WorldWideScience

Sample records for beneficiated coal-based fuels

  1. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  2. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  3. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  4. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  5. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  6. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  7. Characterization and supply of coal-based fuels. Quarterly report, February 1, 1989--April 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  8. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advanced Thermally Stable Coal-Based Jet Fuels

    Science.gov (United States)

    2008-02-01

    Description of Accomplishments 6 Project Overview 6 Fuel Production 6 Coal - tar Blending 6 Solvent Extraction of Coals 7 Co-coking 10 Fuel Stability 12...site source with a suitable refinery stream, followed by hydrotreating the blend and distilling; adding coal to the feed being sent to a delayed coker...followed by hydrotreating the coker liquids and distilling; and "co-processing," the catalytic hydrogenation of a slurry of coal in a petroleum stream

  10. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  11. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  12. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  13. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  14. Evaluation and Testing of the Suitability of a Coal-Based Jet Fuel

    Science.gov (United States)

    2008-06-01

    with a total wattage of 7980 watts. Each oven section has two K type thermocouples per zone with Inconel sheathed spring loaded bayonet type mounts...also exceeded the thermal stability goals (525°F bulk and 625 °F WWT) for the JP-8+225 fuel program. Tests were conducted on a JP-8 fuel to compare

  15. R D for the storage, transport, and handling of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The product of several advanced physical coal cleaning processes is a dry ultra-fine coal (DC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DC for residential, commercial, and industrial uses. (VC)

  16. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  17. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  18. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  19. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.

    Science.gov (United States)

    Su, Chao; Shao, Zongping; Lin, Ye; Wu, Yuzhou; Wang, Huanting

    2012-09-21

    An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 μm), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 °C. It greatly promises an intriguing fuel cell concept for efficient power generation.

  20. R&D for the storage, transport, and handling of coal-based fuels. Quarterly progress report, January 1, 1990--March 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The product of several advanced physical coal cleaning processes is a dry ultra-fine coal (DC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DC for residential, commercial, and industrial uses. (VC)

  1. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  2. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    Science.gov (United States)

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  3. Seca Coal-Based Systems Program

    International Nuclear Information System (INIS)

    Alinger, Matthew

    2008-01-01

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed degradation

  4. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1992--March 27, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.; Hogg, R. [and others

    1993-05-13

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (MC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash and high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil- designed watertube boiler located on a DOD installation to fire either MCWM or MC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; (5) Final Report/Submission of Design Package.

  5. Resolving Bacterial Contamination of Fuel Ethanol Fermentations with Beneficial Bacteria – an Alternative to Antibiotic Treatment

    Science.gov (United States)

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly “stuck fermentations.” Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is kn...

  6. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    Energy Technology Data Exchange (ETDEWEB)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and

  7. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  8. The development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1993--September 27, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1993-12-17

    The US DOD, through an Interagency Agreement with the US DOE, has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. A team of researchers has been assembled from Penn State, ABB Combustion Engineering Systems (CE), AMAX Research and Development Center (AMAX), and Energy and Environmental Research Corporation (EER). These four organizations are the current members of the Consortium. Phase 1 activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase 2 research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion strategies for the utilization of high ash, high sulfur coals. Phase 3 activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase 1 are described in this report. The objective of Phase 1 is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program of the following tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package. Miscellaneous activities are reported. Activities planned for the next semiannual period are listed. The project schedule, with a description of milestones, is included.

  9. Kyoto Protocol, constraint or opportunity for coal based electricity producers

    International Nuclear Information System (INIS)

    Balasoiu, Constantin; Alecu, Sorin

    2006-01-01

    Coming into force of Kyoto Protocol (KP) in February 2005, as a result of its signing by Russian Federation, created the lawfulness of its provisions and mechanisms in order to reduce the average emission of Greenhouse Gases (GHG) at a global level down to 5.2 %. Passing this environment problem from a constrained area (regulations, directives) to an opportunity area (business) created the possibility that the achievement of KP objectives to be not an exclusive financial task of 'polluting actors', but opened the opportunity of bringing on stage all the necessary elements of a modern business environment: banks, investments from founds companies, consultants, buyers, sellers, stocks exchange. Until now, the investments and emissions transactions based by KP mechanisms at the worldwide level was focused on renewable energy area. Because for the most of countries, including Romania, the production of electricity based on fossil fuels (special coal) is one of the main option, bringing the KP mechanisms in operation in this area is difficult for at least two reasons: - the investments are huge; - the emissions reduction is not spectacular. In these circumstances, this paper gives an overview of the present GHG emission market, transaction mechanisms on this market and of the ways through which coal based electricity producers from Romania can access this market. We consider that the filtration of the information in this area from electricity producer point of view makes the content of this paper a good start for a new approach of environment management and its conversion from constraint (financial resources consumer) to opportunity ( financial resources producer). The paper contains are as follows: 1. Kyoto Protocol at a glance; 2. Emission trading mechanisms; 2.1. Transaction mechanisms under KP; 2.1.1. Joint Implementation (JI); 2.1.2 Clean Development Mechanism (CDM); 2.1.3. Emissions Trading (ET); 2.2. Other transactions mechanisms; 2.2.1. European Union Emissions

  10. Coal based electric generation comparative technologies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  11. SECA Coal-Based Systems – LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard [LG Fuel Cell Systems Incorporated, North Canton, OH (United States)

    2016-03-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale distributed power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. The overall goal of this project is to demonstrate, through analysis and testing, progress towards adequate stack life and stability in a low-cost solid-oxide fuel cell (SOFC) stack design. The emphasis of the proposed work has been the further understanding of the degradation mechanisms present within the LGFCS SOFC stack and development of the active layers to mitigate such mechanisms for achievement of a lower rate of power degradation. Performance enhancement has been achieved to support cost reduction. Testing is performed at a range of scales from single cells to ~350 kW bundles and ultimately pressurized 15kW blocks in test rigs that are representative of the product system cycle. The block is the representative fuel cell module that forms the building block for the LGFCS SOFC power system.

  12. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis.

    Science.gov (United States)

    Mudaliar, Sunder; Alloju, Sindura; Henry, Robert R

    2016-07-01

    Type 2 diabetes mellitus causes excessive morbidity and premature cardiovascular (CV) mortality. Although tight glycemic control improves microvascular complications, its effects on macrovascular complications are unclear. The recent publication of the EMPA-REG OUTCOME study documenting impressive benefits with empagliflozin (a sodium-glucose cotransporter 2 [SGLT2] inhibitor) on CV and all-cause mortality and hospitalization for heart failure without any effects on classic atherothrombotic events is puzzling. More puzzling is that the curves for heart failure hospitalization, renal outcomes, and CV mortality begin to separate widely within 3 months and are maintained for >3 years. Modest improvements in glycemic, lipid, or blood pressure control unlikely contributed significantly to the beneficial cardiorenal outcomes within 3 months. Other known effects of SGLT2 inhibitors on visceral adiposity, vascular endothelium, natriuresis, and neurohormonal mechanisms are also unlikely major contributors to the CV/renal benefits. We postulate that the cardiorenal benefits of empagliflozin are due to a shift in myocardial and renal fuel metabolism away from fat and glucose oxidation, which are energy inefficient in the setting of the type 2 diabetic heart and kidney, toward an energy-efficient super fuel like ketone bodies, which improve myocardial/renal work efficiency and function. Even small beneficial changes in energetics minute to minute translate into large differences in efficiency, and improved cardiorenal outcomes over weeks to months continue to be sustained. Well-planned physiologic and imaging studies need to be done to characterize fuel energetics-based mechanisms for the CV/renal benefits. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. SECA Coal-Based Systems - LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard

    2013-08-01

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program is aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations in subsequent phases. LGFCS is currently in Phase 2 of the program with the Phase 1 test carrying over for completion during Phase 2. Major technical results covering the initial Phase 2 budget period include: Metric Stack Testing: 1. The Phase I metric test is a ~7.6 kW block test (2 strips) in Canton that started in March 2012 and logged 2135 hours of testing prior to an event that required the test to be shutdown. The degradation rate through 2135 hours was 0.4%/1000 hours, well below the Phase I target of 2%/1000 hours and the Phase 2 target of 1.5%/1000 hours. 2. The initial Phase II metric test consisting of 5 strips (~19 kW) was started in May 2012. At the start of the test OCV was low and stack temperatures were out of range. Shutdown and inspection revealed localized structural damage to the strips. The strips were repaired and the test restarted October 11, 2012. 3. Root cause analysis of the Phase 1 and initial Phase 2 start-up failures concluded a localized short circuit across adjacent tubes/bundles caused localized heating and thermal stress fracture of substrates. Pre-reduction of strips rather than in-situ reduction within block test rigs now provides a critical quality check prior to block testing. The strip interconnect design has been modified to avoid short circuits. Stack Design: 1. Dense ceramic strip components were redesigned to achieve common components and a uniform design for all 12 bundles of a strip while meeting a flow uniformity of greater

  14. Performance study of coal-base charcoals for removing radioiodine

    International Nuclear Information System (INIS)

    Huang Yuying; Wu Yanwei; Guo Liangtian; Jia Ming; Lu Xueshi; Zhang Hong

    1988-01-01

    In authos' laboratory sveral types of domestic coal-base charcoals are selected and impregnated and examined for their main physical and chemical performances. The results show that under the test conditions the iodine-removing efficiencies of these impregnated coal-base charcoals charcoals are not poorer than that of the impregnated fruit-shell base charcoals (such as coconut shell charcoal) and most of their physical properties can satisfy the requirements of the nuclear grade charcoals assigned in USA standards. More detailed studies will be made in the next programme

  15. SECA Coal-Based Systems - LGFCS

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard

    2014-01-31

    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program has been aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations as a path to commercialization. Significant progress was achieved in reducing to practice a higher performance and lower cost cell technology, identifying and overcoming degradation mechanisms, confirming the structural capability of the porous substrate for reliability, maturing the strip design for improved flow to allow high fuel utilization operation while minimizing degradation mechanisms and obtaining full scale block testing at 19 kW under representative conditions for eventual product and meeting SECA degradation metrics. The SECA program has played a key role within the overall LGFCS development program in setting the foundation of the technology to justify the progression of the technology to the next level of technology readiness testing.

  16. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  17. Beneficial radiation?

    International Nuclear Information System (INIS)

    Roth, E.; Feinendegen, E.

    1996-01-01

    Ionizing radiation is harmful and may cause cancer, as is well known. However, again and again, low doses of ionizing radiation, under certain conditions, are said to have beneficial effects on human health and, in particular, may reduce the cancer rate. This effect, which is discussed controversially in the technical and scientific literature, is called 'hormesis'. Studies of possible positive effects of ionizing radiation are becoming increasingly more important in scientific research. The article is an attempt to show, by the model case of cancer, under what conditions such positive health effects can occur, at least in principle, and will also contain rough plausibility assessments of the existence of such conditions. Aspects not covered include other existing or presumed positive biological effects of ionizing radiation, such as acceleration of growth, or general increase in the life expectancy of organisms. Also genetic damage will not be discussed in greater detail, despite the existence of some parallels with cancer, both cases constituting lesions to the genetic material of the cells, in one case, germ cells and, in the case of cancer, somatic cells. Also, acute radiation effect will be excluded which occur only at high radiation doses and, as such, always cause damage which, in therapeutic application to cancer, may again be lifesaving. It should be emphasized that the article is limited to a greatly restricted range of biological effects of ionizing radiation which, consequently, are of limited value for overall assessment. (orig.) [de

  18. Economic analysis of coal-based polygeneration system for methanol and power production

    International Nuclear Information System (INIS)

    Lin, Hu; Jin, Hongguang; Gao, Lin; Han, Wei

    Polygeneration system for chemical and power co-production has been regarded as one of promising technologies to use fossil fuel more efficiently and cleanly. In this paper the thermodynamic and economic performances of three types of coal-based polygeneration system were investigated and the influence of energy saving of oxygenation systems on system economic performance was revealed. The primary cost saving ratio (PCS) is presented as a criterion, which represents the cost saving of polygeneration system compared with the single-product systems with the same products outputs, to evaluate economic advantages of polygeneration system. As a result, the system, adopting un-reacted syngas partly recycled to the methanol synthesis reactor and without the shift process, can get the optimal PCS of 11.8%, which results from the trade-off between the installed capital cost saving and the energy saving effects on the cost saving, and represents the optimal coupling relationship among chemical conversion, energy utilization and economic performance. And both of fuel price and the level of equipment capital cost affect on PCS faintly. This paper provides an evaluation method for polygeneration systems based on both technical and economic viewpoints. (author)

  19. Energy survey of the coal based sponge iron industry

    Directory of Open Access Journals (Sweden)

    Nishant R. Dey

    2015-09-01

    Full Text Available A survey is made on a typical coal based Indian sponge iron plant of capacity 500 t/d in order to identify the largest energy losses and find ways to increase the efficiency. The required data are obtained by measurements or taken from production industries. The process efficiency is about 51.31%. The energy balances of the process show that the gap between theoretical and actual energy consumption is 45.2% and the exhausts make up the largest loss of 43.5%. A huge amount of waste gas is generated during operation and substantial part of it associated with the waste gas, remains unutilized. The energy content in the exhaust gases which is found at useful temperature can be used in three different ways: by internal use; by external energy supply; or by power generation. The four possible potential areas are identified where energy is being lost and untapped. The largest improvements would be made by design modifications adopting a novel energy conservation scenario by process integration and thereby decreasing the coal and water consumption and by decreasing the cold fresh air.

  20. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  1. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?

    International Nuclear Information System (INIS)

    Ding, Yanjun; Han, Weijian; Chai, Qinhu; Yang, Shuhong; Shen, Wei

    2013-01-01

    Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO 2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO 2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO 2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO 2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO 2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO 2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO 2 reduction. - Highlights: ► We evaluated life-cycle energy efficiency and CO 2 emissions of coal-derived SNG. ► We used GREET model and added a coal-based SNG and an end-use modules. ► The database was constructed with Chinese domestic data. ► Life-cycle energies and CO 2 emissions of coal-based SNG are 20–100% higher. ► Coal-based SNG is not a solution to both energy conservation and CO 2 reduction

  2. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  3. Environmental externalities: An ASEAN application to coal-based power generation

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms

  4. Environmental externalities: An ASEAN application to coal-based power generation. Extract

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  5. Environment Friendly Coal Based Power Generation in Pakistan

    Science.gov (United States)

    Qureshi, S. A.; Javed, M. Adnan

    2010-06-01

    The main emphasis of this paper is on the engineering economics and design developments in the field of thermal power generation in Pakistan. Pakistan is rich with coal fields but is making no use of this available natural resource to fulfil its energy demands. The shortage of power is getting worst day by day and to align with the power requirements, Pakistan needs to add 2000 MW each year to national grid. With the increasing prices of natural gas and oil, Pakistan should consider coal, the abundantly available natural resource, as an alternate fuel for its new power plants to overcome the power crises.

  6. Preliminary assessment of coal-based industrial energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  7. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  8. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  10. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  11. Beneficial reuse '97

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The annual Beneficial Reuse Conference was conducted in Knoxville, Tennessee from August 5-7, 1997. Now in its fifth year, this conference has become the national forum for discussing the beneficial reuse and recycle of contaminated buildings, equipment and resources, and the fabrication of useful products from such resources. As in the past, the primary goal of Beneficial Reuse ''97 was to provide a forum for the practitioners of pollution prevention, decontamination and decommissioning, waste minimization, reindustrialization, asset management, privatization and recycling to share their successes and failures, as well as their innovative strategies and operational experiences with the assembled group of stakeholders. Separate abstracts have been indexed into the database for contributions to this conference proceedings

  12. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  13. Techno-economic analysis and comparison of coal based olefins processes

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • The coal based Fischer–Tropsch-to-olefins (CFTO) process is proposed and analyzed. • The CFTO suffers from lower energy efficiency and serious CO 2 emissions. • Approaches for improving techno-economic performance of the CFTO are obtained. - Abstract: Traditional olefins production is heavily dependent on oil. In the background of the scarcity of oil and richness of coal in China, olefins production from coal has been attracting more attention of the chemical process industry. The first coal based methanol-to-olefins (CMTO) plant has been commercialized in China. For shorter process route and lower capital cost, Fischer–Fropsch has been put forward in the last few years. The coal based Fischer–Tropsch-to-olefins (CFTO) process is designed in this paper and then its techno-economic and environmental performance was detailed studied in this paper, in comparison with the CMTO. Results show that at the present olefins selectivity, the CFTO suffers from relative lower energy efficiency and higher CO 2 emissions. In economic aspect, the capital investment and product cost of the CFTO are roughly equivalent to that of the CMTO. Although the conversion route of the CFTO is shorter, its techno-economic performance is still inferior to that of the CMTO. It is also found that increase of olefins selectivity by cracking oil or decrease of CO 2 selectivity by improving catalyst could significantly improve the performance of the CFTO.

  14. Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

    1996-12-27

    Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

  15. Beneficial bread without preservatives

    OpenAIRE

    Denkova, Zapryana; Denkova, Rositsa

    2014-01-01

    Besides their inherent nutritional value functional foods contain substances that have beneficial impact on the functioning of organs and systems in the human body and reduce the risk of disease. Bread and bakery goods are basic foods in the diet of contemporary people. Preservatives are added to the composition of foods in order to ensure their microbiological safety, but these substances affect directly the balance of microflora in the tract. A great problem is mold and bacterial spoilage (...

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  17. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    Science.gov (United States)

    2014-12-22

    sequestration in perspective, it has been estimated that leakage rates of one percent per year would render CCS ineffective for climate change , though 0.1...capture and storage: Seven years after the IPCC special report’. Mitigation and Adaptation Strategies for Global Change , 17(6), pp. 563–567. 38...Security Act (EISA) of 2007 (Public Law 110-140) effectively prohibits Federal agencies from entering contracts to explicitly procure alternative

  18. Assessment of inhalation risk due to radioactivity released from coal-based thermal power plant

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.; Kushwaha, H.S.

    2006-01-01

    In India, the coal based thermal power plants have been the major source of power generation in the past and would continue for decades to come. As the coal contains naturally occurring primordial radionuclides the burning of pulverized coal to produce energy for generation of electricity in thermal power plants will result in the emission of a variety of natural radioactive elements into the environment in the vicinity of thermal power plants. In this paper we have used two different methods for characterization of uncertainty in inhalation risk to the general public around 10 Kms radius in the neighborhood of a coal-fired thermal power plant. (author)

  19. Environmental externalities: An ASEAN application to coal-based power generation. [Association of South East Asian Nations (ASEAN)

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  20. Carbon sequestration by mangrove forest: One approach for managing carbon dioxide emission from coal-based power plant

    Science.gov (United States)

    Ray, Raghab; Jana, Tapan Kumar

    2017-12-01

    Mangroves are known as natural carbon sinks, taking CO2 out of the atmosphere and store it in their biomass for many years. This study aimed to investigate the capacity of world's largest mangrove, the Sundarbans (Indian part) to sequester anthropogenic CO2 emitted from the proximate coal-based thermal power plant in Kolaghat (∼100 km away from mangrove site). Study also includes Kolkata, one of the largest metropolises of India (∼150 km away from mangrove site) for comparing micrometeorological parameters, biosphere-atmosphere CO2 exchange fluxes and atmospheric pollutants between three distinct environments: mangrove-power plant-metropolis. Hourly sampling of atmospheric CO2 in all three sites (late December 2011 and early January 2012) revealed that CO2 concentrations and emission fluxes were maximum around the power plant (360-621 ppmv, 5.6-56.7 mg m-2s-1 respectively) followed by the metropolis (383-459 ppmv, 3.8-20.4 mg m-2s-1 respectively) and mangroves (277-408 ppmv, -8.9-11.4 mg m-2s-1, respectively). Monthly coal consumption rates (41-57, in 104 ton month-1) were converted to CO2 suggesting that 2.83 Tg C was added to the atmosphere in 2011 for the generation of 7469732 MW energy from the power plant. Indian Sundarbans (4264 km2) sequestered total of 2.79 Tg C which was 0.64% of the annual fossil fuel emission from India in the same time period. Based on these data from 2010 to 2011, it is calculated that about 4328 km2 mangrove forest coverage is needed to sequester all CO2 emitted from the Kolaghat power plant.

  1. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  2. Beneficial bacteria inhibit cachexia

    Science.gov (United States)

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  3. Beneficial uses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.

  4. Beneficial uses of radiation

    International Nuclear Information System (INIS)

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind

  5. On-line nuclear ash gauge for coal based on gamma-ray transmission techniques

    International Nuclear Information System (INIS)

    Rizk, R.A.M.; El-Kateb, A.H.; Abdul-Kader, A.M.

    1999-01-01

    Developments and applications of on-line nuclear gauges in the coal industry are highly requested. A nuclear ash gauge for coal, based on γ-ray transmission techniques is developed. Single and dual energy γ-ray beams are used to determine the ash content of coal. The percentage ash content as a function of the γ-ray intensities transmitted through coal samples is measured and sensitivity curves are obtained. An empirical formulation relating the ash content values to the γ-ray intensities is derived. Preliminary results show that both single and dual energy γ-ray transmission techniques can be used to give a rapid on-line estimation of the ash concentration values in coal with low cost and reasonable accuracy, but the dual one is much preferable. (author)

  6. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  8. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  9. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    Science.gov (United States)

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.

  10. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Beneficial Use of Dredged Material

    Science.gov (United States)

    An important goal of managing dredged material is to ensure that the material is used or disposed of in an environmentally sound manner.Most of this dredged material could be used in a beneficial manner instead.

  12. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  13. Reaction Behavior of Phosphorus in Coal-Based Reduction of an Oolitic Hematite Ore and Pre-Dephosphorization of Reduced Iron

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2016-04-01

    Full Text Available Coal-based reduction followed by magnetic separation is an effective way to recover iron from high phosphorus-containing oolitic hematite ore. Given that high quantities of dephosphorization agent are needed to obtain low phosphorus reduced iron, a novel approach is proposed by the authors. Without prior phosphorus removal, the phosphorus was enriched in the reduced iron during a reduction process, then high-phosphorus reduced iron was refined to low phosphorus molten iron and high phosphorus dephosphorization slag to be used as a phosphate fertilizer. The influences of various parameters, including the reduction temperature, the reduction time, and the C/O molar ratio, on the reaction behavior of phosphorus during reduction process were studied. Experimental results indicate that a higher reduction temperature, a longer reduction time, or a higher C/O molar ratio was favorable for the reduction of apatite to phosphorus and the enrichment of phosphorus in reduced iron. X-ray diffraction (XRD analysis demonstrated that the apatite was reduced to phosphorus and Ca2SiO4 (or Ca(Al2Si2O8 in the presence of SiO2 and Al2O3, whilst the phosphorus enriched in reduced iron formed Fe3P. The migration behavior of phosphorus was investigated using line scanning analysis of reduction products at different reduction times. The results show that the phosphorus primarily existed in the slag phase 10 min before reduction, and a large amount of phosphorus migrated into iron phase from slag phase with a reduction time of 40 min. The phosphorus content in the iron phase only slightly changed after 50 min. The pre-dephosphorization of reduced iron was performed at 1873 K, indicating a higher basicity or FetO content of CaO-based slag was beneficial to dephosphorization of the reduced iron.

  14. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  15. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  16. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  17. Towards "a different kind of beauty": responses to coal-based pollution in the Witbank coalfield between 1903 and 1948.

    Science.gov (United States)

    Singer, Michal

    2011-01-01

    This article assesses the changing conceptions of the environmental impact of South African coal mining in the first half of the twentieth century, with special reference to the Witbank coalfield in the Mpumalanga province of South Africa. The anticipated development of the emerging coal town of Witbank was founded on the growing demand for coal. As Witbank's local landscape became visibly scarred, coal-based pollution was continually challenged and redefined. In an attempt to market electricity, and appease the doubts of potential consumers, attempts were made by Escom to romanticise features of Witbank's industrialised environment. Once mines were decommissioned, they were abandoned. Coal production increased dramatically during the Second World War, which provided an economic windfall for the local electrical, steel and chemical industries, placing undue pressure on the coal industry to step up production. The severe damage caused by coal mining during this period resulted in the ecological devastation of affected landscapes. The findings of an inter-departmental committee established to conduct research during the mid-1940s revealed the gravity of coal-based pollution, and set a precedent in the way that the state conceived of the impact of industry and mining. The report of this committee was completed in the wake of the war, by which time the Witbank coalfield had become one of the most heavily polluted regions of South Africa.

  18. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  20. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  1. Is vitamin C supplementation beneficial?

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Poulsen, Henrik Enghusen

    2010-01-01

    of the benefit:harm ratio of antioxidant supplements. We have examined the literature on vitamin C intervention with the intention of drawing a conclusion on its possible beneficial or deleterious effect on health and the result is discouraging. One of several important issues is that vitamin C uptake is tightly...... controlled, resulting in a wide-ranging bioavailability depending on the current vitamin C status. Lack of proper selection criteria dominates the currently available literature. Thus, while supplementation with vitamin C is likely to be without effect for the majority of the Western population due...... to saturation through their normal diet, there could be a large subpopulation with a potential health problem that remains uninvestigated. The present review discusses the relevance of the available literature on vitamin C supplementation and proposes guidelines for future randomised intervention trials....

  2. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  3. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1994--September 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Morrison, J.L. [and others

    1995-04-14

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. Activities this reporting period included performing coal beneficiation/preparation studies, conducting combustion performance evaluations, preparing retrofit engineering designs, determining retrofit economics, and installing a micronized coal-water mixture (MCWM) circuit.

  4. Facing coal : changing conceptions of South African coal-based pollution, with special reference to the Witbank coalfield, 1906-1978

    NARCIS (Netherlands)

    Singer, M.

    2011-01-01

    Facing coal provides an environmental history of changing ideas around South African coal-based pollution, focusing on Witbank, where the scars of mining are etched deep into the land. The essence of this book is its link between local and global repercussions of past and present reliance on fossil

  5. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  6. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  7. The molten salt reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined and is found very suitable for the beneficial use of this fuel. MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus, MSRs are flexible while maintaining their economy. Furthermore, MSRs require only a minimum of special fuel preparation. They can tolerate denaturing and dilution of their fuel. The size of fuel shipments can be determined to optimize safety and security-all of which supports nonproliferation and resists diversion. In addition, MSRs have inherent safety features that make them acceptable and attractive. They can burn fissile material completely or can convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems in the deployment of nuclear power

  8. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available Coal beneficiation in South Africa is currently conducted mostly on a wet “float and sink” basis. This process is heavily water intensive and also potentially polluting. Dry beneficiation alternatives are being sought. The alternative of dry dense...

  9. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  10. Optimization of General Arrangement for Fuel Handling Equipment in Fuel Handling Area

    International Nuclear Information System (INIS)

    Chang, Sanggyoon; Choi, Taeksang; Moon, Duckhee

    2013-01-01

    The purpose of this study is to provide an optimized general arrangement for fuel handling in fuel handling area for APR1400. The general arrangement for fuel handling area should be optimized in the viewpoints of safety functions for fuel handling, efficiency for operation and maintenance of fuel handling equipment during the fuel handling from receipt of new fuel to shipment of spent fuel. In this study, general arrangement for the fuel handling area was evaluated and proposed to ensure a safe and efficient operation and maintenance for the fuel handling equipment in the fuel handling area. The results of this study can be a beneficial suggestion regarding the general arrangement of the fuel handling areas and equipment. The general arrangement in the fuel handling area is optimized in the viewpoints of safety functions for fuel handling, efficiency for operation and maintenance for fuel handling equipment

  11. Federal Standard: Beneficial Use of Dredged Material

    Science.gov (United States)

    The purpose of this document is to provide national guidance that explains the role of the Federal Standard in implementing beneficial uses of dredged material from U.S. Army Corps of Engineers’ new and maintenance navigation projects.

  12. Modulation of host immunity by beneficial microbes.

    OpenAIRE

    Zamioudis, Christos; Pieterse, Corné M. J.

    2012-01-01

    In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control ...

  13. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  14. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  15. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  16. Gasifiers optimized for fuel cell applications

    Science.gov (United States)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  17. Desulphurization of lakhra coal (Pakistan) by beneficial ...

    African Journals Online (AJOL)

    In this paper, sulfur compounds in coal, microorganism for biodesulphurization and microbial action were outlined. The bioprocess parameters affecting the growth kinetics of Beneficial Microorganisms (Sulpholobous Brierlyei and Thiobcillus Thiooxidans), a recent strain for the removal of organic sulfur from coal, were ...

  18. The Roles of Beneficiation in Lunar Work

    Science.gov (United States)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  19. Modulation of host immunity by beneficial microbes

    NARCIS (Netherlands)

    Zamioudis, C; Pieterse, C.M.J.

    2012-01-01

    In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and

  20. [Prebiotics: concept, properties and beneficial effects].

    Science.gov (United States)

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-02-07

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. 7 CFR 1421.6 - Beneficial interest.

    Science.gov (United States)

    2010-01-01

    ... have control of the commodity, such person must have complete decision-making authority regarding...-MARKETING ASSISTANCE LOANS AND LOAN DEFICIENCY PAYMENTS FOR 2008 THROUGH 2012 General § 1421.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans and loan deficiency payments, a producer...

  2. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  3. Thorium fuel cycle: a nuclear strategy and fuel recycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Dahlberg, R.C.; Wymer, R.G.

    1978-01-01

    Use of thorium fuel cycles in thermal reactors appears to permit a moderate rate of introduction of fast breeder reactors into the nuclear economy and helps maintain a relatively low ratio of FBRs to thermal reactors in the future. To implement the benefits of thorium fuel cycles, however, will require fuel recycle research and development. Fuel recycle technology developed for uranium and plutonium cycles will be beneficial to thorium fuel cycle development; however, significant additional R and D is required to implement either the HEUTH or the DUTH cycles. The metal-clad reactors in general have relatively common generic technology development requirements, although there are significant differences between fast and thermal reactor fuel recycle needs. The thorium fuel recycle R and D requirements of HTGRs are more reactor-specific than of the other reactor types; however, some specific efforts will be required for all the different reactor types.

  4. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  5. The development of coal-based technologies for Department of Defense facilities. Semi-annual report, March 28, 1996--September 27, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scarone, A.W. [and others

    1996-12-13

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. Phase I was completed on November 1, 1995. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included continuing bench-scale tests to identify an NO{sub x} reduction catalyst which is appropriate for industrial boiler applications. In addition, installation of a ceramic filtering device on the demonstration boiler started. Also, a sodium bicarbonate duct injection system was procured for installation on the demonstration boiler. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations,surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  6. Induced Systemic Resistance by Beneficial Microbes

    OpenAIRE

    Corn\\xe M.J. Pieterse; Christos Zamioudis; Roeland L. Berendsen; David M. Weller; Saskia C.M. Van Wees; Peter A.H.M. Bakker

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense...

  7. Preventing corruption in community mineral beneficiation schemes

    OpenAIRE

    Nest, Michael

    2017-01-01

    Abstract This paper analyses patterns of corruption and corruption risks related to community mineral beneficiation schemes (CMBSs) that distribute benefits funded by mineral revenues to communities. It analyses insights from existing scholarship on CMBSs, evidence from seven cases of corruption, and lessons from guidance documents on reducing corruption in the mining value chain. The aim of the paper is to stimulate debate and further research about the suitability of anti-corruption st...

  8. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  10. [Metabolism of xenobiotics: beneficial and adverse effects].

    Science.gov (United States)

    Mansuy, Daniel

    2013-01-01

    The systems developed by living organisms for the metabolism of xenobiotics play a key role in the adaptation of living species to their chemical environment. Recent data about mammalian cytochrome P450 structures have led to a better understanding of the molecular basis for the adaptability of these enzymes to xenobiotics exhibiting highly variable structures. The action of these enzymes on xenobiotics leads to other beneficial effects such as the bioactivation of some drugs, but also to adverse effects with the formation of aggressive metabolites for the cell that are responsible for the appearance of many toxicities. © Société de Biologie, 2013.

  11. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1995-02-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

  12. Advanced thermally stable jet fuels. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

    1994-01-01

    The Penn State program in advancd thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding them formation of vcarbonaceous solids; and, (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal.

  13. Beneficial properties of probiotic yeast Saccharomyces boulardii

    Directory of Open Access Journals (Sweden)

    Tomičić Zorica M.

    2016-01-01

    Full Text Available Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases that have been confirmed by clinical trials. Caution should be taken in patients with risk factors for adverse events. Its potential application in various dairy foods could offer an alternative probiotic product to people suffering from antibiotic-associated diarrhea. This review discusses the evidence for efficacy and safety of S. boulardii as a probiotic for the prevention and therapy of gastrointestinal disorders in humans.

  14. [Beneficial effects of chocolate on cardiovascular health].

    Science.gov (United States)

    Gómez-Juaristi, M; González-Torres, L; Bravo, L; Vaquero, M P; Bastida, S; Sánchez-Muniz, F J

    2011-01-01

    Since ancient times, numerous health beneficial effects have been attributed to chocolate, closing up its consumption to a therapeutic use. The present study reviews some relevant studies about chocolate (and its bioactive compounds) on some cardiovascular risk factors and stresses the need of future studies. The consumption of cocoa/ chocolate (i) increases plasma antioxidant capacity, (ii) diminishes platelet function and inflammation, and (iii) decreases diastolic and systolic arterial pressures. Data currently available indicate that daily consumption of cocoa-rich chocolate (rich in polyphenols) may at least partially lower cardiovascular disease risk. Further studies are required in order to establish the bioavailability and mechanisms of action of bioactive compounds in chocolate. The study of the interaction of chocolate and its components with candidate genes will also supply necessary information regarding the individuals best suited to benefit from a potential cardiovascular disease treatment with chocolate.

  15. Electrostatic Separator for Beneficiation of Lunar Soil

    Science.gov (United States)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  16. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Brown, Terry; Frost, Carol; Hayes, Thomas; Heath, Leo; Johnson, Drew; Lopez, David; Saffer, Demian; Urynowicz, Michael; Wheaton, John; Zoback, Mark

    2007-01-01

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  17. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  18. Beneficial Effects of the Amino Acid Glycine.

    Science.gov (United States)

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  19. Substantial Improvements of Fuel Economy

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars H.

    1996-01-01

    The paper evaluates the scope for improving the energy and environmental impacts of road transport by means of electrical and hybrid propulsion. These technologies promise considerable improvements of the fuel economy compared to equivalent vehicles mas well as beneficial effects for the energy...... and traffic systems. A case study concerning passenger cars is analysed by means of computer simulation....

  20. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  2. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  4. Fitness effects of fixed beneficial mutations in microbial populations

    NARCIS (Netherlands)

    Rozen, D.; Visser, de J.A.G.M.; Gerrish, P.J.

    2002-01-01

    Beneficial mutations are intuitively relevant to understanding adaptation [1-3], yet not all beneficial mutations are of consequence to the long-term evolutionary outcome of adaptation. Many beneficial mutations - mostly those of small effect - are lost due either to (1) genetic drift [4, 5] or to

  5. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  6. Beneficial and adverse effects of chemopreventive agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Mu; Park, Kwang-Kyun

    2003-03-01

    The beneficial and adverse effects of some chemopreventive agents, such as Vitamins A, C, E, beta-carotene, indole-3-carbinol, capsaicin, garlic, and aloe are reviewed. Two large randomized trials with a lung cancer endpoint, the Alpha-Tocopherol, Beta-Carotene (ATBC) Prevention Study and the Beta-Carotene and Retinol Efficacy Trial (CARET), suggested that antioxidants might be harmful in smokers. However, the results of the Linxian study and of the ATBC or the CARET studies were significantly different in this respect, and therefore, the relationship between antioxidant and carcinogenesis remains open to debate. Indole-3-carbinol has cancer promoting activities in the colon, thyroid, pancreas, and liver, whereas capsaicin alters the metabolism of chemical carcinogens and may promote carcinogenesis at high doses. Organosulfur compounds and selenium from garlic have no or a little enhancing effect on cancer promotion stage. Information upon chemopreventive mechanisms that inhibit carcinogenesis is imperfect, although the causes and natures of certain human cancers are known. Therefore, definitive preventive guidelines should be carefully offered for various types of tumors, which properly consider ethnic variations, and the efficacies and the safety of chemopreventive agents.

  7. Beneficial and adverse effects of chemopreventive agents

    International Nuclear Information System (INIS)

    Lee, Byung Mu; Park, Kwang-Kyun

    2003-01-01

    The beneficial and adverse effects of some chemopreventive agents, such as Vitamins A, C, E, beta-carotene, indole-3-carbinol, capsaicin, garlic, and aloe are reviewed. Two large randomized trials with a lung cancer endpoint, the Alpha-Tocopherol, Beta-Carotene (ATBC) Prevention Study and the Beta-Carotene and Retinol Efficacy Trial (CARET), suggested that antioxidants might be harmful in smokers. However, the results of the Linxian study and of the ATBC or the CARET studies were significantly different in this respect, and therefore, the relationship between antioxidant and carcinogenesis remains open to debate. Indole-3-carbinol has cancer promoting activities in the colon, thyroid, pancreas, and liver, whereas capsaicin alters the metabolism of chemical carcinogens and may promote carcinogenesis at high doses. Organosulfur compounds and selenium from garlic have no or a little enhancing effect on cancer promotion stage. Information upon chemopreventive mechanisms that inhibit carcinogenesis is imperfect, although the causes and natures of certain human cancers are known. Therefore, definitive preventive guidelines should be carefully offered for various types of tumors, which properly consider ethnic variations, and the efficacies and the safety of chemopreventive agents

  8. FACEBOOK AND WHATSAPP: BENEFICIAL OR HARMFUL?

    Directory of Open Access Journals (Sweden)

    Sankalp Raj

    2015-04-01

    Full Text Available New innovations and advances in science and technology in the present day have made considerable and significant changes in the lifestyle of people all around the globe. Communication from one part of the world to another is possible at the hit of a button . Social networking is being rampantly used everywhere and by everybody, be it youngsters or the older generation. Facebook and Whatsapp are the most commonly used means of communication in social networking at present. Smart phones functioning as minicomp uters with fast internet connectivity in the pockets of today’s technosavy generation have made them create and spend most of their time interacting with people in a virtual world. There is an urgent need to understand the dynamics of social media and its effects on the lifestyle of people. Studies documenting the same have been very few. This study was conducted to understand the benefits and harms towards health and academics of MBBS students. This cross - sectional study on 147 MBBS students revealed inter esting findings and opinions of the students. Effects of Facebook and What Sapp on productivity and sleep disturbances due to it were the significant findings of the study. Facebook and Whatsapp can be considered both beneficial and harmful and it solely d epends on how it is being put to use

  9. The beneficial effect of yoga in diabetes.

    Science.gov (United States)

    Malhotra, Varun; Singh, Savita; Tandon, Om Prakash; Sharma, Suman Bala

    2005-12-01

    Twenty NIDDM subjects (mild to moderate diabetics) in the age group of 30-60 years were selected from the out patient clinic of G.T.B. hospital. They were on a 40 days yoga asana regime under the supervision of a yoga expert. 13 specific Yoga asanas Surya Namaskar, Trikonasana, Tadasana, Sukhasana, Padmasana, Bhastrika Pranayama, Pashimottanasana, Ardhmatsyendrasana, Pawanmuktasana, Bhujangasana, Vajrasana, Dhanurasana and Shavasana are beneficial for diabetes mellitus. Serum insulin, plasma fasting and one hour postprandial blood glucose levels and anthropometric parameters were measured before and after yoga asanas. The results indicate that there was significant decrease in fasting glucose levels from basal 208.3 +/- 20.0 to 171.7 +/- 19.5 mg/dl and one hour postprandial blood glucose levels decreased from 295.3 +/- 22.0 to 269.7 +/- 19.9 mg/dl. The exact mechanism as to how these postures and controlled breathing interact with somatoendocrine mechanism affecting insulin kinetics was worked out. A significant decrease in waist-hip ratio and changes in insulin levels were also observed, suggesting a positive effect of yoga asanas on glucose utilisation and fat redistribution in NIDDM. Yoga asanas may be used as an adjunct with diet and drugs in the management of Type 2 diabetes.

  10. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  11. Exercise, fasting, and mimetics: toward beneficial combinations?

    Science.gov (United States)

    Jaspers, Richard T; Zillikens, M Carola; Friesema, Edith C H; delli Paoli, Giuseppe; Bloch, Wilhelm; Uitterlinden, André G; Goglia, Fernando; Lanni, Antonia; de Lange, Pieter

    2017-01-01

    Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations. © FASEB.

  12. Clinical supervision, is it mutually beneficial

    International Nuclear Information System (INIS)

    Adams, E.J.

    2000-01-01

    Full text: Clinical education in Nuclear Medicine is essential for student learning as it enables them to develop knowledge and competence and put theory into practice. While the benefit to the student is clear, the clinical education experience should be mutually beneficial. The role of the clinical supervisor involves teaching, role modelling, management and assessment. It could be assumed that the Supervisor would find the teaching role leading to increased knowledge; role modelling leading to increased reflection which improves practice; management skills being enhanced and assessment improving critical evaluation skills. The aim of this study was to assess the perceived benefits of taking on the role of a clinical supervisor. Clinical Supervisors participating in the Nuclear Medicine program were surveyed. Questions were grouped into three main categories - professional, interpersonal and communication. A Likert scale was used to assess perceived level of benefit and open-ended questions were included to obtain additional understanding of Supervisors' perceptions. Results from the survey indicate that 64% of supervisors felt an increase in work satisfaction by taking students, 68% agreed their level of performance was improved and 61% agreed that it deepened their understanding of Nuclear Medicine. It is concluded that respondents perceived a positive benefit to areas within the role of Clinical Supervisor. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  14. Beneficiation-hydroretort processing of US oil shales: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-01-01

    This report has been divided into three volumes. Volume I describes the MRI beneficiation work. In addition, Volume I presents the results of joint beneficiation-hydroretorting studies and provides an economic analysis of the combined beneficiation-hydroretorting approach for processing Eastern oil shales. Volume II presents detailed results of hydroretorting tests made by HYCRUDE/IGT on raw and beneficiated oil shales prepared by MRI. Volume III comprises detailed engineering design drawings and supporting data developed by the Roberts and Schaefer Company, Engineers and Contractors, Salt Lake City, Utah, in support of the capital and operating costs for a conceptual beneficiation plant processing an Alabama oil shale.

  15. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  16. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron

  17. Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment.

    Science.gov (United States)

    Du, Cong; Cui, Chong-Wei; Qiu, Shan; Shi, Sheng-Nan; Li, Ang; Ma, Fang

    2017-04-01

    An aerobic denitrification system, initially bioaugmented with Pseudomonas strain T13, was established to treat coal-based ethylene glycol industry wastewater, which contained 3219 ± 86 mg/L total nitrogen (TN) and 1978 ± 14 mg/L NO 3 - -N. In the current study, a stable denitrification efficiency of 53.7 ± 4.7% and nitrite removal efficiency of 40.1 ± 2.7% were achieved at different diluted influent concentrations. Toxicity evaluation showed that a lower toxicity of effluent was achieved when industry wastewater was treated by stuffing biofilm communities compared to suspended communities. Relatively high TN removal (~50%) and chemical oxygen demand removal percentages (>65%) were obtained when the influent concentration was controlled at below 50% of the raw industry wastewater. However, a further increased concentration led to a 20-30% decrease in nitrate and nitrite removal. Microbial network evaluation showed that a reduction in Pseudomonas abundance was induced during the succession of the microbial community. The napA gene analysis indicated that the decrease in nitrate and nitrite removal happened when abundance of Pseudomonas was reduced to less than 10% of the overall stuffing biofilm communities. Meanwhile, other denitrifying bacteria, such as Paracoccus, Brevundimonas, and Brucella, were subsequently enriched through symbiosis in the whole microbial network.

  18. Greenhouse gas reductions; not warranted, not beneficial

    International Nuclear Information System (INIS)

    Green, K.

    2003-01-01

    This report deals with climate change and greenhouse gas emissions, especially regional climate change predictions, from a sceptic's point of view. It rejects all the conventional evidence supporting claims of extreme man-made climate changes, dismissing them as alarmist and inherently uncertain. Similarly, it characterizes policy prescriptions based on this evidence as faulty and as measures which, if implemented, would do both current and future generations considerably more harm than good. Calls for energy efficiency and conservation, reliance on renewable energy sources, improved efficiency of conventional vehicles, hybrid and fuel-cell-driven cars, reducing the amount of driving, establishing greenhouse gas registries, are all dismissed as impractical, imposing higher costs on energy generally, slowing economic growth in the process, and scaring people to adopt unwise public policies by exaggerating the certainty of predictions about man-made climate change. While dismissing the arguments advanced by 'old-school' environmentalists, the report does not question the validity of the overall theory or details of the core greenhouse effect, its main targets are the anthropogenic components of the observed temperature record, and the evidence of a clear cause-and-effect link between anthropogenic forcing and changes in the Earth's surface temperature. Overall, the report dismisses the 'conventional' view of the extent of climate change, the cause of that change and the risk it poses. It emphasizes the limitations on economic freedom that proposed policies would inflict, and argues in favour of more studies to provide the foundation for a societal response based on a solid understanding of the science behind climate change, and the impact of proposed policy options. 32 refs., 2 figs

  19. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  1. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  2. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  3. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  4. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  5. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  6. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  7. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  8. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  9. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Development Department of Touristic Opportunities, Catarinense Institute of Environmental Research and Human Development – IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Marostega, Fabiane; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Saikia, Binoy K. [Coal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006 (India); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); DaBoit, Kátia [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Baruah, Bimala P. [Coal Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006 (India); and others

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  10. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.

    1986-01-01

    Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)

  11. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  12. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2010-09-01

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandia-stabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandia-stabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement wi th the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  13. SECA Coal-Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Joseph

    2010-09-10

    This report documents the results of Cooperative Agreement DE-FC26-05NT42613 between Siemens Energy and the U.S. Department of Energy for the period October 1, 2008 through September 30, 2010. The Phase I POCD8R0 stack test was successfully completed as it operated for approximately 5,300 hrs and achieved all test objectives. The stack test article contained twenty-four 75 cm active length Delta8 scandiastabilized zirconia cells. Maximum power was approximately 10 kWe and the SOFC generator demonstrated an availability factor of 85% at 50% power or greater. The Phase II POCD8R1 stack test operated for approximately 410 hrs before being aborted due to a sudden decrease in voltage accompanied by a rapid increase in temperature. The POCD8R1 test article contained forty-eight 100 cm active length Delta8 scandiastabilized zirconia cells arranged in an array of six bundles, with each bundle containing eight cells. Cell development activities resulted in an approximate 100% improvement in cell power at 900°C. Cell manufacturing process improvements led to manufacturing yields of greater than 40% for the Delta8 cells. Delta8 cells with an active length of 100 cm were successfully manufactured as were cells with a seamless closed end. A pressurized cell test article was assembled, installed into the pressurized test facility and limited pressurized testing conducted. Open circuit voltage tests were performed at one and three atmospheres at 950°C were in agreement with the theoretical increase in the Nernst potential. Failed guard heaters precluded further testing. The SOFC analytical basis for the baseline system was validated with experimental data. Two system configurations that utilize a pressurized SOFC design with separated anode and cathode streams were analyzed. System efficiencies greater than 60% were predicted when integrating the separated anode and cathode stream module configuration with a high efficiency catalytic gasifier.

  14. Fuel assemblies

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki.

    1986-01-01

    Purpose: To maintain a satisfactory integrity by preventing the increase of corrosion at the outer surface of a fuel can near the point of contact between the fuel can and the spacer due to the use of fuel pellets incorporated with burnable poisons. Constitution: Since reactor coolants are at high temperature and high pressure, zirconium and water are brought into reaction to proceed oxidation at the outer surface of a fuel can to form uniform oxidation layers. However, abrasion corrosion is additionally formed at the contact portion between the spacer and the fuel can, by which the corrosion is increased by about 25 %. For preventing such nodular corrosion, fuel pellets not incorporated with burnable poisons are charged at a portion of the fuel rod where the spacer is supported and fuel pellets incorporated with burnable poisons are charged at the positions other than about to thereby suppress the amount of the corrosion at the portion where the corrosion of the fuel can is most liable to be increased to thereby improve the fuel integrity. That is, radiolysis of coolants due to gamma-rays produced from gadolinium is lowered to reduce the oxygen concentration near the outer surface thereby preventing the corrosion. (Kawakami, Y.)

  15. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  16. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  17. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  19. Subchannel analysis of sodium-cooled reactor fuel assemblies with annular fuel pins

    International Nuclear Information System (INIS)

    Memmott, Matthew; Buongiorno, Jacopo; Hejzlar, Pavel

    2009-01-01

    Using a RELAP5-3D subchannel analysis model, the thermal-hydraulic behavior of sodium-cooled fuel assemblies with internally and externally cooled annular fuel rods was investigated, in an effort to enhance the economic performance of sodium-fast reactors by increasing the core power density, decreasing the core pressure drop, and extending the fuel discharge burnup. Both metal and oxide fuels at high and low conversion ratios (CR=0.25 and CR=1.00) were investigated. The externally and internally cooled annular fuel design is most beneficial when applied to the low CR core, as clad temperatures are reduced by up to 62.3degC for the oxide fuel, and up to 18.5degC for the metal fuel. This could result in a power uprates of up to ∼44% for the oxide fuel, and up to ∼43% for the metal fuel. The use of duct ribs was explored to flatten the temperature distribution at the core outlet. Subchannel analyses revealed that no fuel melting would occur in the case of complete blockage of the hot interior-annular channel for both metal and oxide fuels. Also, clad damage would not occur for the metal fuel if the power uprate is 38% or less, but would indeed occur for the oxide fuel. (author)

  20. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  1. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  3. Recycled industrial and construction waste for mutual beneficial use.

    Science.gov (United States)

    2016-08-01

    Instead of going to landfills, certain waste materials from industry and building construction can be recycled in transportation infrastructure projects, such as roadway paving. The beneficial use of waste materials in the construction of transportat...

  4. Beneficial effect of Curcumin in Letrozole induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    P. Sushma Reddy

    2016-04-01

    Conclusion: Curcumin showed beneficial effects in Letrozole induced PCOS in female Wistar rats. Its effect was comparable to that of Clomiphene citrate, most widely used treatment for ovulation induction in PCOS condition.

  5. Lunar Oxygen and Silicon Beneficiation Using Only Solar Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Element beneficiation from a moving, ionized plasma can be accomplished through the principles of mass spectroscopy. Two US patents were recently awarded to the PI...

  6. The fuel cycle

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the fuel cycle is presented. The following fuel cycle steps are described: (1) Front of the fuel cycle (Mining and milling; Treatment; Refining, conversion and enrichment; Fuel fabrication); (2) Use of fuel in nuclear reactors; (3) Back end of the fuel cycle (Interim storage of spent fuel; spent fuel reprocessing; Final disposal of spent fuel)

  7. Extending the case for a beneficial brain drain

    OpenAIRE

    Simone Bertoli; Herbert Brücker

    2012-01-01

    The recent literature about the so-called beneficial brain drain assumes that destination countries are characterized not only by higher wages than the source country, but also by a higher or at least not lower relative return to education. However, it is a well known stylized fact that the returns to education are higher in rich than in poor countries. Against this background, we assess whether the main prediction of this literature, namely the possibility of a beneficial brain gain, still h...

  8. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitosi.

    1993-01-01

    Fuel pellets containing burnable poison and fuel pellets not containing burnable poison are used together in burnable poison-incorporated fuel rods which is disposed at the outermost layer of a cluster. Since the burnable poison-incorporated fuel rods are disposed at the outermost layer of the cluster where a neutron flux level is high and, accordingly, the power is high originally, local power peaking can be suppressed and, simultaneously, fuels can be burnt effectively without increasing the fuel concentration in the inner and the intermediate layers than that of the outermost layer. In addition, a problem of lacking a reactor core reactivity at an initial stage is solved by disposing both of the fuel pellets together, even if burnable poisons of high concentration are used. This is because the extent of the lowering of the reactivity due to the burnable poison-incorporated fuels is mainly determined by the surface area thereof and the remaining period of the burnable poison is mainly determined by the concentration thereof. As a result, the burnup degree can be improved without lowering the reactor reactivity so much. (N.H.)

  10. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  12. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  13. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  14. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  16. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  17. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  18. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  19. FUEL ELEMENT

    Science.gov (United States)

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  20. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management

    Science.gov (United States)

    Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L

    2017-01-01

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. PMID:29231813

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  2. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid ''M''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This document is a Final Acceptance for Beneficial Use (ABU) for the readiness of Pumping Instrumentation and Control (PIC) skid ''M''. All the testing and documentation for PIC skid ''M'' is completed and the skid is ready for use in the field for pumping of tank U-102

  3. Titanium as a Beneficial Element for Crop Production

    Directory of Open Access Journals (Sweden)

    Jianjun Chen

    2017-04-01

    Full Text Available Titanium (Ti is considered a beneficial element for plant growth. Ti applied via roots or leaves at low concentrations has been documented to improve crop performance through stimulating the activity of certain enzymes, enhancing chlorophyll content and photosynthesis, promoting nutrient uptake, strengthening stress tolerance, and improving crop yield and quality. Commercial fertilizers containing Ti, such as Tytanit and Mg-Titanit, have been used as biostimulants for improving crop production; however, mechanisms underlying the beneficial effects still remain unclear. In this article, we propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements primarily iron (Fe. Fe and Ti have synergistic and antagonistic relationships. When plants experience Fe deficiency, Ti helps induce the expression of genes related to Fe acquisition, thereby enhancing Fe uptake and utilization and subsequently improving plant growth. Plants may have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, Ti competes with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As a result, the beneficial effects of Ti become more pronounced during the time when plants experience low or deficient Fe supply.

  4. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  5. A review on the beneficial aspects of food processing.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.P.D.; Somoza, V.; Knorr, D.; Rao Jasti, P.; Eisenbrand, G.

    2010-01-01

    The manuscript reviews beneficial aspects of food processing with main focus on cooking/heat treatment, including other food-processing techniques (e.g. fermentation). Benefits of thermal processing include inactivation of food-borne pathogens, natural toxins or other detrimental constituents,

  6. THE BENEFICIAL EFFECTS OF SPORT ON ANXIETY AND DEPRESSION

    Directory of Open Access Journals (Sweden)

    Francesco Perrotta

    2010-08-01

    Full Text Available It is well established that exercise increases energy levels and mood state. At least 20 published studies, indicate a link between physical activity and signs of prosperity. There is much medical evidence showing the beneficial effects of exercise on cardiovascular disease, obesity and diabetes. Currently there is growing interest to see ifphysical activity can also improve symptoms of mental illness

  7. Research Priorities for Robust and Beneficial Artificial Intelligence

    OpenAIRE

    Russell, Stuart; Dewey, Daniel; Tegmark, Max

    2015-01-01

    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.

  8. When are enhanced relationship tax compliance programs mutually beneficial?

    NARCIS (Netherlands)

    De Simone, L.; Sansing, R.; Seidman, J.K.

    2013-01-01

    This study investigates the circumstances under which “enhanced relationship” tax-compliance programs are mutually beneficial to taxpayers and tax authorities, as well as how these benefits are shared. We develop a model of taxpayer and tax authority behavior inside and outside of an enhanced

  9. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. Copyright © 2012 Society of Chemical Industry.

  10. Beneficial effects of microbes in nutrient recycling in cropping ...

    African Journals Online (AJOL)

    The major constraint to agricultural production in Malawi is soil fertility decline. The beneficial effects of microbes in the soil, in sustaining soil productivity are promoted in the country through the introduction of organic matter technologies. However, the effect of using maize stover on long term soil fertility improvement has ...

  11. Factitious foods to reduce production costs of beneficial insects

    Science.gov (United States)

    This article reports the use of factitious foods such as Tenebrio molitor pupa, E. kuehniella eggs, Ephestia eggs, and or Artemia franciscana eggs for the rearing of beneficial insect such as Podisus maculiventris, spined soldier bug and several ladybird predators belonging to the Coccinellidae fam...

  12. Beneficial Effects of Tactile Stimulation on Early Development.

    Science.gov (United States)

    Caulfield, Rick

    2000-01-01

    Reviews selected research on the beneficial effects of tactile stimulation on infants. Examines the results of studies with animals, preterm infants, cocaine- and HIV-exposed preterm infants, and normal full-term infants. Briefly discusses caregiving implications and offers suggestions on how caregivers can incorporate tactile stimulation in…

  13. Nebivolol might be Beneficial in Osteoporosis Treatment: A Hypothesis

    African Journals Online (AJOL)

    There are some studies conducted in humans and animal models which have shown that NO is an important regulator of bone metabolism. However, oxidative stress and antioxidant systems may play important roles in the pathogenesis of osteoporosis. In this paper, we hypothesized that nebivolol may have beneficial ...

  14. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  15. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  16. Control of the peachtree borer using beneficial nematodes

    Science.gov (United States)

    The peachtree borer, Synanthedon exitiosa, is a major pest of peaches and other stone fruits. Our research indicates that entomopathogenic nematodes, also known as beneficial nematodes, can be used effectively to control the insect. We conducted replicated experiments in randomized block designs ov...

  17. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  18. US fossil fuel technologies for Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  19. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  1. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  2. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  3. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  4. Reforming of fuel inside fuel cell generator

    Science.gov (United States)

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  5. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  6. The EU-Africa Energy Partnership: Towards a mutually beneficial renewable transport energy alliance?

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Michael B., E-mail: michael.charles@scu.edu.a [Graduate College of Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Ryan, Rachel [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Oloruntoba, Richard [Newcastle Business School, Faculty of Business and Law, University of Newcastle, 1 University Drive, Callaghan, NSW 2324 (Australia); Heidt, Tania von der [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia); Ryan, Neal [Pro Vice-Chancellor, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia)

    2009-12-15

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production.

  7. The EU-Africa Energy Partnership. Towards a mutually beneficial renewable transport energy alliance?

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Michael B. [Graduate College of Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Ryan, Rachel [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Oloruntoba, Richard [Newcastle Business School, Faculty of Business and Law, University of Newcastle, 1 University Drive, Callaghan, NSW 2324 (Australia); Heidt, Tania von der [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia); Ryan, Neal [Pro Vice-Chancellor, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia)

    2009-12-15

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production. (author)

  8. The EU-Africa Energy Partnership: Towards a mutually beneficial renewable transport energy alliance?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Oloruntoba, Richard; Heidt, Tania von der; Ryan, Neal

    2009-01-01

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production.

  9. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  10. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  11. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid N

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This is a final Acceptance for Beneficial Use (ABU) for Pumping and Instrumentation Control (PIC) skid ''N''. PIC skid ''N'' is ready for pumping tank U-109. All the testing and documentation has been completed as required on the AE3U checklist. This AE3U covers only the readiness of the PIC skid ''N''. Other U-farm preparations including dilution tank fabrication, portable exhauster readiness, leak detection, valve pit preparation, and the Operation Control Station readiness are not part of this ABU. PIC skid ''N'' is a new skid fabricated and tested at Site Fabrication Services. The skid controls the jet pump and monitors various instruments associated with the pumping operation. This monitoring includes leak detection along the waste transfer route and flammable gases in the pump pit. This Acceptance for Beneficial Use documents that Pumping Instrumentation and Control (PIC) skid ''N'' is ready for field use. This document does not cover the field installation or operational testing

  12. Beneficial effects of specific natural substances on oral health

    Directory of Open Access Journals (Sweden)

    Sameer Shaikh

    2017-12-01

    Full Text Available Substances that are consumed daily or occasionally may influence an individual’s oral health. Some substances, such as alcohol, tobacco, and areca nut, adversely affect the oral region. However, some other substances, such as honey and green tea, which have antimicrobial properties, and berries, which have anticarcinogenic potential, exhibit beneficial effects on oral health. The effectiveness of synthetic drugs in maintaining oral health cannot be ignored; however, the benefits of synthetic drugs are associated with adverse effects and high costs. By contrast, the medicinal use of natural substances is associated with safety, affordability, and long-term benefits. In this paper, we review various natural substances that are potentially beneficial to oral health.

  13. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers

    Directory of Open Access Journals (Sweden)

    E. Malusá

    2012-01-01

    Full Text Available The increasing need for environmentaly friendly agricultural practices is driving the use of fertilizers based on beneficial microorganisms. The latter belong to a wide array of genera, classes, and phyla, ranging from bacteria to yeasts and fungi, which can support plant nutrition with different mechanisms. Moreover, studies on the interactions between plant, soil, and the different microorganisms are shedding light on their interrelationships thus providing new possible ways to exploit them for agricultural purposes. However, even though the inoculation of plants with these microorganisms is a well-known practice, the formulation of inocula with a reliable and consistent effect under field conditions is still a bottleneck for their wider use. The choice of the technology for inocula production and of the carrier for the formulation is key to their successful application. This paper focuses on how inoculation issues can be approached to improve the performance of beneficial microorganisms used as a tool for enhancing plant growth and yield.

  14. Acceptance for Beneficial Use for the Canister Cleaning System for the K West basin Project - A.2.A

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    2000-01-01

    This documents the documentation that is required to be turned over to Operations with the Canister Cleaning System (CCS). The Acceptance for Beneficial Use will be updated as required prior to turnover. This document is prepared for the purposes of documenting an agreement among the various disciplines and organizations within the Spent Nuclear Fuel (SNF) Project as to what is required in terms of installed components of the CCS. This documentation will be used to achieve project closeout and turnover of ownership of the CCS to K Basins Operations

  15. The beneficiation of mumbwa phosphate deposit by various ...

    African Journals Online (AJOL)

    The chemical composition of the ore averages 22.7 % P2O5 with the other constituents being 22.8% SiO2, 19.0% CaO, 7.0% Fe2O3, 4.0 % Al2O3 and 0.2% MgO. Beneficiation studies were performed to investigate methods of concentrating the phosphate values. Preliminary investigations involved detailed identification of ...

  16. Health effects of predatory beneficial mites and wasps in greenhouses

    DEFF Research Database (Denmark)

    Bælum, Jesper; Enkegaard, Annie; Doekes, Gert

    A three-year study of 579 greenhouse workers in 31 firms investigated the effect of four different beneficial arthropods. It was shown that the thrips mite Amblyseeius cucumeris and the spider mite predator Phytoseiulus persimilis may cause allergy measured by blood tests as well as eye and nose...... symptoms. No effect was seen by the predator wasp Aphidius colemani nor the predator mite Hypoaspis miles and no effect on lung diseases were seen....

  17. Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2016-10-01

    Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Patrice D. Cani

    2017-09-01

    Full Text Available Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.

  19. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  20. Effect of Bauxite Microstructure on Beneficiation and Processing

    Science.gov (United States)

    Solymár, Károly; Mádai, Ferenc; Papanastassiou, Dimitri

    The microstructure of bauxite determines to a significant extent the opportunities for its beneficiation and optimum processing downstream. Adequate fine grinding commensurate with its microstructure may result in proper mineral liberation and grain size distribution required for effective ore dressing (i.e. H/M or magnetic separation) and digestion respectively. Particle size distribution, mean diameter and amount of ooidal grains as well as degree of dissemination of the impurities in polished sections of raw bauxite, ground bauxite and red mud samples were determined by means of scanning electron-microscope, electron probe micro-analyser and digital image analysis. The results of beneficiation tests (effective removal of liberated limestone but insufficient reduction of finely disseminated reactive silica) and the required digestion parameters of the mainly oolitic Greek diasporic and the Hungarian boehmitic (partly dolomitic) bauxite are discussed. Based on the microstructure, the effectiveness of beneficiation, the degree of grinding (required particle size) and also the necessary digestion parameters of any bauxite can be adequately predicted.

  1. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  2. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  3. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  4. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  5. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  6. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  7. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  8. Fuel trading

    International Nuclear Information System (INIS)

    2015-01-01

    A first part of this report proposes an overview of trends and predictions. After a synthesis on the sector changes and trends, it indicates and comments the most recent predictions for the consumption of refined oil products and for the turnover of the fuel wholesale market, reports the main highlights concerning the sector's life, and gives a dashboard of the sector activity. The second part proposes the annual report on trends and competition. It presents the main operator profiles and fuel categories, the main determining factors of the activity, the evolution of the sector context between 2005 and 2015 (consumptions, prices, temperature evolution). It analyses the evolution of the sector activity and indicators (sales, turnovers, prices, imports). Financial performances of enterprises are presented. The economic structure of the sector is described (evolution of the economic fabric, structural characteristics, French foreign trade). Actors are then presented and ranked in terms of turnover, of added value, and of result

  9. [Coffee can be beneficial for patients with liver diseases].

    Science.gov (United States)

    Kjærgaard, Maria; Thiele, Maja; Krag, Aleksander

    2014-10-20

    Coffee is one of the most commonly consumed beverages in the world. Consequently, it is important to consider the impact of coffee on health and disease. A daily intake of at least three cups of coffee is likely to have beneficial health effects, especially in patients at risk of liver diseases. Coffee has been associated with decreased liver inflammation, prevention of cirrhosis, reduced steatosis and lower incidence of hepatocellular carcinoma. It is not yet possible to make clear recommendations, but coffee can likely be included as part of a healthy diet for patients with liver diseases.

  10. Ethics as a beneficial Trojan horse in a technological society.

    Science.gov (United States)

    Queraltó, Ramón

    2013-03-01

    This article explores the transformation of ethics in a globalizing technological society. After describing some basic features of this society, particularly the primacy it gives to a special type of technical rationality, three specific influences on traditional ethics are examined: (1) a change concerning the notion of value, (2) the decreasing relevance of the concept of axiological hierarchy, and (3) the new internal architecture of ethics as a net of values. These three characteristics suggest a new pragmatic understanding of ethics. From a pragmatic perspective, the process of introducing ethical values into contemporary society can be regarded as a beneficial Trojan horse, a metaphor that will be developed further.

  11. Proceedings of a workshop on the utilization of coal fuels in process heaters

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Almost 5% of the nation's energy consumption takes place in tubular process heaters. Currently, these units are gas- and, to a lesser extent, oil-fired. Process heaters provide energy for refining petroleum and the manufacture of numerous chemicals and petrochemicals. Since the current state-of-the-art, using waste heat recovery and forced draft burners, can achieve thermal efficiencies of about 90%, it is unlikely that current process heat and fuel requirements will be dramatically reduced by process modifications and/or conservation measures. Hence, if this sizeable, inexorable drain on our fluid petroleum reserves is to be halted, it seems reasonable to consider the utilization of coal and/or coal-based fuels to fire process heaters. In order to assess the feasibility and potential for a coal-based process heater industry, Brookhaven National Laboratory (BNL) organized a workshop to define and explore the various problems that must be solved in order to burn coal in process heaters. A primary aim of the workshop was to consider the design methodology for process heaters when firing coal and compare it to those for gas and oil firing. The overall conclusions were: that retrofitting present process heaters to coal fuel was impractical; that it would be difficult to fit larger heaters designed to burn coal into present refineries; that there would be difficulties with process heaters burning coal; and that a better approach would be one large utility coal heater with a circulating heat transfer medium. Seven papers have been entered individually into EDB and ERA. (LTN)

  12. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1995--September 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Hatcher, P.; Knicker, H. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-21

    The U.S. Department of Defense (DOD), through the Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Mixture Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, preparation of the Phase I final report continued. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included initiating a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work started on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filter device will be used to demonstrate a more compact and efficient filtering device for retrofit applications. Coal preparation and utilization activities, and the economic analysis were completed and work focused on preparing the final report. Work on Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on selecting incentives for commercialization of coal using technologies, community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  13. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  14. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  15. Beneficial uses program. Progress report, period ending June 30, 1977

    International Nuclear Information System (INIS)

    1977-12-01

    The Beneficial Uses Program is a comprehensive program aimed at developing necessary technologies for cost/beneficial uses of existing and future surplus radioactive materials. The major portion of the work at Sandia has been concentrated in two subprograms: the Waste Resources Utilization Program and the Separation Technology and Source Development Program. Mutagenicity testing of sludge by the Ames method was initiated this quarter. Rats were procured and maintained on phenobarbital to enduce liver enzymes used in the preparation of the S-9 fraction for the Ames tests. Initial tests in the absence of S-9 metabolic activation did not show raw and digested sludges to be mutagenic. Settling studies using centrifugation techniques have confirmed that radiation treatment causes a significant increase in prompt settlability, while at longer times, the improvement is insignificant compared to the effectiveness of polymer-conditioning agents. The use of gamma irradiation to improve the settlability of sewage sludge will have limited application. The conveyor system for the dried sludge irradiation pilot plant was received from Gough Econ, Staffordshire, England. Both esophageal-fistulated and intact steers were fitted with fecal collection bags and used in grazing experiments. Supplementation with dried irradiated primary sewage solids improved not only the protein status of the steers, but also exerted measurable and important effects on the composition of forage selectively grazed

  16. Perlecan and the Blood-Brain Barrier: Beneficial Proteolysis?

    Directory of Open Access Journals (Sweden)

    Jill eRoberts

    2012-08-01

    Full Text Available The cerebral microvasculature is important for maintaining brain homeostasis. This is achieved via the blood-brain barrier (BBB, composed of endothelial cells with specialized tight junctions, astrocytes and a basement membrane. Prominent components of the basement membrane extracellular matrix (ECM include fibronectin, laminin, collagen IV and perlecan, all of which regulate cellular processes via signal transduction through various cell membrane bound ECM receptors. Expression and proteolysis of these ECM components can be rapidly altered during pathological states of the central nervous system. In particular, proteolysis of perlecan, a heparan sulfate proteoglycan, occurs within hours following ischemia induced by experimental stroke. Proteolysis of ECM components following stroke results in the degradation of the basement membrane and further disruption of the BBB. While it is clear that such proteolysis has negative consequences for the BBB, we propose that it also may lead to generation of ECM protein fragments, including the C-terminal domain V (DV of perlecan, that potentially have a positive influence on other aspects of CNS health. Indeed, perlecan DV has been shown to be persistently generated after stroke and beneficial as a neuroprotective molecule and promoter of post-stroke brain repair. This mini-review will discuss beneficial roles of perlecan protein fragment generation within the brain during stroke.

  17. Beneficial effects of fresh and fermented kimchi in prediabetic individuals.

    Science.gov (United States)

    An, So-Yeon; Lee, Min Suk; Jeon, Ja Young; Ha, Eun Suk; Kim, Tae Ho; Yoon, Ja Young; Ok, Chang-Ok; Lee, Hye-Kyoung; Hwang, Won-Sun; Choe, Sun Jung; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Lee, Kwan-Woo

    2013-01-01

    With the increased incidence of diabetes mellitus, the importance of early intervention in prediabetes has been emphasized. We previously reported that fermented kimchi, a traditional Korean food, reduced body weight and improved metabolic factors in overweight participants. We hypothesized that kimchi and its fermented form would have beneficial effects on glucose metabolism in patients with prediabetes. A total of 21 participants with prediabetes were enrolled. During the first 8 weeks, they consumed either fresh (1-day-old) or fermented (10-day-old) kimchi. After a 4-week washout period, they switched to the other type of kimchi for the next 8 weeks. Consumption of both types of kimchi significantly decreased body weight, body mass index, and waist circumference. Fermented kimchi decreased insulin resistance, and increased insulin sensitivity, QUICKI and disposition index values (p = 0.004 and 0.028, respectively). Systolic and diastolic blood pressure (BP) decreased significantly in the fermented kimchi group. The percentages of participants who showed improved glucose tolerance were 9.5 and 33.3% in the fresh and fermented kimchi groups, respectively. Consumption of kimchi had beneficial effects on glucose metabolism-related and anthropometric factors in participants with prediabetes. Fermented kimchi had additional effects on BP and insulin resistance/sensitivity. The percentage of participants who showed improvement in glucose tolerance was high in the fermented kimchi group. © 2013 S. Karger AG, Basel.

  18. Non-alcoholic Fatty Liver Disease: Beneficial Effects of Flavonoids.

    Science.gov (United States)

    Akhlaghi, Masoumeh

    2016-10-01

    Non-alcoholic fatty liver disease (NAFLD) has been known as the hepatic feature of metabolic syndrome. Extra fat depots, especially in visceral areas, develop insulin resistance as a result of mild oxidation and inflammation. Insulin resistance induces lipolysis and releases free fatty acids into the circulation, where they are transported to the liver. In the liver, free fatty acids are converted to triglycerides and accumulate, causing simple steatosis that, if left untreated, can lead to steatohepatitis, and subsequently liver necrosis and cirrhosis.Flavonoids, a group of plant compounds with incredible biological characteristics, have shown advantages in pathological conditions. Beneficial effects of flavonoids against NAFLD and its related disorders have been observed in both animal and human studies. Various mechanisms have been found for their protection. Flavonoids prevent hepatosteatosis by increasing fatty acid oxidation in the liver. They can also reduce caloric intake and decrease body weight and fat deposition in visceral tissues. Flavonoids are unique antioxidants that exert their beneficial effects through inhibition of nuclear factor κB, thereby attenuating release of inflammatory cytokines, which are triggers of insulin resistance. Finally, flavonoids have shown to increase adiponectin, improve insulin sensitivity and glucose tolerance, correct dyslipidemia, and reduce blood pressure in patients with NAFLD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    Science.gov (United States)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  20. [Alcohol--when it's beneficial to your health?].

    Science.gov (United States)

    Zdrojewicz, Zygmumt; Pypno, Damian; Bugaj, Bartosz; Cabała, Krzysztof

    2015-12-01

    Ethyl alcohol is the most commonly used psychoactive agent. It's average consumption in Poland totaled 9.67 liters per capita in 2013. Ethanol's biotransformation rate in an adult ranges from 7 to 10 grams per hour. The basic metabolism takes place in the liver through the oxidation involving NAD+. The alcohol is transformed first into acetaldehyde and then into acetic acid. In higher blood concentrations or in alcoholism, cytochrome's P-450 coenzyme CYP2E1 also plays an important role in this process. Alcohol is responsible for nearly 50% of annual deaths, mostly caused by an accident due to alcohol intoxication while driving. Studies were performed to determine the influence ethanol has on the human body and how it impacts the progression of illnesses such as senile dementia, cardiovascular diseases or osteoporosis. Scientists' attention was drawn to the possibility of ethyl alcohol's usage resulting in a reduction in an overall mortality rate, however the beneficial effects were observed only during a slight and moderate consumption. Higher doses of alcohol were associated with a decline in patient's condition. The purpose of this dissertation is an attempt to answer the question, whether the alcohol can be beneficial to the user's health and if so, in what doses? The importance of this topic comes from the fact that due to the alcohol being widely available, determining the influence it has on human body is vital for public health. Original articles and reviews were used to summarize the results of studies regarding the topic. © 2015 MEDPRESS.

  1. Dodewaard fuel supply agreement - a model for the future

    International Nuclear Information System (INIS)

    Raven, L.F.; Hubers, C.

    1980-01-01

    An Agreement between the Utility GKN and the Fuel Supplier BNFL has eliminated any Utility imposed penalty clauses for fuel failure due to operational conditions and, consequently, there are no restrictions imposed by the Fuel Supplier on the reactor operational manoeuvres. The result is that the Utility can now decide if the risk of fuel clad failure during a reactor power ramp outweighs the financial loss due to slower ramp rates. It is the Utility and not the Fuel Supplier who is in the best position to make this judgment provided adequate operational experience and computer codes are available to quantify the risk. The paper discusses the reactor operational experience, including the fuel failure rate and the confirmation of PCI failure by post irradiation examination. It establishes the practicality of the Agreement for the Dodewaard reactor and suggests such arrangements could be beneficial to other Utilities. (author)

  2. Fuel rod and fuel assembly

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya.

    1993-01-01

    Burnable poisons are contained in a portion of a pellet constituting a fuel rod. A distribution density of the burnable poison-containing pellets and a concentration of the burnable poisons in the pellet are varied depending on the axial position of the fuel rod. That is, the distribution density of the burnable poison containing-pellets is increased at the central portion of the fuel rod and it is decreased at both ends thereof, and a concentration of the burnable poisons of the burnable poison containing-pellet disposed at the end portions thereof is decreased to less than a concentration of the burnable poison-containing pellet at the central portion. With such a constitution, a central peaking at an early stage of the combustion cycle is decreased. Accordingly, power at the central portion is increased than that in the end portions at the latter half of the cycle, to flatten the power distribution. Further, a burnable poison concentration of the pellets at the end portions is decreased to promote burning of burnable poisons at the end portions which are less burnable relatively, thereby enabling to prevent worsening of neutron economy. (T.M.)

  3. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  4. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  5. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  6. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  7. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  8. Glutamine supplementation in sick children: is it beneficial?

    Science.gov (United States)

    Mok, Elise; Hankard, Régis

    2011-01-01

    The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.

  9. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.

    Science.gov (United States)

    Alexandre, Gladys

    2017-11-09

    Bacteria of the genus Azospirillum comprise 15 species to date, with A. brasilense the best studied species in the genus. Azospirillum are soil bacteria able to promote the growth of plants from 113 species spanning 35 botanical families. These non-pathogenic and beneficial bacteria are ubiquitous in soils and inhabit the roots of diverse plants. These bacteria are microaerophilic, able to fix nitrogen under free-living conditions, motile, and able to navigate in gradients of various chemicals, including oxygen. These physiological traits are used to isolate these soil bacteria from soil and plant root samples, providing isolates that can be used for studying microbial physiology and plant growth promotion. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    Science.gov (United States)

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Pedata, Monica; Meli, Rosaria; Calignano, Antonio

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine. PMID:21472114

  11. Glutamine Supplementation in Sick Children: Is It Beneficial?

    Directory of Open Access Journals (Sweden)

    Elise Mok

    2011-01-01

    Full Text Available The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.

  12. Beneficial uses program. Progress report, Period ending September 30, 1976

    International Nuclear Information System (INIS)

    1976-11-01

    Progress is reported in the development of a technology to utilize 137 Cs, a nuclear power plant by-product, as a γ source for the treatment of sewage sludge for use as a fertilizer or animal feed supplement. Results are reported from studies on the radiosensitivity of Escherichia coli and Salmonella in sewage sludge; the effects of ammonia on the survival of viruses in sludges; heat inactivation rates for bacteria in sludges; the combined effects of heat and radiation on odor from sludge; and the cost advantages of irradiation over heat treatment of sewage sludge. Animal studies demonstrated the nutritional advantages of the addition of sludge to animal feeds and plant studies demonstrated the beneficial effects on plant growth of the use of sludge as fertilizer

  13. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    Boettinger, W.L.

    1993-01-01

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  14. Electricity sector restructuring in India: an environmentally beneficial policy?

    International Nuclear Information System (INIS)

    Perkins, Richard

    2005-01-01

    It has been suggested that reforms to the electricity sector in developing countries encouraging the entry of independent power producers (IPPs) are likely to result in environmental improvements similar to those recently made in a number of developed economies. The present paper evaluates this claim by examining the experience of the Indian power sector. It finds that recent investments by IPPs have reduced the pollution-intensity of electricity generation in the country. Yet they have not brought the significant gains seen in countries such as the UK, nor are they likely to in the foreseeable future. This is largely a product of the nature and context of electricity sector reform in India which is less favourable to environmentally beneficial outcomes. Accordingly, the paper concludes by suggesting that the environmental benefits of restructuring are not automatic, but depend on the existence of an enabling structural, institutional and regulatory framework

  15. Coffee components and cardiovascular risk: beneficial and detrimental effects.

    Science.gov (United States)

    Godos, Justyna; Pluchinotta, Francesca Romana; Marventano, Stefano; Buscemi, Silvio; Li Volti, Giovanni; Galvano, Fabio; Grosso, Giuseppe

    2014-12-01

    Coffee consists of several biological active compounds, such as caffeine, diterpenes, chlorogenic acids, and melanoidins, which may affect human health. The intake of each compound depends on the variety of coffee species, roasting degree, type of brewing method and serving size. The bioavailability and the distribution of each compound and its metabolites also contribute to coffee mechanisms of action. The health benefits of coffee consumption regarding cardiovascular system and metabolism mostly depend on its antioxidant compounds. In contrast, diterpenes and caffeine may produce harmful effects by raising lipid fraction and affecting endothelial function, respectively. Studying the mechanism of action of coffee components may help understanding weather coffee's impact on health is beneficial or hazardous. In this article, we reviewed the available information about coffee compounds and their mechanism of action. Furthermore, benefits and risks for cardiovascular system associated with coffee consumption will be discussed.

  16. Beneficial and harmful roles of bacteria from the Clostridium genus.

    Science.gov (United States)

    Samul, Dorota; Worsztynowicz, Paulina; Leja, Katarzyna; Grajek, Włodzimierz

    2013-01-01

    Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications.

  17. Beneficiation studies of an uranium siliceous - phosphate ore

    International Nuclear Information System (INIS)

    Bruno, J.B.; Santos, A.T.; Santos Benedetto, J. dos

    1980-01-01

    The consolidation of the beneficiation studies of a low-grade uranium siliceous - phosphate ore (11% P 2 O 5 ) from Itataia region in the Northeast of Brazil, owned by Empresas Nucleares Brasileiras S.A. - NUCLEBRAS, are presented. Laboratory studies using froth flotation technique and applying statistical methods for data evaluation were made. Pilot plant tests in a 120 Kg/h scale were conducted as a consequence of the bench scale tests. The developed process using tall-oil as collector and starch as depressant gave a total yield of 80% for the P 2 O 5 and 71% the U 3 O 8 , for a 33% P 2 O 5 phosphate concentrate. (Author) [pt

  18. Sweetgum: An ancient source of beneficial compounds with modern benefits

    Science.gov (United States)

    Lingbeck, Jody M.; O’Bryan, Corliss A.; Martin, Elizabeth M.; Adams, Joshua P.; Crandall, Philip G.

    2015-01-01

    Sweetgum trees are large, deciduous trees found in Asia and North America. Sweetgum trees are important resources for medicinal and other beneficial compounds. Many of the medicinal properties of sweetgum are derived from the resinous sap that exudes when the outer bark of the tree has been damaged. The sap, known as storax, has been used for centuries to treat common ailments such as skin problems, coughs, and ulcers. More recently, storax has proven to be a strong antimicrobial agent even against multidrug resistant bacteria such as methicillin-resistant Staphylococcus aureus. In addition to the sap, the leaves, bark, and seeds of sweetgum also possess beneficial compounds such as shikimic acid, a precursor to the production of oseltamivir phosphate, the active ingredient in Tamiflu®–an antiviral drug effective against several influenza viruses. Other extracts derived from sweetgum trees have shown potential as antioxidants, anti-inflammatory agents, and chemopreventive agents. The compounds found in the extracts derived from sweetgum sap suppress hypertension in mice. Extracts from sweetgum seeds have anticonvulsant effects, which may make them suitable in the treatment of epilepsy. In addition to the potential medicinal uses of sweetgum extracts, the extracts of the sap possess antifungal activity against various phytopathogenic fungi and have been effective treatments for reducing nematodes and the yellow mosquito, Aedes aegypti, populations thus highlighting the potential of these extracts as environment-friendly pesticides and antifungal agents. The list of value-added products derived from sweetgum trees can be increased by continued research of this abundantly occurring tree. PMID:26009686

  19. ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.

    Science.gov (United States)

    Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V

    2014-01-01

    A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects

  20. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  1. PWR fuel pin diameter optimisation studies and economic analyses for uranium nitride fuel - 5048

    International Nuclear Information System (INIS)

    Thomas, G.M.; Grove, C.

    2015-01-01

    Alternative advanced fuels are currently being investigated by the nuclear industry. For example, research is underway into the possibility of replacing industry standard UO 2 fuel with Accident Tolerant Fuels (ATF) such as uranium nitride (UN). The higher density of UN compared with UO 2 results in a reduction in neutron moderation due to the lower hydrogen to heavy metal ratio (H/HM) for a given fuel assembly geometry in water. This suggests a different optimum UN fuel pin diameter in order to maximise lifetime average reactivity. If a smaller UN pellet/cladding diameter is adopted then the H/HM ratio is increased, leading to an increase in reactivity at lower burnup (followed by a reduction at higher burnup due to reduced Pu production). Preliminary studies have also indicated that a reduction of the UN pellet diameter with respect to standard UO 2 fuel could be beneficial to economic performance. This paper describes an approach used to determine the optimum fuel pin diameter for UN fuel in an AP1000 PWR using Studsvik CASMO4/SIMULATE3 neutronics codes. The objective is to maximise the fuel's lifetime average reactivity while staying within typical PWR nuclear design safety limits. The calculations demonstrate that the pin diameter should be decreased to optimise the fuel reactivity. However, if the pin diameter is decreased too much a highly undesirable positive moderator temperature coefficient can result. Economics calculations show that if UN fuel is used there is a potential economic benefit - in the region of 3 million dollar per 18-month reload if generic openly available cost data is used

  2. Renewable Fuel Standard Program

    Science.gov (United States)

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  3. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  4. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  5. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  6. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  7. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  8. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  9. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  10. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  12. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  13. Some regional costs of a synthetic fuel industry: The case of illinois

    Science.gov (United States)

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  14. Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China

    Directory of Open Access Journals (Sweden)

    Tianduo Peng

    2017-11-01

    Full Text Available The Tsinghua University Life Cycle Analysis Model (TLCAM is applied to calculate the life cycle fossil energy consumption and greenhouse gas (GHG emissions for more than 20 vehicle fuel pathways in China. In addition to conventional gasoline and diesel, these include coal- and gas-based vehicle fuels, and electric vehicle (EV pathways. The results indicate the following. (1 China’s current dependence on coal and relative low-efficiency processes limits the potential for most alternative fuel pathways to decrease energy consumption and emissions; (2 Future low-carbon electricity pathways offer more obvious advantages, with coal-based pathways needing to adopt carbon dioxide capture and storage technology to compete; (3 A well-to-wheels analysis of the fossil energy consumption of vehicles fueled by compressed natural gas and liquefied natural gas (LNG showed that they are comparable to conventional gasoline vehicles. However, importing rather than domestically producing LNG for vehicle use can decrease domestic GHG emissions by 35% and 31% compared with those of conventional gasoline and diesel vehicles, respectively; (4 The manufacturing and recovery of battery and vehicle in the EV analysis has significant impact on the overall ability of EVs to decrease fossil energy consumption and GHG emissions from ICEVs.

  15. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  16. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  17. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  18. Environmental benefits of transport and stationary fuel cells

    Science.gov (United States)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  19. Internal reforming fuel cell assembly with simplified fuel feed

    Science.gov (United States)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  20. Atmosphere: A Source of Pathogenic or Beneficial Microbes?

    Directory of Open Access Journals (Sweden)

    Paraskevi N. Polymenakou

    2012-01-01

    Full Text Available The atmosphere has been described as one of the last frontiers of biological exploration on Earth. The composition of microbial communities in the atmosphere is still not well-defined, and taxonomic studies of bacterial diversity in the outdoor air have just started to emerge, whereas our knowledge about the functional potential of air microbiota is scant. When in the air, microorganisms can be attached to ambient particles and/or incorporated into water droplets of clouds, fog, and precipitation (i.e., rain, snow, hail. Further, they can be deposited back to earth’s surfaces via dry and wet deposition processes and they can possibly induce an effect on the diversity and function of aquatic and terrestrial ecosystems or impose impacts to human health through microbial pathogens dispersion. In addition to their impact on ecosystem and public health, there are strong indications that air microbes are metabolically active and well adapted to the harsh atmospheric conditions. Furthermore they can affect atmospheric chemistry and physics, with important implications in meteorology and global climate. This review summarizes current knowledge about the ubiquitous presence of microbes in the atmosphere and discusses their ability to survive in the atmospheric environment. The purpose is to evaluate the atmospheric environment as a source of pathogenic or beneficial microbes and to assess the biotechnological opportunities that may offer.

  1. Beneficial effects of footbaths in controlling spasticity after stroke

    Science.gov (United States)

    Matsumoto, Shuji; Shimodozono, Megumi; Etoh, Seiji; Shimozono, Yurika; Tanaka, Nobuyuki; Kawahira, Kazumi

    2010-07-01

    Footbaths are considered to provide beneficial thermal therapy for post-stroke patients with spasticity, but their anti-spastic effects have not been investigated comprehensively. The present study aimed to evaluate alterations in motor-neuron excitability using F-wave parameters in post-stroke patients with spastic hemiplegia. Subjects’ legs below the knee joint were immersed in water at 41°C and F-wave recordings were made over the abductor hallucis muscle before, immediately after, and 30 min after thermal treatment. Antidromic stimulation was performed on the tibial nerve at the ankle. Measurements included F-wave amplitude, F-wave/M-response ratio, changes in modified Ashworth scale (MAS), body temperature and surface-skin temperature. The mean values of both F-wave parameters were higher on the affected side before footbath treatment. In post-stroke patients, the mean values of F-wave parameters were significantly reduced after footbath treatment ( P spastic effects of footbath treatment were indicated by decreased F-wave parameters, in parallel with decreases in MAS. Body temperature was significantly increased both immediately after, and 30 min following footbath treatment in both groups, which appeared to play an important role in decreased spasticity. Surface-skin temperature increased immediately after footbath treatment in both groups and returned to baseline 30 min later. These findings demonstrate that the use of footbaths is an effective nonpharmacological anti-spastic treatment that might facilitate stroke rehabilitation.

  2. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. (Alabama Univ., University, AL (United States)); Chiang, S.H.; Venkatadri, R. (Pittsburgh Univ., PA (United States)); Misra, M. (Nevada Univ., Reno, NV (United States))

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  3. Beneficial effect of interventional exercise on autistic Fragile X syndrome.

    Science.gov (United States)

    Lee, Seunghoon; Won, Jinyoung; Park, Sookyoung; Lee, Sang-Rae; Chang, Kyu-Tae; Kim, Joo-Heon; Hong, Yonggeun

    2017-04-01

    [Purpose] The purpose of the present review is to discuss recent published articles in the understanding of efficacy of interventional exercise on autistic Fragile X syndrome (FXS) with special emphasis on its significance in clinical application in patients. [Methods] This review article was identified scientifically and/or clinically relevant articles from PubMed that directly/indirectly met the inclusion criteria. [Results] Mutation of fragile X mental retardation 1 ( fmr1 ) gene on the X chromosome is related with loss of fragile X mental retardation protein (FMRP) that affecting physiological and behavioral abnormalities. Autistic FXS individuals exhibit disturbed sleep and altered circadian behavior. Although the underlying molecular mechanisms are not been fully explored, interventional exercise in autistic FXS has been clinically used for the treatment of physiological and behavioral abnormalities as well as psychiatric disorder in autistic FXS. [Conclusion] This review describes beneficial efficacy of interventional exercise and its controversy in patients with autistic FXS. This review also provides interventional strategies for clinicians and scientists that the way of neurophysiological approaches according to the level of physical and behavioral abnormalities.

  4. Beneficial uses program. Progress report, period ending 31 December 1975

    International Nuclear Information System (INIS)

    1976-02-01

    Progress is reported on studies designed to develop the necessary technologies for cost-beneficial uses of existing and future surplus radioactive materials. The purpose of the Waste Resources Utilization Program is to develop a technology to utilize cesium-137, a nuclear power plant by-product, to modify sewage sludge for safe application as a fertilizer or as an animal feed supplement. A major portion of the effort this quarter was directed toward establishment of thermoradiation treatment levels for elimination of pathogenic organisms in sludge. Three groups of pathogenic microorganisms are being studied: viruses, bacteria, and parasites. Other areas of study included physical-chemical properties of thermoradiation treated sewage sludge such as ''settling'' and ''filterability'' and pilot plant design for a plant to thermoradiate up to 75 kiloliters of sludge per day. In the Separation Technology and Source Development Program previous work has demonstrated the feasibility of applying the Sandia Solidification Process to the recovery of radiocesium from high-level liquid wastes. The influence of various parameters on 137 Cs source intensities was explored. A multiple ceramic 137 Cs source package was found to be essentially the same from a radiation process viewpoint as a single 137 Cs source. The tolerable impurity levels in the ceramic sources, in terms of perturbation of the gamma flux, are relatively high (a few percent)

  5. Beneficial effects of the Mediterranean diet on metabolic syndrome.

    Science.gov (United States)

    Grosso, Giuseppe; Mistretta, Antonio; Marventano, Stefano; Purrello, Agata; Vitaglione, Paola; Calabrese, Giorgio; Drago, Filippo; Galvano, Fabio

    2014-01-01

    The metabolic syndrome (MetS) represents a cluster of medical disorders, such as hyperglycemia, dyslipidemia, hypertension, and abdominal obesity that, when occurring together, increase the risk of developing cardiovascular disease. The role of food and nutrients in the aetiology of chronic diseases has become clearer over the last 15 years. In this review we collected evidence on the beneficial impact of the Mediterranean diet on MetS by analyzing epidemiological reports documenting its prevalence in subjects who have adopted this dietary pattern. We also explored the role of the individual components of the diet on the specific aspects characterizing the MetS (i.e. metabolic indices, body weight and blood pressure). There is ample evidence showing that subjects adherent to the Mediterranean diet have lower prevalence and incidence rates of MetS than non-adherent. Moreover, it has been widely documented that specific components of this dietary pattern play a role in the prevention of several morbid conditions related to the MetS.

  6. Beneficial Effects of Temperate Forage Legumes that Contain Condensed Tannins

    Directory of Open Access Journals (Sweden)

    Jennifer W. MacAdam

    2015-07-01

    Full Text Available The two temperate forage legumes containing condensed tannins (CT that promote ruminant production are birdsfoot trefoil (Lotus corniculatus L.; BFT and sainfoin (Onobrychis viciifolia Scop.; SF. Both are well-adapted to the cool-temperate climate and alkaline soils of the Mountain West USA. Condensed tannins comprise a diverse family of bioactive chemicals with multiple beneficial functions for ruminants, including suppression of internal parasites and enteric methane. Birdsfoot trefoil contains 10 to 40 g·CT·kg−1 dry matter (DM, while SF contains 30 to 80 g·CT·kg−1 DM. Our studies have focused on these two plant species and have demonstrated consistently elevated rates of gain for beef calves grazing both BFT and SF. Novel results from our BFT research include carcass dressing percentages and consumer sensory evaluations equivalent to feedlot-finished steers and significantly greater than grass-finished steers, but with omega-3 fatty acid concentrations equal to grass-finished beef. We have further demonstrated that ruminants fed BFT or SF will consume more endophyte-infected tall fescue (Schedonorus arundinaceus (Schreb. Dumort. forage or seed than ruminants fed a non-CT forage legume. There is great potential value for sustainable livestock production in the use of highly digestible, nitrogen-fixing legumes containing tannins demonstrated to improve ruminant productivity.

  7. Beneficial effects of Psidium guajava leaf extract on diabetic myocardium.

    Science.gov (United States)

    Soman, Sowmya; Rajamanickam, Chellam; Rauf, Arun A; Indira, Madambath

    2013-01-01

    Non enzymatic glycosylation (glycation) between reducing sugar and protein results in the formation of advanced glycation end products (AGEs), which is believed to play an important role in diabetes associated cardiovascular complications. Thus agents that inhibit the formation of AGEs are believed to have therapeutic potential against diabetic complications. In the present study we evaluated the antiglycative potential of ethyl acetate fraction of Psidium guajava leaves (PGEt) by administering the extract into streptozotocin induced diabetic rats. Daily administration of the extract for a period of one month significantly decreased the blood glucose, glycated hemoglobin and fructosamine levels in a dose dependent manner. Evaluation of the toxicity markers like SGOT and SGPT revealed the non toxic nature of the extract. Apart from this we evaluated the presence of cardiac isoform of liver alpha 2 macroglobulin, which is a major protein associated with earlier stages of cardiac hypertrophy. SDS-PAGE analysis showed that the level of this protein decreased significantly in extract treated groups compared to diabetic control. These findings support that the administration of PGEt extract may be beneficial for preventing cardiovascular complications associated with diabetes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. THE BENEFICIAL EFFECT OF BILINGUALISM IN VISUAL MEDIA

    Directory of Open Access Journals (Sweden)

    Aliva Rosdiana

    2017-04-01

    Full Text Available Bilingualism is a phenomenon that affects people throughout the world. People use bilingualism in particular situations in society such as in education, job, mass media, etc. People who speak bilingualism means that they get second language learning. Radio, televison, and YouTube are important vehicles of mass communication. Mass communication differs from the studies of other forms of communication, such as interpersonal communication, in that it focuses on a single source transmitting information to a large group of receivers. The study of bilingualism in visual media is chiefly concerned with how the content of visual media persuades or otherwise affects either behavior, attitude, opinion, or emotion of the person or people receiving the information. The beneficial effect is the development of bilingualism. Watching video affects children‘s acquisition of their native language and hasten language shift to the majority language. By watching the video, it also enrich our knowledge to particular vocabularies based on particular topics. The Internet makes it possible to have conversations across countries and continents. Individuals have multiple identities and belong to other speakers of their heritage language. So, the linguistic competence will develop as a by-product of the interest. In addition, it brings people closer.

  9. Methanogens in humans: potentially beneficial or harmful for health.

    Science.gov (United States)

    Chaudhary, Prem Prashant; Conway, Patricia Lynne; Schlundt, Jørgen

    2018-04-01

    Methanogens are anaerobic prokaryotes from the domain archaea that utilize hydrogen to reduce carbon dioxide, acetate, and a variety of methyl compounds into methane. Earlier believed to inhabit only the extreme environments, these organisms are now reported to be found in various environments including mesophilic habitats and the human body. The biological significance of methanogens for humans has been re-evaluated in the last few decades. Their contribution towards pathogenicity has received much less attention than their bacterial counterparts. In humans, methanogens have been studied in the gastrointestinal tract, mouth, and vagina, and considerable focus has shifted towards elucidating their possible role in the progression of disease conditions in humans. Methanoarchaea are also part of the human skin microbiome and proposed to play a role in ammonia turnover. Compared to hundreds of different bacterial species, the human body harbors only a handful of methanogen species represented by Methanobrevibacter smithii, Methanobrevibacter oralis, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis, Candidatus Methanomassiliicoccus intestinalis, and Candidatus Methanomethylophilus alvus. Their presence in the human gut suggests an indirect correlation with severe diseases of the colon. In this review, we examine the current knowledge about the methanoarchaea in the human body and possible beneficial or less favorable interactions.

  10. Results of cost-beneficial licensing actions programs

    International Nuclear Information System (INIS)

    Sokolsky, D.; Ross, A.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission (NRC) formally established the cost-beneficial licensing action (CBLA) initiative in April 1993. This initiative provides an opportunity for nuclear plant licensees to reduce costs through either relief from regulatory requirements or changes in their commitments that are marginal to plant safety. The NRC recognized that licensees may have open-quotes overcommittedclose quotes to meet regulatory requirements and that revisions to these commitments Could result in cost savings. The NRC has defined CBLA as those licensee actions that are of relatively high cost and low safety significance. Since the CBLA initiative was established, licensees have made - 150 CBLA requests to the NRC. However, before and after the CBLA initiative became effective, licensees had made hundreds of regulatory reduction and commitment change requests to the NRC that were not identified as CBLA. The CBLAs discussed in this paper include both types of requests. Two types of cost savings can result from CBLAs - direct and averted. Direct cost savings result in an immediate cost reduction from the open-quotes bottom lineclose quotes as a result of the elimination of personnel or equipment. Averted cost savings, commonly known as resource reallocation, occur when a licensee action that takes up a small percentage of an employee's time is eliminated. In this instance, the employee would not be terminated, so no direct cost savings result, but that employee is available to perform other, more safety-significant actions

  11. Calcineurin determines toxic versus beneficial responses to α-synuclein.

    Science.gov (United States)

    Caraveo, Gabriela; Auluck, Pavan K; Whitesell, Luke; Chung, Chee Yeun; Baru, Valeriya; Mosharov, Eugene V; Yan, Xiaohui; Ben-Johny, Manu; Soste, Martin; Picotti, Paola; Kim, Hanna; Caldwell, Kim A; Caldwell, Guy A; Sulzer, David; Yue, David T; Lindquist, Susan

    2014-08-26

    Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase's activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.

  12. Beneficial effects of ketogenic diet in obese diabetic subjects.

    Science.gov (United States)

    Dashti, Hussein M; Mathew, Thazhumpal C; Khadada, Mousa; Al-Mousawi, Mahdi; Talib, Husain; Asfar, Sami K; Behbahani, Abdulla I; Al-Zaid, Naji S

    2007-08-01

    Obesity is closely linked to the incidence of type II diabetes. It is found that effective management of body weight and changes to nutritional habits especially with regard to the carbohydrate content and glycemic index of the diet have beneficial effects in obese subjects with glucose intolerance. Previously we have shown that ketogenic diet is quite effective in reducing body weight. Furthermore, it favorably alters the cardiac risk factors even in hyperlipidemic obese subjects. In this study the effect of ketogenic diet in obese subjects with high blood glucose level is compared to those with normal blood glucose level for a period of 56 weeks. A total of 64 healthy obese subjects with body mass index (BMI) greater than 30, having high blood glucose level and those subjects with normal blood glucose level were selected in this study. The body weight, body mass index, blood glucose level, total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, urea and creatinine were determined before and at 8, 16, 24, 48, and 56 weeks after the administration of the ketogenic diet. The body weight, body mass index, the level of blood glucose, total cholesterol, LDL-cholesterol, triglycerides, and urea showed a significant decrease from week 1 to week 56 (P ketogenic diet in obese diabetic subjects following its long-term administration. Furthermore, it demonstrates that in addition to its therapeutic value, low carbohydrate diet is safe to use for a longer period of time in obese diabetic subjects.

  13. Stainless Steel RSM Beneficial Reuse technical feasibility to business reality

    International Nuclear Information System (INIS)

    Boettinger, W.L.; Mishra, G.

    1997-08-01

    The Stainless Steel Beneficial Reuse Program began in 1994 as a demonstration funded by the DOE Office of Science and Technology. The purpose was to assess the practicality of stainless steel radioactive scrap metal (RSM) recycle. Technical feasibility has been demonstrated through the production of a number of products made from recycled RSM. A solid business foundation is yet to be achieved. However, a business environment is beginning to develop as multiple markets and applications for RSM are surfacing around the Complex. The criteria for a successful business reality includes: - affordable programs, - a continuing production base from which to expand, - real products needs, -adequate RSM supply, and - a multi-year program This program currently sponsored by SRS and DOE-ORO to fabricate Defense Waste Processing Facility (DWPF) canisters from RSM provides an activity that satisfies these criteria. The program status is discussed. A comparison of the cost of DWPF canisters fabricated from recycled RSM and virgin metal is presented. The comparison is a function of several factors: disposal costs, the fabrication cost of virgin metal canisters, the fabrication cost of recycled RSM canisters, free release decontamination costs, and the cost to accumulate the RSM. These variables are analyzed and the relationship established to show the break-even point for various values of each parameter

  14. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  15. Can vineyard biodiversity be beneficial for viticulture and tourism?

    Science.gov (United States)

    Hervé, Morgane; Kratschmer, Sophie; Gregorich, Claudia; Silvia, Winter; Montembault, David; Zaller, Johann G.; Guernion, Muriel; Jung, Vincent; Schuette, Rebekka; Paredes, Daniel; Guzman Diaz, Gema; Cabezas Luque, Jose Manuel; Hoble, Adela; Popescu, Daniela; Burel, Françoise; Cluzeau, Daniel; Bergmann, Holger; Potthoff, Martin; Nicolai, Annegret

    2017-04-01

    The European research BiodivERsA project VineDivers aims to link ecosystem services and vine production, in an integrative approach that considers both landscape structure and cultural practices (cover-crops versus bare soils), in vineyards of Austria, France, Romania and Spain. Such services studied are (i) provisioning and regulation services by soil biota and pollinators, and (ii) landscape cultural services. In this study, we want to know if landscape beneficial for biodiversity providing ecosystem services at a plot scale also have an aesthetical value. An interdisciplinary approach was chosen to include both ecological and sociological data. First, we analyzed the influence of soil management practices and landscape complexity on soil biota, inter-row flora and bees. Second, we implemented a questionnaire based on photographs about biodiversity perception and visual aesthetic evaluation. Our results highlighted the effect of landscape complexity and soil management intensity on biodiversity and their ecological and cultural ecosystem services. This allows us to discuss the global importance of biodiversity for a wine-producing region. Further analysis within the VineDivers project will focus on an assessment of the biodiversity importance for local viticulture economy.

  16. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  17. Fuel dissipater for pressurized fuel cell generators

    Science.gov (United States)

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  18. Environmental analysis concerning ICP Coal Beneficiation Plant for Iowa Coal Research Project. [University research project

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, J.B.; Crow, M.M.

    1976-04-27

    An environmental analysis of the Iowa Coal Project Coal Beneficiation Plant in Ames, Iowa is presented. Based on site monitoring and a review of related literature, the impact of the beneficiation plant on the natural environment is analyzed. The present environmental features are described and evaluated with particular emphasis on existing surface and groundwater quality. The component processes of the beneficiation plant are presented and the plant environmental design features are described. This beneficiation plant is not expected to have a significant impact on the area, but the development of a coal beneficiation technology in the State of Iowa can be expected to impact the Iowa coal mining industry significantly.

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Bessho, Yasunori; Ishii, Yoshihiko; Sadaoka, Noriyuki.

    1990-01-01

    Burnable poisons are disposed in the lower portions of a water rod, a channel box and a control rod guide pipe in a fuel assembly, and the amount for each of them is set to burn out in one operation cycle. Since the inner side of the water rod and the control rod guide pipe and gaps are filled with steams at the initial and the intermediate stages of the operation cycle, moderation of neutrons is delayed to harden the spectrum. On the other hand, since the burnable poisons are burnt out in the final stage of the operation cycle, γ-ray heating is not expected and since the insides of the water rod and the control rod guide pipe and the gaps are filled with water of great moderation effect, the neutron spectrum arae softened. In view of the above, void coefficient is increased to promote conversion from U-235 to Pu-239 by utilizing exothermic reaction of burnable poisons at the initial and the intermediate stages in the operation cycle and generation of voids are eliminated at the final stage where the burnable poisons are burnt out, thereby enabling effective burning of Pu-239. (N.H.)

  20. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  1. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. [Alabama Univ., University, AL (United States); Chiang, S.H.; Venkatadri, R. [Pittsburgh Univ., PA (United States); Misra, M. [Nevada Univ., Reno, NV (United States)

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  2. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  3. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  4. 3-Tesla MRI: Beneficial visualization of the meniscofemoral ligaments?

    Science.gov (United States)

    Ebrecht, Johanna; Krasny, Andrej; Hartmann, Dinah Maria; Rückbeil, Marcia Viviane; Ritz, Thomas; Prescher, Andreas

    2017-10-01

    Recent investigations have confirmed an important stabilizing and protective function of the meniscofemoral ligaments (MFLs) to the knee joint and suggest a clinical relevance. Concerning their incidences, however, there have been discrepancies between data acquired from cadaveric studies and MRI data using 0.3- to 1.5-Tesla field strengths probably due to lower resolution. This study aims to investigate whether imaging with 3-Tesla magnetic resonance imaging (3-T MRI) is beneficial in gaining information regarding the ligaments' incidence, length, width and anatomic variation. 3-T MRI images of 448 patients (224 males, 224 females, with, respectively, 32 patients of each sex in the age groups: 0-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70years) were retrospectively reviewed. The influence of the parameters 'sex' and 'age' was determined. Whereas 71% of the patients had at least one MFL, 22% had an anterior MFL (aMFL), 53% had a posterior MFL (pMFL) and five percent had coexisting ligaments. The pMFLs were more likely to be present in female patients (P<0.05) but if so, they were longer in the males (P<0.05). The pMFL was categorized according to its insertion on the medial femoral condyle. 3-T MRI enables an excellent illustration of the anatomic variations of pMFLs. By modifying an anatomic classification for radiological use we measured lengths and widths of the MFLs without any difficulties. Despite its increased resolution, 3-T MRI lends no diagnostic benefit in visualizing the course of the aMFL or filigree coexisting ligaments as compared to MRI at lower field strengths. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Beneficial Role of Retinoids in Glomerular Disease

    Directory of Open Access Journals (Sweden)

    Sandeep eMallipattu

    2015-03-01

    Full Text Available The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including Focal Segmental Glomerular Sclerosis (FSGS and HIV-associated nephropathy (HIVAN. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA, which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s by which RA restores podocyte differentiation markers and ameliorates glomerular disease.

  6. Music is Beneficial for Awake Craniotomy Patients: A Qualitative Study.

    Science.gov (United States)

    Jadavji-Mithani, Radhika; Venkatraghavan, Lashmi; Bernstein, Mark

    2015-01-01

    Patients undergoing awake craniotomy may experience high levels of stress. Minimizing anxiety benefits patients and surgeons. Music has many therapeutic effects in altering human mood and emotion. Tonality of music as conveyed by composition in major or minor keys can have an impact on patients' emotions and thoughts. Assessing the effects of listening to major and minor key musical pieces on patients undergoing awake craniotiomy could help in the design of interventions to alleviate anxiety, stress and tension. Twenty-nine patients who were undergoing awake craniotomy were recruited and randomly assigned into two groups: Group 1 subjects listened to major key music and Group 2 listened to minor key compositions. Subjects completed a demographics questionnaire, a pre- and post-operative Beck Anxiety Inventory (BAI) and a semi-structured open-ended interview. RESULTS were analyzed using modified thematic analysis through open and axial coding. Overall, patients enjoyed the music regardless of the key distinctions and stated they benefitted from listening to the music. No adverse reactions to the music were found. Subjects remarked that the music made them feel more at ease and less anxious before, during and after their procedure. Patients preferred either major key or minor key music but not a combination of both. Those who preferred major key pieces said it was on the basis of tonality while the individuals who selected minor key pieces stated that tempo of the music was the primary factor. Overall, listening to music selections was beneficial for the patients. Future work should further investigate the effects of audio interventions in awake surgery through narrative means.

  7. The beneficial effects of Brassica vegetables on human health.

    Science.gov (United States)

    Kapusta-Duch, Joanna; Kopeć, Aneta; Piatkowska, Ewa; Borczak, Barbara; Leszczyńska, Teresa

    2012-01-01

    The products of plant origin are a rich source of biologically active substances, both nutritive and referred as anti-nutritive. A large group of these compounds are substances with antioxidant activity that fights against free radicals. In the family of Brassicaceae vegetables, Brassica, is the largest and most widely consumed a group of plants in Europe and all over the world. They are characterized by different levels of nutrients. However because of their large and frequent consumption, they may become a significant source of nutrients and bioactive compounds in the daily diet. The beneficial effects of Brassica vegetables on human health have been somewhat linked to phytochemicals. They prevent oxidative stress, induce detoxification enzymes, stimulate immune system, decrease the risk of cancers, inhibit malignant transformation and carcinogenic mutations, as well as, reduce proliferation of cancer cells. Brassica vegetables contain a lot of valuable metabolites, which are effective in chemoprevention of cancer, what has been already documented by numerous studies. Due to the presence of vitamins C and E, carotenoids and antioxidant enzymes such as catalase, superoxide dismutase (SOD) and peroxidase, these vegetables are considerable source ofantioxidants, and due to the presence of polyphenols and the sulfur-organic compounds exert also antimutagenic action. Moreover, these vegetables are also rich in glucosinolates, which are unstable compounds and undergo degradation into biologically active indoles and isothiocyanates under the influence of enzyme presented in plant tissues- myrosynase. These substances through the induction of enzymatic systems I and II phase of xenobiotics metabolism may affect the elimination or neutralization of carcinogenic and mutagenic factors, and consequently inhibit DNA methylation and cancer development. Despite many healthy benefits upon eating of cruciferous vegetables, it has been also seen a negative impact of their certain

  8. The role of ecological infrastructure on beneficial arthropods in vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Franin, K.; Barić, B.; Kuštera, G.

    2016-11-01

    Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins) on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive). Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard). Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%); among insects, Coleoptera was the most abundant taxonomic group (10.6%); Neuroptera showed the lowest value (0.88%). Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders) and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46) was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests. (Author)

  9. Beneficial role of conflict in radioactive waste management programs

    International Nuclear Information System (INIS)

    Payne, B.A.; Williams, R.G.

    1985-01-01

    Of the technical, political, and social problems associated with radioactive waste management, least is known about the latter two. Lay persons tend to generalize negative attitudes about other nuclear activity to radioactive waste management. Thus, conflict appears inevitable between the general public, citizen action groups, and decision-makers on radioactive waste management. The basis of conflict, we believe, can be found in the value orientation of certain groups and in differing perceptions of risk. Research on similar controversial issues reveals that conflict may be beneficial in the long run by contributing to the public's participation level and understanding of the issues, and to the decision-makers' appreciation of the lay perspective. The paper is in three parts. First, we review the sources of conflict over radioactive waste management issues. The negative attitudes and fears of the public toward different types of projects involving radioactivity, value conflicts, and differential perceptions of risk are cited as sources. Next we discuss the consequences of conflict in terms of sociological theory. Finally, we discuss how conflict can be directed and managed to produce an informed decision-making process. When the public is sensitized to an issue, when prevailing attitudes on the issue are negative, and when perceived risks are high - all of which are characteristic of waste management issues - specific steps should be taken to establish a legitimate process of communication and interaction between the public and the sponsor agency. When conflict is recognized as inevitable, the goal of a communications program is no longer to avoid it. It is to use the increased awareness to increase knowledge about waste management issues and public participation in decisions so that the final solution is acceptable at some level to all parties

  10. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  11. Fuel element development

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, G.

    1983-01-01

    The studies concerning breeders for the development of fuel elements carried out in Karlsruhe aim at: - optimization of fuel, - support of fuel rod and fuel element concepts from steady-state and field irradiation experiments and their evaluation, and - developing appropriate cladding and structural material and its adaptation to the requirements of high-output breeder reactors.

  12. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  13. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  14. Fuel transfer system

    Science.gov (United States)

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  15. Fuel cells seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  16. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  17. Properties and Beneficial Uses of (BioChars, with Special Attention to Products from Sewage Sludge Pyrolysis

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2018-03-01

    Full Text Available Residual sludge disposal costs may constitute up to, and sometimes above, 50% of the total cost of operation of a Wastewater Treatment Plant (WWTP and contribute approximately 40% of the total greenhouse gas (GHG emissions associated with its operation. Traditionally, wastewater sludges are processed for: (a reduction of total weight and volume to facilitate their transfer and subsequent treatments; (b stabilization of contained organic material and destruction of pathogenic microorganisms, elimination of noxious odors, and reduction of putrefaction potential and, at an increasing degree; (c value addition by developing economically viable recovery of energy and residual constituents. Among several other processes, pyrolysis of sludge biomass is being experimented with by some researchers. From the process, oil with composition not dissimilar to that of biodiesels, syngas, and a solid residue can be obtained. While the advantage of obtaining sludge-derived liquid and gaseous fuels is obvious to most, the solid residue from the process, or char (also indicated as biochar by many, may also have several useful, initially unexpected applications. Recently, the char fraction is getting attention from the scientific community due to its potential to improve agricultural soils’ productivity, remediate contaminated soils, and supposed, possible mitigation effects on climate change. This paper first discusses sludge-pyrolysis-derived char production fundamentals (including relationships between char, bio-oil, and syngas fractions in different process operating conditions, general char properties, and possible beneficial uses. Then, based on current authors’ experiments with microwave-assisted sludge pyrolysis aimed at maximization of liquid fuel extraction, evaluate specific produced char characteristics and production to define its properties and most appropriate beneficial use applications in this type of setting.

  18. Beneficial Effects of Slow Steaming in Bulk Freight Markets

    Directory of Open Access Journals (Sweden)

    Sarah Boone

    2017-12-01

    Full Text Available Slow steaming has recently been adopted into normal practice by many maritime shipping companies for the fuel and monetary savings it offers. The practice also offers savings in Greenhouse Gas (GHG emissions. With regulations coming into play such as the 2020 sulfur cap, slow steaming may be the least costly option for some maritime companies to adjust their operations. While some have accepted the new practice, there are still companies and vessels that see this exercise as a loss of revenue due to the extra time it takes to deliver goods to their destination. This paper reviews how the method of rating ships by their GHG emissions per nautical mile can be directly related to slow steaming. We propose that ships with poor ratings (E, F, G find mandatory regulations to slow steam or improve their CO2 output in some way. Those with superior ratings (A, B, C, D would benefit from incentives packages tied to their implementation of slow steaming practices. It will also examine how slow steaming benefits maritime businesses both economically and environmentally to find ways to lower their emissions and discusses the possible chain reaction that may occur if these eco-friendly shipping practices are observed.

  19. Fuel cells: principles, types, fuels, and applications.

    Science.gov (United States)

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Fuel cell added value for early market applications

    Science.gov (United States)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  1. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  2. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  3. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects.

    Science.gov (United States)

    Soleimani, Alireza; Zarrati Mojarrad, Malihe; Bahmani, Fereshteh; Taghizadeh, Mohsen; Ramezani, Mohammad; Tajabadi-Ebrahimi, Maryam; Jafari, Parvaneh; Esmaillzadeh, Ahmad; Asemi, Zatollah

    2017-02-01

    This study determined the effects of probiotic supplementation on glycemic control, lipid concentrations, biomarkers of inflammation and oxidative stress in 60 diabetic patients on hemodialysis in a parallel randomized double-blind placebo-controlled clinical trial. Participants were initially matched based on sex, duration of dialysis and diabetes, body mass index and age. Subsequently, they were randomly divided into two groups to take either a capsule containing the probiotics Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium bifidum or placebo for 12 weeks. Based on three-day dietary records throughout the trial, there was no significant change in dietary macro- and micro-nutrients or total dietary fiber to confound results. After the 12 weeks, analysis of patients who received probiotic supplements compared with the placebo showed they had significantly decreased fasting plasma glucose (-22.0 vs. +6.6 mg/dl), serum insulin (-6.4 vs. +2.3 μIU/ml), homeostasis model of assessment-estimated insulin resistance (-2.9 vs. +2.5), homeostasis model of assessment-estimated beta-cell function (-14.1 vs. +6.1) and HbA1c (-0.4 vs. -0.1%,), and improved quantitative insulin sensitivity check index (+0.03 vs. -0.02). Additionally, compared with the placebo, probiotic supplementation resulted in significant reductions in serum high-sensitivity C-reactive protein (-1933 vs. +252 ng/ml), plasma malondialdehyde (-0.3 vs. +1.0 μmol/l), subjective global assessment scores (-0.7 vs. +0.7) and total iron binding capacity (-230 vs. +33 μg/dl), and a significant increase in plasma total antioxidant capacity (+15 vs. -88 mmol/l). Thus, probiotic supplementation for 12 weeks among diabetic hemodialysis patients had beneficial effects on parameters of glucose homeostasis, and some biomarkers of inflammation and oxidative stress. Copyright © 2016 International Society of Nephrology. All rights reserved.

  4. Beneficial falls in stroke patients: evaluation using a mixed method design.

    Science.gov (United States)

    Watabe, Takayuki; Suzuki, Hisayoshi; Konuki, Yusuke; Aoki, Keiichiro; Nagashima, Jun; Sako, Rikitaro

    2018-03-01

    Purpose To use a mixed method design to evaluate how clinicians judge falls in stroke patients as a beneficial event, and to identify patient-specific characteristics associated with beneficial falls. Methods The definition of beneficial falls was based on interviews with six experienced clinicians in stroke rehabilitation. Interview data were analyzed using the grounded theory approach, with outcomes used to develop a checklist to judge falls as beneficial. We subsequently used the checklist to identify falls sustained by patients in our rehabilitation unit as beneficial events. The characteristics of beneficial fallers were investigated in this retrospective study. Results According to experienced clinicians, beneficial falls result from patient-specific factors and level of independence. Beneficial falls are not associated with after-effects or a diagnosis of cognitive impairment, do not result in physical injury and post-fall syndrome, and do not alter the course of rehabilitation. These falls are considered to enhance patients' self-awareness of their physical status and abilities. Among the 123 stroke patients who experienced a fall in our study group, 23 patients (18.7%) were identified as beneficial fallers according to our checklist. The majority had a left hemiplegia and perceptual impairments, and were at low risk of recurrent falls and made functional gains during rehabilitation. Conclusions Based on our results, we created a 10-item checklist to differentiate beneficial from adverse falls. This differentiation is important to target fall prevention programs to adverse fallers in rehabilitation units.

  5. Is further deregulation of the natural gas industry beneficial : discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, P.J. [Anbrer Consulting, Ottawa, ON (Canada)

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities

  6. Is further deregulation of the natural gas industry beneficial : discussion paper

    International Nuclear Information System (INIS)

    Hoey, P.J.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper examines if a competitive market exists in natural gas distribution and discusses the opportunities for further deregulation of the distribution and storage aspects of the industry. It was noted that the regulatory regime in Ontario will depend on how the Ontario Energy Board deals with issues regarding natural gas storage services. This paper also examines if new storage facilities can charge cost-based or market-based prices as well as the appropriate rate of return on capital to be used to determine those rates. It also examines what the requirement for non-discriminatory access to and from new storage facilities to the Dawn Hub and access to transmission capacity on Union Gas's Dawn to Trafalger pipeline system. Alternative fuels, franchises, bypasses, gated communities, distributed generation, market power and policy issues are the main factors that are considered in assessing the competition in natural gas distribution. It was concluded that further deregulation of the natural gas distribution system in Ontario is not warranted since there is not much possibility in developing a competitive market for distribution services in the short-term. However, the development of storage facilities in

  7. Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems

    International Nuclear Information System (INIS)

    Zhang, Lijun; Xia, Xiaohua; Zhang, Jiangfeng

    2014-01-01

    Highlights: • A pump-storage system (PSS) is introduced in a coal washing plant to reduce energy consumption and cost. • Optimal operation of the PSS under TOU tariff is formulated and solved. Life cycle cost analysis of the design is done. • Simulation results show the effectiveness of energy efficiency improvement and load shifting effect of the proposed approach. • An annual 38% reduction of overall cost of the coal washing plant with 2.86 years payback period is achieved. • Capacity improvement of power plants contracted to the coal mine is expected as less electricity is required to get fuel. - Abstract: A pump storage system (PSS) is introduced to the coal preparation dense medium cyclone (DMC) plants to improve their energy efficiency while maintaining the required medium supply. The DMC processes are very energy intensive and inefficient because the medium supply pumps are constantly over-pumping. The PSS presented is to reduce energy consumption and cost by introducing an addition medium circulation loop. The corresponding pump operation optimization problem in the PSS scheme under time-based electricity tariff is formulated and solved, based on which the financial benefits of the design is investigated using life cycle cost analysis. A case study based on the operation status of a South African coal mine is carried out to verify the effectiveness of the proposed approach. It is demonstrated that the energy cost can be reduced by more than 50% in the studied case by introducing a 160 m 3 storage tank. According to life cycle analysis, the PSS Option 1 yields an annual 38% reduction of the overall cost for the beneficiation plant with a payback period of 2.68 years

  8. Characteristics of sustainable bio-solid fuel produced from sewage sludge as a conventional fuel substitute

    International Nuclear Information System (INIS)

    Jung, Bongjin; Nam, Wonjun; Lee, Na-Yeon; Kim, Kyung-Hoon

    2010-01-01

    Safely final disposal of sewage sludge which is being increased every year has already become serious problems. As one of the promising technologies to solve this problem, thermal drying method has been attracting wide attention due to energy recovery from sewage sludge. This paper describes several characteristics of sustainable bio-solid fuel, as a conventional fuel substitute, produced from sewage sludge drying and granulation plant having the treatment capacity of 10 ton/ day. This plant has been successfully operated many times and is now designing for scale-up. Average moisture content of twelve kinds of bio-solid fuels produced from the plant normally less than 10 wt% and average shape of them is mainly composed of granular type having a diameter of 2-8 mm for easy handling and transportation to the final market destinations. Average higher heating value, which is one of the important properties to estimate the possibility of available energy, of bio-solid fuels is about 3800 kcal/ kg as dry basis. So they can be utilized to supply energy in the coal power plant and cement kiln etc. as a conventional fuel substitute for a beneficial reuse. Characteristics including proximate analysis, ultimate analysis, contents of heavy metals, wettability etc. of bio-solid fuels have been also analyzed for the environmentally safe re utilization. (author)

  9. Fuel injector system

    Science.gov (United States)

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  10. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  11. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  12. Elongated fuel road

    International Nuclear Information System (INIS)

    Williams, A.E.; Linkison, W.S.

    1977-01-01

    A fuel rod is proposed where a reorientation of the fuel in case of a considerable temperature increase, causing the melting of the densified fuel powder, will be avoided. For this purpose, in longitudinal direction of the fuel rod, a number of diameter reductions of the can are applied of certain distances. In the reduction zone the cross-sectional area of the fuel is reduced, as compared to the one of the remaining fuel material in the regions without diameter reduction, but not the density of the fuel. The recess is chosen to that in case of melting of the fuel in the center of the not contracted zone the fuel in the center of the narrowed area will remain solid and keep the molten material in position. (HR) [de

  13. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F. C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  14. Supercritical fuel injection system

    Science.gov (United States)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  15. Coal-based synfuel continues to grow

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M.

    2002-11-01

    This paper summarises a recent study by Platts Research and Consulting/RDI. The results show that synfuel production has the potential to reach 80 million tons per year, a sharp jump from total production of less than 4 million tons in 1999. Growth is being spurred by the number of developments, including redevelopment of machines to more advantageous locations, greater regulatory certainty in the claiming of section 29 tax credits, ownership of plants by companies that can make full use of the tax credit, and a wider and more sanguine acceptance among consumers using the products. 1 fig., 1 tab.

  16. Purposes of double taxation treaties and interpretation of beneficial owner concept in Ukraine

    OpenAIRE

    Pavlo Selezen

    2017-01-01

    The term ‟beneficial owner” has been interpreted by Ukrainian courts concerning the application of double taxation treaties’ provisions since the adoption of the Tax Code of Ukraine in 2010. Changing nature of the beneficial owner concept, its importance as an instrument for treaty shopping counteraction and the necessity of its proper interpretation in the Ukrainian reality are the main factors that have a strong impact on the development of court practice concerning beneficial ownership....

  17. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  18. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-12-21

    ...-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... the Renewable Fuel Standard program regulations that were published on March 26, 2010, and that took..., distribution, and sale of transportation fuels, including gasoline and diesel fuel and renewable fuels such as...

  19. Use of alternative fuels in the Polish cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Mokrzycki, Eugeniusz; Uliasz-Bochenczyk, Alicja [Polish Academy of Sciences, Mineral and Energy Economy Research Inst., Krakow (Poland); Sarna, Mieczyslaw [Lafarge Cement Polska S.A., Malogoszcz (Poland)

    2003-02-01

    Alternative fuels are made up of mixtures of different wastes, such as industrial, municipal and hazardous wastes. These fuels need to have an appropriate chemical energy content which depends on the type of components and their organic content. An industry that is particularly well suited to the employment of alternative fuels is the cement industry. There are a number of factors that promote the use of alternative fuels in cement kilns. Of these factors, the most notable are: the high temperatures developed, the appropriate kiln length, the long period of time the fuel stays inside the kiln and the alkaline environment inside the kiln. There are a number of countries that use their own alternative fuels in cement plants. These fuels have different trade names and they differ in the amounts and the quality of the selected municipal and industrial waste fractions used. The fuels used should fall within the extreme values of parameters such as: minimum heating value, maximum humidity content, and maximum content of heavy and toxic metals. Cement plants in Poland also use alternative fuels. Within the Lafarge Group, the cement plants owned by Lafarge Poland Ltd. have initiated activities directed at promoting the wider use of alternative fuels. There are a number of wastes that can be incinerated as fuel in cement plants. Some that can be mentioned are: selected combustible fractions of municipal wastes, liquid crude-oil derived wastes, car tyres, waste products derived from paint and varnish production, expired medicines from the pharmaceutical industry and others. The experience gained by the cement plants of Lafarge Cement Poland Ltd confirms that such activities are economically and ecologically beneficial. The incineration of alternative fuels in cement plants is a safe method for the utilisation of waste that is ecologically friendly and profitable for the industrial plants and society alike. (Author)

  20. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  1. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  2. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  3. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  4. Does a renewable fuel standard for biofuels reduce climate costs?

    Energy Technology Data Exchange (ETDEWEB)

    Greaker, Mads; Hoel, Michael; Rosendahl, Knut Einar

    2012-07-01

    Recent contributions have questioned whether biofuels policies actually lead to emissions reductions, and thus lower climate costs. In this paper we make two contributions to the literature. First, we study the market effects of a renewable fuel standard. Opposed to most previous studies we model the supply of fossil fuels taking into account that fossil fuels is a non-renewable resource. Second, we model emissions from land use change explicitly when we evaluate the climate effects of the renewable fuel standard. We find that extraction of fossil fuels most likely will decline initially as a consequence of the standard. Thus, if emissions from biofuels are sufficiently low, the standard will have beneficial climate effects. Furthermore, we find that the standard tends to reduce total fuel (i.e., oil plus biofuels) consumption initially. Hence, even if emissions from biofuels are substantial, climate costs may be reduced. Finally, if only a subset of countries introduce a renewable fuel standard, there will be carbon leakage to the rest of the world. However, climate costs may decline as global extraction of fossil fuels is postponed.(Author)

  5. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  6. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  8. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  9. Nuclear fuel element

    Science.gov (United States)

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  10. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  11. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  13. Production of fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stead, W.J.; MacDonald Hildon, A.

    1989-07-05

    A method of producing fuel briquettes from a powdered fuel and a binder comprises the step of subjecting the powdered fuel to a treatment (e.g. pressure and/or heating) effective to promote adhesion between the fuel particles and the binder. In a preferred embodiment for producing fuel briquettes from powdered anthracite and a binder such as molasses, the powdered anthracite is dried to a lower-than-usual moisture content below 5% by treatment in a fluidised bed drier operated to raise the temperature of the anthracite to a higher-than-usual temperature about 100 degrees C. The higher temperature treatment promotes improved adhesion between the fuel particles and the binder and so improves 'Green strength' of the fuel briquettes. A detergent may be added to the powdered fuel or binder a mixture thereof.

  14. High utilization fuel assembly

    International Nuclear Information System (INIS)

    Camden, T.M. Jr.

    1986-01-01

    A nuclear fuel assembly is described comprising an array of parallel arranged guide tubes, an inlet nozzle attached to one end of the guide tubes, an outlet nozzle attached to the other end of the guide tubes, grids having the openings therethrough attached to and spaced along the length of the guide tubes, and of parallel arranged fuel rod assemblies each having an upper end and a lower end. The fuel rod assemblies are fitted within the openings in the grids, the fuel rod assemblies being arranged axially offset relative to each adjacent fuel rod assembly and comprising an upper fuel rod and a lower axially aligned fuel rod with a gap therebetween. The gap between the fuel rods each is axially offset relative to each adjacent gap so as to eliminate an axial gap across the core

  15. Loviisa nuclear fuel service

    International Nuclear Information System (INIS)

    Haegg, P.E.; Koskivirta, O.

    1990-01-01

    The nuclear fuel service of the both units of Loviisa NPS is based on longterm fresh fuel purchasing contracts and longterm spent fuel return contracts. These contracts belong to the Soviet delivery package of Loviisa NPS and they have been made separately for the both units for their whole lifetime. The Soviet contract party is v/o Techsnabexport. Fresh fuel is ordered at the beginning of the year preceding the delivery year. The delivery takes place about one and half years earlier than the fuel is loaded into reactor. The irradiation time of the fuel is typically three years (partly two years). Spent fuel is stored at site in different storage pools five years before its returning to tbe Soviet Union. Altogether the nuclear fuel is staying at Loviisa about ten years

  16. An economic analysis of spent fuel management and storage

    International Nuclear Information System (INIS)

    Nagano, Koji

    1998-01-01

    Spent fuel management is becoming a key issue not only in the countries that have already experienced years of nuclear operation but also in the Asian countries that started nuclear utilization rather lately. This paper summarizes the key aspects that essentially determine optimal conditions for desired spent fuel management strategies from the engineering-economic point of view, in both national and regional perspectives. The term 'desired' is intended to highlight positive and beneficial aspects of such strategies, namely mobile and timely exploitation of spent fuel storage. Among all, the economy of scale, the economy of scope, the learning-by-doing effect, and benefits of R and D are reviewed theoretically and empirically, and the paper overviews to what extent these factors are implemented in solving spent fuel management strategy optimization problem. (author)

  17. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  18. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  19. FUEL ROD ASSEMBLY

    Science.gov (United States)

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  20. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  1. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xunmin, E-mail: oxm07@mails.tsinghua.edu.c [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang Xiliang, E-mail: zhang_xl@tsinghua.edu.c [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Chang Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  2. Alternative fuel buses currently in use in China. Life-cycle fossil energy use, GHG emissions and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xunmin [School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); Zhang, Xiliang; Chang, Shiyan [China Automotive Energy Research Center (CAERC), Tsinghua University, Beijing 100084 (China); Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China)

    2010-01-15

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources. (author)

  3. Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R and D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.

  4. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  5. Fireplaces and Fireplace Fuels.

    Science.gov (United States)

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  6. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II; Davies, J.H.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding composed of a substrate, the inner face of which is coated with copper, nickel, iron or one of their alloys. The nuclear fuel is selected from uranium compounds, plutonium compounds or mixtures thereof. The substrate is selected from zirconium and zirconium alloys [fr

  7. Plutonium fuel program

    International Nuclear Information System (INIS)

    1979-09-01

    A review is presented of the development of the (UPu)C sphere-pac fuel project during 1978. In particular, the problems encountered in obtaining good fuel quality in the fabrication process and their solution is discussed. The development of a fabrication pilot plant is considered, and the post-irradiation examination of fuel pins is presented. (Auth.)

  8. PWR fuel thermomechanics

    International Nuclear Information System (INIS)

    Traccucci, R.; Leclercq, J.

    1986-01-01

    Fuel thermo-mechanics means the studies of mechanical and thermal effects, and more generally, the studies of the behavior of the fuel assembly under stresses including thermal and mechanical loads, hydraulic effects and phenomena induced by materials irradiation. This paper describes the studies dealing with the fuel assembly behavior, first in normal operating conditions, and then in accidental conditions. 43 refs [fr

  9. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  10. Fuel lock down device

    International Nuclear Information System (INIS)

    Bevilacqua, F.; Groves, M.D.

    1979-01-01

    Disclosed is a lock down device for restraining a nuclear fuel assembly against hydraulic flow forces having cantilever leaf springs on the fuel assembly lower end fitting which lock into recesses in the fuel alignment pins located on the core support plate

  11. CANDU fuel performance

    International Nuclear Information System (INIS)

    Manzer, A.M.

    1998-01-01

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  12. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  13. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  14. 17 CFR 270.3c-2 - Definition of beneficial ownership in small business investment companies.

    Science.gov (United States)

    2010-04-01

    ... 1940 § 270.3c-2 Definition of beneficial ownership in small business investment companies. For the... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of beneficial ownership in small business investment companies. 270.3c-2 Section 270.3c-2 Commodity and Securities...

  15. 75 FR 11207 - Policy Statement on Obtaining and Retaining Beneficial Ownership Information for Anti-Money...

    Science.gov (United States)

    2010-03-10

    ... Retaining Beneficial Ownership Information for Anti-Money Laundering Purposes AGENCY: Securities and...-money laundering purposes. DATES: Effective Date: March 5, 2010. FOR FURTHER INFORMATION CONTACT... retaining beneficial ownership information for anti-money laundering purposes. This guidance is being issued...

  16. Beneficial and Detrimental Effects of UV on Aquatic Organisms: Implications of Spectral Variation

    NARCIS (Netherlands)

    Williamson, C.E.; Neale, P.J.; Grad, G.; Lange, de H.J.; Hargreaves, B.R.

    2001-01-01

    Solar ultraviolet radiation (UVR) may have beneficial as well as detrimental effects on living systems. For example, UV-B radiation (280¿320 nm) is generally damaging, while UV-A radiation (320¿400 nm) may cause damage or stimulate beneficial photorepair of UV-B damage. The nature of both direct and

  17. Neutronic fuel element fabrication

    Science.gov (United States)

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  18. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  19. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  20. The American farm: Harnessing the sun to fuel the world

    International Nuclear Information System (INIS)

    1994-03-01

    This NREL publication forecasts the future in energy crops. Tomorrow's farm will produce crops like corn, soybeans, rapeseed, sunflowers for food and fuel. Farmers will harvest switchgrass and then sell it for feed or to make ethanol. Aspects of planting trees that are beneficial to the environment such as filtering run-off water are discussed. Economic issues of energy crop growth are presented. The harvesting of trees for pulp, paper, and energy and corn for electricity, fuels, and chemicals are both emphasized. Tree harvesting research from breeding programs to high-tech harvesting techniques is presented

  1. Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

    1993-12-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

  2. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  3. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  4. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  5. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  6. Fuel assembly cleaning device

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1981-01-01

    Purpose: To enable efficient and sufficient cleaning of a fuel assembly even in corners without disassembling the assembly and to effectively remove crud. Constitution: Cleaning water mixed with abrasive is injected into a fuel assembly contained within a cleaning device body to remove crud adhering to the fuel assembly. Since a coolant passage from the opening of the bottom surface is of the fuel assembly to the opening of the top surface is utilized as the cleaning water passage at this, the crud can be removed by the abrasive in the water stream even from narrow gaps of the fuel assembly. (Aizawa, K.)

  7. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which......Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...

  8. Compacting spent fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A method and apparatus for compacting spent fuel rods comprises transferring the rods from a nuclear fuel rod assembly into a different nuclear fuel rod container having a smaller cross section than the assembly. The individual rods are moved from a fuel assembly and through a transition funnel by movable grippers at opposite ends of the funnel. One movable gripper reciprocates between gripping and release positions in a gap between the fuel assembly and the transition funnel. All of the fuel rods are withdrawn concurrently and are merged towards one another into a tighter array within the transition funnel and emerge as a bundle. A movable and a stationary bundle gripper are provided between the funnel and the storage container to advance the bundle of fuel rods into the container. (author)

  9. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  10. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vernaz, Etienne

    2015-10-01

    The author proposes an overview of the different steps of the nuclear fuel cycle: uranium mining (applied processes, formation of Yellow Cake), conversion into uranium hexafluoride (UF 6 ) for enrichment purposes, enrichment (physical methods and plants), nuclear fuel fabrication (description of a fuel assembly), physical, chemical and radiological evolution of the nuclear fuel in the reactor, spent fuel warehousing, spent fuel processing (dissolution, methods of liquid/liquid extraction, output products), effluents and by-products, recycling of valuable materials (URE, MOX, RNR and others), waste containment for the different waste types regarding their radioactivity level and lifetime (vitrification, shell compacting, cementation, and other processes). The author also presents the French policy and choices regarding spent fuel processing and waste management

  11. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  12. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  13. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Science.gov (United States)

    2013-07-11

    ... Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program; Final Rule Approving Renewable Fuel Pathways for Giant Reed (Arundo Donax) and.... SUMMARY: This final rule approves pathways for production of renewable fuel from giant reed (Arundo donax...

  14. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  15. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2013-02-21

    ... Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... EPA is announcing a public hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards,'' which was published separately in the Federal Register on...

  16. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States: Inventory and model-based economic analysis of mechanical fuel treatments

    Science.gov (United States)

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2014-01-01

    Implementing fuel treatments in every place where it could be beneficial to do so is impractical and not cost effective under any plausible specification of objectives. Only some of the many possible kinds of treatments will be effective in any particular stand and there are some stands that seem to defy effective treatment. In many more, effective treatment costs far...

  17. Modern new nuclear fuel characteristics and radiation protection aspects.

    Science.gov (United States)

    Terry, Ian R

    2005-01-01

    The glut of fissile material from reprocessing plants and from the conclusion of the cold war has provided the opportunity to design new fuel types to beneficially dispose of such stocks by generating useful power. Thus, in addition to the normal reactor core complement of enriched uranium fuel assemblies, two other types are available on the world market. These are the ERU (enriched recycled uranium) and the MOX (mixed oxide) fuel assemblies. Framatome ANP produces ERU fuel assemblies by taking feed material from reprocessing facilities and blending this with highly enriched uranium from other sources. MOX fuel assemblies contain plutonium isotopes, thus exploiting the higher neutron yield of the plutonium fission process. This paper describes and evaluates the gamma, spontaneous and alpha reaction neutron source terms of these non-irradiated fuel assembly types by defining their nuclear characteristics. The dose rates which arise from these terms are provided along with an overview of radiation protection aspects for consideration in transporting and delivering such fuel assemblies to power generating utilities.

  18. Direct coal liquefaction: general characteristics and comparison with other methods of manufacturing synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Legarreta, J.A.; Arias, P.L.; Cambra, J.F.; Gutierrez-Canas, C.

    1985-01-01

    Direct liquefaction has considerable advantages over other methods available for coal beneficiation by the manufacture of liquid fuels, namely: it requires a lower chemical reaction and is therefore a more efficient method which consumes less energy; it requires less stringent operating conditions which reduces equipment costs; synthetic liquid fuel is a much more concentrated form of energy than gas which makes it easier to store and transport; and liquefaction plants require less water and produce less liquid and gaseous effluents. 10 references.

  19. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  20. Conceptual design of KALIMER uranium metallic fueled core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Kim, Sang Ji; Kim, Young Gyun; Kim, Young Jin

    1999-03-15

    As a part of the core design development of KALIMER(150 MWe), the KALIMER core design which uses U-Zr binary fuel not in excess of 20% enrichment was performed. Starting from the former uranium metallic fueled core design, a more economic and safer equilibrium core design was first established based on extensive researches for the possible enrichment gains over various design options and in-core fuel management strategies. Further optimization to extend fuel discharge burnup has been achieved by employing strategic loading schemes for initial and transition cycles to reach the equilibrium cycle early. The core performance analysis based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and core average discharge burnup of 61.6 MWD/kg. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. When comparing with conventional plutonium metallic fueled cores of the same power level, the present KALIMER uranium metallic fueled core has an increased physical core size to meet the enrichment restriction, and, as a result, a lower power density to realize the minimum one-year cycle operation. The KALIMER uranium metallic fueled core characterized by its negative sodium void reactivity and low power density can be operated with maximizing its core safety characteristics as a first generation LMR. The present uranium metallic fueled core allows an easy replacement with different fuel compositions by its demands, with the accumulation of operation experience and design data verification. (author). 34 refs., 34 tabs., 12 figs.

  1. Nuclear and thermal-hydraulic characteristics for an LMR core fueled with 20% enriched uranium metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-In; Kim, Young-Gyun; Kim, Sang-Ji; Kim, Young-Jin

    1999-05-01

    As a part of the core design development of KALIMER (150 MWe), the KALIMER core was initially designed with 20% enriched uranium metallic fuel. In this core design, the primary emphasis was given to realize the metallic fueled core design to meet the specific design requirements; 20% and below uranium enrichment and a minimum fuel cycle length of one year. The core was defined by a radially homogeneous core configuration incorporated with several passive design features to give inherent passive means of negative reactivity insertion. The core nuclear performance based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and maximum discharge burnup of 47.3 MWD/kg. When comparing with conventional plutonium metallic fueled cores of the same power level, the present uranium metallic fueled core has a lower power density due to its increased physical core size. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. The transition from the uranium startup to equilibrium cycle is feasible without any design change. Core nuclear performance characteristics in the present core design are attributed to the specific design requirements of enrichment restriction and fuel cycle length.

  2. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    A quarter of humanity's current energy consumption is used for transportation (1). Low-temperature hydrogen fuel cells offer much promise for replacing this colossal use of fossil fuels with renewables; these fuel cells produce negligible emissions and have a mileage and filling time equal to a r......% of the annual automotive vehicle production. Lowering the Pt loading in a fuel cell to a sustainable level requires the reactivity of Pt to be tuned so that it accelerates oxygen reduction more effectively (3). Two reports in this issue address this challenge (4, 5)....... to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  3. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  5. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  6. Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes

    International Nuclear Information System (INIS)

    Qu, Jifa; Wang, Wei; Chen, Yubo; Wang, Feng; Ran, Ran; Shao, Zongping

    2015-01-01

    Highlights: • Ethylene glycol could be used as a sustainable fuel for solid oxide fuel cells. • Ethylene glycol was beneficial in suppressing coke formation on Ni anode. • A high power output of 1200 mW cm −2 was obtained with ethylene glycol at 750 °C. • An excellent operational stability was obtained with ethylene glycol fuel. - Abstract: In this study, renewable ethylene glycol (EG) was exploited as a potential fuel for solid oxide fuel cells (SOFCs) with conventional nickel yttria-stabilized zirconia (Ni–YSZ) cermet anodes for sustainable electric power generation. Carbon deposition behaviors over Ni–YSZ anodes under different carbon-containing atmospheres such as EG, glycerol, ethanol and methane were characterized through thermodynamic prediction, oxygen-temperature programmed oxidation and SEM–EDX analysis. EG was observed to be better than acetic acid and glycerol and much better than methane and ethanol in terms of carbon deposition. A calculation of the open-circuit voltages of EG-fueled SOFCs suggested that EG is a suitable fuel for SOFCs. A maximum power output of 1200 mW cm −2 at 750 °C was obtained from a cell operating on EG-steam fuel, which is only a little lower than that from a cell based on hydrogen fuel. The cell was further operated stably on an EG-steam gas mixture for 200 h with no apparent performance degradation, carbon deposition over the anode, Ni agglomeration, or change in the morphology of the anodes. The current study confirmed the practical applicability of EG as a direct fuel for SOFCs, which may have a great effect on future energy systems

  7. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  8. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  9. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  10. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  11. Liquid fuel cells

    Science.gov (United States)

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  12. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding, composed of a substrate with two coatings on its inner face, the first coating being a diffusion barrier and the second a metal coating. The metal coating is in copper, nickel or iron. The substrate is a zirconium alloy. The diffusion barrier is in chromium or chromium alloy. The nuclear fuel is a uranium or plutonium compound or a mixture of both [fr

  13. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  14. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  15. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  16. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  17. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  18. FAILED FUEL DISPOSITION STUDY

    International Nuclear Information System (INIS)

    THIELGES, J.R.

    2004-01-01

    In May 2004 alpha contamination was found on the lid of the pre-filter housing in the Sodium Removal Ion Exchange System during routine filter change. Subsequent investigation determined that the alpha contamination likely came from a fuel pin(s) contained in an Ident-69 (ID-69) type pin storage container serial number 9 (ID-69-9) that was washed in the Sodium Removal System (SRS) in January 2004. Because all evidence indicated that the wash water interacted with the fuel, this ID49 is designated as containing a failed fuel pin with gross cladding defect and was set aside in the Interim Examination and Maintenance (IEM) Cell until it could be determined how to proceed for long term dry storage of the fuel pin container. This ID49 contained fuel pins from the driver fuel assembly (DFA) 16392, which was identified as a Delayed Neutron Monitor (DNM) leaker assembly. However, this DFA was disassembled and the fuel pin that was thought to be the failed pin was encapsulated and was not located in this ID49 container. This failed fuel disposition study discusses two alternatives that could be used to address long term storage for the contents of ID-69-9. The first alternative evaluated utilizes the current method of identifying and storing DNM leaker fuel pin(s) in tubes and thus, verifying that the alpha contamination found in the SRS came from a failed pin in this pin container. This approach will require unloading selected fuel pins from the ID-69, visually examining and possibly weighing suspect fuel pins to identify the failed pin(s), inserting the failed pin(s) in storage tubes, and reloading the fuel pins into ID49 containers. Safety analysis must be performed to revise the 200 Area Interim Storage Area (ISA) Final Safety Analysis Report (FSAR) (Reference 1) for this fuel configuration. The second alternative considered is to store the failed fuel as-is in the ID-69. This was evaluated to determine if this approach would comply with storage requirements. This

  19. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  20. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  1. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  2. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  3. FAILED FUEL DISPOSITION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.

    2004-12-20

    In May 2004 alpha contamination was found on the lid of the pre-filter housing in the Sodium Removal Ion Exchange System during routine filter change. Subsequent investigation determined that the alpha contamination likely came from a fuel pin(s) contained in an Ident-69 (ID-69) type pin storage container serial number 9 (ID-69-9) that was washed in the Sodium Removal System (SRS) in January 2004. Because all evidence indicated that the wash water interacted with the fuel, this ID49 is designated as containing a failed fuel pin with gross cladding defect and was set aside in the Interim Examination and Maintenance (IEM) Cell until it could be determined how to proceed for long term dry storage of the fuel pin container. This ID49 contained fuel pins from the driver fuel assembly (DFA) 16392, which was identified as a Delayed Neutron Monitor (DNM) leaker assembly. However, this DFA was disassembled and the fuel pin that was thought to be the failed pin was encapsulated and was not located in this ID49 container. This failed fuel disposition study discusses two alternatives that could be used to address long term storage for the contents of ID-69-9. The first alternative evaluated utilizes the current method of identifying and storing DNM leaker fuel pin(s) in tubes and thus, verifying that the alpha contamination found in the SRS came from a failed pin in this pin container. This approach will require unloading selected fuel pins from the ID-69, visually examining and possibly weighing suspect fuel pins to identify the failed pin(s), inserting the failed pin(s) in storage tubes, and reloading the fuel pins into ID49 containers. Safety analysis must be performed to revise the 200 Area Interim Storage Area (ISA) Final Safety Analysis Report (FSAR) (Reference 1) for this fuel configuration. The second alternative considered is to store the failed fuel as-is in the ID-69. This was evaluated to determine if this approach would comply with storage requirements. This

  4. Irradiated fuel reprocessing

    International Nuclear Information System (INIS)

    Ruiz, C.P.; Peterson, J.P. Jr.

    1977-01-01

    A process for separately recovering uranium, plutonium and neptunium substantially free of fission products from irradiated nuclear fuel is presented in which the fuel is dissolved in a strong mineral acid forming an aqueous dissolved nuclear fuel solution and treated to separate the uranium, plutonium and neptunium therefrom substantially free of said fission products by the sequential steps of solvent extraction, ion exchange and fluorination. The process has an improvement comprising the addition of a sufficient quantity of an additive of a stable metallic complex to the aqueous dissolved nuclear fuel solution prior to solvent extraction. This achieves improved purity of the separated uranium, plutonium and neptunium

  5. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  6. Nuclear fuel pin scanner

    Science.gov (United States)

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  7. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  8. Fuel processing device

    Science.gov (United States)

    Ahluwalia, Rajesh K [Burr Ridge, IL; Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  9. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  10. A perfect fuel supplier

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2008-01-01

    WWER fuel market is dominated by the Russian fuel vendor JSC TVEL. There have been attempts to open up the market also for other suppliers, such as BNFL/Westinghouse for Finland, Czech Republic, and Ukraine. However, at the moment it seems that JSC TVEL is the only real alternative to supply fuel to WWER reactors. All existing fuel suppliers have certified quality management systems which put a special emphasis on the customer satisfaction. This paper attempts to define from the customer's point of view, what are the important issues concerning the customer satisfaction. (author)

  11. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  12. Reprocessing RERTR silicide fuels

    International Nuclear Information System (INIS)

    Rodrigues, G.C.; Gouge, A.P.

    1983-05-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High-density, low-enrichment, aluminum-clad uranium silicide fuels may be substituted for the highly enriched aluminum-clad alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR silicide fuels at Savannah River Plant. Results of dissolution and feed preparation tests and solvent extraction processing demonstrations with both unirradiated and irradiated uranium silicide fuels are presented

  13. NUCLEAR REACTOR FUEL SYSTEMS

    Science.gov (United States)

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  14. Purposes of double taxation treaties and interpretation of beneficial owner concept in Ukraine

    Directory of Open Access Journals (Sweden)

    Pavlo Selezen

    2017-10-01

    Full Text Available The term ‟beneficial owner” has been interpreted by Ukrainian courts concerning the application of double taxation treaties’ provisions since the adoption of the Tax Code of Ukraine in 2010. Changing nature of the beneficial owner concept, its importance as an instrument for treaty shopping counteraction and the necessity of its proper interpretation in the Ukrainian reality are the main factors that have a strong impact on the development of court practice concerning beneficial ownership. The article focuses on the prevention of tax avoidance as one of the purposes of double taxation treaties and its role in the interpretation of the term ‟beneficial owner”. The analysis is based on the practice of the Supreme Administrative Court of Ukraine on interpretation of the relevant provisions of the Convention between the Government of Ukraine and the Government of Switzerland on Avoidance of Double Taxation with respect to Taxes on Income and Capital as of 30 October 2000.

  15. 17 CFR 240.14c-7 - Providing copies of material for certain beneficial owners.

    Science.gov (United States)

    2010-04-01

    ... is supplied with Notices of Internet Availability of Proxy Materials, information statements and/or..., necessary to supply such report to such beneficial owners for whom proxy material has not been and is not to...

  16. Lunar Oxygen and Silicon Beneficiation Using Only Solar Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Element beneficiation from a moving, ionized plasma can be accomplished through the principles of mass spectroscopy. Two US patents were recently awarded to the PI...

  17. UNESCO Seminar on Cellular Mechanism of Beneficial and Harmful Effects of Electromagnetic Fields

    National Research Council Canada - National Science Library

    2000-01-01

    This report is the Final Proceedings Report for UNESCO Seminar on Cellular Mechanisms of Beneficial and Harmful Effects of Electromagnetic Fields, held 24 September 2000 - 3 October 2000, in Yerevan, Armenia...

  18. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  19. Beneficial use of dredged materials in Great Lakes commercial ports for transportation projects.

    Science.gov (United States)

    2014-05-01

    This report describes an effort to facilitate beneficial use of dredged materials (DM) from Great Lakes ports and harbors as an alternative construction : material in transportation-related earthwork applications. The overall objective is to link tog...

  20. Treprostinil in advanced experimental pulmonary hypertension : Beneficial outcome without reversed pulmonary vascular remodeling

    NARCIS (Netherlands)

    van Albada, Mirjam E.; van Veghel, Richard; Cromme-Dijkhuis, Adri H.; Schoemaker, Regien G.; Berger, Ro F. M. E.

    2006-01-01

    Introduction: Beneficial effects of treprostmil, a stable prostacyclin analogue, were demonstrated in patients with pulmonary arterial hypertension (PAH). Although regression of pulmonary vascular remodeling has been suggested as therapeutic mechanism, its mode of action remains unknown. Methods:

  1. To what degree are environmentally beneficial choices reflective of a general conservation stance?

    DEFF Research Database (Denmark)

    Thøgersen, John; Ølander, Folke

    2006-01-01

    Whether or not different environmentally beneficial choices have common motivational causes are discussed in the framework of partial correlation analysis with structural equation modeling. Correlations between recycling, buying organic food products, and using public transport or bicycle...

  2. To what degree are environmentally beneficial choices reflective of a general conservation stance?

    DEFF Research Database (Denmark)

    Thøgersen, John; Ølander, Carl Folke

    Whether or not different environmentally beneficial choices have common motivational causes are discussed in the framework of partial correlation analysis with structural equation modelling. Correlations between recycling, buying organic food products, and using public transport or bicycle...

  3. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  4. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  5. Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial

    OpenAIRE

    Bahador, A; Lesan, S; Kashi, N

    2012-01-01

    Background/purpose Although habitual consumption of xylitol reduces cariogenic streptococci levels, its effect on beneficial oral streptococci is less clear. The main aim of the study is to investigate the effect of short-term xylitol consumption on the oral beneficial streptococci level of saliva, Streptococcus sanguinis and S. mitis. Material and Methods Twenty four volunteers with a median age of 23.7 years (range: 20-28) harboring Streptococcus mutans, S. sobrinus, S. sanguinis and S. mit...

  6. Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations

    Science.gov (United States)

    Pénisson, Sophie; Singh, Tanya; Sniegowski, Paul

    2017-01-01

    Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation. Haldane’s application of single-type branching process theory showed that genetic drift alone could cause the extinction of newly arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a newly arising beneficial mutation as a multitype branching process. Our approach accounts for the combined effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination. We first study the lineage-contamination phenomenon in isolation, deriving dynamics and survival probabilities (the complement of extinction probabilities) of beneficial lineages. We find that survival probability is zero when U≳sb, where U is deleterious mutation rate and sb is the selective advantage of the beneficial mutation in question, and is otherwise depressed below classical predictions by a factor bounded from below by ∼1−U/sb. We then put the lineage contamination phenomenon into the context of an evolving population by incorporating the effects of background selection. We find that, under the combined effects of lineage contamination and background selection, ensemble survival probability is never zero but is depressed below classical predictions by a factor bounded from below by e−εU/s¯b, where s¯b is mean selective advantage of beneficial mutations, and ε=1−e−1≈0.63. This factor, and other bounds derived from it, are independent of the fitness effects of deleterious mutations. At high enough mutation rates, lineage contamination can depress fixation probabilities to values that approach zero. This fact suggests that high mutation rates can, perhaps paradoxically, (1) alleviate competition among beneficial mutations, or (2) potentially even shut

  7. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    Ou Xunmin; Zhang Xiliang; Chang Shiyan

    2010-01-01

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  8. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis in Washington State, USA

    Directory of Open Access Journals (Sweden)

    David G. James

    2016-06-01

    Full Text Available Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp. are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus; however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  9. Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA.

    Science.gov (United States)

    James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2016-06-29

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation.

  10. Beneficial insects attracted to native flowering buckwheats (Eriogonum Michx) in central Washington.

    Science.gov (United States)

    James, David G; Seymour, Lorraine; Lauby, Gerry; Buckley, Katie

    2014-08-01

    Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs aimed at improving conservation biological control in perennial crops such as wine grapes. Beneficial insects (predators, parasitoids, pollinators) attracted to 10 species of flowering native wild buckwheat (Eriogonum spp.) in central Washington were identified and counted on transparent sticky traps. Combining all categories of beneficial insects, the mean number per trap ranged from 48.5 (Eriogonum umbellatum) to 167.7 (Eriogonum elatum). Three Eriogonum spp. (E. elatum, Eriogonum compositum, and Eriogonum niveum) attracted significantly more beneficial insects than the lowest-ranked species. E. niveum attracted greatest numbers of bees and parasitic wasps, and E. elatum was highly attractive to predatory true bugs and beneficial flies. Blooming periods of Eriogonum spp. extended from mid April to the end of September. This study demonstrates the attraction of beneficial insects to native flowering buckwheats and suggests their potential as a component of habitat restoration strategies to improve and sustain conservation biological control in Washington viticulture.

  11. Experimental evolution as an underutilized tool for studying beneficial animal-microbe interactions

    Directory of Open Access Journals (Sweden)

    Kim Loan Hoang

    2016-09-01

    Full Text Available Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host-microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host-microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal traits, and ecological and evolutionary (external processes, influence the origin of beneficial host-microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host-microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host-microbe associations.

  12. Beneficial rhizobacteria

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund

    to protect tomato seedlings against R. solani infection. Various molecular and biochemical methods, such as PCR and sequence analysis, genome mining, gene knock-out, heterologous recombination, TLC and HPLC analyses were used in order to assess the antifungal mechanisms of P. fluorescens In5. In addition......, the fairly new technology, Matrix Assisted Laser Desorption/Ionization-Time Of Flight Imaging Mass Spectrometry (MALDI-TOF IMS) combined with genome mining were conducted to detect, identify and characterize antifungal compounds produced by P. fluorescens In5. Novel bioactive compounds from P. fluorescens In...

  13. Beneficial liaisons

    International Nuclear Information System (INIS)

    Coleman, C.N.

    1993-01-01

    The scientific knowledge that is emerging in all fields of medicine is rapidly changing our understanding of the concepts in radiation oncology. In this review, some of the classic radiation biology theories and models are examined and newer 'models' are illustrated. The ability of radiation oncologists to remain current with the newer scientific findings is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. (author). 69 refs., 4 tabs., 13 figs

  14. Beneficial rhizobacteria

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund

    Potatoes are cultivated in Southwest Greenland without the use of pesticides and with limited crop rotation. However, despite the fact that plant-pathogenic fungi are present in the Greenlandic potato soils, no severe disease outbreaks, such as late blight, have been observed. In this PhD project...

  15. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  16. Fuel assembly insertion system

    International Nuclear Information System (INIS)

    Barkhurst, D.J.

    1987-01-01

    This patent describes a nuclear reactor facility having fuel bundles: a system for the insertion of a fuel bundle into a position where vertically arranged fuel bundles surround and are adjacent the system comprising, in combination, separate and individual centering devices secured to and disposed on top of each fuel bundle adjacent the position. Each such centering device has a generally box-like cap configuration on the upper end of each fuel bundle and includes: a top wall; first and second side walls, each secured along and upper edge to the top wall; a rear plate attached along opposite vertical edges to the first and second side walls; a front inclined wall joined along an upper edge to the top to the wall and attached along opposite vertical edges first and second side walls; pad means secured to the lower edge of the first and second side walls, the front inclined wall and the rear plate for mounting each centering device on top of an associated fuel bundle; pin means carried by at least two of the pad means engageable with an associated aperature for locating and laterally fixing each centering device on top of its respective fuel bundle. Each front inclined wall of each of the centering devices is orientated on top of its respective fuel bundle to slope upwardly and away from the position where upon downward insertion of a fuel bundle any contact between the lower end of the fuel bundle inserted with a front inclined wall of a centering device will laterally deflect the fuel bundle. Each centering device further includes a central socket means secured to the top wall, and an elongated handling pole pivotally attached to the socket

  17. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  18. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products

    Science.gov (United States)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.

    1993-01-01

    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  19. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  20. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  1. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  2. Fuel Supply Defaults for Regional Fuels and Fuel Wizard Tool in MOVES201X

    Science.gov (United States)

    The fuel supply report documents the data and methodology used to derive the default gasoline, diesel and fuel-blend fuel properties, and their respective fuel market share in MOVES. The default market share of the individual fuels varies by calendar year, seasons, and several do...

  3. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2013-10-22

    ...-AR87 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... definition of ``heating oil'' in the regulations for the Renewable Fuel Standard (RFS) program under section 211(o) of the Clean Air Act. This amendment expands the scope of renewable fuels that can be used to...

  4. 75 FR 26025 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-05-10

    ... Part IV Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program; Final Rule and Proposed Rule #0;#0;Federal Register / Vol. 75... AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2005-0161; FRL-9147-6] RIN 2060-AQ31 Regulation of Fuels and Fuel...

  5. 75 FR 26049 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-05-10

    ... Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... Renewable Fuel Standard program regulations published on March 26, 2010, that are scheduled to take effect... INFORMATION: I. Why is EPA issuing this proposed rule? This document proposes to amend the Renewable Fuel...

  6. 75 FR 37733 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-06-30

    ... Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... direct final rule to amend the Renewable Fuel Standard program requirements on May 10, 2010. Because EPA... Fuel Standard program requirements, published on May 10, 2010. We stated in that direct final rule that...

  7. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... to amend the definition of heating oil in the Renewable Fuel Standard (``RFS'' or ``RFS2'') program under section 211(o) of the Clean Air Act. This amendment will expand the scope of renewable fuels that...

  8. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... of heating oil in the Renewable Fuel Standard (RFS) program under section 211(o) of the Clean Air Act. This amendment would expand the scope of renewable fuels that can generate Renewable Identification...

  9. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Cruickshank, A.

    1985-01-01

    The tools and techniques developed in the United States and FR Germany to repair damaged fuels assemblies are examined. Two methods of repair are considered:- removal of damaged fuel rods and replacement with sound rods (reconstitution); and removal of sound rods from one assembly structure and placing them into a fresh assembly structure (reassembly). (UK)

  10. Failed fuel detector

    International Nuclear Information System (INIS)

    Martucci, J.A.

    1975-01-01

    A failed fuel detection apparatus is described for a nuclear reactor having a liquid cooled core comprising a gas collection hood adapted to engage the top of the suspect assembly and means for delivering a stripping gas to the vicinity of the bottom of the suspect fuel assembly. (U.S.)

  11. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  12. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  13. Heating fuel oil tariffs

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Fuel-oil sellers must quote gross prices. The addition to the net price, plus added value tax, is not enough. Now, the competent authorities control the offers of the fuel-oil traders. Net prices are punished as illegal acts.

  14. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  15. Fuel cell electronics packaging

    National Research Council Canada - National Science Library

    Kuang, Ken; Easler, Keith

    2007-01-01

    ... more energy independent. Despite the fact that the primary focus of the new initiative revolved around automotive technologies, the President's Hydrogen Fuel Initiative was crafted into a balanced program that benefited a wide range of technologies and applications, including micro, portable, stationary fuel cells. This massive effort was given an addition...

  16. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  17. International fuel bank

    International Nuclear Information System (INIS)

    The working group discusses the establishment of an international bank for nuclear fuels. The statements by representatives of seven countries discuss the specific features of a bank of this kind which is set up to facilitate access to nuclear fuels but also to permit a more rigid control in the sense of the non-proliferation philosophy

  18. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  19. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  20. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  1. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  2. Commercial aviation alternative fuels initiative

    Science.gov (United States)

    2010-04-22

    This presentation looks at alternative fuels to enhance environmental stability, reduction of greenhouse gas emissions, air quality benefits (e.g., SOx and PM), fuel supply stability, and fuel price stability.

  3. Fuel cells: Problems and prospects

    OpenAIRE

    Shukla, AK; Ramesh, KV; Kannan, AM

    1986-01-01

    n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

  4. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  5. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  6. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    Energy Technology Data Exchange (ETDEWEB)

    Sjöberg, Carl-Magnus G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  7. International LWR fuel design

    International Nuclear Information System (INIS)

    Bjornard, T.A.

    1990-01-01

    This paper reports on current Light Water Reactor (LWR) fuel designs throughout the world have many basic features in common, such as, cylindrical UO 2 fuel pellets contained in zirconium alloy cladding, helium fill gas inside the fuel rod, and a skeleton structure consisting of end fittings and spacers. These, as a minimum, are features one would find in virtually every fuel design for every LWR. To the eye of the uninitiated, one design would probably appear to be much like any other: i.e., rods of roughly equal diameter and length held together by a skeleton structure. But--nuclear fuel assembly design is a business where a few mils, a few ppm, a few degrees in temperature, or a fraction of a percent in a key parameter make all the difference between a merely acceptable design and a superior design

  8. Fuel cells : emerging markets

    International Nuclear Information System (INIS)

    Callaghan Jerram, L.; Adamson, K.A.; Butler, J.; Huleatt-James, N.

    2009-01-01

    This presentation highlighted the findings of the 2009 review of the fuel cell industry and emerging markets as they appeared in Fuel Cell Today (FCT), a benchmark document on global fuel cell activity. Since 2008, the industry has seen a 50 per cent increase in fuel cell systems shipped, from 12,000 units to 18,000 units. Applications have increased for backup power for datacentres, telecoms and light duty vehicles. The 2009 review focused on emerging markets which include non-traditional regions that may experience considerable diffusion of fuel cells within the next 5 year forecast period. The 2009 review included an analysis on the United Arab Emirates, Mexico, Brazil and India and reviewed primary drivers, likely applications for near-term adoption, and government and private sector activity in these regions. The presentation provided a forecast of the global state of the industry in terms of shipments as well as a forecast of countries with emerging markets

  9. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  11. Methanol commercial aviation fuel

    International Nuclear Information System (INIS)

    Price, R.O.

    1992-01-01

    Southern California's heavy reliance on petroleum-fueled transportation has resulted in significant air pollution problems within the south Coast Air Basin (Basin) which stem directly from this near total dependence on fossil fuels. To deal with this pressing issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may exceed emission gains achieved in the ground transportation sector. This paper addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin and the need to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine engines

  12. Fuels and fluoroelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Streit, G. [Parker Hannifin GmbH, Bietigheim-Bissingen (Germany)

    1999-11-01

    Modern fuels for combustion engines have an enormous spread in their composition. Fuels contain different amounts of aromatic hydrocarbons, are blended with oxygen containing components, especially alcohols and ethers and have some additive packages preventing deposits in the fuel circuit. This great variability in composition of fuels for combustion engines requires extremely resistant elastomers. The temperature range in the fuel circuit is determined by extreme low temperatures in countries of the Northern Hemisphere like Sweden and Canada of about -40 up to 150 C in small, high powered cars with encapsulated engines. A solution for sealing systems are special fluoroelastomers with high fluorine content and in some cases also with low temperature flexibility. It will be shown that a fluorine content of more than 68% in the polymer is necessary and in case of required low temperature flexibility a PMVE-perfluoromethyl-vinylether-modified type of fluoroelastomer, when a special seal design is not possible, might be the problem solving polymer. (orig.)

  13. Fuels and fluoroelastomers

    Energy Technology Data Exchange (ETDEWEB)

    Streit, G. (Parker Hannifin GmbH, Bietigheim-Bissingen (Germany))

    1999-01-01

    Modern fuels for combustion engines have an enormous spread in their composition. Fuels contain different amounts of aromatic hydrocarbons, are blended with oxygen containing components, especially alcohols and ethers and have some additive packages preventing deposits in the fuel circuit. This great variability in composition of fuels for combustion engines requires extremely resistant elastomers. The temperature range in the fuel circuit is determined by extreme low temperatures in countries of the Northern Hemisphere like Sweden and Canada of about -40 up to 150 C in small, high powered cars with encapsulated engines. A solution for sealing systems are special fluoroelastomers with high fluorine content and in some cases also with low temperature flexibility. It will be shown that a fluorine content of more than 68% in the polymer is necessary and in case of required low temperature flexibility a PMVE-perfluoromethyl-vinylether-modified type of fluoroelastomer, when a special seal design is not possible, might be the problem solving polymer. (orig.)

  14. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    Steinke, A.

    1985-01-01

    The grid-shaped spacer for PWR fuel elements consists of flat, upright metal bars at right angles to the fuel rods. In one corner of a grid mesh it has a spring with two end parts for the fuel rod. The cut-outs for the end parts start from an end edge of the metal bar parallel to the fuel rods. The transverse metal bar is one of four outer metal bars. Both end parts of the spring have an extension parallel to this outer metal arm, which grips a grid mesh adjacent to this grid mesh at the side in one corner of the spacer and forms an end part of a spring for the fuel rod there on the inside of the outer metal bar. (HP) [de

  15. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  16. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  17. Metal fuel safety performance

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.; Tentner, A.M.

    1988-01-01

    The current development of breeder reactor systems has lead to the renewed interest in metal fuels as the driver material. Modeling efforts were begun to provide a mechanistic description of the metal fuel during anticipated and hypothetical transients within the context of the SAS4A accident analysis code system. Through validation exercises using experimental results of metal fuel TREAT tests, confidence is being developed on the nature and accuracy of the modeling and implementation. Prefailure characterization, transient pin response, margins to failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are considered. Transient time scales ranging from milliseconds to many hours can be studied with all the reactivity feedbacks evaluated

  18. Spent fuel centralized storage

    International Nuclear Information System (INIS)

    Chometon, P.L.

    1985-01-01

    Nuclear energy producer countries have felt the need to build a centralized spent fuel storage before reprocessing (for example, COGEMA in FRANCE), either in an adjoining plant on an appropriate site, or isolated. More rarely, this storage enables to decide whether to reprocess or to definitely store spent fuel considered as being waste: for example CLAB in Sweden. Our Company is specialized in the design and construction of spent fuel centralized storage plants. Storage generally takes place in a pool in order to facilitate handling operations and retrieving of these fuels, but these operations may also be effected in a dry way, either in concrete structures or in storage casks. With respect to pools, which might currently be the most appropriate and flexible system, several improvements have recently been made in the design of cask reception facilities and spent fuel storage. These improvements are presented, hereafter [fr

  19. Spent fuel centralized storage

    International Nuclear Information System (INIS)

    Baillif, L.; Chometon, P.L.

    1986-01-01

    Nuclear energy producer countries have felt the need to build a centralized spent fuel storage before reprocessing, either in an adjoining plant on an appropriate site, or isolated. More rarely, this storage enables to decide whether to reprocess or to definitely store spent fuel considered as being waste: for example CLAB in Sweden. Our Company SGN is specialized among others in the design and construction of spent fuel centralized storage plants. Storage generally takes place in a pool in order to facilitate handling operations and retrieving of these fuels, but these operations may also be effected in a dry way, either in concrete structures or in storage casks. With respect to pools, which might currently be the most appropriate and flexible system, several improvements have recently been made in the design of cask reception facilities and spent fuel storage. These improvements are presented, hereafter [fr

  20. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.