxy for respiratory physiology, is a fundamental control on survival, although the roles of specific physiological traits (such as extracellular pCO2 or aerobic scope) cannot be distinguished. Modern marine ecosystems are dominated by more active organisms, in part because of selectivity ratcheting during these ancient extinctions, so on average may be less vulnerable to global change

  6. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    Science.gov (United States)

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst.

  7. Effects of late-cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea.

    Directory of Open Access Journals (Sweden)

    Johannes Dambach

    Full Text Available Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today's fauna. Here, we use for the first time specific Species Distribution Models (SDMs for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos.

  8. A Benthic Macroinvertebrate Multimetric Index for Assessment of the Ecological Integrity of Northeast Streams, Thailand

    Directory of Open Access Journals (Sweden)

    Nantiya Rattanachan

    2016-07-01

    Full Text Available This study aims to develop a benthic macroinvertebrate multimetric index for assessing the ecological quality of streams in Northeastern Thailand. ANOSIM indicated that the benthic macroinvertebrate assemblage in both of each basin and each season were not significantly different (R = 0.09, p = 0.24 and R = 0.07, p = 0.35, respectively. The efficacy metrics of each basin consisting of the Mekong II, the Chi, and the Mun basins were integrated and calibrated. A total of 255 data sets of water physico-chemical and benthic macroinvertebrates during the dry period (cool and hot seasons were obtained. The stream classification could be divided into three groups: the reference group (48 stations, the stressed group (42 stations, and the intermediate group (165 stations. Twelve out of 56 metrics have been considered as a core metric for the development of a biological index for quality streams in the Northeast, including Total taxa, EPT taxa, Ephemeroptera taxa, Coleoptera taxa, % EPT, % Chironomidae, % Tolerant individuals, % Intolerant individuals, Beck's index, HBI, Predator taxa, and Clinger taxa. Moreover, this metric set covered the structure and function of organisms including the diversity of species, community structure, tolerance/intolerance measures, functional feeding group, and habit. From the efficacy validation of the biological index, the results of stream assessment corresponded to the classification sites with the physico-chemical characteristics.

  9. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  10. Invertebrates: Revealing a Hidden World in the Year of Biodiversity

    Science.gov (United States)

    Sanders, Dawn

    2010-01-01

    Biodiversity means the variety of life in all its forms. It includes the variety of species and ecosystems in the world, and genetic variation. Invertebrates are one of the largest and most accessible groups of animals for primary children to study. In this article, the author explains why and how children should engage with the idea of…

  11. Dynamics of Invertebrate Diversity in a Tropical Stream

    Directory of Open Access Journals (Sweden)

    Richard G. Pearson

    2014-12-01

    Full Text Available Regional studies of biotic communities are important for characterising their normal spatial and temporal variation, but there are few such studies of tropical streams. This paper describes changes in invertebrate communities in Yuccabine Creek, a seasonal upland rainforest stream in tropical Australia, over three-year and decadal periods. Invertebrate abundance, richness and evenness were temporally stable, except after major drying or wet-season flows, from which they recovered quickly; however, three wet seasons contrasted in abundance patterns. Species’ responses to flood or drought varied depending on life-histories and habitat dynamics. Communities showed contrasts between wet, early-dry and late-dry seasons, with different characteristic species. Current velocity, leaf litter and substratum particle size were the main environmental correlates with species abundances and multivariate scores. Between-decade contrasts were due to antecedent rainfall and loss of canopy cover. Trophic composition varied seasonally, driven by abundances of predators and detritivores. Yuccabine Creek differs from comparable temperate streams in its high diversity of invertebrates, continual recruitment and spring-dominated continual leaf fall; and from some other tropical streams in its seasonal flow regime. Interpretation of invertebrate metrics in these streams needs to account for historical, antecedent and current conditions, but biannual samples would adequately characterise the fauna.

  12. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches (Grompha

  13. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    Directory of Open Access Journals (Sweden)

    Müller Carsten HG

    2010-11-01

    Full Text Available Abstract Background Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. Results We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. Conclusions The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.

  14. Nanoparticle-protein corona in invertebrate in vitro testing

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten;

    2013-01-01

    , and the primary cells were thus exposed to silver nanoparticles with pre-formed corona of serum albumin (a major serum protein). Here we have profiled proteins forming the hard corona around silver nanoparticles (OECD reference materials, 15 nm and 75 nm) using gel electrophoresis techniques to identify proteins...... for evaluation of the protein corona in invertebrate in vitro setting....

  15. Long-term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium.

    Science.gov (United States)

    Van Looy, Kris; Floury, Mathieu; Ferréol, Martial; Prieto-Montes, Marta; Souchon, Yves

    2016-09-15

    The positive effects of water quality improvement on stream biodiversity in the temperate regions are expected to be at risk with the projected climatic changes. However, the processes and mechanisms behind the predicted threats remain uncertain. From long-term series of benthic invertebrate samples from temperate rivers and streams in France, we analyzed diversity and composition shifts over time in relation to geographic elements and human stressors. Mechanisms for community changes were investigated with a trait-based analysis for the entire dataset and for a selected caddisfly community module. We observed a 42% increase in the taxonomic richness of stream invertebrate communities over the last 25years. A gradual trend induced by water quality improvement was distinguished from a more abrupt climate change-induced shift in communities around the year 2000. Trophic amplification - the intensification of trophic interactions and pathways through the food web - was identified as the mechanism behind the strong community shift. Four lines of evidence for this trophic amplification are highlighted: (i) higher dissolved oxygen concentrations indicated a shift in primary production, (ii) the trait-based analysis of entire communities showed a bottom-up food web amplification, (iii) the trait-based analysis of the community module evidenced feeding strategy shifts and increased food web interactions, and (iv) the abundance analysis of the community module showed a productivity increase. These results lend credit to persistent investments in water quality for improving stream biodiversity, and contrary to expectation, climate change impacts seem so far to have reinforced these positive effects.

  16. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  17. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    Detritivorous macrofauna species co-ingest large quantities of microorganisms some of which survive the gut passage. Denitrifying bacteria, in particular, become metabolically induced by anoxic conditions, nitrate, and labile organic compounds in the gut of invertebrates. A striking consequence...... of the short-term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. On a large scale, gut denitrification in, for instance, Chironomus plumosus larvae can increase the overall nitrous oxide emission of lake sediment by a factor of eight. We...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  18. Spatial distribution maps for benthic communities

    DEFF Research Database (Denmark)

    Sørensen, Per S.

    1999-01-01

    amount of missing pixel data is a contribution to statistical image analysis. Furthermore, the estimation method developed for non-stationary Boolean models that combines scale-space kernel smoothing with the so-called method-of-moments applied to stationary Boolean models is a contribution to stochastic...... of the distribution maps and to be combined with biogeochemical models describing spatiotemporal population dynamics. Finally, the use of side-scan sonar data is illustrated in a data fusion exercise combining side-scan sonar data with the results based on echo sounder measurements. The feasible use of side......-scan sonar for mapping of benthic communities remains an open task to be studied in the future. The data processing methodology developed is a contribution to the emerging field of hydroacoustic marine biology. The method of penalised maximum pseudo-likelihood for estimation of the Ising model under a huge...

  19. Multiscale patterns in the diversity and organization of benthic intertidal fauna among French Atlantic estuaries

    Science.gov (United States)

    Blanchet, Hugues; Gouillieux, Benoît; Alizier, Sandrine; Amouroux, Jean-Michel; Bachelet, Guy; Barillé, Anne-Laure; Dauvin, Jean-Claude; de Montaudouin, Xavier; Derolez, Valérie; Desroy, Nicolas; Grall, Jacques; Grémare, Antoine; Hacquebart, Pascal; Jourde, Jérôme; Labrune, Céline; Lavesque, Nicolas; Meirland, Alain; Nebout, Thiebaut; Olivier, Frédéric; Pelaprat, Corine; Ruellet, Thierry; Sauriau, Pierre-Guy; Thorin, Sébastien

    2014-07-01

    Based on a parallel sampling conducted during autumn 2008, a comparative study of the intertidal benthic macrofauna among 10 estuarine systems located along the Channel and Atlantic coasts of France was performed in order to assess the level of fauna similarity among these sites and to identify possible environmental factors involved in the observed pattern at both large (among sites) and smaller (benthic assemblages) scales. More precisely this study focused on unraveling the observed pattern of intertidal benthic fauna composition and diversity observed at among-site scale by exploring both biotic and abiotic factors acting at the among- and within-site scales. Results showed a limited level of similarity at the among-site level in terms of intertidal benthic fauna composition and diversity. The observed pattern did not fit with existing transitional water classification methods based on fish or benthic assemblages developed in the frame of the European Water Framework Directive (WFD). More particularly, the coastal plain estuaries displayed higher among-site similarity compared to ria systems. These coastal plain estuaries were characterized by higher influence of river discharge, lower communication with the ocean and high suspended particulate matter levels. On the other hand, the ria-type systems were more dissimilar and different from the coastal plain estuaries. The level of similarity among estuaries was mainly linked to the relative extent of the intertidal “Scrobicularia plana-Cerastoderma edule” and “Tellina tenuis” or “Venus” communities as a possible consequence of salinity regime, suspended matter concentrations and fine particles supply with consequences on the trophic functioning, structure and organization of benthic fauna. Despite biogeographical patterns, the results also suggest that, in the context of the WFD, these estuaries should only be compared on the basis of the most common intertidal habitat occurring throughout all

  20. The overlooked biodiversity of flower-visiting invertebrates.

    Directory of Open Access Journals (Sweden)

    Carl W Wardhaugh

    Full Text Available Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1 canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2 canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the 'diversity jigsaw puzzle' than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species

  1. Crawling to collapse: ecologically unsound ornamental invertebrate fisheries.

    Directory of Open Access Journals (Sweden)

    Andrew Rhyne

    Full Text Available BACKGROUND: Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery. The last decade has seen aquarium hobbyists shift their display preference from fish-only tanks to miniature reef ecosystems that include many invertebrate species, creating increased demand without proper oversight. The once small ornamental fishery has become an invertebrate-dominated major industry supplying five continents. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the Florida Marine Life Fishery (FLML landing data from 1994 to 2007 for all invertebrate species. The data were organized to reflect both ecosystem purpose (in the wild and ecosystem services (commodities for each reported species to address the following question: Are ornamental invertebrates being exploited for their fundamental ecosystem services and economic value at the expense of reef resilience? We found that 9 million individuals were collected in 2007, 6 million of which were grazers. CONCLUSIONS/SIGNIFICANCE: The number of grazers now exceeds, by two-fold, the number of specimens collected for curio and ornamental purposes altogether, representing a major categorical shift. In general, landings have increased 10-fold since 1994, though the number of licenses has been dramatically reduced. Thus, despite current management strategies, the FLML Fishery appears to be crawling to collapse.

  2. NOAA Point Shapefile- Benthic Habitat Classifications from Phantom S2 ROV Underwater Video, US Virgin Islands, Project NF-05-05, 2005, UTM 20N WGS84 (NCEI Accession (0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a point shapefile with benthic habitat classifications of vertical relief, geomorphological structure, substrate, and biological cover for...

  3. Cross shelf benthic biodiversity patterns in the Southern Red Sea

    KAUST Repository

    Ellis, Joanne

    2017-03-21

    The diversity of coral reef and soft sediment ecosystems in the Red Sea has to date received limited scientific attention. This study investigates changes in the community composition of both reef and macrobenthic communities along a cross shelf gradient. Coral reef assemblages differed significantly in species composition and structure with location and depth. Inner shelf reefs harbored less abundant and less diverse coral assemblages with higher percentage macroalgae cover. Nutrient availability and distance from the shoreline were significantly related to changes in coral composition and structure. This study also observed a clear inshore offshore pattern for soft sediment communities. In contrast to the coral reef patterns the highest diversity and abundance of soft sediment communities were recorded at the inshore sites, which were characterized by a higher number of opportunistic polychaete species and bivalves indicative of mild disturbance. Sediment grain size and nutrient enrichment were important variables explaining the variability. This study aims to contribute to our understanding of ecosystem processes and biodiversity in the Red Sea region in an area that also has the potential to provide insight into pressing topics, such as the capacity of reef systems and benthic macrofaunal organisms to adapt to global climate change.

  4. Comparison of the effects of drilling fluid on macrobenthic invertebrates associated with the seagrass, Thalassia testudinum, in the laboratory and field

    Science.gov (United States)

    Weber, David E.; Flemer, David A.; Bundrick, Charles M.

    1992-09-01

    The structure of a macrobenthic invertebrate community associated with the seagrass, Thalassia testudinum, was evaluated under laboratory and field conditions. The research focused on: (1) the effects of pollution stress from a representative drilling fluid used in off-shore oil and gas operations, and (2) a comparison of responses of the seagrass-invertebrate community in the laboratory and field. A series of 15·3 cm diameter cores of the seagrass-invertebrate community was collected from field sites for establishment and sampling of microcosms and in the sampling of field plots over time. Weekly exposures to drilling fluid were conducted in the laboratory microcosms at a mean total suspended matter concentration of 110·7 mg l -1 (± 17·7 SD), and in field plots by usage of acrylic exposure chambers at a mean concentration of 132·8 mg l -1 (±33·3 SD). Standing crop of T. testudinum was not affected by drilling fluid in the laboratory or field when measured after 6 and 12 week exposure periods. The numbers of macrobenthic invertebrates were suppressed by drilling fluid at both exposure periods in the laboratory, but inhibitory effects were absent in the field. Invertebrate densities in the field were similar among control and treated plots, and were much lower than densities occurring in the laboratory control. In most instances, species richness values were similar in the field and laboratory at the end of each 6 and 12 week period.

  5. Antibacterial activity of halophilic bacterial bionts from marine invertebrates of Mandapam-India

    Directory of Open Access Journals (Sweden)

    Sheryanne Velho-Pereira

    2012-01-01

    Full Text Available Marine ecosystem and its organisms, particularly the invertebrates are recent targets of bioprospecting and mining for a large group of structurally unique natural products encompassing a wide variety of chemical classes such as terpenes, polyketides, acetogenins, peptides and alkaloids of varying structures, having pronounced pharmacological activities. In view of the limited reports on the antibacterials produced by bacteria, isolated from marine sponges, corals and bivalves of Indian origin, the present study is aimed at investigating the antagonistic activities of 100 heterotrophic, halophilic bacterial bionts isolated from 9 sponges, 5 corals and one bivalve. Culture broths of 46 of these bionts were active against human pathogenic bacteria namely Staphylococcus citreus, Proteus vulgaris, Serratio marcesans, Salmonella typhi, Aerobacter aerogenes and Escherichia coli. Further, the ethyl acetate extracts of cell free supernatant confirmed the presence of extracellular bioactive factor, by agar cup diffusion method. Interestingly, highest number of bionts having activity was isolated from corals followed by sponges and bivalve. The study clearly demonstrates that bacterial bionts of marine invertebrates are a rich source of bioactive secondary metabolites against human bacterial pathogens.

  6. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    Science.gov (United States)

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  7. Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivore feeding responses.

    Directory of Open Access Journals (Sweden)

    Matthew W Dray

    Full Text Available Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder or Betula pendula (silver birch trees propagated under ambient (380 ppm or elevated (ambient +200 ppm CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i two litter discs, one of each CO2 treatment ('choice', or (ii one litter disc of each CO2 treatment alone ('no-choice'. Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species' responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing-a key ecosystem function-under atmospheric change.

  8. Organization and operation of the marine ornamental fish and invertebrate export fishery in Puerto Rico.

    Science.gov (United States)

    Legorel, Richard S; Hardin, Mark P; Ter-Ghazaryan, Diana

    2005-05-01

    This fishery was examined utilizing public records, stakeholder interviews, and operational site visits to describe the fishery for the Puerto Rico Coral Reef Advisory Committee as a first step toward development of policies for the effective management of these natural resources. The fishery is not large, including fewer than 20 licensed fishers operating primarily on the west end of the island. Only three operators export product, with the remaining fishers providing specimens to the exporters based upon customer orders. Most collection of coral reef species occurs over hard rubble zones mixed with relic reef structures and rock, or on the sides and frontal areas of active reefs. Other species are collected from among mangrove prop root zones, tidal flats, and seagrass beds. Collections are made using simple barrier and dip nets for fish and motile invertebrates such as shrimp. Invertebrates such as crabs, starfish, and sea cucumbers are commonly collected by overturning small rocks, gathering the specimens, and then replacing the rocks in their original positions. Specimens are carried to the boat and transferred to individual cup holders to maximize survival. Although statements concerning former use of chemicals to assist capture were noted, no evidence of current chemical use was observed. Specimens are held in re-circulating seawater systems onshore until collections are aggregated and shipped. The fishery strives to operate with mortality of3% are described as unacceptable to customers. More than 100 fish species are collected in this fishery, but the top ten species account for >70% of the total numbers and >60% of the total value of the fishery, with a single species, Gramma loreto (Royal Gramma), comprising >40% of the numbers. More than 100 species of invertebrates are collected, but this fishery is also dominated by a handful of species, including anemones, hermit crabs, turbo snails, serpent starfish, and feather duster polychaetes.

  9. Oyster reef restoration in the Northern Gulf of Mexico: effect of artificial substrate and sge on nekton and benthic macroinvertebrate assemblage use

    Science.gov (United States)

    Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.

    2013-01-01

    In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.

  10. Benthic habitat map for West Flower Garden Bank

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The design of this field mission is three fold: (1) to spatially characterize the distribution, abundance and size of both reef fishes and macro invertebrates within...

  11. Coastal Bend Texas Benthic Habitat - Espiritu Santo Bay 2007 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing and new digital multi-spectral imagery and create digital benthic...

  12. Coastal Bend Texas Benthic Habitat - Espiritu Santo Bay 2007 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing and new digital multi-spectral imagery and create digital benthic...

  13. Organic enrichment and benthic fauna–Some ecological consideration.

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Ingole, B.S.; Abidi, S.A.H.

    and quantity, could act as a food source or as a stress source for the benthic community. Present study further demonstrated the general trend of modeled hypothesis with some variation in tropical condition....

  14. Coastal Bend Texas Benthic Habitat - Lower Laguna Madre 2004 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  15. Coastal Bend Texas Benthic Habitat - Lower Laguna Madre 2004 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  16. Shallow-water Benthic Habitats in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...

  17. Coastal Bend Texas Benthic Habitat Mapping Patchy Shapefile Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  18. Coastal Bend Texas Benthic Habitat - San Antonio Bay 2007 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  19. Coastal Bend Texas Benthic Habitat - Lower Laguna Madre 2004 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  20. Northeast Puerto Rico and Culebra Island - Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  1. Puerto Rico Land-Based Threat to Benthic Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set describes the potential threat of sediment delivery and land-based sources of pollution to benthic habitats. This dataset is derived from NOAA's...

  2. St. John Benthic Habitat Mapping - Moderate Depth Ground Validation Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitats of the moderate-depth marine environment in and around the Virgin Islands Coral Reef National Monument were mapped using a combination of...

  3. Atlantic Deep-Water Canyons (Benthic Landers) 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  4. Coastal Bend Texas Benthic Habitat - Lower Laguna Madre 2004 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  5. Coastal Bend Texas Benthic Habitat Mapping Aransas Bay 2004 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  6. Benthic grab data from October 1999 in Apalachicola Bay, Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apalachicola Bay National Estuarine Research Reserve and the NOAA Office for Coastal Management worked together to map benthic habitats within Apalachicola Bay,...

  7. Puerto Rico Land-Based Threat to Benthic Habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set describes the potential threat of sediment delivery and land-based sources of pollution to benthic habitats. This dataset is derived from NOAA's study,...

  8. Coastal Bend Texas Benthic Habitat Mapping Redfish Bay 2004 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006 and 2007 the NOAA Office for Coastal Management purchased services to process existing digital multi-spectral imagery (ADS-40) and create digital benthic...

  9. Vieques, Puerto Rico Benthic Habitat Map - Accuracy Assessment Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat maps of the nearshore marine environment of Vieques, Puerto Rico were created by visual interpretation of remotely sensed imagery. The objective of...

  10. Shallow-Water Benthic Habitats of Southwest Puerto Rico