WorldWideScience

Sample records for beneficial soil bacteria1cwoa

  1. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  2. Azospirillum brasilense, a Beneficial Soil Bacterium: Isolation and Cultivation.

    Science.gov (United States)

    Alexandre, Gladys

    2017-11-09

    Bacteria of the genus Azospirillum comprise 15 species to date, with A. brasilense the best studied species in the genus. Azospirillum are soil bacteria able to promote the growth of plants from 113 species spanning 35 botanical families. These non-pathogenic and beneficial bacteria are ubiquitous in soils and inhabit the roots of diverse plants. These bacteria are microaerophilic, able to fix nitrogen under free-living conditions, motile, and able to navigate in gradients of various chemicals, including oxygen. These physiological traits are used to isolate these soil bacteria from soil and plant root samples, providing isolates that can be used for studying microbial physiology and plant growth promotion. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Diversity and natural functions of antibiotices produced by beneficial and pathogenic soil bacteria

    Science.gov (United States)

    Soil and plant-associated environments harbor numerous bacterial species that produce antibiotic metabolites. Many of these bacteria have been exploited for the discovery of clinical antibiotics and other therapeutics. In the field of plant pathology, antibiotic-producing bacteria are used as a reso...

  4. Effects of Some Beneficial Bacteria in Casing Soil on Growth and Yield of Cultivated Mushroom Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Mehmet Çetin

    2016-03-01

    Full Text Available This research was carried out to determine the interaction between some bacteria naturally existing in casing soil and Agaricus bisporus (Sylvan Hauser A15 hypha in laboratory (in vitro and cultivation (in vivo conditions, and to confirm its effects on mushroom yield. Totally 32 bacteria (3 Gram (+ and 29 Fluorescent Pseudomonads was isolated from casing soil and healthy sporophores. As a result of in vitro experiment carried out to determine the effects of bacteria on mycelium growth of A. bisporus, 24 bacterial isolates were found more effective at the rate of 2 to 115% than control treatment. To determine the effects of bacterium, chosen at the end of in vitro experiments, on mushroom yield in cultivation conditions, three experiments were established in March, May and July in 2008. At the end of experiments, bacterial isolates provided 8 – 40 % increase in total yield. Population density and change in population number related to time was observed during growing period, after the inoculation of bacterial isolates into casing soil. According to the results, Pseudomonas fluorescens (T 4/2 and Ş 8, P.putida (Ş 2/1 and Ş 10 and Bacillus mycoides (T 7/2 bacterial isolates were colonized successfully both in casing soil and sporophores.

  5. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China.

    Directory of Open Access Journals (Sweden)

    Xiumei Yu

    Full Text Available To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates and Ochrobactrum intermedium (13 isolates. Altogether 93 isolates tolerated the highest concentration (1000 mg kg(-1 of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg(-1 cadmium whereas only one strain tolerated 1,000 mg kg(-1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA, a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml(-1. In total 21% of the bacteria produced siderophore (5.50-167.67 µg ml(-1 with two Bacillus sp. producing more than 100 µg ml(-1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.

  6. Bioremediation of copper-contaminated soils by bacteria.

    Science.gov (United States)

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  7. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  8. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D; Bastiaens, L; Carpels, M; Mergaey, M; Diels, L

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  9. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants.

    Science.gov (United States)

    Carvalho, T L G; Ballesteros, H G F; Thiebaut, F; Ferreira, P C G; Hemerly, A S

    2016-04-01

    A wide range of rhizosphere diazotrophic bacteria are able to establish beneficial associations with plants, being able to associate to root surfaces or even endophytically colonize plant tissues. In common, both associative and endophytic types of colonization can result in beneficial outcomes to the plant leading to plant growth promotion, as well as increase in tolerance against biotic and abiotic stresses. An intriguing question in such associations is how plant cell surface perceives signals from other living organisms, thus sorting pathogens from beneficial ones, to transduce this information and activate proper responses that will finally culminate in plant adaptations to optimize their growth rates. This review focuses on the recent advances in the understanding of genetic and epigenetic controls of plant-bacteria signaling and recognition during beneficial associations with associative and endophytic diazotrophic bacteria. Finally, we propose that "soil-rhizosphere-rhizoplane-endophytes-plant" could be considered as a single coordinated unit with dynamic components that integrate the plant with the environment to generate adaptive responses in plants to improve growth. The homeostasis of the whole system should recruit different levels of regulation, and recognition between the parties in a given environment might be one of the crucial factors coordinating these adaptive plant responses.

  10. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  11. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  12. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor.

    Science.gov (United States)

    Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo

    2018-02-01

    Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.

  13. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely

  14. Potassium solubilizing bacteria-assisted phytoextraction of radiocesium on pechay plants grown in cesium contaminated Fukushima Soils

    International Nuclear Information System (INIS)

    Rallos, R.V.; Yokoyama, T.

    2015-01-01

    Increasing the efficiency of metal uptake by plants is important to achieve successful phytoremediation of metal-polluted soils. The presence of potassium solubilizing bacteria (KSB) increases the solubilization of K-containing minerals thereby enhancing the availability of potassium (K+) and other cations including radicesium (137Cs+) for plant uptake. In this study, five KSB isolates were obtained from soybean rhizosphere in Fukushima radiocesium contaminated soils. Based on biochemical and 16S rRNA gene sequence analysis, the bacteria were identified as Bacillus megaterium, Pseudomonas putida, P. frederiksbergensis, Burkholderia sabiae, and P. mandelii. The KSB isolates were evaluated for plant growth promotion, potassium (K) uptake and radiocesium phytoextraction of pechay in three different cesium-contaminated Fukushima soils. Inoculation with KSB showed beneficial effects on plant growth and increased the phytoextraction of radiocesium, with much greater magnitude in roots than in shoots. The results indicated that KSB inoculation may be essential in managing radiocesium-contaminated soils and manipulating the transfer from soils to plants.(author)

  15. Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Xu, Xiang-hua; Chen, Tie-xi; Liu, Shuai; Cheng, Hai-xiang

    2015-07-01

    The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.

  16. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  17. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  18. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  19. Utilization of Cypermethrin by bacteria isolated from irrigated soils ...

    African Journals Online (AJOL)

    Soil bacteria capable of utilizing Cypermethrin as a source of carbon were isolated using enrichment technique. The bacteria were Psuedomonas aeruginosa, Serratia spp Micrococcus sp, Staphylococci and Streptococcus sp. Growth of P. aeruginosa was determined in the presence of 1:106 and 1:105 Cypermethrin in ...

  20. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.

    Science.gov (United States)

    Raaijmakers, Jos M; Mazzola, Mark

    2012-01-01

    Soil- and plant-associated environments harbor numerous bacteria that produce antibiotic metabolites with specific or broad-spectrum activities against coexisting microorganisms. The function and ecological importance of antibiotics have long been assumed to yield a survival advantage to the producing bacteria in the highly competitive but resource-limited soil environments through direct suppression. Although specific antibiotics may enhance producer persistence when challenged by competitors or predators in soil habitats, at subinhibitory concentrations antibiotics exhibit a diversity of other roles in the life history of the producing bacteria. Many processes modulated by antibiotics may be inherently critical to the producing bacterium, such as the acquisition of substrates or initiation of developmental changes that will ensure survival under stressful conditions. Antibiotics may also have roles in more complex interactions, including in virulence on host plants or in shaping the outcomes of multitrophic interactions. The innate functions of antibiotics to producing bacteria in their native ecosystem are just beginning to emerge, but current knowledge already reveals a breadth of activities well beyond the historical perspective of antibiotics as weaponry in microbial conflicts.

  1. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  2. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  3. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  4. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  5. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    Science.gov (United States)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  6. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  7. Influence of potassium solubilizing bacteria on growth and radiocesium accumulation of komatsuna (Brassica rapa L. var pervirids) growth in cesium-contaminated Fukushima soils

    International Nuclear Information System (INIS)

    Rallos, Roland V.; Yokoyama, Tadashi

    2015-01-01

    Potassium (K) supply exerts the greatest influence on plant radiocesium (Cs) uptake from soil solution. The presence of potassium solubilizing bacteria (KSB) increases availability of K+ in the rhizosphere, thus enhancing the cationic interaction between K and Cs. In this study, five KSB isolates were obtained from soybean rhizosphere on modified Aleksandrov medium containing mica as K source. Based on biochemical and 16S rRNA gene sequence analysis, the bacteria were identified as Bacillus megaterium strain CCMM B583, Pseudomonas putida strain ATCC 17527, P. frederiksbergensis strain M60, Burkholderia sabidae strain Br3407, and P. mandelii JR-1. The KSB isolates were evaluated for plant growth promotion, potassium (K) uptake and radiocesium accumulation of komatsuna in three different cesium-contaminated Fukushima soils. Inoculation with KSB showed beneficial efforts on plant growth and increased the overall plant biomass production (∼40%). KSB inoculation also significantly increased the radiocesium accumulation, with much greater magnitude in roots than in shoots. The results indicated that KSB inoculation may be essential in managing cesium-contaminated soils and manipulating radiocesium transfer from soils to plants.(author)

  8. Electrostatic Separator for Beneficiation of Lunar Soil

    Science.gov (United States)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  9. Bacteria and protozoa in soil microhabitats as affected by earthworms

    DEFF Research Database (Denmark)

    Winding, Anne; Rønn, Regin; Hendriksen, Niels B.

    1997-01-01

    , were compared. The total, viable, and culturable number of bacteria, the metabolic potentials of bacterial populations, and the number of protozoa and nematodes were determined in soil size fractions. Significant differences between soil fractions were shown by all assays. The highest number......-cyano-2,3-ditolyl tetrazolim chloride (CTC)-reducing bacteria explained a major part of the variation in the number of protozoa. High protozoan activity and predation thus coincided with high bacterial activity. In soil with elm leaves, fungal growth is assumed to inhibit bacterial and protozoan...... activity. In soil with elm leaves and earthworms, earthworm activity led to increased culturability of bacteria, activity of protozoa, number of nematodes, changed metabolic potentials of the bacteria, and decreased differences in metabolic potentials between bacterial populations in the soil fractions...

  10. Hydrolysis of nitriles by soil bacteria: variation with soil origin

    CSIR Research Space (South Africa)

    Rapheeha, OKL

    2017-03-01

    Full Text Available . To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long...

  11. Population dynamics of bacteria introduced into bentonite amended soil

    NARCIS (Netherlands)

    Heijnen, C.

    1992-01-01

    Bacteria have frequently been introduced into the soil environment, e.g. for increasing crop production or for biological control purposes. Many applications require high numbers of surviving organisms in order to be effective. However, survival of bacteria after introduction into soil is

  12. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  13. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    Energy Technology Data Exchange (ETDEWEB)

    Calder, Alyssa J. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Dimkpa, Christian O. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Department of Biology, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Johnson, William [Geology and Geophysics, University of Utah, Salt Lake City, UT 84112 (United States); Anderson, Anne J., E-mail: anne.anderson@usu.edu [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2012-07-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca{sup 2+} from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: Black-Right-Pointing-Pointer Silver nanoparticles

  14. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6

    International Nuclear Information System (INIS)

    Calder, Alyssa J.; Dimkpa, Christian O.; McLean, Joan E.; Britt, David W.; Johnson, William; Anderson, Anne J.

    2012-01-01

    Silver nanoparticles (Ag NPs) are widely used for their antimicrobial activity and consequently the particles will become environmental contaminants. This study evaluated in sand and soil matrices the toxicity of 10 nm spherical Ag NPs (1 and 3 mg Ag/L) toward a beneficial soil bacterium, Pseudomonas chlororaphis O6. In sand, both NP doses resulted in loss in bacterial culturability whereas in a loam soil, no cell death was observed. Amendments of sand with clays (30% v/v kaolinite or bentonite) did not protect the bacterium when challenged with Ag NPs. However, culturability of the bacterium was maintained when the Ag NP-amended sand was mixed with soil pore water or humic acid. Imaging by atomic force microscopy revealed aggregation of single nanoparticles in water, and their embedding into background material when suspended in pore water and humic acids. Zeta potential measurements supported aggregation and surface charge modifications with pore water and humic acids. Measurement of soluble Ag in the microcosms and geochemical modeling to deduce the free ion concentration revealed bacterial culturability was governed by the predicted free Ag ion concentrations. Our study confirmed the importance of Ag NPs as a source of ions and illustrated that processes accounting for protection in soil against Ag NPs involved distinct NP- and ion-effects. Processes affecting NP bioactivity involved surface charge changes due to sorption of Ca 2+ from the pore water leading to agglomeration and coating of the NPs with humic acid and other organic materials. Removal of bioactive ions included the formation of soluble Ag complexes with dissolved organic carbon and precipitation of Ag ions with chloride in pore water. We conclude that mitigation of toxicity of Ag NPs in soils towards a soil bacterium resides in several interactions that differentially involve protection from the Ag NPs or the ions they produce. - Highlights: ► Silver nanoparticles (Ag NPs) are widely used for

  15. The concomitant use of indigenous soil bacteria and fungi to enhance the bioremediation of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curitiba (Brazil)

    2001-07-01

    Usually, the use of indigenous soil bacteria for the remediation of petroleum-contaminated soils was restricted to the biodegradation of low-molecular weight petroleum hydrocarbons such as gasoline, diesel, fuel oil and jet fuel. The advantage of using indigenous microorganisms is the minimization of the impact of the treatment on the microbial diversity. As a rule,these techniques are also well accepted by the public. Other studies have shown that fungi is successful for the bioremediation of heavier-weight contaminants. The concomitant transformation of low-molecular weight and heavier recalcitrant oil fractions to inorganic and humic form can be accomplished with the concomitant action of bacteria and fungi. The development of a soil biotreatment program using this concomitant technique was performed by PETROBRAS Petroleo Brasileiro S.A. - Refinaria Presidente Getulio Vargas in conjunction with the Universidade Federal do Parana. It resulted in a full-scale technology that allows the degradation of oil waste. Approximately two years of treatment are required to achieve the desired results. The use of standard analytical methods and bioindicators used on the treated soil indicated that the treated soil met the standards for agricultural soil quality. A recent oil spill occurred in Araucaria, Brazil and a bioremediation area was inoculated, and to date the results prove the beneficial effects to be derived from the use of inoculation. Some results were presented in table format. 3 tabs.

  16. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  17. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  18. Beneficial and harmful roles of bacteria from the Clostridium genus.

    Science.gov (United States)

    Samul, Dorota; Worsztynowicz, Paulina; Leja, Katarzyna; Grajek, Włodzimierz

    2013-01-01

    Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications.

  19. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  20. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    Science.gov (United States)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  1. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  2. Population of bacteria from soil in Tudu-Aog village, Passi district, Bolaang Mongondow, North Sulawesi

    Directory of Open Access Journals (Sweden)

    RIANI HARDININGSIH

    2004-01-01

    Full Text Available An experiment was conducted in order to know the population of bacteria from soil in Tudu-Aog village, Passi district, Bolaang Mongondow, North Sulawesi, the purpose of the research was to study the population of bacteria from soil. Fourthy six soil samples were taken from two location, namelyTudu-Aog village and Bugis mountain. Isolation was done by dilution methods on YEMA medium (for Rhizobium bacteria, Winogradsky’s (for Azotobacter bacteria, Pycosvkaya (for Phosphat Solubilizing Bacteria, and selective Difco Pseudomonas (for Pseudomonas bacteria. Incubation at room temperature (27-280C until 15 days, and the enumeration with plate count method. The highest enumeration of Rhizobium bacteria with plant rhizosphere of Alocasia esculenta (27x105 CFU/g soil, Theobroma cacao (29x105 CFU/g soil,and Euphorbia paniculata (26x105 CFU/g soil, Azotobacter bacteria with plant rhizosphere of Lycopersicum esculantum (38x105 CFU/g soil, Eugenia aromaticum (43x105 CFU/g soil, Andropogon sp. (34x105 CFU/g soil, Phosphat Solubilizing bacteria with plant rhizosphere of Sechium edule (27x105 CFU/g soil, Cinnamomum sp. (48x105 CFU/g soil, Cyathea sp. (72x105 CFU/g soil, and Pseudomonas bacteria with plant rhizosphere of Oryza sativa (18x105 CFU/g soil, Vanilla sp. (12x105 CFU/g soil, dan Saurauia sp.(19x105 CFU/g soil.

  3. Growth rate of bacteria is affected by soil texture and extraction procedure

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, Eva; Šantrůčková, Hana

    2003-01-01

    Roč. 35, - (2003), s. 217-224 ISSN 0038-0717 Institutional research plan: CEZ:AV0Z6066911 Keywords : soil texture * extraction of bacteria * biosynthetic activity of bacteria Subject RIV: EH - Ecology, Behaviour Impact factor: 1.915, year: 2003

  4. Volatile-mediated interactions between phylogenetically different soil bacteria

    NARCIS (Netherlands)

    Garbeva, P.; Hordijk, C.; Gerards, S.; Boer, de W.

    2014-01-01

    There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil

  5. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  6. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  7. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    Science.gov (United States)

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. THE USE OF gusA REPORTER GENE TO MONITOR THE SURVIVAL OF INTRODUCED BACTERIA IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Edi Husen

    2013-07-01

    Full Text Available An effective marker to monitor the survival of introduced bacteria in the soil is required for further evaluation of their beneficial effects on plant growth. This study tested the use of gusA gene as a marker to trace the fate of three Gram negative bacteria in the root, rhizosphere, and soil. The study was conducted at the laboratory and greenhouse of the National Institute of Molecular Biology and Biotechnology, Philippines from January to December 2001. Isolates TCaR 61 and TCeRe 60, and Azotobacter vinelandii Mac 259 were selected as test bacteria based on their ability to produce indole-3acetic acid and solubilize precipitated phosphate, which may promote plant growth in the field. These bacteria were marked with gusA reporter gene from Escherichia coli strain S17-1(λ-pir containing mTn5SSgusA21. The gusA (β-glucuronidase gene from the donor (E. coli was transferred to each bacterium (recipient through bacterial conjugation in mating procedures using tryptone-yeast agar followed by the selection of the transconjugants (bacteria receiving gusA in tryptone-yeast agar supplemented with double antibiotics and X-GlcA (5bromo-4chloro- 3indoxyl-β-D-glucuronic acid. The antibiotics used were rifampicin and either streptomycin or spectinomycin based on antibiotic profiles of the donor and recipients. The results showed that the insertion of gusA gene into bacterial genomes of the recipient did not impair its phenotypic traits; the growth rates of the transconjugants as well as their ability to produce indole-3acetic acid and solubilize precipitated phosphate in pure culture were similar to their wild types. All transconjugants colonized the roots of hot pepper (Capsicum annuum L. and survived in the rhizosphere and soil until the late of vegetative growth stage. The distinct blue staining of transconjugants as the expression of gusA gene in media containing X-GlcA coupled with their resistance to rifampicin and streptomycin or spectinomycin

  9. Reconditioning of soils degraded through oil contamination using bacteria relating to thiosphaera

    International Nuclear Information System (INIS)

    Sakhno, T.V.; Kurashov, V.M.; Kolesnik, A.A.; Morozkin, A.I.; Gavrilov, V.S.

    2005-01-01

    Bio-preparations based on aerobic bacteria are conventionally used to decontaminate soils of oil. There is a problem of no effect in oil decomposing by using conventional bio-preparations in soils where the depth of oil penetration into the soil exceeds 60 cm in the case of oil outflow. At deep oil penetration into the soil, the efficiency of oil biodegradation with aerobic hydrocarbon oxidizing microorganisms is limited by the factor of oxygen accessibility (oxygen limit). We used Thiosphaera pantotropha as a mono-culture and together with a culture of Pseudomonas putida to solve this problem. Pseudomonas putida being aerobes decompose oil effectively at oil concentration up to 25 g of oil in 1 kg of soil and at the depth of oil penetration into the soil up to 25-30 cm. At a deeper level of soil, the activity of Pseudomonas putida falls because of oxygen limit. At the depth of 60 cm and deeper, Pseudomonas putida stop oxidize and decompose oil because of the limited oxygen accessibility. Bacteria of Thiosphaera pantotropha being elective anaerobes decompose oil both in the presence and in the absence of oxygen, and at low concentrations of oxygen insufficient for vital functions of obligate aerobic species of bacteria. Thus, bacteria of Thiosphaera pantotropha decompose hydrocarbons independently on the depth of oil penetration into the soil. Due to special features of their metabolism, bacteria of Thiosphaera pantotropha can realize their vital functions and decompose hydrocarbons at high oil concentrations in soils at which conventionally used bio-preparations can not be effective. We found out that Thiosphaera decompose sulfurous closed-ring and aromatic compounds in oil which are chemically and thermally stable and can be hardly decomposed, and possess extremely poisonous properties, as well. The use of microorganisms of Thiosphaera pantotropha allows to purify soils polluted with oil and oil products. The results obtained are applied to the cleaning of

  10. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi

    Directory of Open Access Journals (Sweden)

    Qingxiang Yang

    2016-06-01

    Full Text Available Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1 non-treated; (2 chicken manure-treated and (3 organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB in soil and multiple antibiotic-resistant endophytic bacteria (MAREB in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  11. The role of beneficial bacteria wall elasticity in regulating innate immune response

    OpenAIRE

    ?okrozub, Viktoria V.; Lazarenko, Liudmyla M.; Sichel, Liubov M.; Babenko, Lidia P.; Lytvyn, Petro M.; Demchenko, Olga M.; Melnichenko, Yulia O.; Boyko, Nadiya V.; Biavati, Bruno; DiGioia, Diana; Bubnov, Rostyslav V.; Spivak, Mykola Ya

    2015-01-01

    Background Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB...

  12. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  13. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  14. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    Science.gov (United States)

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  15. Diversity and numbers of root-nodule bacteria (rhizobia in Polish soils

    Directory of Open Access Journals (Sweden)

    Stefan Martyniuk

    2011-01-01

    Full Text Available Using a sand pouch-plant infection method, populations of several species of root-nodule bacteria (rhizobia were enumerated in eighty soils collected throughout Poland. Rhizobium leguminosarum bv. viciae (symbionts of pea, faba bean, vetch and R. leguminosarum bv. trifolii (symbionts of clover were detected in 77 and 76 soils, respectively. Most of these soils contained moderate and high numbers of these species of the rhizobia. Symbionts of beans, R. leguminosarum bv. phaseoli, were assessed in 76 soils; of this number 15 soils had no detectable populations of bean rhizobia and in 40 soils high or moderate numbers of these bacteria were found. Bradyrhizobium sp. (Lupinus, root-nodule bacteria of lupine and serradella, were absent in 19 soils, out of 80 tested, and 34 soils were colonised by high or moderate populations of bradyrhizobia. Sinorhizobium meliloti, rhizobia nodulating alfalfa, were sparse in the examined soils; with 56 soil containing no detectable numbers of S. meliloti and only 6 soils harbouring high or moderate populations of this species. The estimated numbers of the rhizobia in the studied soils were also related to some physical and chemical properties of these soils.

  16. Electron microscopic examination of uncultured soil-dwelling bacteria.

    Science.gov (United States)

    Amako, Kazunobu; Takade, Akemi; Taniai, Hiroaki; Yoshida, Shin-ichi

    2008-05-01

    Bacteria living in soil collected from a rice paddy in Fukuoka, Japan, were examined by electron microscopy using a freeze-substitution fixation method. Most of the observed bacteria could be categorized, based on the structure of the cell envelope and overall morphology, into one of five groups: (i) bacterial spore; (ii) Gram-positive type; (iii) Gram-negative type; (iv) Mycobacterium like; and (v) Archaea like. However, a few of the bacteria could not be readily categorized into one of these groups because they had unique cell wall structures, basically resembling those of Gram-negative bacteria, but with the layer corresponding to the peptidoglycan layer in Gram-negative bacteria being extremely thick, like that of the cortex of a bacterial spore. The characteristic morphological features found in many of these uncultured, soil-dwelling cells were the nucleoid being in a condensed state and the cytoplasm being shrunken. We were able to produce similar morphologies in vitro using a Salmonella sp. by culturing under low-temperature, low-nutrient conditions, similar to those found in some natural environments. These unusual morphologies are therefore hypothesized to be characteristic of bacteria in resting or dormant stages.

  17. N2 fixer free-living bacteria in two soils of Cauca Valley

    International Nuclear Information System (INIS)

    Cardona M, Sigifredo; Sanchez de Prager, Marina

    1998-01-01

    Several soil samples were taken in two agricultural soils, located in Palmira and Ricaurte, Cauca Valley, with the aim of establishing the presence of free life N 2 fixer bacteria and to identify the predominant species. Such soils were chemical and physically characterized and were collected information about their farmer management. For each one of them were counted the N 2 a symbiotic fixers by the dilution method and culture in N free Ashby media. The main bacteria isolated in each soil were, purified and identified. The physical chemistry conditions in both soils favored the presence of such microorganisms because of the pH, closer to neutral and an adequate nutrient content in Ricaurte, the soils was an inceptisol, moderately deep and growing passion fruit Passiflora edulis sims, in which have had an intensive use of chemicals, similar to palmira's soil; there, the microbial population was 5.5 x 107 U.F.C. N 2 fixer bacteria/g of dry soil. In Palmira, it was a mollisol growing tomato Lycopersicon esculentum mill with a population of 5.1 x 107 U.F.C./g of dry soil; both figures indicated the abundance of such microbiological resource and the potential for being explored in sustainable agricultural systems. In Ricaurte it was isolated Azotobacter is a main strain (probably a. chroococcum, according IMI) and in Palmira, Stenotroghomonas maltophilia (IMI), well known as a growth promoter in wheat and sunflower; referred in some cases as lightly pathogen in humans

  18. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens

    DEFF Research Database (Denmark)

    Forsberg, Kevin J.; Reyes, Alejandro; Wang, Bin

    2012-01-01

    protocol to assemble short-read sequence data after antibiotic selection experiments, using 12 different drugs in all antibiotic classes, and compared antibiotic resistance gene sequences between soil bacteria and clinically occurring pathogens. Sixteen sequences, representing seven gene products, were...... discovered in farmland soil bacteria within long stretches of perfect nucleotide identity with pathogenic proteobacteria....

  19. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria

    NARCIS (Netherlands)

    Raaijmakers, J.M.; Mazzola, M.

    2012-01-01

    Soil- and plant-associated environments harbor numerous bacteria that produce antibiotic metabolites with specific or broad-spectrum activities against coexisting microorganisms. The function and ecological importance of antibiotics have long been assumed to yield a survival advantage to the

  20. Culturable diversity of halophilic bacteria in foreshore soils.

    Science.gov (United States)

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%), Proteobacteria (31%), Bacteriodetes (5%) and Actinobacteria (4%). Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12%) and Shewanella (12%) were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity.

  1. Culturable diversity of halophilic bacteria in foreshore soils

    Directory of Open Access Journals (Sweden)

    Aarzoo Irshad

    2014-06-01

    Full Text Available Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%, Proteobacteria (31%, Bacteriodetes (5% and Actinobacteria (4%. Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12% and Shewanella (12% were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity.

  2. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  3. Bioremediation Potential of Native Hydrocarbons Degrading Bacteria in Crude Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mariana MARINESCU

    2017-05-01

    Full Text Available Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.

  4. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil.

    Science.gov (United States)

    Wang, Yei-Shung; Liu, Jian-Chang; Chen, Wen-Ching; Yen, Jui-Hung

    2008-04-01

    Three different green manures were added to the tea garden soils separately and incubated for 40 days. After, incubation, acetanilide herbicides alachlor and metolachlor were spiked into the soils, separately, followed by the isolation of bacteria in each soil at designed intervals. Several bacterial strains were isolated from the soils and identified as Bacillus silvestris, B. niacini, B. pseudomycoides, B. cereus, B. thuringiensis, B. simplex, B. megaterium, and two other Bacillus sp. (Met1 and Met2). Three unique strains with different morphologies were chosen for further investigation. They were B. megaterium, B. niacini, and B. silvestris. The isolated herbicide-degrading bacteria showed optimal performance among three incubation temperatures of 30 degrees C and the best activity in the 10 to 50 microg/ml concentration of the herbicide. Each bacterial strain was able to degrade more than one kind of test herbicides. After incubation for 119 days, B. cereus showed the highest activity to degrade alachlor and propachlor, and B. thuringiensis to degrade metolachlor.

  5. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  6. The interactions of bacteria with fungi in soil: emerging concepts.

    Science.gov (United States)

    Haq, Irshad Ul; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk

    2014-01-01

    In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions. © 2014 Elsevier Inc. All rights reserved.

  7. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  8. Soil and Waste Matrix Affects Spatial Heterogeneity of Bacteria Filtration during Unsaturated Flow

    Directory of Open Access Journals (Sweden)

    Adrian Unc

    2015-02-01

    Full Text Available Discontinuous flows resulting from discrete natural rain events induce temporal and spatial variability in the transport of bacteria from organic waste through soils in which the degree of saturation varies. Transport and continuity of associated pathways are dependent on structure and stability of the soil under conditions of variable moisture and ionic strength of the soil solution. Lysimeters containing undisturbed monoliths of clay, clay loam or sandy loam soils were used to investigate transport and pathway continuity for bacteria and hydrophobic fluorescent microspheres. Biosolids, to which the microspheres were added, were surface applied and followed by serial irrigation events. Microspheres, Escherichia coli, Enterococcus spp., Salmonella spp. and Clostridium perfringens were enumerated in drainage collected from 64 distinct collection areas through funnels installed in a grid pattern at the lower boundary of the monoliths. Bacteria-dependent filtration coefficients along pathways of increasing water flux were independent of flow volume, suggesting: (1 tracer or colloid dependent retention; and (2 transport depended on the total volume of contiguous pores accessible for bacteria transport. Management decisions, in this case resulting from the form of organic waste, induced changes in tortuosity and continuity of pores and modified the effective capacity of soil to retain bacteria. Surface application of liquid municipal biosolids had a negative impact on transport pathway continuity, relative to the solid municipal biosolids, enhancing retention under less favourable electrostatic conditions consistent with an initial increase in straining within inactive pores and subsequent by limited re-suspension from reactivated pores.

  9. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  10. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica.

    Science.gov (United States)

    Sampaio, Dayanna Souza; Almeida, Juliana Rodrigues Barboza; de Jesus, Hugo E; Rosado, Alexandre S; Seldin, Lucy; Jurelevicius, Diogo

    2017-11-01

    Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.

  11. Use of tritium-labeled PCBs for investigation of PCBs biodegradation by soil bacteria

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Takhtobiri, K.S.; Yadgarov, H.T.; Zinovev, P. V.; Abdukarimov, A.A.

    2002-01-01

    The method for tritium labelling of polychlorinated biphenyls (PCBs) was developed. The strains of soil bacteria - destructors of chloro organic compounds was studied with the help of test-system based on the using of tritium-labeled PCBs. The strains of bacteria were grown on the agar synthetic medium and then were introduced into the synthetic medium containing tritium-labeled mixture of PCBs (commercial mark - SOVOL) as alone source of carbon. The samples were analysed after one and two months period of incubation. PCBs were extracted by hexane from fraction of bacteria and fraction of cultural medium and radioactivity was measured. The samples were analyzed by thin layer chromatography (TLC) with following radioautography. Additionally samples were analyzed by gas chromatography. It was found that all selected strains survived in the medium with PCBs as alone source of carbon and bacteria accumulated PCBs from cultural medium. Accumulation of PCBs by strains of bacteria was different. The TLC analysis detected additional compounds labeled by tritium, that prove the degradation of PCBs in presence of bacteria. The gas chromatography analysis of cultural medium and bacteria detected redistribution in the system and qualitative changes of PCBs in bacteria. The strains of bacteria also were grown in model condition on the soil with tritium labeled PCBs. We found that some strains effectively destroy PCBs with decreasing level of tritium label in the soil. The using of tritium labeled PCBs' allows to introduce precise quantitative characteristics for study of accumulation and biodegradation PCBs by soil bacteria strains. Developed test-system is very useful tool for selection of new strains of soil bacteria - destructors of PCBs

  12. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil

    International Nuclear Information System (INIS)

    Cunningham, S.D.; Kapulnik, Y.; Phillips, D.A.

    1986-01-01

    H 2 evolved by alfalfa root nodules during the process of N 2 fixation may be an important factor influencing the distribution of soil bacteria. To test this hypothesis under field conditions, over 700 bacterial isolates were obtained from fallow soil or from the 3-mm layer of soil surrounding alfalfa (Medicago sativa L.) root nodules, alfalfa roots, or bindweed (Convolvulus arvensis L.) roots. Bacteria were isolated under either aerobic or microaerophilic conditions and were tested for their capacity to metabolize H 2 . Isolates showing net H 2 uptake and 3 H 2 incorporation activity under laboratory conditions were assigned a Hup + phenotype, whereas organisms with significant H 2 output capacity were designated as a Hout + phenotype. Under aerobic isolation conditions two Hup + isolates were obtained, whereas under microaerophilic conditions five Hup + and two Hout + isolates were found. The nine isolates differed on the basis of 24 standard bacteriological characteristics or fatty acid composition. Five of the nine organisms were isolated from soil around root nodules, whereas the other four were found distributed among the other three soil environments. On the basis of the microaerophilic isolations, 4.8% of the total procaryotic isolates from soil around root nodules were capable of oxidizing H 2 , and 1.2% could produce H 2 . Two of the Hup + isolates were identified as Rhizobium meliloti by root nodulation tests, but the fact that none of the isolates reduced C 2 H 2 under the assay conditions suggested that the H 2 metabolism traits were associated with various hydrogenase systems rather than with nitrogenase activity

  13. Survival and transport of faecal bacteria in agricultural soils

    DEFF Research Database (Denmark)

    Bech, Tina Bundgaard

    Today, there is yearly applied 34 million tonnes of animal waste to arable land in Denmark. This waste may contain pathogenic zoonotic bacteria and/or antibiotic resistant bacteria, and when applied to arable land there is a risk of contaminating groundwater, surface water, feeding animals or fresh...... produce. Prediction of faecal bacterial survival and transport in the soil environment will help minimize the risk of contamination, as best management practices can be adapted to this knowledge. The aim of this Ph.D. is to study factors influencing faecal bacteria survival and transport in soil...... – it is based on both field scale and lab scale experiments. The influence of application method and slurry properties has been tested on both survival and transport....

  14. Degradation and utilization of polycyclic aromatic hydrocarbons by indigenous soil bacteria

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.A.

    1986-01-01

    The persistence of industrially derived polycyclic aromatic hydrocarbons in the subsurface may be significantly affected by the metabolism of soil bacteria. This study was conducted to determine the ability of indigenous soil bacteria to decrease the concentration of four polycyclic aromatic hydrocarbons (naphthalene, fluorene, anthracene, and pyrene) and to utilize the compounds as a substrate for growth. Soil cores from petroleum contaminated and noncontaminated sites contained 10 5 -10 7 viable microorganisms per gram dryweight of soil. Gram negative rod-shaped bacteria predominated. Decreases in the concentration of the four polycyclic aromatic hydrocarbons were observed during incubation with bacterial isolates in aqueous suspension by the use of high performance liquid chromatography. Corresponding increases in bacterial numbers indicated utilization of the compounds as a carbon source. Soil samples from the contaminated sites contained greater numbers of bacteria utilizing anthracene and pyrene than soil samples from uncontaminated sites. Degradation rates of the four polycyclic aromatic hydrocarbons were related to the compound, its concentration, and the bacterium. Biodegradation of pyrene was positively correlated with the presence of oxygen. Pyrene was biodegraded by an Acinetobacter sp. under aerobic conditions but not under anaerobic or microaerophilic conditions. Studies with radiolabeled 14 C-anthracene demonstrated utilization of the labeled carbon as a source of carbon by viable bacterial cells in aqueous suspension. Incorporation of 14 C into cellular biomass however was not observed during incubation of 14 C-anthracene in soil

  15. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Wagenaar, A.M.; Klein Gunnewiek, P.J.A.; Van Veen, J.A.

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal

  16. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  17. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake.

    OpenAIRE

    Osorio Vega, Nelson Walter

    2011-01-01

    Este artículo se constituye en una revisión de los beneficios de bacterias rizosféricas sobre la nutrición vegetal. La interacción entre planta y bacterias solubilizadoras de fosfato es explicada en mayor detalle y usada como modelo para ilustrar el rol que algunas bacterias de la rizosfera juegan en la disponibilidad de nutrientes en el suelo. Las condiciones ambientales de la rizosfera también se discuten con detalle. Los beneficios de estas bacterias han sido obtenidos, y mejorados, en pre...

  18. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  19. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Science.gov (United States)

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (psulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  20. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2007-06-01

    participan en el biocontrol de patógenos de plantas. Debido a estos beneficios sobre la nutrición y el crecimiento vegetal estas bacterias rizosfericas han sido llamadas “rizobacterias promotoras del crecimiento vegetal” (PGPR, por sus siglas en inglés.This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N2 forming specialized structures (e.g., Rhizobium and related genera or simply establishing associative relationships (e.g. Azospirillium, Acetobacter. On the other hand, bacterial ammonifiers and nitrifiers are responsible for the conversion of organic N compounds into inorganic forms (NH4+ and NO3- which are available for plants. Rhizosphere bacteria can also enhance the solubility of insoluble minerals that control the availability of phosphorus (native or applied using for that organic acids or producing phosphatases that act on organic phosphorus pools. The availability of sulfur, iron and manganese are also affected by redox reactions carried out by rhizosphere bacteria. Likewise, chelating agents can control the availability of micronutrients and participate in mechanisms of biocontrol of plant pathogens. Due to these and other benefits on plant growth, some rhizosphere bacteria have been called Plant Growth

  1. The interactions of bacteria with fungi in soil : Emerging concepts

    NARCIS (Netherlands)

    Haq, Irshad; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk; Gadd, GM; Sariaslani, S

    2014-01-01

    In this chapter, we review the existing literature on bacterial fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in

  2. Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils

    Science.gov (United States)

    Xinda Lu; Peter J. Bottomley; David D. Myrold

    2015-01-01

    Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...

  3. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils

    Institute of Scientific and Technical Information of China (English)

    TAO Guang-Can; TIAN Shu-Jun; CAI Miao-Ying; XIE Guang-Hui

    2008-01-01

    Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavailability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophylli,Pseudomonas ciehorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-sohibilizing abilities ranging between 25.4-41.7 μg P mL-1 and organic P-mineralizing abilities between 8.2-17.8 μg P mL-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL-1 and from 13.8 to 62.8 μg P mL-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P < 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.

  4. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different...

  5. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  6. Enumeration and characterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil

    OpenAIRE

    Oliveira, A.; Pampulha, M.E.; Neto, M.M.; Almeida, A.C.

    2009-01-01

    The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the great sensitivity of this group of soil bacteria to metals. However, quantitat...

  7. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  8. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    Science.gov (United States)

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  9. Soil bacteria show different tolerance ranges to an unprecedented disturbance

    NARCIS (Netherlands)

    Nunes, Ines; Jurburg, Stephanie; Jacquiod, Samuel; Brejnrod, Asker; Salles, Joana Falcao; Prieme, Anders; Sorensen, Soren J.

    Soil microbial communities have remarkable capacities to cope with ceaseless environmental changes, but little is known about their adaptation potential when facing an unprecedented disturbance. We tested the effect of incremental dose of microwaving on soil bacteria as a model of unprecedented

  10. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Dong, Ke; Go, Rusea; Adams, Jonathan M

    2016-08-01

    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

  11. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  12. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China.

    Directory of Open Access Journals (Sweden)

    Na Wang

    Full Text Available Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05. The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.

  13. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  14. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2018-02-01

    Full Text Available Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS, semi-separation intercropping (SS using a nylon net, and complete separation intercropping (CS using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS improved levels of soil-available nutrients (nitrogen (N and phosphorus (P and enzymes (urease and acid phosphomonoesterase as compared to intercropping without belowground interactions (CS. Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P supply capacity and soil microecosystem stability.

  15. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

    NARCIS (Netherlands)

    Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.

    2012-01-01

    Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce

  16. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  17. Raingarden Soil Bacteria Community Response to Lab Simulated Salt-Enriched Artificial Stormwater

    Science.gov (United States)

    Endreny, T. A.

    2014-12-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO3, PO4, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO3 and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO4 concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.

  18. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    Science.gov (United States)

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  19. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Pallud, C.; Bertolla, F.

    2005-01-01

    Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has...... rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell......-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially...

  20. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    Science.gov (United States)

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  1. A model based on soil structural aspects describing the fate of genetically modified bacteria in soil

    NARCIS (Netherlands)

    Hoeven, van der N.; Elsas, van J.D.; Heijnen, C.E.

    1996-01-01

    A computer simulation model was developed which describes growth and competition of bacteria in the soil environment. In the model, soil was assumed to contain millions of pores of a few different size classes. An introduced bacterial strain, e.g. a genetically modified micro-organism (GEMMO), was

  2. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  3. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    International Nuclear Information System (INIS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-01-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract

  4. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Energy Technology Data Exchange (ETDEWEB)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan, E-mail: yjin@udel.edu [University of Delaware, Department of Plant and Soil Sciences (United States)

    2016-10-15

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract.

  5. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Science.gov (United States)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  6. Volatile-mediated interactions between phylogenetically different soil bacteria

    Directory of Open Access Journals (Sweden)

    Paolina eGarbeva

    2014-06-01

    Full Text Available There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0-1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp. and Pedobacter sp. growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all 4 bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community.

  7. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system.

    Science.gov (United States)

    Wei, Wei; Yang, Min; Liu, Yixiang; Huang, Huichuan; Ye, Chen; Zheng, Jianfen; Guo, Cunwu; Hao, Minwen; He, Xiahong; Zhu, Shusheng

    2018-08-15

    Replant failure caused by negative plant-soil feedback (NPFS) in agricultural ecosystems is a critical factor restricting the development of sustainable agriculture. Soil nutrient availability has the capacity to affect plant-soil feedback. Here, we used sanqi (Panax notoginseng), which is severely threatened by NPSF, as a model plant to decipher the overall effects of nitrogen (N) rates on NPSF and the underlying mechanism. We found that a high rate of N at 450kgNha -1 (450N) aggravated the NPSF through the accumulation of pathogens in the soil compared with the optimal 250N. The increased N rates resulted in a significant increase in the soil electrical conductivity and available nitrogen but a decrease in the soil pH and C/N ratio. GeoChip 5.0 data demonstrated that these changed soil properties caused the soil to undergo stress (acidification, salinization and carbon starvation), as indicated by the enriched soil microbial gene abundances related to stress response and nutrition cycling (N, C and S). Accordingly, increased N rates reduced the richness and diversity of soil fungi and bacteria and eventually caused a shift in soil microbes from a bacterial-dominant community to a fungal-dominant community. In particular, the high 450N treatment significantly suppressed the abundance of copiotrophic bacteria, including beneficial genera Bacillus and Pseudomonas, thus weakening the antagonistic activity of these bacteria against fungal pathogens. Moreover, 450N application significantly enriched the abundance of pathogen pathogenicity-related genes. Once sanqi plants were grown in this N-stressed soil, their host-specific fungal pathogen Fusarium oxysporum significantly accumulated, which aggravated the process of NPSF. This study suggested that over-application of nitrogen is not beneficial for disease management or the reduction of fungicide application in agricultural production. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens.

    Directory of Open Access Journals (Sweden)

    Cicero L T Chang

    Full Text Available In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria.

  9. The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators

    NARCIS (Netherlands)

    Schulz, K.B.; Geisen, Stefan; Wubs, E.R.J.; Song, C.; Boer, de W.; Garbeva, Paolina

    2017-01-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil

  10. Immobilized Native Bacteria as a Tool for Bioremediation of Soils and Waters: Implementation and Modeling

    Directory of Open Access Journals (Sweden)

    C. Lobo

    2002-01-01

    Full Text Available Based on 3,4-dihydroxyphenylacetate (3,4-DHPA dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also, amplification by PCR using a set of ERIC primers was assayed for the detection of Pseudomonas GCH1 strain, which used in the soil bioremediation process. A model was developed to understand and predict the behavior of bacteria and pollutants in a bioremediation system, taking into account fluid dynamics, molecular/cellular scale processes, and biofilm formation.

  11. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera

    Directory of Open Access Journals (Sweden)

    A. Napoleon

    2014-07-01

    Full Text Available The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3 sites of contaminated soil and treated using SBS medium were Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pnumoniae, Streptococcus beta hemolisa, Proteus mirabilis, Staphylococcus epidermis and Acinotobacter calcoaceticus. Isolates that survived on 300 ppm of hydrocarbon concentration were Bacillus cereus, Pseudomonas aeruginosa and Acinetobacter cakciaceticus Selected isolates posses the ability to degrade hydrocarbon by breaking hydrocarbon substance as the energy source to support isolates existence up to 1,67 TPH level. Based on results accomplish by this research, we urge for further research involving the capacity of isolates to degrade wide variety of hydrocarbon substance and more to develop the potential of these bacteria for bioremediation.

  13. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    Science.gov (United States)

    Churilin, Nikita; Soina, Vera

    2015-04-01

    The study of diversity and functional state of microorganisms in subsurface rocks layers, their participation in the biochemical weathering and formation of organic horizons of soils is important for understanding ecology and microorganisms in Antarctic soils. The study of cultured forms of microorganisms and their potential viability is still relevant to characterize the physiological state, biological activity and resilience of microorganisms involved in the initial soil formation. Improvement of isolation techniques of viable bacteria from the extreme habitats has a particular importance for rising the efficiency of environmental monitoring. The aim of the study was to investigate the viable heterotrophic bacteria involved in the formation of soils from wet valleys Larsemann Oasis, which is one of the warmest ice-free space of East Antarctica. Soil samples were taken from the intermountain humid valleys, where silt-gravelly substrates formed moss, algae, lichen cover. We used nutrient solutions (trypticase soy, R2A and glucose-peptone) to isolate cultured bacteria and study their morphological types in the light microscope. The total number of microorganisms was determined by fluorescent microscopy with acridine orange. SEM was used for morphological studies of bacterial communities in situ. To activate the growth processes we added into nutrient solutions various regulatory metabolites that have dose-dependence and operate at the community level. Physiological and functional conditions were determined by the duration of the lag phase and specific growth rate of bacterial communities in nutrient solutions containing various organic substrates. Soils form under protection of «stone pavement» and organisms leave the surface, so the forming organo-mineral horizon occurs inside of rock, thus the microprofile can form on both sides of the organic horizons. UV radiation, lack of moisture and strong wind are main limiting factors for microorganisms' growth in

  14. Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria. Effect of soil particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ivask, Angela; Pollumaa, Lee; Kahru, Anne [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Dubourguier, Henri-Charles [National Inst. of Chemical Physics and Biophysics, Lab. of Molecular Genetics, Tallin (Estonia); Estonian Univ. of Life Sciences, Tartu (Estonia); Inst. Superieur d' Agriculture, Lille (France)

    2011-02-15

    In this study, bioavailability and water extractability of Cd in a panel of 110 natural aged heavy metal-polluted soils from northern France containing up to 20.1 mg of Cd per kilogramme was evaluated. Materials and methods Particulate matter was removed by differential centrifugation of soil-water suspensions (liquid to solid ratio 10) resulting in soil-water extracts containing different size of particles. Chemical analysis of Cd and analysis of bioavailable Cd with recombinant bioluminescent Cd-sensing bacteria were applied in parallel to these fractionated soil solutions. Results and Discussion Extractability of Cd from soil to the aqueous phase was low-only 0.13% of the soil total Cd as a mean; however, Cd-sensing recombinant luminescent bacteria Bacillus subtilis incubated in soil-water suspensions for 2 h showed that in the conditions of contact exposure, the bioavailable fraction of Cd increased about 30-fold being 3.74% of the soil total Cd as a mean value. The total Cd content of soils was not a good predictor of either bioavailable or water-extracted fraction of Cd, but these fractions were rather determined by the combination of soil total Cd and physico-chemical properties-texture and organic matter content. Analysis of two selected ''model'' soils with Cd sensor bacteria showed that about 90% of the bioavailable Cd was associated with larger soil particles that were removed from the soil suspensions by centrifugation at 4,500 x g, and even settling of the soil suspensions for 2 h removed already 65% of bioavailable Cd. Conclusions Thus, our results indicate a potential for remarkably higher environmental hazard for soil-associated heavy metals than just aqueous exposure. (orig.)

  15. Exploration, antifungal and antiaflatoxigenic activity of halophilic bacteria communities from saline soils of Howze-Soltan playa in Iran.

    Science.gov (United States)

    Jafari, Samaneh; Aghaei, Seyed-Soheil; Afifi-Sabet, Hossein; Shams-Ghahfarokhi, Masoomeh; Jahanshiri, Zahra; Gholami-Shabani, Mohammadhassan; Shafiei-Darabi, Seyedahmad; Razzaghi-Abyaneh, Mehdi

    2018-01-01

    In the present study, halophilic bacteria communities were explored in saline soils of Howze-Soltan playa in Iran with special attention to their biological activity against an aflatoxigenic Aspergillus parasiticus NRRL 2999. Halophilic bacteria were isolated from a total of 20 saline soils using specific culture media and identified by 16S rRNA sequencing in neighbor-joining tree analysis. Antifungal and antiaflatoxigenic activities of the bacteria were screened by a nor-mutant A. parasiticus NRRL 2999 using visual agar plate assay and confirmed by high-performance liquid chromatography. Among a total of 177 halophilic bacteria belonging to 11 genera, 121 isolates (68.3%) inhibited A. parasiticus growth and/or aflatoxin production. The most potent inhibitory bacteria of the genera Bacillus, Paenibacillus and Staphylococcus were distributed in three main phylogenetic clusters as evidenced by 16S rRNA sequence analysis. A. parasiticus growth was inhibited by 0.7-92.7%, while AFB 1 and AFG 1 productions were suppressed by 15.1-98.9 and 57.0-99.6%, respectively. Taken together, halophilic bacteria identified in this study may be considered as potential sources of novel bioactive metabolites as well as promising candidates to develop new biocontrol agents for managing toxigenic fungi growth and subsequent aflatoxin contamination of food and feed in practice.

  16. Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A; Kauri, T; Baeaeth, E; Soederstroem, B

    1986-01-01

    The biological effects of heavy metal contamination of coniferous forest soils were studied in the A/sub 01//A/sub 02/ layer around a primary smelter in Northern Sweden. Soil concentrations of 17 elements were determined. Smelter-emitted heavy metals were 5 to 75 times higher in the plot closest to the smelter compared with background levels. Despite emission of sulfur no decrease in pH was found. Bacteria producing acid from maltose, cellobiose, arabinose or xylose and bacteria hydrolyzing starch, pectin, xyland or cellulose decreased 8- to 11-fold due to the soil contamination. Chitin hydrolyzers were 5 times less abundant at the most polluted site compared with background levels. Soil respiration rate and urease activity decreased by about a factor of 4, but phosphatase activity and mycelial lengths were unaffected by the soil contamination. Soil bacteria showed a sigmoidal response to the log of metal concentration in the soil and were affected at a lower pollution level than the other biological variables in the study. A multivariate analysis (partial least squares) showed that soil metal contamination and soil pH were the two environmental factors influencing the soil microorganisms.

  17. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    Science.gov (United States)

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  18. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  19. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  20. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  1. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  2. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots

    OpenAIRE

    Hortin, Joshua

    2017-01-01

    The goal of this project was to study the behavior of copper oxide nanoparticles in soil environments. Copper oxide nanoparticles have antimicrobial properties and may also be used in agricultural settings to provide a source of copper for plant health, but accidental or misapplication of these nanoparticles to soil may be damaging to the plant and its associated bacteria. Dissolved soil organic matter that is present in soil pore waters dissolved nanoparticles, but did not dissolve the ex...

  3. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria.

    Science.gov (United States)

    de Boer, Wietse; Wagenaar, Anne-Marieke; Klein Gunnewiek, Paulien J A; van Veen, Johannes A

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal activity on different agar media were prescribed. Single and mixed strains of these species were tested for antagonism on a nutrient-poor agar medium against the plant pathogenic fungi Fusarium culmorum and Rhizoctonia solani and the saprotrophic fungus Trichoderma harzianum. Single bacterial strains caused little to moderate growth reduction of fungi (quantified as ergosterol), most probably due to nutrient withdrawal from the media. Growth reduction of fungi by the bacterial mixture was much stronger than that by the single strains. This appeared to be mostly due to competitive interactions between the Pseudomonas and Pedobacter strains. We argue that cohabitation of these strains triggered antibiotic production via interspecific interactions and that the growth reduction of fungi was a side-effect caused by the sensitivity of the fungi to bacterial secondary metabolites. Induction of gliding behavior in the Pedobacter strain by other strains was also observed. Our results indicate that apparently non-antagonistic soil bacteria may be important contributors to soil suppressiveness and fungistasis when in a community context.

  4. The isolation, enumeration, and characterization of Rhizobium bacteria of the soil in Wamena Biological Garden

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-04-01

    Full Text Available The eleven soil samples have been isolated and characterized. The aims of the study were to get the pure culture and some data which described about enumeration and especially their characters in relation to the acids and bases reaction in their growth. The isolation of the bacteria use Yeast Extract Mannitol Agar medium (YEMA while the characterization by using YEMA medium mixed with Brom Thymol Blue and Congo Red indicators respectively. The results showed that eighteen isolates have been isolated which consisted of three low growing and fifteen fast growing bacteria. Two isolates were not indicated Rhizobium and sixteen were Rhizobium. Density of Rhizobium enumeration was varied which related to soil organic matter content. The enumeration bacteria in YEMA medium were in the range of 0.6 x 105 and 11.6 x 105 CFU /g soil. The highest population was found in soil sample of Wieb vegetation.

  5. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Khan

    2015-01-01

    Full Text Available Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, could tolerate Cr up to 3000 mg l-1. These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb and Zn, and high concentration (174 g l-1 of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene indicated a higher and wider range of population of Cr-resistant bacteria in the endosphere than rhizosphere and the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report detecting rhizo- and endophytic bacterial population associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L. improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  6. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  7. Hydrolysis of nitriles by soil bacteria: variation with soil origin.

    Science.gov (United States)

    Rapheeha, O K L; Roux-van der Merwe, M P; Badenhorst, J; Chhiba, V; Bode, M L; Mathiba, K; Brady, D

    2017-03-01

    The aim of this study was to explore bacterial soil diversity for nitrile biocatalysts, in particular, those for hydrolysis of β-substituted nitriles, to the corresponding carboxamides and acids that may be incorporated into peptidomimetics. To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long transect of South Africa, including agricultural soil, a gold mine tailing dam and uncultivated soil. The substrate profile of these isolates was determined through element-limited growth studies on seven different aliphatic or aromatic nitriles. A subset of these organisms expressing broad substrate ranges was evaluated for their ability to hydrolyse β-substituted nitriles (3-amino-3-phenylpropionitrile and 3-hydroxy-4-phenoxybutyronitrile) and the active organisms were found to be Rhodococcus erythropolis from uncultivated soil and Rhodococcus rhodochrous from agricultural soils. The capacity for hydrolysis of β-substituted nitriles appears to reside almost exclusively in Rhodococci. Land use has a much greater effect on the biocatalysis substrate profile than geographical location. Enzymes are typically substrate specific in their catalytic reactions, and this means that a wide diversity of enzymes is required to provide a comprehensive biocatalysis toolbox. This paper shows that the microbial diversity of nitrile hydrolysis activity can be targeted according to land utilization. Nitrile biocatalysis is a green chemical method for the enzymatic production of amides and carboxylic acids that has industrial applications, such as in the synthesis of acrylamide and nicotinamide. The biocatalysts discovered in this study may be applied to the synthesis of peptidomimetics which are an important class of therapeutic compounds. © 2016 The Society for Applied Microbiology.

  8. Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria

    Directory of Open Access Journals (Sweden)

    Mattia P. Arena

    2014-02-01

    Full Text Available Currently, the majority of prebiotics in the market are derived from non-digestible oligosaccharides. Very few studies have focused on non-digestible long chain complex polysaccharides in relation to their potential as novel prebiotics. Cereals β-glucans have been investigated for immune-modulating properties and beneficial effects on obesity, cardiovascular diseases, diabetes, and cholesterol levels. Moreover, β-glucans have been reported to be highly fermentable by the intestinal microbiota in the caecum and colon, and can enhance both growth rate and lactic acid production of microbes isolated from the human intestine. In this work, we report the effects of food matrices containing barley β-glucans on growth and probiotic features of four Lactobacillus strains. Such matrices were able to improve the growth rate of the tested bacteria both in unstressed conditions and, importantly, after exposure to in vitro simulation of the digestive tract. Moreover, the effect of β-glucans-containing food on bacterial adhesion to enterocyte-like cells was analyzed and a positive influence on probiotic-enterocyte interaction was observed.

  9. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline.

    Science.gov (United States)

    Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming

    2016-11-01

    Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.

  10. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    Little is known about the contribution of bacteria and fungi to decomposition of different carbon compounds in arctic soils, which are an important carbon store and possibly vulnerable to climate warming. Soil samples from a subarctic tundra heath were incubated with 13C-labeled glucose, acetic...... at concentrations low enough not to affect the total amount of PLFA. The label of glucose and acetic acid was rapidly incorporated into the PLFA in a pattern largely corresponding to the fatty acid concentration profile, while glycine and especially starch were mainly taken up by bacteria and not fungi, showing......, the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...

  11. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].

    Science.gov (United States)

    Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang

    2013-10-01

    Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.

  12. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    NARCIS (Netherlands)

    Tyc, O.; Berg, van den M.; Gerards, S.; Veen, van J.A.; Raaijmakers, J.M.; Boer, de W.; Garbeva, P.

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to

  13. Isolation and Identification of Carcinogen Acenaphthene-Degrading Endemic Bacteria from Crude Oil Contaminated Soils around Abadan Refinery

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2012-12-01

    Full Text Available Background and Objective: PAHs are non-polar organic compounds consisting of two or more fused benzene multi-rings. Among these compounds, acenaphthene is a multi-ring hydrocarbon that occurs abundantly in nature. Use of microorganisms to clean the contaminations of soil can be cheap and effective. The most important acenaphthene-degrading bacteria are pseudomonas, micrococcus, and Bacillus. The goal of this study was to isolate and identify the bacteria which degrade acenaphthene in soils around Abadan Refinery and to investigate the relation between the levels of environmental pollution with acenaphthene. Materials and Methods: Soil samples were collected from three areas around Abadan Refinery. The number of the bacteria was counted on the nutrient agar culture with and without acenaphthene. Isolation of the bacteria was done by culturing the samples on acenaphthene broth with a mineral-salt medium, and on an acenaphthene agar medium. Then, the bacteria were identified via biochemical diagnostic tests. Results: The logarithm average of the bacteria was 4.786 ± 0.073 at a medium with acenaphthene, which was 6.671 ± 0.073 less than that of the control medium. The maximum number of degrading bacteria was 7.089 ± 0.089 at Station C, and the minimum number of the degrading bacteria was 4.485 ± 0.089 at Station B. In this study, Bacillus sp, Micrococcus Luteus, Corynebacterium sp, Staphylococcus epidermidis, and Pseudomonas sp bacteria were isolated and identified in terms of frequency, respectively. Conclusion: The results of this study showed that the soil around Abadan Refinery contained a great number of acenaphthene degrading bacteria, especially Bacillus and Micrococcus.

  14. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.

    Science.gov (United States)

    Yuan, Hongzhao; Ge, Tida; Chen, Xiangbi; Liu, Shoulong; Zhu, Zhenke; Wu, Xiaohong; Wei, Wenxue; Whiteley, Andrew Steven; Wu, Jinshui

    2015-11-01

    Elucidating the biodiversity of CO(2)-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. "Red" acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO(2)-assimilating populations. Here, we determined the abundance and diversity of CO(2)-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO(2) assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 10(8) copies g(-1) soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 10(8) copies g(-1) soil) and algae (0.23 × 10(6) copies g(-1) soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator

  15. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Directory of Open Access Journals (Sweden)

    Weihong Yang

    Full Text Available Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II-oxidizing isolates (>50 mM MnO2 were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II-oxidizing bacterial genera (species, namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II to Mn(III/IV by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the

  16. Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State

    Directory of Open Access Journals (Sweden)

    IA Allamin

    2014-05-01

    Full Text Available Soil samples were collected from five sites covering petroleum exploration station in Kukawa, Kukawa Local Government Area of Borno State, Nigeria between October, 2012 and February, 2013 at two different depths (0-10cm and 10-20cm to enumerate and identify hydrocarbon degrading bacteria in the soil. Total aerobic heterotrophic bacteria (TAHB were enumerated on Nutrient agar (NA, and Hydrocarbon utilizing bacteria (HUB enumerated on Oil agar (OA. The bacterial isolates were identified using morphological and biochemical tests. It was observed that the microorganisms (TAHB, and HUB were more densely populated at 10cm depth. (TAHB: 5.3×108 - 11.4×108cfu/g, and HUB: 2.4×105 - 5.3×105 cfu/g, than at 20 cm depth (TAHB: 3.0×108 - 5.7×108 cfu/g, and HUB: 2.1×105 - 4.8×105 cfu/g. The HUB was identified as species of Bacillus, Pseudomonas, Klebsiella, Lactobacillus, Micrococcus, Corynebacterium, and Actinomyces. Bacillus, and Pseudomonas species were more constantly isolated than other isolates and they constitute 100% of total bacterial isolates. The potential of hydrocarbon utilizing bacteria isolated to degrade hydrocarbon was studied. Nineteen (19 bacterial species was screened, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae, Micrococcus leteus,and Lactobacillus casei, utilized and degrade crude oil at considerably high rates after 21 days of incubation. The degradation efficiency was confirmed by GC-MS analysis, which indicated that the bacterial isolates utilized most of the crude oil components particularly straight chain alkanes and cycloalkanes DOI: http://dx.doi.org/10.3126/ije.v3i2.10503 International Journal of the Environment Vol.3(2 2014: 36-47

  17. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    Starch degrading bacteria are most important for industries such as food, fermentation, textile and paper. Thus isolating and manipulating pure culture from various waste materials has manifold importance for various biotechnology industries. In the present investigation a bacterial strain was isolated from soil sample ...

  18. Denitrification as an adaptive trait in soil and groundwater bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bergwall, C

    1997-09-01

    The focus of this thesis is on selection and adaptation processes in bacteria with emphasis on denitrifying bacteria in groundwater. Other nitrogen transformation processes such as dissimilatory nitrate reduction to ammonium (nitrate ammonification) and nitrification of forest soil bacteria are briefly discussed. Microcosms with sterile sediment and groundwater were inoculated with single denitrifying strains isolated from three groundwater aquifers, two of which are agricultural aquifers (in situ NO{sub 3}{sup -}-N was 24.1 and 35.2 mg1{sup -1}) and the third which is a pristine lake water infiltration aquifer (in situ NO{sub 3}{sup -}-N was 6.3 mg1{sup -1}). The average denitrification activity for strains from the nitrate contaminated sites were twice as high as the activity of the strains from the pristine site. Denitrification were carbon limited and glucose amendment increased the denitrification activity about a 2-fold for all strains. The strain specific differences in denitrification rates increased to a 2.5-fold after carbon addition indicating that the differences in reduction rates cannot be explained by different carbon utilisation rates but rather reflect innate differences in the reductases of the strains. A preliminary identification of the molecular target for adaptation was performed with artificial electron donors and electron acceptors for all enzymatic steps in the denitrification pathway. Nitrous oxide reductase activity was significantly higher in denitrifiers from the nitrate contaminated sites. This suggests that nos genes may be the molecular target, possibly by mutation or gene duplication for adaptation to high nitrate concentrations. Two anaerobic denitrifiers from each of the contaminated sites were capable of aerobic denitrification indicating that high nitrate concentrations may select for strains that denitrifies in the presence of both oxygen and nitrate. Microcosm experiments with fertilized coniferous forest soil showed that the

  19. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2012-04-01

    Full Text Available Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis method. Six isolates of bacteria have been selected, one isolate was fraction saturates degrading bacteria that are Mycobacterium sp. T1H2D4-7 at degradation rate 0.0199 mgs/h with density 8.4x106 cfu/g from stage I. The isolate T2H1D2-4, identified as Pseudomonas sp. was fraction aromatics degrading bacteria at accelerate 0.0141 mgs/h with density 5.1x106 cfu/g are obtained at stage II. Two isolates namely Micrococcus sp. T3H2D4-2 and Pseudomonas sp. T1H1D5-5 were fraction resins degrading bacteria by accelerate 0.0088 mgs/h at density 5.6x106 cfu/g and 0.0089 mgs/h at density 5.7x106 cfu/g are obtained at stage III. Isolation of stage IV has been obtained two isolates Pseudomonas sp. T4H1D3-1and Pseudomonas sp. T4H3D5-4 were fraction asphaltenes degrading bacteria by accelerate 0.0057 mgs/h at density 5.6x106 cfu/g and accelerate 0.0058 mgs/h at density 5.7x106 cfu/g.

  20. Biodegradation of crude oil by introduced psychotropic microbial association and indigenous bacteria under laboratory and field conditions in soils of Moscow region, Russia. Volume 1

    International Nuclear Information System (INIS)

    Filonov, A.; Boronin, A.

    2007-01-01

    This paper presented an in-situ bioremediation method that accelerates the degradation of crude oil. Laboratory and field studies were conducted to determine the effect of adding mineral fertilizers such as nitrogen and phosphorus to stimulate the growth of microorganisms and accelerate microbial metabolism. The strongest effect was observed when nitrogen, phosphorous and potassium sources were added with microbial association jointly, particularly in field soil experiments. A 22 per cent oil spill removal was achieved due to metabolic activity of indigenous bacteria after only 2 months of experimenting. This study examined the kinetics of total number and crude oil degrading bacteria in the soil resulting from nutrient inoculation. It was shown that the rate of hydrocarbon degradation by microorganisms in the environment is determined by a range of factors such as temperature, soil pH, oxygen, water and nutritive availability. The use of psychotrophic degrader strains resulted in a higher degree of oil degradation in the field than in the laboratory. The study also revealed that the biodegradation process in polluted Arctic soils polluted with diesel was accelerated with the addition of degrader microorganisms. It was recommended that in cold climates, nitrogen, phosphorous and potassium should be introduced simultaneously. 21 refs., 1 tab., 4 figs

  1. Biodegradation of crude oil by introduced psychotropic microbial association and indigenous bacteria under laboratory and field conditions in soils of Moscow region, Russia. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Filonov, A.; Boronin, A. [Pushchino State Univ., Moscow (Russian Federation). Inst. of Biochemistry and Physiology of Microorganisms; Nechaeva, I.; Akhmetov, L.; Gafarov, A.; Puntus, I. [Pushchino State Univ., Moscow (Russian Federation)

    2007-07-01

    This paper presented an in-situ bioremediation method that accelerates the degradation of crude oil. Laboratory and field studies were conducted to determine the effect of adding mineral fertilizers such as nitrogen and phosphorus to stimulate the growth of microorganisms and accelerate microbial metabolism. The strongest effect was observed when nitrogen, phosphorous and potassium sources were added with microbial association jointly, particularly in field soil experiments. A 22 per cent oil spill removal was achieved due to metabolic activity of indigenous bacteria after only 2 months of experimenting. This study examined the kinetics of total number and crude oil degrading bacteria in the soil resulting from nutrient inoculation. It was shown that the rate of hydrocarbon degradation by microorganisms in the environment is determined by a range of factors such as temperature, soil pH, oxygen, water and nutritive availability. The use of psychotrophic degrader strains resulted in a higher degree of oil degradation in the field than in the laboratory. The study also revealed that the biodegradation process in polluted Arctic soils polluted with diesel was accelerated with the addition of degrader microorganisms. It was recommended that in cold climates, nitrogen, phosphorous and potassium should be introduced simultaneously. 21 refs., 1 tab., 4 figs.

  2. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil

    Energy Technology Data Exchange (ETDEWEB)

    Blaustein, Ryan A., E-mail: rblauste@ufl.edu [USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD (United States); Department of Environmental Science and Technology, University of Maryland, College Park, MD (United States); Hill, Robert L. [Department of Environmental Science and Technology, University of Maryland, College Park, MD (United States); Micallef, Shirley A. [Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD (United States); Center for Food Safety and Security Systems, University of Maryland, College Park, MD (United States); Shelton, Daniel R.; Pachepsky, Yakov A. [USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD (United States)

    2016-01-01

    The rainfall-induced release of pathogens and microbial indicators from land-applied manure and their subsequent removal with runoff and infiltration precedes the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in intensity during rainfall do not affect microbial removal when expressed as a function of rainfall depth. The objective of this work was to test this assumption by measuring the removal of Escherichia coli, enterococci, total coliforms, and chloride ion from dairy manure applied in soil boxes containing fescue, under 3, 6, and 9 cm h{sup −1} of rainfall. Runoff and leachate were collected at increasing time intervals during rainfall, and post-rainfall soil samples were taken at 0, 2, 5, and 10 cm depths. Three kinetic-based models were fitted to the data on manure-constituent removal with runoff. Rainfall intensity appeared to have positive effects on rainwater partitioning to runoff, and removal with this effluent type occurred in two stages. While rainfall intensity generally did not impact the parameters of runoff-removal models, it had significant, inverse effects on the numbers of bacteria remaining in soil after rainfall. As rainfall intensity and soil profile depth increased, the numbers of indicator bacteria tended to decrease. The cumulative removal of E. coli from manure exceeded that of enterococci, especially in the form of removal with infiltration. This work may be used to improve the parameterization of models for bacteria removal with runoff and to advance estimations of depths of bacteria removal with infiltration, both of which are critical to risk assessment of microbial fate and transport in the environment. - Highlights: • Release and removal of indicator bacteria from manure was evaluated in soil boxes. • Rainfall intensity did not impact runoff-removal kinetics in three tested models. • Rainfall intensity had positive/inverse effects on bacterial release to runoff/soil

  3. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands

    Science.gov (United States)

    van Heijnsbergen, E.; van Deursen, A.; Bouwknegt, M.; Bruin, J. P.; Schalk, J. A. C.

    2016-01-01

    ABSTRACT Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila. Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. IMPORTANCE Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. PMID:27316958

  4. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands.

    Science.gov (United States)

    van Heijnsbergen, E; van Deursen, A; Bouwknegt, M; Bruin, J P; de Roda Husman, A M; Schalk, J A C

    2016-09-01

    Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. Copyright © 2016 van Heijnsbergen et al.

  5. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study

    International Nuclear Information System (INIS)

    Wu, S.C.; Luo, Y.M.; Cheung, K.C.; Wong, M.H.

    2006-01-01

    A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism. - Influence of bacterial activities on heavy metal is two-edged

  6. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils.

    Science.gov (United States)

    Khan, Muhammad U; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M; Afzal, Muhammad

    2014-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  7. Exploring the phosphate solubilizing capacity of soil bacteria through the application of 32P radioisotope techniques and X-ray diffraction method

    International Nuclear Information System (INIS)

    Jumaniyazova, G. I.; Tillayev, T. S.; Takhtobin, K. S.; Kalonov, M.

    2003-01-01

    One of global ecological problems of agriculture is the problem o ver phosphatization o f soils [1]. Till now process of biological transformation of phosphorus in soil poorly studied, the optimum methods of its regulation are not detected, in this connection, annually to agriculture the large damage is put. Only of 10 %-25 % of phosphorus, introduced by the way fertilizers to acquire by plants, the other main part, as a result of chemical changes in soil, transforms in insoluble, hard to reach for plants forms. It demands new deposits of fertilizers and, thus, there is an accumulation in soil of insoluble compounds of phosphorus ( o ver phosphatization o f soils). The situation is aggravated by vast application of complex fertilizers, keeping apart from phosphorus nitrogen and potassium, that entailed an accumulation and excess one at lack of other elements. Such unbalance influence both on quality of agricultural production and on a harvest as a whole. It is known, that the part of soil bacteria is capable to participate in decomposing insoluble phosphoric compounds, secreting an acids and enzymes [2]. Soil bacteria have symbiotic relationship with roots systems of plants (rhizosphere) and other microorganisms, they augment the contents of solvable phosphorus in soil, which is easy assimilate by plants. It increases efficiency of other kinds of fertilizers, keeping nitrogen, the potassium and as a whole leads to favourable, balanced composition of soil [3]. The methods with application of an isotope of phosphorus-32 allow to study processes of mobilization and immobilization of soil phosphorus, quantitatively to evaluate a role of different strains of bacteria and have large theoretical and practical value [4]. The aim of our investigations was to isolate the phosphate solubilizing bacteria from cotton and sugar-beet rhizosphere and elaborate on the basis of application of an isotope D-32 a method of a quantitative assessment of capacity of soil bacteria strains

  8. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Directory of Open Access Journals (Sweden)

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  9. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

  10. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    Ahmad, R.; Hassan, M.M.U.

    2015-01-01

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  11. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    Science.gov (United States)

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-05-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  12. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz

    2017-08-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  13. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz; Hirt, Heribert; Saad, Maged

    2017-01-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  14. Coevolution of antibiotic production and counter-resistance in soil bacteria.

    Science.gov (United States)

    Laskaris, Paris; Tolba, Sahar; Calvo-Bado, Leo; Wellington, Elizabeth M; Wellington, Liz

    2010-03-01

    We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.

  15. Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil

    Directory of Open Access Journals (Sweden)

    Roger David Castillo-Arteaga

    2018-02-01

    Full Text Available Oxalate is a highly oxidized organic acid anion used as a carbon and energy source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in terrestrial ecosystems via the oxalate-carbonate pathway (OCP. Oxalotrophic bacteria might be implicated in other carbon-storage processes, including the synthesis of polyhydroxyalkanoates (PHAs. More recently, a variety of bacteria from the Andean region of Colombia in Nariño have been reported for their PHA-producing abilities. These species can degrade oxalate and participate in the oxalate-carbonate pathway. The aim of this study was to isolate and characterize oxalotrophic bacteria with the capacity to accumulate PHA biopolymers. Plants of the genus Oxalis were collected and bacteria were isolated from the soil adhering to the roots. The isolated bacterial strains were characterized using biochemical and molecular biological methods. The consumption of oxalate in culture was quantified, and PHA production was monitored in batch fermentation. The polymeric composition was characterized using gas chromatography. Finally, a biosynthetic pathway based on our findings and on those from published sources is proposed. Strains of Bacillus spp. and Serratia sp. were found to metabolize calcium oxalate and synthesize PHA.

  16. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rodgers-Vieira, Elyse A; Zhang, Zhenfa; Adrion, Alden C; Gold, Avram; Aitken, Michael D

    2015-06-01

    Quinones and other oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are toxic and/or genotoxic compounds observed to be cocontaminants at PAH-contaminated sites, but their formation and fate in contaminated environmental systems have not been well studied. Anthracene-9,10-dione (anthraquinone) has been found in most PAH-contaminated soils and sediments that have been analyzed for oxy-PAHs. However, little is known about the biodegradation of oxy-PAHs, and no bacterial isolates have been described that are capable of growing on or degrading anthraquinone. PAH-degrading Mycobacterium spp. are the only organisms that have been investigated to date for metabolism of a PAH quinone, 4,5-pyrenequinone. We utilized DNA-based stable-isotope probing (SIP) with [U-(13)C]anthraquinone to identify bacteria associated with anthraquinone degradation in PAH-contaminated soil from a former manufactured-gas plant site both before and after treatment in a laboratory-scale bioreactor. SIP with [U-(13)C]anthracene was also performed to assess whether bacteria capable of growing on anthracene are the same as those identified to grow on anthraquinone. Organisms closely related to Sphingomonas were the most predominant among the organisms associated with anthraquinone degradation in bioreactor-treated soil, while organisms in the genus Phenylobacterium comprised the majority of anthraquinone degraders in the untreated soil. Bacteria associated with anthracene degradation differed from those responsible for anthraquinone degradation. These results suggest that Sphingomonas and Phenylobacterium species are associated with anthraquinone degradation and that anthracene-degrading organisms may not possess mechanisms to grow on anthraquinone. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Degradation Capability of n-hexadecane Degrading Bacteria from Petroleum Contaminated Soils

    Directory of Open Access Journals (Sweden)

    PENG Huai-li

    2017-05-01

    Full Text Available Samplings were performed in the petroleum contaminated soils of Dongying, Shandong Province of China. Degrading bacteria was isolated through enrichment in a Bushnel-Hass medium, with n-hexadecane as the sole source of carbon and energy. Then the isolated strains were identified by amplification of 16S rDNA gene and sequencing. The strain TZSX2 was selected as the powerful bacteria with stronger degradation ability, which was then identified as Rhodococcus hoagii genera based on the constructing results of the phylogenetic tree. The optimum temperature that allowed both high growth and efficient degradation ratio was in the scope of 28~36 ℃, and gas chromatography results showed that approximately more than 30% of n-hexadecane could be degraded in one week of incubation within the temperature range. Moreover, the strain TZSX2 was able to grow in high concentrations of n-hexadecane. The degradation rate reached 79% when the initial n-hexadecane concentration was 2 mL·L-1,while it still achieved 12% with n-hexadecane concentration of 20 mL·L-1. The optimal pH was 9 that allowed the highest growth and the greatest degradation rate of 91%. Above all, the screened strain TZSX2 showed high capabilities of alkali tolerance with excellent degradation efficiency for even high concentration of n-hexadecane, and thus it would be quite suitable for the remediation of petroleum contaminated soils especially in the extreme environment.

  18. Acute toxicity testing of some herbicides-, alkaloids-, and antibiotics-metabolizing soil bacteria in the rat.

    Science.gov (United States)

    Kaiser, A; Classen, H G; Eberspächer, J; Lingens, F

    1981-01-01

    Seven strains of soil bacteria with the ability to metabolize herbicides, alkaloids or antibiotics were tested in rats for acute toxicity. 1. Upon oral administration of 9.0 x 10(8) to 6.6 x 10(10) cells daily during 7 d no adverse reactions were observed. 2. Exposure by air did not lead to specific pulmonary changes. 3. Intracutaneous injection of 7.5 x 10(6) to 1.4 x 10(8) cells did not lead to adverse skin reactions. 4. Intraperitoneal injections up to 10(8) cells per animal did not kill rats although bacteria entered blood. At higher concentrations some mortality occurred partly due to unspecific stress reactions. 5. Animal data and observations on 20 humans being exposed to these strains for 2 months up to 15 years support the view that the bacteria tested are essentially harmless for health.

  19. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    Directory of Open Access Journals (Sweden)

    Nicola Imperiali

    2017-10-01

    Full Text Available In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF, and entomopathogenic nematodes (EPN, were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy

  20. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance.

    Science.gov (United States)

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G A; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C J; Keel, Christoph J; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas , mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  1. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria

    DEFF Research Database (Denmark)

    Burmølle, Mette; Johnsen, Kaare; Abu Al-Soud, Waleed Mohamad Abdel F

    2009-01-01

    Traditional methods for bacterial cultivation recover only a small fraction of bacteria from all sorts of natural environments, and attempts have been made to improve the bacterial culturability. Here we describe the development of a cultivation method, based on the embedment of pure bacterial...... cultures in between two layers of agar. Plates containing either embedded Pseudomonas putida or Arthrobacter globiformis resulted in higher numbers of CFUs of soil bacteria (21% and 38%, respectively) after 833 h of incubation, compared to plates with no embedded strain. This indicates a stimulatory effect...... of the bacterial pure cultures on the cultivation of soil bacteria. Analysis of partial 16S rRNA gene sequences revealed a phylogenetical distribution of the soil isolates into 7 classes in 4 phyla. No difference was observed at the phylum or class level when comparing isolates grouped according to embedded strain...

  2. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Motta, Mariana Romeiro; Vieira, Tauan; Regulski, Michael; Martienssen, Robert A; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2014-09-06

    Small RNA (sRNA) has been described as a regulator of gene expression. In order to understand the role of maize sRNA (Zea mays-hybrid UENF 506-8) during association with endophytic nitrogen-fixing bacteria, we analyzed the sRNA regulated by its association with two diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Deep sequencing analysis was done with RNA extracted from plants inoculated with H. seropedicae, allowing the identification of miRNA and siRNA. A total of 25 conserved miRNA families and 15 novel miRNAs were identified. A dynamic regulation in response to inoculation was also observed. A hypothetical model involving copper-miRNA is proposed, emphasizing the fact that the up-regulation of miR397, miR398, miR408 and miR528, which is followed by inhibition of their targets, can facilitate association with diazotrophic bacteria. Similar expression patterns were observed in samples inoculated with A. brasilense. Moreover, novel miRNA and siRNA were classified in the Transposable Elements (TE) database, and an enrichment of siRNA aligned with TE was observed in the inoculated samples. In addition, an increase in 24-nt siRNA mapping to genes was observed, which was correlated with an increase in methylation of the coding regions and a subsequent reduction in transcription. Our results show that maize has RNA-based silencing mechanisms that can trigger specific responses when plants interact with beneficial endophytic diazotrophic bacteria. Our findings suggest important roles for sRNA regulation in maize, and probably in other plants, during association with diazotrophic bacteria, emphasizing the up-regulation of Cu-miRNA.

  4. Biodegradation of spent engine oil by bacteria isolated from the rhizosphere of legumes grown in contaminated soil

    Directory of Open Access Journals (Sweden)

    HY Ismail

    2014-05-01

    Full Text Available Biodegradation of spent engine oil (SEO by bacteria isolated from the rhizosphere of Cajan cajan and Lablab purpureus was investigated. It was with a view to determining most efficient bacterial species that could degrade SEO in phytoremediation studies. Hydrocarbon degrading bacteria were isolated and identified by enrichment culture technique using oil agar supplemented with 0.1% v/v SEO. Total heterotrophic and oil utilizing bacterial count showed the occurrence of large number of bacteria predominantly in the rhizosphere soil, ranging between 54×108 - 144×108 CFU/g and 4×108- 96×108 CFU/g respectively. Percentage of oil utilizing bacteria ranged between 0% (uncontaminated non rhizosphere soil to 76% (contaminated rhizosphere. Turbidimetrically, five bacterial species namely Pseudomonas putrefacience CR33, Klebsiella pneumonia CR23, Pseudomonas alcaligenes LR14, Klebsiella aerogenes CR21, and Bacillus coagulans CR31 were shown to grow maximally and degraded the oil at the rate of 68%, 62%, 59%, 58%and 45% respectively. Chromatographic analysis using GC-MS showed the presence of lower molecular weight hydrocarbons in the residual oil (indicating degradation after 21 days, whereas the undegraded oil (control had higher molecular weight hydrocarbons after the same period. The species isolated were shown to have high ability of SEO biodegradation and therefore could be important tools in ameliorating SEO contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10515 International Journal of the Environment Vol.3(2 2014: 63-75

  5. Exploration of Hydrocarbon Degrading Bacteria on Soils Contaminated by Crude Oil From South Sumatera

    OpenAIRE

    Napoleon, A; Probowati, D S

    2014-01-01

    The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3) sites of contaminated soil and treated using SB...

  6. Immobilization of anaerobic bacteria on rubberized-coir for psychrophilic digestion of night soil.

    Science.gov (United States)

    Dhaked, Ram Kumar; Ramana, Karna Venkat; Tomar, Arvind; Waghmare, Chandrakant; Kamboj, Dev Vrat; Singh, Lokendra

    2005-08-01

    Low-ambient temperatures, biodigesters due to low-growth rate of the constituent bacterial consortium. Immobilization of anaerobic bacteria has been attempted in the biodigester operating at 10 degrees C. Various matrices were screened and evaluated for the immobilization of bacteria in digesters. Anaerobic digestion of night soil was carried out with hydraulic retention time in the range of 9-18 days. Among the tested matrices, rubberized-coir was found to be the most useful at 10 degrees C with optimum hydraulic retention time of 15 days. Optimum amount of coir was found as 25 g/L of the working volume of biodigesters. Immobilization of bacteria on the coir was observed by scanning electron microscopy and fluorescent microscopy. The study indicates that rubberized-coir can be utilized to increase biodegradation of night soil at higher organic loading. Another advantage of using this matrix is that it is renewable and easily available in comparison to other synthetic polymeric matrices.

  7. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil.

    Science.gov (United States)

    Blazewicz, Steven J; Schwartz, Egbert; Firestone, Mary K

    2014-05-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely

  8. Removal of radioactivity and safe vegetables cultivation from highly radioactivity polluted soil in Fukushima using photosynthetic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Kei; Okagawa, Masakazu; Takeno, Kenji; Shinkawa, Hidenori; Sasaki, Ken

    2015-01-01

    The soil pollution caused by radioactive substances released from the accident of TEPCO Fukushima Daiichi Nuclear Power Station has been still serious interference against agricultural reconstruction. This study used the soil contaminated with high radioactivity (13,602∼87,181 Bq/kg) in Namie Town, Fukushima Prefecture, and performed decontamination using photosynthetic bacteria in a simple outdoor practical test using a 60 L container. Using the soil after decontamination, the authors cultivated vegetables such as komatsuna (Japanese mustard spinach), and bok choy, the results of which are reported. As photosynthetic bacteria, Rhodobacter shaerodes SSI species was used. This paper describes the cultivation method of bacteria, preparation method of immobilization grain, decontamination method, and cultivation method of vegetables. As a result of the experiment, the decontamination efficient of the soil was between 59.5 to 73.3%, and cultured vegetables passed the edible reference value (edible criteria for infants: 50 Bq/kg FW), which was the success of the experiment. (A.O.)

  9. Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis.

    Science.gov (United States)

    Espeche, M Carolina; Pellegrino, Matías; Frola, Ignacio; Larriestra, Alejandro; Bogni, Cristina; Nader-Macías, M E Fátima

    2012-02-01

    Bovine mastitis produces a wide variety of problems in the dairy farm. The treatment of this disease is based on the use of antibiotics which are not always effective. These drugs are also responsible for the presence of residues in the milk and the increase of antibiotic-resistant strains. Probiotic products were proposed as a valid alternative to antibiotic therapies and are also useful for the prevention of infectious syndromes. With the aim of designing a probiotic product to prevent bovine mastitis, lactic acid bacteria (LAB) were isolated from foremilk samples from different dairy farms in Córdoba-Argentina. One hundred and seventeen LAB were isolated and their beneficial characteristics such as the production of inhibitory substances, surface properties and production of exopolysaccharides (EPS) were assessed. Most of them displayed low degree of hydrophobicity, autoaggregation, EPS negative phenotype and were identified as Enterococcus hirae and Pediococcus pentosaceus. Nine LAB strains inhibited three indicator bacteria. Some isolates were pre-selected and genetically identified according to the results obtained. Antibiotic resistance and virulence factors were studied for the assessment of the safety of the strains. The results obtained were compared to those reported previously from samples obtained in the North-western area of the country and some differences were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  11. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  12. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi ...

    African Journals Online (AJOL)

    At present, the greatest interest resides with the development and application of specific biocontrol agent for the control of diseases on plant and this form the focus of this work. Several soil bacteria were evaluated in vitro for their effectiveness on the basis of their ability to suppress fungi in plate inhibition assays. 51 strains ...

  13. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    International Nuclear Information System (INIS)

    Chai Liyuan; Huang Shunhong; Yang Zhihui; Peng Bing; Huang Yan; Chen Yuehui

    2009-01-01

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg -1 at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg -1 . Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  14. Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia.

    Science.gov (United States)

    Bravo, D; Pardo-Díaz, S; Benavides-Erazo, J; Rengifo-Estrada, G; Braissant, O; Leon-Moreno, C

    2018-05-01

    This research aims to assess total-cadmium soil content and microbiological aspects to understand the dynamics of culturable cadmium-tolerant bacteria (CdtB) in cacao soils from northeastern Colombia. An integration of inverted dish plating, Cd determination and a microcalorimetry assay (IMC) was carried out. A farm in Boyacá showed the highest level of total soil Cd (3·74 mg kg -1 ) followed by farms in Santander and Arauca (2·76 and 1·16 mg kg -1 , respectively). Coefficient of determination between total soil Cd and CFU of CdtB was high (R 2  = 0·83) for the farm in Boyacá. Moreover, a pool of 129 CdtB was isolated, and phylogeny of 21 CdtB was discussed. Among CdtB strains isolated, Enterobacter sp. CdDB41 showed major Cd immobilization capacity (Q max of 2·21 and 2·32 J at 6 and 24 mg l -1 of CdCl 2 ), with an immobilization rate of 0·220 mg kg -1  h -1 . Among CdtB strains isolated, Enterobacter sp. CdDB41 showed major Cd immobilization capacity (Q max of 2·21 and 2·32 J at 6 and 24 mg l -1 of CdCl 2 ), with an immobilization rate of 0·220 mg kg -1  h -1 . Nothing is known about soil CdtB in cacao. Our data showed that CdtB such as Enterobacter sp. has high immobilization capacity. Furthermore, the otavite found in situ might be mineralized due to the bacterial metabolic activity of CdtB. © 2018 The Society for Applied Microbiology.

  15. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil.

    Science.gov (United States)

    Jeong, Seulki; Moon, Hee Sun; Shin, Doyun; Nam, Kyoungphile

    2013-12-15

    This study was conducted to investigate whether or not phosphate-solubilizing bacteria (PSB) as a kind of plant growth promoting rhizobacteria enhance the uptake of Cd by plants. In addition, the effect of PSB augmentation during phytoextraction on the microbial community of indigenous soil bacteria was also studied. In the initial Cd-contaminated soil, the major phyla were Proteobacteria (35%), Actinobacteria (38%) and Firmicutes (8%). While Proteobacteria were dominant at the second and sixth week (41 and 54%, respectively) in inoculated soil, Firmicutes (mainly belonging to the Bacilli class-61%), dramatically increased in the eight-week soil. For the uninoculated soil, the proportion of α-Proteobacteria increased after eight weeks (32%). Interestingly, Actinobacteria class, which was originally present in the soil (37%), seemed to disappear during phytoremediation, irrespective of whether PSB was inoculated or not. Cluster analysis and Principal Component Analysis revealed that the microbial community of eight-week inoculated soil was completely separated from the other soil samples, due to the dramatic increase of Bacillus aryabhattai. These findings revealed that it took at least eight weeks for the inoculated Bacillus sp. to functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil. An ecological understanding of interaction among augmented bacteria, plant and indigenous soil bacteria is needed, for proper management of phytoextraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  17. Potential Role of Diploscapter sp. Strain LKC25, a Bacterivorous Nematode from Soil, as a Vector of Food-Borne Pathogenic Bacteria to Preharvest Fruits and Vegetables

    Science.gov (United States)

    Gibbs, Daunte S.; Anderson, Gary L.; Beuchat, Larry R.; Carta, Lynn K.; Williams, Phillip L.

    2005-01-01

    Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, ≥90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil. PMID:15870330

  18. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome.

    Science.gov (United States)

    Lemieux-Labonté, Virginie; Simard, Anouk; Willis, Craig K R; Lapointe, François-Joseph

    2017-09-05

    Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of naïve, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting, previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats shifts following WNS invasion. Using high-throughput 16S rRNA gene sequencing on 66 bats and 11 environmental samples, we found that hibernation site strongly influenced the composition and diversity of the skin microbiota. Bats from WNS-positive and WNS-negative sites differed in alpha and beta diversity, as well as in microbiota composition. Alpha diversity was reduced in persisting, WNS-positive bats, and the microbiota profile was enriched with particular taxa such Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus. Some of these taxa are recognized for their antifungal activity, and specific strains of Rhodococcus and Pseudomonas are known to inhibit Pd growth. Composition of the microbial community in the hibernaculum environment and the community on bat skin was superficially similar but differed in relative abundance of some bacterial taxa. Our results are consistent with the hypothesis that Pd invasion leads to a shift in the skin microbiota of surviving bats and suggest the possibility that the microbiota plays a protective role for bats facing WNS. The detection of what appears to be enrichment of beneficial bacteria in the skin microbiota of persisting bats is a promising discovery for species re-establishment. Our findings highlight not only the potential value of management actions that

  19. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.

    Science.gov (United States)

    Mikolasch, Annett; Reinhard, Anne; Alimbetova, Anna; Omirbekova, Anel; Pasler, Lisa; Schumann, Peter; Kabisch, Johannes; Mukasheva, Togzhan; Schauer, Frieder

    2016-11-01

    Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Isolation and identification of halotolerant soil bacteria from coastal Patenga area.

    Science.gov (United States)

    Rahman, Shafkat Shamim; Siddique, Romana; Tabassum, Nafisa

    2017-10-30

    Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.

  1. Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils

    Directory of Open Access Journals (Sweden)

    Michael eSchloter

    2014-03-01

    Full Text Available Alkane degrading microorganisms play an important role for bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the diversity of alkane monooxygenase gene (alkB harboring bacteria in oil-contaminated soil originated from an industrial zone in Celje, Slovenia, to improve our understanding about the bacterial community involved in alkane degradation and the effects of amendments. Soil without any amendments (control soil and soil amended with compost of different maturation stages, i 1 year and ii 2 weeks, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12 and 36 weeks of incubation. By using quantitative real-time PCR higher number of alkB genes could be detected in soil samples with compost compared to the control soil after 6, 12 and 36 weeks mainly if the less maturated compost was added. To get an insight into the composition of the alkB harboring microbial communities, we performed next generation sequencing of alkB gene fragment amplicons. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soil after 6, 12 and 36 weeks again with stronger effects of the less maturated compost. Comparison of communities detected in different samples and time points based on principle component analysis revealed that the addition of compost in general stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost compared to the control soils. In addition alkB harboring proteobacteria like Shewanella or Hydrocarboniphaga as well as proteobacteria of the genus Agrobacterium responded positively to the addition of compost to soil The amendment of the less maturated compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla mainly at the early sampling

  2. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria.

    Science.gov (United States)

    Oksińska, Małgorzata P; Magnucka, Elżbieta G; Lejcuś, Krzysztof; Pietr, Stanisław J

    2016-03-01

    Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.

  3. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation.

    Science.gov (United States)

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  4. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    KAUST Repository

    Vergani, Lorenzo

    2017-07-25

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  5. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Lorenzo Vergani

    2017-07-01

    Full Text Available The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs, together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed

  6. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  7. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing.

    Science.gov (United States)

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-10-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.

  8. Geophysical and Geotechnical Characterization of Beta-1,3/1,6-glucan Biopolymer treated Soil

    Science.gov (United States)

    Chang, I.; Cho, G.

    2012-12-01

    Bacteria or microbes in soil excrete hydrocarbon (e.g. polysaccharide) by-products which are called biopolymers. These biopolymers (or sometime biofilms) recently begun to make a mark on soil erosion control, aggregate stabilization, and drilling enhancement. However, the biological effect on soil behavior (e.g. bio-clogging or bio-cementation) has been poorly understood. In this study, the bio-cementation and bio-clogging effect induced by the existence of β-1,3/1,6-glucan biopolymers in soil were evaluated through a series of geophysical and geotechnical characterization tests in laboratory. According to the experimental test results, as the β-1,3/1,6-glucan content in soil increases, the compressive strength and shear wave velocity increase (i.e., bio-cementation) while the hydraulic conductivity decreases (i.e., bio-clogging) but the electrical conductivity increases due to the high electrical conductivity characteristic of β-1,3/1,6-glucan fibers. Coefficient of consolidation variation with the increases of β-1,3/1,6-glucan content in soil. SEM image of β-1,3/1,6-glucan treated soil. Fibers are form matices with soil particles.

  9. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  10. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil

    Directory of Open Access Journals (Sweden)

    Mareen Morawe

    2017-07-01

    Full Text Available Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented to (i identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany, (ii assess their substrate range in the soil environment, and (iii evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose, and a lignin-derived aromatic compound (vanillic acid. An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to

  11. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Science.gov (United States)

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  12. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  13. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.

    Science.gov (United States)

    Gao, Y; Yu, X Z; Wu, S C; Cheung, K C; Tam, N F Y; Qian, P Y; Wong, M H

    2006-12-15

    The effects of cultivation of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) separately, and in combination, on the dissipation of spiked phenanthrene and pyrene (0, 50+50, 100+100, 200+200 mg kg(-1)) in waterlogged soil were studied using pot trials. The population of introduced PAH-degrading bacteria remained at 10(5) CFU g(-1) dry soil after 20 days of treatment with Acinetobacter sp. only, but increased to 10(6) when planted with rice simultaneously. Shoot and root biomass of rice when grown alone was adversely affected by spiked PAHs, but significantly increased by 2-55% and 8-409%, respectively, when inoculated with Acinetobacter sp.. Phenanthrene and pyrene concentrations in roots ranged from 1-27 and 20-98 mg kg(-1), respectively, while their concentrations in shoots were generally lower than 0.2 mg kg(-1). The dissipation of phenanthrene was mainly due to abiotic loss as 70-78% phenanthrene was lost from the control soil at the end of 80 days, while removal of 86-87% phenanthrene had been achieved after 40 days in the treatment co-cultivated with Acinetobacter sp. and rice. Compared with the control where only 6-15% of pyrene was removed from soil, a much higher dissipation of pyrene (43-62%) was attained for the treatments co-cultivated with Acinetobacter sp. and rice at the end of 80 days. The results demonstrated that co-cultivation of rice and PAH-degrading bacteria may have a great potential to accelerate the bioremediation process of PAH-contaminated soil under waterlogged conditions.

  14. Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran

    Directory of Open Access Journals (Sweden)

    Golafarin Ghoreishi

    2017-07-01

    Full Text Available This study was carried out to isolate bacteria for bioremediation of petroleum polluted soils. Five samples were used for isolation in this study. They were four soil samples in addition to one kerosene sample. The soil samples including soils contaminated by crude oil and gas oil and two soil samples with no outward contamination which were collected from Shiraz Oil Refinery sites. Seven strains were selected among the isolated colonies for further experiments. The selected isolates were cultured in standard succinate medium (SSM minimal medium in which 2.5% v/v kerosene was used as carbon source. In another bacterial SSM culture, carbon, sulfur or nitrogen source was removed and 20% v/v kerosene added to check the ability of isolates to utilizekerosene as sole source for C, N and S. Finally, cultures of four strains with higher growth in modified SSM cultures were selected for GC analysis. In this study they were named C2 and C4 which were isolated from crude oil contaminated soil and SI1 and SI2 isolated from soils with no outward contamination. GC analysis showed that C2 could degrade 69% of 5% v/v kerosene in 7 d, while C4 and SI1 degraded 48% and 42% of 5% v/v kerosene during this 7-d period respectively, and the degradation ability of SI2 was 38% after 7 d. Analysis of 16S rRNA gene showed that C2 was close to Citrobacter sedlakii, C4 and SI1 were related to Entrobacter hormeachei and SI2 was close to Entrobacter cloacae, respectively.

  15. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    Energy Technology Data Exchange (ETDEWEB)

    Entry, James A. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)]. E-mail: jentry@nwisrl.ars.usda.gov; Leytem, April B. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States); Verwey, Sheryl [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)

    2005-11-15

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al{sub 2}(SO{sub 4}){sub 3}) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects.

  16. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    International Nuclear Information System (INIS)

    Entry, James A.; Leytem, April B.; Verwey, Sheryl

    2005-01-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al 2 (SO 4 ) 3 ) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects

  17. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    Science.gov (United States)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  18. Effect of phosphate solubilizing bacteria on the phosphorus availability and yield of cotton (gossypium)

    International Nuclear Information System (INIS)

    Akhtar, N.; Iqbal, A.; Qureshi, M.A.; Khan, K.H

    2010-01-01

    Phosphate solubilizing bacteria (PSB) and plants have symbiotic relationship, as bacteria provide soluble phosphate for the plants and plants supply root borne carbon compounds which can be metabolized for bacterial growth. PSB solubilize the applied and fixed soil phosphorus resulting in higher crop yield. Intensive cropping has resulted in wide spread deficiency of Phosphorus in our soils and situation is becoming more serious because of a drastic increase in the cost of phosphatic fertilizers. Keeping in view the capabilities of microbes (Bacillus sp.), a field experiment was conducted on cotton at farmer field district Faisalabad in 2008. Effect of PSM (Bacillus spp.) was studied at three phosphorus levels i.e.20, 40 and 60 kg ha-l while N was applied at recommended dose (120 kg ha/sup -1/). Bacillus spp. was applied as seed coating to the cotton crop (Var. BT 121). Recommended plant protection measures were adopted. Results revealed that Bacillus spp. significantly increased the seed cotton yield; number of boll plant-I, boll weight, plant height, GOT (%), staple length, plant P and available P in the soil. Maximum seed cotton yield 4250 kg ha/sup -l/ was obtained with Bacillus inoculation along with 60 kg of P followed by 4162 kg ha/sup -1/ with Bacillus inoculation and 40 kg of P compared with their respective controls i.e.4093 and 3962 kg ha/sup -1/ respectively. Soil P was improved from 8.1 to 9.5 ppm by Bacillus inoculation. Phosphorus in plant matter was also higher (0.39%) as compare with control (0.36%). Rhizosphere soil pH was found slightly decreased (8.12 to 8.0) by Bacillus inoculation compare with control. It is concluded that PSB inoculation not only exerts beneficial effect on crop growth but also enhances the phosphorus concentration in the plant and soil. (author)

  19. A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm.

    Science.gov (United States)

    Xie, Huijun; Gao, Fuwei; Tan, Wei; Wang, Shu-Guang

    2011-12-15

    Endosulfan is one of the few organic chlorine insecticides still in use today in many developing countries. It has medium toxicity for fish and aquatic invertebrates. In this study, we added different concentrations of endosulfan to a series of soil samples collected from Baihua Park in Jinan, Shandong Province, China. Interactions of exogenous endosulfan, bacteria and fungi were analyzed by monitoring the changes in microbe-specific phospholipid fatty acids (PLFA), residual endosulfan and its metabolites which include; endosulfan sulfate, endosulfan lactone and endosulfan diol during a 9 days incubation period. Our results showed that endosulfan reduced fungi biomass by 47% on average after 9 days, while bacteria biomass increased 76% on average. In addition, we found that endosulfan degraded 8.62% in natural soil (NE), 5.51% in strepolin soil (SSE) and 2.47% in sterile soil (SE). Further analysis of the endosulfan metabolites in NE and SSE, revealed that the amount of endosulfan sulfate (ES) significantly increased and that of endosulfan lactone (EL) slightly decreased in both samples after 9 days. However, that of endosulfan diol (ED) increased in NE and decreased in SSE. After collective analysis our data demonstrated that fungi and bacteria responded differently to exogeous endosulfan, in a way that could promote the formation of endosulfan diol during endosulfan degradation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  1. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  2. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management.

    Science.gov (United States)

    Savory, Elizabeth A; Fuller, Skylar L; Weisberg, Alexandra J; Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L; Chang, Jeff H

    2017-12-12

    Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus , and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.

  3. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  4. The Study of the Probiotic Potential of the Beneficial Bacteria Isolated from Kefir Grains

    Directory of Open Access Journals (Sweden)

    Englerová K.

    2017-03-01

    Full Text Available The aim of this study was to identify beneficial bacteria with probiotic potential from kefir grains. The lactobacilli isolated from kefir grains were characterised as: Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus paracasei, and Lactobacillus kefiri. The strains Lb. plantarum 1Ž, Lb. paraplantarum S10, and Lb. paracasei 2Ž tolerated better the test gastric juice at pH 2 and 2.6 during 120 min of incubation in comparison with the strains Lb. kefiri. On the other hand, the strains Lb. kefiri were resistant to 0.3 % bile acid salts. The Lb. paracasei 2Ž showed the significantly highest survival (P < 0.001 at pH 2 in comparison with all other strains tested and was also able to tolerate 0.3 % concentration of the bile salts. All strains produced medium to strong biofilms on abiotic surfaces and inhibited the growth of selected potential pathogens with varying intensity. All kefir isolates were susceptible to the antibiotics tested and exhibited positive β-galactosidase activity with the exception of Lb. paracasei 2Ž which did not show any activity of undesirable enzymes, such as β-glucosidase and β-glucuronidase. Additional testing and validation of the biological properties and safety of the strain Lb. paracasei 2Ž under in vivo conditions are needed to confirm the prospective use of this strain in practice.

  5. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2016-01-01

    We sought to investigate the drivers of richness of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in temperate forest soils. We sampled soils across four experimental watersheds in the Coweeta Hydrologic Laboratory, North Carolina USA. These watersheds are geographically close, but vary in soil chemistry due to differences in land use history. While we...

  6. Identification of New Aflatoxin B1-Degrading Bacteria from Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Sangi

    2018-04-01

    Full Text Available Background: Aflatoxin B1 (AFB1 is a mutagenic and carcinogenic compound mainly produced by the Aspergillus parasiticus, A. flavus, A. nomius, A. tamari, and A. pseudotamarii. AFB1 biodegradation is the most important strategy for reducing AFB1 in plant tissues. Bacteria can deactivate and biodegrade AFB1 for effective detoxification of contaminated products. The present study investigated the efficiency of AFB1 degradation by soil bacteria from the Southern Khorasan Province in Eastern Iran by thin-layer and high-performance liquid chromatography during 2014–2015. Methods: DNA was extracted from AFB1-degrading isolates by the cetyltrimethylammonium bromide method and the 16S rRNA gene was amplified with the 27f and 1492r general bacterial primers and the sequences were used to identify the isolates based on their similarity to Gene Bank sequences of known bacterial species. Results: We isolated five strains from four species of AFB1-degrading bacteria from Birjand plain, including Bacillus pumilus, two isolates of Ochrobactrum pseudogrigonens, Pseudomonas aeruginosa, and Enterobacter cloace, which had AFB1-degrading activities of 88%, 78%, 61%, 58%, and 51%, respectively. Conclusion: We provide the first demonstration of AFB1 degradation by B. pumilus in from Iran and the first report identifying O. pseudogrigonens and E. cloace species as having AFB1-degrading activity.

  7. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Science.gov (United States)

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  8. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandra B Wolf

    Full Text Available The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus and a motile rod-shaped bacterium (Bacillus weihenstephanensis to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions. These data, combined with information on bacterial motility (expansion potential across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  9. Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing▿ †

    Science.gov (United States)

    Uhlik, Ondrej; Jecna, Katerina; Mackova, Martina; Vlcek, Cestmir; Hroudova, Miluse; Demnerova, Katerina; Paces, Vaclav; Macek, Tomas

    2009-01-01

    DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [13C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase α subunits (BphA) from bacteria that incorporated [13C]into DNA in 3-day incubations of the soils with [13C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl. PMID:19700551

  10. Investigation of PCBs biodegradation by soil bacteria using tritium-labeled PCBs

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Takhtobin, K.S.; Kadirova, M.; Yadgarov, H.T.; Zinovev, P.V.; Abdukarimov, A.A.

    2004-01-01

    The method of tritium labeling of polychlorinated biphenyls (PCBs) has been developed. It allows producing of uniformly labeled tritium PCBs. High specific activity permits the tracing all of the tritium labeled PCBs biodegradation products. Radiochemical approach of the investigation of PCBs microbial degradation has been developed and PCB-destructive activity of soil bacteria strains has been studied. It was found that 4 investigated bacteria strains of Bacillus sp. has the ability accumulate and destroy PCBs. Use of developed radiochemical methods in complex with other analytical methods in investigation of PCBs biodegradation provide useful additional information. The radiochemical methods developed can be successfully used for wide screening of microorganisms, destructors of PCBs. (author)

  11. Diuron degradation by bacteria from soil of sugarcane crops

    Directory of Open Access Journals (Sweden)

    Tassia C. Egea

    2017-12-01

    Full Text Available The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.

  12. Frequency of interaction-mediated triggering of antibiotic production among soil bacteria

    Directory of Open Access Journals (Sweden)

    Olaf eTyc

    2014-10-01

    Full Text Available Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798 indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.

  13. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil.

    Science.gov (United States)

    Zhang, Juan; Wang, Li-Hong; Yang, Jun-Cheng; Liu, Hui; Dai, Jiu-Lan

    2015-03-01

    The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Directory of Open Access Journals (Sweden)

    Franciele Santos

    Full Text Available A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  15. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  16. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  17. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  18. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith.

    Science.gov (United States)

    Chávez-Gómez, B; Quintero, R; Esparza-García, F; Mesta-Howard, A M; Zavala Díaz de la Serna, F J; Hernández-Rodríguez, C H; Gillén, T; Poggi-Varaldo, H M; Barrera-Cortés, J; Rodríguez-Vázquez, R

    2003-09-01

    Sixteen co-cultures composed of four bacteria and four fungi grown on sugarcane bagasse pith were tested for phenanthrene degradation in soil. The four bacteria were identified as Pseudomonas aeruginose, Ralstonia pickettii, Pseudomonas sp. and Pseudomonas cepacea. The four fungi were identified as: Penicillium sp., Trichoderma viride, Alternaria tenuis and Aspergillus terrus that were previously isolated from different hydrocarbon-contaminated soils. Fungi had a statistically significant positive (0.0001bacteria removed the compound by an order of 20%. Co-cultures B. cepacea-Penicillium sp., R. pickettii-Penicillium sp., and P. aeruginose-Penicillium sp. exhibited synergism for phenanthrene removal, reaching 72.84+/-3.85%, 73.61+/-6.38% and 69.47+/-4.91%; in 18 days, respectively.

  19. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    Science.gov (United States)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  20. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  1. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Science.gov (United States)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  2. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  3. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  4. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    Science.gov (United States)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  5. Study On Ammonia Accumulation of Cellulose-Utilizing and Nitrogen-Fixing Bacteria Isolated from Various Soils

    International Nuclear Information System (INIS)

    Soe Myat Thandar; Aung Ko Ko Oo; Weine Nway Nway Oo

    2011-12-01

    Cellulose-utilizing and nitrogen-fixing bacteria were isolated from various soil. 42 bacterial strains were obtained. Among those stains, 13 strains were screened for nitrogen-fixing activity. Among them, 4 strains coded as CPB1, CMB1, GPB2 and 3LC4 showed the high nitrogen-fixing activity. Different strains produced different amount of ammonium compounds at various incubation periods. CMB1 produced the maximum amount of ammonium 1.2 mg/L NH4+ at 6th day culture but 3LC4, GPB2 and CPB1 produced more amount of NH4+ with 2, 2.5 and 3 mg/L NH4+ respectively at 5th day culture.

  6. Isolation and Screening of Potential Cellulolytic and Xylanolytic Bacteria from Soil Sample for Degradation of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Bhupal Govinda Shrestha

    2016-11-01

    them with the aptitude to produce stable enzymes, little emphasis has been given to cellulose/xylanase production from bacteria. Seven soil samples were collected from eastern hilly districts of Nepal viz. Taplejung, Panchthar and Sankhuwasabha districts, from soil surface and at depth of 10cm to 20cm, and were isolated separately. From the seven soil samples, four bacterial isolates were obtained. Isolates (PSS, P1D, TLC, SNK were then screened for cellulolytic/xylanolytic activity using Congo red assay on Carboxymethylcellulose (CMC/xylan agar plates. The enzyme activity obtained from isolates was dependent on substrate concentration. The activity of enzymes produced by isolates were also measured and compared on pretreated sugarcane bagasse. Among those samples, the greatest zone of inhibition in both CMC (1.3 cm and xylan (1.0 cm agar media was seen in isolate P1D. It also produced the highest activity of endoglucanase and xylanase i.e. activity 0.035 U/mL and 0.050 U/mL respectively at 0.010 mg mL-1 standard substrate concentration of CMC and xylan.

  7. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro

    2017-04-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of

  8. Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata

    Directory of Open Access Journals (Sweden)

    Anthony C Yannarell

    2011-06-01

    Full Text Available The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader-microbe interactions. Lespedeza cuneata (Dum. Cours. G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathetic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant.

  9. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.

    Science.gov (United States)

    Yang, Qi; Benoy, Glenn A; Chow, Thien Lien; Daigle, Jean-Louis; Bourque, Charles P-A; Meng, Fan-Rui

    2012-01-01

    Runoff from crop production in agricultural watersheds can cause widespread soil loss and degradation of surface water quality. Beneficial management practices (BMPs) for soil conservation are often implemented as remedial measures because BMPs can reduce soil erosion and improve water quality. However, the efficacy of BMPs may be unknown because it can be affected by many factors, such as farming practices, land-use, soil type, topography, and climatic conditions. As such, it is difficult to estimate the impacts of BMPs on water quality through field experiments alone. In this research, the Soil and Water Assessment Tool was used to estimate achievable performance targets of water quality indicators (sediment and soluble P loadings) after implementation of combinations of selected BMPs in the Black Brook Watershed in northwestern New Brunswick, Canada. Four commonly used BMPs (flow diversion terraces [FDTs], fertilizer reductions, tillage methods, and crop rotations), were considered individually and in different combinations. At the watershed level, the best achievable sediment loading was 1.9 t ha(-1) yr(-1) (89% reduction compared with default scenario), with a BMP combination of crop rotation, FDT, and no-till. The best achievable soluble P loading was 0.5 kg ha(-1) yr(-1) (62% reduction), with a BMP combination of crop rotation and FDT and fertilizer reduction. Targets estimated through nonpoint source water quality modeling can be used to evaluate BMP implementation initiatives and provide milestones for the rehabilitation of streams and rivers in agricultural regions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Aromatic Hydrocarbons: Degrading Bacteria in the Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, M.; Diab, A.; Al-Hilali, A.; Abu-Shady, A. Sattar

    2005-01-01

    Soil samples of different levels of oil pollutants were collected from Kuwait's Burgan Oil Field, near an oil lake. The samples represented, highly polluted (8.0% w/w), moderately polluted (2.1%-3.4%) and slightly polluted (2.1%-3.4%) and slightly polluted (0.5- 0.8%). The aromatic fractions of the collected samples were in the range of (0.21-2.57g/100g) soil. (GC) analysis of the aromatic fractions of the resolution of the different individual (PAHs) revealed the presence of (16) different (PAHs) resolved from the aromatic fraction of the highly polluted sample (S3). (15), (14) and (13) individual (PAHs) were identified soil samples (S5), (S2) and (S1, S4, S6) respectively. The most frequent (PAH) was indeno (1, 2, 3-c, d) pyrene (22.5%-45.11%) followed chrysene (13.6%-19.48%). Eight carcinogenic (PAHs) were resolved from the aromatic fractions of the polluted samples. Total carcinogenic (PAHs) recorded in this study were in this study were in the range of (11.53) (forS4) - (510.98) (for S3) ppm. The counts of (CFU) of aromatic degraders (AD) were in the range of (3x10) - (110x 10) (CFU/g) soil (with a percent of (2.2%-69.6%)). The results show that, higher counts of (AD) were recorded from a highly polluted sample (S3), followed by the moderately polluted samples; total of (51) bacteria, that gave presumptive positive biodegradation activities, were isolated and identified (45.1%) of them were isolated and identified. (45.1%) of them were isolated from the highly polluted sample (S3). Total of (13) different species were identified of which Micrococcus luteus was more frequent (23.5) followed by Bacillus licheniformis (19.6%) and Bacillus subtilis (11.8%). The three Pseudomonas species collectively were presented by (11.8%). Five different species proved to be of good activities, they are: Bacillus brevis, Bacillus lichenoformis, Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas flourescens. The ability of five species and their mixture was

  11. Characterization of Carbofuran Degrading Bacteria Obtained from Potato Cultivated Soils with Different Pesticide Application Records

    OpenAIRE

    Castellanos Rozo, José; Sánchez Nieves, Jimena; Uribe Vélez, Daniel; Moreno Chacón, Leonardo; Melgarejo Muñoz, Luz Marina

    2013-01-01

    Eighty-two bacterial isolates with potential Carbofuran degradation activity (Furadan®3SC) were obtained from soils cultivated with the potato variety Unica (Solanum tuberosum) in Silos, Norte de Santander (Colombia), with different records of pesticide application. The bacteria were selected for their ability to grow at 25 °C for 72 h in media containing 200 mg L-1 of analytical Carbofuran as the sole source of carbon and/ or nitrogen. The results showed that ten isolates, 12% of those obtai...

  12. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    Science.gov (United States)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  13. Modification of "1"3"7Cs transfer to rape (Brassica napus L.) phytomass under the influence of soil microorganisms

    International Nuclear Information System (INIS)

    Pareniuk, O.; Shavanova, K.; Laceby, J.P.; Illienko, V.; Tytova, L.; Levchuk, S.; Gudkov, I.; Nanba, K.

    2015-01-01

    After nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on "1"3"7Cs transfer from substrate to plants. The highest transition of "1"3"7Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of "1"3"7Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate "1"3"7Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents. - Highlights: • Representatives of soil bacteria can alter "1"3"7Cs soil-to-plant transfer factor. • This ability does not depend on the localization of bacteria on the root surface. • Selection of bacteria to increase or decrease the "1"3"7Cs transfer factor is possible.

  14. Analysis of soil microbial community structure and enzyme activities associated with negative effects of pseudostellaria heterophylla consecutive monoculture on yield

    International Nuclear Information System (INIS)

    Lin, S.; Lin, W.X.

    2015-01-01

    Pseudostellaria heterophylla is an important medicinal plant in China. However, cultivation of P. heterophylla using consecutive monoculture results in significant reductions in yield and quality. In this study, terminal-restriction fragment length polymorphism (T-RFLP) analysis and measurement of soil enzyme activities were used to investigate the regulation of soil micro-ecology to identify ways to overcome the negative effects of P. heterophylla consecutive monoculture. T-RFLP analysis showed that rice/P. heterophylla (RP) and bean/P. heterophylla (BP) crop rotation systems increased the number and diversity of microbial groups in P. heterophylla rhizosphere soil. In particular, the RP and BP crop rotations increased the number and abundance of beneficial bacterial species compared with two-year consecutive monoculture of P. heterophylla. The presence of these beneficial bacteria was positively correlated with soil enzyme activities which increased in rhizosphere soils of the RP and BP crop rotation systems. The results indicated that crop rotation systems could increase activities of key soil enzymes and beneficial microbial groups and improve soil health. This study could provide a theoretical basis to resolve the problems associated with P. heterophylla consecutive monoculture. (author)

  15. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  16. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz

    2018-01-01

    on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs...... ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria....

  17. Detection of Toluene Degradation in Bacteria Isolated from Oil Contaminated Soils

    International Nuclear Information System (INIS)

    Ainon Hamzah; Tavakoli, A.; Amir Rabu

    2011-01-01

    Toluene (C 7 H 8 ) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monooxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/ mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene. (author)

  18. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    Leven, Lotta; Nyberg, Karin; Korkea-aho, Lena; Schnuerer, Anna

    2006-01-01

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC 5 = 26 μg phenols g -1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC 5 = 43-110 μg g -1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  19. Endosulfan Resistance Profile of Soil Bacteria and Potential Application of Resistant Strains in Bioremediation

    Directory of Open Access Journals (Sweden)

    Chandini P.K.

    2014-05-01

    Full Text Available In the present study, bacterial strains were isolated from the soils of Wayanad District, Kerala, India and the isolates were tested for their tolerance to endosulfan and potential in bioremediation technology. Pesticide contamination in the soils, soil physico-chemical characteristics and socio-economic impacts of pesticide application were also analyzed. 28 pesticide compounds in the soil samples were analyzed and the results revealed that there was no pesticide residues in the soils. As per the survey conducted the pesticide application is very high in the study area and the level of awareness among the farmers was very poor regarding the method of application and its socio-economic and ecological impacts. A total of 9 bacterial strains were isolated with 50μg/ml of endosulfan in the isolating media and the results showed that most of the bacterial strains were highly resistance to endosulfan. Out of the 9 strains isolated 6 were highly resistant to endosulfan (500- 700μg/ml and the other 3 isolates showed the resistance of 250-500μg/ml. From the studied isolate, isolate 9 demonstrating prolific growth and high resistance was selected to check their capability to degrade endosulfan over time. Identification of the selected strain reveals that it belongs to the genus Bacillus. Results of endosulfan removal studies showed that with increase in time, the biomass of the bacterial strains increased. The complete disappearance of endosulfan from the spiked and inoculated broth during the first day of incubation (24 hour interval was observed. While the control flask showed the presence of endosulfan during the experimental period. Pesticide resistant bacteria are widely distributed in the soils of selected study area and the tolerance varied between bacteria even though they were isolated from the soils of the same area. The selected Bacillus species carry the ability to degrade endosulfan at accelerated rates and it could be useful in framing a

  20. Detection of Beta-lactamase gene in the culturable bacteria isolated from agricultural, pasture and mining soils around mines in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    Nayereh Younessi

    2017-09-01

    Full Text Available Introduction: Growing evidence exists that agriculture affects antibiotic resistance in human pathogens. Beta-lactam antibiotics are the most commonly used antimicrobial agents in many countries. The abundance of beta-lactamase encoding genes can be used as an indicator of antibiotic resistance in the environment. So, to determine the beta-lactamase resistance genes, the abundance of culturable bacteria having bla-TEM genesin the soils under different land uses wasexamined. Materials and methods: 44 Gram-positive and 34 Gram-negative bacteria plated on nutrient agar were isolated from agricultural, pasture and mining soils and selected to study the presence of TEM-class gene using PCR amplification. Antibiotic sensitivity test of bla-TEM+isolateswas done adopting the Kirby-Bauer disk diffusion method and antibiotic discs used were: ampicillin, amoxicillin, vancomicin, streptomycin, tetracycline and gentamicin. Finally, five multi-drug resistant and bla-TEM+ isolates were identified using universal primers. Results: The highest level of beta-lactamase genes was observed in the Gram-positive and Gram-negative isolates from the pasture soils. In the agricultural and mining soils, a high abundance of bla-TEM+ isolateswasfound which also showed resistance to beta-lactam antibiotics. The identified multi-drug resistant and bla-TEM+ isolates were from these genera: Achromobacter, Bacillus, Brevibacillus, Aminobacter and Brevundimonas. Discussion and conclusion: The high number of bla-TEM+ bacteria in all the soils may be attributed to the other important feature of bla genes which is their capability to extrude toxic compounds like heavy metals in contaminated environments. Sensitivity of some bla-TEM+ bacteria to beta-lactam antibiotics was interesting. This result shows that bla-TEM genes confer resistance to beta-lactamase inhibitors in a different degree. Some of the identified isolates were pathogen. These pathogens in soils can transfer to plants

  1. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

    Science.gov (United States)

    Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong

    2014-02-01

    Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad

  2. Response of predominant soil bacteria to grassland succession as monitored by ribosomal RNA analyses

    NARCIS (Netherlands)

    Felske, A.

    1999-01-01

    The research described in this thesis was aimed to provide insight into the effects of grassland succession on the composition of the soil bacteria community in the Drentse A agricultural research area. The Drentse A meadows represent grassland succession at different stages. Since 30 years

  3. Supplementation of a Blend of Beneficial Bacteria and Antibodies on Growth Performance, Intestinal Mucosa Morphology and Right Heart Failure of Japanese Quail (Coturnix coturnix japonica

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Mehraei Hamzekolaei

    2017-05-01

    Full Text Available Background: Early nutrition of chicks with beneficial bacteria might help in occupying the inner surface of the intestinal tract. Interference of pathogens in intestinal microbiota is well known as barrier effect, bacterial interference, and competitive exclusion. Objectives: It was hypothesized that competitive exclusion in Japanese quails with a blend of beneficial bacteria (Aquablend Avian® probiotic would enhance quails’ growth performance and intestinal mucosal morphology. Furthermore, the study was performed at 2100 m above sea level at Shahrekord University, so another hypothesis was the capability of the probiotic for inhibiting right heart failure. Materials and Methods: One hundred fifty-six Japanese quails were divided into 4 groups: 2 groups (Aquablend and control at standard environmental temperature and 2 (Aqua-stress and Cont-stress at cold-hypoxic environmental situation. Aquablend groups received the probiotic in the first 3 days of life in drinking water (0.5 g/100 birds/day. Results: Feed conversion ratio (FCR was significantly reduced at the end of the experiment (day 35 in both Aquablend and aqua-stress groups compared to control and cont-stress groups, respectively (P 0.05. Cont-stress group had higher RV: TV ratio (0.28 and heterophil: lymphocyte (H: L ratio (1.22 than aqua-stress group: (0.25 and (1.20, respectively (P > 0.05. Data regarding to intestinal mucosa morphology was controversial but the probiotic was able to elevate duodenum villi surface (P < 0.05 and also jejunum and ileum lamina propria thickness. Conclusion: Obtained data suggests that addition of Aquablend Avian® probiotic in the first 3 days of life may improve growth performance and some intestinal mucosa characteristics of Japanese quails. Moreover, the probiotic might reduce right heart failure and stress induced by cold-hypoxic situation.

  4. Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness

    Directory of Open Access Journals (Sweden)

    Andrew J. King

    2012-10-01

    Full Text Available Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine cooccurrence patterns between plant species and bulk-soil bacteria abundances. In this context, a cooccurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in cooccurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.

  5. Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil.

    Science.gov (United States)

    Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun

    2018-01-01

    Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers ( Nitrobacter and Nitrospira ) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter - and Nitrospira -like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis

  6. Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner

    International Nuclear Information System (INIS)

    Zhang, Pengyao; Idota, Yoko; Yano, Kentaro; Negishi, Masayuki; Kawabata, Hideaki; Arakawa, Hiroshi; Ogihara, Takuo; Morimoto, Kaori; Tsuji, Akira

    2014-01-01

    We found that bacteria in a commercial soil conditioner sold in Ishinomaki, Miyagi, exhibited concentrative and saturable cesium ion (Cs + ) uptake in the natural range of pH and temperature. The concentration of intracellular Cs + could be condensed at least a few times higher compared with the outside medium of the cells. This uptake appeared to be mediated by a K + transport system, since Cs + uptake was dose-dependently inhibited by potassium ion (K + ). Eadie-Hofstee plot analysis indicated that the Cs + uptake involved a single saturable process. The maximum uptake amount (J max ) was the same in the presence and absence of K + , suggesting that Cs + and K + uptakes were competitive with respect to each other. These bacteria might be useful for bioremediation of cesium-contaminated soil. (author)

  7. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2017-10-01

    Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  8. Changes in microbiological composition of soils and soil contamination with drug-resistant bacteria caused by the use of sewage sludge in nature

    Science.gov (United States)

    Stanczyk-Mazanek, Ewa; Pasonl, Lukasz; Kepa, Urszula

    2017-11-01

    This study evaluated the effect of the use of sewage sludge in nature on biological soil parameters. The study was conducted is field experiment environment (small beds). The sandy soil was fertilized with sewage sludge dried naturally (in heaps) and in solar drying facilities. The fertilization was based on the doses of sewage sludge and manure with the amounts of 10, 20, 30 and 40 Mg/ha. The experiment duration was 3 years. The sanitary status of the soils fertilized with the sludge and manure was evaluated (coliform index, Clostridium perfrinens). Furthermore, the content of pathogenic bacteria was evaluated, with determination of its resistance to first-line antibiotics.

  9. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran.

    Science.gov (United States)

    Karami, Solmaz; Maleki, Afshin; Karimi, Ebrahim; Poormazaheri, Helen; Zandi, Shiva; Davari, Behrooz; Salimi, Yahya Zand; Gharibi, Fardin; Kalantar, Enayatollah

    2016-12-01

    Recently, there has been increasing interest to clean up the soils contaminated with herbicide. Our aim was to determine the bioremediation of 2,4-dichlorophenoxyacetic acid (2,4-D) from wheat fields which have a long history of herbicide in Sanandaj. Based on our literature survey, this study is the first report to isolate and identify antimicrobial resistant bacteria from polluted wheat field soils in Sanandaj which has the capacity to degrade 2,4-D. From 150 2,4-D-exposed soil samples, five different bacteria were isolated and identified based on biochemical tests and 16S ribosomal RNA (rRNA). Pseudomonas has been the most frequently isolated genus. By sequencing the 16S rRNA gene of the isolated bacteria, the strains were detected and identified as a member of the genus Pseudomonas sp, Entrobacter sp, Bacillus sp, Seratia sp, and Staphylococcus sp. The sequence of Sanandaj 1 isolate displayed 87% similarity with the 16S rRNA gene of a Pseudomonas sp (HE995788). Similarly, all the isolates were compared to standard strains based on 16S rRNA. Small amounts of 2,4-D could be transmitted to a depth of 10-20 cm; however, in the depth of 20-40 cm, we could not detect the 2,4-D. The isolates were resistant to various antibiotics particularly, penicillin, ampicillin, and amoxicillin.

  10. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments

    DEFF Research Database (Denmark)

    Priemé, Anders; Wolsing, Martin

    2004-01-01

    Temporal and spatial variation of communities of soil denitrifying bacteria at sites receiving mineral fertilizer (60 and 120 kg N ha-1 year-1) and cattle manure (75 and 150 kg N ha-1 year-1) were explored using terminal restriction fragment length polymorphism (T-RFLP) analyses of PCR amplified...... nitrite reductase (nirK and nirS) gene fragments. The analyses were done three times during the year: in March, July and October. nirK gene fragments could be amplified in all three months, whereas nirS gene fragments could be amplified only in March. Analysis of similarities in T-RFLP patterns revealed...... a significant seasonal shift in the community structure of nirK-containing bacteria. Also, sites treated with mineral fertilizer or cattle manure showed different communities of nirK-containing denitrifying bacteria, since the T-RFLP patterns of soils treated with these fertilizers were significantly different...

  11. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China

    OpenAIRE

    Wang, Na; Yang, Xiaohong; Jiao, Shaojun; Zhang, Jun; Ye, Boping; Gao, Shixiang

    2014-01-01

    Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of a...

  12. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  13. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria.

    Science.gov (United States)

    Taylor, Anne E; Vajrala, Neeraja; Giguere, Andrew T; Gitelman, Alix I; Arp, Daniel J; Myrold, David D; Sayavedra-Soto, Luis; Bottomley, Peter J

    2013-11-01

    Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤ 20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4(+)-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4(+)-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4(+)-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.

  14. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  15. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  16. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  17. Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery

    OpenAIRE

    Jiang, Jie; Pan, Chaohu; Xiao, Aiping; Yang, Xiai; Zhang, Guimin

    2017-01-01

    Six bacteria strains from heavy-metal-polluted ramie rhizosphere soil were isolated through Cd2+ stress, which were numbered as JJ1, JJ2, JJ10, JJ11, JJ15, and JJ18. Sequence alignment and phylogenic analysis showed that strain JJ1 belonged to Pseudomonas, strain JJ2 belonged to Cupriavidus, strains JJ11 and JJ15 belonged to Bacillus, and strains JJ10 and JJ18 belonged to Acinetobacter. The tolerance capability of all the strains was the trend of Pb2+?>?Zn2+?>?Cu2+?>?Cd2+, the maximum toleran...

  18. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  19. Evaluation of Aliphatic and Aromatic Compounds Degradation by Indigenous Bacteria Isolated from Soil Contaminated with Petroleum

    Directory of Open Access Journals (Sweden)

    Farhad Gilavand

    2015-12-01

    Full Text Available Background:  The major of this study was to isolate oil-degrading bacteria from soil contaminated with petroleum and examining the removal of hydrocarbons by these bacteria. Methods: Oil-degrading colonies were purified from the samples obtained of around Ahvaz oil wells. Organic matter degradation was investigated with 1 g of crude oil in basal salt medium (BSM as sole carbon source. The growth rate was determined through total protein assay and hydrocarbon consuming was measured through organic carbon oxidation and titration by dichromate as oxidizing agent. Results: Two potential isolates named S1 and S2 strains were screened and identified as Planococcus and Pseudomonas aeruginosa. As results for S1 and S2 could degrade 80.86 and 65.6% of olive oil, 59.6 and 35.33 of crude oil, while 32 and 26.15 % of coal tar were consumed during 14 days incubation. Conclusion: The results of this investigation showed these indigenous strains high capability to biodegradation at short time and are desirable alternatives for treatment of oil pollutants.

  20. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  1. The use of {sup 13}C labelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils

    Energy Technology Data Exchange (ETDEWEB)

    Crossman, Z.M.; Evershed, R.P. [Bristol Univ., Organic Geochemistry Unit, Biogeochemistry Research Centre, Bristol (United Kingdom); Ineson, P. [York Univ., Dept. of Biology, York (United Kingdom)

    2005-05-15

    The occurrence of methane-oxidising bacteria in soils has received increasing attention because of their role as a sink for atmospheric methane. However, such bacteria are not amenable to modern culturing techniques and hence the widespread interest in the development of methods of cultivation-independent analysis. In the following investigation, a combination of stable isotope labelling with phospholipid fatty acid (PLFA) and bacteriohopanoid analysis was employed in an effort to characterise this functional group of bacteria. Results suggest a novel population of methane-oxidising bacteria related to type II culturable methanotrophs, in particular, the Methylocapsa and Methylocella genera of bacteria. (Author)

  2. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  3. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  4. High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile.

    Science.gov (United States)

    Zhou, Leiliu; Wang, Yu; Long, Xi-En; Guo, Jianhua; Zhu, Guibing

    2014-11-01

    The discovery of nitrite-dependent anaerobic methane oxidation (n-damo) mediated by 'Candidatus Methylomirabilis oxyfera' with nitrite and methane as substrates has connected biogeochemical carbon and nitrogen cycles in a new way. The paddy fields often carry substantial methane and nitrate, thus may be a favorable habitat for n-damo bacteria. In this paper, the vertical-temporal molecular fingerprints of M. oxyfera-like bacteria, including abundance and community composition, were investigated in a paddy soil core in Jiangyin, near the Yangtze River. Through qPCR investigation, high abundance of M. oxyfera-like bacteria up to 1.0 × 10(8) copies (g d.w.s.)(-1) in summer and 8.5 × 10(7) copies (g d.w.s.)(-1) in winter was observed in the ecotone of soil and groundwater in the paddy soil core, which was the highest in natural environments to our knowledge. In the ecotone, the ratio of M. oxyfera-like bacteria to total bacteria reached peak values of 2.80% in summer and 4.41% in winter. Phylogenetic analysis showed n-damo bacteria in the paddy soil were closely related to M. oxyfera and had high diversity in the soil/groundwater ecotone. All of the results indicated the soil/groundwater ecotone of the Jiangyin paddy field was a favorable environment for the growth of n-damo bacteria. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jiang, Longfei [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Yan [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Yu, Zhiqiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yin, Hua [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2016-05-05

    Highlights: • Investigate PAHs degraders in forest carbon-rich soils via DNA-SIP. • Rhodanobacter is identified to metabolite anthracene for the first time. • The first fluoranthene degrader belongs to Acidobacteria. • Different functions of PAHs degraders in forest soils from contaminated soils. - Abstract: Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually {sup 13}C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota.

  6. Thermal-treated soil for mercury removal: Soil and phytotoxicity tests

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Y.; Edwards, N.T.; Lee, S.Y.; Stiles, C.A.; Armes, S.; Foss, J.E.

    2000-04-01

    Mercury (Hg) contamination of soils and sediments is one of many environmental problems at the Oak Ridge Reservation, Oak Ridge, TN. Mercury-contaminated soil from the Lower East Fork Poplar Creek (LEFPC) at the Oak Ridge Reservation was treated thermally to reduce Hg concentration to a below target level (20 mg kg{sup {minus}1}) as a pilot scale thermal treatment demonstration. As a part of performance evaluation, the soil characteristics and plant growth response of the untreated and treated soil were examined. The soil treated at 350 C retained most of its original soil properties, but the soil treated at 600 C exhibited considerable changes in mineralogical composition and physicochemical characteristics. Growth and physiological response of the three plant species radish (Raphanus sativus L.), fescue (Festuca arundinacea Schreb.), and oat (Avena sativa L.) indicated adverse effects of the thermal treatment. The addition of N fertilizer had beneficial effects in the 350 C treated soil, but had little beneficial effect in the 600 C treated soil. Some changes of soil characteristics induced by thermal treatment cannot be avoided. Soil characteristics and phytotoxicity test results strongly suggest that changes occurring following the 350 C treatment do not limit the use of the treated soil to refill the excavated site for full-scale remediation. The only problem with the 350 C treatment is that small amounts of Hg compounds (<15 mg kg{sup {minus}1}) remain in the soil and a processing cost of $45/Mg.

  7. Profiles of traditional farms: soil texture, total inorganic N and bacteria-producing estate

    Directory of Open Access Journals (Sweden)

    Yuni Puji Hastuti

    2010-07-01

    Full Text Available Pond traditional system is the pond in still activity with a symple management system.  This activity indicated by low technology and relatively low production level.  Aquaculture activities in traditional pond not loss from nitrification and denitrification prosess, however this process is more low production rather than semiintensive and intensive system. This study aims to observe abundance of bacteria nitrification along with changes soil texture, and N-organic in the soil of traditional pond. Chemical and biological analyses were done using spectroscopy and Most Probable Number methods to determine the amount of nitrite and ammonium production of bacteria.  Based of the result, each stratum traditional ponds have relatively similar abundance in nitrite producing bacteria of 7.08-7.47 Log CFU/g.  Increasing abundance in ammonium producing bacteria was found in all stratum, range from 5.63 Log cfu/g to 8.12 Log cfu/g. From the first day of preparation, traditional ponds have a lot of nitrite and ammonium producing bacteria.Keywords: traditional, pond, nitrification, abundance of bacteri. ABSTRAKTambak sistem tradisional merupakan tambak yang dalam kegiatannya masih menggunakan sistem manajemen sederhana.  Hal ini ditandai dengan penerapan teknologi sederhana, dan tingkat produksi relatif rendah.  Kegiatan budidaya di tambak tradisional tidak akan terlepas dari proses nitrifikasi dan denitrifikasi, namun demikian proses ini relatif lebih rendah aktivitasnya daripada tambak sistem semiintensif dan intensif.  Tujuan dari penelitian ini adalah mempelajari kelimpahan bakteri penghasil senyawa nitrit, amonium seiring dengan perubahan tekstur tanah, dan N-organik pada tanah tambak tradisional. Media pertumbuhan bakteri dikondisikan bebas oksigen (oxygen free nitrogen/OFN method , sedangkan kelimpahan bakteri dianalisis dengan rumus most porbable number (MPN. Berdasarkan hasil, setiap strata tanah tambak tradisional memiliki jumlah bakteri

  8. Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil

    Czech Academy of Sciences Publication Activity Database

    Borras, E.; Caminal, G.; Sarra, M.; Novotný, Čeněk

    2010-01-01

    Roč. 42, č. 12 (2010), s. 2087-2093 ISSN 0038-0717 R&D Projects: GA AV ČR IAAX00200901; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : White-rot fungi * pah * soil bacteria Subject RIV: EE - Microbiology, Virology Impact factor: 3.242, year: 2010

  9. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.

    Science.gov (United States)

    Li, Xiaojun; Li, Peijun; Lin, Xin; Zhang, Chungui; Li, Qi; Gong, Zongqiang

    2008-01-15

    Microbial consortia isolated from aged oil-contaminated soil were used to degrade 16 polycyclic aromatic hydrocarbons (15.72 mgkg(-1)) in soil and slurry phases. The three microbial consortia (bacteria, fungi and bacteria-fungi complex) could degrade polycyclic aromatic hydrocarbons (PAHs), and the highest PAH removals were found in soil and slurry inoculated with fungi (50.1% and 55.4%, respectively). PAHs biodegradation in slurry was lower than in soil for bacteria and bacteria-fungi complex inoculation treatments. Degradation of three- to five-ring PAHs treated by consortia was observed in soil and slurry, and the highest degradation of individual PAHs (anthracene, fluoranthene, and benz(a)anthracene) appeared in soil (45.9-75.5%, 62-83.7% and 64.5-84.5%, respectively) and slurry (46.0-75.8%, 50.2-86.1% and 54.3-85.7%, respectively). Therefore, inoculation of microbial consortia (bacteria, fungi and bacteria-fungi complex) isolated from in situ contaminated soil to degrade PAHs could be considered as a successful method.

  10. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  11. Boosting plant defence by beneficial soil microorganisms

    NARCIS (Netherlands)

    Pozo, Maria J.; Loon, L.C. van; Pieterse, C.M.J.

    2004-01-01

    Plants in their environment face potential deleterious organisms such as fungi, bacteria, viruses, nematodes, etc. Many of them are able to cause plant diseases, responsible of important losses in crop production worldwide. But often the outcome of these interactions is not disease, since plants

  12. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  13. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  14. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  15. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    Science.gov (United States)

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  17. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    Science.gov (United States)

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  18. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  19. Lubricating oil-degrading bacteria in soils from filling stations and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... 1Department of Biochemistry and Microbiology, Faculty of Science, University of ... Key words: environmental pollution, oil-degrading bacteria, heterotrophic bacteria, physico-chemical factors, ..... Manual of Environmental.

  20. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    Science.gov (United States)

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2017-12-01

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N 2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N 2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N 2 O production under conditions of high inorganic ammonia (NH 3 ) input, but result mainly from the activity of AOA when NH 3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N 2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N 2 O production. In unamended soils, ammonia oxidation and N 2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N 2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N 2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N 2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N 2 O emissions from fertilised agricultural soils. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  2. Diversity of ammonia-oxidizing bacteria in relation to soil environment in Ebinur Lake Wetland

    Directory of Open Access Journals (Sweden)

    Wenge Hu

    2016-03-01

    Full Text Available Ammonia oxidation is the first and rate-limiting step of nitrification and is carried out by ammonia-oxidizing bacteria (AOB. Ebinur Lake Wetland, the most representative temperate arid zone wetland ecosystem in China, is the centre of oasis and desertification of the northern slope of Tianshan conjugate. Soil samples were collected from three sites (Tamarix ramosissima, Halocnemum strobilaceum and Phragmites australis and different soil layers (0–5, 5–15, 15–25 and 25–35 cm in this wetland in spring, summer and autumn and were used to characterize the diversity of AOB based on the ammonia monooxygenase (amoA gene. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE and bivariate correlation analysis were used to analyse the relationship between the diversity of AOB and soil environment factors. The PCR-DGGE indicated that the diversity of AOB was high in the entire sample and the Shannon diversity index varied from 1.369 to 2.471. The phylogenetic analysis showed that the amoA fragments were grouped into Nitrosospira sp. and Nitrosomonas sp. Most amoA gene sequences fell within the Nitrosospira sp. cluster, and only a few sequences were clustered with Nitrosomonas sp., indicating that Nitrosospira sp. may be more adaptable than Nitrosomonas sp. in this area. Bivariate correlation analysis showed that the diversity of AOB was significantly correlated with soil organic matter, conductivity, total phosphorus and nitrate in the Ebinur Lake Wetland in Xinjiang.

  3. Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.

    Science.gov (United States)

    Zhang, Dechao; Margesin, Rosa

    2014-06-01

    We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.

  4. 17 CFR 270.3c-1 - Definition of beneficial ownership for certain 3(c)(1) funds.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Definition of beneficial... AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.3c-1 Definition of beneficial ownership for certain 3(c)(1) funds. (a) As used in this section: (1) The term...

  5. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests.

    Science.gov (United States)

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R

    2016-01-01

    Background : The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods : A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results : Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions : These findings have important implications for the Cannabis and food safety testing industries.

  6. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    Science.gov (United States)

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  7. Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition

    International Nuclear Information System (INIS)

    Collina, E.; Lasagni, M.; Pitea, D.; Franzetti, A.; Di Gennaro, P.; Bestetti, G.

    2007-01-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC 50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition

  8. Interactions of plant-beneficial bacteria with the ascomycete Coniochaeta ligniaria

    NARCIS (Netherlands)

    Trifonova, R.D.; Postma, J.; Elsas, van J.D.

    2009-01-01

    Aims: To assess the interactions between Coniochaeta ligniaria F/TGF15 obtained from torrefied grass fibers (TGF) and selected bacteria from the same substrate. Methods and Results: Upon coinoculation on potato dextrose agar, Pseudomonas putida 15/TGE5, Methylobacterium radiotolerans 56/TGF10,

  9. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    Science.gov (United States)

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  10. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective

    Science.gov (United States)

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community. PMID:25741356

  11. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    Directory of Open Access Journals (Sweden)

    Silvia eLampis

    2015-02-01

    Full Text Available A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: i non-inoculated plants; ii plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A; iii plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4 and Pseudoxanthomonas sp. P4V6 (B, and iv plants inoculated with all five bacterial strains (AB. The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  12. Effects of Bio-char on Soil Microbes in Herbicide Residual Soils

    Directory of Open Access Journals (Sweden)

    WANG Gen-lin

    2015-10-01

    Full Text Available Effects of biological carbon (bio-char on soil microbial community were studied by pot experiments simulating long residual herbicide residues in soil environment, which clarifed the improvement of biochar and its structural properties on soil microenvironment. The results showed that fungi and actinomycetes had the same effect tendency within 0~0.72 mg·kg-1 in clomazone residue which increased the role of stimulation with crop growth process prolonged, especially in high residue treatment, but strong inhibitory effect on bacteria community was occured early which returned to normal until sugar beet growth to fiftieth day. Soil fungi community decreased with bio-char adding, but had no significant difference with the control. When clomazone residue in soil was below 0.24 mg·kg-1, soil actinomycetes community was higher than control without bio-char, bacteria increased first and then reduced after adding carbon as below 0.12 mg·kg-1. Biochar was ‘deep hole’ structure containing C, O, S and other elements. The results showed that a certain concentration clomazone residue in soil would stimulate soil fungi and actinomycetes to grow. After adding the biochar, the inhibition effect of high herbicides residual on bacterial would be alleviated.

  13. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-05-15

    Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.

    Science.gov (United States)

    Suleimanova, Aliya D; Beinhauer, Astrid; Valeeva, Liia R; Chastukhina, Inna B; Balaban, Nelly P; Shakirov, Eugene V; Greiner, Ralf; Sharipova, Margarita R

    2015-10-01

    Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Biodegradation of crude oil by introduced psychotropic microbial association and indigenous bacteria under laboratory and field conditions in soils of Moscow region, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Filonov, A.; Boronin, A. [Pushchino State Univ., Moscow (Russian Federation). Inst. of Biochemistry and Physiology of Microorganisms; Nechaeva, I.; Akhmetov, L.; Gafarov, A.; Puntus, I. [Pushchino State Univ., Moscow (Russian Federation)

    2007-07-01

    This paper presented an in-situ bioremediation method that accelerates the degradation of crude oil. Laboratory and field studies were conducted to determine the effect of adding mineral fertilizers such as nitrogen and phosphorus to stimulate the growth of microorganisms and accelerate microbial metabolism. The strongest effect was observed when nitrogen, phosphorous and potassium sources were added with microbial association jointly, particularly in field soil experiments. A 22 per cent oil spill removal was achieved due to metabolic activity of indigenous bacteria after only 2 months of experimenting. This study examined the kinetics of total number and crude oil degrading bacteria in the soil resulting from nutrient inoculation. It was shown that the rate of hydrocarbon degradation by microorganisms in the environment is determined by a range of factors such as temperature, soil pH, oxygen, water and nutritive availability. The use of psychotrophic degrader strains resulted in a higher degree of oil degradation in the field than in the laboratory. The study also revealed that the biodegradation process in polluted Arctic soils polluted with diesel was accelerated with the addition of degrader microorganisms. It was recommended that in cold climates, nitrogen, phosphorous and potassium should be introduced simultaneously. 21 refs., 1 tab., 4 figs.

  16. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce.

    Science.gov (United States)

    Duan, Manli; Li, Haichao; Gu, Jie; Tuo, Xiaxia; Sun, Wei; Qian, Xun; Wang, Xiaojuan

    2017-05-01

    Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  18. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  19. Enhancing plant productivity while suppressing biofilm growth in a windowfarm system using beneficial bacteria and ultraviolet irradiation.

    Science.gov (United States)

    Lee, Seungjun; Ge, Chongtao; Bohrerova, Zuzana; Grewal, Parwinder S; Lee, Jiyoung

    2015-07-01

    Common problems in a windowfarm system (a vertical and indoor hydroponic system) are phytopathogen infections in plants and excessive buildup of biofilms. The objectives of this study were (i) to promote plant health by making plants more resistant to infection by using beneficial biosurfactant-producing Pseudomonas chlororaphis around the roots and (ii) to minimize biofilm buildup by ultraviolet (UV) irradiation of the water reservoir, thereby extending the lifespan of the whole system with minimal maintenance. Pseudomonas chlororaphis-treated lettuce grew significantly better than nontreated lettuce, as indicated by enhancement of color, mass, length, and number of leaves per head (p < 0.05). The death rate of the lettuce was reduced by ∼ 50% when the lettuce was treated with P. chlororaphis. UV irradiation reduced the bacteria (4 log reduction) and algae (4 log reduction) in the water reservoirs and water tubing systems. Introduction of P. chlororaphis into the system promoted plant growth and reduced damage caused by the plant pathogen Pythium ultimum. UV irradiation of the water reservoir reduced algal and biofilm growth and extended the lifespan of the system.

  20. Selectivity lists of pesticides to beneficial arthropods for IPM programs in carrot--first results.

    Science.gov (United States)

    Hautier, L; Jansen, J-P; Mabon, N; Schiffers, B

    2005-01-01

    In order to improve IPM programs in carrot, 7 fungicides, 12 herbicides and 9 insecticides commonly used in Belgium were tested for their toxicity towards five beneficial arthropods representative of most important natural enemies encountered in carrot: parasitic wasps - Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), ladybirds - Adalia bipunctata (L.) (Col., Coccinellidae), hoverfly - Episyrphus balteatus (Dipt.. Syrphidae), rove beetle - Aleochara bilineata (Col., Staphylinidae) and carabid beetle - Bembidion lampros (Col., Carabidae). Initialy, all plant protection products were tested on inert substrate glass plates or sand according to the insect. Products with a corrected mortality (CM) or a parasitism reduction (PR) lower than 30% were kept for the constitution of positive list (green list). The other compounds were further tested on plant for A. rhopalosiphi, A. bipunctata, E. balteatus and soil for B. lampros and A. bilineata. With these extended laboratory tests results, products were listed in toxicity class: green category [CM or PR harmless to beneficials except Tebuconazole, which was slightly harmful for A. bipunctata. Herbicides were also harmless for soil beneficials, except Chlorpropham. This product was very toxic on sand towards A. bilineata and must be tested on soil. All soil insecticides tested were very toxic for ground beneficials and considered as non-selective. Their use in IPM is subject to questioning in view of negative impacts on beneficials. Among foliar insecticides, Dimethoate and Deltamethrin are not recommended for IPM because their high toxicity for all beneficials. The other foliar insecticides were more selective; any of them were harmless for all species tested.

  1. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  2. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  3. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.

    Science.gov (United States)

    Drozdova, O Yu; Pokrovsky, O S; Lapitskiy, S A; Shirokova, L S; González, A G; Demin, V V

    2014-12-01

    The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (psoil particles

  4. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  5. Isotopologue signatures of nitrous oxide produced by nitrate-ammonifying bacteria isolated from soil

    Science.gov (United States)

    Behrendt, Undine; Well, Reinhard; Giesemann, Anette; Ulrich, Andreas; Augustin, Jürgen

    2015-04-01

    Agricultural soils are the largest single source of anthropogenic N2O to the atmosphere, primarily driven by microbiological processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Both processes occur under similar conditions of low oxygen concentration and therefore, source partitioning of emitted N2O is difficult. Understanding what controls the dynamics and reaction equilibrium of denitrification and DNRA is important and may allow the development of more effective mitigation strategies. 15N site preference (SP), i.e. the difference between 15N of the central and peripheral N-position of the asymmetric N2O molecule, differs depending on processes involved in N2O formation. Hence investigation of the isotopomer ratios of formed N2O potentially presents a reliable mean to identify its source. In this study, bacterial isolates obtained from organic soils were screened for their ability to reduce nitrate/nitrite to ammonium and to release N2O to the atmosphere. Taxonomic characterisation of the strains revealed that N2O formation was only detected in ammonifying strains affiliated to several genera of the family Enterobacteriaceae and strains belonging to the genus Bacillus and Paenibacillus. Sampling of N2O was conducted by incubation of strains under oxic and anoxic conditions. Investigation of the 15N site preference showed SP values in the range of 39 to 57 o . Incubation conditions had no influence on the SP. The lowest values were achieved by a strain of the species Escherichia coli which was included in this study as a DNRA reference bacterium harbouring the NrfA gene that is coding the nitrite reductase, associated with respiratory nitrite ammonification. Soil isolates showed SP-values higher than 40 o . Comparison of these results with SP-values of N2O produced by denitrifying bacteria in pure cultures (-5 to 0 o )^[1, 2]revealedsignificantdifferences.Incontrast,N_2OproducedbydenitrifyingfungidisplayedSP - valuesinarangeof

  6. In vitro study of beneficial properties and safety of lactic acid bacteria isolated from Portuguese fermented meat products.

    Science.gov (United States)

    Todorov, S D; Franco, B D G M; Wiid, I J

    2014-09-01

    Many lactic acid bacteria produce bacteriocins with a rather broad spectrum of inhibition, which could offer potential applications in food preservation. Bacteriocin production by starter cultures may bring advantage to these strains in competitive interactions with pathogenic bacteria from the food matrix. The objective of this study was to determine the safety of beneficial strains (Lactobacillus plantarum ST202Ch and ST216Ch, Enterococcus faecium ST211Ch, and Lactobacillus sakei ST22Ch, ST153Ch and ST154Ch) previously isolated from fermented meat products and characterised as bacteriocin producers. Auto-aggregation was strain-specific, and values of 28.97, 27.86 and 28.56% were recorded for L. sakei ST22Ch, ST153Ch and ST154Ch, respectively, 16.95 and 14.58% for L. plantarum ST202Ch and ST216Ch, respectively, and 12.77% for E. faecium ST211Ch. Various degrees of co-aggregation between 28.85 and 44.76% for Listeria monocytogenes 211 and 409, and between 23.60 to 34.96% for E. faecium ATCC 19443 were observed. According to the results of the diffusion method, the studied strains demonstrated susceptibility to penicillin G, ampicillin, amoxicillin, amoxicillin/clavulonic acid, imipenem, linezolid, and tetracycline. In addition, the susceptibility of the six strains to various non-antibiotic commercial drugs was examined. Production of β-galactosidase by L. sakei ST22Ch, ST153Ch and ST154Ch, L. plantarum ST202Ch and ST216Ch, and E. faecium ST211Ch was confirmed by employing sterile filter paper discs impregnated with o-nitrophenyl-β-D-galactopyranose. A statistically significant (P<0.001) inhibition of Mycobacterium tuberculosis growth by bacteriocins produced by L. plantarum ST202Ch (38.3%) and ST216Ch (48.6%), L. sakei ST153Ch (16.2%) and ST154Ch (16.1%), and E. faecium ST211Ch (21.7%) was observed. As determined by the polymerase chain reaction, the tested strains showed a low virulence gene profile.

  7. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    International Nuclear Information System (INIS)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-01-01

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  8. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Mingming [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Feng, Yanfang, E-mail: fengyanfang@163.com [Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wan, Jinzhong [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042 (China); Xie, Shanni; Tian, Da [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhao, Yu [Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Jun; Hu, Feng; Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Jiang, Xin, E-mail: Jiangxin@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-05-15

    Highlights: • Biochar can prevent soil sulfonamides from accumulating in lettuce tissues. • ARB enrichment in lettuce tissues decreased significantly after biochar amendment. • Impedance effect of biochar addition on soil ARGs was also quite effective. • Biochar application can be a practical strategy to protect vegetable safety. - Abstract: Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs.

  9. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    Science.gov (United States)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  10. High diversity of nitrogen-fixing bacteria in upper reaches of Heihe River, Northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.

    2013-03-01

    Vegetation plays a key role to water conservation in southern Qilian Mountains (Northwestern China), the upper reaches of Heihe River. Nitrogen-fixing bacteria are crucial for vegetation protection because they can supply plants with nitrogen source. Nevertheless, little is known about nitrogen-fixing bacteria in this region. In present study, nifH gene clone libraries were established for detecting the difference of nitrogen-fixing bacterial communities between Potentilla parvifolia shrub and Carex alrofusca meadow in the southern Qilian Mountains. All the identified nitrogen-fixing bacterial clones belonged to Proteobacteria. At the genus level, the Azospirillum sp. was only detected in shrub soil while Thiocapsa sp., Derxiasp., Ectothiorhodospira sp., Mesorhizobium sp., Klebsiella sp., Ensifer sp., Methylocella sp. and Peseudomonas sp. were just detected in meadow soil. Shannon-Wiener index of nifH gene ranged from 1.5 to 2.8 and was higher in meadow soil than shrub soil. Contrarily, the nifH gene copies and CFUs of cultured nitrogen-fixing bacteria ranged from 0.4 × 107 to 6.9 × 107 copies g-1 soil and 0.97 × 106 to 12.78 × 106 g-1 soil, respectively. Furthermore, both of them were lower in meadow soil than shrub soil. Statistical analysis revealed that diversity and copies of nifH gene mostly correlated with aboveground biomass in shrub soil. In meadow soil, nifH gene diversity was principally affected by altitude while copies did by soil available K.

  11. Screening and biological characteristics of fufenozide degrading bacteria

    Science.gov (United States)

    Xu, Chenhao; Gong, Mingfu; Guan, Qinlan; Deng, Xia; Deng, Hongyan; Huang, Jiao

    2018-04-01

    Fufenozide was a novel pesticide for the control of Lepidoptera pests, which was highly toxic to silkworm. Fufenozide-contaminated soil samples were collected and the bacteria that degrade fufenozide were isolated and screened by selective medium. The colony characteristics, cell characteristics and degradation characteristics in different concentrations fufenozide of the fufenozide degrading bacteria were studied. The results indicated that seven strains of fufenozide degradeing bacteria, named as DDH01, DDH03, DDH04, DDH04, DDH05, DDH07 and DDH07 respectively, were isolated from soil contaminated with fufenozide. DDH01, DDH02, DDH04 and DDH05 of seven fufenozide degrading bacteria, was gram-positive bacteria, and DDH03, DDH06 and DDH07 was gram-negative bacteria. All of seven strains of fufenozide degrading bacteria were not spores, weeks flagella, rod-shaped bacteria. DDH06 and DDH07 had capsules, and the remaining five strains had not capsule. The colonies formed by seven strains of fufenozide degradation bacteria on beef extract peptone medium plate were milky white colonies with irregular edges, thinner lawn, smaller colony with smooth surface. The growth of 7 strains of fufenozide degradation bacteria was significantly affected by the concentration of fufenozide, All of 7 strains grown in the range from 0.00025 g/mL to 1 g/mL of 10% fufenozide suspension. DDH2 was the best among the 7 strains of fufenozide degrading bacteria grown in 10% fufenozide suspension medium.

  12. Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils

    Directory of Open Access Journals (Sweden)

    Drake N. Mubiru

    2017-06-01

    Full Text Available The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays and common bean (Phaseolus vulgaris L. to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC. Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP; permanent planting basins (PPB; and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11% of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security.

  13. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  14. Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Kathleen E Stevens

    2011-08-01

    Full Text Available The appearance of new mutations within a population provides the raw material for evolution. The consistent decline in fitness observed in classical mutation accumulation studies has provided support for the long-held view that deleterious mutations are more common than beneficial mutations. Here we present results of a study using a mutation accumulation design with the bacterium Streptococcus pneumoniae in which the fitness of the derived populations increased. This rise in fitness was associated specifically with adaptation to survival during brief stationary phase periods between single-colony population bottlenecks. To understand better the population dynamics behind this unanticipated adaptation, we developed a maximum likelihood model describing the processes of mutation and stationary-phase selection in the context of frequent population bottlenecks. Using this model, we estimate that the rate of beneficial mutations may be as high as 4.8×10(-4 events per genome for each time interval corresponding to the pneumococcal generation time. This rate is several orders of magnitude higher than earlier estimates of beneficial mutation rates in bacteria but supports recent results obtained through the propagation of small populations of Escherichia coli. Our findings indicate that beneficial mutations may be relatively frequent in bacteria and suggest that in S. pneumoniae, which develops natural competence for transformation, a steady supply of such mutations may be available for sampling by recombination.

  15. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    2011-09-01

    Full Text Available With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA. After digestion of 16S rDNA Y1-Y3 PCR products (1487pb with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708 and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91% with A. nigricans (AB175651 sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  16. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy.

    Science.gov (United States)

    Kumar B N, Vinay; Kampe, Bernd; Rösch, Petra; Popp, Jürgen

    2015-07-07

    A soil habitat consists of an enormous number of pigmented bacteria with the pigments mainly composed of diverse carotenoids. Most of the pigmented bacteria in the top layer of the soil are photoprotected from exposure to huge amounts of UVA radiation on a daily basis by these carotenoids. The photostability of these carotenoids depends heavily on the presence of specific features like a carbonyl group or an ionone ring system on its overall structure. Resonance Raman spectroscopy is one of the most sensitive and powerful techniques to detect and characterize these carotenoids and also monitor processes associated with them in their native system at a single cell resolution. However, most of the resonance Raman profiles of carotenoids have very minute differences, thereby making it extremely difficult to confirm if these differences are attributed to the presence of different carotenoids or if it is a consequence of their interaction with other cellular components. In this study, we devised a method to overcome this problem by monitoring also the photodegradation of the carotenoids in question by UVA radiation wherein a differential photodegradation response will confirm the presence of different carotenoids irrespective of the proximities in their resonance Raman profiles. Using this method, the detection and characterization of carotenoids in pure cultures of five species of pigmented coccoid soil bacteria is achieved. We also shed light on the influence of the structure of the carotenoid on its photodegradation which can be exploited for use in the characterization of carotenoids via resonance Raman spectroscopy.

  17. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  19. Effects of rhizobial bacteria on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils

    Directory of Open Access Journals (Sweden)

    S homayoon

    2016-05-01

    Full Text Available Introduction Soil salinity is one of the major agricultural problems and it is limiting crop productivity in many parts of the cultivated areas all over the world. Saline soils are differentiated by the presence of great ratios of Na/Ca, Na/K, Ca2+, Mg2+, and Cl/NO3 (Gratan & Catherine, 1993 and high levels of neutral salts in the surface layers, which are resulting from the capillary action (Al-Falih, 2002. Osmotic stress occurs when soluble salts increase in the soils and then results in specific ion toxicity (Agarwal & Ahmad, 2010. Therefore, one of the most important side effects of salinity is nutritional disorders. High concentration of NaCl in the root medium usually reduces nutrients uptake and affects the transportation of potassium and calcium ions in plant. (Gratan & Catherine, 1993 reported that the salinity of soils changes ionic strength of the substrate and it can influence mineral nutrient uptake and translocation. Salinity also changes the mineral nutrient availability and disrupts the mineral relations of plants. Hence, the main purpose of this research is to evaluate the effects of rhizobial bacteria inoculation on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils. Material and methods Soil sample was collected from Astan Ghodse Razavi farm, Mashhad Iran, and then was dried and passed through a 12-mesh (approximately 2 mm screen. Soil sample was divided into three parts and then was placed into three containers. Each container was watered by a different proportion of saline water (EC= 10 dS.m-1. Salinity of soils was regularly monitored until three salinities (2, 6 and 10 dS.m-1 came out. Then, a completely randomized design with a factorial arrangement was carried out in a greenhouse condition. The experimental factors included four levels of inoculation (Sinorhizobium meliloti, Bradyrhizobium japonicum and Rhizobium leguminosarum and control and three levels of soil salinity (2, 6 and 10 dS.m-1 with

  20. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  1. Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest

    OpenAIRE

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-01-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and ...

  2. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of

  3. Presence of Nitrosospiral cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils.

    NARCIS (Netherlands)

    Nugroho, R. Adi; Roling, W.F.M.; Laverman, A.M.; Zoomer, R.; Verhoef, H.A.

    2005-01-01

    The relation between environmental factors and the presence of ammonia-oxidising bacteria (AOB), and its consequences for the N transformation rates were investigated in nine Scots pine (Pinus sylvestris L.) forest soils. In general, the diversity in AOB appears to be strikingly low compared to

  4. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  5. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.

    Directory of Open Access Journals (Sweden)

    Wenyan Jiang

    Full Text Available The immune systems that protect organisms from infectious agents invariably have a cost for the host. In bacteria and archaea CRISPR-Cas loci can serve as adaptive immune systems that protect these microbes from infectiously transmitted DNAs. When those DNAs are borne by lytic viruses (phages, this protection can provide a considerable advantage. CRISPR-Cas immunity can also prevent cells from acquiring plasmids and free DNA bearing genes that increase their fitness. Here, we use a combination of experiments and mathematical-computer simulation models to explore this downside of CRISPR-Cas immunity and its implications for the maintenance of CRISPR-Cas loci in microbial populations. We analyzed the conjugational transfer of the staphylococcal plasmid pG0400 into Staphylococcus epidermidis RP62a recipients that bear a CRISPR-Cas locus targeting this plasmid. Contrary to what is anticipated for lytic phages, which evade CRISPR by mutations in the target region, the evasion of CRISPR immunity by plasmids occurs at the level of the host through loss of functional CRISPR-Cas immunity. The results of our experiments and models indicate that more than 10(-4 of the cells in CRISPR-Cas positive populations are defective or deleted for the CRISPR-Cas region and thereby able to receive and carry the plasmid. Most intriguingly, the loss of CRISPR function even by large deletions can have little or no fitness cost in vitro. These theoretical and experimental results can account for the considerable variation in the existence, number and function of CRISPR-Cas loci within and between bacterial species. We postulate that as a consequence of the opposing positive and negative selection for immunity, CRISPR-Cas systems are in a continuous state of flux. They are lost when they bear immunity to laterally transferred beneficial genes, re-acquired by horizontal gene transfer, and ascend in environments where phage are a major source of mortality.

  6. Isolation of lipolytic bacteria from Colombian Andean soils

    DEFF Research Database (Denmark)

    Jaramillo, Paola Andrea Palacios; Borda-Molina, Daniel; Montaña, José Salvador

    2017-01-01

    soils under low temperatures were sampled: paramo and glacier soils from "Los Nevados" National Natural Park. Both soils were enriched through a fed-batch fermentation using olive oil as the inductor substrate. Forty-three lipolytic isolates were obtained and their taxonomic assignments were performed...... on the basis of 16S rDNA gene sequencing. In both cases, the phylum Proteobacteria represented the majority of the isolates. Qualitative assays to measure the lipolytic activity were performed by using tributyrin, triolein or olive oil (1%). Two isolates identified as Pseudomonas psychrophila...

  7. Screening of chlorpyrifos degrading bacteria CD7 and its combined application with PGPR JD37

    Directory of Open Access Journals (Sweden)

    Su Cuizhu

    2017-04-01

    Full Text Available We screened a chlorpyrifos degrading bacteria,Burkholderiasp. CD7.Joint with plant growth-promoting rhizobacteria(PGPR JD37 to produce a compositesoil amendment,which could restorethe pesticides polluted soil and promote plant growth.Results showed that CD7 and JD37 (at the volume ratio of 1:1 can promote the growth of plants,and within 25 days degrade about 66.43% chlorpyrifos in the soil.Further research found that under the same conditions of carrier dosage,vermicompost can adsorbed more bacteria than talcum powder;after a month preservation at room temperature,the number of living bacterium still maintained about 4.81×107 CFU/g.Carrier and soil,at the mass ratio of 1:1,could optimally promote plant growth,improve soil enzyme activities and increase the number of microorganisms in soil.

  8. Comparative Study of Crude Oil Contamination Effect on Industrial and Forest Soil Microbial Community

    Directory of Open Access Journals (Sweden)

    Nasrin Ansari

    2017-02-01

    Full Text Available Introduction: Petroleum hydrocarbons are widespread pollutant that enters to soil by some pathwayssuch as: Transportation of crude oil, conservation of oil compounds, crude oil spill and treatment process on refineries. Oil pollution has some ecological effect on soil that disturbed composition and diversity of microbial community. Also this pollution has some effects on microbial activity and enzymes of soil. Forests ecosystems may be polluted with petroleum hydrocarbons via different ways such as transportation and spill of crude oil from resource of petroleum storage. Industrial soil defined as the soils that located in industrial area such as petrochemical plant, mine, chemical factories and etc. These soils always contaminated to many pollutant such as: oil, diesel and heavy metals. These pollutants have some effects on the texture of the soil and microbial community. The aim of this research is to understand the effect of oil pollution on two different soils. Material and Methods: In order to evaluate the effect of crude oil on soil microbial community, two different soil samples were collected from industrial and forest soils. Six microcosms were designed in this experiment. Indeed each soil sample examined inthree microcosms asunpolluted microcosm, polluted microcosm, and polluted microcosm with nutrient supply of Nitrogen and PhosphorusSome factors were assayed in each microcosm during 120 days of experiment. The included study factors were: total heterotrophic bacteria, total crude oil degrading bacteria, dehydrogenase enzyme and crude oil biodegradation. For enumeration of heterotrophic bacteria nutrient agar medium was used. In this method serial dilutions were done from each soil and spread on nutrient agar medium then different colonies were counted. For enumeration of degrading bacteria Bushnel-Hass (BH medium were used. The composition of this medium was (g/lit: 1 gr KH2PO4, 1gr K2HPO4, 0.2 gr MgSO4.7H2O, 0.02 gr CaCl2, 1 gr NH4

  9. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  10. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    Science.gov (United States)

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  12. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  13. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  14. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Soil food web changes during spontaneous succession at post mining sites: a possible ecosystem engineering effect on food web organization?

    Science.gov (United States)

    Frouz, Jan; Thébault, Elisa; Pižl, Václav; Adl, Sina; Cajthaml, Tomáš; Baldrián, Petr; Háněl, Ladislav; Starý, Josef; Tajovský, Karel; Materna, Jan; Nováková, Alena; de Ruiter, Peter C

    2013-01-01

    Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1- 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel.

  16. Sorption studies of radioiodine on soils with special references to soil microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.)); Erten, H. (Bilkent Univ., Ankara (Turkey). Dept. of Chemistry); Martens, R. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany, F.R.). Inst. fuer Bodenbiologie)

    1991-01-01

    In batch experiments with two types of soils, chernozem and podzol, radioiodine ({sup 125}I) showed an initial rapid sorption, followed by a long and slow further increase. Very little sorption (R{sub d} < 1) was detected in clay minerals. Generally, higher R{sub d}-values were observed for the chernozem soil, characterized by a higher amount of organic substance and of soil biomass. The sorption process was predominantly irreversible, the isotherms were linear at low ion concentrations and deviated from linearity starting at 10{sup -5} mmol.ml{sup -1}. Sorption ratio was found to increase with increasing volume to mass ratio. The composition of liquid phases (bidistilled water, synthetic soil water, rain water) highly affected iodine sorption. In experiments with KBr solution, the sorption of I{sup -} was found to be strongly preferred to Br{sup -}. Incubation of soil samples under varied conditions (decreased or increased soil biomass, O{sub 2}-concentration, incubation temperature, soil water content and storage conditions) delivered indications for the participation of soil microflora in iodine immobilization. Test with isolated soil bacteria and fungi showed that radioiodine can be incorporated by soil microorganisms under certain conditions only: Considerable uptake of radioiodine was found in washed (NaCl, CaCl{sub 2}) cells with both bacteria and fungi, but no incorporation was detected into cells incubated with radioiodine in the culture medium. (orig.).

  17. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    Science.gov (United States)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  18. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only

    NARCIS (Netherlands)

    Pan, Y.; Abell, G.C.J.; Bodelier, P.L.E.; Meima-Franke, M.; Sessitsch, A.; Bodrossy, L.

    2014-01-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil

  19. Isolation of bacteria from mechanic workshops' soil environment ...

    African Journals Online (AJOL)

    isolation of Bacillus Stearothermophilus (8.3%) and Cyanobacteria (1.7%) from the sites sampled. The number of viable bacterial growth of B. Stearothermophilus and Cyanobacteria were enumerated and expressed in colony forming units. Agbani had bacteria densities of 5 x 104, 1.25 x 104 and 6.25 x 105 from the three ...

  20. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil

    International Nuclear Information System (INIS)

    Ławniczak, Ł.; Syguda, A.; Borkowski, A.; Cyplik, P.; Marcinkowska, K.; Wolko, Ł.; Praczyk, T.; Chrzanowski, Ł.; Pernak, J.

    2016-01-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing "1H and "1"3C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. - Highlights: • Impact of herbicidal ionic liquids on bacterial community structure was studied. • Oligomeric herbicidal ionic liquids were effective but not readily biodegradable. • Next generation sequencing was used to evaluate shifts in bacterial abundance. • Treatment during field trials resulted in changes at class and species level. • Use of herbicidal ionic liquids affects the structure of autochthonic soil bacteria.

  1. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  2. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    Science.gov (United States)

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  3. Interaction Effects of Phosphate Solubilizing Bacteria and Mycorrhiza on the Growth and Phosphorus uptakeof Sorghum

    Directory of Open Access Journals (Sweden)

    Abdolhossein ziaeyan

    2017-01-01

    Full Text Available Introduction: The most abundant of agricultural soils in Iran, are calcareous. In calcareous soils, phosphorus fertilizers use efficiency is low. The usage of soil microorganisms is one of the effective ways to increment the uptake of phosphorus in calcareous soils. This microorganisms using various mechanisms, including the production of plant hormones or the production of organic and inorganic acids to dissolve the insoluble phosphorous compounds. Mycorrhizal symbiosis is also one of the most recognized and important symbiosis relationship found in the world. In a mycorrhizal symbiosis,plants can be able to absorb more nutrients and water from soil and fungus plays a protective role as a growth enhancer and make the plants more tolerable to biotic (pathogens and abiotic (drought, cold and salinity stresses .This research conducted to study phosphate solubilizing bacteria and mycorrhiza roles on sorghum growth and phosphorus availability to this plant. Materials and methods: To achieve the desired goals, a pot experiment was conducted as a factorial in completely randomized design with sixteen treatments in three replications. The treatments were combination of four P levels of zero, 25, 50, and 75 mg kg-1 P2O5 from triple super phosphate source, the two treatments of inoculation and without inoculation of phosphate solubilizing bacteria and the two treatments of inoculation and no inoculation of mycorrizal fungus. Required fertilizers based on initial soil test results were supplied. Accordingly, the same amount of nitrogen, 80 mg kg-1 (30 mg kg-1 before planting and 50 mg kg-1 after planting twice as urea source, 10 mg Zn kg-1 and 5 mg kg-1 Cu per kg soil as the forms of Zinc sulphate (ZnSO4.7H2O and copper sulphate (CuSO4.H2O were added to each soil sample. Required Phosphorus also was calculated based on treatments and added to potting soil. Each pot size was 5 kg. every sample was thoroughly mixed and then were placed in pots. At the same

  4. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  5. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  6. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  7. Soil Nitrogen Availability Is Reflected in the Bacterial Pathway1

    Institute of Scientific and Technical Information of China (English)

    V.KRIVTSOV; B.S.GRIFFITHS; K.LIDDELL; A.GARSIDE; R.SALMOND; T.BEZGINOVA; J.THOMPSON

    2011-01-01

    Measurements of concentrations of easily extractable soil nitrogen (N) were carried out on samples collected at the Heron Wood Reserve, Scotland, concurrently with investigations of N associated with total microbial biomass and the abundances of bacteria,fungi, and invertebrates. Soil biota at the studied site appeared to be limited by N. There was a remarkable difference between the ambient (i.e., easily extractable N) and biomass nitrogen. The abundance data of bacteria, protozoa and nematodes significantly negatively correlated with ambient N but showed positive correlations with the total microbial N content. There were, however,remarkable differences between the correlation patterns exhibited by the fungal and the bacterial pathways, as fungi did not show any correlations with chemical variables. These differences should be taken into account whilst interpreting biological interactions both at this important site and elsewhere.

  8. Inactivation of Escherichia coli in soil by solarization

    International Nuclear Information System (INIS)

    Wu, S.; Nishihara, M.; Kawasaki, Y.; Yokoyama, A.; Matsuura, K.; Koga, T.; Ueno, D.; Inoue, K.; Someya, T.

    2009-01-01

    Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g −1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces. (author)

  9. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  10. Hydrocarbon-degrading Capability of Bacteria isolated from a Maize ...

    African Journals Online (AJOL)

    Hydrocarbon-degrading Capability of Bacteria isolated from a Maize-Planted, Kerosene-contaminated Ilorin Alfisol. ... also revealed that some bacteria survive and even thrive in kerosene contaminated soil and hence have the potential to be used in biodegradation and/or bioremediation of oil contaminated soils and water.

  11. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Ławniczak, Ł., E-mail: lukasz.k.lawniczak@wp.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Syguda, A., E-mail: Anna.Syguda@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Borkowski, A., E-mail: a.borkowski@uw.edu.pl [Faculty of Geology, University of Warsaw, 02-089 Warsaw (Poland); Cyplik, P., E-mail: pcyplik@wp.pl [Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznan, 60-627 Poznan (Poland); Marcinkowska, K., E-mail: k.marcinkowska@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Wolko, Ł., E-mail: wolko@o2.pl [Department of Biochemistry and Biotechnology, Poznań University of Life Sciences in Poznan, 60-632 Poznan (Poland); Praczyk, T., E-mail: t.praczyk@iorpib.poznan.pl [Institute of Plant Protection - National Research Institute, Poznan 60-318 (Poland); Chrzanowski, Ł., E-mail: Lukasz.Chrzanowski@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland); Pernak, J., E-mail: Juliusz.Pernak@put.poznan.pl [Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan (Poland)

    2016-09-01

    The aim of this study was to evaluate the impact of selected herbicidal ionic liquids (HILs), which exhibit high efficacy in terms of weed control and low toxicity, but may be persistent due to limited biodegradability, on the community structure of autochthonic bacteria present in agricultural soil. Four different oligomeric HILs (with two types of cations and different ratio of herbicidal anions) were synthesized and characterized by employing {sup 1}H and {sup 13}C NMR. The results of biodegradation assay indicated that none of the tested HILs could be classified as readily biodegradable (biodegradation rate ranged from 0 to 7%). The conducted field studies confirmed that the herbicidal efficacy of the HILs was higher compared to the reference herbicide mixture by 10 to 30%, depending on the dose and weed species. After termination of field studies, the soil treated with the tested HILs was subjected to next generation sequencing in order to investigate the potential changes in the bacterial community structure. Proteobacteria was the dominant phylum in all studied samples. Treatment with the studied HILs resulted in an increase of Actinobacteria compared to the reference herbicidal mixture. Differenced among the studied HILs were generally associated with a significantly higher abundance of Bacteroidetes in case of 1-HIL-Dicamba 1/3 and Firmicutes in case of 2-HIL-Dicamba 1/3. - Highlights: • Impact of herbicidal ionic liquids on bacterial community structure was studied. • Oligomeric herbicidal ionic liquids were effective but not readily biodegradable. • Next generation sequencing was used to evaluate shifts in bacterial abundance. • Treatment during field trials resulted in changes at class and species level. • Use of herbicidal ionic liquids affects the structure of autochthonic soil bacteria.

  12. [Effects of biochar on microbial ecology in agriculture soil: a review].

    Science.gov (United States)

    Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying

    2013-11-01

    Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  13. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  14. Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Romina Belén Parada

    2017-07-01

    Full Text Available Two hundred and thirty four actinobacteria strains were isolated from Argentinian and Peruvian soil in order to evaluate the antimicrobial activity against multidrug resistant bacteria On the basis of their antagonist activity against methicillin-resistant Staphylococcus aureus (MRSA and two vancomycin-resistant Enterococcus (EVR-Van A and  EVR Van B,13 strains were selected. The presence of NRPS, PKS-I and PKS-II genes were also investigated by PCR techniques. Among the 13 selected actinobacteria, strain AC69C displayed the higher activity in diffusion tests in solid medium and was further evaluated for the production of antagonist metabolites in liquid media. The best results were obtained using fermentation broth with carbohydrates, when starch and glucose were used in combination. Antimicrobial activities of 640 arbitrary units (AU, 320 AU, 320 AU and 80 AU were obtained against EVR-Van A, EVR-Van B, Listeria monocytogenes ATCC7644 and MRSA, respectively. PCR amplification of 16S rRNA gene and subsequent phylogenetic analysis of AC69C strain displayed a 100 % homology with Streptomyces antibioticus NRRL B-1701. It was not possible to establish a correlation between the amplified genes and antimicrobial activity of the 13 selected strains. The results of this work show the wide distribution of actinobacteria in soil and the importance of the isolation of strain to screen novel active metabolites against multidrug resistant bacteria of clinical origin.

  15. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  16. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  17. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    Science.gov (United States)

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  18. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-04-01

    Full Text Available Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1–2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05. Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001. At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO

  19. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    Science.gov (United States)

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enrichment and Characterization of PCB-Degrading Bacteria as Potential Seed Cultures for Bioremediation of Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Dubravka Hršak

    2007-01-01

    Full Text Available The main objective of our study was to obtain seed cultures for enhancing the transformation of polychlorinated biphenyls (PCBs in contaminated soil of the transformer station in Zadar, Croatia, damaged during warfare activities in 1991. For enrichment, six soil samples were collected from different polluted areas and microcosm approach, stimulating the growth of biphenyl-degrading bacteria, was employed. Enrichment experiments resulted in the selection of two fast growing mixed cultures TSZ7 and AIR1, originating from the soil of the transformer station and the airport area, respectively. Both cultures showed significant PCB-degrading activity (56 to 60 % of PCB50 mixture was reduced after a two-week cultivation. Furthermore, the cultures displayed similar PCB-degrading competence and reduced di-to tetrachlorobiphenyls more effectively than penta- to hepta-chlorobiphenyls. Strain Z6, identified as Rhodococcus erythropolis, was found to be the only culture member showing PCB-transformation potential similar to that of the mixed culture TSZ7, from which it was isolated. Based on the metabolites identified in the assay with the single congener 2,4,4’-chlorobiphenyl, we proposed that the strain Z6 was able to use both the 2,3-and 3,4-dioxygenase pathways. Furthermore, the identified metabolites suggested that beside these pathways another unidentified pathway might also be active in strain Z6. Based on the obtained results, the culture TSZ7 and the strain Z6 were designated as potential seed cultures for bioremediation of the contaminated soil.

  1. The role of beneficial bacteria wall elasticity in regulating innate immune response.

    Science.gov (United States)

    Мokrozub, Viktoria V; Lazarenko, Liudmyla M; Sichel, Liubov M; Babenko, Lidia P; Lytvyn, Petro M; Demchenko, Olga M; Melnichenko, Yulia O; Boyko, Nadiya V; Biavati, Bruno; DiGioia, Diana; Bubnov, Rostyslav V; Spivak, Mykola Ya

    2015-01-01

    Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. LAB

  2. Sorption studies of radioiodine on soils with special references to soil microbial biomass

    International Nuclear Information System (INIS)

    Bors, J.; Erten, H.; Martens, R.

    1991-01-01

    In batch experiments with two types of soils, chernozem and podzol, radioiodine ( 125 I) showed an initial rapid sorption, followed by a long and slow further increase. Very little sorption (R d d -values were observed for the chernozem soil, characterized by a higher amount of organic substance and of soil biomass. The sorption process was predominantly irreversible, the isotherms were linear at low ion concentrations and deviated from linearity starting at 10 -5 mmol.ml -1 . Sorption ratio was found to increase with increasing volume to mass ratio. The composition of liquid phases (bidistilled water, synthetic soil water, rain water) highly affected iodine sorption. In experiments with KBr solution, the sorption of I - was found to be strongly preferred to Br - . Incubation of soil samples under varied conditions (decreased or increased soil biomass, O 2 -concentration, incubation temperature, soil water content and storage conditions) delivered indications for the participation of soil microflora in iodine immobilization. Test with isolated soil bacteria and fungi showed that radioiodine can be incorporated by soil microorganisms under certain conditions only: Considerable uptake of radioiodine was found in washed (NaCl, CaCl 2 ) cells with both bacteria and fungi, but no incorporation was detected into cells incubated with radioiodine in the culture medium. (orig.)

  3. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  4. Disease-induced assemblage of a plant-beneficial bacterial consortium

    DEFF Research Database (Denmark)

    Berendsen, Roeland L.; Vismans, Gilles; Yu, Ke

    2018-01-01

    Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate...... in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance...

  5. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  6. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.

    Science.gov (United States)

    Chen, Manjia; Cao, Fang; Li, Fangbai; Liu, Chengshuai; Tong, Hui; Wu, Weijian; Hu, Min

    2013-03-06

    We studied the mechanisms of microbial transformation in functional bacteria on 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in two different field soils, Haiyan (HY) and Chenghai (CH). The results showed that microbial activities had a steady dechlorination effect on DDT and its metabolites (DDx). Adding lactate or glucose as carbon sources increased the amount of Desulfuromonas, Sedimentibacter, and Clostridium bacteria, which led to an increase in adsorbed Fe(II) and resulted in increased DDT transformation rates. The electron shuttle of anthraquinone-2,6-disulfonic disodium salt resulted in an increase in the negative potential of soil by mediating the electron transfer from the bacteria to the DDT. Moreover, the DDT-degrading bacteria in the CH soil were more abundant than those in the HY soil, which led to higher DDT transformation rates in the CH soil. The most stable compound of DDx was 1,1-dichloro-2,2-bis(p-chloro-phenyl)ethane, which also was the major dechlorination metabolite of DDT, and 1-chloro-2,2-bis-(p-chlorophenyl)ethane and 4,4'-dichlorobenzo-phenone were found to be the terminal metabolites in the anaerobic soils.

  7. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  8. [Dynamic changes of soil microbial populations and enzyme activities in super-high yielding summer maize farmland soil].

    Science.gov (United States)

    Hou, Peng; Wang, Yong-jun; Wang, Kong-jun; Yang, Jin-sheng; Li, Deng-hai; Dong, Shu-ting; Liu, Jing-guo

    2008-08-01

    To reveal the characteristics of the dynamic changes of soil microbial populations and enzyme activities in super-high yielding ( > 15,000 kg x hm(-2)) summer maize farmland soil, a comparative study was conducted in the experimental fields in National Maize Engineering Research Center (Shandong). On the fields with an annual yield of >15,000 kg x hm(-2) in continuous three years, a plot with the yield of 20 322 kg x hm(-2) (HF) was chosen to make comparison with the conventional farmland (CF) whose maize yield was 8920. 1 kg x hm(-2). The numbers of bacteria, fungi, and actinomycetes as well as the activities of urease and invertase in 0-20 cm soil layer were determined. The results showed that in the growth period of maize, the numbers of bacteria, fungi, and actinomycetes in the two farmland soils increased first and declined then. At the later growth stages of maize, the numbers of soil microbes, especially those of bacteria and actinomycetes, were lower in HF than those in CF. At harvest stage, the ratio of the number of soil bacteria to fungi (B/ F) in HF was 2.03 times higher than that at sowing stage, and 3.02 times higher than that in CF. The B/F in CF had less difference at harvest and sowing stages. The soil urease activity in HF was significantly lower than that in CF at jointing stage, and the invertase activity in HF decreased rapidly after blooming stage, being significantly lower than that in CF.

  9. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    Science.gov (United States)

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  10. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid.

    Science.gov (United States)

    Kim, Sang Yoon; Song, Hajin; Sang, Mee Kyung; Weon, Hang-Yeon; Song, Jaekyeong

    2017-10-10

    The bacterial strain Bacillus velezensis GH1-13, isolated from rice paddy soil in Korea, has been shown to promote plant growth and have strong antagonistic activities against pathogens. Here, we report the complete genome sequence of GH1-13, revealing that it possesses a single 4,071,980-bp circular chromosome with 46.2% GC-content. The chromosome encodes 3,930 genes, and we have also identified a unique plasmid in the strain that encodes a further 104 genes (71,628bp and 31.7% GC-content). The genome was found to contain various enzyme-encoding operons, including indole-3-acetic acid (IAA) biosynthesis proteins, 2,3-butanediol dehydrogenase, various non-ribosomal peptide synthetases, and several polyketide synthases. These properties are responsible for the promotion of plant growth and the biosynthesis of secondary metabolites. They therefore have multiple beneficial effects that could be applied to agriculture. Through curing, we found that the unique plasmid of GH1-13 has important roles in the production of phytohormones, such as IAA, and in shaping phenotypic and physiological characteristics. The plasmid therefore likely influences the biological activities of GH1-13. The complete genome sequence of B. velezensis GH1-13 contributes to our understanding of this beneficial strain and will encourage research into its development for agricultural or biotechnological applications, enhancing productivity and crop quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi

    NARCIS (Netherlands)

    Höppener-Ogawa, S.; Leveau, J.H.J.; Van Veen, J.A.; De Boer, W.

    2009-01-01

    Bacteria of the genus Collimonas are widely distributed in soils, although at low densities. In the laboratory, they were shown to be mycophagous, that is, they are able to grow at the expense of living hyphae. However, so far the importance of mycophagy for growth and survival of collimonads in

  12. A mathematical model and analytical solution for the fixation of bacteria in biogrout

    NARCIS (Netherlands)

    Van Wijngaarden, W.K.; Vermolen, F.J.; Van Meurs, G.A.M.; Vuik, C.

    2012-01-01

    Biogrout is a new method for soil reinforcement, which is based on microbialinduced carbonate precipitation. Bacteria and reactants are flushed through the soil, resulting in calcium carbonate precipitation and consequent soil reinforcement. Bacteria are crucially important in the Biogrout process

  13. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  14. [Sizes of bacterial cells in soils determined by cascade filtration technique].

    Science.gov (United States)

    Polianskaia, L M; Gorodnichev, R B; Zviagintsev, D G

    2013-01-01

    This paper studies the number of bacteria in typical chernozem and mountain-meadow soil by the traditional method and the cascade filtration technique. The total number of bacteria in these soils, which was obtained in filters of different diameters during filtering the suspension of a certain amount, is 1.5-5 times higher than that obtained by the traditional method. In the structure of the bacterial biomass in both soils, the biomass of bacterial cells with a diameter of 0.38-0.43 microm was dominating by 8-90%. In the typical chernozem, the biomass of cells with a diameter of 0.17 microm was slightly more than 1%; in the mountain-meadow soil, the percentage of the biomass of cells with a diameter of 0.17 microm increased by 5%. The average volume and diameter of the bacteria in the studied soils were calculated. In typical chernozem, the average volume of bacterial cells was equal to 0.0046 microm3 and the diameter was 0.206 microm. In the mountain-meadow soils, these values were slightly lower, 0.0038 microm3 and 0.194 microm, respectively. The biomass of the bacterial cells, which is usually calculated based on the cell volume of 0.1 microm3, is overestimated by about five times when counting the number on the filters. The percentage of the real biomass of soil bacteria is traditionally much lower than that estimated.

  15. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    Science.gov (United States)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  16. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.

    Science.gov (United States)

    Li, Qing; Li, Zunfeng; Li, Xingxing; Xia, Liming; Zhou, Xuan; Xu, Zhihui; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-01

    Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  18. Isolation and Identification of Pyrene-degrading Bacteria from Soils around Landfills in Shiraz and Their Growth Kinetic Assay

    Directory of Open Access Journals (Sweden)

    Farshid Kafilzadeh

    2011-12-01

    Full Text Available Background & Objectives: Pyrene is a kind of carcinogen hydrocarbon in environment and one of the top 129 pollutants as ranked by the U.S.Environmental Pretection Agency (USEPA. Today's commodious method that is considered by many researchers is the use of microorganisms to degrade these compounds from the environment. The goal of this research is separation and identification of the indigenous bacterias which are effective in decomposition of Pyrene hydrocarbon from soils around Shiraz Landfills. Isolated bacteria growth in the presence of different concentrations of the aforesaid organic pollutant was evaluated. Materials & Methods: Taking samples from Landfills were done after transportation them to the laboratory. The numbers of the bacterias were counted in a medium including Pyrene 0.6 g/l and in another medium without Pyrene. The isolated bacterias were separated by the enriched medium of hydrocarbon Pyrene and were recognized accordance with standards methods (specialty of colony, microscopic properties, fermentation of sugars and biochemical test.The kinetic growth of the separated bacterias was evaluated every 12 hours during 7 successive days. Results: It was reported that the numbers of the bacterias in the medium without Pyrene is more than those with Pyrene (cfu/g. The separated bacterias were included Bacillus spp., Pseudomonas spp., Micrococcus spp., Mycobacterium spp. These four isolated bacterias showed the best growth with Pyrene 0.6 g/l during third and fourth days. Conclusion: The separating bacterias, effecting in decomposition of PAH, make this possibility that the modern methods with more efficiency to be created for removing the carcinogen organic polluters from the environment. Moreover, the separated bacterias (relating to this research can be applied to develop the microbial population in the areas that polluted with Pyrene.

  19. Characterization of Crude Oil Degrading Bacteria Isolated from Contaminated Soils Surrounding Gas Stations.

    Science.gov (United States)

    Abou-Shanab, Reda A I; Eraky, Mohamed; Haddad, Ahmed M; Abdel-Gaffar, Abdel-Rahman B; Salem, Ahmed M

    2016-11-01

    A total of twenty bacterial cultures were isolated from hydrocarbon contaminated soil. Of the 20 isolates, RAM03, RAM06, RAM13, and RAM17 were specifically chosen based on their relatively higher growth on salt medium amended with 4 % crude oil, emulsion index, surface tension, and degradation percentage. These bacterial cultures had 16S rRNA gene sequences that were most similar to Ochrobactrum cytisi (RAM03), Ochrobactrum anthropi (RAM06 and RAM17), and Sinorhizobium meliloti (RAM13) with 96 %, 100 % and 99 %, and 99 % similarity. The tested strains revealed a promising potential for bioremediation of petroleum oil contamination as they could degrade >93 % and 54 % of total petroleum hydrocarbons (TPHs) in a liquid medium and soil amended with 4 % crude oil, respectively, after 30 day incubation. These bacteria could effectively remove both aliphatic and aromatic petroleum hydrocarbons. In conclusion, these strains could be considered as good prospects for their application in bioremediation of hydrocarbon contaminated environment.

  20. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  1. Plutonium interactions with soil microbial metabolites: effect on plutonium sorption by soil

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Rogers, J.E.

    1987-01-01

    To develop an understanding of the mechanisms of plutonium (Pu) complexation and solubilization by soil microorganisms, a broad range of bacteria and fungi were isolated in pure cultures from soil on the basis of metal tolerance and carbon requirements. The organisms were then used in investigations to examine Pu cellular transport, Pu complexation by extracellular metabolites, and the effects of complexation on Pu valence state, chemical form, and solubility in soil. Of the 239 bacteria and 250 fungi isolated from soil, 19 bacteria and 60 fungi were selected for detailed study. Of these organisms, 15 bacteria and 18 fungi grew to form extracellular Pu complexes that increased the concentration of Pu in soil column eluates relative to controls. Elution through soil effectively removed positively charged Pu complexes. Increased Pu mobility in soil resulted from the formation of neutral and negatively charged Pu complexes, which differed with organism type. In the presence of known microbial metabolites and synthetic ligands (DTPA, EDTA, EDDHA), Pu(VI) was reduced to Pu(IV) before complexation, suggesting that Pu(IV) would be the dominant valence state associated with organic complexes in soils. Studies on selected organisms indicated that both active Pu transport and Pu sorption on the cell occurred, and these phenomena, as well as complexation by extracellular metabolites of Pu, were a function of the form of Pu supplied, the organism type and growth characteristics, and the ability of the organism to alter extracellular pH. 18 references, 6 figures, 7 tables

  2. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  3. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    Science.gov (United States)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  4. The abundance of health-associated bacteria is altered in PAH polluted soils-Implications for health in urban areas?

    Directory of Open Access Journals (Sweden)

    Anirudra Parajuli

    Full Text Available Long-term exposure to polyaromatic hydrocarbons (PAHs has been connected to chronic human health disorders. It is also well-known that i PAH contamination alters soil bacterial communities, ii human microbiome is associated with environmental microbiome, and iii alteration in the abundance of members in several bacterial phyla is associated with adverse or beneficial human health effects. We hypothesized that soil pollution by PAHs altered soil bacterial communities that had known associations with human health. The rationale behind our study was to increase understanding and potentially facilitate reconsidering factors that lead to health disorders in areas characterized by PAH contamination. Large containers filled with either spruce forest soil, pine forest soil, peat, or glacial sand were left to incubate or contaminated with creosote. Biological degradation of PAHs was monitored using GC-MS, and the bacterial community composition was analyzed using 454 pyrosequencing. Proteobacteria had higher and Actinobacteria and Bacteroidetes had lower relative abundance in creosote contaminated soils than in non-contaminated soils. Earlier studies have demonstrated that an increase in the abundance of Proteobacteria and decreased abundance of the phyla Actinobacteria and Bacteroidetes are particularly associated with adverse health outcomes and immunological disorders. Therefore, we propose that pollution-induced shifts in natural soil bacterial community, like in PAH-polluted areas, can contribute to the prevalence of chronic diseases. We encourage studies that simultaneously address the classic "adverse toxin effect" paradigm and our novel "altered environmental microbiome" hypothesis.

  5. Effect of root exudates of various plants on composition of bacteria and fungi communities with special regard to pathogenic soil-borne fungi

    OpenAIRE

    Danuta Piętka; Elżbieta Patkowska

    2013-01-01

    The purpose of the studies conducted in the years 1996 - 1998 was to determine the composition of bacteria and fungi populations in the rhizosphere of winter wheat, spring wheat, soybean and potato, and in non-rhizosphere soil. Besides, the effect of root exudates of these plants on the formation of pathogenic fungi communities was established. The microbiological analysis showed that the greatest tolal number of bacteria was found in the rhizospheres of potato and soybean, and the lowest num...

  6. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L.

    Science.gov (United States)

    Alberoni, D; Baffoni, L; Gaggìa, F; Ryan, P M; Murphy, K; Ross, P R; Stanton, C; Di Gioia, D

    2018-02-27

    Honey bees are important pollinators of several crops and ecosystems, having a great ecological and economic value. In Europe, the restricted use of chemicals and therapeutic agents in the beekeeping sector has stimulated the search for natural alternatives with a special focus on gut symbionts. The modulation of the gut microbiota has been recognised as a practical and successful approach in the entomological field for the management of insect-related problems. To date, only a few studies have investigated the effect of bacterial supplementation on the health status of colonies, colony productivity and gut symbionts. To this purpose, a preparation of sugar syrup containing bifidobacteria and lactobacilli isolated from bee gut was sprayed on the frames of an apiary located in open field once a week for four weeks. Treated and control hives were monitored for two months for brood extension, honey and pollen harvest. The presence of beneficial gut microorganisms within bee gut was investigated with denaturing gradient gel electrophoresis and next generation sequencing. The administered bacteria led to a significant increase of brood population (46.2%), pollen (53.4%) and harvestable honey in honey supers (59.21%). Analysis of the gut microbiota on the new generation of bees in treated hives showed an increase in relative abundance of Acetobacteraceae and Bifidobacterium spp., which are known to be involved in bee nutrition and protection.

  7. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  8. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  9. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  10. Bacteria contributing to behaviour of radiocarbon in sodium acetate

    International Nuclear Information System (INIS)

    Ishii, N.; Uchida, S.

    2011-01-01

    An acetate-utilising bacterium was isolated and identified from deionised water that was used for flooding of paddy soils in this study's batch culture experiments. Bacteria in the deionised water samples formed colonies on agar plates containing [1,2- 14 C] sodium acetate, and the autoradiograms showed that all the colonies were positive for 14 C utilisation. Then one of the acetate-utilising bacteria was isolated. The isolate was characterised by phylogenetic analysis, cell morphology, Gram staining and growth at 30 deg. C. Phylogenetic analysis based on 16 S rRNA sequencing showed that the isolate belonged to the genus Burkholderia. The bacterium was gram-negative rods and grew at 30 deg. C under aerobic conditions. Based on these characteristics, the isolate was identified as Burkholderia gladioli. Because B. gladioli is often found in soil, water and the rhizosphere, attention must be paid to the relationships between bacteria and the behaviour of 14 C to for the safety assessment of geological disposal of transuranic waste. (authors)

  11. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  12. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  13. Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, H; Komagata, K

    1964-01-01

    Hydrocarbon-utilizing bacteria were isolated from oil-brine, soils etc. sampled in oil fields in Japan during 1956, and the following species were identified: Corynebacterium hydrocarboclastus nov. sp., 11 strains; Pseudomonas nitroreducens nov. sp., 1 strain; Pseudomonas maltophila Hugh and Ryschenkow, 5 strains: Brevibacterium lipolyticum (Huss) Breed, 2 strains; Pseudomonas desmolytica Gray and Thornton, 5 strains; Flavobacterium ferrugineum Sickles and Shaw, 1 strain; and Alcaligenes faecalis Chastellani and Chalmers, 1 strain. One difference between Gram-negative bacteria and Gram-positive bacteria was described on the basis of the ability of assimilating hydrocarbons.

  14. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  15. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    Science.gov (United States)

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  16. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  17. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  18. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  19. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  20. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China.

    Science.gov (United States)

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when

  1. Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum

    NARCIS (Netherlands)

    Trifonova, R.D.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2008-01-01

    This study investigates how thermally treated (i.e., torrefied) grass, a new prospective ingredient of potting soils, is colonized by microorganisms. Torrefied grass fibers (TGF) represent a specific colonizable niche, which is potentially useful to establish a beneficial microbial community that

  2. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  3. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1

    NARCIS (Netherlands)

    Garbeva, P.V.; Tyc, O.; Remus-Emsermann, M.N.P.; Van der Wal, A.; Vos, M.; Silby, M.W.; De Boer, W.

    2011-01-01

    Background: Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the

  4. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  5. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  6. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  7. Mechanisms of action of fungi and bacteria used as biofertilizers in agricultural soils : a systematic review

    Directory of Open Access Journals (Sweden)

    Sara Paulina Restrepo-Correa

    2017-05-01

    Full Text Available Phosphorus, nitrogen, iron and potassium are some compounds necessary for plant growth and development; chemical fertilizers used to increase concentration significantly affect the environment and soil ecosystems. According to the scientific literature, microorganisms with biofertilizer potential have demonstrated various mechanisms of action to solubilize these compounds and thus meet the requirements of plants. This systematic review collects scientific information that describes the mechanisms of action of microbial fertilizers in agricultural soils, published between 2004 and 2014, in three different databases; ScienceDirect, SpringerLink and Scopus,using the search path (biofertilizer AND (bacteria OR fungi AND (effect OR action OR mechanism. After using different inclusion and exclusion criteria, the search displayed a total of 63 original articles, including six unindexed documents. As a result of the systematic review, it indicates that the production of various organic acids allows soil acidification, facilitating absorption of elements. It was also observed that solubilization of P is the most described mechanism, by obtaining a solubilizing of 726.5 mg/L of P due to P. pseudoalcaligenes

  8. Rimsulfuron in Soil: Effects on Microbiological Properties under Varying Soil Conditions

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2011-01-01

    Full Text Available The effects of rimsulfuron a sulfonylurea herbicide on the growth and activity of soil microorganisms under laboratory conditions was investigated in two soils. The application rates were: 0.2, 2.0 and 20.0 mg a.i kg-1 soil. The lowest concentration tested was the label rate (0.2 mg a.i kg-1, and the other two were ten and hundred timeshigher. No adverse effects on microbiological processes were observed for the label rate. Decrease in microbial biomass carbon, dehydrogenase activity, fungi and bacteria in comparison with untreated control, were found at higher rates. The magnitude of these effects were generally slight and transitory.

  9. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    Science.gov (United States)

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  10. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-10-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  11. Biochar application does not improve the soil hydrological function of a sandy soil

    NARCIS (Netherlands)

    Jeffery, S.; Meinders, M.B.C.; Stoof, C.R.; Bezemer, T.M.; Van de Voorde, T.F.J.; Mommer, Liesje; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently being widely posited as a means to improve soil quality and thereby increase crop yield. Next to beneficial effects on soil nutrient availability and retention, biochar is assumed to improve soil water retention. However, evidence for such an effect in the

  12. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  13. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  14. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  15. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  16. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  17. Effects of Biochar Amendment on Tomato Bacterial Wilt Resistance and Soil Microbial Amount and Activity

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Bacterial wilt is a serious soilborne disease of Solanaceae crops which is caused by Ralstonia solanacearum. The important role of biochar in enhancing disease resistance in plants has been verified; however, the underlying mechanism remains not fully understood. In this study, two different biochars, made from peanut shell (BC1 and wheat straw (BC2, were added to Ralstonia solanacearum-infected soil to explore the interrelation among biochar, tomato bacterial wilt, and soil microbial properties. The results showed that both BC1 and BC2 treatments significantly reduced the disease index of bacterial wilt by 28.6% and 65.7%, respectively. The populations of R. solanacearum in soil were also significantly decreased by biochar application. Ralstonia solanacearum infection significantly reduced the densities of soil bacteria and actinomycetes and increased the ratio of soil fungi/bacteria in the soil. By contrast, BC1 and BC2 addition to pathogen-infected soil significantly increased the densities of soil bacteria and actinomycetes but decreased the density of fungi and the ratios of soil fungi/bacteria and fungi/actinomycetes. Biochar treatments also increased soil neutral phosphatase and urease activity. Furthermore, higher metabolic capabilities of microorganisms by biochar application were found at 96 and 144 h in Biolog EcoPlates. These results suggest that both peanut and wheat biochar amendments were effective in inhibiting tomato bacterial wilt caused by R. solanacearum. The results suggest a relationship between the disease resistance of the plants and the changes in soil microbial population densities and activity.

  18. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Reith, Frank; Dennis, Paul G; Hamonts, Kelly; Powell, Jeff R; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2018-03-01

    The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere. © 2018 by the Ecological Society of America.

  19. Root-associated bacteria promote grapevine growth: from the laboratory to the field

    KAUST Repository

    Rolli, Eleonora

    2016-08-18

    Background and Aims: Laboratory and greenhouse experiments have shown that root-associated bacteria have beneficial effects on grapevine growth; however, these effects have not been tested in the field. Here, we aimed to demonstrate whether bacteria of different geographical origins derived from different crop plants can colonize grapevine to gain a beneficial outcome for the plant leading to promote growth at the field scale. Methods: To link the ecological functions of bacteria to the promotion of plant growth, we sorted fifteen bacterial strains from a larger isolate collection to study in vitro Plant Growth Promoting (PGP) traits. We analysed the ability of these strains to colonise the root tissues of grapevine and Arabidopsis using green-fluorescent-protein-labelled strain derivatives and a cultivation independent approach. We assessed the ability of two subsets randomly chosen from the 15 selected strains to promote grapevine growth in two field-scale experiments in north and central Italy over two years. Parameters of plant vigour were measured during the vegetative season in de novo grafted vine cuttings and adult productive plants inoculated with the bacterial strains. Results: Beneficial bacteria rapidly and intimately colonized the rhizoplane and the root system of grapevine. In the field, plants inoculated with bacteria isolated from grapevine roots out-performed untreated plants. In both the tested vineyards, bacteria-promotion effects largely rely in the formation of an extended epigeal system endowed of longer shoots with larger diameters and more nodes than non-inoculated plants. Conclusions: PGP bacteria isolated in the laboratory can be successfully used to promote growth of grapevines in the field. The resulting larger canopy potentially increased the photosynthetic surface of the grapevine, promoting growth.

  20. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  1. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.

  2. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    OpenAIRE

    Aanniz,Tarik; Ouadghiri,Mouna; Melloul,Marouane; Swings,Jean; Elfahime,Elmostafa; Ibijbijen,Jamal; Ismaili,Mohamed; Amar,Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. ...

  3. Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition.

    Science.gov (United States)

    Gonin, Mathieu; Gensous, Simon; Lagrange, Alexandre; Ducousso, Marc; Amir, Hamid; Jourand, Philippe

    2013-03-01

    Rhizosphere bacteria were isolated from Costularia spp., pioneer sedges from ultramafic soils in New Caledonia, which is a hotspot of biodiversity in the South Pacific. Genus identification, ability to tolerate edaphic constraints, and plant-growth-promoting (PGP) properties were analysed. We found that 10(5) colony-forming units per gram of root were dominated by Proteobacteria (69%) and comprised 21 genera, including Burkholderia (28%), Curtobacterium (15%), Bradyrhizobium (9%), Sphingomonas (8%), Rhizobium (7%), and Bacillus (5%). High proportions of bacteria tolerated many elements of the extreme edaphic conditions: 82% tolerated 100 μmol·L(-1) chromium, 70% 1 mmol·L(-1) nickel, 63% 10 mmol·L(-1) manganese, 24% 1 mmol·L(-1) cobalt, and 42% an unbalanced calcium/magnesium ratio (1/16). These strains also exhibited multiple PGP properties, including the ability to produce ammonia (65%), indole-3-acetic acid (60%), siderophores (52%), and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (39%); as well as the capacity to solubilize phosphates (19%). The best-performing strains were inoculated with Sorghum sp. grown on ultramafic substrate. Three strains significantly enhanced the shoot biomass by up to 33%. The most successful strains influenced plant nutrition through the mobilization of metals in roots and a reduction of metal transfer to shoots. These results suggest a key role of these bacteria in plant growth, nutrition, and adaptation to the ultramafic constraints.

  4. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations.

    Science.gov (United States)

    Demnerová, Katerina; Mackova, Martina; Spevákova, Veronika; Beranova, Katarina; Kochánková, Lucie; Lovecká, Petra; Ryslavá, Edita; Macek, Tomas

    2005-09-01

    As part of the EU project MULTIBARRIERS, six new endogenous aerobic bacterial isolates able to grow in the presence of BTmX (benzene, toluene, m-xylene) were characterized with respect to their growth specificities. Preliminary analysis included restriction fragment length polymorphism profiles and 16S rDNA sequencing. The diversity of these strains was confirmed by denaturing gradient gel electrophoresis. Additional aerobic bacterial strains were isolated from the rhizospheres of plants grown in polychlorinated biphenyl (PCB)-contaminated soils. Pot experiments were designed to show the beneficial effect of plants on the bacterial degradation of PCBs. The effect of PCB removal from soil was evaluated and bacteria isolated from three different plant species were examined for the presence of the bph operon.

  5. Identification and isolation of bacteria containing OPH enzyme for biodegradation of organophosphorus pesticide diazinon from contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Sara Mobarakpoor

    2015-04-01

    Full Text Available Background: Organophosphorus insecticide diazinon has been widely used in agriculture and has the ability to transfer and accumulate in soil, water and animal tissues, and to induce toxicity in plants, animals and humans. In humans, diazinon inhibits nerve transmission by inactivating acetylcholinesterase enzyme. The present study was carried out to identify bacteria containing OPH enzyme for biodegradation of diazinon from contaminated agricultural soil. Methods: In this study, 8 contaminated agricultural soil samples that were exposed to pesticides, especially diazinon in the last two decades, were collected from the farms of Hamedan province. After preparing the media, for isolation of several bacterial strains containing OPH enzyme that are capable of biodegrading organophosphorus pesticides by diazinon enzymatic hydrolysis, bacterial genomic DNA extraction, plasmid product sequencing, phylogenetic sequence processing and phylogenetic tree drawing were carried out. Results: Eight bacterial strains, capable of secreting OPH enzyme, were isolated from soil samples, one of which named BS-1 with 86% similarity to Bacillus safensis displayed the highest organophosphate-hydrolyzing capability and can be used as a source of carbon and phosphorus. Conclusion: It can be concluded that the isolated bacterial strain identified in this study with OPH enzyme secretion has the potential for biodegradation of organophosphorus pesticides, especially diazinon in invitro conditions. Also, further studies such as the environmental stability and interaction, production strategies, safety, cost-benefit, environmental destructive parameters, and, toxicological, genetic and biochemical aspects are recommended prior to the application of bacterial strains in the field-scale bioremediation.

  6. Imidacloprid application changes microbial dynamics and enzymes in rice soil.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi G, Guru P; Gowda, G Basana; Jambhulkar, N N; Yadav, Manoj Kumar; Panneerselvam, P; Kumar, Upendra; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    Extensive use of imidacloprid in rice ecosystem may alter dynamics of microorganisms and can change soil biochemical properties. The objective of this study was to assess the effect of imidacloprid on growth and activities of microbes in tropical rice soil ecosystem. Four treatments, namely, recommended dose (at 25g a.i. ha -1 , RD), double the recommended dose (at 50g a.i. ha -1 , 2RD), five times the recommended dose (at 125g a.i. ha -1 , 5RD) & ten times the recommended dose (at 250g a.i. ha -1 , 10RD) along with control were imposed under controlled condition. Dissipation half lives of imidacloprid in soil were 19.25, 20.38, 21.65 and 33.00 days for RD, 2RD, 5RD and 10RD, respectively. In general bacteria, actinomycetes, fungi and phosphate solubilising bacteria population were disturbed due to imidacloprid application. Changes in diversity indices within bacterial community confirmed that imidacloprid application significantly affected distribution of bacteria. Total soil microbial biomass carbon content was reduced on imidacloprid application. Except dehydrogenase and alkaline phosphatase activities, all other soil enzymes namely, β-glycosidase, fluorescien diacetate hydrolase, acid phosphatase and urease responded negatively to imidacloprid application. The extent of negative effect of imidacloprid depends on dose and exposure time. This study concludes imidacloprid application had transient negative effects on soil microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of leukocyte hydrolases on bacteria

    International Nuclear Information System (INIS)

    Cohen, D.; Michel, J.; Ferne, M.; Bergner-Rabinowitz, S.; Ginsburg, I.

    1979-01-01

    Leukocyte extracts, trypsin, and lysozyme are all capable of releasing the bulk of the LPS from S. typhi, S. typhimurium, and E. coli. Bacteria which have been killed by heat, ultraviolet irradiation, or by a variety of metabolic inhibitors and antibiotics which affect protein, DNA, RNA, and cell wall synthesis no longer yield soluble LPS following treatment with the releasing agents. On the other hand, bacteria which are resistant to certain of the antibiotics yield nearly the full amount of soluble LPS following treatment, suggesting that certain heatabile endogenous metabolic pathways collaborate with the releasing agents in the release of LPS from the bacteria. It is suggested that some of the beneficial effects of antibiotics on infections with gram-negative bacteria may be the prevention of massive release of endotoxin by leukocyte enzymes in inflammatory sites

  8. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    Science.gov (United States)

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  9. Bacteria diversity and microbial biomass in forest, pasture and fallow soils in the southwestern Amazon basin Diversidade de bacteria e biomassa microbiana em solos sob floresta, pastagem e capoeira no sudoeste da Amazônia

    Directory of Open Access Journals (Sweden)

    Karina Cenciani

    2009-08-01

    Full Text Available It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1 the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE, (2 microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS, and (3 the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.Os solos da floresta

  10. Antibiotic-producing bacteria from stag beetle mycangia.

    Science.gov (United States)

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  11. Genetic and functional characterization of culturable plant-beneficial actinobacteria associated with yam rhizosphere.

    Science.gov (United States)

    Arunachalam Palaniyandi, Sasikumar; Yang, Seung Hwan; Damodharan, Karthiyaini; Suh, Joo-Won

    2013-12-01

    Actinobacteria were isolated from the rhizosphere of yam plants from agricultural fields from Yeoju, South Korea and analyzed for their genetic and plant-beneficial functional diversity. A total of 29 highly occurring actinobacterial isolates from the yam rhizosphere were screened for various plant-beneficial traits such as antimicrobial activity on fungi and bacteria; biocontrol traits such as production of siderophore, protease, chitinase, endo-cellulase, and β-glucanase. The isolates were also screened for plant growth-promoting (PGP) traits such as auxin production, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and in vitro Arabidopsis growth promotion. 16S rDNA sequence-based phylogenetic analysis was carried out on the actinobacterial isolates to determine their genetic relatedness to known actinobacteria. BOX-PCR analysis revealed high genetic diversity among the isolates. Several isolates were identified to belong to the genus Streptomyces and a few to Kitasatospora. The actinobacterial strains exhibited high diversity in their functionality and were identified as novel and promising candidates for future development into biocontrol and PGP agents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze-thaw cycles, in the Antarctic Dry Valleys.

    Science.gov (United States)

    Knox, Matthew A; Andriuzzi, Walter S; Buelow, Heather N; Takacs-Vesbach, Cristina; Adams, Byron J; Wall, Diana H

    2017-10-01

    Altered temperature profiles resulting in increased warming and freeze-thaw cycle (FTC) frequency pose great ecological challenges to organisms in alpine and polar ecosystems. We performed a laboratory microcosm experiment to investigate how temperature variability affects soil bacterial cell numbers, and abundance and traits of soil microfauna (the microbivorous nematode Scottnema lindsayae) from McMurdo Dry Valleys, Antarctica. FTCs and constant freezing shifted nematode body size distribution towards large individuals, driven by higher mortality among smaller individuals. FTCs reduced both bacterial and nematode abundance, but bacterial cell numbers also declined under warming, demonstrating decoupled consumer-prey responses. We predict that higher occurrence of FTCs in cold ecosystems will select for large body size within soil microinvertebrates and overall reduce their abundance. In contrast, warm temperatures without FTCs could lead to divergent responses in soil bacteria and their microinvertebrate consumers, potentially affecting energy and nutrient transfer rates in soil food webs of cold ecosystems. © 2017 John Wiley & Sons Ltd/CNRS.

  13. Biodegradation of organophosphorus pesticides by soil bacteria

    Science.gov (United States)

    de Pasquale, C.; Fodale, R.; Lo Piccolo, L.; Palazzolo, E.; Alonzo, G.; Quatrini, P.

    2009-04-01

    A number of studies in the 1980s and 1990s showed that crop-protection products, applied to drained fields, could move downwards through the soil profile and to the groundwater. Organophosphorus insecticides (OPs) are used all over the world for crop protection, for other agricultural practices such as sheep dipping and, in aquaculture, for the control of sea lice. Ops besides showing a specific neurotoxicity and have also been related to various modern diseases, including Creutzfeldt-Jakob (CJD) and the Gulf War syndrome. Although OPs are less persistent than Organoclorine pesticides (OCs), they still constitute an environmental risks thus increasing the social concern about their levels in soils, surface waters, and ground waters. Degradation of OPs by microorganisms has been assessed for a few bacterial strains. In the present study the OPs degrading potential of indigenous soil microorganisms was investigated. Using enrichment cultures in which parathion was the only C and energy sources many bacterial strains were isolated from OPs contaminated and pristine agricultural soils characterized by different physico-chemical properties. More than 40 potential OPs degraders were isolated and grouped in operational taxonomic units (OTU) using analysis of polymorphism showed by the ribosomal internal transcribed spacer (ITS). Partial sequencing of 16S rRNA gene of representative isolates of each OTU revealed that most of them belong to Proteobacteria and Actinobacteria. All the analyzed soils showed the presence of putative OPs degraders: the highest diversity was found in organic cultivated soils, the lowest in chemically cultivated soils. Degradation of different OPs, characterized by different physical and chemical properties, was obtained by different selected representative strains using SPME GC-MS analysis on water and soil microcosms. The results showed that, after the incubation period, the amount of pesticide residues were in the range 20-80%. Some of the

  14. Isolation and characterization of phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    ... in nitrogen, free semi-solid medium and able to produce siderophore. PSB inoculants with their beneficial traits would be considered as potential biofertilizer for the sustainable aerobic rice cultivation system. Key words: Aerobic rice, antagonistic effect, indoleacetic acid, organic acids, phosphorus solubilizing bacteria.

  15. Why bacteria matter in animal development and evolution.

    Science.gov (United States)

    Fraune, Sebastian; Bosch, Thomas C G

    2010-07-01

    While largely studied because of their harmful effects on human health, there is growing appreciation that bacteria are important partners for invertebrates and vertebrates, including man. Epithelia in metazoans do not only select their microbiota; a coevolved consortium of microbes enables both invertebrates and vertebrates to expand the range of diet supply, to shape the complex immune system and to control pathogenic bacteria. Microbes in zebrafish and mice regulate gut epithelial homeostasis. In a squid, microbes control the development of the symbiotic light organ. These discoveries point to a key role for bacteria in any metazoan existence, and imply that beneficial bacteria-host interactions should be considered an integral part of development and evolution.

  16. A Case Study on Soil Antibiotic Resistome in an Urban Community Garden.

    Science.gov (United States)

    Mafiz, Abdullah Ibn; Perera, Liyanage Nirasha; He, Yingshu; Zhang, Wei; Xiao, Shujie; Hao, Weilong; Sun, Shi; Zhou, Kequan; Zhang, Yifan

    2018-05-29

    Urban agricultural soils can be an important reservoir of antibiotic resistance and have great food safety and public health indications. This study was to investigate antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. A total of 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, USA. The most prevalent antibiotic resistance phenotypes demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment. Copyright © 2018. Published by Elsevier B.V.

  17. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    Science.gov (United States)

    Garbeva, Paolina; Tyc, Olaf; Remus-Emsermann, Mitja N P; van der Wal, Annemieke; Vos, Michiel; Silby, Mark; de Boer, Wietse

    2011-01-01

    Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  18. Inducible secretion of phytate-degrading enzymes from bacteria ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-02-04

    Feb 4, 2015 ... Key words: Bacillus sp., phytase activities, soil bacteria, Bacillus broth, Bacillus broth. INTRODUCTION ... Penicillium) enzymes conquered many applications in ... U/(g×h)] than in (SSF) Solid State Fermentation [1.2. U/(g×h)] ... mM (from Loba Chemie Pvt. Ltd, Mumbai), and liquid nitrogen (from. Air liquid ...

  19. Impact of commonly used agrochemicals on bacterial diversity in cultivated soils.

    Science.gov (United States)

    Ampofo, J A; Tetteh, W; Bello, M

    2009-09-01

    The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0-7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer's recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 10(5) cfu g(-1) of soil sample to 70 × 10(4) cfu g(-1). Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 10(5) cfu g(-1) to 40 × 10(4) cfu g(-1). Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 10(4) for the untreated soil. Cerox-treated soil recorded mean number of 138 × 10(4) rhizobial cfu g(-1) of soil, a 23.33% reduction. Ceresate- and

  20. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Li, G.; Huang, W.; Zhang, X.; Lerner, D.N.

    2000-01-01

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg -1 dry soil. Samples contained 10 7 microbial cells g -1 dry soil, and the concentration of aerobic degradation bacteria is 10 7 cells g -1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 10 11 cells ml -1 , and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  1. Initial studies of the populations of fungi and bacteria in the soil under the influence of the cuItivation of spring wheat and winter wheat in a growth chamber

    OpenAIRE

    Danuta Pięta

    2013-01-01

    The purpose of the studies was to determine the populations of fungi and bacteria after the cultivation of spring wheat and winter wheat. As a result of the studies it was found out that winter wheat had a stimulating effect on the total number of bacteria, especially Pseudomonas spp. On the other hand, spring wheat had a smaller influence on the growth of bacteria, while stimulating the growth of the number of fungi. Among the bacteria and saprophytic fungi isolated from the soil after the c...

  2. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    Directory of Open Access Journals (Sweden)

    Okba Selama

    2014-01-01

    Full Text Available Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.

  3. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Directory of Open Access Journals (Sweden)

    Wietse de Boer

    Full Text Available Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2, whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  4. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation

    DEFF Research Database (Denmark)

    Ely, Cairn S; Smets, Barth F.

    2017-01-01

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of plant species with varied biological traits, however, it is not known what phytochemicals promote contaminant degradation....... One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected...

  5. Effects of ethanolic Chavill extract on growth of lactobacillus and salmonella bacteria, in skimmed milk and imaging gastric-intestine media in vitro

    Directory of Open Access Journals (Sweden)

    R naghiha

    2015-08-01

    Full Text Available Introduction & aim: To achieve high performance and health, it’s better to use additives in the human diet which have beneficial effects on good bacteria and damaging effect on the harmful bacteria. For this purpose, effects of Chavill extract on growth, viability and death of lactobacillus and salmonella, in skimmed milk and imaging gastric-intestine media were studied in vitro conditions. Methods: This study was investigated in two completely randomized experiments with three levels of Chavill extract. In the first experiment, ability of the Chavill extract in Skim Milk medium was examined to survey survival, proliferation and death of beneficial and pathogenic gut bacteria. The second experiment which was down in the simulation of simulated gastric juice and simulated small intestine juice, the effect of Chavill extract on survival, proliferation and death of the bacteria were investigated. Treatments in both of experiments were three levels of Chavill extract (0, 1, and 3 % for three probiotic bacteria species. Data were analyzed with SAS 9.1 software and their means were compared by Duncan’s Multiple Range test at a significance level of 5 %. Results: By increasing of Chavill extract concentration to 1%, probiotic bacterial counts significantly increase compared to control treatment and the differences were significant and the count of Salmonella typhimurium difference with control significantly decreased. Using 3% Chavill extract compared to 1% extract, increased number of Lactobacillus acidophilus and Lactobacillus plantarum, decreased number of Lactobacillus casei, inhibit growth of Salmonella typhimurium bacterium and block growth of this bacterium. The second experiment on simulated gastric juice showed that numbers of Lactobacillus acidophilus and Lactobacillus plantarum bacteria increased and Lactobacillus casei and Salmonella typhimurium decreased. Also, findings of bacterial survival on simulated small intestine juice showed

  6. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    Science.gov (United States)

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  7. Draft genome sequence of Streptomyces sp. strain F1, a potential source for glycoside hydrolases isolated from Brazilian soil

    Directory of Open Access Journals (Sweden)

    Ricardo Rodrigues de Melo

    Full Text Available ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria.

  8. [Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species].

    Science.gov (United States)

    Ji, Li; Yang, Li Xue

    2017-12-01

    Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

  9. Enhanced bioremoval of lead by earthworm-Lumbricus terrestris co-cultivated with bacteria-Klebsiella variicola.

    Science.gov (United States)

    Das, Anamika; Osborne, Jabez W

    2017-10-01

    Lead is a toxic heavy metal having devastating effects on the environment. The current study was focussed on bioremoval of lead using earthworm and lead resistant bacteria. Earthworms were subjected to various concentrations of lead in the soil bioaugmented with lead resistant bacteria (VITMVCJ1) to enhance the uptake of lead from the contaminated soil. Significant increase was observed in the length and body weight of the earthworms supplemented with lead resistant bacteria. Similarly, there was a substantial increase in the locomotion rate of the earthworms treated with lead resistant bacteria in comparison with the control. The gut micro flora of bacterial treated earthworms had increased number of bacterial cells than the untreated earthworms. The histopathological studies revealed the toxic effects of lead on the gut of earthworms indicating severe damage in lead resistant bacteria untreated worms, whereas the cells were intact in lead resistant bacteria treated worms. COMET assay showed increased DNA damage with higher tail DNA percent in the untreated earthworms. Further, the colonisation of the bacteria supplemented, onto the gut region of earthworms was observed by scanning electron microscopy. Atomic absorption spectrophotometry indicated a fair 50% uptake of lead within the biomass of earthworm treated with lead resistant bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  11. Effect of malachite green toxicity on non target soil organisms.

    Science.gov (United States)

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The microbiology of forest soils: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O; Robinson, J B

    1982-01-01

    This report discusses the activities of two major groups of forest soil microorganisms, the bacteria and the fungi. Special attention is paid to their participation in the decay of major forest litter substrates, including leaves, branches and roots. The influence of bacteria and fungi in symbiotic associations with woody plant roots upon the cycles of carbon and nitrogen is described. The impacts of certain forest mamagement alternatives are assessed in terms of the creation of elimination of suitable environments for the activity of soil microorganisms. A bibliography is included. 507 refs., 1 tab.

  13. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  14. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  15. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  16. The content and radiosensitivity of bacteria of Pseudomonas and Bacillus genera in soil samples from the sites adjacent to Armenian nuclear power plant

    International Nuclear Information System (INIS)

    Khachatryan, G.E.; Mkrtchyan, N.I.; Simonyan, N.V.; Arakelyan, V.B.

    2014-01-01

    From the samples of soils taken from the sites adjoining to the Armenian Nuclear Power Plant along the predominant direction of winds representatives of rather radiosensitive closely-related species of bacteria Pseudomonas putida and P. fluorescence and rather radioresistant bacilli B. mesentericus and B. subtilis were isolated. Their quantitative content in the soils of monitoring points and radiosensitivity was investigated. It was shown that in soils with the raised quantity of 137 Cs the amount of Pseudomonas cells is understated; contrariwise their radioresistance was a little bit raised. The maintenance of cells of Bacillus species varied without certain law, and survival curves had practically identical characteristics in all the points

  17. Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks.

    Science.gov (United States)

    Gillet, P h; Barrat, J A; Heulin, T h; Achouak, W; Lesourd, M; Guyot, F; Benzerara, K

    2000-02-15

    We present a study of the textural signature of terrestrial weathering and related biological activity in the Tatahouine meteorite. Scanning and transmission electron microscopy images obtained on the weathered samples of the Tatahouine meteorite and surrounding soil show two types of bacteria-like forms lying on mineral surfaces: (1) rod-shaped forms (RSF) about 70-80 nm wide and ranging from 100 nm to 600 nm in length; (2) ovoid forms (OVF) with diameters between 70 and 300 nm. They look like single cells surrounded by a cell wall. Only Na, K, C, O and N with traces of P and S are observed in the bulk of these objects. The chemical analyses and electron diffraction patterns confirm that the RSF and OVF cannot be magnetite or other iron oxides, iron hydroxides, silicates or carbonates. The sizes of the RSF and OVF are below those commonly observed for bacteria but are very similar to some bacteria-like forms described in the Martian meteorite ALH84001. All the previous observations strongly suggest that they are bacteria or their remnants. This conclusion is further supported by microbiological experiments in which pleomorphic bacteria with morphology similar to the OVF and RSF objects are obtained from biological culture of the soil surrounding the meteorite pieces. The present results show that bacteriomorphs of diameter less than 100 nm may in fact represent real bacteria or their remnants.

  18. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland.

    Science.gov (United States)

    He, Yuan; Hu, Wenge; Ma, Decao; Lan, Hongzhu; Yang, Yang; Gao, Yan

    2017-07-01

    Ammonia oxidation is carried out by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The Ebinur Lake wetland is the best example of a temperate arid zone wetland ecosystem in China. Soil samples were collected from rhizosphere and non-rhizosphere soil containing Halocnemum strobilaceum (samples H and H'), Phragmites australis (samples R and R'), and Karelinia caspia (samples K and K') to study the relationship between environmental factors and the community structure of AOB and AOA. Phylogenetic analysis showed that the AOA sequences belonged to the Nitrosopumilus and Nitrososphaera clusters. AOB were grouped into Nitrosospira sp. and Nitrosomonas sp. Quantitative polymerase chain reaction results showed that the AOA abundance ranged from 2.09 × 10 4 to 2.94 × 10 5 gene copies/g soil. The highest number of AOA was detected in sample K, followed by samples R and H. AOB abundance varied between 2.91 × 10 5 and 1.05 × 10 6 gene copies/g soil, which was higher than that of AOA. Redundancy analysis indicated that electrical conductivity, pH, and NH 4 + -N might influence the community structure of AOA and AOB. AOB might play a more crucial role than AOA in ammonia oxidation based on AOB's higher diversity and abundance in the Ebinur Lake wetland in Xinjiang.

  19. the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts (ID 945) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to Lactobacillus rhamnosus GR-1 (ATCC 55826) in combination with Lactobacillus reuteri RC-14 (ATCC 55845) and defence against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts. The scientific...... to be the general female population. From the clarifications provided by Member States, the Panel assumes that the claimed effect refers to defence against vaginal pathogens by increasing the number of lactobacilli and/or decreasing potentially pathogenic bacteria and/or yeasts. The Panel considers that defence...... against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts is a beneficial physiological effect. No references were provided from which conclusions could be drawn for the scientific substantiation of the claim...

  20. Enumeration, isolation and identification of bacteria and fungi from ...

    African Journals Online (AJOL)

    Enumeration, isolation and identification of bacteria and fungi from soil contaminated with petroleum products ... dropping can be useful in the bioremediation of soil contaminated with petroleum products and possibly other oil polluted sites.

  1. Can vineyard biodiversity be beneficial for viticulture and tourism?

    Science.gov (United States)

    Hervé, Morgane; Kratschmer, Sophie; Gregorich, Claudia; Silvia, Winter; Montembault, David; Zaller, Johann G.; Guernion, Muriel; Jung, Vincent; Schuette, Rebekka; Paredes, Daniel; Guzman Diaz, Gema; Cabezas Luque, Jose Manuel; Hoble, Adela; Popescu, Daniela; Burel, Françoise; Cluzeau, Daniel; Bergmann, Holger; Potthoff, Martin; Nicolai, Annegret

    2017-04-01

    The European research BiodivERsA project VineDivers aims to link ecosystem services and vine production, in an integrative approach that considers both landscape structure and cultural practices (cover-crops versus bare soils), in vineyards of Austria, France, Romania and Spain. Such services studied are (i) provisioning and regulation services by soil biota and pollinators, and (ii) landscape cultural services. In this study, we want to know if landscape beneficial for biodiversity providing ecosystem services at a plot scale also have an aesthetical value. An interdisciplinary approach was chosen to include both ecological and sociological data. First, we analyzed the influence of soil management practices and landscape complexity on soil biota, inter-row flora and bees. Second, we implemented a questionnaire based on photographs about biodiversity perception and visual aesthetic evaluation. Our results highlighted the effect of landscape complexity and soil management intensity on biodiversity and their ecological and cultural ecosystem services. This allows us to discuss the global importance of biodiversity for a wine-producing region. Further analysis within the VineDivers project will focus on an assessment of the biodiversity importance for local viticulture economy.

  2. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sandvang, Dorthe

    2005-01-01

    The presence of tetracycline resistance (Tc-r) genes and class I integrons (in-1), and their ability to cotransfer were investigated in Tc-r gram-negative (185 strains) and gram-positive (72 strains) bacteria from Danish farmland and pigsties. The isolates belonged to the groups or species...... tet(33). No isolates contained more than one tet gene. The in-l-positive isolates were tested for resistance to selected antimicrobial agents and showed resistance to three to nine drugs. Filter-mating experiments showed cotransfer of Tc-r and class I integrons from soil isolates to Escherichia coli...... and/or Pseudomonas putida. We conclude that soil bacteria in close contact to manure or pigsty environment may thus have an important role in horizontal spread of resistance. Use of tetracyclines in food animal production may increase not only Tc-r but also multidrug resistance (caused by the presence...

  3. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil

    Science.gov (United States)

    Murguia-Flores, Fabiola; Arndt, Sandra; Ganesan, Anita L.; Murray-Tortarolo, Guillermo; Hornibrook, Edward R. C.

    2018-06-01

    Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4), a potent greenhouse gas that is responsible for ˜ 20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0) to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999) and Curry (2007) by introducing several advances, including (1) a general analytical solution of the one-dimensional diffusion-reaction equation in porous media, (2) a refined representation of nitrogen inhibition on soil methanotrophy, (3) updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4) the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990-2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr-1. Warm and semi-arid regions (tropical deciduous forest and open shrubland) had the highest CH4 uptake rates of 602 and 518 mg CH4 m-2 yr-1, respectively. In these regions, favourable annual soil moisture content ( ˜ 20 % saturation) and low seasonal temperature variations (variations < ˜ 6 °C) provided optimal conditions for soil methanotrophy and soil-atmosphere gas exchange. In contrast to previous model analyses, but in agreement with recent observational data

  4. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  5. Dried gamma-irradiated sewage solids use on calcareous soils: crop yields and heavy metals uptake

    International Nuclear Information System (INIS)

    McCaslin, B.D.; Sivinski, J.S.

    1980-01-01

    The fertilizer values of gamma-irradiated digested sewage solids (RDSS) and gamma-irradiated undigested sewage solids (RUSS) have been examined on calcareous soils. Previously published data from Sandia Laboratories have shown that approximately 1 mega-rad of gamma-irradiation effectively destroys pathogenic bacteria, parasites and plant seeds in dried sewage solids. Greenhouse experiments directly comparing gamma-irradiated and non-irradiated undigested and digested dried sewage solids as fertilizers indicate little or no effect of 1 mega-rad gamma radiation treatment on plant yield or plant-nutrient uptake and demonstrated considerable benefit from using sewage solids on calcareous soils. Plant response to undigested sewage solids was considerably greater than to digested sewage solids when applied at levels that were isonitrogenous. The calcareous soils in New Mexico typically range in pH from 7.5 to 9.0, limiting the plant-availability of many elements, especially heavy metals. Soils irrigated with sewage-effluent for 40 years demonstrated beneficial use of supplied plant-nutrients with no apparent increase in plant-uptake of heavy metals. RDSS applied to a calcareous soil low in plant-available iron increased plant growth in the greenhouse considerably more than treatments with equal amounts of nitrogen, phosphorus and iron applied as common fertilizer materials. Plant tissue concentrations of Fe, Zn, Mn and Cu showed that RDSS was a good source of these nutrients. Results also indicated that the total soluble salt concentration of the RDSS was the factor most limiting plant growth. Chromium, Cd, Ni and Pd plant-tissue concentrations were apparently not increased by RDSS treatments. (Auth.)

  6. Methods for baiting and enriching fungus-feeding (Mycophagous) rhizosphere bacteria

    NARCIS (Netherlands)

    Ballhausen, Max Bernhard; Veen, Van J.A.; Hundscheid, M.P.J.; Boer, De Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires

  7. Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria.

    Science.gov (United States)

    Campos, Eleonora; Negro Alvarez, María José; Sabarís di Lorenzo, Gonzalo; Gonzalez, Sergio; Rorig, Marcela; Talia, Paola; Grasso, Daniel H; Sáez, Felicia; Manzanares Secades, Paloma; Ballesteros Perdices, Mercedes; Cataldi, Angel A

    2014-01-01

    The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40 °C and Km and Kcat values were 2.92 mM and 1.32 seg(-1), respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8 mM and Kcat 380 s(-1). These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.

    Directory of Open Access Journals (Sweden)

    Paolina Garbeva

    Full Text Available BACKGROUND: Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. METHODOLOGY AND PRINCIPAL FINDINGS: We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. SIGNIFICANCE: Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.

  10. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    Science.gov (United States)

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  11. Identification of multidrug-resistant bacteria and Bacillus cereus from ...

    African Journals Online (AJOL)

    However, B. cereus was isolated from the hands of three. HCWs. Table 1 shows species of bacteria isolated from. HCWs and ES in Elkhomes hospital. B. cereus is a Gram-positive spore-forming facultative- anaerobic rod-shaped organism that can be found in different types of soils and widely distributed in the environment.

  12. Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils

    International Nuclear Information System (INIS)

    Kuwahara, Chikako; Fukumoto, Atsushi; Ohsone, Ayako; Furuya, Nobutaka; Shibata, Hisashi; Sugiyama, Hideo; Kato, Fumio

    2005-01-01

    Mushrooms and soils samples collected from a sub-alpine forest of Mt. Fuji in Japan were measured for 137 Cs and stable Cs. The ranges of 137 Cs specific activities and stable Cs concentrations in the mushrooms were 291-7950 Bq kg -1 dry weight and 4.69-58.1 mg kg -1 dry weight, respectively. Both 137 Cs specific activities and stable Cs concentrations in the mushrooms were higher than those in common agricultural plants. The 137 Cs specific activities and stable Cs concentrations in the soils were 3.18-149 Bq kg -1 dry weight and 0.618-2.18 mg kg -1 dry weight, respectively. The appearance frequencies of filamentous actinomycetes and planktonic bacteria from the soils decreased according to increasing Cs contents in the medium. No relationship was observed between the appearance frequencies of those and the stable Cs concentrations in the soils. The filamentous actinomycetes from any soil sample could not grow in the presence of 25 mM Cs, although the planktonic bacteria from the soil samples could grow with up to 50 mM Cs in YM agar. In addition, the planktonic bacteria from approximately 70% of the soil samples could grow even in the presence of 100 mM Cs. Filamentous actinomycetes were more sensitive to Cs than planktonic bacteria. In in vitro experiments, Cs uptake by these strains of filamentous actinomycetes and planktonic bacteria was high in the presence of 5 mM CsCl and the strains accumulated Cs, the same as in mushrooms. Our results indicate that filamentous actinomycetes in the soils have higher sensitivity to Cs than planktonic bacteria, and several strains of filamentous actinomycetes have a high Cs accumulation in the presence of 5 mM Cs

  13. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Science.gov (United States)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  14. Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Vass, A.A.; Ho, C.H.

    1998-08-01

    Treatment of 2,4,6-trinitrotoluene (TNT)-contaminated soil in the Joliet Army Ammunition Plant (JAAP) soil slurry bioreactor (SSBR) eliminated detectable TNT but left trace levels of residual monoamino and diamino metabolites under some reactor operating conditions. The reduction of solvent-extractable bacterial mutagenicity in the TNT-contaminated soil was substantial and was similar to that achieved by static pile composts at the Umatilla Army Depot Activity (UMDA) field demonstration. Aquatic toxicity to Ceriodaphnia dubia from TNT in the leachates of TNT-contaminated soil was eliminated in the leachates of JAAP SSBR product soil. The toxicity of soil product leachates to Ceriodaphnia dubia was reasonably predicted using the specific toxicities of the components detected, weighted by their leachate concentrations. In samples where TNT metabolites were observed in the soil product and its leachates, this method determined that the contribution to predicted toxicity values was dominated by trace amounts of the diamino-metabolites, which are very toxic to ceriodaphnia dubia. When the SSBR operating conditions reduced the concentrations of TNT metabolites in the product soils and their leachates to undetectable concentrations, the main contributors to predicted aquatic toxicity values appeared to be molasses residues, potassium, and bicarbonate. Potassium and bicarbonate are beneficial or benign to the environment, and molasses residues are substantially degraded in the environment. Exotoxins, pathogenic bacteria, inorganic particles, ammonia, and dissolved metals did not appear to be important to soil product toxicity.

  15. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    Science.gov (United States)

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  16. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    Directory of Open Access Journals (Sweden)

    Tarik Aanniz

    2015-06-01

    Full Text Available The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240 thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5% represented by B. licheniformis (119, B. aerius (44, B. sonorensis (33, B. subtilis (subsp. spizizenii (2 and subsp. inaquosurum (6, B. amyloliquefaciens (subsp. amyloliquefaciens (4 and subsp. plantarum (4, B. tequilensis (3, B. pumilus (3 and Bacillus sp. (19. Only six isolates (2.5% belonged to the genus Aeribacillus represented by A. pallidus (4 and Aeribacillus sp. (2. In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  17. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Probiotic lactic acid bacteria ? the fledgling cuckoos of the gut?

    OpenAIRE

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, J?rgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either ‘good’ or ‘bad’. However, a microbial society has its own system of government – ‘microcracy’ – and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being ‘friendly’ – th...

  19. Probiotic lactic acid bacteria - the fledgling cuckoos of the gut?

    Science.gov (United States)

    Berstad, Arnold; Raa, Jan; Midtvedt, Tore; Valeur, Jørgen

    2016-01-01

    It is tempting to look at bacteria from our human egocentric point of view and label them as either 'good' or 'bad'. However, a microbial society has its own system of government - 'microcracy' - and its own rules of play. Lactic acid bacteria are often referred to as representatives of the good ones, and there is little doubt that those belonging to the normal intestinal flora are beneficial for human health. But we should stop thinking of lactic acid bacteria as always being 'friendly' - they may instead behave like fledgling cuckoos.

  20. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    Science.gov (United States)

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  1. Impact of treated wastewater for irrigation on soil microbial communities.

    Science.gov (United States)

    Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L

    2018-05-01

    The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.

  2. The role of intestinal microflora and probiotic bacteria in prophylactic and development of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ewa Wasilewska

    2013-08-01

    Full Text Available The gut microbiota comprises a large and diverse range of microorganisms whose activities have a significant impact on health. It interacts with its host at both the local and systemic level, resulting in a broad range of beneficial or detrimental outcomes for nutrition, infections, xenobiotic metabolism, and cancer. The current paper reviews research on the role of intestinal microflora in colorectal cancer development. Especially a protective effect of beneficial bacteria and probiotics on the risk of cancer development is highly discussed. There is substantial experimental evidence that the beneficial gut bacteria and their metabolism have the potential to inhibit the development and progression of neoplasia in the large intestine. Most of the data derive, however, from experimental and animal trials. Over a dozen well-documented animal studies have been published, wherein it has been clearly revealed that some lactic acid bacteria, especially lactobacilli and bifidobacteria, inhibit initiation and progression of colorectal cancer. Studies on cancer suppression in humans as a result of the consumption of probiotics are still sparse. Nevertheless, some epidemiological and interventional studies seem to confirm the bacterial anticancerogenic activity also in human gut. The mechanism by which probiotics may inhibit cancer development is unknown. Probiotics increase the amount of beneficial bacteria and decrease the pathogen level in the gut, consequently altering metabolic, enzymatic and carcinogenic activity in the intestine, decreasing inflammation and enhancing immune function, which may contribute to cancer defense.

  3. Soil food web structure after wood ash application

    DEFF Research Database (Denmark)

    Mortensen, L. H.; Qin, J.; Krogh, Paul Henning

    with varying intervals and subsequently analyzed. The food web analysis includes several trophic levels; bacteria/fungi, protozoa, nematodes, enchytraeids, microarthropods and arthropods. The initial results indicate that bacteria and protozoa are stimulated in the uppermost soil layer (0-3 cm) two months...... can facilitate an increase in the bacteria to fungi ratio with possible cascading effects for the soil food web structure. This is tested by applying ash of different concentrations to experimental plots in a coniferous forest. During the course of the project soil samples will be collected...

  4. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae.

    Science.gov (United States)

    Mullaney, Jane A; Kelly, William J; McGhie, Tony K; Ansell, Juliet; Heyes, Julian A

    2013-03-27

    Glucosinolates from the genus Brassica can be converted into bioactive compounds known to induce phase II enzymes, which may decrease the risk of cancers. Conversion via hydrolysis is usually by the brassica enzyme myrosinase, which can be inactivated by cooking or storage. We examined the potential of three beneficial bacteria, Lactobacillus plantarum KW30, Lactococcus lactis subsp. lactis KF147, and Escherichia coli Nissle 1917, and known myrosinase-producer Enterobacter cloacae to catalyze the conversion of glucosinolates in broccoli extract. Enterobacteriaceae consumed on average 65% glucoiberin and 78% glucoraphanin, transforming them into glucoiberverin and glucoerucin, respectively, and small amounts of iberverin nitrile and erucin nitrile. The lactic acid bacteria did not accumulate reduced glucosinolates, consuming all at 30-33% and transforming these into iberverin nitrile, erucin nitrile, sulforaphane nitrile, and further unidentified metabolites. Adding beneficial bacteria to a glucosinolate-rich diet may increase glucosinolate transformation, thereby increasing host exposure to bioactives.

  5. THE RESURRECTION PLANT TRIPOGON SPICATUS (POACEAE HARBORS A DIVERSITY OF PLANT GROWTH PROMOTING BACTERIA IN NORTHEASTERN BRAZILIAN CAATINGA

    Directory of Open Access Journals (Sweden)

    Paulo Ivan Fernandes-Júnior

    2015-08-01

    Full Text Available Plant species that naturally occur in the Brazilian Caatinga(xeric shrubland adapt in several ways to these harsh conditions, and that can be exploited to increase crop production. Among the strategic adaptations to confront low water availability, desiccation tolerance stands out. Up to now, the association of those species with beneficial soil microorganisms is not well understood. The aim of this study was to characterize Tripogon spicatusdiazotrophic bacterial isolates from the Caatingabiome and evaluate their ability to promote plant growth in rice. Sixteen bacterial isolates were studied in regard to their taxonomic position by partial sequencing of the 16S rRNA gene, putative diazotrophic capacity, in vitro indole-acetic acid (IAA production and calcium phosphate solubilization, metabolism of nine different C sources in semi-solid media, tolerance to different concentrations of NaCl to pHs and intrinsic resistance to nine antibiotics. Finally, the ability of the bacterial isolates to promote plant growth was evaluated using rice (Oryza sativa as a model plant. Among the 16 isolates evaluated, eight of them were classified as Enterobacteriaceae members, related to Enterobacter andPantoeagenera. Six other bacteria were related toBacillus, and the remaining two were related toRhizobiumand Stenotrophomonas.The evaluation of total N incorporation into the semi-solid medium indicated that all the bacteria studied have putative diazotrophic capacity. Two bacteria were able to produce more IAA than that observed for the strain BR 11175Tof Herbaspirillum seropedicae.Bacterial isolates were also able to form a microaerophilic pellicle in a semi-solid medium supplemented with different NaCl concentrations up to 1.27 mol L-1. Intrinsic resistance to antibiotics and the metabolism of different C sources indicated a great variation in physiological profile. Seven isolates were able to promote rice growth, and two bacteria were more efficient than the

  6. Effects of Sludge-amendment on Mineralization of Pyrene and Microorganisms in Sludge and Soil

    DEFF Research Database (Denmark)

    Klinge, C; Gejlsbjerg, B; Ekelund, Flemming

    2001-01-01

    . Sludge-amendment enhanced the mineralization of pyrene in the soil compared to soil without sludge, and the most extensive mineralization was observed when the sludge was kept in a lump. The number of protozoa, heterotrophic bacteria and pyrene-mineralizing bacteria was much higher in the sludge compared...... to the soil. The amendment of sludge did not affect the number of protozoa and bacteria in the surrounding soil, which indicated that organic contaminants in the sludge had a little effect on the number of protozoa and bacteria in the surrounding soil...

  7. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification.

    Science.gov (United States)

    O'Neill, B; Grossman, J; Tsai, M T; Gomes, J E; Lehmann, J; Peterson, J; Neves, E; Thies, J E

    2009-07-01

    Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50-500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

  8. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  9. Pantoea agglomerans : a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    Full Text Available Pantoea agglomerans , a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as ‘Immunopotentiator from Pantoea agglomerans 1 (IP-PA1’ reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti- Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of

  10. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    Full Text Available [i][/i][i]Pantoea agglomerans[/i], a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of [i]P. agglomerans[/i] isolated by them and described as ‘Immunopotentiator from [i]Pantoea agglomerans[/i] 1 (IP-PA1’ reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that [i]P. agglomerans[/i] occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the [i]Plasmodium[/i] parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-[i]Plasmodium[/i] effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. [i]Pantoea agglomerans[/i] has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic

  11. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2016-06-02

    Pantoea agglomerans, a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others) which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as 'Immunopotentiator from Pantoea agglomerans 1 (IP-PA1)' reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of plant resistance. Its use as

  12. Responses of soil N-fixing bacteria communities to invasive plant species under different types of simulated acid deposition

    Science.gov (United States)

    Wang, Congyan; Zhou, Jiawei; Jiang, Kun; Liu, Jun; Du, Daolin

    2017-06-01

    Biological invasions have incurred serious threats to native ecosystems in China, and soil N-fixing bacteria communities (SNB) may play a vital role in the successful plant invasion. Meanwhile, anthropogenic acid deposition is increasing in China, which may modify or upgrade the effects that invasive plant species can cause on SNB. We analyzed the structure and diversity of SNB by means of new generation sequencing technology in soils with different simulated acid deposition (SAD), i.e., different SO4 2- to NO3 - ratios, and where the invasive ( Amaranthus retroflexus L.) and the native species ( Amaranthus tricolor L.) grew mixed or isolated for 3 months. A. retroflexus itself did not exert significant effects on the diversity and richness of SNB but did it under certain SO4 2- to NO3 - ratios. Compared to soils where the native species grew isolated, the soils where the invasive A. retroflexus grew isolated showed lower relative abundance of some SNB classes under certain SAD treatments. Some types of SAD can alter soil nutrient content which in turn could affect SNB diversity and abundance. Specifically, greater SO4 2- to NO3 - ratios tended to have more toxic effects on SNB likely due to the higher exchange capacity of hydroxyl groups (OH-) between SO4 2- and NO3 -. As a conclusion, it can be expected a change in the structure of SNB after A. retroflexus invasion under acid deposition rich in sulfuric acid. This change may create a plant soil feedback favoring future A. retroflexus invasions.

  13. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  14. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    Science.gov (United States)

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    Science.gov (United States)

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Isolation and characterization of osmotolerant bacteria from Thar Desert of Western Rajasthan (India

    Directory of Open Access Journals (Sweden)

    Ramavtar Sharma

    2013-12-01

    Full Text Available The Thar Desert harsher environment harbors a limited diversity of life forms due to extreme conditions like low moisture of sandy soils and high soil temperature. In the present study, osmotolerant bacteria from the Thar soils were isolated and characterized. Bacteria were isolated from 20 soil samples (100g, collected from sand dunes, suspended in water and absolute alcohol. A total of 11 biochemical and morphological tests were carried out for generic identification of bacteria. Osmotic tolerance capacity of isolates was examined on glycerol, NaCl and alcohol; and sequencing of 16S rRNA gene was also performed for bacterial identification. 16S to 23S rRNA internal transcribed spacer analysis (RISA was done for phylogenetic analysis of isolates. The soil suspended in water contained 2.5×10(6 bacteria/g of soil while alcohol suspended soil had 4.4×10(4 bacteria/g. The 24 bacterial isolates were found tolerant to 26% glycerol, 14% NaCl and 10% of alcohol, and 22 out of 24 isolates were found Gram positive. The results showed that 45.83% and 41.67% bacteria belong to Bacillus spp. and Corynebacterium spp., respectively, while Acinetobacter spp., Aeromonas spp. and Staphylococcus spp. were in equal proportion (4.16% each. Six isolates were selected for 16S rRNA gene sequencing and five were found 95% similar with Bacillus licheniformis whereas one isolate was identified as B. subtilis. All the isolates showed good growth up to 50°C with gradual reduction on subsequent increment of temperature. Out of 24 isolates, six could survive at 65°C while one isolate could grow at 63°C. Growth kinetic studies revealed that the reduction in generation time in solute(s and temperature stress was more as compared to generation time in plain medium. This study suggests that virgin sand dunes may be a rich source of bacteria, tolerant to osmotrophic solutes, and can be examined for plant growth promotion activity in agriculture. Moreover, study might help to

  17. Soil Methanotrophy Model (MeMo v1.0: a process-based model to quantify global uptake of atmospheric methane by soil

    Directory of Open Access Journals (Sweden)

    F. Murguia-Flores

    2018-06-01

    Full Text Available Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4, a potent greenhouse gas that is responsible for  ∼  20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0 to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999 and Curry (2007 by introducing several advances, including (1 a general analytical solution of the one-dimensional diffusion–reaction equation in porous media, (2 a refined representation of nitrogen inhibition on soil methanotrophy, (3 updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4 the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990–2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr−1. Warm and semi-arid regions (tropical deciduous forest and open shrubland had the highest CH4 uptake rates of 602 and 518 mg CH4 m−2 yr−1, respectively. In these regions, favourable annual soil moisture content ( ∼  20 % saturation and low seasonal temperature variations (variations  <   ∼  6 °C provided optimal conditions for soil methanotrophy and soil–atmosphere gas exchange

  18. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  19. Bacterial diversity in a tropical crude oil-polluted soil undergoing ...

    African Journals Online (AJOL)

    The bacterial diversity in a tropical soil experimentally polluted with crude oil during a 57 days bioremediation was investigated in five 1 m2 plots using total culturable hydrocarbon utilizing bacteria, heterotrophic bacteria and gas chromatographic analyses. Four out of the five experimental plots received each 4 L of Bonny ...

  20. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    Science.gov (United States)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.