WorldWideScience

Sample records for bent tube gauge

  1. Oblique detonation waves stabilized in rectangular-cross-section bent tubes

    OpenAIRE

    2011-01-01

    Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The obliq...

  2. Monte Carlo N-Particle Tracking of Ultrafine Particle Flow in Bent Micro-Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Andrew M.; Loyalka, Sudarsham K.

    2016-02-16

    The problem of large pressure-differential driven laminar convective-diffusive ultrafine aerosol flow through bent micro-tubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase micro-heat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the micro-tube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream line solutions of Dean and the simplified Langevin equation is quite a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10 nm diameter particles with a density of 1 g/cm3 are tracked within micro-tubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns and 50 microns and the radius of curvature is between 1 m and 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent micro-tubes are calculated.

  3. Pressure effect on the sensitivity of quartz Bourdon tube gauges.

    Science.gov (United States)

    Szaniszlo, A. J.

    1972-01-01

    The sensitivity change for a commercial fused quartz Bourdon tube precision pressure gauge, due to a change in absolute pressure level, has been analytically computed and experimentally confirmed. The computed differential pressure error is 2.5% of full scale at a 100 atm absolute pressure level. The experimental method compared the fused quartz Bourdon tube gauge digital output to the results obtained from a nitrogen gas pressure system which had a high pressure, well-type mercury manometer as the differential pressure reference.

  4. Structure of flux tube in SU(2) lattice gauge theory

    CERN Document Server

    Shiba, H

    1994-01-01

    The structure of the flux tube is studied in SU(2) QCD from the standpoint of the abelian projection theory. It is shown that the flux distributions of the orthogonal electric field and the magnetic field are produced by the effect that the abelian monopoles in the maximally abelian (MA) gauge are expelled from the string region.

  5. Flux-tubes in three-dimensional lattice gauge theories

    CERN Document Server

    Trottier, H D; Trottier, Howard D.

    1993-01-01

    Flux-tubes in different representations of SU(2) and U(1) lattice gauge theories in three dimensions are measured. Wilson loops generate heavy ``quark-antiquark'' pairs in fundamental ($j=1/2$), adjoint ($j=1$), and quartet ($j=3/2$) representations of SU(2). The first direct lattice measurements of the flux-tube cross-section ${\\cal A}_j$ as a function of representation are made. It is found that ${\\cal A}_j \\approx {\\rm constant}$, to about 10\\%. Results are consistent with a connection between the string tension $\\sigma_j$ and ${\\cal A}_j$ suggested by a simplified flux-tube model, $\\sigma_j = g^2 j(j+1) / (2 {\\cal A}_j)$ [$g$ is the gauge coupling], given that $\\sigma_j$ scales like the Casimir $j(j+1)$, as observed in previous lattice studies in both three and four dimensions. The results can discriminate among phenomenological models of the physics underlying confinement. Flux-tubes for singly- and doubly-charged Wilson loops in compact QED$_3$ are also measured. It is found that the string tension scal...

  6. Duality of gauge field singularities and the structure of the flux tube in Abelian-projected SU(2) gauge theory and the dual Abelian Higgs model

    CERN Document Server

    Koma, Y; Ilgenfritz, E M; Suzuki, T; Polikarpov, M I

    2003-01-01

    The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs (DAH) model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.

  7. Duality of gauge field singularities and the structure of the flux tube in Abelian-projected SU(2) gauge theory and the dual Abelian Higgs model

    Science.gov (United States)

    Koma, Y.; Koma, M.; Ilgenfritz, E.-M.; Suzuki, T.; Polikarpov, M. I.

    2003-11-01

    The structure of the flux-tube profile in Abelian-projected (AP) SU(2) gauge theory in the maximally Abelian gauge is studied. The connection between the AP flux tube and the classical flux-tube solution of the U(1) dual Abelian Higgs model is clarified in terms of the path-integral duality transformation. This connection suggests that the electric photon and the magnetic monopole parts of the Abelian Wilson loop can act as separate sources creating the Coulombic and the solenoidal electric field inside a flux tube. The conjecture is confirmed by a lattice simulation which shows that the AP flux tube is composed of these two contributions.

  8. Flux tubes and their interaction in U(1) lattice gauge theory

    CERN Document Server

    Zach, M P; Skála, P; Zach, Martin; Faber, Manfried; Skala, Peter

    1997-01-01

    We investigate singly and doubly charged flux tubes in U(1) lattice gauge theory. By simulating the dually transformed path integral we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. We simulate flux tubes between static sources as well as periodically closed flux tubes, calculating flux tube profiles, the total field energy and the free energy. Our main results are that the string tension in both three and four dimensions scales proportionally to the charge -- which is in contrast to previous lattice results -- and that in four-dimensional U(1) there is an attractive interaction between flux tubes for beta approaching the phase transition.

  9. Carbon Nanotube Vacuum Gauges Utilizing Long, Dissipative Tubes

    Science.gov (United States)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    CNT Vacuum Gauges: a) have a broad range of pressure response from 760 - 10(exp -6) Torr. b) have current changes approx. 100's nA in high vacuum regime (10(exp -6) Torr) and sensitivity increases with power and substrate removal. c) have a negative dR/dT (TCR negative) where a thermal hopping energy E(sub a) was determined to be approx. 40 meV. d) have compatible fabrication requirements for their integration with micromachined structures. e) can be operated at low power (nW - micro-W). f) have an active device region footprint of < 10 sq microns. g) are non-intrusive due to small size and passive operation.

  10. Width of the flux tube in compact U(1) gauge theory in three dimensions

    CERN Document Server

    Caselle, Michele; Vadacchino, Davide

    2016-01-01

    We study the squared width and the profile of flux tubes in compact U(1) lattice gauge theory in three spacetime dimensions. The results obtained from numerical calculations in the dual formulation of this confining theory are compared with predictions from an effective bosonic-string model and from the dual-superconductor model: it is found that the former fails at describing the quantitative features of the flux tube, while the latter is in good agreement with Monte Carlo data. The analytical interpretation of these results (in the light of the semi-classical analysis by Polyakov) is pointed out, and a comparison with non-Abelian gauge theories in four spacetime dimensions is discussed.

  11. Closed flux tubes in D = 2 + 1 SU( N ) gauge theories: dynamics and effective string description

    Science.gov (United States)

    Athenodorou, Andreas; Teper, Michael

    2016-10-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU( N ) gauge theories in 2 + 1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1 /l γ ) non-universal correction to the flux tube ground state energy does indeed have a power γ ≥ 7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all- N view of the spectrum. Our comparison of the k = 2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k = 2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of the surprising (near-)orthogonality of flux tubes carrying flux in different SU( N ) representations, which implies that their screening by gluons is highly suppressed even at small N.

  12. Combined 25-gauge vitrectomy and posterior tube shunt placement for advanced glaucoma.

    Science.gov (United States)

    Reichstein, David; Kammer, Jeffrey; Recchia, Franco

    2011-01-01

    To report the initial clinical outcomes of a combined procedure utilizing 25-gauge vitrectomy and posterior tube shunt placement in eyes with refractory glaucoma not amenable to standard treatment. Retrospective chart review. We included 10 eyes (10 consecutive adult patients, mean age 61 years) with advanced glaucoma and anterior segment abnormalities precluding tube placement in the anterior chamber who were treated with combined 25-gauge vitrectomy and posterior tube shunt placement. Records of consecutive patients were reviewed for demographics, etiology of glaucoma, preoperative clinical data (visual acuity, intraocular pressure, number of ocular antihypertensive medications), and postoperative outcome measures at predetermined time points. (1) Intraocular pressure (IOP) at 1, 2, 6, and 12 months postoperatively; (2) number of ocular antihypertensive medications needed at 12 months postoperatively; (3) visual acuity (VA) at 12 months postoperatively; and (4) incidence of hypotony, retinal detachment, endophthalmitis, and corneal decompensation. Preoperatively, mean IOP was 31 mmHg, and patients required a mean of 2.5 ocular antihypertensive medications. Mean IOP at 1, 2, 6, and 12 months postoperatively were 17.0, 16.1, 17.8, and 16.1 mmHg, respectively, and significantly lower than preoperative IOP (P < 0.005 at all time points). At 1 year postoperatively, 90% of patients had an IOP < 20 mmHg, and 50% of patients required ≤ 2 ocular antihypertensive medications. At 1 year postoperatively, VA was the same or improved in 70% of patients, and no worse than 1 Snellen line in any patient. Corneal edema developed in 2 patients. No patient developed hypotony or endophthalmitis. Combined 25-gauge vitrectomy and posterior tube shunt placement can be successful in lowering IOP in eyes with advanced glaucoma not amenable to other therapies. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  13. Detection of multi-scale secondary flow structures using anisotropic 2D Ricker wavelets in a bent tube model for curved arteries

    Science.gov (United States)

    Plesniak, Daniel H.; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Interpretation of complex flow patterns observed in this study of a model curved artery required characterization of multiple, low-circulation secondary flow structures that were observed during the late systolic deceleration and diastolic phases under physiological inflow conditions. Phase-locked, planar vorticity PIV data were acquired at various cross-sectional locations of the 180-degree bent tube model. High circulation, deformed Dean- and Lyne-type vortices were observed during early stages of deceleration, while several smaller scale, highly deformed, low-circulation vortical patterns appeared in the core and near-wall regions during late systolic deceleration and diastolic phases. Due to the multiplicity of vortical scales and shapes, anisotropic 2D Ricker wavelets were used for coherent structure detection in a continuous wavelet transform algorithm (PIVlet 1.2). Our bio-inspired study is geared towards understanding whether optimizing the shape of the wavelet kernel will enable better resolution of several low-circulation, multi-scale secondary flow morphologies and whether new insights into the dynamics of arterial secondary flow structures can accordingly be gained. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  14. A regime map for secondary flow structures under physiological and multi-harmonic inflow through a bent tube model for curved arteries

    Science.gov (United States)

    Callahan, Shannon M.; Caldwell, Kirin; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Secondary flow structures are known to affect wall shear stress, which is closely related to atherogenesis and drug particle deposition. A regime map provides a framework to examine phase-wise variations in secondary flow structures under physiological and multi-harmonic inflow waveforms under conditions of a fixed Womersley number (4.2) and curvature ratio (1/7). Experimental PIV data were acquired at the 90-degree location in a 180-degree curved test section of a bent tube model for curved arteries using a blood analog working fluid. Coherent structure detection was performed using a continuous wavelet transform algorithm (PIVlet 1.2) and further analysis was carried out by grouping similar secondary flow structures at a fixed secondary Reynolds numbers. Phase-locked, planar vorticity fields over one period of inflow waveform revealed size, structure and strength similarities in secondary flow morphologies during the acceleration and deceleration phases. The utility of the new regime map lies in the a priori identification of pulsatile secondary flow structures, eliminating the need for exhaustive experimentation or computing, requiring only flow rate measurements that are easily acquired under clinical conditions. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  15. Development of on-line wall thickness gauge for small size seamless tube. Shokei seamless netsukan nikuatsukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, T.; Konya, N.; Oka, H.; Kasuya, T. (Kawasaki Steel Corp., Tokyo (Japan))

    1991-03-01

    In order to heighten the accuracy of small size seamless tube wall thickness, hot wall thickness gauge was developed to be installed, immediately behind the finishing/rolling mill, for the on-line measurement, of which the method was by the parallel-beam transmissivity of gamma-ray. The measurement unit, aiming at flexible manufacturing system (FMS), is completely automated in correcting the accuracy, changing the sizes, etc. The damping characteristics of gamma-ray beam can be expressed by a characteristic function, taking the outside diameter and wall thickness of subject tube as parameters. The functional calculation, as based on measurement of transmitted quantity of gamma-ray through the three-dimensional steel material, changes, depending upon the outside diameter, wall thickness and material specification of subject tube. System was so applied as to calculate it therefore on a case-by-case basis. Though in the vicinity of tube end, the transmitted quantity of gamma-ray is largely influenced by the horizontal dislocation, that influence is slack in the middle part of tube. Therefore, the cross sectional division was made dense and sparse in the end part and middle part, respectively of tube, which division could diminish the error from several percent to less than 0.1%. The static noise was compressed by the optimized digital filter. That gauge is presently applied for the operational administration of small size seamless tube rolling. 2 refs., 11 figs., 2 tabs.

  16. Tube-shape verifier

    Science.gov (United States)

    Anderson, A. N.; Christ, C. R.

    1980-01-01

    Inexpensive apparatus checks accuracy of bent tubes. Assortment of slotted angles and clamps is bolted down to flat aluminum plate outlining shape of standard tube bent to desired configuration. Newly bent tubes are then checked against this outline. Because parts are bolted down, tubes can be checked very rapidly without disturbing outline. One verifier per tube-bending machine can really speed up production in tube-bending shop.

  17. Study of compact U(1) flux tubes in 3+1 dimensions in lattice gauge theory using GPU's

    CERN Document Server

    Amado, André; Cardoso, Marco; Bicudo, Pedro

    2012-01-01

    We utilize Polyakov loop correlations to study (3+1)D compact U(1) flux tubes and the static electron-positron potential in lattice gauge theory. By using field operators it is possible in U(1) lattice gauge theory to probe directly the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPU's, in order to achieve the necessary performance for our computations.

  18. Flux tube widening in compact U (1) lattice gauge theory computed at T < Tc with the multilevel method and GPUs

    CERN Document Server

    Amado, A; Bicudo, P

    2013-01-01

    We utilize Polyakov loop correlations to study d=3+1 compact U (1) flux tubes and the static electron-positron potential in lattice gauge theory. With the plaquette field operator, in U(1) lattice gauge theory, we probe directly the components of the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPUs, in order to achieve the necessary efficiency for our computations. We measure in detail the quantum widening of the flux tube, as a function of the intercharge distance and at different finite temperatures T < Tc . Our results are compatible with the Effective String Theory.

  19. Tube-shaped Pirani gauge for in situ hermeticity monitoring of SiN thin-film encapsulation

    Science.gov (United States)

    Santagata, F.; Creemer, J. F.; Iervolino, E.; Sarro, P. M.

    2012-10-01

    Here the integration of a tube-shaped Pirani gauge with a SiN thin-film encapsulation process is presented. The tube geometry gives the sensor a very low detection limit with a small footprint, since the tube is buried under the silicon surface. The Pirani tube is very suitable for in situ evaluation of MEMS vacuum packaging. Moreover, since the Pirani gap is all around the tube and deep below the silicon surface, the deflection of the encapsulation shell is not a concern and wafer-level measurement of the device is possible. Pirani tubes with different lengths are encapsulated inside SiN micropackages in order to measure the resulting vacuum level achieved after the encapsulation step. The longest tube shows a detection limit of 0.1 Pa for a noise level of 50 μV and it has a footprint of only 0.006 mm2. The pressure inside the sealed micropackage was extracted to be 0.7 kPa. Furthermore, the pressure is monitored over time to evaluate the hermeticity of the packages. A leak rate of 8× 10-18 Pa m3 s-1 was measured over four months time.

  20. Closed flux tubes in D=2+1 SU(N) gauge theories: dynamics and effective string description

    CERN Document Server

    Athenodorou, Andreas

    2016-01-01

    We extend our earlier calculations of the spectrum of closed flux tubes in SU(N) gauge theories in 2+1 dimensions, with a focus on questions raised by recent theoretical progress on the effective string action of long flux tubes and the world-sheet action for flux tubes of moderate lengths. Our new calculations in SU(4) and SU(8) provide evidence that the leading O(1/l^gamma) non-universal correction to the flux tube ground state energy does indeed have a power gamma greater than or equal to 7. We perform a study in SU(2), where we can traverse the length at which the Nambu-Goto ground state becomes tachyonic, to obtain an all-N view of the spectrum. Our comparison of the k=2 flux tube excitation energies in SU(4) and SU(6) suggests that the massive world sheet excitation associated with the k=2 binding has a scale that knows about the group and hence the theory in the bulk, and we comment on the potential implications of world sheet massive modes for the bulk spectrum. We provide a quantitative analysis of t...

  1. A machine-independent method to have active removal of 5,000 centistokes silicone oil using plastic infusion tube and 23-gauge microcannulas

    OpenAIRE

    Zhang, Zhaotian; Wei, Yantao; Jiang, Xintong; Qiu, Suo; Zhang, Shaochong

    2015-01-01

    Background To describe one modified method of having machine-independent removal of 5,000 centistokes silicone oil through 23-gauge trocar-cannulas. Methods Consecutive patients with silicone oil tamponade for more than four months and with complete retinal reattachment were included. Two 23-gauge trocars were used to make sclerotomies while the microcannulas remained in situ for intravitreous infusion and silicone oil drainage. A short section of infusion tube was connected with a 10 ml syri...

  2. SU(3) Yang-Mills Hamiltonian in the flux-tube gauge: Strong coupling expansion and glueball dynamics

    CERN Document Server

    Pavel, Hans-Peter

    2016-01-01

    It is shown that the formulation of the SU(3) Yang-Mills quantum Hamiltonian in the "flux-tube gauge" A_{a1}=0 for all a=1,2,4,5,6,7 and A_{a2}=0 for all a=5,7 allows for a systematic and practical strong coupling expansion of the Hamiltonian in \\lambda\\equiv g^{-2/3}, equivalent to an expansion in the number of spatial derivatives. Introducing an infinite spatial lattice with box length a, the "free part" is the sum of Hamiltonians of Yang-Mills quantum mechanics of constant fields for each box, and the "interaction terms" contain higher and higher number of spatial derivatives connecting different boxes. The Faddeev-Popov operator, its determinant and inverse, are rather simple, but show a highly non-trivial periodic structure of six Gribov-horizons separating six Weyl-chambers. The energy eigensystem of the gauge reduced Hamiltonian of SU(3) Yang-Mills mechanics of spatially constant fields can be calculated in principle with arbitrary high precision using the orthonormal basis of all solutions of the corr...

  3. Secondary flow structures in the presence of Type-IV stent fractures through a bent tube model for curved arteries: Effect of circulation thresholding

    Science.gov (United States)

    Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  4. Construction of bent functions from near-bent functions

    DEFF Research Database (Denmark)

    Leander, Gregor; McGuire, G.

    2009-01-01

    We give a construction of bent functions in dimension 2m from near-bent functions in dimension 2m - 1. in particular, we give the first ever examples of non-weakly-normal bent functions in dimensions 10 and 12, which demonstrates the significance of our construction.......We give a construction of bent functions in dimension 2m from near-bent functions in dimension 2m - 1. in particular, we give the first ever examples of non-weakly-normal bent functions in dimensions 10 and 12, which demonstrates the significance of our construction....

  5. Closed flux tubes and their string description in D=3+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [Washington Univ., Seattle, WA (United States). Dept. of Physics; Teper, Michael [Oxford Univ. (United Kingdom). Centre for Theoretical Physics

    2010-08-15

    We calculate the energy spectrum of a confining flux tube that is closed around a spatial torus, as a function of its length l. We do so for various SU(N) gauge theories in 3+1 dimensions, and for various values of spin, parity and longitudinal momentum. We are able to present usefully accurate results for about 20 of the lightest such states, for a range of l that begins close to the (finite volume) deconfining phase transition at l{radical}{sigma} {proportional_to} 1.6, and extends up to l{radical}{sigma}{proportional_to}6 (where {sigma} is the string tension). We find that most of these low-lying states are well described by the spectrum of the Nambu-Goto free string theory in flat space-time. Remarkably, this is so not only at the larger values of l, where the gap between the ground state energy and the low-lying excitations becomes small compared to the mass gap, but also down to much shorter lengths where these excitation energies become large compared to {radical}{sigma}, the flux-tube no longer 'looks' anything like a thin string, and an expansion of the effective string action in powers of 1/l no longer converges. All this is for flux in the fundamental representation. We also calculate the k=2 (anti)symmetric ground states and these show larger corrections at small l. So far all this closely resembles our earlier findings in 2+1 dimensions. However, and in contrast to the situation in D=2+1, we also find that there are some states, with J{sup P}=0{sup -} quantum numbers, that show large deviations from the Nambu-Goto spectrum. We investigate the possibility that (some of) these states may encode the massive modes associated with the internal structure of the flux tube, and we discuss how the precocious free string behaviour of most states constrains the effective string action, on which much interesting theoretical progress has recently been made. (orig.)

  6. Some Properties of Bent Functions

    Institute of Scientific and Technical Information of China (English)

    Ying Zhao

    2007-01-01

    First, this paper discusses and sums up some properties of a pair of functions p(x), q(x) that makes (y + 1)p(x) + yq(x) into a bent function. Then it discusses the properties of bent functions. Also, the upper and lower bounds of the number of bent functions on GF(2)2k are discussed.

  7.   Bente Boa, Torm, Denmark

    DEFF Research Database (Denmark)

    Wagtmann, Maria Anne

    2009-01-01

    At the beginning of July 2009, Maria Anne Wagtmann (Associate Professor, PhD, University of Southern Denmark) had the opportunity to interview Ms Bente Boa, a senior marine HR manager in the Danish ship owning firm TORM A/S' ( http://www.torm.com/ ). Bente Boa is also chairwoman of the "The Sea...

  8. Bent Marshak Waves

    Energy Technology Data Exchange (ETDEWEB)

    Hurricane, O A; Hammer, J H

    2005-10-11

    Radiation driven heat waves (Marshak Waves) are ubiquitous in astrophysics and terrestrial laser driven high energy density plasma physics (HEDP) experiments. Generally, the equations describing Marshak waves are so nonlinear, that solutions involving more than one spatial dimension require simulation. However, in this paper we show how one may analytically solve the problem of the two-dimensional nonlinear evolution of a Marshak wave, bounded by lossy walls, using an asymptotic expansion in a parameter related to the wall albedo and a simplification of the heat front equation of motion. Three parameters determine the nonlinear evolution, a modified Markshak diffusion constant, a smallness parameter related to the wall albedo, and the spacing of the walls. The final nonlinear solution shows that the Marshak wave will be both slowed and bent by the non-ideal boundary. In the limit of a perfect boundary, the solution recovers the original diffusion-like solution of Marshak. The analytic solution will be compared to a limited set of simulation results and experimental data.

  9. A new construction of bent functions based on Z-bent functions

    DEFF Research Database (Denmark)

    Gangopadhyay, Sugata; Joshi, Anand; Leander, Gregor

    2013-01-01

    Dobbertin has embedded the problem of construction of bent functions in a recursive framework by using a generalization of bent functions called -bent functions. Following his ideas, we generalize the construction of partial spreads bent functions to partial spreads -bent functions of arbitrary...

  10. Closed flux tubes and their string description in D=2+1 SU(N) gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bringoltz, Barak [The Israeli Institute for Advanced Research (IIAR), Rehovot (Israel); Teper, Michael [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics

    2011-08-15

    We carry out lattice calculations of the spectrum of confining flux tubes that wind around a spatial torus of variable length l, in 2+1 dimensions. We compare the energies of the lowest {proportional_to}30 states to the free string Nambu-Goto model and to recent results on the universal properties of effective string actions. Our most useful calculations are in SU(6) at a small lattice spacing, which we check is very close to the N{yields} {infinity} continuum limit. We find that the energies, E{sub n}(l), are remarkably close to the predictions of the free string Nambu-Goto model, even well below the critical length at which the expansion of the Nambu-Goto energy in powers of 1/l{sup 2} diverges and the series needs to be resummed. Our analysis of the ground state supports the universality of the O(1/l) and the O(1/l{sup 3}) corrections to {sigma}l, and we find that the deviations from Nambu-Goto at small l prefer a leading correction that is O(1/l{sup 7}), consistent with theoretical expectations. We find that the low-lying states that contain a single phonon excitation are also consistent with the leading O(1/l{sup 7}) correction dominating down to the smallest values of l. By contrast our analysis of the other light excited states clearly shows that for these states the corrections at smaller l resum to a much smaller effective power. Finally, and in contrast to our recent calculations in D=3+1, we find no evidence for the presence of any non-stringy states that could indicate the excitation of massive flux tube modes. (orig.)

  11. Relationship between Multi-Output Partially Bent Functions and Multi-Output Bent Functions

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yaqun; JU Guizhi; WANG Jue

    2006-01-01

    In this paper, the definition of multi-output partially Bent functions is presented and some properties are discussed. Then the relationship between multi-output partially Bent functions and multi-output Bent functions is given in Theorem 4, which includes Walsh spectrum expression and function expression. This shows that multi-output partially Bent functions and multi-output Bent functions can define each other in principle. So we obtain the general method to construct multi-output partially Bent functions from multi-output Bent functions.

  12. Ion implantation for manufacturing bent and periodically bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it; Mazzolari, Andrea; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara, Italy and INFN, Section of Ferrara (Italy); Mattei, Giovanni, E-mail: giovanni.mattei@unipd.it; Scian, Carlo [Department of Physics and Astronomy Galileo Galilei, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Lanzoni, Luca [Dipertimento di Economia e Tecnologia, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44, 47890 San Marino Città (San Marino)

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to produce X-ray beams.

  13. Dual Symmetry in Bent-Core Liquid Crystals and Unconventional Superconductors

    Directory of Open Access Journals (Sweden)

    Vladimir Lorman

    2010-01-01

    Full Text Available We extend the Landau theory of bent-core mesophases and d-wave high-Tc superconductors by considering additional secondary pseudo-proper order parameters. These systems exhibit a remarkable analogy relating their symmetry groups, lists of phases, and an infinite set of physical tensors. This analogy lies upon an internal dual structure shared by the two theories. We study the dual operator transforming rotations into translations in liquid crystals, and gauge symmetries into rotations in superconductors. It is used to classify the bent-core line defects, and to analyze the electronic gap structure of lamellar d-wave superfluids.

  14. Bent functions results and applications to cryptography

    CERN Document Server

    Tokareva, Natalia

    2015-01-01

    Bent Functions: Results and Applications to Cryptography offers a unique survey of the objects of discrete mathematics known as Boolean bent functions. As these maximal, nonlinear Boolean functions and their generalizations have many theoretical and practical applications in combinatorics, coding theory, and cryptography, the text provides a detailed survey of their main results, presenting a systematic overview of their generalizations and applications, and considering open problems in classification and systematization of bent functions. The text is appropriate for novices and advanced

  15. Bent Electro-Absorption Modulator

    DEFF Research Database (Denmark)

    2002-01-01

    components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contract may be modulated while keeping the absorption coefficient...... substantially constant and small, whereby the guided light can be modulated only by bending losses. Alternatively, the invention may be applied to enhance the extinction ratio of existing absorption modulators such as Electro-Absorption Modulators (EAMs) in which case extinction by absorption and extinction......The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated...

  16. Gauged Supergravities

    CERN Document Server

    Trigiante, Mario

    2016-01-01

    We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.

  17. Gauged supergravities

    Science.gov (United States)

    Trigiante, Mario

    2017-03-01

    We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.

  18. Understanding Gauge

    CERN Document Server

    Weatherall, James Owen

    2015-01-01

    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure in this sense.

  19. Bent and bent(4) spectra of Boolean functions over finite fields

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Meidl, Wilfried

    2017-01-01

    to the conventional Walsh transform, and hence a 0-bent4 function is bent. In this article we generalize the concept of partially bent functions to the transforms V-f(c). We show that every quadratic function is partially bent, and hence it is plateaued with respect to any of the transforms V-f(c). In detail we...... analyse two quadratic monomials. The first has values as small as possible in its spectra with respect to all transforms V-f(c), and the second has a flat spectrum for a large number of c. Moreover, we show that every quadratic function is c-bent4 for at least three distinct c. In the last part we analyse...... a cubic monomial. We show that it is c-bent(4) only for c = 1, the function is then called negabent, which shows that non-quadratic functions exhibit a different behaviour. (C) 2017 Elsevier Inc. All rights reserved....

  20. Gauged Inflation

    CERN Document Server

    Hofmann, Ralf; Hofmann, Ralf; Keil, Mathias Th.

    2002-01-01

    Based on thermal equilibrium between the vacuum and its relevant excitations a model for cosmic inflation is presented. Due to a vacuum dominating, U(1) gauged inflaton field an inflationary regime can be reached without explicitly imposing slow-roll conditions. Thereby, nontrivial euclidean BPS saturation of the inflaton bans gravity from the field equations and masquerades the gauge symmetry as a $Z_{N+1}$ symmetry at the point where thermal equilibrium breaks down. Solving the vacuum dynamics of the gauge field in the inflaton background in the spirit of a Born-Oppenheimer approximation, a temperature dependent cosmological constant $\\La=\\La(T)$ is obtained. The $T$ dependence of $\\La$ competes with the black body radiation of the (massive) gauge field during cosmic expansion. This leads to (initial condition independent) inflation at some critical value of the inflaton amplitude. The model allows for a closed, noncollapsing universe with Planckian initial density, and hence it resolves the flatness proble...

  1. Springback prediction of three-dimensional variable curvature tube bending

    National Research Council Canada - National Science Library

    Zhang, Shen; Wu, Jianjun

    2016-01-01

    .... The springback prediction of three-dimensional variable curvature bent tube is projected on each discrete osculating and rectifying plane, and then the three-dimensional problem can be transformed into two dimensions...

  2. Univariate Niho Bent Functions from o-Polynomials

    OpenAIRE

    Budaghyan, Lilya; Kholosha, Alexander; Carlet, Claude; Helleseth, Tor

    2014-01-01

    In this paper, we discover that any univariate Niho bent function is a sum of functions having the form of Leander-Kholosha bent functions with extra coefficients of the power terms. This allows immediately, knowing the terms of an o-polynomial, to obtain the powers of the additive terms in the polynomial representing corresponding bent function. However, the coefficients are calculated ambiguously. The explicit form is given for the bent functions obtained from quadratic and cubic o-polynomi...

  3. The ranks of Maiorana-McFarland bent functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the ranks of a special family of Maiorana-McFarland bent functions are discussed. The upper and lower bounds of the ranks are given and those bent functions whose ranks achieve these bounds are determined. As a consequence, the inequivalence of some bent functions are derived. Furthermore, the ranks of the functions of this family are calculated when t 6.

  4. Investigation of Momentum Resolution in Straight vs Bent Large End-Cap Chambers

    CERN Document Server

    Levin, D S

    1999-01-01

    We report on a calculation of momentum resolution for muons incident on the large end-cap chambers. The impact on the resolution of two chamber designs was evaluated: Those constructed with straight drift tubes are compared to the ATLAS baseline design in which chambers are bent such that tube axes conform to the catenary of their respective anode wires. The analysis was performed using the GARFIELD program to calculate drift tube time-to-space functions. ATLAS muon system code packages LHCTOR and MUONBOX were used to generate tracks, hits and momentum reconstruction. We find that, for straight tube chambers compared to bent ones, the overall degradation in momentum resolution, averaged over all of the largest of the so called large end-cap chambers (EML4-5 and EOL3 in the pseudo-rapidity range$1.02 < \\eta <1.49$), is very small for muon transverse momentum $P_t = 500 $ Gev and negligible for $P_t \\le 100 $ Gev. When the intermediate large end-cap chambers (EEL1 and EEL2) are considered no momentum degr...

  5. Gauge mechanics

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;

  6. The ranks of Maiorana-McFarland bent functions

    Institute of Scientific and Technical Information of China (English)

    WENG GuoBiao; FENG RongQuan; QIU WeiSheng; ZHENG ZhiMing

    2008-01-01

    In this paper,the ranks of a special family of Maiorana-McFarland bent functions are discussed.The upper and lower bounds of the ranks are given and those bent functions whose ranks achieve these bounds are determined.As a consequence,the inequivalence of some bent functions are derived.Furthermore,the ranks of the functions of this family are calculated when t≤6.

  7. Bent Solenoids with Superimposed Dipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  8. Systemic transthyretin amyloidosis in a patient with bent spine syndrome.

    Science.gov (United States)

    Rezania, Kourosh; Pytel, Peter; Smit, Laurel J; Mastrianni, James; Dina, Michelle A; Highsmith, W Edward; Dogan, Ahmet

    2013-06-01

    Wild-type and mutant transthyretin (TTR) are implicated in systemic amyloidosis (ATTR). Myopathy is a rare complication of ATTR amyloidosis, however no patient with bent spine syndrome secondary to ATTR amyloidosis has been reported so far. We present the first case of bent spine syndrome in a patient with wild-type ATTR amyloidosis who also had concomitant Alzheimer's disease.

  9. Niho Bent Functions and Subiaco/Adelaide Hyperovals

    OpenAIRE

    Helleseth, Tor; Kholosha, Alexander; Mesnager, Sihem

    2012-01-01

    In this paper, the relation between binomial Niho bent functions discovered by Dobbertin et al. and o-polynomials that give rise to the Subiaco and Adelaide classes of hyperovals is found. This allows to expand the class of bent functions that corresponds to Subiaco hyperovals, in the case when $m\\equiv 2 (\\bmod 4)$.

  10. Specific distribution behavior of a ternary mixture of solvents fed into bent and wound microchannels in microchips.

    Science.gov (United States)

    Nishiyama, Kei; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2013-01-01

    The tube radial distribution of ternary solvents (water-hydrophilic/hydrophobic organic mixture) fed into bent and wound microchannels in a microchip was examined by fluorescence observations of dyes dissolved in the solvents under laminar flow conditions. Four kinds of microchips incorporating bent microchannels were used, together with a microchip with a straight channel. The microchannels had different bending times (2, 4, or 12 times), bending radii (0.8, 2.3, or 3 mm), and total channel lengths (80, 120, 200, or 500 mm). A water-acetonitrile (hydrophilic)-ethyl acetate (hydrophobic) mixture containing relatively hydrophilic Eosin Y (green) and hydrophobic perylene (blue) was delivered into the bent microchannels in the microchips. The fluorescence of the green and blue dyes enabled us to observe the specific radial distribution behavior of the ternary solvents in the bent micro channels at 0°C, including liquid-liquid interfaces. Further, the radial distribution pattern of the solvents was clearly observed in the wound microchannel (bending radius, ca. 0.1 mm; real total channel length, 500 mm; and apparent straight channel length, 40 mm) at 20°C (room temperature) as well as 0°C. It was found that the radial distribution behaviors of the solvents were successfully generated in even specific microchannels including various types of curves under the present conditions.

  11. 46 CFR 154.1300 - Liquid level gauging system: General.

    Science.gov (United States)

    2010-10-01

    ... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed... type device, electronic or magnetic probe, or bubble tube indicator. (b) If Table 4 lists a...

  12. Gauge theory and little gauge theory

    CERN Document Server

    Koizumi, Kozo

    2016-01-01

    The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.

  13. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  14. Channeling and radiation in periodically bent crystals

    CERN Document Server

    Korol, Andrey V; Greiner, Walter

    2014-01-01

    The development of coherent radiation sources for sub-angstrom wavelengths - i.e. in the hard X-ray and gamma-ray range -  is a challenging goal of modern physics. The availability of such sources will have many applications in basic science, technology and medicine, and, in particular, they may have a revolutionary impact on nuclear and solid state physics, as well as on the life sciences. The present state-of-the-art lasers are capable of emitting electromagnetic radiation from the infrared to the ultraviolet, while free electron lasers (X-FELs) are now entering the soft X-ray region. Moving further, i.e. into the hard X and/or gamma ray band, however, is not possible without new approaches and technologies.   In this book we introduce and discuss one such novel approach -the radiation formed in a Crystalline Undulator - whereby electromagnetic radiation is generated by a bunch of ultra-relativistic particles channeling through a periodically bent crystalline structure. Under certain conditions, such a d...

  15. Study and Design of Spiral Bent Waveguide Configuration

    Institute of Scientific and Technical Information of China (English)

    ZENG Wen-hong; LIAO Yun; SHI Shuang-jin; QIU Qi; LI Wei

    2007-01-01

    A new version of the scalar transverse electric(TE) wave equation in the bent waveguide is introduced.Then,TE polarized field in curved single-mode waveguides is analyzed by using the finite-difference beam propagation method(FD-BPM).The bending loss in bent waveguides is gotten for the optical fields obtained from BPM and comparisons are made among losses of the waveguides with various curvature radiuses,refractive index differences and cross sections.Based on the results,the design of spiral bent waveguide configuration is proposed as follows:refractive index difference being of 0.007,both width and thickness of waveguides being of 6 μm,the curvature radius in the spiral centre being of 4 mm,and the bending loss coefficient of the designed spiral bent waveguide being of 0.302 3 dB/cm.

  16. Rotation Symmetric Bent Boolean Functions for n = 2p

    OpenAIRE

    Cusick, T. W.; Sanger, E. M.

    2017-01-01

    It has been conjectured that there are no homogeneous rotation symmetric bent Boolean functions of degree greater than two. In this paper we begin by proving that sums of short-cycle rotation symmetric bent Boolean functions must contain a specific degree two monomial rotation symmetric Boolean function. We then prove most cases of the conjecture in n=2p, p>2 prime, variables and extend this work to the nonhomogeneous case.

  17. Counting all bent functions in dimension eight 99270589265934370305785861242880

    DEFF Research Database (Denmark)

    Langevin, Philippe; Leander, Gregor

    2011-01-01

    Based on the classification of the homogeneous Boolean functions of degree 4 in 8 variables we present the strategy that we used to count the number of all bent functions in dimension 8. There are $$99270589265934370305785861242880 \\approx 2^{106}$$such functions in total. Furthermore, we show...... that most of the bent functions in dimension 8 are nonequivalent to Maiorana–McFarland and partial spread functions....

  18. Ear Tubes

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  19. Flux tubes at Finite Temperature

    CERN Document Server

    Bicudo, Pedro; Cardoso, Marco

    2016-01-01

    We show the flux tubes produced by static quark-antiquark, quark-quark and quark-gluon charges at finite temperature. The sources are placed in the lattice with fundamental and adjoint Polyakov loops. We compute the square densities of the chromomagnetic and chromoelectric fields above and below the phase transition. Our results are gauge invariant and produced in pure gauge SU(3). The codes are written in CUDA and the computations are performed with GPUs.

  20. Gauge engineering and propagators

    CERN Document Server

    Maas, Axel

    2016-01-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  1. Gauge engineering and propagators

    Science.gov (United States)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  2. Discrete gauge theories

    NARCIS (Netherlands)

    de Wild Propitius, M.D.F.; Bais, F.A.

    1999-01-01

    In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha

  3. Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces

    Science.gov (United States)

    Yuan, Hong; Li, Faping

    2010-05-01

    In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.

  4. Cell Area and Strut Distribution Changes of Bent Coronary Stents: A Finite Element Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yang; WU Wei; YANG Da-zhi; QI Min

    2009-01-01

    Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, which are expanded by balloons to reopen and scaffold target vessels. Recently,special drugs are carried by stents (drug-eluting stents) to further reduce in-stent restenosis rate after stenting procedure. However,continual study on biomechanical characteristics of stents is necessary for better interactions between stents and tissue, or to provide a more suitable drug loading platform for drug-eluting stents. The purpose of this paper is to show how finite element methods can be used to study cell area and strut distribution changes of bent coronary stents. A same bending deformation was applied to two commercial coronary stent models by a rigid curved vessel. Results show that the stent design influenced the changes of cell area and strut distribution under bending situation. The stent with links had more cell area changes at outer curvature, and the stent with peak-peak (><) strut design could have strut contact and overlapping at inner curvature. In conclusion, this finite element method can be used to study and compare cell area and strut distribution changes of bent stents,and to provide a convenient tool for designers in testing and improving biomechanical characteristics of new stents.

  5. Triggering and measuring bent cosmic muon tracks with the Muon Spectrometer barrel for the first time

    CERN Multimedia

    Fabio Cerutti

    During the ATLAS barrel toroid stability test, bent cosmic muon tracks were seen for the first time in the ATLAS cavern by means of the ATLAS muon spectrometer. The barrel toroid has been powered at its nominal current (20.5 thousand Amperes) and kept in steady state for more than one day during the weekend of 18-19 November (see a report on this test in the Magnet section). During this test one large sector and part of a small sector of the barrel muon spectrometer were readout and used to detect the cosmic muons tracks bent by the toroidal magnetic field. Thirteen muon stations in the feet sectors (sectors 13 and 14) have been used in this test. The muon stations are formed of Resistive Plate Chambers (RPC) that were providing the muon trigger, and Monitored Drift Tubes that were used to measure with high accuracy the muon curvature hence their momentum. The Level-1 Barrel trigger chain was based on the Barrel Middle Large chambers equipped with final production modules on both the on-detector and the o...

  6. Direct observation of photoinduced bent nitrosyl excited-state complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  7. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  8. Quantum Gauge General Relativity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.

  9. Proton extraction from the CERN SPS using bent silicon crystals

    Science.gov (United States)

    Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.

    1996-10-01

    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation. This paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. It describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: first- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. The experimental procedures including an overview of the detection of circulating and extracted beam are given. Finally, the paper summarizes the results of these experiments together with ideas for future developments.

  10. Recent progress on the mechanics of sharply bent DNA

    Science.gov (United States)

    Cong, PeiWen; Yan, Jie

    2016-08-01

    Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.

  11. Energy transformation during erect and 'bent-hip, bent-knee' walking by humans with implications for the evolution of bipedalism.

    Science.gov (United States)

    Wang, W J; Crompton, R H; Li, Y; Gunther, M M

    2003-05-01

    We have previously reported that predictive dynamic modeling suggests that the 'bent-hip, bent-knee' gait, which some attribute to Australopithecus afarensis AL-288-1, would have been much more expensive in mechanical terms for this hominid than an upright gait. Normal walking by modern adult humans owes much of its efficiency to conservation of energy by transformation between its potential and kinetic states. These findings suggest the question if, and to what extent, energy transformation exists in 'bent-hip, bent-knee' gait. This study calculates energy transformation in humans walking upright, at three different speeds, and walking 'bent-hip, bent-knee'. Kinematic data were gathered from video sequences and kinetic (ground reaction force) data from synchronous forceplate measurement. Applying Newtonian mechanics to our experimental data, the fluctuations of kinetic and potential energy in the body centre of mass were obtained and the effects of energy transformation evaluated and compared. In erect walking the fluctuations of two forms of energy are indeed largely out-of-phase, so that energy transformation occurs and total energy is conserved. In 'bent-hip, bent-knee' walking, however, the fluctuations of the kinetic and potential energy are much more in-phase, so that energy transformation occurs to a much lesser extent. Among all modes of walking the highest energy recovery is obtained in subjectively 'comfortable' walking, the next highest in subjectively 'fast' or 'slow' walking, and the least lowest in 'bent-hip, bent-knee' walking. The results imply that if 'bent-hip, bent-knee' gait was indeed habitually practiced by early bipedal hominids, a very substantial (and in our view as yet unidentified) selective advantage would have had to accrue, to offset the selective disadvantages of 'bent-hip, bent-knee' gait in terms of energy transformation.

  12. Proofs of two conjectures on ternary weakly regular bent functions

    OpenAIRE

    Helleseth, Tor; Hollmann, Henk D. L.; Kholosha, Alexander; Wang, Zeying; Xiang, Qing

    2008-01-01

    We study ternary monomial functions of the form $f(x)=\\Tr_n(ax^d)$, where $x\\in \\Ff_{3^n}$ and $\\Tr_n: \\Ff_{3^n}\\to \\Ff_3$ is the absolute trace function. Using a lemma of Hou \\cite{hou}, Stickelberger's theorem on Gauss sums, and certain ternary weight inequalities, we show that certain ternary monomial functions arising from \\cite{hk1} are weakly regular bent, settling a conjecture of Helleseth and Kholosha \\cite{hk1}. We also prove that the Coulter-Matthews bent functions are weakly regular.

  13. Dispersion in a bent-solenoid channel with symmetric focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  14. Generalized Higher Gauge Theory

    CERN Document Server

    Ritter, Patricia; Schmidt, Lennart

    2015-01-01

    We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.

  15. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  16. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  17. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  18. Advances and Trends on Tube Bending Forming Technologies

    Institute of Scientific and Technical Information of China (English)

    YANG He; LI Heng; ZHANG Zhiyong; ZHAN Mei; LIU Jing; LI Guangjun

    2012-01-01

    As one kind of key components with enormous quantities and diversities,the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects.The bent tubes have been widely used in many high-end industries such as aviation,aerospaee,shipbuilding,automobile,energy and health care.The tube bending has become one of the key manufacturing technologies for lightweight product forming.Via the analysis of bending characteristics and multiple defects,advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados,wall thinning (cracking) at the extrados,springback phenomenon,cross-section deformation,forming limit and process/tooling design/optimization.Some currently developed bending techniques are reviewed in terms of their advantages and limitations.Finally,in view of the urgent requirements of high-performance complex bent tube components with difficult-to-deform and lightweight materials in aviation and aerospace fields,the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.

  19. Supergravity from Gauge Theory

    CERN Document Server

    Berkowitz, Evan

    2016-01-01

    Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.

  20. I/O correlation properties of bent functions

    Institute of Scientific and Technical Information of China (English)

    张宝东; 吕述望

    2000-01-01

    Let f( x1, x2, …, xn) be a Boolean bent function with n variables. The mutual information between the output variable and m linearly independent affine functions with respect to x1, x2, …, xn is studied. The results show that the mutual information depends mainly on m and n, but little on the structure of function f.

  1. Productivity and ergonomic investigation of bent-handle pliers.

    Science.gov (United States)

    Duke, Kelly; Mirka, Gary A; Sommerich, Carolyn M

    2004-01-01

    Awkward wrist posture is generally considered an occupational risk factor for hand/wrist disorders, leading to the ergonomic design principle of "bend the tool, not the wrist." Sixteen participants performed a computer jumper installation task and a simple assembly task while productivity, wrist posture, and shoulder posture were measured. The work surface orientation (vertical and 45 degrees) and the level of constraint placed on the user (constrained grip and unconstrained grip) were also varied. The results indicate that the beneficial effects of the bent-handle pliers are task dependent. In the computer jumper task the bent-handle pliers resulted in 5.3% faster task performance, whereas in the assembly task performance was 4.9% faster with the straight-handle pliers. The bent-handle pliers reduced shoulder deviations by 50% in the jumper installation task, and ulnar deviation was reduced by 12% and 22% for the jumper installation task and the assembly task, respectively (all significant at p ergonomic utility of bent-handle pliers can be considerable but that the 3-D kinematics characteristics of the task must be considered.

  2. Proton extraction from the SPS with a bent crystal

    Science.gov (United States)

    Ferroni, F.; Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; De Sangro, R.; Elsener, K.; Ferioli, G.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Moller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhoj, E.; Vetterman, B.; Vita, P. E.; Vuagnin, G.; Weisse, E.; Weisz, S.; RD22 Collaboration

    1994-11-01

    The RD22 Collaboration has performed several measurements on the extraction of protons from the CERN-SPS by planar channeling in bent silicon monocrystals. Extraction efficiencies of about 10% have been routinely achieved for a bending angle of 8.5 mrad with the SPS running at 120 GeV.

  3. Electronic Transport Through Carbon Nanotubes: Effects of Structural Deformation and the Tube Chirality

    Science.gov (United States)

    Maiti, Amitesh; Svizhenko, Alexei; Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Atomistic simulations using a combination of classical force field and Density-Functional-Theory (DFT) show that carbon atoms remain essentially sp2 coordinated in either bent tubes or tubes pushed by an atomically sharp AFM tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface.

  4. Rain Gauges Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  5. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    Science.gov (United States)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  6. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    Science.gov (United States)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  7. Modified Lattice Landau Gauge

    CERN Document Server

    Von Smekal, L; Sternbeck, A; Williams, A G

    2007-01-01

    We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.

  8. Bent Dinuclear Platinum(II Halo-Bridged Carbonyl Complexes

    Directory of Open Access Journals (Sweden)

    Fabio Marchetti

    2011-07-01

    Full Text Available Crystals of trans-Pt2(μ-X2X2(CO2 (X = Br, I have been grown and their molecular and crystalline structures have been solved by X-ray diffraction methods. In both cases the dinuclear molecules are bent, with a bending angle of 164.6° and 156.5° for the bromide and the iodide, respectively. While the structure of the bromo-derivative is reported here for the first time, a modification of trans-Pt2(μ-I2I2(CO2 with planar centrosymmetric molecules is known. This appears to be a rare case of a platinum(II halo-bridged derivative structurally characterized in both bent and planar forms.

  9. Measurement of the intermodal crosstalk of a bent multimode waveguide.

    Science.gov (United States)

    Wang, Jian; Zhao, Changyun; Wei, Bing; Gencheng, Wang; Dai, Tingge; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2016-09-20

    We quantitatively investigate the main source of the intermodal crosstalk of a silicon-based bent multimode waveguide by experiment. The measurement is performed through time-domain scanning low-coherence interferometry. From the measurement results, one can not only calculate the modal crosstalk, but can also locate the position where the crosstalk appears. The results indicate that the modal mismatch at the points where the curvature of the waveguide changes is the main origin of the modal crosstalk. For a two-mode waveguide with a bending radius of 5 μm at 1310 nm, the crosstalk is as high as -20 and -16  dB for the fundamental and first-order mode, respectively. This work gives us a deep insight into how the guided modes actually propagate through the bent waveguide.

  10. Simulations of electron channeling in bent silicon crystal

    CERN Document Server

    Sushko, G B; Korol, A V; Greiner, Walter; Solov'yov, A V; Polozkov, R G; Ivanov, V K

    2013-01-01

    We report on the results of theoretical simulations of the electron channeling in a bent silicon crystal. The dynamics of ultra-relativistic electrons in the crystal is computed using the newly developed part [1] of the MBN Explorer package [2,3], which simulates classical trajectories of in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. A Monte Carlo approach is employed to sample the incoming electrons and to account for thermal vibrations of the crystal atoms. The electron channeling along Si(110) crystallographic planes are studied for the projectile energies 195--855 MeV and different curvatures of the bent crystal.

  11. Vertical neutron beam focusing with bent mosaic crystals

    Science.gov (United States)

    Courtois, P.

    2016-09-01

    We report on the performance of bent mosaic crystals when used as a vertical focusing neutron monochromator. High-quality Cu(200) and Ge(335) mosaic crystals with a controlled curvature have been successfully produced at the ILL using plastic deformation at high temperature. As expected from simple geometrical considerations, they exhibit excellent properties for focusing a neutron beam vertically when examined on a high-resolution diffractometer installed on an m = 1 thermal neutron guide. Both Cu(200) and Ge(335) curved crystals allow a significant reduction of the focal image size at the sample position compared with a flat crystal with the same defect concentration. As a result, significant gain factors of 6 to 7 in intensity were obtained by replacing a flat crystal of 30 mm with a bent crystal.

  12. Manipulation of hadron beams with bent crystals in circular accelerators

    CERN Document Server

    Rossi, R; Redaelli, S; Scandale, W

    2016-01-01

    Over the past years the understanding and use of coherent interactions of charged particles with ordered crystal lattices has achieved excellent results. Improving collimation of hadron beams in circular accelerators, like the Large Hadron Collider (LHC) of the European Council for Nuclear Research (CERN), it is one of the possible applications. The aim of the UA9 experiment is to demonstrate the feasibility of a two-stage collimation system in the CERN-SPS : the first stage is a bent crystal oriented for an optimal channeling of the incoming halo particles; the second stage is a massive absorber. Two crystals were installed in the LHC last year and a test of crystal assisted collimation at the highest energy will be possible as early as 2015. Finally, the UA9 Collaboration is investigating extraction of particles from a circular accelerator, based on bent crystals.

  13. Genetic Analysis on Bent Characters of Cucumber Fruit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; QIN Zhiwei; WANG Lili; ZHOU Xiuyan

    2011-01-01

    Bent varieties and straight varieties were made as parents for the genetic analysis to investigate cucumber bending genetic mechanism. The results showed that the bent characters of the cucumber fruit (BCCF) were quantitative inheritance controlled by multiple genes and major genes. The additive effect played the main role and the dominance effect played the lesser role. Compared with the additive environmental variance, the dominant-environmental variance was more important and the cucumber fruit was more easily affected by the additive effect. The broad heritability and the narrow heritability of BCCF were both higher. The varieties of D0455 and D07299 could be used as parents which were benefit for improving the straight characters of the cucumber fruit

  14. Advanced Bent Crystal Collimation Studies at the Tevatron (T-980)

    CERN Document Server

    Zvoda, V; Carrigan, R; Drozhdin, A; Johnson, T; Kwan, S; Mokhov, N; Prosser, A; Reilly, R; Uplegger, R Rivera L; Shiltsev, V; Still, D; Zagel, J; Guidi, V; Bagli, E; Mazzolari, A; Ivanov, Yu; Chesnokov, Yu; Yazynin, I

    2011-01-01

    The T-980 bent crystal collimation experiment at the Tevatron has recently acquired substantial enhancements. First, two new crystals - a 16-strip one manufactured and characterized by the INFN Ferrara group and a quasi-mosaic crystal manufactured and characterized by the PNPI group. Second, a two plane telescope with 3 high-resolution pixel detectors per plane along with corresponding mechanics, electronics, control and software has been manufactured, tested and installed in the E0 crystal region. The purpose of the pixel telescope is to measure and image channeled (CH), volume-reflected (VR) and multiple volume-reflected (MVR) beam profiles produced by bent crystals. Third, an ORIGIN-based system has been developed for thorough analysis of experimental and simulation data. Results of analysis are presented for different types of crystals used from 2005 to present for channeling and volume reflection including pioneering tests of two-plane crystal collimation at the collider, all in comparison with detailed ...

  15. Revisit the anomalous bending elasticity of sharply bent DNA

    CERN Document Server

    Cong, Peiwen; Chen, Hu; van der Maarel, Johan R C; Doyle, Patrick S; Yan, Jie

    2015-01-01

    Several recent experiments have suggested that sharply bent DNA has a surprisingly high bending flexibility, but the cause is poorly understood. It has been demonstrated that excitation of flexible defects can explain the results; while whether such defects can be excited under the level of DNA bending in those experiments has remained unclear and been debated. Interestingly, due to experimental design DNA contained pre-existing nicks in nearly all those experiments, while the potential effect of nicks have never been considered. Here, using full-atom molecular dynamics (MD) simulations, we show that nicks promote DNA basepair disruption at the nicked sites which drastically reduced DNA bending energy. In the absence of nicks, basepair disruption can also occur, but it requires a higher level of DNA bending. Overall, our results challenge the interpretations of previous sharp DNA bending experiments and highlight that the micromechanics of sharply bent DNA still remains an open question.

  16. Volume reflection efficiency for negative particles in bent crystals

    Science.gov (United States)

    Biryukov, V. M.

    2017-02-01

    We suggest a formula for the efficiency of a single volume reflection of negatively charged particles in bent crystal planes and compare it to recent experiments at SLAC, MAMI and CERN with electrons and negative pions in the energy range from 0.855 to 150 GeV in Si crystals. We show that Lindhard reversibility rule provides sufficient basis for quantitative understanding of these experiments.

  17. Volume reflection efficiency for negative particles in bent crystals

    Directory of Open Access Journals (Sweden)

    V.M. Biryukov

    2017-02-01

    Full Text Available We suggest a formula for the efficiency of a single volume reflection of negatively charged particles in bent crystal planes and compare it to recent experiments at SLAC, MAMI and CERN with electrons and negative pions in the energy range from 0.855 to 150 GeV in Si crystals. We show that Lindhard reversibility rule provides sufficient basis for quantitative understanding of these experiments.

  18. Bent versus straight tips in micropulsed longitudinal phacoemulsification.

    Science.gov (United States)

    Stagg, Brian C; Gupta, Isha; Cahoon, Judd; Ronquillo, Cecinio; Shi, Dallas; Zaugg, Brian; Gardiner, Gareth; Barlow, William R; Pettey, Jeff H; Aabid Farukhi, M; Jensen, Jason; Olson, Randall J

    2015-10-01

    The aim of this study was to evaluate bent and straight phacoemulsification tips to determine which tip is more efficient in removal of lens fragments, using micropulsed longitudinal ultrasound in phacoemulsification. In vitro laboratory study. The John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, was the study setting. Pig lenses hardened in a manner comparable with dense human cataracts were cut into 2-mm cubes and removed with micropulsed longitudinal ultrasound using settings previously shown to be optimally efficient (6 milliseconds on and 6 milliseconds off for a bent tip). To verify this time as most efficient for a straight tip, we also tested times of 5, 6, and 7 milliseconds time on and off. The tips were either straight or with a 20-degree bend. Twenty cubes were used for each comparative run. For the straight tip, 6 milliseconds on (1.56 ± 0.815 seconds) was significantly more efficient than 7 milliseconds on (2.45 ± 1.56 seconds, p = 0.001) and not significantly more efficient than 5 milliseconds on (1.69 ± 0.86 seconds, p = 0.43). Five milliseconds off time (1.45 ± 0.76s) was more efficient than 6 milliseconds (2.06 ± 1.37 seconds, p = 0.004) and 7 milliseconds off (2.18 ± 1.24s, p = 0.001). The straight tip was more efficient than the bent tip (1.38 ± 0.83 versus 2.93 ± 2.14 seconds, p = 0.006). Results are contrary to accepted common belief. Micropulsed longitudinal phacoemulsification is more efficient with a straight rather than a bent tip. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  19. Gauge coupling unification in gauge-Higgs grand unification

    Science.gov (United States)

    Yamatsu, Naoki

    2016-04-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  20. Basis Tensor Gauge Theory

    CERN Document Server

    Chung, Daniel J H

    2016-01-01

    We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.

  1. Digital lattice gauge theories

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio

    2016-01-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...

  2. G2 gauge theories

    CERN Document Server

    Maas, Axel

    2012-01-01

    QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.

  3. CogGauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...

  4. Gauge theories and holisms

    Science.gov (United States)

    Healey, Richard

    Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.

  5. Ram pressure statistics for bent tail radio galaxies

    CERN Document Server

    Mguda, Zolile; van der Heyden, Kurt; Gottlöber, Stefan; Cress, Catherine; Vaisanen, Petri; Yepes, Gustavo

    2014-01-01

    In this paper we use the MareNostrum Universe Simulation, a large scale, hydrodynamic, non-radiative simulation in combination with a simple abundance matching approach to determine the ram pressure statistics for bent radio sources (BRSs). The abundance matching approach allows us to determine the locations of all galaxies with stellar masses $> 10^{11} MSol$ in the simulation volume. Assuming ram pressure exceeding a critical value causes bent morphology, we compute the ratio of all galaxies exceeding the ram pressure limit (RPEX galaxies) relative to all galaxies in our sample. According to our model 50% of the RPEX galaxies at $z = 0$ are found in clusters with masses larger than $10^{14.5}MSol$ the other half resides in lower mass clusters. Therefore, the appearance of bent tail morphology alone does not put tight constraints on the host cluster mass. In low mass clusters, $M 10^{15}Msol$ they can be found at distances up to 1.5Mpc. Only clusters with masses $> 10^{15}MSol $ are likely to host more than...

  6. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  7. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  8. Gauge engineering and propagators

    Directory of Open Access Journals (Sweden)

    Maas Axel

    2017-01-01

    The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  9. Confining gauge fields

    CERN Document Server

    Lenz, F

    2009-01-01

    By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.

  10. Tracheostomy tubes.

    Science.gov (United States)

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech. Copyright © 2014 by Daedalus Enterprises.

  11. Synthesis and mesomorphic properties of bent-shaped molecule with low bent-angle central core and long alkylthio tail

    Institute of Scientific and Technical Information of China (English)

    Xiao Dong Li; Mao Sheng Zhan; Kai Wang

    2011-01-01

    Two homologous series of bent-shaped molecules composed of low bent-angle naphthalene central core and long alkoxy tail or alkylthio tail, N(1,7)-n-OPIMB and W(1,7)-n-SPIMB (n = 20, 22), respectively, were synthesized. The mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD). Compared to the direct transition from the isotropic phase to the chiral B4 phase examined in N(1,7)-n-OPIMB, N(1,7)-n-SPIMB exhibited a rare Iso-Ncol-Colh-B4 phase sequence. The combination of the asymmetric low bent-angle 1,7-naphathalene central core and the flexible long alkylthio tail is considered to play an important role in the formation of such a novel phase sequence. (c) 2011 Mao Sheng Zhan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  12. Gauge Model with Massive Gravitons

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.

  13. Gauge Fields and Inflation

    CERN Document Server

    Maleknejad, A; Soda, J

    2012-01-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors "scalar driven" early Universe inflationary models. Non-scalar fields, and in particular gauge fields, are on the other hand commonplace in all high energy particle physics models proposed to be at work at the upper bound on energy scale of inflation set by the current CMB observations. In this review we consider the role and consequences, theoretical and observational, that gauge fields can have during inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main class of models with gauge fields in the background, models which show violation of cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of the...

  14. Gauge/Liouville Triality

    CERN Document Server

    Aganagic, Mina; Kozcaz, Can; Shakirov, Shamil

    2013-01-01

    Conformal blocks of Liouville theory have a Coulomb-gas representation as Dotsenko-Fateev (DF) integrals over the positions of screening charges. For q-deformed Liouville, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in DF representation, as the partition functions of a class of 3d U(N) gauge theories with N=4 supersymmetry, mass deformed to N=2, in the Omega-background. Coupling the 3d gauge theory to a hypermultiplet in fundamental representation corresponds to inserting a Liouville vertex operator; the two real mass parameters determine the momentum and position of the puncture. The DF integrals can be computed by residues. The result is the instanton sum of a five dimensional N=1 gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.

  15. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  16. Gauged Q balls

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.

    1989-03-15

    Classical nontopological soliton configurations are considered within the theory of a complex scalar field with a gauged U(1) symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U(1) symmetry is broken, the gauge field becomes massive, and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q matter in bulk form. We also briefly discuss solitons with fermions in a U(1) gauge theory.

  17. Gauged Q-balls

    Science.gov (United States)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  18. Gauged Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.

    1988-09-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  19. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  20. Holographic Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study

    2009-06-19

    We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.

  1. Analysis of Circular Polarization of Cylindrically Bent Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available When circularly polarized (CP microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.

  2. Quantum effects for particles channeling in a bent crystal

    Science.gov (United States)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  3. Riot at the calc exam and other mathematically bent stories

    CERN Document Server

    Adams, Colin

    2009-01-01

    What's so funny about math? Lots! Especially if you're mathematically bent. In the world of Colin Adams, differential equations bring on tears of laughter. Hollywood producers hire algebraic geometers to punch up a script. In this world, math and humor are synonymous. Riot at the Calc Exam is a proof of this fact. A collection of humorous math stories, this book gives a window into mathematics and the culture of mathematicians. Appropriate for mathematicians, math students, math teachers, lay people with an interest in mathematics, and indeed everyone else. This book is a romp through the wild

  4. Bent Branderup - akadeemilise ratsutamiskunsti rüütel / Eda Vallimäe

    Index Scriptorium Estoniae

    Vallimäe, Eda

    2014-01-01

    Taani ratusutamismeister Bent Branderup on ellu äratanud ajaloo- ja kultuuripärandit esindava akadeemilise ratsutamiskunsti, mis kombineerib parimad teadmised vanadelt ratsutamismeistritelt moodsa hobumaailmaga

  5. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  6. Perfect and Imperfect Gauge Fixing

    CERN Document Server

    Shirzad, A

    2006-01-01

    Gauge fixing may be done in different ways. We show that using the chain structure to describe a constrained system, enables us to use either a perfect gauge, in which all gauged degrees of freedom are determined; or an imperfect gauge, in which some first class constraints remain as subsidiary conditions to be imposed on the solutions of the equations of motion. We also show that the number of constants of motion depends on the level in a constraint chain in which the gauge fixing condition is imposed. The relativistic point particle, electromagnetism and the Polyakov string are discussed as examples and perfect or imperfect gauges are distinguished.

  7. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    Science.gov (United States)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  8. Finite quantum gauge theories

    Science.gov (United States)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  9. Gauge Theories of Gravitation

    CERN Document Server

    Blagojević, Milutin

    2012-01-01

    During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...

  10. Thermally favourable gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Dalianis, Ioannis, E-mail: Ioannis.Dalianis@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: Zygmunt.Lalak@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)

    2011-03-14

    We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.

  11. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  12. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  13. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  14. Emergent Gauge Fields

    CERN Document Server

    Freund, Peter G O

    2010-01-01

    Erik Verlinde's proposal of the emergence of the gravitational force as an entropic force is extended to abelian and non-abelian gauge fields and to matter fields. This suggests a picture with no fundamental forces or forms of matter whatsoever.

  15. Planar channeling and quasichanneling oscillations in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Ferrara (Italy); Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy)

    2016-02-15

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  16. Direct numerical simulation of turbulence in a bent pipe

    Science.gov (United States)

    Schlatter, Philipp; Noorani, Azad

    2013-11-01

    A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.

  17. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  18. Renormalisation group flows for gauge theories in axial gauges

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.

  19. Locomotor and oculomotor impairment associated with cerebellar dysgenesis in Zic3-deficient (Bent tail) mutant mice.

    NARCIS (Netherlands)

    Aruga, J.; Ogura, H.; Shutoh, F.; Ogawa, M.; Franke, B.; Nagao, S.; Mikoshiba, K.

    2004-01-01

    We examined the adult neural phenotypes of the Bent tail mutant mouse. The Bent tail mutant mouse was recently shown to lack a submicroscopic part of the X chromosome containing the Zic3 gene, which encodes a zinc-finger protein controlling vertebrate neural development. While nearly one-fourth of

  20. 31 CFR 100.11 - Exchange of bent and partial coins.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Exchange of bent and partial coins. 100.11 Section 100.11 Money and Finance: Treasury Regulations Relating to Money and Finance EXCHANGE OF PAPER CURRENCY AND COIN Exchange of Coin § 100.11 Exchange of bent and partial coins....

  1. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  2. REGULAR METHOD FOR SYNTHESIS OF BASIC BENT-SQUARES OF RANDOM ORDER

    Directory of Open Access Journals (Sweden)

    A. V. Sokolov

    2016-01-01

    Full Text Available The paper is devoted to the class construction of the most non-linear Boolean bent-functions of any length N = 2k (k = 2, 4, 6…, on the basis of their spectral representation – Agievich bent squares. These perfect algebraic constructions are used as a basis to build many new cryptographic primitives, such as generators of pseudo-random key sequences, crypto graphic S-boxes, etc. Bent-functions also find their application in the construction of C-codes in the systems with code division multiple access (CDMA to provide the lowest possible value of Peak-to-Average Power Ratio (PAPR k = 1, as well as for the construction of error-correcting codes and systems of orthogonal biphasic signals. All the numerous applications of bent-functions relate to the theory of their synthesis. However, regular methods for complete class synthesis of bent-functions of any length N = 2k are currently unknown. The paper proposes a regular synthesis method for the basic Agievich bent squares of any order n, based on a regular operator of dyadic shift. Classification for a complete set of spectral vectors of lengths (l = 8, 16, … based on a criterion of the maximum absolute value and set of absolute values of spectral components has been carried out in the paper. It has been shown that any spectral vector can be a basis for building bent squares. Results of the synthesis for the Agievich bent squares of order n = 8 have been generalized and it has been revealed that there are only 3 basic bent squares for this order, while the other 5 can be obtained with help the operation of step-cyclic shift. All the basic bent squares of order n = 16 have been synthesized that allows to construct the bent-functions of length N = 256. The obtained basic bent squares can be used either for direct synthesis of bent-functions and their practical application or for further research in order to synthesize new structures of bent squares of orders n = 16, 32, 64, …

  3. Bent Telescopic Rods in Patients With Osteogenesis Imperfecta.

    Science.gov (United States)

    Lee, R Jay; Paloski, Michael D; Sponseller, Paul D; Leet, Arabella I

    2016-09-01

    Telescopic rods require alignment of 2 rods to enable lengthening. A telescopic rod converts functionally into a solid rod if either rod bends, preventing proper engagement. Our goal was to characterize implant bending as a mode of failure of telescopic rods used in the treatment of osteogenesis imperfecta in children. We conducted a retrospective review of our osteogenesis imperfecta database for patients treated with intramedullary telescopic rods at our institution from 1992 through 2010 and identified 12 patients with bent rods. The 6 boys and 6 girls had an average age at the time of initial surgery of 3.1 years (range, 1.8 to 8.3 y) and a total of 51 telescoping rods. Clinic notes, operative reports, and radiographs were reviewed. The rods were analyzed for amount of lengthening, characteristics of bending, presence of cut out, or disengagement from an anchor point. Bends in the rods were characterized by their location on the implant component. The bent and straight rods were compared. Data were analyzed with the Mann-Whitney test (statistical significance set at P≤0.05). Of the 51 telescoping rods, 17 constructs (33%) bent. The average interval between surgery and rod bending was 4.0 years (range, 0.9 to 8.2 y). Before bending, 11 of 17 telescoping rods had routine follow-up radiographs for review. In 10 of the rods, bending was present when early signs of rod failure were first detected. Rod bending did not seem to be related to rod size. There was no area on the rod itself that seemed more susceptible to bending. Rod bending can be an early sign of impending rod failure. When rod bending is first noted, it may predispose the rod to other subsequent failures such as loss of proximal and distal fixation and cut out. Rod bending should be viewed as an indicator for closer monitoring of the patient and discussions regarding future need for rod exchange. Level III-retrospective review.

  4. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  5. Gravitation Gauge Group

    CERN Document Server

    Ter-Kazarian, G T

    1997-01-01

    Suggested theory involves a drastic revision of a role of local internal symmetries in physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries is generalized. The gravitation gauge group is proposed, which is generated by hidden local internal symmetries. The developed mechanism enables one to infer Einstein's equation of gravitation, but only with strong difference from Einstein's theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as general distortion of manifold G(2.2.3) with hidden group U(1) was considered.

  6. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  7. Development of Exterior Anti-corrosion Coating Production Line for Large Diameter Hot Bent Pipes

    Institute of Scientific and Technical Information of China (English)

    JiaoRuyi; ZhangYing

    2004-01-01

    The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti-corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti-corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the “West to East Gas Pipeline Project”, it will exhibite a greater potential in the future pipeline projects with a broad application prospect.

  8. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  9. Are gauge shocks really shocks?

    CERN Document Server

    Alcubierre, M

    2005-01-01

    The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.

  10. Gauging Variational Inference

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2017-05-25

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.

  11. Computer modeling of piezoresistive gauges

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, G. L.; Hallquist, J. O.

    1981-08-07

    A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.

  12. Channeling of ultra-relativistic positrons in bent diamond crystals

    Directory of Open Access Journals (Sweden)

    R.G. Polozkov

    2015-06-01

    Full Text Available Results of numerical simulations of channeling of ultra-relativistic positrons are reported for straight and uniformly bent diamond crystals. The projectile trajectories in a crystal are computed using a newly developed module of the MBN Explorer package which simulates classical trajectories in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and the crystal atoms. The Monte Carlo method is employed to sample the incoming positrons and to account for thermal vibrations of the crystal atoms. The channeling parameters and emission spectra of incident positrons with a projecti le energy of 855 MeV along C(110 crystallographic planes are calculated for different bending radii of the crystal. Two features of the emission spectrum associated with positron oscillations in a channel and synchrotron radiation are studied as a function of crystal curvature.

  13. Simulation of a Laue lens with bent Ge(111) crystals

    CERN Document Server

    Valsan, Vineeth; Frontera, Filippo; Liccardo, Vincenzo; Caroli, Ezio; Stephen, John B

    2015-01-01

    In the context of Laue project for focusing hard X-/ soft gamma-rays, an entire Laue lens, using bent Ge(111) crystal tiles, with 40 meters curvature radius, is simulated with a focal length of 20 meters. The focusing energy band is between 80 keV and 600 keV. The distortion of the output image of the lens on the focal plane due to the effect of crystal tile misalignment as well as the radial distortion arising from the curvature of the crystal is discussed in detail. Expected detection efficiency and instrument background is also estimated. Finally the sensitivity of the Laue lens is calculated. A quantitative analysis of the results of these simulation is also presented.

  14. Gamma-ray streaming in bent ducts and voids

    Energy Technology Data Exchange (ETDEWEB)

    Bourdet, L.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    We have developed an analytical method to calculate gamma-ray streaming through straight ducts and a numerical method to study the gamma propagation in bends or in annular clearances. The whole set allows a rigorous treatment of gamma streaming through bent ducts. In the same time a Monte Carlo method allows to study any form of geometry, by using sophisticated biasing techniques. All these developments are made with a simplified albedo. An easy to use code is also proposed to calculate very general albedos and a code to calculate the dose rate due to reflection in a room. Gamma dose rate albedos are determined for all elements and the energy range which concerns fission reactors.

  15. Levelized Cost of Energy for a Backward Bent Duct Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  16. Bent Fiber Sensor for Preservative Detection in Milk

    Directory of Open Access Journals (Sweden)

    Omer Galip Saracoglu

    2016-12-01

    Full Text Available A fiber optic sensor sensitive to refractive index changes of the outer region of the fiber cladding is presented. The sensor uses bent plastic optical fibers in different bending lengths to increase sensitivity. Measurements were made for low-fat milk, the refractive index of which is altered by some preservatives such as formaldehyde, hydrogen peroxide, and sodium carbonate. Concentrations of the preservatives in the milk were changed between 0% and 14.3% while the refractive indices occurred between 1.34550 and 1.35093 for the minimum (0% and maximum (14.286% concentrations of sodium carbonate, respectively. Due to bending-induced sensitivity, the sensor is able to detect refractive index changes less of than 0.4%. The results show that there is excellent linearity between the concentration and normalized response of the sensor.

  17. Double twist helical nanofilaments in bent-core liquid crystals

    Science.gov (United States)

    Zhang, Cuiyu; Diorio, Nicholas; Lavrentovich, Oleg D.; Jakli, Antal

    2014-03-01

    Cryo-TEM observations on 40-150 nm films of four bent-core liquid crystal materials in their helical nanofilament (HNF) phase show that the filaments get deformed near the substrate, and the subsequent arrays of nanofilaments are not parallel, but twisted with respect to each other. The effect can explain the mysterious properties of the HNF materials, such as structural color and ambidextrous optical activity. The observed double twist structure was not expected in the previous models of this phase. Being principally different from the packing of molecules in the twist grain boundary (TGB) and blue (BP) phases, the double-twist structure of HNF expands the rich word of nanostructured organic materials. This work was financially supported by NSF DMR-0964765 and DMR 1104850. The cryo-TEM facility was supported by the Ohio Research Scholars Program. We are grateful for Prof. G. Heppke and Dr. D. Lotsch for providing the PnOPIMB materials for us.

  18. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... the recovery room, sometimes called the "post-op" (post-operative) room or PACU (post-anesthesia care unit), and ... site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site ...

  19. High-Speed Measurement of the Internal Diameter of Tubes: A Comparison of Methods

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Agerup, C.C.; Nielsen, N.

    1974-01-01

    The authors have compared various methods of tube measurement and have made the striking conclusion that the continuous measurement of the internal diameter of precision tubes with an air gauge is often useless in practice. The methods selected for experiment were all contactless and so included ...... with ultrasonic immersion testing for flaws to make a complete tube testing facility....

  20. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  1. Gauge Mediation with Gauge Messengers in SU(5)

    CERN Document Server

    Matos, Luis

    2010-01-01

    The inclusion of gauge messengers in models of gauge mediation allows for more general predictions that those described by the framework of general gauge mediation. Motivated by this, we explore some models of gauge mediation with gauge messengers in SU(5) GUTs. In most previous attempts of building viable models where gauge messengers play a role in determining the soft terms, squark and/or slepton masses turned out to be tachyonic. The objective of this paper is to address this problem and propose two possible solutions, one of which has a natural realization in the solution of the doublet-triplet problem. Another interesting result is that in these models the association of SUSY breaking with the breaking of the GUT group provides a simple mechanism that can explain why $SU(5)\\rightarrow SU(3)\\times SU(2) \\times U(1)$ is preferred over other symmetry breaking patterns.

  2. Gauge-fixing approach to lattice chiral gauge theories

    CERN Document Server

    Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal

    1998-01-01

    We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.

  3. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...

  4. The gauging of BV algebras

    CERN Document Server

    Zucchini, Roberto

    2010-01-01

    A BV algebra is a formal framework within which the BV quantization algorithm is implemented. In addition to the gauge symmetry, encoded in the BV master equation, the master action often exhibits further global symmetries, which may be in turn gauged. We show how to carry this out in a BV algebraic set up. Depending on the nature of the global symmetry, the gauging involves coupling to a pure ghost system with a varying amount of ghostly supersymmetry. Coupling to an N=0 ghost system yields an ordinary gauge theory whose observables are appropriately classified by the invariant BV cohomology. Coupling to an N=1 ghost system leads to a topological gauge field theory whose observables are classified by the equivariant BV cohomology. Coupling to higher $N$ ghost systems yields topological gauge field theories with higher topological symmetry. In the latter case, however, problems of a completely new kind emerge, which call for a revision of the standard BV algebraic framework.

  5. Reversible greyscale memory effect of a bent-core liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hong Zhe; Jin Yan [Department of Display Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea, Republic of); Lee, Ji-Hoon; Yoon, Tae-Hoon [School of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, E-Joon; Lee, Eun-Woo, E-mail: jihoonlee@pusan.ac.kr, E-mail: ejchoi@kumoh.ac.kr [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyungbuk 730-701 (Korea, Republic of)

    2011-10-19

    Memory effect of a bent-core liquid crystal (LC) in smectic A phase was studied. The bent-core LC formed spatially distributed domains with different threshold fields, and the domains showed a bistable switching from a planar to a homeotropic state under an electric field across the cell. The fraction of homeotropic domains was gradually increased with stronger electric field, thus an analogue greyscale memory effect was obtained by the relative fraction between the planar and homeotropic domains. The bent-core molecules could be reversibly switched back to the initial planar state by applying an in-plane electric field.

  6. Dynamical focusing by bent, asymmetrically cut perfect crystals in Laue geometry.

    Science.gov (United States)

    Guigay, J P; Ferrero, C

    2016-07-01

    A semi-analytical approach based on the influence functions of a point source located on the crystal surface has been adopted to show that the focusing ability of cylindrically bent Laue crystals may be strongly enhanced by replacing symmetrically cut crystals with asymmetrically cut crystals. This approach is generally applicable to any distance between the X-ray source and the focusing bent crystal. A mathematically straightforward method to simplify the derivation of the already known expression of the influence functions in the case of deformed crystals with a constant strain gradient (e.g. cylindrically bent crystals) is also presented.

  7. Comparing dualities and gauge symmetries

    Science.gov (United States)

    De Haro, Sebastian; Teh, Nicholas; Butterfield, Jeremy N.

    2017-08-01

    We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4-6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.

  8. Gravitation gauge group

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Kazarian, G. T. [Byurakan Astrophysical Observatory (Armenia)

    1997-06-01

    The suggested theory involves a drastic revision of the role of local internal symmetries in the physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries has been generalized. A gravitation gauge group is proposed, which is generated by hidden local internal symmetries. In all circumstances, it seemed to be of the greatest importance for the understanding of the physical nature of gravity. The most promising aspect in their approach so far is the fact that the energy-momentum conservation laws of gravitational interacting fields are formulated quite naturally by exploiting all the advantages of auxiliary shadow fields on flat shadow space. The mechanism developed here enables one to infer Einstein`s equation of gravitation, but only with a strong difference from Einstein`s theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as the general distortion of the manifold G(2.2.3) with hidden group U{sup loc} (1) has been considered.

  9. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  10. Massive gauge-flation

    Science.gov (United States)

    Nieto, Carlos M.; Rodríguez, Yeinzon

    2016-06-01

    Gauge-flation model at zeroth-order in cosmological perturbation theory offers an interesting scenario for realizing inflation within a particle physics context, allowing us to investigate interesting possible connections between inflation and the subsequent evolution of the Universe. Difficulties, however, arise at the perturbative level, thus motivating a modification of the original model. In order to agree with the latest Planck observations, we modify the model such that the new dynamics can produce a relation between the spectral index ns and the tensor-to-scalar ratio r allowed by the data. By including an identical mass term for each of the fields of the system, we find interesting dynamics leading to slow-roll inflation of the right length. The presence of the mass term has the potential to modify the ns versus r relation so as to agree with the data. As a first step, we study the model at zeroth-order in cosmological perturbation theory, finding the conditions required for slow-roll inflation and the number of e-foldings of inflation. Numerical solutions are used to explore the impact of the mass term. We conclude that the massive version of gauge-flation offers a viable inflationary model.

  11. Hot Conformal Gauge Theories

    CERN Document Server

    Mojaza, Matin; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary o...

  12. Alternate Gauge Electroweak Model

    CERN Document Server

    Dalton, Bill

    2010-01-01

    We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...

  13. Operator Gauge Symmetry in QED

    Directory of Open Access Journals (Sweden)

    Siamak Khademi

    2006-01-01

    Full Text Available In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.

  14. BPS Boojums in N=2 supersymmetric gauge theories

    CERN Document Server

    Arai, Masato; Eto, Minoru

    2016-01-01

    We study 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) composite solitons of vortex strings, domain walls and boojums in N=2 supersymmetric Abelian gauge theories in four dimensions. We obtain solutions to the 1/4 BPS equations with the finite gauge coupling constant. To obtain numerical solutions for generic coupling constants, we construct globally correct approximate functions which allow us to easily find fixed points of a gradient flow equations. We analytically/numerically confirm that the negative mass of a single boojum appearing at the end point of the vortex string on the logarithmically bent domain wall is equal to the half-mass of the 't Hooft-Polyakov monopole. We examine various configurations and clarify how the shape of the boojum depends on the coupling constants and moduli parameters. We find a semi-local boojum with a size moduli which appears when the semi-local string ends on the domain wall. We introduce a magnetic scalar potential which offers an intuitive understanding that the end point of...

  15. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  16. Analytic Matrix Method for the Study of Propagation Characteristics of a Bent Planar Waveguide

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; CAO Zhuang-Qi; SHEN Qi-Shun; DOU Xiao-Ming; CHEN Ying-Li

    2000-01-01

    An analytic matrix method is used to analyze and accurately calculate the propagation constant and bendinglosses of a bent planar waveguide. This method gives not only a dispersion equation with explicit physical insight,but also accurate complex propagation constants.

  17. Gauged Lepton Flavour

    CERN Document Server

    Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.

  18. Neutrino assisted gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Do; Mo, Doh Young; Seo, Min-Seok [Seoul National University, Department of Physics and Astronomy and Center for Theoretical Physics, Seoul (Korea, Republic of)

    2013-06-15

    Recent observation shows that the Higgs mass is at around 125 GeV while the prediction of the minimal supersymmetric standard model is below 120 GeV for stop mass lighter than 2 TeV unless the top squark has a maximal mixing. We consider the right-handed neutrino supermultiplets as messengers in addition to the usual gauge mediation to obtain sizeable trilinear soft parameters A{sub t} needed for the maximal stop mixing. Neutrino messengers can explain the observed Higgs mass for stop mass around 1 TeV. Neutrino assistance can also generate charged lepton flavor violation including {mu}{yields}e {gamma} as a possible signature of the neutrino messengers. We consider the S{sub 4} discrete flavor model and show the relation of the charged lepton flavor violation, {theta} {sub 13} of neutrino oscillation and the muon's g-2. (orig.)

  19. Quantum principal bundles and corresponding gauge theories

    CERN Document Server

    Durdevic, M

    1995-01-01

    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.

  20. On Gauge Invariant Descriptions of Gluon Polarization

    CERN Document Server

    Guo, Zhi-Qiang

    2012-01-01

    We propose methods to construct gauge invariant decompositions of nucleon spin, especially gauge invariant descriptions of gluon polarization. We show that gauge invariant decompositions of nucleon spin can be derived naturally from the conserved current of a generalized Lorentzian transformation by Noether theorem. We also examine the problem of gauge dependence with a gauge invariant extension of the Chern-Simons current.

  1. On the energy dependence of proton beam extraction with a bent crystal

    CERN Document Server

    Arduini, Gianluigi; Fidecaro, Giuseppe; Gyr, Marcel; Herr, Werner; Klem, J T; Mikkelsen, U; Weisse, E

    1998-01-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators.

  2. Algebraic aspects of gauge theories

    Science.gov (United States)

    Zharinov, V. V.

    2014-08-01

    Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.

  3. Gauging away a big bang

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  4. Introduction to Supersymmetric Gauge Theories

    CERN Document Server

    Piguet, O

    1997-01-01

    In these lectures I present a basic introduction to supersymmetry, especially to N=1 supersymmetric gauge theories and their renormalization, in the Wess-Zumino gauge. I also discuss the various ways supersymmetry may be broken in order to account for the lack of exact supersymmetry in the actual world of elementary particles.

  5. Gauged N = 4 matter couplings

    NARCIS (Netherlands)

    Roo, M. de

    1985-01-01

    The N = 4 Yang-Mills multiplet is coupled to N = 4 conformal supergravity. The action has a local U(4)×G symmetry, where G is the Yang-Mills gauge group. The action and supersymmetry transformation rules are presented in the Poincaré gauge, and properties of the scalar potential are discussed.

  6. A new class of hyper-bent Boolean functions in binomial forms

    CERN Document Server

    Wang, Baocheng; Qi, Yanfeng; Yang, Yixian; Xu, Maozhi

    2011-01-01

    Bent functions, which are maximally nonlinear Boolean functions with even numbers of variables and whose Hamming distance to the set of all affine functions equals $2^{n-1}\\pm 2^{\\frac{n}{2}-1}$, were introduced by Rothaus in 1976 when he considered problems in combinatorics. Bent functions have been extensively studied due to their applications in cryptography, such as S-box, block cipher and stream cipher. Further, they have been applied to coding theory, spread spectrum and combinatorial design. Hyper-bent functions, as a special class of bent functions, were introduced by Youssef and Gong in 2001, which have stronger properties and rarer elements. Many research focus on the construction of bent and hyper-bent functions. In this paper, we consider functions defined over $\\mathbb{F}_{2^n}$ by $f_{a,b}:=\\mathrm{Tr}_{1}^{n}(ax^{(2^m-1)})+\\mathrm{Tr}_{1}^{4}(bx^{\\frac{2^n-1}{5}})$, where $n=2m$, $m\\equiv 2\\pmod 4$, $a\\in \\mathbb{F}_{2^m}$ and $b\\in\\mathbb{F}_{16}$. When $a\\in \\mathbb{F}_{2^m}$ and $(b+1)(b^4+b...

  7. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  8. Gauging the Poisson sigma model

    CERN Document Server

    Zucchini, Roberto

    2008-01-01

    We show how to carry out the gauging of the Poisson sigma model in an AKSZ inspired formulation by coupling it to the a generalization of the Weil model worked out in ref. arXiv:0706.1289 [hep-th]. We call the resulting gauged field theory, Poisson--Weil sigma model. We study the BV cohomology of the model and show its relation to Hamiltonian basic and equivariant Poisson cohomology. As an application, we carry out the gauge fixing of the pure Weil model and of the Poisson--Weil model. In the first case, we obtain the 2--dimensional version of Donaldson--Witten topological gauge theory, describing the moduli space of flat connections on a closed surface. In the second case, we recover the gauged A topological sigma model worked out by Baptista describing the moduli space of solutions of the so--called vortex equations.

  9. Electroweak Vortices and Gauge Equivalence

    Science.gov (United States)

    MacDowell, Samuel W.; Törnkvist, Ola

    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.

  10. Gauge invariance and holographic renormalization

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2015-10-01

    Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.

  11. Chest tube insertion

    Science.gov (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  12. Jejunostomy feeding tube

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000181.htm Jejunostomy feeding tube To use the sharing features on this ... vomiting Your child's stomach is bloated Alternate Names Feeding - jejunostomy tube; G-J tube; J-tube; Jejunum ...

  13. Strings, Loops, Knots and Gauge Fields

    CERN Document Server

    Baez, J C

    1993-01-01

    The loop representation of quantum gravity has many formal resemblances to a background-free string theory. In fact, its origins lie in attempts to treat the string theory of hadrons as an approximation to QCD, in which the strings represent flux tubes of the gauge field. A heuristic path-integral approach indicates a duality between background-free string theories and generally covariant gauge theories, with the loop transform relating the two. We review progress towards making this duality rigorous in three examples: 2d Yang-Mills theory (which, while not generally covariant, has symmetry under all area-preserving transformations), 3d quantum gravity, and 4d quantum gravity. $SU(N)$ Yang-Mills theory in 2 dimensions has been given a string-theoretic interpretation in the large-$N$ limit by Gross, Taylor, Minahan and Polychronakos, but here we provide an exact string-theoretic interpretation of the theory on $\\R\\times S^1$ for finite $N$. The string-theoretic interpretation of quantum gravity in 3 dimensions...

  14. Gauge fields and inflation

    Science.gov (United States)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  15. Gauge Fixing on the Lattice without Ambiguity

    CERN Document Server

    Vink, Jeroen C; 10.1016/0370-2693(92)91372-G

    2009-01-01

    A new gauge fixing condition is discussed, which is (lattice) rotation invariant, has the `smoothness' properties of the Landau gauge but can be efficiently computed and is unambiguous for almost all lattice gauge field configurations.

  16. Gauge Invariants and Correlators in Flavoured Quiver Gauge Theories

    CERN Document Server

    Mattioli, Paolo

    2016-01-01

    In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.

  17. Constructing Hybrid Baryons with Flux Tubes

    CERN Document Server

    Capstick, Simon; Capstick, Simon; Page, Philip R.

    1999-01-01

    Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.

  18. Clinical and radiographic delineation of Bent Bone Dysplasia-FGFR2 type or Bent Bone Dysplasia with Distinctive Clavicles and Angel-shaped Phalanges.

    Science.gov (United States)

    Krakow, Deborah; Cohn, Daniel H; Wilcox, William R; Noh, Grace J; Raffel, Leslie J; Sarukhanov, Anna; Ivanova, Margarita H; Danielpour, Moise; Grange, Dorothy K; Elliott, Alison M; Bernstein, Jonathan A; Rimoin, David L; Merrill, Amy E; Lachman, Ralph S

    2016-10-01

    Bent Bone Dysplasia-FGFR2 type is a relatively recently described bent bone phenotype with diagnostic clinical, radiographic, and molecular characteristics. Here we report on 11 individuals, including the original four patients plus seven new individuals with three longer-term survivors. The prenatal phenotype included stillbirth, bending of the femora, and a high incidence of polyhydramnios, prematurity, and perinatal death in three of 11 patients in the series. The survivors presented with characteristic radiographic findings that were observed among those with lethality, including bent bones, distinctive (moustache-shaped) small clavicles, angel-shaped metacarpals and phalanges, poor mineralization of the calvarium, and craniosynostosis. Craniofacial abnormalities, hirsutism, hepatic abnormalities, and genitourinary abnormalities were noted as well. Longer-term survivors all needed ventilator support. Heterozygosity for mutations in the gene that encodes Fibroblast Growth Factor Receptor 2 (FGFR2) was identified in the nine individuals with available DNA. Description of these patients expands the prenatal and postnatal findings of Bent Bone Dysplasia-FGFR2 type and adds to the phenotypic spectrum among all FGFR2 disorders. © 2016 Wiley Periodicals, Inc.

  19. Toward semistrict higher gauge theory

    CERN Document Server

    Zucchini, Roberto

    2011-01-01

    We work out a formulation of higher gauge theory, whose symmetry is encoded in a semistrict Lie 2-algebra v and which we call semistrict. We view v as a 2-term L-infinity algebra, a special case of strong homotopy Lie algebra generalizing an ordinary Lie algebra by allowing the Lie bracket to have a non trivial Jacobiator. Fields are v-valued and gauge transformations are special Aut(v)-valued maps organized as an ordinary group and acting on them. The global behaviour of fields is controlled by appropriate gauge transformation 1-cocycles. Using the BV quantization method in the AKSZ geometrical version, we write down a 3-dimensional semistrict higher BF gauge theory generalizing ordinary BF theory, carry out its gauge fixing and obtain as end result a semistrict higher topological gauge field theory of the Witten type. We also introduce a related 4-dimensional semistrict higher Chern--Simons gauge theory. We discuss merits and weaknesses of our formulation in relations to other approaches.

  20. Massive Gauge-flation

    CERN Document Server

    Nieto, Carlos M

    2016-01-01

    The appealing properties of the Gauge-flation model at zeroth order in cosmological perturbation theory constitute a step ahead at cementing inflation on solid particle physics foundations; this, in turn, allows us to have an interesting connection between inflation and the physics of the subsequent evolution of the Universe. However, there are issues at the perturbative level which suggest a modification to the original model. As we want to be in agreement with the latest observations of Planck, we modify the model such that the new dynamics could produce a relation between the spectral index $n_{s}$ and the tensor-to-scalar ratio $r$ in agreement with the allowed parameter window. By including an identical mass term for each of the fields composing the system, we find an interesting dynamics among all the terms in the Lagrangian such that a successful inflationary period is still reproduced. It would indeed be the mass term the responsible for the expected successful modification of the $n_{s}$ vs. $r$ rela...

  1. En-gauging naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-10-15

    The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.

  2. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  3. THERMOCOUPLE VACUUM GAUGE

    Science.gov (United States)

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  4. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  5. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  6. Two-dimensional refractive index and birefringence profiles of a graded index bent optical fibre

    Science.gov (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.

    2017-07-01

    A theory to recover refractive index profile of the bent graded index (GRIN) optical fibre, in core region, is proposed. This theory is applied to the bent GRIN optical fibre when it is located orthogonal in the light path of the object arm in digital holographic phase shifting interferometer; like Mach-Zehnder interferometer. In the experiment, the fibre is bent with two different bending radii and fixed on a microscope slide keeping it immersed in matching liquid. The produced phase shifted holograms, with the presence of the fibre, are recorded using an attached CCD camera. Two different processes controlling the index profile shape of the bent GRIN optical fibre are assumed. In the first process, a linear index variation is evolved from stresses in the direction of the bent radius. In the second one, there is a release of these stresses near the fibre surface, which depends on the fibre's radius. This will affect the outer free surface of the cladding. Based on these assumptions, we are able to construct the index profile in two dimensions normal to the optical axis. We propose two functions to describe the refractive index profiles in cladding and the core regions of the bent GRIN optical fibre. The recorded phase shifted holograms are combined, reconstructed and analyzed to get the phase map of the bent GRIN optical fibre. Comparing the extracted optical phase differences with the calculated ones, a good agreement between them is found. This means that the used two dimensional proposed functions, which are describing cladding and the core indices profiles, are the most proper in this situation. Thus, we are able to determine a realistic induced birefringence profile inside the fibre which is generated by a bending operation, not only in the cladding but also in graded index core region as well.

  7. Functional integration and gauge ambiguities in generalized abelian gauge theories

    CERN Document Server

    Kelnhofer, Gerald

    2007-01-01

    We consider the covariant quantization of generalized abelian gauge theories on a closed and compact n-dimensional manifold whose space of gauge invariant fields is the abelian group of Cheeger-Simons differential characters. The space of gauge fields is shown to be a non-trivial bundle over the orbits of the subgroup of smooth Cheeger-Simons differential characters. Furthermore each orbit itself has the structure of a bundle over a multi-dimensional torus. As a consequence there is a topological obstruction to the existence of a global gauge fixing condition. A functional integral measure is proposed on the space of gauge fields which takes this problem into account and provides a regularization of the gauge degrees of freedom. For the generalized p-form Maxwell theory closed expressions for all physical observables are obtained. The Greens functions are shown to be affected by the non-trivial bundle structure. Finally the vacuum expectation values of circle-valued homomorphisms, including the Wilson operato...

  8. Beyond the standard gauging: gauge symmetries of Dirac sigma models

    Science.gov (United States)

    Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas

    2016-08-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.

  9. Beyond the standard gauging: gauge symmetries of Dirac Sigma Models

    CERN Document Server

    Chatzistavrakidis, Athanasios; Jonke, Larisa; Strobl, Thomas

    2016-01-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic sigma-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field th...

  10. Some observations on interpolating gauges and non-covariant gauges

    Indian Academy of Sciences (India)

    Satish D Joglekar

    2003-11-01

    We discuss the viability of using interpolating gauges to define the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter varies, depends very sensitively on the parameter variation. We do this with a gauge used by Doust. We also consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. We point out the necessity of inclusion of an -term (even) in the formal treatments, without which one may reach incorrect conclusions. We, further, point out that the -term can contribute to the BRST WT-identities in a non-trivial way (even as → 0). We point out that these contributions lead to additional constraints on Green’s function that are not normally taken into account in the BRST formalism that ignores the -term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable.

  11. A Propellant Mass Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...

  12. Gauge Mediation in String Theory

    OpenAIRE

    Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka

    2007-01-01

    We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.

  13. The Topology of Canonical Flux Tubes in Flared Jet Geometry

    Science.gov (United States)

    Sander Lavine, Eric; You, Setthivoine

    2017-01-01

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  14. Optical Rain Gauge Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).

  15. Current forms and gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M Castrillon [Departemento de GeometrIa y TopologIa, Facultad de Matematicas, Universidad Complutense de Madrid, 28040-Madrid (Spain); Masque, J Munoz [Instituto de FIsica Aplicada, CSIC, C/Serrano 144, 28006-Madrid (Spain)

    2004-05-14

    Let C be the bundle of connections of a principal G-bundle {pi}:P {yields} M, and let V be the vector bundle associated with P by a linear representation G {yields} GL(V) on a finite-dimensional vector space V. The Lagrangians on J{sup 1}(C x {sub M}V) whose current form is gauge invariant, are described and the gauge-invariant Lagrangians on J{sup 1}(V) are classified.

  16. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  17. A tube-in-tube thermophotovoltaic generator

    Energy Technology Data Exchange (ETDEWEB)

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  18. 49 CFR 230.43 - Gauge siphon.

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  19. 33 CFR 117.47 - Clearance gauges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Clearance gauges. 117.47 Section... OPERATION REGULATIONS General Requirements § 117.47 Clearance gauges. (a) Clearance gauges are required for... specify otherwise for particular drawbridges, clearance gauges shall be designed, installed,...

  20. On the gauging of chiral bosons

    CERN Document Server

    Wotzasek, C

    1995-01-01

    We study the coupling of chiral bosons to external electromagnetic fields. It is observed that a naive gauging procedure leaves the gauge invariant chirality condition incompatible with the field equations. We propose the use of this feature as a consistency test to select the appropriate way to perform the gauge coupling. We verify that among all the possible gauging schemes, only the coupling of gauge fields with chiral currents passes the consistency test. As an application, we use this gauging scheme to show how the introduction of a gauge field becomes necessary in order to sold together a right and a left chiral boson.

  1. Severity of the Bend and Its Effect on the Subsequent Hydroforming Process for Aluminum Alloy Tube

    Science.gov (United States)

    Gholipour, J.; Worswick, M. J.; Oliveira, D. A.; Khodayari, G.

    2004-06-01

    The interaction between pre-bending and subsequent hydroforming of AlMg3.5Mn aluminum tubes is examined in this paper. Pre-bending induces large strains and strain gradients in the tube, which reduce the available formability for the subsequent hydroforming process. Corner fill hydroforming operations were performed on straight tubes (R/D=∞) and pre-bent tubes with R/D=2.5, representing a transition from low severity to moderate severity bending conditions. An Eagle EPT-75 instrumented mandrel-rotary draw tube bender was used for the pre-bending stage, which records all process parameters. The experiments were modeled using an explicit dynamic finite element code, LS-DYNA. An in-house Gurson-Tvergaard-Needleman (GTN) constitutive softening model, incorporated within LS-DYNA, has been considered to predict damage and formability. Based on these results, the formability of a tube bent at an R/D=2.0 is predicted as a higher severity bend condition.

  2. Exact results in gauge-string dualities (Stockholm, Sweden, 23 January-17 February 2012)

    Science.gov (United States)

    Zarembo, Konstantin

    2012-08-01

    Exactly solvable models play a distinguished role in physics, as they help us understand the behavior of strongly correlated, strongly coupled systems in the regimes where other methods fail. For a long time, the exact solvability was associated with (1+1)-dimensional systems, where powerful methods of integrability allow one to find the exact spectrum, to study thermodynamics and to compute correlation functions for a number of strongly interacting field theories. The AdS/CFT duality established a rigorous relationship between gauge fields and strings, and paved the way for applying the methods of integrability in four-dimensional gauge theories. The two-dimensional dynamics on the string worldsheet (dual to the fluctuating electric flux tube in a gauge theory) is in many cases integrable, which opens the avenue for applications of non-perturbative, integrability-based methods to four-dimensional gauge theories. The progress in understanding non-perturbative phenomena in gauge theories has been rapid in recent years, and required synergy of methods from exactly solvable models, gauge theories, strings and integrable systems. The program 'Exact Results in Gauge-String Dualities' took place at Nordita, Stockholm from 23 January to 17 February 2012 and brought together specialists with common interests in string theory, quantum field theory and exactly solvable models. Topics discussed during the program included: (i) exact results in the AdS/CFT correspondence, (ii) scattering amplitudes, (iii) supersymmetric gauge theories, and (iv) Bethe ansatz and exact solvability in quantum field theory and statistical systems. The articles by D Sorokin [1] and M de Leeuw et al [2] give an overview of the string-theory origins of integrability in gauge theories, and of the algebraic structures omnipresent in quantum integrable systems. The topics covered in these articles underpin the integrability approach to gauge--string dualities and lie at the heart of the integrability

  3. The elusive thermotropic biaxial nematic phase in rigid bent-core molecules

    Indian Academy of Sciences (India)

    Bharat R Acharya; Andrew Primak; Theo J Dingemans; Edward T Samulski; Satyendra Kumar

    2003-08-01

    The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture studies of the phases exhibited by rigid bent-core molecules derived from 2,5-bis-(-hydroxyphenyl)-1,3,4-oxadiazole reveal that the biaxial nematic phase is formed by three compounds of this type. X-ray diffraction studies reveal that the nematic phase of these compounds has the achiral symmetry D2h, in which the overall long axes of the molecules are oriented parallel to each other to define the major axis of the biaxial phase. The apex of the bent-cores defines the minor axis of this phase along which the planes containing the bent-cores of neighboring molecules are oriented parallel to each other.

  4. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    Science.gov (United States)

    Loisel, G. P.; Wu, M.; Stolte, W.; Kruschwitz, C.; Lake, P.; Dunham, G. S.; Bailey, J. E.; Rochau, G. A.

    2016-11-01

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (xop) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.

  5. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  6. Channeling of high-energy particles in bent crystals - Experiments at the CERN SPS

    Science.gov (United States)

    Baurichter, A.; Biino, C.; Clément, M.; Doble, N.; Elsener, K.; Fidecaro, G.; Freund, A.; Gatignon, L.; Grafström, P.; Gyr, M.; Hage-Ali, M.; Herr, W.; Keppler, P.; Kirsebom, K.; Klem, J.; Major, J.; Medenwaldt, R.; Mikkelsen, U.; Møller, S. P.; Siffert, P.; Uggerhøj, E.; Vilakazi, Z. Z.; Weisse, E.

    2000-04-01

    During the latest decade, experiments have been performed at the CERN SPS to investigate the use of high-energy channeled nuclei in bent crystals for extraction, beam splitting and beam bending. An understanding of channeling in a bent crystal with extraction and deflection efficiencies for different energies, crystal types and ions has been developed. Furthermore, the long-standing question of radiation damage has been addressed with encouraging outcome. This makes extrapolations possible for the construction of, e.g., an extraction device for the LHC at CERN, RHIC at Brookhaven or new splitting elements in high-energy beams.We present the main results obtained and discuss existing and future applications of bent crystals in high-energy physics.

  7. Invariance, symmetry and periodicity in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Jackiw, R

    1980-02-01

    The interplay between gauge transformations and coordinate transformations is discussed; the theory will aid in understanding the mixing of space-time and internal degrees of freedom. The subject is presented under the following headings: coordinate transformation laws for arbitrary fields, coordinate transformation laws for gauge fields, properties of symmetric gauge fields, construction of symmetric gauge fields, physical significance of gauge transformations, and magnetic monopole topology without Higgs fields. The paper ends with conclusions and suggestions for further research. (RWR)

  8. Gauged twistor spinors and symmetry operators

    CERN Document Server

    Ertem, Ümit

    2016-01-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satify the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  9. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    Science.gov (United States)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  10. From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core molecules

    Indian Academy of Sciences (India)

    Carsten Tschierske; Gert Dantlgraber

    2003-08-01

    This contribution gives an overview of ferroelectric switching liquid crystalline phases formed by bent-core molecules. First a description of some general principles behind the mesophase formation within bent-core systems will be given, followed by a short review of the mesophase structures formed by such molecules. Then, different classes of ferroelectric switching bent-core mesogens will be described. This type of switching behaviour has been reported for several subtypes of polar smectic phases (B2, B5, B7 and SmCG) and recently for columnar mesophases. In this discussion particular attention will be made to polyphilic bent-core molecules, composed of three incompatible units, a bent aromatic core, alkyl chains and an oligosiloxane unit. The importance of the decoupling of the layers into microsegregated sublayers for the ferroelectric organisation is discussed. Many of the ferroelectric switching mesophases show dark textures with distinct regions of opposite chirality in their ground states. It is discussed that this might be due to a helical superstructure formed as a result of an escape from macroscopic polar order. Hence, the materials themselves are not ferroelectric in the ground state, but upon alignment within an electric field in the measuring cells the ferroelectric states are stabilised by surface interactions, leading to a ferroelectric switching system. The designing principle was extended to mesogenic dimers with bent-core structural units. For these compounds, depending on the number of dimethylsiloxane units in the spacer either ferroelectric or antiferroelectric switching was observed, whereby the effect of parity is reversed to that observed for conventional calamitic dimesogens. Finally, a carbosilane-based first generation dendrimer is reported. It shows a ferroelectric switching phase, for which a non-correlated organisation of tilted polar smectic layers is proposed (SmCPR).

  11. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  12. Microbiota bacteriana asociada a los cultivos de dos especies de diatomeas bentónicas.

    OpenAIRE

    Hernández-Zulueta, Joicye; Leal, Sylvia; Loza, Sandra

    2014-01-01

    Las diatomeas bentónicas forman biopelículas debido a las sustancias que secretan, que les permite mantenerse adheridas al sustrato. A ellas se asocian bacterias que, dada las condiciones no axénicas de los cultivos, pueden alterar su valor nutricional. El objetivo del presente trabajo fue caracterizar la microbiota bacteriana asociada a los cultivos de las microalgas bentónicas Navicula germanopolonica y Amphora sp., especies utilizadas para la precría del camarón en cultivo. Se aislaron e i...

  13. Parallel code NSBC: Simulations of relativistic nuclei scattering by a bent crystal

    Science.gov (United States)

    Babaev, A. A.

    2014-01-01

    The presented program was designed to simulate the passage of relativistic nuclei through a bent crystal. Namely, the input data is related to a nuclei beam. The nuclei move into the crystal under planar channeling and quasichanneling conditions. The program realizes the numerical algorithm to evaluate the trajectory of nucleus in the bent crystal. The program output is formed by the projectile motion data including the angular distribution of nuclei behind the crystal. The program could be useful to simulate the particle tracking at the accelerator facilities used the crystal collimation systems. The code has been written on C++ and designed for the multiprocessor systems (clusters).

  14. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  15. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Science.gov (United States)

    Scandale, W.; Kovalenko, A. D.; Taratin, A. M.

    2017-03-01

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  16. Energy funneling in a bent chain of Morse oscillators with long-range coupling

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Christiansen, Peter Leth; Bang, Ole;

    2004-01-01

    A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions.......A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions....

  17. High efficiency multi-pass proton beam extraction with a bent crystal at the SPS

    Science.gov (United States)

    Altuna, X.; Bussa, M. P.; Carboni, G.; Dehning, B.; Elsener, K.; Ferrari, A.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Klem, J.; Laffin, M.; Lanceri, L.; Mikkelsen, U.; Møller, S. P.; Scandale, W.; Tosello, F.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1995-02-01

    Recent measurements of 120 GeV proton extraction by means of a bent silicon crystal at the CERN-SPS accelerator are summarized. The existence of multi-pass extraction has been proven by blocking first-pass extraction: using a crystal covered with an amorphous layer, extracted beam with high efficiency was observed, which provides a direct proof for the importance of the multi-pass mechanism. This opens new possibilities in the design and optimization of a bent crystal extraction scheme.

  18. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    Science.gov (United States)

    Jensen, B. N.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Jeanneret, J. B.; Hage-Ali, M.; Siffert, P.

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 μrad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals.

  19. On the energy dependence of proton beam extraction with a bent crystal

    Science.gov (United States)

    Arduini, G.; Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.

    1998-03-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators. © 1998

  20. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.N.; Moeller, S.P.; Uggerhoej, E.; Worm, T. (Inst. for Synchrotron Radiation, Aarhus Univ. (Denmark)); Atherton, H.W.; Clement, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafstroem, P.; Jeanneret, J.B. (European Organization for Nuclear Research (CERN), Geneva (Switzerland)); Hage-Ali, M.; Siffert, P. (Centre de Recherches Nucleaires, 67 - Strasbourg (France))

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 [mu]rad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) and are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals. (orig.).

  1. Comparing Dualities and Gauge Symmetries

    CERN Document Server

    De Haro, Sebastian; Butterfield, Jeremy N

    2016-01-01

    We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4, 5 and 6) is much more specific. We give a result about gauge/gravity duality that shows its rela...

  2. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  3. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  4. Introduzione alle teorie di gauge

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2016-01-01

    "Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...

  5. Interacting Gauge-Fluid system

    CERN Document Server

    Banerjee, Rabin; Mitra, Arpan Krishna

    2016-01-01

    A gauge-fluid relativistic model where a non-isentropic fluid is coupled to a dynamical Maxwell ($U(1)$) gauge field, has been studied. We have examined in detail the structures of energy momentum tensor, derived from two definitions, {\\it{ie.}} the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the spacetime transformations obtained from these two definitions agree, modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  6. Gravity: a gauge theory perspective

    CERN Document Server

    Nester, James M

    2016-01-01

    The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether's two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincar\\'e group. The dynamical potentials of the Poincar\\'e gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed,...

  7. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  8. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  9. Universal digital strain gauge measurement system of aeroelastic deformation development

    Directory of Open Access Journals (Sweden)

    Pavlov Anton

    2016-01-01

    Full Text Available This article presents description of the universal digital strain gauge system developed to measure the static and dynamic aeroelastic deformations of elasticity-scale models during the tests in aerodynamic tube and during in-flight tests of an experimental air vehicles. The main requirements for such devices are small size and possibility of operation in a wide temperature range. The article considers the dependence of zero offset from temperature. Functional diagram block and logic diagram of the build system are shown.

  10. Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    Science.gov (United States)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes.

  11. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  12. An introduction to gauge theories

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2017-01-01

    Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.

  13. Gauge theory and variational principles

    CERN Document Server

    Bleecker, David

    2005-01-01

    This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field

  14. Gauge Theories, Tessellations & Riemann Surfaces

    CERN Document Server

    He, Yang-Hui

    2014-01-01

    We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.

  15. Dynamics of gauge field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  16. Gauge theories, tessellations & Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom); Loon, Mark van [Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom)

    2014-06-10

    We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.

  17. Correction of Gauge Factor for Strain Gauges Used in Polymer Composite Testing

    DEFF Research Database (Denmark)

    Zike, Sanita; Mikkelsen, Lars Pilgaard

    2014-01-01

    error is found on the strain measurements obtained by the strain gauges. This is documented both experimentally and numerically. A stiffness, also test sample and strain gauge geometry dependent correction coefficient of the gauge factor is proposed. A correction coefficient covers material stiffnesses......Strain gauges are used together with the corresponding gauge factor to relate the relative electrical resistance change of the strain gauge with the strain of the underlying material. The gauge factor is found from a calibration on a stiff material - steel. Nevertheless, the gauge factor depends...

  18. Geometric Formulation of Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WUNing; ZHANGDa-Hua; RUANTu-Nan

    2003-01-01

    DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.

  19. Quantum gauge freedom in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)

    2017-02-15

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  20. Quantum Gauge Freedom in Very Special Relativity

    CERN Document Server

    Upadhyay, Sudhaker

    2016-01-01

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  1. Quantum gauge freedom in very special relativity

    Science.gov (United States)

    Upadhyay, Sudhaker; Panigrahi, Prasanta K.

    2017-02-01

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  2. Quantum gauge freedom in very special relativity

    Directory of Open Access Journals (Sweden)

    Sudhaker Upadhyay

    2017-02-01

    Full Text Available We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell as well as for Abelian two-form gauge theory in the very special relativity (VSR framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  3. The theory of the centrifugal mechanism of feeding-in in bent crystals

    OpenAIRE

    2001-01-01

    For a particle channeled in the bent crystal planes (axes), the phenomenon of "bending dechanneling", which is a particle transition to a random state due to centrifugal force, is well known. We consider an analytical theory of the reverse phenomenon, i.e., feeding from a random state to a channeled state due to centrifugal force in a crystal with variable curvature.

  4. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    DEFF Research Database (Denmark)

    Wistisen, T. N.; Uggerhoj, U. I.; Wienands, U.;

    2016-01-01

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at...

  5. Note on the glide of a bird with wings bent downwards

    NARCIS (Netherlands)

    Sparenberg, J. A.

    2006-01-01

    This note considers the influence of the bending down of the wings of a bird on the performance of its glide. The induced drag of bent wings is compared with the induced drag of a corresponding straight wing. Numerical results are given.

  6. Laterally substituted symmetric and nonsymmetric salicylideneimine-based bent-core mesogens

    Directory of Open Access Journals (Sweden)

    Sonja Findeisen-Tandel

    2012-01-01

    Full Text Available Bent-core mesogens have gained considerable importance due to their ability to form new mesophases with unusual properties. Relationships between the chemical structure of bent-core molecules and the type and physical properties of the formed mesophases are relatively unknown in detail and differ strongly from those known for calamitic liquid crystals. In this paper symmetric and nonsymmetric five-ring salicylideneaniline-based bent-core mesogens are presented, and the effect of lateral substituents attached at the outer phenyl rings (F, Cl, Br or the central phenyl ring (CH3 on the liquid-crystalline behaviour and on the physical properties is studied. Corresponding benzylideneaniline-based compounds were additionally prepared in order to study the influence of the intramolecular hydrogen bond. The occurring mesophases were investigated by differential scanning calorimetry, polarising microscopy, X-ray diffraction and dielectric and electro-optical measurements. The paper reports on new findings with respect to the structure–property relationships of bent-core mesogens. On one hand, the disruptive effect of laterally substituted halogen atoms, F, Cl and Br, on the mesophase behaviour of three isomeric series was much lower than expected. On the other hand, an increase of the clearing temperature by 34 K was observed, caused by small lateral substituents. The electro-optical behaviour, especially the type of polar switching and corresponding molecular movements, is sensitive to variations in the molecular structure.

  7. What did we learn from the extraction experiments with bent crystals at the CERN SPS?

    CERN Document Server

    Elsener, K; Gyr, Marcel; Herr, Werner; Klem, J T; Mikkelsen, U; Weisse, E

    1998-01-01

    The feasibility and properties of particle extraction from an accelerator by means of a bent crystal were studied extensively at the CERN SPS. The main results of the experiments are presented. This includes the evidence for multipass extraction of heavy ions. These results are compared with theoretical expectations and computer simulations.

  8. Note on the glide of a bird with wings bent downwards

    NARCIS (Netherlands)

    Sparenberg, J. A.

    This note considers the influence of the bending down of the wings of a bird on the performance of its glide. The induced drag of bent wings is compared with the induced drag of a corresponding straight wing. Numerical results are given.

  9. Observation of Proton Reflection on Bent Silicon Crystals at the CERN SPS

    CERN Document Server

    Scandale, Walter

    2007-01-01

    We report the observation of the so-called volume reflection effect with 400 GeV/c protons interacting with bent silicon crystals in the H8 beam line performed by the H8RDD22 Collaboration at the CERN SPS. The volume reflection is an effect of the same nature of the particle channeling among the crystalline planes of a bent crystal. The reflection occurs at the tangency point of a particle trajectory with the bent crystalline planes where the transverse component of the particle momentum is reversed. The measurements were realized with a high spatial resolution detector mainly based on silicon microstrips showing the effect on particle trajectories of bent silicon crystals in several configurations. The proton beam was deviated in a direction opposite to that of channeling by 12-14 mrad, which is 1.3 times the critical angle, with an efficiency greater than 97% in a range of the proton-to-crystal incident angle as wide as the bending angle of crystallographic planes. This evidence opens new perspectives for m...

  10. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    Science.gov (United States)

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

  11. Entwinement in discretely gauged theories

    Science.gov (United States)

    Balasubramanian, V.; Bernamonti, A.; Craps, B.; De Jonckheere, T.; Galli, F.

    2016-12-01

    We develop the notion of "entwinement" to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an S N gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS3 at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the system which are gravitationally described as conical defects and the M = 0 BTZ black hole. The possible types of entwinement that can be computed define a very large new class of quantities characterizing the fine structure of quantum wavefunctions.

  12. Entwinement in discretely gauged theories

    CERN Document Server

    Balasubramanian, V; Craps, B; De Jonckheere, T; Galli, F

    2016-01-01

    We develop the notion of entwinement to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an $S_N$ gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS$_3$ at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the...

  13. Low energy gauge unification theory

    CERN Document Server

    Li Tian Jun

    2002-01-01

    Because of the problems arising from the fermion unification in the traditional Grand Unified Theory and the mass hierarchy between the 4-dimensional Planck scale and weak scale, we suggest the low energy gauge unification theory with low high-dimensional Planck scale. We discuss the non-supersymmetric SU(5) model on M sup 4 xS sup 1 /Z sub 2 xS sup 1 /Z sub 2 and the supersymmetric SU(5) model on M sup 4 xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 '). The SU(5) gauge symmetry is broken by the orbifold projection for the zero modes, and the gauge unification is accelerated due to the SU(5) asymmetric light KK states. In our models, we forbid the proton decay, still keep the charge quantization, and automatically solve the fermion mass problem. We also comment on the anomaly cancellation and other possible scenarios for low energy gauge unification.

  14. Landau Gauge Fixing on GPUs

    CERN Document Server

    Cardoso, Nuno; Bicudo, Pedro; Oliveira, Orlando

    2012-01-01

    In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using $32^4$ lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.

  15. Gauged Fermionic Q-balls

    CERN Document Server

    Levi, T; Levi, Thomas s.; Gleiser, Marcelo

    2002-01-01

    We present a new model for a non-topological soliton (NTS) that contains fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.

  16. Gauge-fixing parameter dependence of two-point gauge variant correlation functions

    CERN Document Server

    Zhai, C

    1996-01-01

    The gauge-fixing parameter \\xi dependence of two-point gauge variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge variant two-point correlation functions (e.g. fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose ...

  17. Outcomes of torsional microcoaxial phacoemulsification performed by 12-degree and 22-degree bent tips.

    Science.gov (United States)

    Helvacioglu, Firat; Yeter, Celal; Tunc, Zeki; Sencan, Sadik

    2013-08-01

    To compare the safety and efficacy of Ozil Intelligent Phaco torsional microcoaxial phacoemulsification surgeries performed with 12-degree and 22-degree bent tips using the Infiniti Vision System. Maltepe University School of Medicine Department of Ophthalmology, Istanbul, Turkey. Comparative case series. Eyes were assigned to 2.2 mm microcoaxial phacoemulsification using the torsional mode with a 22-degree bent tip (Group 1) or a 12-degree bent tip (Group 2). The primary outcome measures were ultrasound time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound (US) amplitudes, mean surgical time, mean volume of balanced salt solution used, and surgical complications. Both groups included 45 eyes. The mean UST, CDE, longitudinal US amplitude, and torsional US amplitude were 65 seconds ± 27.23 (SD), 11.53 ± 6.99, 0.22 ± 0.26, and 42.86 ± 15.64, respectively, in Group 1 and 84 ± 45.04 seconds, 16.68 ± 10.66, 0.48 ± 0.68, and 46.27 ± 14.74, respectively, in Group 2. The mean UST, CDE, and longitudinal amplitudes were significantly lower in Group 1 (P=.003, P=.008, and P=.022, respectively). The mean volume of balanced salt solution was 73.33 ± 28.58 cc in Group 1 and 82.08 ± 26.21 cc in Group 2 (P=.134). Torsional phacoemulsification performed with 22-degree bent tips provided more effective lens removal than 12-degree bent tips, with a lower UST and CDE. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. On magnetohydrodynamic gauge field theory

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2017-06-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.

  19. Evaluation of Contact Friction in Fracture of Rotationally Bent Nitinol Endodontic Files

    Science.gov (United States)

    Haimed, Tariq Abu

    2011-12-01

    The high flexibility of rotary Nitinol (Ni-Ti) files has helped clinicians perform root canal treatments with fewer technical errors than seen with stainless steel files. However, intracanal file fracture can occur, compromising the outcome of the treatment. Ni-Ti file fracture incidence is roughly around 4% amongst specialists and higher amongst general practitioners. Therefore, eliminating or reducing this problem should improve patient care. The aim of this project was to isolate and examine the role of friction between files and the canal walls of the glass tube model, and bending-related maximum strain amplitudes, on Ni-Ti file lifetimes-tofracture in the presence of different irrigant solutions and file coatings. A specifically designed device was used to test over 300 electropolished EndoSequenceRTM Ni-Ti files for number of cycles to failure (NCF) in smooth, bent glass tube models at 45 and 60 degrees during dry, coated and liquid-lubricated rotation at 600rpm. Fractured files were examined under Scanning Electron Microscopy (SEM) afterwards. Four different file sizes 25.04, 25.06, 35.04, 35.06 (diameter in mm/taper %) and six surface modification conditions were used independently. These conditions included, three solutions; (1) a surfactant-based solution, Surface-Active-Displacement-Solution (SADS), (2) a mouth wash proven to remove biofilms, Delmopinol 1%(DEL), and (3) Bleach 6% (vol.%), the most common antibacterial endodontic irrigant solution. The conditions also included two low-friction silane-based coating groups, 3-Hepta-fluoroisopropyl-propoxymethyl-dichlorosilane (3-HEPT) and Octadecyltrichlorosilane (ODS), in addition to an as-received file control group (Dry). The coefficient of friction (CF) between the file and the canal walls for each condition was measured as well as the surface tension of the irrigant solutions and the critical surface tension of the coated and uncoated files by contact angle measurements. The radius of curvature and

  20. The inaction approach to gauge theories

    CERN Document Server

    Pivovarov, Grigorii

    2012-01-01

    The inaction approach introduced previously for phi^4 is generalized to gauge theories. It combines the advantages of the effective field theory and causal approaches to quantum fields. Also, it suggests ways to generalizing gauge theories.

  1. Energy-Momentum and Gauge Conservation Laws

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We treat energy-momentum conservation laws as particular gauge conservation laws when generators of gauge transformations are horizontal vector fields on fibre bundles. In particular, the generators of general covariant transformations are the canonical horizontal prolongations of vector fields on a world manifold. This is the case of the energy-momentum conservation laws in gravitation theories. We find that, in main gravitational models, the corresponding energy-momentum flows reduce to the generalized Komar superpotential. We show that the superpotential form of a conserved flow is the common property of gauge conservation laws if generators of gauge transformations depend on derivatives of gauge parameters. At the same time, dependence of conserved flows on gauge parameters make gauge conservation laws form-invariant under gauge transformations.

  2. Supersymmetric composite gauge fields with compensators

    Science.gov (United States)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  3. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  4. Topics in multi-component ultracold gases and gauge fields

    Science.gov (United States)

    Ozawa, Tomoki

    In this thesis, we present theoretical studies on three topics related to multi-component ultracold gases and gauge fields. The first topic that we discuss is artificial gauge fields in ultracold gases. Recently, methods to create artificial gauge fields coupled to neutral ultracold systems using a light-induced Berry's connection have been rapidly developing. These methods are not only capable of creating Abelian gauge fields, such as a conventional magnetic field, but also non-Abelian gauge fields, which opens a way to explore and simulate a wide variety of physical models. In this thesis, we discuss various properties of bosons with Rashba-Dresselhaus spin-orbit coupling, which is a special type of non-Abelian gauge field. We investigate the stability of Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling, and show that the condensates are stable against quantum and thermal fluctuations. We also consider the renormalization of the bare interaction by calculating the t-matrix and its consequence on the ground state phase diagrams. The second topic discussed here is three-component ultracold fermionic systems. It is known that ferromagnetism and superfluidity can coexist at low enough temperature in three-component ultracold fermions. In this thesis, we elucidate how fermionic pairing and population imbalance enhance each other. We also describe a crossover from Bardeen-Cooper-Schrieffer state of fermionic pairing state to the limit of Bose-Einstein condensate of three weakly interacting species of molecules, as the interaction increases. Furthermore, we find an interesting similarity in the free energies between three-component ultracold fermions and quantum chromodynamics. The last topic discussed here is Niels Bohr's double-slit interference gedankenexperiment with charged particles, which argues that the consistency of elementary quantum mechanics requires that the electromagnetic field must be quantized. In the experiment a particle's path

  5. Springback prediction of three-dimensional variable curvature tube bending

    Directory of Open Access Journals (Sweden)

    Shen Zhang

    2016-03-01

    Full Text Available The springback phenomenon of tube bending occurs consequentially after unloading, which will affect the manufacturing accuracy and processing efficiency of the tubular products. In this article, the bending and springback processes of minor-diameter thick-walled tube are simulated by ABAQUS to reveal the springback laws. The springback prediction of three-dimensional variable curvature bent tube is projected on each discrete osculating and rectifying plane, and then the three-dimensional problem can be transformed into two dimensions. The mathematic relationship of the radius before and after springback in the plane is built by approximate pure bending springback experiments. The springback on such planes is transformed into three dimensions. The tube axes are merged by first-order geometric (G1 continuity and then compensated with the modified function according to the axis complexity, so as to establish mathematic analytic model for springback prediction of three-dimensional variable curvature tube bending. Finally, the feasibility, reliability, and accuracy of the model are verified by finite element method and experiments.

  6. Theorems for Asymptotic Safety of Gauge Theories

    CERN Document Server

    Bond, Andrew D

    2016-01-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  7. Groupthink and the Blunder of the Gauges

    Science.gov (United States)

    2011-12-01

    uncritical acceptance of this concept, all textbooks (until very recently) have attributed the concept to H.A. Lorentz rather than its rightful...author, L. Lorenz [1]. The first two editions of Jackson’s “Electrodynamics”, for example, attribute this gauge to H.A. Lorentz . This error is...hidden gauge I =0 and the conflicting Coulomb gauge . One cannot select conflicting gauge choices without violating the laws of physics. 8

  8. Parameter space of general gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu

    2009-07-27

    We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.

  9. Renormalizable Quantum Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2002-01-01

    The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.

  10. Theorems for asymptotic safety of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  11. A nilpotent symmetry of quantum gauge theories

    Science.gov (United States)

    Lahiri, Amitabha

    2001-09-01

    For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.

  12. $\\Phi$-derivable approximations in gauge theories

    CERN Document Server

    Arrizabalaga, A

    2003-01-01

    We discuss the method of $\\Phi$-derivable approximations in gauge theories. There, two complications arise, namely the violation of Bose symmetry in correlation functions and the gauge dependence. For the latter we argue that the error introduced by the gauge dependent terms is controlled, therefore not invalidating the method.

  13. BRST symmetry in the general gauge theories

    Science.gov (United States)

    Hyuk-Jae, Lee; Jae, Hyung, Yee

    1994-01-01

    By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.

  14. Inflation in maximal gauged supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Hideo [Theory Center, KEK,Tsukuba 305-0801 (Japan); Department of Particles and Nuclear Physics,The Graduate University for Advanced Studies,Tsukuba 305-0801 (Japan); Nozawa, Masato [Dipartimento di Fisica, Università di Milano, and INFN, Sezione di Milano,Via Celoria 16, 20133 Milano (Italy)

    2015-05-18

    We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.

  15. A new family of four-ring bent-core nematic liquid crystals with highly polar transverse and end groups

    Directory of Open Access Journals (Sweden)

    Kalpana Upadhyaya

    2013-01-01

    Full Text Available Non-symmetrically substituted four-ring achiral bent-core compounds with polar substituents, i.e.., chloro in the bent or transverse direction in the central core and cyano in the lateral direction at one terminal end of the molecule, are designed and synthesized. These molecules possess an alkoxy chain attached at only one end of the bent-core molecule. The molecular structure characterization is consistent with data from elemental and spectroscopic analysis. The materials thermal behaviour and phase characterization have been investigated by differential scanning calorimetry and polarizing microscopy. All the compounds exhibit a wide-ranging monotropic nematic phase.

  16. Improved design of a three roll tube bending process under geometrical uncertainties

    Science.gov (United States)

    Strano, Matteo; Colosimo, Bianca Maria; Castillo, Enrique Del

    2011-05-01

    In the tube bending industry a process is considered flexible if it allows the forming of different curvature radii, without the need for a machine setup or a tool change. This is possible by numerically controlling one or more moving dies or rolls which are able to produce different radii. Unlike conventional tube bending processes, where the tube is clamped at its end and bent around a fixed die, bending with variable radius generally requires that the tube is axially fed into the forming area. A flexible bending operation is traditionally operated by dividing it into an opening phase (the bending roll is moving) and a steady phase (the bending roll is on hold and the tube is axially fed). A technological limit of the process is its intrinsic variability, e.g. measured in terms of repeatability of the obtained bent angle. An FEM based sensitivity analysis is shown in the paper in order to verify which input parameters of the incoming tubes (dimensions, material properties, etc.) are more influential on the results in terms of repeatability. The presence of the two opening and steady phases, with different mechanical conditions is an obstacle to the production of an aesthetic tube with a constant, uniform curvature radius. As a result, the real curvature radius moving along the tube spine will have some variations, which may also transform into defects, such as wrinkling or bumps. A modification of the traditionally operated control curves is proposed in the paper in order to improve the uniformity of the obtained curvature radius. Finally, a method is proposed for optimizing the control curves, under the presence of noise factors.

  17. General Gauge Mediation and Deconstruction

    CERN Document Server

    McGarrie, Moritz

    2010-01-01

    We locate a supersymmetry breaking hidden sector and supersymmetric standard model on different lattice points of an orbifold moose. The hidden sector is encoded in a set of current correlators and the effects of the current correlators are mediated by the lattice site gauge groups with "lattice hopping" functions and through the bifundamental matter that links the lattice sites together. We show how the gaugino mass, scalar mass and Casimir energy of the lattice can be computed for a general set of current correlators and then give specific formulas when the hidden sector is specified to be a generalised messenger sector coupled to a supersymmetry breaking spurion. The results reproduce the effect of five dimensional gauge mediation from a purely four dimensional construction.

  18. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  19. Weak interactions and gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)

  20. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  1. Large N lattice gauge theory

    CERN Document Server

    Narayanan, Rajamani

    2008-01-01

    Wilson loops in large N gauge theory exhibit a weak to strong coupling transition as the loop is dilated. A multiplicative matrix model captures the universal behavior associated with this transition. A universal scaling function is obtained in a double scaling limit. Numerical studies show that both large N QCD in three dimensions and the SU(N) principal chiral model in two dimensions are in the same universality class.

  2. Gauge strata and particle generations

    CERN Document Server

    Mendes, R V

    2000-01-01

    Phenomenological evidence suggests the existence of non-trivial background fields in the QCD vacuum. On the other hand SU(3) gauge theory possessses three different classes of both non-generic and non-trivial strata that may be used as classical backgrounds. It is suggested that this three-fold multiplicity of non-trivial vacua may be related to the existence of particle generations, which would then find an explanation in the framework of the standard model.

  3. Differential renormalization of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)

    1998-10-01

    The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab

  4. Neutrinos and electromagnetic gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, F.; Silva-Sobrinho, J.A. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Tonasse, M.D. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1996-02-01

    It is discussed a recently proposed connection among electromagnetic gauge invariance U(1){sub em} and the nature of the neutrino mass terms in the framework of SU(3){sub C} x G{sub W} x U(1){sub N}, G{sub W} SU(3){sub L}, extensions of the Standard Model. The impossibility of that connection, also in the case G{sub W} = SU(4){sub L}, is demonstrated. (author). 7 refs.

  5. Invariant Regularization of Supersymmetric Chiral Gauge Theory

    CERN Document Server

    Suzuki, H

    1999-01-01

    We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.

  6. Gauge Theories in the Twentieth Century

    CERN Document Server

    2001-01-01

    By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups

  7. On unification of gravity and gauge interactions

    OpenAIRE

    Chamseddine, Ali; Mukhanov, Viatcheslav

    2016-01-01

    Considering a higher dimensional Lorentz group as the symmetry of the tangent space, we unify gravity and gauge interactions in a natural way. The spin connection of the gauged Lorentz group is then responsible for both gravity and gauge fields, and the action for the gauged fields becomes part of the spin curvature squared. The realistic group which unifies all known particles and interactions is the SO(1, 13) Lorentz group whose gauge part leads to SO(10) grand unified theory and contains d...

  8. Gravitational Gauge Interactions of Dirac Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.

  9. On gauge-independence in quantum gravity

    CERN Document Server

    Vasilevich, D V

    1995-01-01

    We prove gauge-independence of one-loop path integral for on-shell quantum gravity obtained in a framework of modified geometric approach. We use projector on pure gauge directions constructed via quadratic form of the action. This enables us to formulate the proof entirely in terms of determinants of non-degenerate elliptic operators without reference to any renormalization procedure. The role of the conformal factor rotation in achieving gauge-independence is discussed. Direct computations on CP^2 in a general three-parameter background gauge are presented. We comment on gauge dependence of previous results by Ichinose.

  10. Flux compactifications, gauge algebras and De Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe, E-mail: g.dibitetto@rug.n [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Linares, Roman, E-mail: lirr@xanum.uam.m [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico D.F. (Mexico); Roest, Diederik, E-mail: d.roest@rug.n [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2010-04-26

    The introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitter vacuum. The aim of this Letter is to assess to what extent this is true in N=4 compactifications. First we identify the correct gauge algebra in terms of gauge and (non-)geometric fluxes. We then show that this algebra does not lead to any of the known gaugings with De Sitter solutions. In particular, the gaugings that one obtains from flux compactifications involve non-semi-simple algebras, while the known gaugings with De Sitter solutions consist of direct products of (semi-)simple algebras.

  11. Asymptotically Free Gauge Theories. I

    Science.gov (United States)

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  12. Introduction to lattice gauge theory

    Science.gov (United States)

    Gupta, R.

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.

  13. Gravity: A gauge theory perspective

    Science.gov (United States)

    Nester, James M.; Chen, Chiang-Mei

    2016-07-01

    The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether’s two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincaré group. The dynamical potentials of the Poincaré gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed, except on a cosmological scale where it could have significant effects.

  14. Discerning Secluded Sector gauge structures

    CERN Document Server

    Carloni, Lisa; Sjostrand, Torbjorn

    2011-01-01

    New fundamental particles, charged under new gauge groups and only weakly coupled to the standard sector, could exist at fairly low energy scales. In this article we study a selection of such models, where the secluded group either contains a softly broken U(1) or an unbroken SU(N). In the Abelian case new {\\gamma}v gauge bosons can be radiated off and decay back into visible particles. In the non-Abelian case there will not only be a cascade in the hidden sector, but also hadronization into new {\\pi}v and {\\rho}v mesons that can decay back. This framework is developed to be applicable both for e+e- and pp collisions, but for these first studies we concentrate on the former process type. For each Abelian and non-Abelian group we study three different scenarios for the communication between the standard sector and the secluded one. We illustrate how to distinguish the various characteristics of the models and especially study to what extent the underlying gauge structure can be determined experimentally.

  15. Open String Amplitudes in Various Gauges

    CERN Document Server

    Fuji, H; Suzuki, H; Fuji, Hiroyuki; Nakayama, Shinsaku; Suzuki, Hisao

    2007-01-01

    Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. When we perform the calculation of the amplitudes in Schnabl gauge, we find that the off-shell amplitudes of the Schnabl gauge is still very complicated. In this paper, we propose the use of the propagator in the modified Schnabl gauge and show that this modified use of the Schnabl gauge simplifies the computation of the off-shell amplitudes drastically. We also compute the amplitudes of open superstring in this gauge.

  16. On Gauging Symmetry of Modular Categories

    Science.gov (United States)

    Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan

    2016-05-01

    Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4} -obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.

  17. Quantum Gravitational Contributions to Gauge Field Theoriest

    Institute of Scientific and Technical Information of China (English)

    汤勇; 吴岳良

    2012-01-01

    We revisit quantum gravitational contributions to quantum gauge field theories in the gauge condition independent Vilkovisky-DeWitt formalism based on the background field method. With the advantage of Landau- DeWitt gauge, we explicitly obtain the gauge condition independent result for the quadratically divergent gravitational corrections to gauge couplings. By employing, in a general way, a scheme-independent regularization method that can preserve both gauge invariance and original divergent behavior of integrals, we show that the resulting gauge coupling is power-law running and asymptotically free. The regularization scheme dependence is clarified by comparing with results obtained by other methods. The loop regularization scheme is found to be applicable for a consistent calculation.

  18. On Gauging Symmetry of Modular Categories

    Science.gov (United States)

    Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan

    2016-12-01

    Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4}-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.

  19. Analysis of distribution of critical current of bent-damaged Bi2223 composite tape

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, S; Okuda, H; Hojo, M [Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606- 8501 (Japan); Sugano, M [Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Osamura, K [Research Institute for Applied Sciences, Sakyo-ku, Kyoto 606-8202 (Japan); Kuroda, T; Kumakura, H; Kitaguchi, H; Itoh, K; Wada, H, E-mail: shojiro.ochiai@materials.mbox.media.kyoto-u.ac.jp [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-10-29

    Distributions of critical current of damaged Bi2223 tape specimens bent by 0.6, 0.8 and 1.0% were investigated analytically with a modelling approach based on the correlation of damage evolution to distribution of critical current. It was revealed that the distribution of critical current is described by three parameter Weibull distribution function through the distribution of the tensile damage strain of Bi2223 filaments that determines the damage front in bent-composite tape. Also it was shown that the measured distribution of critical current values can be reproduced successfully by a Monte Carlo simulation using the distributions of tensile damage strain of filaments and original critical current.

  20. Alcohol sensor based on u-bent hetero-structured fiber optic

    Science.gov (United States)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  1. A continuum model of piezoelectric potential generated in a bent ZnO nanorod

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Z Z; Wen, L Y; Wu, D M [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Wang, X F; Zhang, X A; Chang, S L, E-mail: zzshao2009@gmail.co [Center of Materials Science, College of Science, National University of Defense Technology, Changsha 410073 (China)

    2010-06-23

    A continuum model of piezoelectric potential generated in a bent ZnO nanorod cantilever is presented by means of the first piezoelectric effect approximation. The analytical solution of the model shows that the piezoelectric potential in the nanorod is proportional to the lateral force but is independent along the longitudinal direction. The electric potential in the tensile area and that in the compressive area are antisymmetric in the cross section of the nanorod, which makes the nanorod a 'parallel plate capacitor' for piezoelectric nanodevices, such as a nanogenerator. The magnitude of piezoelectric potential for a ZnO nanorod of 50 nm diameter and 600 nm length bent by a 80 nN lateral force is about 0.27 V, which is in good agreement with the finite element method calculation.

  2. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.

    Science.gov (United States)

    Nistea, Ioana T; Alcock, Simon G; Kristiansen, Paw; Young, Adam

    2017-05-01

    Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

  3. Improving the energy resolution of bent crystal X-ray spectrometers with position-sensitive detectors.

    Science.gov (United States)

    Honkanen, Ari Pekka; Verbeni, Roberto; Simonelli, Laura; Moretti Sala, Marco; Al-Zein, Ali; Krisch, Michael; Monaco, Giulio; Huotari, Simo

    2014-07-01

    Wavelength-dispersive high-resolution X-ray spectrometers often employ elastically bent crystals for the wavelength analysis. In a preceding paper [Honkanen et al. (2014). J. Synchrotron Rad. 21, 104-110] a theory for quantifying the internal stress of a macroscopically large spherically curved analyser crystal was presented. Here the theory is applied to compensate for the corresponding decrease of the energy resolution. The technique is demonstrated with a Johann-type spectrometer using a spherically bent Si(660) analyser in near-backscattering geometry, where an improvement in the energy resolution from 1.0 eV down to 0.5 eV at 9.7 keV incident photon energy was observed.

  4. CMS Pixel Telescope Addition to T-980 Bent Crystal Collimation Experiment at the Tevatron

    CERN Document Server

    Rivera, Ryan; Johnson, Todd; Kwan, Simon; Lundberg, Carl; Still, Dean; Prosser, Alan; Uplegger, Lorenzo; Zagel, Jim; Zvodaya, Viktoriya

    2012-01-01

    An enhancement to the T-980 bent crystal collimation experiment at the Tevatron has been completed. The enhancement was the installation of a pixel telescope inside the vacuum-sealed beam pipe of the Tevatron. The telescope is comprised of six CMS PSI46 pixel plaquettes, arranged as three stations of horizontal and vertical planes, with the CAPTAN system for data acquisition and control. The purpose of the pixel telescope is to measure beam profiles produced by bent crystals under various conditions. The telescope electronics inside the beam pipe initially were not adequately shielded from the image current of the passing beams. A new shielding approach was devised and installed, which resolved the problem. The noise issues encountered and the mitigating techniques are presented herein, as well as some preliminary results from the telescope.

  5. Estimation of the optical loss in bent-waveguide superluminescent diodes by an analytical method

    Science.gov (United States)

    Qi, An; Peng, Jin; Zhanguo, Wang

    2015-06-01

    The optical loss in the bent region is one of the key features for bent-waveguide superluminescent diodes that affects the device performance greatly under some conditions. For the purpose of device fabrication and optimization, it will be helpful if this bend loss can be estimated. In this letter, we have derived an analytical formula which can be used to get the bend-loss coefficient by fitting the P-I curves of the devices. It is proved that the formula is successful in estimating the loss coefficients from the P-I curves simulated from a complicated quantum-dot device model. We expect this method could also be valid in estimating bend losses of actual devices. Project supported by the National Natural Science Foundation of China (Nos. 61274072, 60976057).

  6. The High-Redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey

    CERN Document Server

    Paterno-Mahler, R; Ashby, M L N; Brodwin, M; Wing, J D; Anand, G; Decker, B; Golden-Marx, E

    2016-01-01

    We present 238 high-redshift galaxy cluster candidates based on galaxy overdensities in the Spitzer/IRAC imaging of the fields surrounding 646 bent, double-lobed radio sources drawn from the Clusters Occupied by Bent Radio AGN (COBRA) Survey. The COBRA sources were chosen as objects in the VLA FIRST survey that lack optical counterparts in the Sloan Digital Sky Survey (SDSS) to a limit of $m_r=22$, making them likely to lie at high redshift. This is confirmed by our observations: the redshift distribution of COBRA sources with estimated redshifts peaks near $z=1$, and extends out to $z\\approx3$. Cluster candidates were identified by comparing our sources to a background field and searching for overdensities. Forty-one of these sources are quasars with known spectroscopic redshifts, which may be tracers of some of the most distant clusters known.

  7. CMS Pixel Telescope Addition to T-980 Bent Crystal Collimation Experiment at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Ryan; Annala, Jerry; Johnson, Todd; Kwan, Simon; Lundberg, Carl; Still, Dean; Prosser, Alan; Uplegger, Lorenzo; Zagel, Jim; Zvodaya, Viktoriya; /Fermilab

    2011-09-14

    An enhancement to the T-980 bent crystal collimation experiment at the Tevatron has been completed. The enhancement was the installation of a pixel telescope inside the vacuum-sealed beam pipe of the Tevatron. The telescope is comprised of six CMS PSI46 pixel plaquettes, arranged as three stations of horizontal and vertical planes, with the CAPTAN system for data acquisition and control. The purpose of the pixel telescope is to measure beam profiles produced by bent crystals under various conditions. The telescope electronics inside the beam pipe initially were not adequately shielded from the image current of the passing beams. A new shielding approach was devised and installed, which resolved the problem. The noise issues encountered and the mitigating techniques are presented herein, as well as some preliminary results from the telescope.

  8. Proton and Pb ion beam extraction experiments with bent crystals at the CERN-SPS

    CERN Document Server

    Elsener, K; Klem, J T; CERN. Geneva. SPS and LEP Division

    1997-01-01

    Extraction of particle beams from the CERN-SPS using bent silicon crystals is described. A summary of the early results is given. Emphasis is on the recent experiments, in particular on the energy dependence of proton extraction at 14, 120 and 270 GeV. 'U-shaped' crystals of different thickness and with a different miscut angle have been compared at 120 GeV. Non-linear excitation of the beam was used in one experiment, with the aim to achieve larger impact parameters - the results show a particular behaviour in the tails of the beam. Finally, the first experimental result on extraction of a 22 TeV fully stripped Pb ion beam with a bent crystal is also described.

  9. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  10. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  11. A relationship between the nonexistence of generalized bent functions and class groups

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new result on the nonexistence of generalized bent functions is presented by using properties of the decomposition law of primes in cyclotomic fields and properties of solutions of some Diophantine equations. At the same time,a method is given which can be used to simplify the known results. Then we give the bounds and the meaning in algebraic number theory of the parameters in our results.

  12. Observation of nuclear dechanneling length reduction for high energy protons in a short bent crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2015-04-01

    Full Text Available Deflection of 400 GeV/c protons by a short bent silicon crystal was studied at the CERN SPS. It was shown that the dechanneling probability increases while the dechanneling length decreases with an increase of incident angles of particles relative to the crystal planes. The observation of the dechanneling length reduction provides evidence of the particle population increase at the top levels of transverse energies in the potential well of the planar channels.

  13. Liquid-crystalline hybrid materials based on [60]fullerene and bent-core structures.

    Science.gov (United States)

    Vergara, Jorge; Barberá, Joaquín; Serrano, José Luis; Ros, M Blanca; Sebastián, Nerea; de la Fuente, Rosario; López, David O; Fernández, Gustavo; Sánchez, Luis; Martín, Nazario

    2011-12-23

    What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60)  unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.

  14. First results on proton extraction from the CERN-SPS with a bent crystal

    Science.gov (United States)

    Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; de Sangro, R.; Elsener, K.; Ferioli, F.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Møller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhøj, E.; Vettermann, B.; Vita, P. F.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1993-09-01

    The feasibility of extracting protons from the halo of a high energy beam by means of a bent silicon crystal has been investigated. Protons diffusing from a GeV beam circulating in the SPS at CERN have been extracted at an angle of 8.5 mrad. Efficiencies of abour 10 percent, orders of magnitude higher than the values achieved previously, have been measured. The present results are promising in view of beam extraction from future multi-TeV proton accelerators.

  15. Determining the diffraction properties of a cylindrically bent KAP(001) crystal from 1 to 5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, Michael [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Lee, Joshua [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Jacoby, Kenneth [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Christensen, C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, G. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States), Livermore Operations

    2015-08-31

    Various crystals are used for the dispersive component of X-ray spectrometers. The crystals are usually bent to meet the desired measurement needs, such as focusing. The bending can change the crystal diffraction properties, thus altering the spectrometer throughput and resolving power. This work concerns measuring the diffraction properties of a potassium acid phthalate (001) [KAP(001)] crystal bent into a circular cylinder segment. The measurement methods using a diode source and a synchrotron source are described. The multi-lamellar model for calculating the diffraction properties of a bent crystal is described. The measurement results are compared to the multi-lamellar model and show qualitative agreement. The measurements show how to make the multi-lamellar calculations a useful estimate. A method is given to make useful estimates of the diffraction properties of the KAP(001) crystal bent into a circular cylinder segment.

  16. Stig Sundell at the bent crystal X-ray spectrometer for the X-ray shift experiment.

    CERN Multimedia

    1976-01-01

    The bent crystal X-ray spectrometer is being used to measure small shifts in the frequencies of X-rays emitted from the lower electron energy levels, in order to learn about the size of the nuclei concerned

  17. Extragalactic Jets as Probes of Distant Clusters of Galaxies and the Clusters Occupied by Bent Radio AGN (COBRA) Survey

    CERN Document Server

    Blanton, Elizabeth L; Wing, Joshua D; Ashby, M L N; Golden-Marx, Emmet; Brodwin, Mark; Douglass, E M; Randall, Scott W; Clarke, T E

    2014-01-01

    We are conducting a large survey of distant clusters of galaxies using radio sources with bent jets and lobes as tracers. These radio sources are driven by AGN and achieve their bent morphologies through interaction with the surrounding gas found in clusters of galaxies. Based on low-redshift studies, these types of sources can be used to identify clusters very efficiently. We present initial results from our survey of 653 bent-double radio sources with optical hosts too faint to appear in the SDSS. The sample was observed in the infrared with Spitzer, and it has revealed $\\sim$200 distant clusters or proto-clusters in the redshift range $z\\sim0.7 - 3.0$. The sample of bent-doubles contains both quasars and radio galaxies enabling us to study both radiative and kinetic mode feedback in cluster and group environments at a wide range of redshifts.

  18. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  19. The signs B and B-bent in Israeli sign language according to the theory of Phonology as Human Behavior.

    Science.gov (United States)

    Fuks, Orit; Tobin, Yishai

    2008-01-01

    The purpose of the present research is to examine which of the two factors: (1) the iconic-semiotic factor; or (2) the human-phonetic factor is more relevant in explaining the appearance and distribution of the hand shape B-bent in Israeli Sign Language (ISL). The B-bent shape has been the subject of much attention in sign language research revolving around the question of its status as a phoneme. The arguments supporting the phonemic status of the B-bent hand shape have been primarily based on the semiotic opposition between the hand shape B and the hand shape B-bent. It has been claimed that in Italian Sign Language the hand shape B is perceptually distinct from the hand shape B-bent, i.e. in opposition to the general, neutral, unmarked meaning of the hand shape B, the iconic hand shape B-bent has a more narrow, specific and marked meaning: DELIMIT. The B-bent hand shape appears in spatial-temporal signs such as "a little before, ahead, postpone or behind". In these signs the iconic structure of the hand shape B-bent is utilized to mark borders in space and time. The arguments opposing the perceptual/phonemic distinction between these hand shapes is based on the human-phonetic factor, i.e. the need to reduce the effort on the part of the wrist joints in specific phonetic environments. We performed a quantitative and qualitative content analysis of the distribution of the basic units of 560 lexical signs taken from a stratified random sample from the ISL dictionary. The results were analyzed in the framework of the sign-oriented linguistic theory of the Columbia School including the theory of Phonology as Human Behavior. Our data revealed that the B-bent hand shape--as all the "building blocks" of the ISL--is a morpho-phonemic unit. We found that there is not only a phonemic distinction between hand shape B and hand shape B-bent in ISL (based on minimal pairs), but there is also a perceptual distinction between them. The qualitative analysis shows that the

  20. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    Energy Technology Data Exchange (ETDEWEB)

    Abeln, Terri G. [Los Alamos National Laboratory

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  1. Channeling of fast ions through the bent carbon nanotubes: The extended two-fluid hydrodynamic model

    Science.gov (United States)

    Lazar, Karbunar; Duško, Borka; Ivan, Radović; Zoran, L. Mišković

    2016-04-01

    We investigate the interactions of charged particles with straight and bent single-walled carbon nanotubes (SWNTs) under channeling conditions in the presence of dynamic polarization of the valence electrons in carbon. This polarization is described by a cylindrical, two-fluid hydrodynamic model with the parameters taken from the recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nano-structures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at a speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Using that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential. Project supported by the Funds from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 45005). Z. L. Mišković thanks the Natural Sciences and Engineering Research Council of Canada for Finacial Support.

  2. A bent Laue-Laue monochromator for a synchrotron-based computed tomography system

    CERN Document Server

    Ren, B; Chapman, L D; Ivanov, I; Wu, X Y; Zhong, Z; Huang, X

    1999-01-01

    We designed and tested a two-crystal bent Laue-Laue monochromator for wide, fan-shaped synchrotron X-ray beams for the program multiple energy computed tomography (MECT) at the National Synchrotron Light Source (NSLS). MECT employs monochromatic X-ray beams from the NSLS's X17B superconducting wiggler beamline for computed tomography (CT) with an improved image quality. MECT uses a fixed horizontal fan-shaped beam with the subject's apparatus rotating around a vertical axis. The new monochromator uses two Czochralski-grown Si crystals, 0.7 and 1.4 mm thick, respectively, and with thick ribs on their upper and lower ends. The crystals are bent cylindrically, with the axis of the cylinder parallel to the fan beam, using 4-rod benders with two fixed rods and two movable ones. The bent-crystal feature of the monochromator resolved the difficulties we had had with the flat Laue-Laue design previously used in MECT, which included (a) inadequate beam intensity, (b) excessive fluctuations in beam intensity, and (c) i...

  3. HIV-1 DIS stem loop forms an obligatory bent kissing intermediate in the dimerization pathway.

    Science.gov (United States)

    Mundigala, Hansini; Michaux, Jonathan B; Feig, Andrew L; Ennifar, Eric; Rueda, David

    2014-06-01

    The HIV-1 dimerization initiation sequence (DIS) is a conserved palindrome in the apical loop of a conserved hairpin motif in the 5'-untranslated region of its RNA genome. DIS hairpin plays an important role in genome dimerization by forming a 'kissing complex' between two complementary hairpins. Understanding the kinetics of this interaction is key to exploiting DIS as a possible human immunodeficiency virus (HIV) drug target. Here, we present a single-molecule Förster resonance energy transfer (smFRET) study of the dimerization reaction kinetics. Our data show the real-time formation and dissociation dynamics of individual kissing complexes, as well as the formation of the mature extended duplex complex that is ultimately required for virion packaging. Interestingly, the single-molecule trajectories reveal the presence of a previously unobserved bent intermediate required for extended duplex formation. The universally conserved A272 is essential for the formation of this intermediate, which is stabilized by Mg(2+), but not by K(+) cations. We propose a 3D model of a possible bent intermediate and a minimal dimerization pathway consisting of three steps with two obligatory intermediates (kissing complex and bent intermediate) and driven by Mg(2+) ions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Shock Tube as an Impulsive Application Device

    Directory of Open Access Journals (Sweden)

    Soumya Ranjan Nanda

    2017-01-01

    Full Text Available Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.

  5. Unitary Representations of Gauge Groups

    Science.gov (United States)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  6. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  7. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  8. Gauge Invariant Fractional Electromagnetic Fields

    CERN Document Server

    Lazo, Matheus Jatkoske

    2011-01-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  9. Grand Gauge-Higgs Unification

    CERN Document Server

    Kojima, Kentaro; Yamashita, Toshifumi

    2011-01-01

    We propose a novel way to break grand unified gauge symmetries via the Hosotani mechanism in models that can accommodate chiral fermions. Adjoint scalar fields are realized through the so-called diagonal embedding method which is often used in the heterotic string theory. We calculate the one-loop effective potential of the adjoint scalar field in a five dimensional model compactified on an S^1/Z_2 orbifold, as an illustration. It turns out that the potential is basically the same as the one in an S^1 model, and thus the results in literatures, in addition to the chiral fermions, can be realized easily.

  10. Gauging Geometry: A Didactic Lecture

    CERN Document Server

    Kannenberg, L

    2016-01-01

    Local inertial frame invariance is taken as the fundamental principle of physical geometry, where a local inertial frame is represented by a verbein. Invariance of the vierbein with respect to local Lorentz transformations then expresses local inertial frame invariance. The dynamics of physical geometry develops as a gauge theory of the verbein that is closely analogous to the Yang-Mills field provided the verbein connection and curvature correspond to the geometric potential and field respectively. The resulting theory is shown to be equivalent to Einstein's tensor form of relativistic gravitation.

  11. Superpotentials for Quiver Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Aspinwall, Paul S.; /Stanford U., Phys. Dept. /SLAC /Duke U., CGTP; Fidkowski, Lukasz M.; /Stanford U., Phys. Dept.

    2005-06-10

    We compute superpotentials for quiver gauge theories arising from marginal D-Brane decay on collapsed del Pezzo cycles S in a Calabi-Yau X. This is done using the machinery of A{sub {infinity}} products in the derived category of coherent sheaves of X, which in turn is related to the derived category of S and quiver path algebras. We confirm that the superpotential is what one might have guessed from analyzing the moduli space, i.e., it is linear in the fields corresponding to the Exts of the quiver and that each such Ext multiplies a polynomial in Exts equal to precisely the relation represented by the Ext.

  12. Gauge fields in accelerated frames

    CERN Document Server

    Lenz, F

    2008-01-01

    Quantized fields in accelerated frames (Rindler spaces) with emphasis on gauge fields are investigated. Important properties of the dynamics in Rindler spaces are shown to follow from the scale invariance of the corresponding Hamiltonians. Origin and consequences of this extraordinary property of Hamiltonians in Rindler spaces are elucidated. Characteristics of the Unruh radiation, the appearance of a photon condensate and the interaction energy of vector and scalar static charges are discussed and implications for Yang-Mills theories and QCD in Rindler spaces are indicated.

  13. Erosion of heat exchanger tubes in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  14. Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment

    Institute of Scientific and Technical Information of China (English)

    刘然克; 贾静焕; 杜翠薇; 李晓刚

    2016-01-01

    Stress corrosion cracking (SCC) behavior of P110 tubing steel in simulated CO2 injection well annulus environments was investigated through three-point bent tests, potentiodynamic polarization and EIS measurements. The results demonstrate that SCC of P110 tubing steel could occur in acidulous simulated environment, and the sensitivity of SCC increases with the decrease of pH, as well as increase of sulfide concentration and total environmental pressure. Both anodic dissolution and hydrogen embrittlement make contributions to the SCC. Adequate concentration of corrosion inhibitor can inhibit the occurrence of SCC on account of the inhibition of localized anodic dissolution and cathodic hydrogen evolution.

  15. SU( N ) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions

    Science.gov (United States)

    Athenodorou, Andreas; Teper, Michael

    2017-02-01

    We calculate the low-lying glueball spectrum and various string tensions in SU( N ) lattice gauge theories in 2 + 1 dimensions, and extrapolate the results to the continuum limit. We do so for for the range N ∈ [2 , 16] so as to control the N -dependence with a useful precision. We observe a number of striking near-degeneracies in the various J PC sectors of the glueball spectrum, in particular between C = + and C = - states. We calculate the string tensions of flux tubes in a number of representations, and provide evidence that the leading correction to the N -dependence of the k-string tensions is ∝ 1 /N rather than ∝ 1 /N 2, and that the dominant binding of k fundamental flux tubes into a k-string is via pairwise interactions. We comment on the possible implications of our results for the dynamics of these gauge theories.

  16. Invariant Regularization of Supersymmetric Chiral Gauge Theory

    CERN Document Server

    Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi

    1998-01-01

    We formulate a manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. In our scheme, the effective action in the superfield background-field method above one-loop is always supersymmetric and gauge invariant. The gauge anomaly has the covariant form and can emerge only in one-loop diagrams with all the external lines are the background gauge superfield. We also present several illustrative applications in the one-loop approximation: The self-energy part of the chiral multiplet and the gauge multiplet; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and the anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.

  17. Transport properties of cascading gauge theories

    CERN Document Server

    Buchel, A

    2005-01-01

    Cascading gauge theories of Klebanov et.al. provide a model within a framework of gauge theory/string theory duality for a four dimensional non-conformal gauge theory with a spontaneously generated mass scale. Using the dual supergravity description we study sound wave propagation in strongly coupled cascading gauge theory plasma. We analytically compute the speed of sound and the bulk viscosity of cascading gauge theory plasma at a temperature much larger than the strong coupling scale of the theory. The sound wave dispersion relation is obtained from the hydrodynamic pole in the stress-energy tensor two-point correlation function. The speed of sound extracted from the pole of the correlation function agrees with its value computed in [hep-th/0506002] using the equation of state. We find that the bulk viscosity of the hot cascading gauge theory plasma is non-zero at the leading order in the deviation from conformality.

  18. Lattice Gauge Theories and Spin Models

    CERN Document Server

    Mathur, Manu

    2016-01-01

    The Wegner $Z_2$ gauge theory-$Z_2$ Ising spin model duality in $(2+1)$ dimensions is revisited and derived through a series of canonical transformations. These $Z_2$ results are directly generalized to SU(N) lattice gauge theory in $(2+1)$ dimensions to obtain a dual SU(N) spin model in terms of the SU(N) magnetic fields and electric scalar potentials. The gauge-spin duality naturally leads to a new gauge invariant disorder operator for SU(N) lattice gauge theory. A variational ground state of the dual SU(2) spin model with only nearest neighbour interactions is constructed to analyze SU(2) lattice gauge theory.

  19. Gauge coupling unification in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics

    2006-11-15

    We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)

  20. A Nonperturbative Regulator for Chiral Gauge Theories

    CERN Document Server

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  1. Entanglement of Distillation for Lattice Gauge Theories

    Science.gov (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank

    2016-09-01

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  2. Gauge Blocks – A Zombie Technology

    Science.gov (United States)

    Doiron, Ted

    2008-01-01

    Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119

  3. Intercostal drainage tube or intracardiac drainage tube?

    Directory of Open Access Journals (Sweden)

    N Anitha

    2016-01-01

    Full Text Available Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure.

  4. Gribov horizon beyond the Landau gauge

    Science.gov (United States)

    Lavrov, Peter M.; Lechtenfeld, Olaf

    2013-10-01

    Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general Rξ gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.

  5. Gribov horizon beyond the Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany)

    2013-10-01

    Gribov and Zwanziger proposed a modification of Yang–Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov–Zwanziger model from the Landau gauge to general R{sub ξ} gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.

  6. Gribov horizon beyond the Landau gauge

    CERN Document Server

    Lavrov, Peter M

    2013-01-01

    Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general R_xi gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.

  7. Gauge Blocks – A Zombie Technology

    OpenAIRE

    Doiron, Ted

    2008-01-01

    Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearl...

  8. Gauge dependence in Chern-Simons theory

    CERN Document Server

    Dilkes, F A; McKeon, D G C; Sherry, T N

    1996-01-01

    We compute the contribution to the modulus of the one-loop effective action in pure non-Abelian Chern-Simons theory in an arbitrary covariant gauge. We find that the results are dependent on both the gauge parameter (\\alpha) and the metric required in the gauge fixing. A contribution arises that has not been previously encountered; it is of the form (\\alpha / \\sqrt{p^2}) \\epsilon _{\\mu \\lambda \

  9. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  10. Towards the Natural Gauge Mediation

    CERN Document Server

    Ding, Ran; Wang, Liucheng; Zhu, Bin

    2015-01-01

    The sweet spot supersymmetry (SUSY) solves the mu problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the mu-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the \\mu/B_{\\mu}-problem. Moreover, there are only five free parame...

  11. Absence of the Gribov ambiguity in a special algebraic gauge

    Science.gov (United States)

    Raval, Haresh

    2016-11-01

    The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S^3.

  12. The Color Flux Tube as an Effective String

    Science.gov (United States)

    Pepe, Michele

    2011-05-01

    We investigate the low-energy regime of the confining string connecting color sources in Yang-Mills theory. First, we present results of the Monte Carlo measurement of the width of the flux tube between two static quarks in the fundamental representation both at zero and at finite temperature. Then we consider the confining flux tube connecting color sources in larger representations of the gauge group. For stable strings—the k-strings—we study the Luscher term; for unstable strings we investigate their decay as the distance between the static sources is increased.

  13. Lattice Chiral Fermions Through Gauge Fixing

    CERN Document Server

    Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten; Shamir, Yigal

    1998-01-01

    We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions, and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced version of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no species doublers, and that the fermion spectrum contains only the desired states in the continuum limit, namely charged left-handed (LH) fermions and neutral right-handed (RH) fermions.

  14. Global anomalies in Chiral Lattice Gauge Theory

    Science.gov (United States)

    Bär, Oliver; Campos, Isabel

    As first realized by Witten an SU(2) gauge theory coupled to a single Weyl fermion suffers from a global anomaly. This problem is addressed here in the context of the recent developments on chiral gauge theories on the lattice. We find Witten's anomaly manifests in the impossibility of defining globally a fermion measure that reproduces the proper continuum limit. Moreover, following Witten's original argument, we check numerically the crossing of the lowest eigenvalues of Neuberger's operator along a path connecting two gauge fields that differ by a topologically non-trivial gauge transformation.

  15. Classical Higgs fields on gauge gluon bundles

    Directory of Open Access Journals (Sweden)

    Palese Marcella

    2016-01-01

    Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.

  16. Focus point supersymmetry in extended gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)

    2014-03-27

    We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.

  17. Quantum gauge models without (classical) Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Duetsch, Michael [Univ. Goettingen, Courant Research Center ' ' Higher order Structures in Mathematics' ' , Mathematisches Institut, Goettingen (Germany); Gracia-Bondia, Jose M. [Universidad de Zaragoza, Departamento de Fisica Teorica, Zaragoza (Spain); Scheck, Florian [Johannes Gutenberg-Universitaet, Institut fuer Physik, Theoretische Elementarteilchenphysik, Mainz (Germany); Varilly, Joseph C. [Universidad de Costa Rica, Escuela de Matematica, San Jose (Costa Rica)

    2010-10-15

    We examine the status of massive gauge theories, such as those usually obtained by spontaneous symmetry breakdown, from the viewpoint of causal (Epstein-Glaser) renormalization. The BRST formulation of gauge invariance in this framework, starting from canonical quantization of massive (as well as massless) vector bosons as fundamental entities, and proceeding perturbatively, allows one to rederive the reductive group symmetry of interactions, the need for scalar fields in gauge theory, and the covariant derivative. Thus the presence of higgs particles is understood without recourse to a Higgs(-Englert-Brout-Guralnik-Hagen-Kibble) mechanism. Along the way, we dispel doubts about the compatibility of causal gauge invariance with grand unified theories. (orig.)

  18. Lattice gauge theories and Monte Carlo simulations

    CERN Document Server

    Rebbi, Claudio

    1983-01-01

    This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.

  19. Geometric Formulation of Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning; ZHANG Da-Hua; RUAN Tu-Nan

    2003-01-01

    Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.

  20. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)

    2015-12-14

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.

  1. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)

    2015-12-15

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)

  2. G_2 gauge theory at finite temperature

    CERN Document Server

    Cossu, Guido; Di Giacomo, Adriano; Lucini, Biagio; Pica, Claudio

    2007-01-01

    The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.

  3. Exact formulas in noncommutative gauge theories

    CERN Document Server

    Wallet, Jean-Christophe

    2016-01-01

    The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  4. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  5. Incidence and outcome of tube thoracostomy positioning in trauma patients.

    Science.gov (United States)

    Maybauer, Marc O; Geisser, Wolfgang; Wolff, Holger; Maybauer, Dirk M

    2012-01-01

    To evaluate the frequency of use, placement site, success and misplacement rates, and need for intervention for tube thoracostomies (TTs), and the complications with endotracheal intubation associated with TT in the prehospital setting. We performed a five-year, retrospective study using the records of 1,065 patients who were admitted to the trauma emergency room at a university hospital and who had received chest radiographs or computed tomography (CT) scans within 30 minutes after admission. Seven percent of all patients received a TT (5% unilateral, 2% bilateral). Ninety-seven percent of all patients with a TT were endotracheally intubated. The success rate for correctly placed chest tubes was 78%. Twenty-two percent of the chest tubes were misplaced (i.e., too far in the chest, twisted, or bent); half of those had to be corrected, with one needing to be replaced. There were no statistical differences in the frequency of Monaldi or Bülau positions, or the frequency of left or right chest TT. In addition, the two positions did not differ in misplacement rates or the need for intervention. Helicopter emergency medical services physicians used the Monaldi position significantly more frequently than the Bülau position. In-hospital physicians performing interhospital transfer used the Bülau position significantly more frequently, whereas ground emergency medical physicians had a more balanced relationship between the two positions. Tube thoracostomy had no influence on endotracheal tube misplacement rates, and vice versa. Tube thoracostomy positioning mostly depends on the discretion of the physician on scene. The Monaldi and Bülau positions do not differ in misplacement or complication rates.

  6. The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields

    OpenAIRE

    Nakawaki, Yuji; McCartor, Gary

    1999-01-01

    We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore to circumvent dealing with constrained systems, we construct the temporal gauge c...

  7. On the gas dependence of thermal transpiration and a critical appraisal of correction methods for capacitive diaphragm gauges

    CERN Document Server

    Daudé, Barthélémy; Janssen, Christof

    2013-01-01

    Thermal transpiration effects are commonly encountered in low pressure measurements with capacitance diaphragm gauges. They arise from the temperature difference between the measurement volume and the temperature stabilised manometer. Several approaches have been proposed to correct for the pressure difference, but surface and geometric effects usually require that the correction is determined for each gas type and gauge individually. Common (semi) empirical corrections are based on studies of atoms or small molecules. We present a simple calibration method for diaphragm gauges and compare transpiration corrections for argon and styrene at pressures above 1 Pa. We find that characteristic pressures at which the pressure difference reaches half its maximum value, are compatible with the universal scaling p_{1/2} = 2 \\{\\eta} \\cdot \\{v_{th}} / d, thus essentially depending on gas viscosity \\eta, thermal molecular speed v_{th} and gauge tubing diameter d. This contradicts current recommendations based on the Taka...

  8. Q-tubes, Q-rings and Q-crusts

    CERN Document Server

    Sakai, Nobuyuki; Nakao, Ken-ichi

    2010-01-01

    We re-analyse scalar field theories which allow Q-ball solutions. We find new types of non-topological solitons: tube-shaped in SO(2) models, ring-shaped in SO(3) models, and crust-shaped in SO(3)\\times U(1) models. Although their field configurations are analogous to cosmic global strings or global monopoles, their gravitational mass are finite without gauge fields.

  9. The Gribov ambiguity for maximal abelian and center gauges in SU(2) lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Stack, John D.; Tucker, William W

    2001-03-01

    We present results for the fundamental string tension in SU(2) lattice gauge theory after projection to maximal abelian and direct maximal center gauges. We generate 20 Gribov copies/configuration. Abelian and center projected string tensions slowly decrease as higher values of the gauge functionals are reached.

  10. Effects of diameter, length, and circuit pressure on sound conductance through endotracheal tubes.

    Science.gov (United States)

    Räsänen, Jukka O; Rosenhouse, Giora; Gavriely, Noam

    2006-07-01

    We evaluated the acoustic frequency response of endotracheal tubes (ETs) to assess their effect on respiratory system sound transmission studies. White noise 150-3300 Hz was introduced into 4.0-, 6.0-, and 8.0-mm ETs and recorded at their proximal and distal ends. Four tubes of each size were studied at their original and normalized lengths, in straight and bent configurations, and at circuit pressures from 0 to 20 cmH2O. The characteristics of the sound transmission were compared using an analysis of variance for repeated measures. The average transmission amplitude varied directly with tube diameter. The position of peaks and troughs on the amplitude frequency distribution depended on tube length but not on tube diameter. The angle of the phase-frequency plot correlated well with the length of the tube and was independent of its diameter. A 90 degrees bend in the tube had no effect on its sound transmission. Increasing the circuit pressure above ambient modified the frequency response only if volume changes occurred in the test lung. When used to conduct sound into the respiratory system an ET affects the incident signal predictably depending on its length and diameter but not on its curvature or circuit pressure.

  11. Gauge Invariant Cosmological Perturbation Theory

    CERN Document Server

    Durrer, R

    1993-01-01

    After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...

  12. Technicolor and Lattice Gauge Theory

    CERN Document Server

    Chivukula, R Sekhar

    2010-01-01

    Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories

  13. Gauge Trimming of Neutrino Masses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  14. Leptogenesis and neutral gauge bosons

    CERN Document Server

    Heeck, Julian

    2016-01-01

    We consider low-scale leptogenesis via right-handed neutrinos $N$ coupled to a $Z'$ boson, with gauged $U(1)_{B-L}$ as a simple realization. Keeping the neutrinos sufficiently out of equilibrium puts strong bounds on the $Z'$ coupling strength and mass, our focus being on light $Z'$ and $N$, testable in the near future by SHiP, HPS, Belle II, and at the LHC. We show that leptogenesis could be robustly falsified in a large region of parameter space by the double observation of $Z'$ and $N$, e.g. in the channel $pp\\to Z' \\to NN$ with displaced $N$-decay vertex, and by several experiments searching for light $Z'$, according to the mass of $N$.

  15. Gauge Theory and Langlands Duality

    CERN Document Server

    Frenkel, Edward

    2009-01-01

    The Langlands Program was launched in the late 60s with the goal of relating Galois representations and automorphic forms. In recent years a geometric version has been developed which leads to a mysterious duality between certain categories of sheaves on moduli spaces of (flat) bundles on algebraic curves. Three years ago, in a groundbreaking advance, Kapustin and Witten have linked the geometric Langlands correspondence to the S-duality of 4D supersymmetric gauge theories. This and subsequent works have already led to striking new insights into the geometric Langlands Program, which in particular involve the Homological Mirror Symmetry of the Hitchin moduli spaces of Higgs bundles on algebraic curves associated to two Langlands dual Lie groups.

  16. A new approach to radial and axial gauges

    Science.gov (United States)

    Weigert, Heribert; Heinz, Ulrich

    1992-03-01

    We develop a new path integral formulation of QCD in radial and axial gauges. This formalism yields free propagators which are free of gauge poles. We find that radial gauges are ghost free. In axial gauges ghosts cannot generally be excluded from the formalism due to the need to fix the residual gauge freedom.

  17. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Brandon [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  18. Gauge Choice in Conformal Gravity

    Science.gov (United States)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-01-01

    In a recent paper (MNRAS 458, 4122 (2016)) K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity (CG), and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length scale, the equivalent Higgs-frame Mannheim-Kazanas metric tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note we point out that the representation of the Mannheim-Kazanas metric in a gauge where it lacks the linear term has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  19. Towards the natural gauge mediation

    Science.gov (United States)

    Ding, Ran; Li, Tianjun; Wang, Liucheng; Zhu, Bin

    2015-10-01

    The sweet spot supersymmetry (SUSY) solves the μ/ B μ problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the μ-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the μ/ B μ -problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The fine-tuning measure can be as low as 100. For some benchmark points, the stop mass can be as low as 1.7 TeV while the glunio mass is around 2.5 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.

  20. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  1. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  2. New Binomial Bent Function over the Finite Fields of Odd Characteristic

    CERN Document Server

    Helleseth, Tor

    2009-01-01

    The $p$-ary function $f(x)$ mapping $\\mathrm{GF}(p^{4k})$ to $\\mathrm{GF}(p)$ given by $f(x)={\\rm Tr}_{4k}\\big(x^{p^{3k}+p^{2k}-p^k+1}+x^2\\big)$ is proven to be a weakly regular bent function and the exact values of its Walsh transform coefficients are found. The proof is based on a few new results in the area of exponential sums and polynomials over finite fields that may also be interesting as independent problems.

  3. Amber Clifford-Napoleone, Queerness in heavy metal music: metal bent

    OpenAIRE

    Hill, Rosemary Lucy

    2016-01-01

    Metal Bent is an important book that sheds new light on the topic of gender and sexuality in metal music. Its aims are to queer metal and reconfigure discussion of the genre around gender and sexuality, and to move on from thinking about metal as just for “the straight boys” (3). These aims are achieved through a discussion of the style and media coverage of various musicians, and the results of a survey and interviews with queer metal fans. Central are the assertions that metal is queer and ...

  4. Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals

    CERN Document Server

    Scandale, Walter; Baricordi, S; Dalpiaz, P; Fiorini, M; Guidi, V; Mazzolari, A; Della Mea, G; Milan, R; Ambrosi, G; Zuccon, P; Bertucci, B; Bürger, W; Duranti, M; Cavoto, G; Santacesaria, R; Valente, P; Luci, C; Iacoangeli, F; Vallazza, E; Afonin, A G; Chesnokov, Yu A; Kotov, V I; Maisheev, V A; Yazynin, I A; Kovalenko, A D; Taratin, A M; Denisov, A S; Gavrikov, Y A; Ivanov, Yu M; Lapina, L P; Malyarenko, L G; Skorogobogatov, V V; Suvorov, V M; Vavilov, S A; Bolognini, D; Hasan, S; Mozzanica, A; Prest, M

    2009-01-01

    The interactions of 400 GeV protons with different sequences of bent silicon crystals have been investigated at the H8 beam line of the CERN Super Proton Synchrotron. The multiple volume reflection of the proton beam has been studied in detail on a five-crystal reflector measuring an angular beam deflection =52.96±0.14 µrad. The efficiency was found larger than 80% for an angular acceptance at the reflector entrance of 70 µrad, with a maximal efficiency value of =0.90±0.01±0.03.

  5. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    Science.gov (United States)

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  6. 27 CFR 19.319 - Production gauge.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production gauge. 19.319... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.319 Production gauge. (a) General... production is completed. Except as otherwise specifically provided in this section, quantities may be...

  7. Gauge coupling unification with extra Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Junpei [Research Center for Higher Education, Health Sciences University of Hokkaido (Japan)

    2016-06-15

    Gauge coupling unification is studied within the framework where there are extra Higgs doublets and E{sub 6} exotic fields. Supersymmetric models and nonsupersymmetric models are investigated, and a catalog of models with gauge coupling unification is presented. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Anomalous coupling of scalars to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre

    2010-10-15

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  9. Lectures on quantization of gauge systems

    NARCIS (Netherlands)

    Reshetikhin, N.; Booß-Bavnbek, B.; Esposito, G.; Lesch, M.

    2010-01-01

    A gauge system is a classical field theory where among the fields there are connections in a principal G-bundle over the space - time manifold and the classical action is either invariant or transforms appropriately with respect to the action of the gauge group. The lectures are focused on the path

  10. Gauge Invariance for the Massive Axion

    CERN Document Server

    Arias, P J; Arias, Pio Jose; Khoudeir, Adel

    1997-01-01

    A massive gauge invariant formulation for scalar ($\\phi$) and antisymmetric ($C_{mnp}$) fields with a topological coupling, which provides a mass for the axion field, is considered. The dual and local equivalence with the non-gauge invariant proposal is established, but on manifolds with non-trivial topological structure both formulations are not globally equivalent.

  11. 77 FR 31894 - Portable Gauge Licenses

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Portable Gauge Licenses AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for... guidance for portable gauge licensees. The NRC is requesting public comment on NUREG-1556, Volume 1...- 4737, or by email to pdr.resource@nrc.gov . The NUREG-1556, Volume 1, Revision 2, is under...

  12. Superfield quantization of general gauge theories

    CERN Document Server

    Lavrov, P M

    1995-01-01

    A superfield version on superspace (x^\\mu,\\theta^a) is proposed for the Sp(2)-- covariant Lagrangian quantization of general gauge theories. The BRST- and antiBRST- transformations are realized on superfields as supertranslations in the \\theta^a-- directions. A new (geometric) interpretation of the Ward identities in the quantum gauge theory is given.

  13. Gauged supergravities from Bianchi's group manifolds

    NARCIS (Netherlands)

    Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D

    2004-01-01

    We construct maximal D = 8 gauged supergravities by the reduction of D = I I supergravity over three-dimensional group manifolds. Such manifolds are classified into two classes, A and B, and eleven types. This Bianchi classification carries over to the gauged supergravities. The class A theories hav

  14. Motion in gauge theories of gravity

    CERN Document Server

    Tresguerres, Romualdo

    2012-01-01

    A description of motion is proposed, adapted to the composite bundle interpretation of Poincar\\'e Gauge Theory. Reference frames, relative positions and time evolution are characterized in gauge-theoretical terms. The approach is illustrated by an appropriate formulation of the familiar example of orbital motion induced by Schwarzschild spacetime.

  15. Perturbative analysis of gauged matrix models

    Science.gov (United States)

    Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun

    2003-08-01

    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models).

  16. Perturbative Analysis of Gauged Matrix Models

    CERN Document Server

    Dijkgraaf, R; Kazakov, V A; Vafa, C; Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun

    2003-01-01

    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that non-perturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model/gauge theory (even though in some of these cases the exact answer can also be obtained by summing up planar diagrams of matrix models).

  17. Testing gauge-invariant perturbation theory

    CERN Document Server

    Törek, Pascal

    2016-01-01

    Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...

  18. Gauged/Massive Supergravities in Diverse Dimensions

    CERN Document Server

    Alonso-Alberca, N; Alonso-Alberca, Natxo; Ortin, Tomas

    2003-01-01

    We show how massive/gauged maximal supergravities in 11-n dimensions with SO(n-l,l) gauge groups (and other non-semisimple subgroups of Sl(n,R)) can be systematically obtained by dimensional reduction of ``massive 11-dimensional supergravity''. This series of massive/gauged supergravities includes, for instance, Romans' massive N=2A,d=10 supergravity for n=1, N=2,d=9 SO(2) and SO(1,1) gauged supergravities for n=2, and N=8,d=5 SO(6-l,l) gauged supergravity. In all cases, higher p-form fields get masses through the Stuckelberg mechanism which is an alternative to self-duality in odd dimensions.

  19. Symplectic gauge fields and dark matter

    CERN Document Server

    Asorey, J; Garcia-Alvarez, D

    2015-01-01

    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.

  20. Symplectic gauge fields and dark matter

    Science.gov (United States)

    Asorey, J.; Asorey, M.; García-Álvarez, D.

    2015-11-01

    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin-3 gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.

  1. GEANT simulation of the $\\gamma$ nuclear gauge

    CERN Document Server

    Ouardi, A; Benchekroun, D; Hoummada, A

    2003-01-01

    The gamma nuclear gauging technique used for monitoring the sediment load suspended in water, is based on the detection of gamma rays emitted by a radioactive source. The GEANT321 Monte Carlo simulation tool, originally developed at CERN for high energy physics experiments, is used for the evaluation and calibration of gamma nuclear gauges. A set of parameters, principally the source energy, the source-detector separation, the lead block thickness and the energy threshold below which the sediments elemental composition affects the measurement or the energy corresponding to the Compton and photoelectric windows separation, are discussed and evaluated in the case of the gamma scattering gauge. For the gamma transmission gauge, the GEANT321 code has been used to define the optimal source detector distance interval, particularly for the Moroccan sediment samplers, and to check the influence of the radionuclide existing in the suspension, on the gauge response accuracy. Experimental calibration was also carried ou...

  2. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  3. Gauge-Invariant Formulation of Circular Dichroism.

    Science.gov (United States)

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.

  4. On unification of gravity and gauge interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [Physics Department, American University of Beirut,Beirut (Lebanon); Institut des Hautes Études Scientifiques (I.H.E.S.),F-91440 Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University,Theresienstr. 37, 80333 Munich (Germany)

    2016-03-04

    Considering a higher dimensional Lorentz group as the symmetry of the tangent space, we unify gravity and gauge interactions in a natural way. The spin connection of the gauged Lorentz group is then responsible for both gravity and gauge fields, and the action for the gauged fields becomes part of the spin curvature squared. The realistic group which unifies all known particles and interactions is the SO(1,13) Lorentz group whose gauge part leads to SO(10) grand unified theory and contains double the number of required fermions in the fundamental spinor representation. We briefly discuss the Brout-Englert-Higgs mechanism which breaks the SO(1,13) symmetry first to SO(1,3)×SU(3)×SU(2)×U(1) and further to SO(1,3)×SU(3)×U(1) and gives very heavy masses to half of the fermions leaving the others with light masses.

  5. Gauge Invariant Perturbations of the Schwarzschild Spacetime

    CERN Document Server

    Chen, Hector; Whiting, Bernard F

    2016-01-01

    Beginning with the pioneering work of Regge and Wheeler (Phys. Rev. 108, 1957), there have been many studies of perturbations away from the Schwarzschild spacetime background. In particular several authors (e.g. Moncrief, Ann. Phys 88, 1974) have investigated gauge invariant quantities of the Regge-Wheeler (RW) gauge. Steven Detweiler also investigated perturbations of Schwarzschild in his own gauge, which he denoted the "easy (EZ) gauge", and which he was in the process of adapting for use in the second-order self-force problem. We present here a compilation of some of his working results, arising from notes for which there seems to have been no manuscript in preparation. In particular, we list the gauge invariant quantities used by Detweiler, as well as explain the process by which he found them.

  6. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger-Dyson Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; WANG Qing

    2008-01-01

    @@ Gauge covariance for Green's functions of a gauge theory through a fermion propagator in the presence of arbitrary external gauge field is proven and a formalism of gauge and Lorentz covariant Schwinger-Dyson equation for the fermion propagator with external gauge field is built up within ladder approximation.

  7. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  8. Infrared scaling solutions beyond the Landau gauge: The maximally Abelian gauge and Abelian infrared dominance

    CERN Document Server

    Huber, Markus Q; Schwenzer, Kai

    2011-01-01

    Functional equations like exact renormalization group and Dyson-Schwinger equations have contributed to a better understanding of non-perturbative phenomena in quantum field theories in terms of the underlying Green functions. In Yang-Mills theory especially the Landau gauge has been used, as it is the most accessible gauge for these methods. The growing understanding obtained in this gauge allows to proceed to other gauges in order to obtain more information about the relation of different realizations of the confinement mechanism. In the maximally Abelian gauge first results are very encouraging as a variant of Abelian infrared dominance is found: The Abelian part of the gauge field propagator is enhanced at low momenta and thereby dominates the dynamics in the infrared. Its role is therefore similar to that of the ghost propagator in the Landau gauge, where one denotes the corresponding phenomenon as ghost dominance. Also the ambiguity of two different types of solutions (decoupling and scaling) exists in ...

  9. Gauge dependence of the fermion quasiparticle poles in hot gauge theories

    Science.gov (United States)

    Wang, Shang-Yung

    2004-09-01

    The gauge dependence of the complex fermion quasiparticle poles corresponding to soft collective excitations is studied in hot gauge theories at one-loop order and next-to-leading order in the high-temperature expansion, with a view towards going beyond the leading order hard thermal loops and resummations thereof. We find that for collective excitations of momenta k˜eT the dispersion relations are gauge independent, but the corresponding damping rates are gauge dependent. For k≪eT and in the k→0 limit, both the dispersion relations and the damping rates are found to be gauge dependent. The gauge dependence of the position of the complex quasiparticle poles signals the need for resummation. Possible cancellation of the leading gauge dependence at two-loop order in the case of QED is briefly discussed.

  10. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials.

    Science.gov (United States)

    Filipov, Evgueni T; Tachi, Tomohiro; Paulino, Glaucio H

    2015-10-06

    Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a "zipper" fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.

  11. 49 CFR 230.42 - Location of gauges.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which...

  12. Gauge Fixing Invariance and Anti-BRST Symmetry

    CERN Document Server

    Varshovi, Amir Abbass

    2016-01-01

    It is shown that anti-BRST invariance in quantum gauge theories can be considered as the quantized version of the symmetry of classical gauge theories with respect to different gauge fixing mechanisms.

  13. Hologram recording tubes

    Science.gov (United States)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  14. Acoplamiento pelágico-bentónico: respuesta de la zona bentónica profunda a la sedimentación del florecimiento invernal de diatomeas en el lago oligotrófico Alchichica, Puebla, México

    OpenAIRE

    Javier Alcocer; Elva Escobar; Luis A. Oseguera

    2008-01-01

    El objetivo del presente estudio es reconocer la existencia de un acoplamiento pelágico-bentónico en el lago oligotrófico tropical Alchichica evaluando la respuesta de la zona bentónica profunda a la sedimentación del florecimiento invernal de diatomeas. Se midió la biomasa fitoplanctónica en la columna de agua a lo largo de un ciclo anual, al igual que la concentración de clorofila a sedimentaria. Alchichica es un lago monomíctico cálido con un periodo de circulación invernal y estratificaci...

  15. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    Science.gov (United States)

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology.

  16. Immunogold-silver staining (IGSS) based U-bent fiberoptic sandwich biosensor

    Science.gov (United States)

    Ramakrishna, B.; Sai, V. V. R.

    2016-11-01

    An evanescent wave absorbance (EWA) based U-bent fiberoptic sandwich immunobiosensor with human IgG detection limits of 6.67 fM (1 pg/ml of human IgG) and 66.7 aM (10 fg/ml of HIgG) is demonstrated by exploiting immunogold labels and subsequently silver enhancement respectively. Such very low detection limits were achieved with the help of enhanced evanescent filed at the bend region of U-bent optical fiber probe that allows efficient interaction of light with 40 nm immunogold labels on the probe surface resulting in measurable optical absorbance changes. The other significant advantages of the demonstrated sensing scheme are low cost optoelectronic instrumentation consisting of an commercial green LED and a photodetector (S150C, Thorlabs Inc.), small volumes of sample and immunogold reagent each of 25 μl and rapid detection in 20 min. These results from the plasmonic fiberoptic biosensor demonstrate its huge potential for development of point-of-care diagnostic devices for sensitive and rapid detection of analytes.

  17. Experimentally determining the relative efficiency of spherically bent germanium and quartz crystals

    Science.gov (United States)

    Brown, G. V.; Beiersdorfer, P.; Hell, N.; Magee, E.

    2016-11-01

    We have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (10 1 ¯ 1) crystal (2d = 6.687 Å) and a spherically bent germanium (111) crystal (2d = 6.532 Å). L-shell X-ray photons from highly charged molybdenum ions generated in EBIT-I were simultaneously focussed and Bragg reflected by each crystal, both housed in a single spectrometer, onto a single CCD X-ray detector. The flux from each crystal was then directly compared. Our results show that the germanium crystal has a reflection efficiency significantly better than the quartz crystal, however, the energy resolution is significantly worse. Moreover, we find that the spatial focussing properties of the germanium crystal are worse than those of the quartz crystal. Details of the experiment are presented, and we discuss the advantages of using either crystal on a streak-camera equipped OHREX spectrometer.

  18. Bent Polytypic ZnSe and CdSe Nanowires Probed by Photoluminescence.

    Science.gov (United States)

    Kim, Yejin; Im, Hyung Soon; Park, Kidong; Kim, Jundong; Ahn, Jae-Pyoung; Yoo, Seung Jo; Kim, Jin-Gyu; Park, Jeunghee

    2017-05-01

    Nanowires (NWs) have witnessed tremendous development over the past two decades owing to their varying potential applications. Semiconductor NWs often contain stacking faults due to the presence of coexisting phases, which frequently hampers their use. Herein, it is investigated how stacking faults affect the optical properties of bent ZnSe and CdSe NWs, which are synthesized using the vapor transport method. Polytypic zinc blende-wurtzite structures are produced for both these NWs by altering the growth conditions. The NWs are bent by the mechanical buckling of poly(dimethylsilioxane), and micro-photoluminescence (PL) spectra were then collected for individual NWs with various bending strains (0-2%). The PL measurements show peak broadening and red shifts of the near-band-edge emission as the bending strain increases, indicating that the bandgap decreases with increasing the bending strain. Remarkably, the bandgap decrease is more significant for the polytypic NWs than for the single phase NWs. This work provides insights into flexible electronic devices of 1D nanostructures by engineering the polytypic structures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the discrete spectrum of the Dirac operator on bent chain quantum graph

    Directory of Open Access Journals (Sweden)

    Belov Michail

    2017-01-01

    Full Text Available We study Dirac operators on an infinite quantum graph of a bent chain form which consists of identical rings connected at the touching points by δ-couplings with a parameter α ∈ ℝ. We are interested in the discrete spectrum of the corresponding Hamiltonian. It can be non-empty due to a local (geometrical perturbation of the corresponding infinite chain of rings. The quantum graph of analogous geometry with the Schrodinger operator on the edges was considered by Duclos, Exner and Turek in 2008. They showed that the absence of δ-couplings at vertices (i.e. the Kirchhoff condition at the vertices lead to the absence of eigenvalues. We consider the relativistic particle (the Dirac operator instead of the Schrodinger one but the result is analogous. Quantum graphs of such type are suitable for description of grapheme-based nanostructures. It is established that the negativity of α is the necessary and sufficient condition for the existence of eigenvalues of the Dirac operator (i.e. the discrete spectrum of the Hamiltonian in this case is not empty. The continuous spectrum of the Hamiltonian for bent chain graph coincides with that for the corresponding straight infinite chain. Conditions for appearance of more than one eigenvalue are obtained. It is related to the bending angle. The investigation is based on the transfer-matrix approach. It allows one to reduce the problem to an algebraic task. δ-couplings was introduced by the operator extensions theory method.

  20. The High-redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey: The Spitzer Catalog

    Science.gov (United States)

    Paterno-Mahler, R.; Blanton, E. L.; Brodwin, M.; Ashby, M. L. N.; Golden-Marx, E.; Decker, B.; Wing, J. D.; Anand, G.

    2017-07-01

    We present 190 galaxy cluster candidates (most at high redshift) based on galaxy overdensity measurements in the Spitzer/IRAC imaging of the fields surrounding 646 bent, double-lobed radio sources drawn from the Clusters Occupied by Bent Radio AGN (COBRA) Survey. The COBRA sources were chosen as objects in the Very Large Array FIRST survey that lack optical counterparts in the Sloan Digital Sky Survey to a limit of m r = 22, making them likely to lie at high redshift. This is confirmed by our observations: the redshift distribution of COBRA sources with estimated redshifts peaks near z = 1 and extends out to z≈ 3. Cluster candidates were identified by comparing our target fields to a background field and searching for statistically significant (≥slant 2σ ) excesses in the galaxy number counts surrounding the radio sources; 190 fields satisfy the ≥slant 2σ limit. We find that 530 fields (82.0%) have a net positive excess of galaxies surrounding the radio source. Many of the fields with positive excesses but below the 2σ cutoff are likely to be galaxy groups. Forty-one COBRA sources are quasars with known spectroscopic redshifts, which may be tracers of some of the most distant clusters known.

  1. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    Science.gov (United States)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  2. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M. J. [NSTec; Wu, M. [SNL; Jacoby, K. D. [NSTec; Loisel, G. P. [SNL

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  3. New results from the CERN-SPS beam deflection experiments with bent crystals

    Science.gov (United States)

    Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Møller, S. P.; Worm, T.; Uggerhøj, E.; Mikkelsen, U.; Graftström, P.; Gatignon, L.; Elsener, K.; Doble, N.; Biino, C.; Freund, A.; Vilakazi, Z.; Hage-Ali, M.; Siffert, P.; Clément, M.

    1996-10-01

    Results from five distinct bending experiments performed recently in the H8 beam at CERN are presented. Firstly, deflection of a positive pion beam at 200 GeV/c is compared to the "standard" 450-GeV/c proton beam for a bending angle of 3.1 mrad along the (111) plane in a 50 mm silicon crystal. Second, deflection of negative pions at 200 GeV/c is investigated for the same crystal, for incidence along the (111) plane as well as the axis. Small deflection effects are seen, but no negative particles are bent through the full bending angle of the crystal. Third, the first results from beam deflection at high energy using a germanium crystal are shown. Slightly higher deflection efficiencies than for silicon are seen for large bending angles, but significantly smaller than expected for such a crystal with higher atomic number. Fourth, deflection efficiencies using a strongly irradiated silicon crystal have been measured for the first time, and a small reduction in efficiency is seen in the irradiated region. Finally, deflection of positive particles using axial alignment of a bent silicon crystal has been investigated at 450 GeV/c. Qualitatively similar behaviour as in previous experiments at 12 GeV/c is seen; the beam splits into several beams corresponding to the different planes, and even weak planes are observed.

  4. Bent π-conjugated systems composed of three-dimensional benzoannulenes.

    Science.gov (United States)

    Nishiuchi, Tomohiko; Iyoda, Masahiko

    2015-02-01

    This article describes bent π-conjugated systems composed of alternating o-phenylene and Z-vinylene units. all-Z-[n]Benzo[4n]annulenes are higher homologues of dibenzocyclooctatetraene (DBCOT) with a concave π system, and attempts were made to convert [20]- and [24]annulenes having partial belt structures of fullerenes and carbon nanotubes into [10]- and [12]phenacenes. A bent π-conjugated system composed of two DBCOT units showed dynamic syn-anti equilibrium in solution and behaved as dynamic molecular tweezers (DMTs). The syn isomers of the DMTs formed blue charge-transfer complexes with DDQ in solution, and this complexation and color change were applied to thermochromism. Furthermore, DMTs having two CN groups on each COT ring exhibited crystalline-state emission in the presence of solvent molecules, although almost no emission was observed in solution or the solid state. Based on this crystalline-state emission, a vapochromic system was established. The multifunctional properties of DMTs caused by the flexibility of the nonplanar π system are summarized.

  5. Bent silicon crystals for the LHC collimation Studies with an ultrarelativistic proton beam

    CERN Document Server

    Hasan, Said; Scandale, Walter; Vallazza, Erik

    2007-01-01

    LHC is a source of new challenges in every HEP field; among these, the beam collimation requires an innovative approach. The H8RD22 collaboration is undertaking an intense study of bent crystal properties with the goal of using crystals as primary collimators. The thesis gives an introduction to the theory of channeling and its related phenomena in bent crystals explaining how these can be used to perform an efficient beam collimation. The pre-thesis experiments are described to introduce the scientific context in which the H8RD22 collaboration is working. The thesis core is the description of two beam tests held in Sept. 2006 and May 2007 on the CERN SPS H8 beamline with 400 GeV/c protons: the experimental setups and procedures are shown together with the analysis of the collected data. With the observation of the volume reflection for the first time at these energies and the use of multi crystal systems, these experiments are a clear indication that crystal collimation is a real possibility for the second p...

  6. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Arduini, G.; Biino, C.; Clement, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafstroem, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E. [SL Division, CERN, CH-1211 Geneva 23 (Switzerland); Mo/ller, S.P.; Uggerho/j, E. [ISA, Aarhus University (Denmark); Taratin, A. [JINR, Dubna (Russia); Freund, A. [ESRF, Grenoble (France); Keppler, P.; Major, J. [MPI fuer Metallforschung, Stuttgart (Germany)

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb{sup 82+} ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c , by means of a bent crystal are reported. Deflection efficiencies are as high as 14{percent}, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c -per-charge Pb{sup 82+} (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10{percent} was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams. {copyright} {ital 1997} {ital The American Physical Society}

  7. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    Science.gov (United States)

    Arduini, G.; Biino, C.; Clément, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafström, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Møller, S. P.; Uggerhøj, E.; Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb82+ ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c-per-charge Pb82+ \\(22 TeV/c\\) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  8. Deflection and extraction of Pb ions up to 33 TeV/c by a bent silicon crystal

    CERN Document Server

    Arduini, Gianluigi; Clément, M; Cornelis, Karel; Doble, Niels T; Elsener, K; Ferioli, G; Fidecaro, Giuseppe; Freund, A; Gatignon, L; Grafström, P; Gyr, Marcel; Herr, Werner; Keppler, P; Klem, J T; Major, J V; Mikkelsen, U; Møller, S P; Taratin, A M; Uggerhøj, Erik; Weisse, E

    1997-01-01

    The first results from an experiment to deflect a beam of fully stripped, ulta-relativistic Pb ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical predictions. In a second experiment a bent crsytal was used to extract 270 GeV/c per charge Pb82+ (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  9. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  10. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  11. Wavy tube heat pumping

    Energy Technology Data Exchange (ETDEWEB)

    Haldeman, C. W.

    1985-12-03

    A PVC conduit about 4'' in diameter and a little more than 40 feet long is adapted for being seated in a hole in the earth and surrounds a coaxial copper tube along its length that carries Freon between a heat pump and a distributor at the bottom. A number of wavy conducting tubes located between the central conducting tube and the wall of the conduit interconnect the distributor with a Freon distributor at the top arranged for connection to the heat pump. The wavy conducting tubing is made by passing straight soft copper tubing between a pair of like opposed meshing gears each having four convex points in space quadrature separated by four convex recesses with the radius of curvature of each point slightly less than that of each concave recess.

  12. New Mechanism for Mass Generation of Gauge Field

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2001-01-01

    A new mechanism for mass generation of gauge field is discussed in this paper.By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations,the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian.This model is a renormalizable quantum model.

  13. New Mechanism for Mass Generation of Gauge Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2001-01-01

    A new mechanism for mass generation of gauge field is discussed in this paper. By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations, the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian. This model is a renormalizable quantum model.

  14. Lattice gauge theories and spin models

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2016-10-01

    The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.

  15. Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    Wu Jian; Lü Xue-Qin; Jin Peng; Meng Xian-Quan; Wang Zhan-Guo

    2011-01-01

    A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.

  16. The Influence of Radiation Damage on the Deflection of High-Energy Beams in Bent Silicon Crystals

    CERN Document Server

    Biino, C; Doble, Niels T; Elsener, K; Gatignon, L; Grafström, P; Mikkelsen, U; Kirsebom, K; Møller, S P; Uggerhøj, Erik; Worm, T

    1996-01-01

    Experimental results obtained for deflection of 450 GeV/c protons channeling along the {111} planes in a bent, strongly irradiated silicon crystal are presented. A comparison between the deflection efficiencies in irradiated areas and non-irradiated areas in the crystal shows that irradiation by 2.4 · 1020 protons/cm2 leads to a reduction of around 30 % in deflection efficiency. As a consequence, beam-splitting and extraction from an accelerator by means of a bent crystal are feasible solutions at high energies even for intense beams and during long periods.

  17. Gauge mediation with light stops

    CERN Document Server

    Delgado, Antonio; Quiros, Mariano

    2015-01-01

    The mechanism of gauge mediated supersymmetry breaking (GMSB) solves the supersymmetric flavor problem although it requires superheavy stops to reproduce the experimental value (125 GeV) of the Higgs mass. A possible way out is to extend the MSSM Higgs sector with triplets which provide extra tree-level corrections to the Higgs mass. Triplets with neutral components getting vacuum expectation values (VEV) have the problem of generating a tree-level correction to the \\rho parameter. We introduce supersymmetric triplets with hypercharges Y=(0,\\pm 1), with a tree-level custodial SU(2)_L\\otimes SU(2)_R global symmetry in the Higgs sector protecting the \\rho parameter: a supersymmetric generalization of the Georgi-Machacek model. The renormalization group running from the messenger to the electroweak scale mildly breaks the custodial symmetry. We will present realistic low-scale scenarios, their main features being a Bino-like neutralino or right-handed stau as the NLSP, light (1 TeV) stops, exotic couplings (H^\\p...

  18. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  19. What Are Neural Tube Defects?

    Science.gov (United States)

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on social media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects are ...

  20. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    Directory of Open Access Journals (Sweden)

    Nanshu Lu

    2013-07-01

    Full Text Available Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed.

  1. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  2. Softly Broken Supersymmetric Gauge Theories through Compactifications

    CERN Document Server

    Takenaga, K

    1998-01-01

    Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.

  3. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  4. Domain wall solutions with Abelian gauge fields

    CERN Document Server

    Rozowsky, J S; Wali, K C

    2004-01-01

    We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian gauge fields in a Lagrangian that has $U(1)\\times U(1)$ gauge plus $\\mathbb{Z}_2$ discrete symmetry. We find consistent solutions such that while the U(1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.

  5. Singlet deflected anomaly/gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Blas, J. de, E-mail: jdeblasm@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Delgado, A., E-mail: antonio.delgado@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2012-02-28

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the {mu}-b{sub {mu}} problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.

  6. Gauge Field Optics with Anisotropic Media

    CERN Document Server

    Liu, Fu

    2014-01-01

    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

  7. Thermal variational principle and gauge fields

    CERN Document Server

    Schröder, Y

    1996-01-01

    A Feynman--Jensen version of the thermal variational principle is applied to hot gauge fields, abelian as well as nonabelian\\,: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g^2 studied and for scalar ED) after a reformulation of the partition function such that it depends on only even powers of the gauge field. This way, however, the potential non-perturbative power of the calculus seems to be ruined.

  8. Precision gauge unification in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Raby, Stuart, E-mail: raby@pacific.mps.ohio-state.ed [Department of Physics, Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Ratz, Michael, E-mail: mratz@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schmidt-Hoberg, Kai, E-mail: kai.schmidt-hoberg@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2010-04-19

    We discuss the issue of precision gauge unification in the MSSM. We find that a comparably light gluino, as it emerges in certain patterns of soft supersymmetry breaking, can be a key ingredient for ensuring precision gauge unification without relying on the presence of extra particles around the scale of grand unification. In particular, the so-called mirage pattern for gaugino masses can naturally lead to precision gauge unification. There is also an interesting correlation with reduced fine-tuning, due to rather light gluinos.

  9. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  10. Metric Gauge Fields in Deformed Special Relativity

    CERN Document Server

    Cardone, F; Petrucci, A

    2014-01-01

    We show that, in the framework of Deformed Special Relativity (DSR), namely a (four-dimensional) generalization of the (local) space-time struc- ture based on an energy-dependent "deformation" of the usual Minkowski geometry, two kinds of gauge symmetries arise, whose spaces either coin- cide with the deformed Minkowski space or are just internal spaces to it. This is why we named them "metric gauge theories". In the case of the internal gauge ?elds, they are a consequence of the deformed Minkowski space (DMS) possessing the structure of a generalized Lagrange space. Such a geometrical structure allows one to de?ne curvature and torsion in the DMS.

  11. Casimir Energy in Non-Covariant Gauges

    CERN Document Server

    Esposito, G; Kirsten, K; Esposito, Giampiero; Kamenshchik, Alexander Yu.; Kirsten, Klaus

    2002-01-01

    The zero-point energy of a conducting spherical shell is studied by imposing the axial gauge via path-integral methods, with boundary conditions on the electromagnetic potential and ghost fields. The coupled modes are then found to be the temporal and longitudinal modes for the Maxwell field. The resulting system can be decoupled by studying a fourth-order differential equation with boundary conditions on longitudinal modes and their second derivatives. Complete agreement is found with a previous path-integral analysis in the Lorenz gauge, and with Boyer's value. This investigation leads to a better understanding of how gauge independence is achieved in quantum field theory on backgrounds with boundary.

  12. Lorentz gauge quantization in synchronous coordinates

    CERN Document Server

    Garner, Christopher

    2016-01-01

    It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-Bleuler approach fails in general in non-static space-times. More recently, however, the Dirac method of quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in conformally flat space-times. In this paper we generalize this result by using Dirac's method to impose the Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.

  13. Gauge theory of phase and scale

    OpenAIRE

    PAW\\LOWSKI, Marek

    1999-01-01

    Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge theory from consid...

  14. On the properties of the vacuum expectation value in $R_{\\xi }$ gauge and $\\overline{R_{\\xi }}$ gauge

    CERN Document Server

    Kim, Chungku

    2015-01-01

    We have investigated the gauge dependence of the vacuum expectation value(VEV) both in the $R_{\\xi }$ and the $\\overline{R_{\\xi }}$ gauge in the $\\overline{MS}$ scheme. We have found that, in case of the $R_{\\xi }$ gauge, the gauge dependence of the VEV should be modified due to the presence of the parameter in the gauge function that should be identified as a VEV in the broken symmetry phase. However the pole mass remains gauge independent.

  15. The Signs B [Image Omitted] and B-Bent [Image Omitted] in Israeli Sign Language According to the Theory of Phonology as Human Behavior

    Science.gov (United States)

    Fuks, Orit; Tobin, Yishai

    2008-01-01

    The purpose of the present research is to examine which of the two factors: (1) the iconic-semiotic factor; or (2) the human-phonetic factor is more relevant in explaining the appearance and distribution of the hand shape B-bent in Israeli Sign Language (ISL). The B-bent shape has been the subject of much attention in sign language research…

  16. Linear b-Gauges for Open String Fields

    CERN Document Server

    Kiermaier, Michael; Zwiebach, Barton

    2008-01-01

    Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge.

  17. Linear b-gauges for open string fields

    Science.gov (United States)

    Kiermaier, Michael; Sen, Ashoke; Zwiebach, Barton

    2008-03-01

    Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge.

  18. Isolated Fallopian Tube Torsion

    Directory of Open Access Journals (Sweden)

    S. Kardakis

    2013-01-01

    Full Text Available Isolated torsion of the Fallopian tube is a rare gynecological cause of acute lower abdominal pain, and diagnosis is difficult. There are no pathognomonic symptoms; clinical, imaging, or laboratory findings. A preoperative ultrasound showing tubular adnexal masses of heterogeneous echogenicity with cystic component is often present. Diagnosis can rarely be made before operation, and laparoscopy is necessary to establish the diagnosis. Unfortunately, surgery often is performed too late for tube conservation. Isolated Fallopian tube torsion should be suspected in case of acute pelvic pain, and prompt intervention is necessary.

  19. Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry

    CERN Document Server

    Luo, Xi

    2016-01-01

    The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.

  20. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.

    Science.gov (United States)

    Fresvig, T; Ludvigsen, P; Steen, H; Reikerås, O

    2008-01-01

    Strain gauges are currently the default method for measuring deformation in bone. Strain gauges are not well suited for in vivo measurements because of their size and because they are difficult to use in bone. They are also unsuitable for repeated measurements over time since they cannot be left in the patient. The optical Bragg grating fibres behave like selective filters of light. As a result the structure will transmit most wavelengths of light, but will reflect certain specific wavelengths. If the Bragg grating is strained along the fibre axis, the wavelength will shift, and this change represents a measure of strain. The optical fibres are very thin, no thicker than a standard surgical suture and are easy to adhere to bone by use of the FDA approved polymethyl-methacrylate (PMMA) as bonding adhesive. Since they are made of biocompatible silica porous bioglass ceramics, it should also be possible to leave the fibres in the patient between and after measurements. We have shown that fibre optic Bragg grating sensors can be used as a measurement tool for bone strain by performing measurements both on an acryl tube and on an extracted sample of human femur diaphysis. On either of them we used four fibre optic sensors and four strain gauges, interspersed at every 45 degrees around the circumference. The standard deviation of the measurements on the acrylic tube for each of the sensors, both optical fibres and strain gauges, varied from 1.0 to 5.2%. Every sensor, both optical fibre and strain gauge, correlated significantly with all of the rest at the 0.01 level with a Pearson correlation coefficient r ranging from 0.986 to 1.0. The linearity for all of the sensors versus load was excellent, the lowest linearity of the eight sensors was 0.996 as expressed by r(2) (coefficient of determination), with no significant difference in linearity between optical fibres and strain gauges. Bone is not an ideal isotropic material, and we found that the strain readings of the

  1. Topological gauge theories and group cohomology

    Science.gov (United States)

    Dijkgraaf, Robbert; Witten, Edward

    1990-04-01

    We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H 4( BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H 3( G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H 4( BG, Z) to H 3( G, Z). We generalize this correspondence to topological “spin” theories, which are defined on three manifolds with spin structure, and are related to what might be called Z 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.

  2. Gauge-Higgs EW and Grand Unification

    Science.gov (United States)

    Hosotani, Yutaka

    Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unifiation scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase θH in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for θH bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.

  3. Algebraic formulation of higher gauge theory

    Science.gov (United States)

    Zucchini, Roberto

    2017-06-01

    In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.

  4. Standard model with partial gauge invariance

    Science.gov (United States)

    Chkareuli, J. L.; Kepuladze, Z.

    2012-03-01

    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.

  5. Gauge theories of gravity: the nonlinear framework

    CERN Document Server

    Tiemblo, A

    2004-01-01

    Nonlinear realizations of spacetime groups are presented as a versatile mathematical tool providing a common foundation for quite different formulations of gauge theories of gravity. We apply nonlinear realizations in particular to both the Poincar\\'e and the affine group in order to develop Poincar\\'e gauge theory (PGT) and metric-affine gravity (MAG) respectively. Regarding PGT, two alternative nonlinear treatments of the Poincar\\'e group are developed, one of them being suitable to deal with the Lagrangian and the other one with the Hamiltonian version of the same gauge theory. We argue that our Hamiltonian approach to PGT is closely related to Ashtekar's approach to gravity. On the other hand, a brief survey on MAG clarifies the role played by the metric--affine metric tensor as a Goldsone field. All gravitational quantities in fact --the metric as much as the coframes and connections-- are shown to acquire a simple gauge--theoretical interpretation in the nonlinear framework.

  6. Gauge Theories on the Light-Front

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.

  7. Elastic Gauge Fields in Weyl Semimetals

    Science.gov (United States)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  8. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  9. Quantum Critical Behaviour of Semisimple Gauge Theories

    DEFF Research Database (Denmark)

    Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco

    2016-01-01

    We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...

  10. Gauge-Higgs EW and Grand Unification

    CERN Document Server

    Hosotani, Yutaka

    2016-01-01

    4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) \\times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase $\\theta_H$ in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for $\\theta_H < 0.1$, and predicts $Z'$ bosons around 6 - 10 TeV with very broad widths. The scenario is genelarized to $SO(11)$ gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of $SO(11)$. Proton decay is naturally forbidden.

  11. Constraints on Gauge Field Production during Inflation

    DEFF Research Database (Denmark)

    Nurmi, Sami; Sloth, Martin Snoager

    2014-01-01

    of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton......In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation...

  12. Constraints on gauge field production during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Sloth, Martin S., E-mail: sami.nurmi@helsinki.fi, E-mail: sloth@cp3.dias.sdu.dk [CP" 3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)

    2014-07-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.

  13. Constraints on Gauge Field Production during Inflation

    CERN Document Server

    Nurmi, Sami

    2014-01-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.

  14. Gauging isometries in N=4 supersymmetric mechanics

    CERN Document Server

    Delduc, F

    2008-01-01

    This talk summarizes the study of superfield gaugings of isometries of extended supersymmetric mechanics in hep-th/0605211, hep-th/0611247 and arXiv:0706.0706. The gauging procedure provides a manifestly supersymmetric realization of d=1 automorphic dualities which interrelate various irreducible off-shell multiplets of d=1 extended supersymmetry featuring the same number of physical fermions but different divisions of bosonic fields into the physical and auxiliary subsets. We concentrate on the most interesting N=4 case and demonstrate that, with a suitable choice of the symmetry to be gauged, all such multiplets of N=4 supersymmetric mechanics and their generic superfield actions can be obtained from the "root" multiplet (4,4,0) and the appropriate gauged subclasses of the generic superfield action of the latter by a simple universal recipe.

  15. Introduction to dualities in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, Marco A.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: kneipp@cbpf.br

    2000-12-01

    These notes present a pedagogical introduction to magnetic monopoles, supersymmetry and dualities in gauge theories. They are based on lectures given at the X Jorge Andre Swieca Summer School on Particles and Fields. (author)

  16. Gauge/string duality in confining theories

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2006-07-03

    This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. Gauge/String Duality in Confining Theories

    CERN Document Server

    Edelstein, J D; Edelstein, Jose D.; Portugues, Ruben

    2006-01-01

    This is the content of a set of lectures given at the XIII Jorge Andre Swieca Summer School on Particles and Fields, held in Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity.

  18. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  19. Bent and linear Uranium(IV) metallocenes with terminal and bridging cyanide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Maynadie, J.; Berthet, J.C.; Thuery, P.; Ephritikhine, M. [CEA Saclay, DSM, DRECAM, Serv Chim Mol, Lab Claude Frejacques, CNRS URA 331, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Treatment of Cp{sub 2}{sup *}UI{sub 2} with KCN in thf led to the formation of Cp{sub 2}{sup *}U(CN){sub 2} (2), which further reacted with NR{sub 4}CN to give [Cp{sub 2}{sup *}U(CN){sub 3}][ NR{sub 4}] (R = Et, 3; R = {sup n}Bu, 3') and [Cp{sub 2}{sup *}U(CN){sub 5}][NR{sub 4}]{sub 3} (R = Et, 4; R {sup n}Bu, 4'). While the tri-cyanide 3' adopts the familiar bent sandwich configuration, the penta-cyanide 4 is, after the [Cp{sub 2}{sup *}U(NCMe){sub 5}]{sup 2+} cation, the second example of a linear metallocene resulting from complete saturation of the equatorial girdle. Compound 3' was also obtained by oxidation of the trivalent compound [Cp{sub 2}{sup *}U(CN){sub 3}][N{sup n}Bu{sub 4}]{sub 2}; the rapid and reversible electron transfer between the U(III) and U(IV) complexes was revealed by {sup 1}H NMR spectroscopy. The NMR spectra also revealed that 4 is partially dissociated in thf into 3, providing the first example of an equilibrating couple of bent and linear metallocenes [K = 4.24(4) * 10{sup -5} at 25 C, {delta}H = 199(6) kJ mol{sup -1}, and {delta}S = 586(20) J mol{sup -1} K{sup -1}]. The trinuclear compound [Cp{sub 2}{sup *}UCl{sub 2}({mu}-CN)]{sub 2}Mg(thf){sub 4} (1) and the 2D polymeric complex [Cp{sub 2}{sup *}U(dmf){sub 3}-({mu}-NC){sub 2}(AgI){sub 2}]{sub n} (5), which were obtained during initial attempts on the synthesis of 2-4 and uranium- (V) derivatives, exhibit a bent and linear sandwich structure, respectively. (authors)

  20. A Generalization of Gauge Symmetry, Fourth-Order Gauge Field Equations and Accelerated Cosmic-Expansion

    OpenAIRE

    2014-01-01

    A generalization of the usual gauge symmetry leads to fourth-order gauge field equations, which imply a new constant force independent of distances. The force associated with the new $U_1$ gauge symmetry is repulsive among baryons. Such a constant force based on baryon charge conservation gives a field-theoretic understanding of the accelerated cosmic-expansion in the observable portion of the universe dominated by baryon galaxies. In consistent with all conservation laws and known forces, a ...