WorldWideScience

Sample records for beneath yucca mountain

  1. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  2. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  3. Education and Yucca Mountain

    International Nuclear Information System (INIS)

    Lamont, M.A.

    1995-01-01

    This paper outlines a middle school social studies curriculum taught in Nevada. The curriculum was designed to educate students about issues related to the Yucca Mountain project. The paper focuses on the activities used in the curriculum

  4. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  5. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  6. Analysis of Heat Flow to Estimate Percolation Flux in the Unsaturated Zone Beneath an Ephemeral Stream at Yucca Mountain, Nevada

    Science.gov (United States)

    Rousseau, J. P.; Kwicklis, E. M.

    2001-05-01

    Temperature data from a well-documented site in Pagany Wash at Yucca Mountain, Nevada indicate the presence of a significant heat-flow deficit between the Paintbrush nonwelded and underlying Topopah Spring welded hydrogeologic units that most likely is due to nonconductive heat-flow processes with substantial capacity to extract heat. Percolation fluxes on the order of 10 to 20 millimeters per year beneath Pagany Wash and on the order of 5 millimeters per year beneath the hillslopes bordering the channel can account for this apparent heat-flow deficit. Total heat flow within the unsaturated zone is the sum of its convective and conductive components. The conductive component can be calculated from the temperature gradient and thermal conductivity of the rocks comprising the section of interest. The convective component can be inferred from any observed decrease in the conductive component with increasing elevation in a borehole. Because the enthalpy and specific heat of water are well known, identification of the convectively transported heat component is equivalent to determining the percolation flux. Temperature data from two 120-meter deep boreholes, UZ#4 and UZ#5, in Pagany Wash were examined to determine the vertical distribution of upward, conductive heat flow in the unsaturated zone. The temperature data, in combination with estimates of thermal conductivity, adjusted for ambient saturation and porosity, indicated that upward conductive heat flow was approximately 15.5 mJ/s/m2 within the Pah Canyon Tuff. This heat flow estimate represents a substantial reduction in heat flow from the deeper unsaturated-zone(32 to 40 mJ/s/m2), as indicated on a map of regional heat-flow across the water table beneath Pagany Wash. Percolation fluxes of between 12.4 and 18.4 mm/yr for the depth interval between the Pah Canyon Tuff and the water table at UZ#4 and UZ#5 can account for the apparent heat-flow deficit in the deeper unsaturated zone. Two-dimensional numerical

  7. DOE's Yucca Mountain Studies.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    This booklet is about the disposal of high-level nuclear waste in the United States with a particular focus on Yucca Mountain, Nevada as a repository site. Intended for readers who do not have a technical background, the booklet discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. An…

  8. DOE's Yucca Mountain studies

    International Nuclear Information System (INIS)

    1992-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers thinkhigh-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies

  9. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  10. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  11. Yucca Mountain Milestone

    International Nuclear Information System (INIS)

    Hunt, Rod

    1997-01-01

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ''holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state

  12. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  13. Yucca Mountain Project public interactions

    International Nuclear Information System (INIS)

    Reilly, B.E.

    1990-01-01

    The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project's public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site

  14. Fluid geochemistry of Yucca Mountain and vicinity

    Science.gov (United States)

    Marshall, Brian D.; Moscati, Richard J.; Patterson, Gary L.; Stuckless, John S.

    2012-01-01

    Yucca Mountain, a site in southwest Nevada, has been proposed for a deep underground radioactive waste repository. An extensive database of geochemical and isotopic characteristics has been established for pore waters and gases from the unsaturated zone, perched water, and saturated zone waters in the Yucca Mountain area. The development of this database has been driven by diverse needs of the Yucca Mountain Project, especially those aspects of the project involving process modeling and performance assessment. Water and gas chemistries influence the sorption behavior of radionuclides and the solubility of the radionuclide compounds that form. The chemistry of waters that may infiltrate the proposed repository will be determined in part by that of water present in the unsaturated zone above the proposed repository horizon, whereas pore-water compositions beneath the repository horizon will influence the sorption behavior of the radionuclides transported toward the water table. However, more relevant to the discussion in this chapter, development and testing of conceptual flow and transport models for the Yucca Mountain hydrologic system are strengthened through the incorporation of natural environmental tracer data into the process. Chemical and isotopic data are used to establish bounds on key hydrologic parameters and to provide corroborative evidence for model assumptions and predictions. Examples of specific issues addressed by these data include spatial and temporal variability in net fluxes, the role of faults in controlling flow paths, fracture-matrix interactions, the age and origin of perched water, and the distribution of water traveltimes.

  15. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  16. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  17. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  18. Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1994-01-01

    Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation

  19. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  20. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  1. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  2. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    .... Over the strenuous objections of the State of Nevada, the Department of Energy (DOE) submitted a license application for the proposed Yucca Mountain repository in June 2008 to the Nuclear Regulatory Commission (NRC...

  3. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  4. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  5. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  6. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  7. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  8. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  9. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  10. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  11. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  12. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  13. Sorption of radionuclides on Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Meijaer, A.; Triay, I.; Knight, S.; Cisneros, M.

    1989-01-01

    A substantial database of sorption coefficients for important radionuclides on Yucca Mountain tuffs has been obtained by Los Alamos National Laboratory over the past ten years. Current sorption studies are focussed on validation questions and augmentation of the existing database. Validation questions concern the effects of the use of crushed instead of solid rock samples in the batch experiments, the use of oversaturated stock solutions, and variations in water/rock ratios. Sorption mechanisms are also being investigated. Database augmentation activities include determination of sorption coefficients for elements with low sorption potential, sorption on psuedocolloids, sorption on fracture lining minerals, and sorption kinetics. Sorption can provide an important barrier to the potential migration of radionuclides from the proposed repository within Yucca Mountain to the accessible environment. In order to quantify this barrier, sorption coefficients appropriate for the Yucca Mountain groundwater system must be obtained for each of the important radionuclides in nuclear waste. Los Alamos National Laboratories has conducted numerous batch (crushed-rock) sorption experiments over the past ten years to develop a sorption coefficient database for the Yucca Mountain site. In the present site characterization phase, the main goals of the sorption test program will be to validate critical sorption coefficients and to augment the existing database where important data are lacking. 11 refs., 1 fig., 3 tabs

  14. Evidence for Ground-Water Stratification Near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    K. Futa; B.D. Marshall; Z.E. Peterman

    2006-01-01

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash

  15. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  16. Interpretive geophysical fault map across the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.

    1996-01-01

    Geophysical data collected along 29 traverses across the central block of Yucca Mountain in southwest Nevada reveal anomalies associated with known fault sand indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. Geophysical interpretations indicate that Midway Valley is characterized by several known and previously unknown faults, that the existence of the Yucca Wash fault is equivocal, and that the central part of the eastern flank of Yucca Mountain is characterized by numerous low-amplitude anomalies that probably reflect numerous small-scale faults. Gravity and magnetic data also reveal several large-amplitude anomalies that reflect larger-scale faulting along the margins of the central block

  17. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  18. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  19. Rail Access to Yucca Mountain: Critical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-02-25

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

  20. Rail Access to Yucca Mountain: Critical Issues

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-01-01

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area

  1. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  2. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    Science.gov (United States)

    2009-02-06

    judgment fund, rather than the Nuclear Waste Fund, and require no congressional appropriations. DOE calculates that its nuclear waste liabilities to...in existing light and heavy water reactors, and subsequent recycling in high- burnup gas-cooled reactors, reactors fueled by thorium and plutonium...level nuclear waste repository was a calculated risk that the site could be developed successfully. There is no backup plan in place. Yucca Mountain

  3. Predicting the Future at Yucca Mountain

    International Nuclear Information System (INIS)

    Wilson, J. R.

    1999-01-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years

  4. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  5. Predicting the Future at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Wilson

    1999-07-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

  6. Yucca Mountain Project bibliography, 1988--1989

    International Nuclear Information System (INIS)

    Lorenz, J.J.

    1990-11-01

    This bibliography contains information on the Yucca Mountain Project that was added to the Department of Energy's Energy Data Base from January 1988 through December 1989. This supplement also includes a new section which provides information about publications on the Energy Data Base that were not sponsored by the project but have some relevance to it. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Indexes are provided for Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation, and Key Word in Context. All entries in the Yucca Mountain Project bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE). Technical reports on the Yucca Mountain Project are on display in special open files at participating Nevada Libraries and in the Public Document Room of the US Department of Energy, Nevada Operations Office, in Las Vegas

  7. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    International Nuclear Information System (INIS)

    Cheng, J; Twilley, K; Murvosh, H; Tu, Y; Luke, B; Yfantis, A; Harris, D B

    2003-01-01

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals. Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested

  8. Testing the Concept of Drift Shadow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.B. Paces; L.A. Neymark; T. Ghezzehei; P.F. Dobson

    2006-01-01

    If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain. To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238 U- 234 U- 230 Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All samples show 234 U depletion relative to parent 238 U, indicating varying degrees of water-rock interaction over the past million years. Variations in 234 U/ 238 U activity ratios indicate that depletion of 234 U relative to 238 U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234 U/ 238 U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors

  9. Overview of the Yucca Mountain Licensing Process

    International Nuclear Information System (INIS)

    M. Wisenburg

    2004-01-01

    This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process

  10. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  11. Archaeological program for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Pippin, L.C.; Rhode, D.

    1991-01-01

    Archaeological surveys, limited surface collections and selected test excavations in the Yucca Mountain Project Area have revealed four distinct aboriginal hunting and gathering adaptive strategies and a separate historic Euroamerican occupation. The four aboriginal adaptations are marked by gradual shifts in settlement locations that reflect changing resource procurement strategies. Whereas the earliest hunters and gatherers focused their activities around the exploitation of toolstone along ephemeral drainages and the hunting of game animals in the uplands, the latest aboriginal settlements reflect intensive procurement of early spring plant resources in specific upland environments. The final Euroamerican occupation in the area is marked by limited prospecting activities and travel through the area by early immigrants

  12. Yucca Mountain Site Characterization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gertz, C.P.; Bartlett, J.

    1992-01-01

    The purpose of this document is to describe the Yucca Mountain Site Characterization Project (YMP) and establish an approved YMP baseline against which overall YMP progress and management effectiveness shall be measured. For the sake of brevity, this document will be referred to as the Project Plan throughout this document. This Project Plan only addresses activities up to the submittal of the repository license application (LA) to the Nuclear Regulatory Commission (NRC). A new Project Plan will be submitted to establish the technical, cost, and schedule baselines for the final design and construction phase of development extending through the start of repository operations, assuming that the site is determined to be suitable.

  13. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  14. Hydrology of Yucca Mountain and vicinity, Nevada-California : investigative results through mid-1983

    Science.gov (United States)

    Waddell, R.K.; Robison, J.H.; Blankennagel, R.K.

    1984-01-01

    Yucca Mountain, Nevada, is one of several sites under consideration for construction of the first repository for high-level nuclear waste. The climate is arid; few perennial streams are present in the region. Flash floods occasionally occur. The site is underlain by at least 1,800 meters of volcanic tuffs of Tertiary age; limestones and dolomites of Paleozoic age underlie much of the surrounding region, and, together with alluvial deposits, comprise the major aquifers. Yucca Mountain is in the Alkali Flat-Furnace Creek Ranch ground-water subbasin, which is part of the Death Valley ground-water basin. Discharge occurs at Alkali Flat almost entirely by evapotranspiration, and at Furnace Creek Ranch from small springs and seeps. Beneath Yucca Mountain, depth to water ranges from about 460 to 700 meters; the rock under consideration for construction of the repository is in the unsaturated zone. Rate of recharge at Yucca Mountain is small, perhaps much less than 5 millimeters per year. Within the saturated zone, water movement is principally along fractures. The hydraulic gradient is small east (downgradient) of Yucca Mountain, and increases to the north and west. Lack of effective-porosity data presently precludes accurate calculation of flow velocity and travel times. (USGS)

  15. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  16. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  17. Using science soundly: The Yucca Mountain standard

    International Nuclear Information System (INIS)

    Fri, R.W.

    1995-01-01

    Using sound science to shape government regulation is one of the most hotly argued topics in the ongoing debate about regulatory reform. Even though no one advaocates using unsound science, the belief that even the best science will sweep away regulatory controversy is equally foolish. As chair of a National Research Council (NRC) committee that studied the scientific basis for regulating high-level nuclear waste disposal, the author learned that science alone could resolve few of the key regulatory questions. Developing a standard that specifies a socially acceptable limit on the human health effects of nuclear waste releases involves many decisions. As the NRC committee learned in evaluating the scientific basis for the Yucca Mountain standard, a scientifically best decision rarely exists. More often, science can only offer a useful framework and starting point for policy debates. And sometimes, science's most helpful contribution is to admit that it has nothing to say. The Yucca mountain study clearly illustrates that excessive faith in the power of science is more likely to produce messy frustration than crisp decisions. A better goal for regulatory reform is the sound use of science to clarify and contain the inevitable policy controversy

  18. Yucca Mountain Climate Technical Support Representative

    International Nuclear Information System (INIS)

    Sharpe, Saxon E

    2007-01-01

    The primary objective of Project Activity ORD-FY04-012, 'Yucca Mountain Climate Technical Support Representative', was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding

  19. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  20. Restructured site characterization program at Yucca Mountain

    International Nuclear Information System (INIS)

    Dyer, J.R.; Vawter, R.G.

    1995-01-01

    During 1994 and the early part of 1995, the US Department of Energy's Yucca Mountain Site Characterization Office (YMSCO) and its parent organization, the Office of Civilian Radioactive Waste Management (OCRWM) underwent a significant restructuring. Senior Department officials provided the leadership to reorient the management, technical, programmatic, and public interaction approach to the US High Level Radioactive Waste Disposal Program. The restructuring involved reorganizing the federal staff, conducting meaningful strategic planning, improving the management system, rationalizing contractor responsibilities, focusing upon major products, and increasing stakeholder involvement. The restructured program has prioritized technical and scientific activities toward meeting major regulatory milestones in a timely and cost-effective manner. This approach has raised concern among elements of technical, scientific, and oversight bodies that suitability and licensing decisions could be made without obtaining sufficient technical information for this first-of-its-kind endeavor. Other organizations, such as congressional committees, industrial groups, and rate payers believe characterization goals can be met in a timely manner and within the limitation of available funds. To balance these contrasting views in its decision making process, OCRWM management has made a special effort to communicate its strategy to oversight bodies, the scientific community and other stakeholders and to use external independent peer review as a key means of demonstrating scientific credibility. Site characterization of Yucca Mountain in Nevada is one of the key elements of the restructured program

  1. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  3. Two-dimensional velocity models for paths from Pahute Mesa and Yucca Flat to Yucca Mountain

    International Nuclear Information System (INIS)

    Walck, M.C.; Phillips, J.S.

    1990-11-01

    Vertical acceleration recordings of 21 underground nuclear explosions recorded at stations at Yucca Mountain provide the data for development of three two-dimensional crystal velocity profiles for portions of the Nevada Test Site. Paths from Area 19, Area 20 (both Pahute Mesa), and Yucca Flat to Yucca Mountain have been modeled using asymptotic ray theory travel time and synthetic seismogram techniques. Significant travel time differences exist between the Yucca Flat and Pahute Mesa source areas; relative amplitude patterns at Yucca Mountain also shift with changing source azimuth. The three models, UNEPM1, UNEPM2, and UNEYF1, successfully predict the travel time and amplitude data for all three paths. 24 refs., 34 figs., 8 tabs

  4. Preparing the Yucca Mountain Multimedia Presentation

    International Nuclear Information System (INIS)

    Larkin, Y.; Hartley, J.; Scott, J.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada for development as a geologic repository for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than 20 years of scientific study and intense public interaction and outreach. The U.S. Department of Energy's (DOE) public involvement activities were driven by two federal regulations-the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. As the Project moves into the next phase--applying for a license to construct a repository-the challenge of public interaction and outreach remains. It has become increasingly important to provide tools to communicate to the public the importance of the Yucca Mountain Project. Sharing the science and engineering research with the general public, as well as teachers, students, and industry professionals, is one of the project's most important activities. Discovering ways to translate project information and communicate this information to local governments, agencies, citizens' groups, schools, the news media, and other stakeholders is critical. With these facts in mind, the authors set out to create a presentation that would bring the ''mountain'' to the public

  5. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  6. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    Energy Technology Data Exchange (ETDEWEB)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  7. A radiological disadvantage for siting a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Spiegler, P.

    1996-01-01

    At Yucca mountain, the disposal of large amounts of U-238, U-234, and Pu-238 will result in a long term build-up of Rn-222. In time, because of erosion, the repository horizon will move closer to the surface and large amounts of Rn-222 gas will be able to leak into the atmosphere. The area surrounding Yucca Mountain will become a site of high radioactive background. Sullivan and Pescatore have brought the issue to the attention of the DOE

  8. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Montazer, P.; Wilson, W.E.

    1985-12-31

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10{sup -6} to 9.8 x 10{sup -6} foot per day (2 x 10{sup -6} to 3 x 10{sup -6} meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10{sup -5} to 2.9 x 10{sup -2} foot per day (8 x 10{sup -6} to 9 x 10{sup -3} meter per day). 15 refs., 4 figs., 1 tab.

  9. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  10. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  11. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  12. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository; Yucca Mountain Site characterization project

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, D.J.; Miller, D.D. [Bechtel National, Inc., San Francisco, CA (United States); Hill, R.R. [Sandia National Labs., Albuquerque, NM (United States)

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described.

  13. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  14. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-12-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

  15. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  16. Transportation access to Yucca Mountain: Critical issues

    International Nuclear Information System (INIS)

    Halstead, R.J.; Souleyrette, R.R.; Bartolo, R. di

    1991-01-01

    Transportation planning for a repository at Yucca Mountain is complicated because of uncertainty about the modes and numbers of nuclear waste shipments and because of uncertainty about the routes which will be used. There could be as many as 76,000 truck shipments, or as few as 1,060 dedicated train shipments, during repository operations. The site lacks rail access. Three rail access options currently under study range in length from 120 miles to more than 400 miles. The site is more than 100 miles from the Interstate highway system. The UNLV Transportation Research Center has evaluated three rail and four highway routes using a broad range of impact measures. This preliminary evaluation found that the routing options differ significantly regarding resident and non-resident populations, environmentally sensitive areas, accident rates, and other factors. Crosscutting issues include impacts on Nevada Indian tribes, potential conflicts with US Air Force operations, and future population growth in southern Nevada. Considerable additional analysis will be required prior to environmental impact statement scoping

  17. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Tucci, P.; Burkhardt, D.J.

    1995-01-01

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend

  18. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  19. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    Lorenz, J.J.; Stephan, P.M.

    1991-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1991 through June 1991. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  20. Yucca Mountain Site Characterization Project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1993, through June 30, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  1. Yucca Mountain Site Characterization Project Bibliography, July--December 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountains Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1990 through December 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers and articles are included in the sponsoring organizations list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  2. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    1984-01-01

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  3. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  4. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  5. The terrestrial ecosystem program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.

    1994-01-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain

  6. Yucca Mountain Site characterization project bibliography, January--June 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through June 30, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor resorts, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  7. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  8. Native American plant resources in the Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B.

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs

  9. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  10. Yucca Mountain biological resources monitoring program; Annual report FY92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  11. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1990 through June 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  12. Native American plant resources in the Yucca Mountain Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B. [Michigan Univ., Ann Arbor, MI (USA). Inst. for Social Research; Niles, W.E.; O`Farrell, J.T. [EG and G Energy Measurements, Inc., Goleta, CA (USA)

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs.

  13. Neptunium retardation with tuffs and groundwaters from Yucca Mountain

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Lopez, R.M.; Mitchell, A.J.; Overly, C.M.

    1993-01-01

    The retardation of neptunium was studied using batch sorption and column techniques. Pure mineral separates, tuffs and groundwaters from Yucca Mountain were used for these experiments. Our results indicate that Np sorption increases rapidly as the pH of the water increases in cases where surface complexation is thought w be the dominant sorption mechanism. Oxide minerals (such as hematite) sorb Np strongly; therefore, these minerals even at trace levels in Yucca Mountain tuffs can result in significant Np retardation. Neptunium in groundwaters from Yucca Mountain exhibited a significant amount of sorption onto quartz. Neptunium sorption onto quartz is important because of the large quantity of silica in the tuffs. Elution of neptunium solutions in groundwater through columns made of crushed tuff yielded sorption coefficients that agree with the sorption results obtained using batch sorption techniques. Agreement between batch and column experiments indicates a neptunium sorption mechanism that is linear, reversible, and instantaneous

  14. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  15. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  16. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  17. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  18. Estimating the consequences of significant fracture flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Lauffer, F.C.

    1991-01-01

    A simple model is proposed for investigating the possibility of significant fracture flow at Yucca Mountain, Nevada. The model allows an estimate of the number of flowing fractures at Yucca Mountain based on the size of the fractures and the yearly volume of infiltrating water. Given the number of flowing fractures, the number of waste containers they contact is estimated by a geometric argument. Preliminary results indicate that the larger the flowing fractures, the lower the releases of radionuclides. Also, even with significant fracture flow, releases could be well below the limits set by the Environmental Protection Agency

  19. Basaltic volcanic episodes of the Yucca Mountain region

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1990-03-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

  20. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  1. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region

  2. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  3. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  4. 234U/238U evidence for local recharge and patterns of groundwater flow in the vicinity of Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Paces, J.B.; Ludwig, K. R.; Peterman, Z.E.; Neymark, L.A.

    2002-01-01

    Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6-10 ??g 1-1) and 234U/238U activity ratios (commonly 1.5-6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7-8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced

  5. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  6. Magmatic unrest beneath Mammoth Mountain, California

    Science.gov (United States)

    Hill, David P.; Prejean, Stephanie

    2005-09-01

    Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ˜57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small ( M ≤ 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO 2, and fumarole gases with elevated 3He/ 4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO 2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO 2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.

  7. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  8. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    Science.gov (United States)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  9. Regulatory perspective on NAS recommendations for Yucca Mountain standards

    International Nuclear Information System (INIS)

    Brocoum, S.J.; Nesbit, S.P.; Duguid, J.A.; Lugo, M.A.; Krishna, P.M.

    1996-01-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the US Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards published in August 1995. The DOE agrees with some aspects of the NAS report; however, the DOE has serious concerns with the ability to implement some of the recommendations in a reasonable manner

  10. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    Energy Technology Data Exchange (ETDEWEB)

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  11. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  12. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  13. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  14. Dialogs on the Yucca Mountain controversy. Special report No. 10

    International Nuclear Information System (INIS)

    Schluter, C.M.; Szymanski, J.S.

    1993-08-01

    In an attempt to resolve the controversial issue of tectonic and hydrologic stability of the Yucca Mountain region, the National Academy of Sciences established a Panel on Coupled Hydrologic/Tectonic/HydrothermaI Systems. The Panel has recently released it's findings in a report entitled Ground Water at Yucca Mountain: How High Can It Rise? The representation of data and the scientific validity of this report was the subject of comprehensive evaluations and reviews which has led to correspondence between Dr. Charles Archarnbeau and Dr. Frank Press, the President of the National Academy of Sciences. All such correspondence prior to April 9, 1993 is covered by TRAC Special Report No. 5, open-quotes Dialogs on the Yucca Mountain Controversy.close quotes The present report represents a continuation of the dialog between Dr. Archambeau and Dr. Press; specifically the letter from Dr. Press to Dr. Archambeau dated April 9, 1993 and Archambeau's response to Press, dated August 19, 1993. In addition to the correspondence between Press and Archambeau, a series of recent reports by other investigators, referred to in the correspondence from Archambeau, are included in this report and document new data and inferences of importance for resolution of the question of suitability of the Yucca Mountain site as a high level nuclear waste repository. These reports also demonstrate that other scientists, not previously associated with the government's program at Yucca Mountain or the National Academy review of an aspect of that program, have arrived at conclusions that are different than those stated by the Academy review and DOE program scientists

  15. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  16. TBM tunneling on the Yucca Mountain Project: Proceedings

    International Nuclear Information System (INIS)

    Williamson, G.E.; Gowring, I.M.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  17. Development of the Performance Confirmation Program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G.D. LeCain; D. Barr; D. Weaver; R. Snell; S.W. Goodin; F.D. Hansen

    2006-01-01

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure

  18. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  19. Implementation of NUREG-1318 guidance within the Yucca Mountain Project

    International Nuclear Information System (INIS)

    La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

    1990-01-01

    The US Department of Energy's Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ''Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements'' for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs

  20. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    Henline, D.M.; Bales, J.D.

    1990-03-01

    This update contains information on the Yucca Mountain Project that was added to the Energy Data Base (EDB) during the first six months of 1989. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. The update is categorized by principal project participant organizations, and items are arranged in chronological order according to publication date. Participant-sponsored subcontractor reports, meeting papers, and journal articles are included with sponsoring organization

  1. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1994-03-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass.

  2. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  3. Uncertainty analyses of unsaturated zone travel time at Yucca Mountain

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.

    1993-01-01

    Uncertainty analysis method can be applied to numerical models of ground-water flow to estimate the relative importance of physical and hydrologic input variables with respect to ground-water travel time. Monte Carlo numerical simulations of unsaturated flow in the Calico Hills nonwelded zeolitic (CHnz) layer at Yucca Mountain, Nevada, indicate that variability in recharge, and to a lesser extent in matrix porosity, explains most of the variability in predictions of water travel time through the unsaturated zone. Variations in saturated hydraulic conductivity and unsaturated curve-fitting parameters were not statistically significant in explaining variability in water travel time through the unsaturated CHnz unit. The results of this study suggest that the large uncertainty associated with recharge rate estimates for the Yucca Mountain site is of concern because the performance of the potential repository would be more sensitive to uncertainty in recharge than to any other parameter evaluated. These results are not exhaustive because of the limited site characterization data available and because of the preliminary nature of this study, which is limited to a single stratigraphic unit, one dimension, and does not account for fracture flow or other potential fast pathways at Yucca Mountain

  4. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  5. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  6. Selenite transport in unsaturated tuff from Yucca Mountain

    International Nuclear Information System (INIS)

    Conca, J.L.; Triay, I.R.

    1994-01-01

    Direct measurements of unsaturated selenite retardation coefficients and unsaturated hydraulic conductivity were obtained on two tuff samples from Yucca Mountain using the UFA trademark technology. The retardation factor for the selenite species was only 2.5 in both Yucca Mountain vitric member at 62.6% saturation and zeolitized nonwelded tuff from G-tunnel at 52.8% saturation with respect to J-13 well water from the Nevada Test Site contaminated with selenium at 1.31 mg/l (ppm). In batch tests on the same material using 1.2 mg/l (ppm), the average K d was determined to be 13, giving retardation factors higher than the UFA column breakthrough tests by an order of magnitude. The difference could result from preferential flow paths in the UFA column as might occur in the field or differences in residence times between the two types of test. The unsaturated hydraulic conductivities during the experiments were 2.49 x 10 -8 cm/s for the Yucca Mountain vitric member and 1.16 x 10 -8 cm/s for the zeolitized nonwelded tuff

  7. Development of stochastic indicator models of lithology, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; Robey, T.H.

    1994-01-01

    Indicator geostatistical techniques have been used to produce a number of fully three-dimensional stochastic simulations of large-scale lithologic categories at the Yucca Mountain site. Each realization reproduces the available drill hole data used to condition the simulation. Information is propagated away from each point of observation in accordance with a mathematical model of spatial continuity inferred through soft data taken from published geologic cross sections. Variations among the simulated models collectively represent uncertainty in the lithology at unsampled locations. These stochastic models succeed in capturing many major features of welded-nonwelded lithologic framework of Yucca Mountain. However, contacts between welded and nonwelded rock types for individual simulations appear more complex than suggested by field observation, and a number of probable numerical artifacts exist in these models. Many of the apparent discrepancies between the simulated models and the general geology of Yucca Mountain represent characterization uncertainty, and can be traced to the sparse site data used to condition the simulations. Several vertical stratigraphic columns have been extracted from the three-dimensional stochastic models for use in simplified total-system performance assessment exercises. Simple, manual adjustments are required to eliminate the more obvious simulation artifacts and to impose a secondary set of deterministic geologic features on the overall stratigraphic framework provided by the indictor models

  8. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN number-sign 85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper

  9. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistical methods are used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  10. Probabilistic performance assessments for evaluations of the Yucca Mountain site

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Noronha, C.J.

    1992-01-01

    Site suitability evaluations are conducted to determine if a repository system at a particular site will be able to meet the performance objectives for that system. Early evaluations to determine if the Yucca Mountain site is suitable for repository development have been made in the face of large uncertainties in site features and conditions. Because of these large uncertainties, the evaluations of the site have been qualitative in nature, focusing on the presence or absence of particular features or conditions thought to be important to performance, rather than on results of quantitative performance assessments. Such a qualitative approach was used in the recently completed evaluation of the Yucca Mountain site, the Early Site-Suitability Evaluation (ESSE). In spite of the qualitative approach, the ESSE was able to conclude that no disqualifying conditions are likely to be present at the site and that all of the geologic conditions that would qualify the site are likely to be met. At the same time, because of the qualitative nature of the approach used in the ESSE, the precise importance of the identified issues relative to performance could not be determined. Likewise, the importance of the issues relative to one another could not be evaluated, and, other than broad recommendations, specific priorities for future testing could not be set. The authors have conducted quantitative performance assessments for the Yucca Mountain site to address these issues

  11. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Patterson; P. Striffler

    2007-01-01

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel

  12. Yucca Mountain public tours: Can they impact public opinion?

    International Nuclear Information System (INIS)

    Reilly, B.; Austin, P.

    1991-01-01

    The Yucca Mountain site in Nevada was selected by Congress in 1987 as the only site for the US Department of Energy (DOE) to study for suitability as a high-level radioactive waste repository. Several years of site characterization studies are needed to determine if the site is suitable. However, DOE's study of the site is one of the most intensely opposed federal programs today. The fight against DOE's effort to study the repository leads the political agendas of Nevada's governor and Congressional delegation. The politicians and the press have been the primary sources of information for Nevada citizens on the Yucca Mountain site characterization program. However, there is a more direct source of factual information regarding the program - the site itself and the participating scientists. The DOE is offering Nevada citizens the opportunity to form their own opinions by touring the Yucca Mountain site and interacting with DOE scientists and engineers. Feedback from monthly tours conducted from March to June 1991 has indicated substantial support from Nevada citizens for DOE's study of the site. In fact, a surprising number of citizens have indicated that the opportunity to gather information and formulate their own opinions led them to change their opinions

  13. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  14. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  15. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  16. Fracture analysis and rock quality designation estimation for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.; Hardy, M.P. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States); Bauer, S.J. [Sandia National Labs., Albuquerque, NM (United States)

    1993-02-01

    Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics.

  17. Evaluations of Yucca Mountain survey findings about the attitudes, opinions, and evaluations of nuclear waste disposal and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flynn, J.H.; Slovic, P.; Mertz, C.K.; Toma, J.

    1990-09-01

    This report provides findings from three surveys conducted during the Fall 1989 as part of the socioeconomic research program sponsored by the Nevada Agency for Nuclear Projects. The US Congress passed the Nuclear Waste Policy Act (NWPA) in 1982 and defined specific oversight responsibilities, including studies of socioeconomic effects and impacts, to the states in which potential high-level nuclear waste repositories might be located. The NWPA was amended in 1987 and Yucca Mountain, Nevada was designated as the only site to be characterized (studied in detail) as a location for the nation's first repository. These surveys were conducted so they could provide information to the state of Nevada in its evaluation of the Yucca Mountain project. This report presents information from these surveys on two major areas. First, respondent evaluations of environmental hazards, especially nuclear waste facilities are reported. Second, an analysis is made of the Nevada State Survey to examine the public response to the positions taken by the officials and institutions of Nevada in regard to the Yucca Mountain project. The survey data support a finding that the respondents from all three surveys are seriously concerned about the environmental effects of technological facilities and hazards. The evaluations of a nuclear waste repository especially is viewed as likely to produce adverse events and impacts in every aspect of its implementation, operation or long-term existence. When compared to other industrial or technological activities, a high-level nuclear waste repository is seen as the most feared and least acceptable. 36 tabs

  18. Movement of shaft and drift construction water in Yucca Mountain, Nevada: An extended study; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, S.R.; Fewell, M.E.; Eaton, R.R.

    1991-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, for which many design options are being considered, including shafts, drifts, and ramps. The information in this report pertains to: (1) engineering calculations of the potential distribution of residual water from constructing the shafts and drifts; (2) numerical calculations predicting the movement of residual construction water from the shaft and drift walls into the rock; and (3) numerical calculations of the movement of residual water and how the movement is affected by ventilation. This document contains information that has been used in preparing Appendix 1 of the Exploratory Studies Facility Design Requirements document for the Yucca Mountain Project.

  19. Geology of the Yucca Mountain site area, southwestern Nevada

    Science.gov (United States)

    Keefer, W.R.; Whitney, J.W.; Buesch, D.C.

    2006-01-01

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (>10% crystal fragments) member, a more voluminous lower crystal-poor (Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U

  20. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1999

    National Research Council Canada - National Science Library

    Locke, Glenn L

    2001-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region...

  1. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    Science.gov (United States)

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).

  2. Chlorine-36 validation Study at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J. Paces

    2006-01-01

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ( 36 Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of 36 Cl to total chloride ( 36 Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse 36 Cl (i.e., 36 Cl/Cl ratios greater than 1250 x 10 -15 resulting from 36 Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the 36 Cl/Cl data with an independent validation study. DOE asked the USGS to design and implement a validation

  3. Chlorine-36 alidation Study at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Paces

    2006-08-28

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ({sup 36}Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of {sup 36}Cl to total chloride ({sup 36}Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse {sup 36}Cl (i.e., {sup 36}Cl/Cl ratios greater than 1250 x 10{sup -15} resulting from {sup 36}Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the {sup 36}Cl/Cl data with an independent validation study. DOE asked the USGS

  4. Multiscale thermohydrologic model: addressing variability and uncertainty at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

    2000-01-01

    Performance assessment and design evaluation require a modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and also on behavior at the scale of the mountain. Many processes and features must be considered, including non-isothermal, multiphase-flow in rock of variable saturation and thermal radiation in open cavities. Also, given the nature of the fractured rock at Yucca Mountain, a dual-permeability approach is needed to represent permeability. A monolithic numerical model with all these features requires too large a computational cost to be an effective simulation tool, one that is used to examine sensitivity to key model assumptions and parameters. We have developed a multi-scale modeling approach that effectively simulates 3D discrete-heat-source, mountain-scale thermohydrologic behavior at Yucca Mountain and captures the natural variability of the site consistent with what we know from site characterization and waste-package-to-waste-package variability in heat output. We describe this approach and present results examining the role of infiltration flux, the most important natural-system parameter with respect to how thermohydrologic behavior influences the performance of the repository

  5. Meteoric precipitation at Yucca Mountain, Nevada: Chemical and stable isotope analyses, 2006-09

    Science.gov (United States)

    Moscati, Richard J.; Scofield, Kevin M.

    2011-01-01

    Meteoric precipitation samples collected in 2006-09 at Yucca Mountain, Nevada, were analyzed for chemistry and stable isotope composition. Precipitation is the major source of infiltration to the unsaturated zone and of recharge to the saturated zone at Yucca Mountain.

  6. Pre-construction geologic section along the cross drift through the potential high-level radioactive waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Juan, C.S.; Drake, R.M. II

    1998-01-01

    As part of the Site Characterization effort for the US Department of Energy's Yucca Mountain Project, tunnels excavated by tunnel boring machines provide access to the volume of rock that is under consideration for possible underground storage of high-level nuclear waste beneath Yucca Mountain, Nevada. The Exploratory Studies Facility, a 7.8-km-long, 7.6-m-diameter tunnel, has been excavated, and a 2.8-km-long, 5-m-diameter Cross Drift will be excavated in 1998 as part of the geologic, hydrologic and geotechnical evaluation of the potential repository. The southwest-trending Cross Drift branches off of the north ramp of the horseshoe-shaped Exploratory Studies Facility. This report summarizes an interpretive geologic section that was prepared for the Yucca Mountain Project as a tool for use in the design and construction of the Cross Drift

  7. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  8. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Flynn, T.; Buchanan, P.; Trexler, D.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste

  9. A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Bish, D.L.; Chipera, S.

    1988-05-01

    Several faults near Yucca Mountain, Nevada, contain abundant calcite and opal-CT, with lesser amounts of opal-A and sepiolite or smectite. These secondary minerals are being studied to determine the directions, amounts, and timing of transport involved in their formation. Such information is important for evaluating the future performances of a potential high-level nuclear waste repository beneath Yucca Mountain. This report is a preliminary assessment of how those minerals were formed. Possible analog deposits from known hydrothermal veins, warm springs, cold springs or seeps, soils, and aeolian sands were studied by petrographic and x-ray diffraction methods for comparison with the minerals deposited in the faults; there are major mineralogic differences in all of these environments except in the aeolian sands and in some cold seeps. Preliminary conclusions are that the deposits in the faults and in the sand ramps are closely related, and that the process of deposition did not require upward transport from depth. 35 refs., 25 figs

  10. A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs

    Energy Technology Data Exchange (ETDEWEB)

    Vaniman, D.T.; Bish, D.L.; Chipera, S.

    1988-05-01

    Several faults near Yucca Mountain, Nevada, contain abundant calcite and opal-CT, with lesser amounts of opal-A and sepiolite or smectite. These secondary minerals are being studied to determine the directions, amounts, and timing of transport involved in their formation. Such information is important for evaluating the future performances of a potential high-level nuclear waste repository beneath Yucca Mountain. This report is a preliminary assessment of how those minerals were formed. Possible analog deposits from known hydrothermal veins, warm springs, cold springs or seeps, soils, and aeolian sands were studied by petrographic and x-ray diffraction methods for comparison with the minerals deposited in the faults; there are major mineralogic differences in all of these environments except in the aeolian sands and in some cold seeps. Preliminary conclusions are that the deposits in the faults and in the sand ramps are closely related, and that the process of deposition did not require upward transport from depth. 35 refs., 25 figs.

  11. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    International Nuclear Information System (INIS)

    Levy, S.

    2000-01-01

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  12. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; M.A. Wasiolek; J.J. Tappen; K.R. Rautenstrauch; A.J. Smith

    2002-11-18

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater.

  13. Implementation of NUREG-1318 guidance within the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

    1990-04-01

    The US Department of Energy`s Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ``Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements`` for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs.

  14. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wu, D.W.; Wasiolek, M.A.; Tappen, J.J.; Rautenstrauch, K.R.; Smith, A.J.

    2002-01-01

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater

  15. The Integration and Abstraction of EBS Models in Yucca Mountain Performance Assessment

    International Nuclear Information System (INIS)

    S.D. Sevougian; V. Jain; A.V. Luik

    2006-01-01

    The safety strategy for geological disposal of radioactive waste at Yucca Mountain relies on a multi-barrier system to contain the waste and isolate it from the biosphere. The multi-barrier system consists of the natural barrier provided by the geological setting and the engineered barrier system (EBS). In the case of Yucca Mountain (YM) the geologic setting is the unsaturated-zone host rock, consisting of about 600 meters of layered ash-flow volcanic tuffs above the water table, and the saturated zone beneath the water table. Both the unsaturated and saturated rocks are part of a closed hydrologic basin in a desert surface environment. The waste is to be buried about halfway between the desert surface and the water table. The primary engineered barriers at YM consist of metal components that are highly durable in an oxidizing environment. The two primary components of the engineered barrier system are highly corrosion-resistant metal waste packages, made from a nickel-chromium-molybdenum alloy, Alloy 22, and titanium drip shields that protect the waste packages from corrosive dripping water and falling rocks. Design and performance assessment of the EBS requires models that describe how the EBS and near field behave under anticipated repository-relevant conditions. These models must describe coupled hydrologic, thermal, chemical, and mechanical (THCM) processes that drive radionuclide transport in a highly fractured host rock, consisting of a relatively permeable network of conductive fractures in a setting of highly impermeable tuff rock matrix. An integrated performance assessment of the EBS must include a quantification of the uncertainties that arise from (1) incomplete understanding of processes and (2) from lack of data representative of the large spatial scales and long time scales relevant to radioactive waste disposal (e.g., long-term metal corrosion rates and heterogeneities in rock properties over the large 5 km 2 emplacement area of the repository). A

  16. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    Science.gov (United States)

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  17. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  18. MIC evaluation and testing for the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Rivera, A.; Lain, T.; Jones, D.A.

    1997-10-01

    The U.S. Department of Energy is engaged in a suitability study for a potential deep geological repository at Yucca Mountain (YM), Nevada, for the containment and storage of high-level nuclear waste. There is growing awareness that biotic factors could affect the integrity of the repository directly through microbially induced corrosion (MIC) of waste package (WP) materials and other repository elements. A program to determine the degree that microorganisms, especially bacteria, influence the corrosion of waste package materials has therefore been undertaken. These studies include testing candidate waste package materials for their susceptibility to MIC, and also seek to determine rates of biocorrosion under varying environmental conditions, as well as predict rates of waste package corrosion over the long term. Previous characterization of bacterial isolates derived from YM geologic material showed that many possessed biochemical activities associated with MIC, 2. Various Yucca Mountain microbes demonstrated the abilities to oxidize iron, reduce sulfate to sulfide, produce acids, and generate exopolysaccharides (or `slime`). Table 1 summarizes previously characterized YM organisms and their associated relevant activities. A subset of the characterized YM bacteria were spread on WP alloy coupons in systems designed to collect polarization resistance (Rp) data for corrosion rate calculations, and to determine cathodic and anodic potentiodynamic polarization to assess corrosion mechanisms. Coupons inoculated with bacteria were compared to those that remained sterile, to determine the bacterial contribution to overall corrosion rates.

  19. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  20. US strategy for evaluating the Yucca Mountain, Nevada site

    International Nuclear Information System (INIS)

    Gertz, C.

    1988-01-01

    The principal role of a disposal system at Yucca Mountain, Nevada is to isolate waste for a long period into the future. Therefore, the general objective for the entire system is to limit any radionuclide releases to the accessible environment. This objective will be achieved by selecting a site that contains natural barriers against radionuclide releases and by providing an appropriate system of engineered barriers. To provide additional insurance that the system at Yucca Mountain will perform adequately, individual objectives have also been defined for the engineered and natural barriers to radionuclide release and for the design of the disposal system. The general objective for the engineered barriers is that they should limit the release of radionuclides to the natural barriers. The general objective for the natural barriers is that the time of radionuclide travel to the accessible environment through these barriers should be very long. In particular, since groundwater may transport radionuclides, the groundwater travel time should be very long. The general objectives for the design of the disposal system are that its operation should be safe and that its construction should not compromise its ability to meet the other general objectives

  1. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    International Nuclear Information System (INIS)

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-01-01

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the 13 C content of soil CO 2 , CaCO 3 , precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The 13 C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing 13 C content with depth decreasing 13 C with altitude and reduced 13 C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO 2 loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids

  2. 1989 vegetation studies at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1990-02-01

    The overall purpose of the 1989 vegetation ecology studies was to describe the existing vegetation and baseline ecological conditions of the Yucca Mountain study area, before further disturbances due to site characterization occur. Extensive disturbances have already occurred due to preliminary studies associated with the waste repository. If the site is determined to be unsuitable for a waste repository, then reclamation of disturbed sites will be required. Biotic conditions are described within both regional and local contexts because the intensity of local disturbances may result in impacts to outlying areas. The most detailed data collection was conducted in the Focused Baseline Study Area where site characterization activities will be concentrated. Less detailed information was obtained for adjacent areas in the Core Study Area and Cumulative Assessment Study Area. The major tasks of this study were as follows: describe and map the vegetation of the Yucca Mountain study area; identify important relationships between the biotic and physical elements of the ecosystem; identify unique or sensitive resources; preliminary assessment of the baseline ecological conditions of the area

  3. Yucca Mountain Project Site Atlas: Volume 1: Draft

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project Site Atlas is a reference document of field activities which have been, or are being, conducted by the US Department of Energy (DOE) to support investigations of Yucca Mountain as a potential site for an underground repository for high-level radioactive waste. These investigations, as well as future investigations, will yield geologic, geophysical, geochemical, geomechanical, hydrologic, volcanic, seismic, and environmental data necessary to characterize Yucca Mountain and its regional setting. This chapter summarizes the background of the NNWSI Project and the objective, scope, structure, and preparation of the Site Atlas. Chapter 2 describes in more detail the bibliography and map portfolio portions of the Atlas, which are presented in Chapter 4 and Volume 2, respectively. Chapter 3 describes how to use the Atlas. The objective of the Site Atlas is to create a management tool for the DOE Waste Management Project Office (WMPO) that will allow the WMPO to compile and disseminate information regarding the location of NNWSI Project field investigations, and document the permits acquired and the environmental, archaeological, and socioeconomic surveys conducted to support those investigations. The information contained in the Atlas will serve as a historical reference of site investigation field activities. A companion document to the Atlas is the NNWSI Project Surface Based Investigations Plan (SBIP)

  4. Autotrophic and heterotrophic bacterial diversity from Yucca Mountain

    International Nuclear Information System (INIS)

    Khalil, M.; Haldeman, D.L.; Igbinovia, A.; Castro, P.

    1996-01-01

    A basic understanding of the types and functions of microbiota present within the deep subsurface of Yucca Mountain will be important in terms of modeling the long term stability of a nuclear waste repository. Microorganisms can degrade building materials used in tunnel construction such as concrete and steel. For example, high concentrations of nitrifying bacteria, may cause corrosion of concrete due to the release of nitric acid. Likewise, sulfur-oxidizing and iron-oxidizing bacteria have been implicated in microbially influenced corrosion (MIC), and may contribute to the degradation of waste packages. In addition, the metabolic activities of microbiota may alter the geochemistry of surrounding environments, which may in turn influence the permeability of subsurface strata and the fate of radioactive compounds. Microorganisms that play roles in these processes have diverse methods of obtaining the energy required for growth and metabolism and have been recovered from a wide range of environments, including the deep subsurface. The purpose of this research was to determine if these bacterial groups, important to the long-term success of a high-level nuclear waste repository, were indigenous to Yucca Mountain

  5. Sorption Characterization of Radionuclides on Clays in Yucca Mountain Alluvium

    International Nuclear Information System (INIS)

    M. Ding; P.W. Reimus; S. Chipera; C. Scism

    2006-01-01

    Sorption of 237 Np(V) and 233 U(VI) was measured on clays separated from Yucca Mountain alluvium as a function of solution pH and aqueous actinide concentrations. The results indicate that sorption of U and Np on the separated clay fraction depends strongly on solution pH. Np sorption on clays increases slowly with increasing pH from 3 to 7. Above pH 7, Np sorption on clays increases rapidly up to a pH of about 10. On the other hand, U sorption on clays reaches it maximum at a pH of about 6, with sorption decreasing as pH increases from 6 to 8 and then increasing again as pH increases further from 8 to about 10. The results suggest that a Freundlich isotherm can be used to describe U and Np sorption on clays at pH above 5.5. The results of this study indicate that clay minerals play a very important role in the sorption of U and Np on Yucca Mountain alluvium. Indeed, the clay content of the alluvium is probably considerably more important than water chemistry in predicting the ability of the alluvium to attenuate the transport of these radionuclides

  6. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  7. Tunneling on the Yucca Mountain Project: Progress and lessons learned

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Rogers, D.J.; Wightman, W.D.

    1996-01-01

    The Yucca Mountain Site Characterization Project is the US's effort to confirm the technical acceptability of Yucca Mountain as a repository for high-level nuclear waste. A key part of the site characterization project is the construction of a 7.8-km-long, 7.6-m-diameter tunnel for in-depth geologic and other scientific investigations. The work is governed in varying degrees by the special requirements for nuclear quality assurance, which imposes uncommon and often stringent limitations on the materials which can be used in construction, the tunneling methods and procedures used, and record-keeping for many activities. This paper presents the current status of what has been learned, how construction has adapted to meet the requirements, and how the requirements were interpreted in a mitigating way to meet the legal obligations, yet build the tunnel as rapidly as possible. With regard to design methodologies and the realities of tunnel construction, ground support with a shielded Tunnel Boring Machine is discussed. Notable lessons learned include the need for broad design analyses for a wide variety of conditions and how construction procedures affect ground support

  8. A demonstration of dose modeling at Yucca Mountain

    International Nuclear Information System (INIS)

    Miley, T.B.; Eslinger, P.W.

    1992-11-01

    The U. S. Environmental Protection Agency is currently revising the regulatory guidance for high-level nuclear waste disposal. In its draft form, the guidelines contain dose limits. Since this is likely to be the case in the final regulations, it is essential that the US Department of Energy be prepared to calculate site-specific doses for any potential repository location. This year, Pacific Northwest Laboratory (PNL) has made a first attempt to estimate doses for the potential geologic repository at Yucca Mountain, Nevada as part of a preliminary total-systems performance assessment. A set of transport scenarios was defined to assess the cumulative release of radionuclides over 10,000 years under undisturbed and disturbed conditions at Yucca Mountain. Dose estimates were provided for several of the transport scenarios modeled. The exposure scenarios used to estimate dose in this total-systems exercise should not, however, be considered a definitive set of scenarios for determining the risk of the potential repository. Exposure scenarios were defined for waterborne and surface contamination that result from both undisturbed and disturbed performance of the potential repository. The exposure scenarios used for this analysis were designed for the Hanford Site in Washington. The undisturbed performance scenarios for which exposures were modeled are gas-phase release of 14 C to the surface and natural breakdown of the waste containers with waterborne release. The disturbed performance scenario for which doses were estimated is exploratory drilling. Both surface and waterborne contamination were considered for the drilling intrusion scenario

  9. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  10. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  11. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  13. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  14. Use of Groundwater Chemistry to Evaluate Subsurface Flow at Yucca Mountain, Nevada

    Science.gov (United States)

    Coleman, N. M.; Dam, W. L.

    2001-12-01

    Yucca Mountain, Nevada is a potential site for the disposal of high-level nuclear wastes. Groundwater at the site occurs in Tertiary volcanic tuffs and in Quaternary valley fill alluvium at lower elevations in the Amargosa Desert. Groundwater seeps downward to the water table through a thick unsaturated zone (UZ), then flows south and southeasterly from Yucca Mountain toward Fortymile Wash. The wash is a highly ephemeral watercourse that drains Fortymile Canyon and Jackass Flats southward. The wash crosses Highway 95 just west of Lathrop Wells, Nevada. Water table contours in Jackass Flats show that groundwater flow strongly converges on the axis of Fortymile Wash, indicating that the same structural conditions that cause topographic lows in the area also enhance the southerly flow of groundwater. Groundwater chemistry is being used to evaluate flow conditions at local and regional scales, and to help resolve technical issues concerning UZ and saturated zone (SZ) flow conditions and dilution processes. A number of perched zones have been found beneath Yucca Mt. in five different wells (Patterson et al., 1998). The major element chemistry of perched water is distinct from pore water chemistry in the UZ and more similar to the water chemistry of the SZ. The perched water is more dilute than the UZ pore waters, with generally lower chloride concentrations. The lower chloride concentration suggests that a fraction of the perched water is recharge that moves downward from the surface through fractures, and has less interaction with the host rock than pore waters. However, only 1 of 5 wells yielded perched water with bomb-pulse levels of tritium. Deuterium and O-18 stable isotope chemistry indicates that perched water has an intermediate composition when compared to SZ groundwater. It is isotopically heavier (less negative) than SZ water beneath Yucca Mountain, but lighter than groundwater from wells along Fortymile Wash where significant recharge occurs. The heaviest

  15. COVE 2A Benchmarking calculations using NORIA; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C.R.; Bixler, N.E.; Hopkins, P.L.; Eaton, R.R.

    1991-10-01

    Six steady-state and six transient benchmarking calculations have been performed, using the finite element code NORIA, to simulate one-dimensional infiltration into Yucca Mountain. These calculations were made to support the code verification (COVE 2A) activity for the Yucca Mountain Site Characterization Project. COVE 2A evaluates the usefulness of numerical codes for analyzing the hydrology of the potential Yucca Mountain site. Numerical solutions for all cases were found to be stable. As expected, the difficulties and computer-time requirements associated with obtaining solutions increased with infiltration rate. 10 refs., 128 figs., 5 tabs.

  16. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E. [and others

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  19. Public Interaction and Educational Outreach on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    A. Benson; Y. Riding

    2002-11-14

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public

  20. Public Interaction and Educational Outreach on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Benson, A.; Riding, Y.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in

  1. [Paleoclimatology studies for Yucca Mountain site characterization]. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of two separate papers: Fernley Basin studies; and Influence of sediment supply and climate change on late Quaternary eolian accumulation patterns in the Mojave Desert. The first study involved geologic mapping of late Quaternary sediments and lacustrine features combined with precise control of elevations and descriptions of sediments for each of the major sedimentary units. The second paper documents the response of a major eolian sediment transport system in the east-central Mojave Desert: that which feeds the Kelso Dune field. Information from geomorphic, stratigraphic, and sedimentologic studies of eolian deposits and landforms is combined with luminescence dating of these deposits to develop a chronology of periods of eolian deposition. Both studies are related to site characterization studies of Yucca Mountain and the forecasting of rainfall patterns possible for the high-level radioactive waste repository lifetime

  2. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  3. Fault stress analysis for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1991-01-01

    An understanding of the state of stress on faults is important for pre- and postclosure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. It was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  4. Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

  5. Regulatory perspective on future climates at Yucca Mountain

    International Nuclear Information System (INIS)

    Coleman, N.M.; Eisenberg, N.A.; Brooks, D.J.

    1996-01-01

    Current regulations of the U.S. Nuclear Regulatory Commission (NRC) require that any performance assessment supporting the license application for a high-level waste (HLW) repository must consider the potential for changes in hydrologic conditions caused by reasonably foreseeable climatic conditions. The requirement is important because the earth's climate will almost certainly change significantly during the thousands of years that disposed nuclear wastes will remain hazardous. More importantly, climate controls the range of precipitation, which in turn controls the rates of infiltration, deep percolation, and groundwater flux through a geologic repository located in an unsaturated environment. Therefore, future changes in climate could significantly influence waste isolation in a repository at Yucca Mountain

  6. Fault stress analysis for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1992-01-01

    An understanding of the state of stress on faults is important for pre- and post-closure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. it was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  7. Summary report on the geochemistry of Yucca Mountain and environs

    International Nuclear Information System (INIS)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling

  8. Software quality assurance on the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Matras, J.R.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) has been involved over the years in the continuing struggle with establishing acceptable Software Quality Assurance (SQA) requirements for the development, modification, and acquisition of computer programs used to support the Mined Geologic Disposal System. These computer programs will be used to produce or manipulate data used directly in site characterization, design, analysis, performance assessment, and operation of repository structures, systems, and components. Scientists and engineers working on the project have claimed that the SQA requirements adopted by the project are too restrictive to allow them to perform their work. This paper will identify the source of the original SQA requirements adopted by the project. It will delineate the approach used by the project to identify concerns voiced by project engineers and scientists regarding the original SQA requirements. It will conclude with a discussion of methods used to address these problems in the rewrite of the original SQA requirements

  9. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  10. Assessment of faulting and seismic hazards at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.; Frazier, G.A.; Grant, T.A.

    1989-01-01

    Yucca Mountain is being evaluated for the nation's first high-level nuclear-waste repository. Local faults appear to be capable of moderate earthquakes at recurrence intervals of tens of thousands of years. The major issues identified for the preclosure phase (<100 yrs) are the location and seismic design of surface facilities for handling incoming waste. It is planned to address surface fault rupture by locating facilities where no discernible recent (<100,000 yrs) faulting has occurred and to base the ground motion design on hypothetical earthquakes, postulated on nearby faults, that represent 10,000 yrs of average cumulative displacement. The major tectonic issues identified for the postclosure phase (10,000 yrs) are volcanism (not addressed here) and potential changes to the hydrologic system resulting from a local faulting event which could trigger potential thermal, mechanical, and chemical interactions with the ground water. Extensive studies are planned for resolving these issues. 33 refs., 3 figs

  11. Candidate container materials for Yucca Mountain waste package designs

    International Nuclear Information System (INIS)

    McCright, R.D.; Halsey, W.G.; Gdowski, G.E.; Clarke, W.L.

    1991-09-01

    Materials considered as candidates for fabricating nuclear waste containers are reviewed in the context of the Conceptual Design phase of a potential repository located at Yucca Mountain. A selection criteria has been written for evaluation of candidate materials for the next phase -- Advanced Conceptual Design. The selection criteria is based on the conceptual design of a thin-walled container fabricated from a single metal or alloy; the criteria consider the performance requirements on the container and the service environment in which the containers will be emplaced. A long list of candidate materials is evaluated against the criteria, and a short list of materials is proposed for advanced characterization in the next design phase

  12. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Knox, E.; Slothouber, L.

    2003-02-25

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

  13. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    International Nuclear Information System (INIS)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-01-01

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides

  14. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  15. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability

  16. A tunnel boring system for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Short, S.N.

    1994-01-01

    Design of the Yucca Mountain Project (YMP) tunnel boring machine (TBM) and backup began in June of 1993, with fabrication, machining and light assembly proceeding through to the end of the year. The original specifications for the project were contained in the request for quote for the YMP TBM and in Construction ampersand Tunneling Services proposal document. As with all complex custom assignments, much of the finer details of the definition of the final scope of delivery was concurrent with the design effort itself. The summation of this effort is described in this paper. The major technical scope of the machine delivery is defined by the parameters listed in TABLE 1. Within the confines of the installed power and design excavation rates, the final product has been tailored to suit the particular needs of the project

  17. TSPA Model for the Yucca Mountain Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Wilson; C.K. Ho

    2001-12-12

    Yucca Mountain, Nevada, is being considered as a potential site for a repository for spent nuclear fuel and high-level radioactive waste. Total-system performance-assessment (TSPA) calculations are performed to evaluate the safety of the site. Such calculations require submodels for all important engineered and natural components of the disposal system. There are five submodels related to the unsaturated zone: climate, infiltration, mountain-scale flow of water, seepage into emplacement drifts, and radionuclide transport. For each of these areas, models have been developed and implemented for use in TSPA. The climate model is very simple (a set of climate states have been deduced from paleoclimate data, and the times when climate changes occur in the future have been estimated), but the other four models make use of complex process models involving time-consuming computer runs. An important goal is to evaluate the impact of uncertainties (e.g., incomplete knowledge of the site) on the estimates of potential repository performance, so particular attention is given to the key uncertainties for each area. Uncertainties in climate, infiltration, and mountain-scale flow are represented in TSPA simulations by means of discrete high, medium, and low cases, Uncertainties in seepage and radionuclide transport are represented by means of continuous probability distributions for several key parameters.

  18. TSPA Model for the Yucca Mountain Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M. L.; Ho, C. K.

    2002-02-26

    Yucca Mountain, Nevada, is being considered as a potential site for a repository for spent nuclear fuel and high-level radioactive waste. Total-system performance-assessment (TSPA) calculations are performed to evaluate the safety of the site. Such calculations require submodels for all important engineered and natural components of the disposal system. There are five submodels related to the unsaturated zone: climate, infiltration, mountain-scale flow of water, seepage into emplacement drifts, and radionuclide transport. For each of these areas, models have been developed and implemented for use in TSPA. The climate model is very simple (a set of climate states have been deduced from paleoclimate data, and the times when climate changes occur in the future have been estimated), but the other four models make use of complex process models involving time-consuming computer runs. An important goal is to evaluate the impact of uncertainties (e.g., incomplete knowledge of the site) on the estimates of potential repository performance, so particular attention is given to the key uncertainties for each area. Uncertainties in climate, infiltration, and mountain-scale flow are represented in TSPA simulations by means of discrete high, medium, and low cases. Uncertainties in seepage and radionuclide transport are represented by means of continuous probability distributions for several key parameters.

  19. Ecology, ethics, and professional environmental practice: The Yucca Mountain, Nevada, project as a case study

    International Nuclear Information System (INIS)

    Malone, C.R.

    1995-01-01

    The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE's Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yucca Mountain in light of the thermal effects expected to be associated with heat from radioactive decay

  20. Yucca Mountain Biological Resources Monitoring Program. Progress report, October 1992--December 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  1. Yucca Mountain Biological Resources Monitoring Program; Progress report, October 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  2. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    International Nuclear Information System (INIS)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-01-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository

  3. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    Energy Technology Data Exchange (ETDEWEB)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-08-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

  4. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  5. Continuing Science and Technology at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Finch, R.J.

    2005-01-01

    Yucca Mountain, Nevada, was designated in 2002 to be the site for the nation's first permanent geological repository for spent nuclear fuel and high-level radioactive waste. The process of selecting a site for the repository began nearly 25 years ago with passage of the Nuclear Waste Policy Act in 1982. The Department of Energy (DOE) is responsible for submitting a license application to the Nuclear Regulatory Commission for constructing and operating the repository, and DOE's Office of Civilian Radioactive Waste Management (OCRWM) is charged with carrying out this action. The use of multiple natural and engineered barriers in the current repository design are considered by OCRWM to be sufficiently robust to warrant license approval; however, potential design enhancements and increased understanding of both natural and engineered barriers, especially over the long time frames during which the waste is to remain isolated from human contact continue to be examined. The Office of Science and Technology and International (OST andI) was created within OCRWM to help explore novel technologies that might lower overall costs and to develop a greater understanding of processes relevant to the long-term performance of the repository. A brief overview of Yucca Mountain, and the role that OST andI has in identifying technological or scientific advances that could make repository operations more efficient or performance more robust, will be presented. It is important to note, however, that adopting any of OST andI's technological or scientific developments will be at the discretion of OCRWM's Office of Repository Development (ORD)

  6. Practical post-calibration uncertainty analysis: Yucca Mountain, Nevada, USA

    Science.gov (United States)

    James, S. C.; Doherty, J.; Eddebbarh, A.

    2009-12-01

    The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is “calibrated.” Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the US’s proposed site for disposal of high-level radioactive waste. Both of these types uncertainty analysis are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction’s uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This paper applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. Furthermore, Monte Carlo simulations confirm that hydrogeologic units thought to be flow barriers have probability distributions skewed toward lower permeabilities.

  7. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  8. Dialogs on the Yucca Mountain controversy. Special report No. 5

    International Nuclear Information System (INIS)

    Archambeau, C.B.; Szymanski, J.S.

    1993-03-01

    The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden's report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden's report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press

  9. Dialogs on the Yucca Mountain controversy. Special report No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, C.B.; Szymanski, J.S.

    1993-03-01

    The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden`s report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden`s report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press.

  10. The reclamation program for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Ostler, W.K.; O'Farrell, T.P.; Winkel, V.K.; Schultz, B.W.

    1991-01-01

    The US DOE is required by law and other regulatory requirements to reclaim disturbances created by site characterization activities at Yucca Mountain. Because of the difficulty of reclaiming arid areas and the lack of site specific information on successful reclamation techniques and procedures, the DOE has developed a comprehensive reclamation program. The program consists of three phase: Planning, operational and research. The planning phase is a continuing process that ensures that program policy, goals, tasks and responsibilities are clearly identified and linked. Three inter-related planning documents have been released by the DOE that establish the program objectives and outline the steps needed to successfully meet those objectives. The operational phase uses best available knowledge to develop and implement reclamation plans that are site-specific for each disturbance. Reclamation activities start prior to any surface disturbance with a survey of each disturbance by trained scientists. The scientists survey the area for the presence of protected species or critical wildlife habitat. They also gather vegetation, landscape, soils and other environmental data that is used to assess the impact of the proposed disturbance. Recommendations can be made to either avoid areas or mitigate impacts. The operational phase includes interim reclamation to protect valuable resources and control erosion prior to final reclamation. Monitoring of reclaimed sites is conducted to correct problem areas and insure that reclamation objectives are achieved. The third phase of the reclamation program is designed to provide site-specific information on effective reclamation techniques through research and field demonstrations. Information on potentially successful techniques will be used to update to improve the effectiveness of the reclamation activities at Yucca Mountain

  11. Constructing the Exploratory Studies Facility at Yucca Mountain

    International Nuclear Information System (INIS)

    Kalia, H.N.; Replogle, J.M.

    1996-01-01

    Yucca Mountain Site Characterization Office of the US Department of Energy (DOE) is constructing an underground Exploratory Studies Facility (ESF), approximately 160 km (100 miles) northwest of Las Vegas, Nevada. This facility is being used to obtain geological, hydrological, geomechanical, thermomechanical and geochemical information to characterize, Yucca Mountain as a potential site to isolate High-Level Radioactive Waste from the accessible environment. The ESF, when completed, will consist of two ramps from surface (North and South ramp) to the potential repository horizon formations, a drift connecting the two ramps, test alcoves, and above and below ground operational support facilities. The ramps and connecting drift are being mined by a 7.62 m (25 ft) diameter, fully shielded, Tunnel Boring Machine (TBM). This paper describes the current status of the construction of the ESF and test alcoves. At the time of this writing, the following has been accomplished: North Ramp excavation is complete; four test alcoves have been excavated and are in use for scientific experiments; the excavation has reached the potential repository horizon; the drift connecting the two ramps is being excavated, and the excavation of a test alcove for thermal testing is in progress. The mining operations are ahead of schedule, and to date March 26, 1996, the TBM has excavated over 4623 m(15,160 ft.) without any major breakdowns or accidents. The average advance for a three shift (two mining shifts) production day has been 33.46 m (110 ft.). Maximum advance for a week was 218.3 m (716 ft.). An Alpine Miner (AM 75) roadheader is being used to excavate test alcoves. The major ground support system consists of Supper Swellex rock bolts, steel sets as required, Williams rock bolts and channels, and welded wire fabric. Various sections of the tunnel have been instrumented, and the entire excavation has been geologically mapped. To date, the site conditions have been those predicted

  12. Yucca Mountain site characterization project: Site atlas 1997. Part 1

    International Nuclear Information System (INIS)

    1997-01-01

    The US Department of Energy (DOE) is conducting site characterization studies at Yucca Mountain, Nevada, to determine if the site is suitable for an underground repository for the permanent disposal of high-level radioactive waste. The Yucca Mountain Project (YMP) Site Atlas is a tool used to cartographically display some of the Geographic Information System (GIS) data in the form of thematic map products. Essentially, the Site Atlas is a compilation of map products that are designed to illustrate the location and extent of site characterization studies. Additionally, the Site Atlas provides maps showing project administrative boundaries and basemaps in the vicinity of the project. The data are current through September 1997. The Atlas is divided into two parts: Part 1 contains GIS maps and supporting characteristic data for geology; stratigraphy; tectonics; volcanism; hydrology; geochemistry; environmental issues; paleontology; repository design; YMP boreholes, trenches, pits, pavements, and exposures; basemap features; and surface-based testing activities, and Part 2 contains 1:6,000- and 1:12,000-scale orthophotography basemaps and orthophotography-based hypsography maps (topographic data). This data is shown at a 50% reduction. The maps and orthophotographs in this Site Atlas are provided to YMP participants as an informational source only and are not for making precise measurements. The Quality Assurance Requirements and Description statement on each map identifies the quality status of the thematic data presented. The Site Atlas is not a comprehensive guide; it does not include all scientific features or studies undertaken for the YMP. The features presented are a small subset of the total work being conducted for the project

  13. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    Science.gov (United States)

    LeCain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico

  14. Three-year movement patterns of adult desert tortoises at Yucca Mountain

    International Nuclear Information System (INIS)

    Holt, E.A.; Rautenstrauch, K.R.

    1995-01-01

    We studied the home-range size and site fidelity of adult desert tortoises (Gopherus agassizii) at Yucca Mountain, Nevada, during 1992-1994. Of 67 adult tortoises monitored at Yucca Mountain during this period, we evaluated the movements of 22 female and 16 male radiomarked tortoises that were located >50 times during each of the 1992, 1993, and 1994 activity seasons. We measured annual and three-year home range sizes by either 100% minimum convex polygon (MCP) or by 95% cluster

  15. MISTY ECHO Tunnel Dynamics Experiment--Data report: Volume 1; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

    1992-04-01

    Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported.

  16. Chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.; Warren, R.G.; Hagan, R.C.; Luedemann, G.

    1986-10-01

    The chemistry of diagenetically altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada is described. These tuffs contain substantial amounts of zeolites that are highly sorptive of certain radionuclides. Because of their widespread distribution, the zeolitic tuffs could provide important barriers to radionuclide migration. Physical properties of these tuffs and of their constituent zeolites are influenced by their chemical compositions. This study defines the amount of chemical variability within diagenetically altered tuffs and within diagenetic minerals at Yucca Mountain. Zeolitic tuffs at Yucca Mountain formed by diagenetic alteration of rhyolitic vitric tuffs. Despite their similar starting compositions, these tuffs developed compositions that vary both vertically and laterally. Widespread chemical variations were the result of open-system chemical diagenesis in which chemical components of the tuffs were mobilized and redistributed by groundwaters. Alkalies, alkaline earths, and silica were the most mobile elements during diagenesis. The zeolitic tuffs can be divided into three compositional groups: (1) calcium- and magnesium-rich tuffs associated with relatively thin zones of alteration in the unsaturated zone; (2) tuffs in thick zones of alteration at and below the water table that grade laterally from sodic compositions on the western side of Yucca Mountain to calcic compositions on the eastern side; and (3) potassic tuffs at the north end of Yucca Mountain. Physical properties of tuffs and their consistuent zeolites at Yucca Mountain may be affected by variations in compositions. Properties important for assessment of repository performance include behavior and ion exchange

  17. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  18. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  19. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  20. Annotated bibliography of the physical data of Rainier Mesa and Yucca Mountain

    International Nuclear Information System (INIS)

    Russell, C.E.

    1988-09-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site (NTS) has been designated as the only site to undergo characterization to determine if it meets the criteria to become the Nation's first high-level nuclear waste repository. During this process, care must be taken to not compromise the site's integrity through excessive testing. In order to supplement the limited data to be gathered at Yucca Mountain, analog areas are to be considered. This annotated bibliography was compiled by the Desert Research Institute to help investigate ways in which Rainier Mesa could either be used as a supplemental repository test site or where existing Rainier Mesa data can be used either to support or refute test results from Yucca Mountain. Rainier Mesa, the location of numerous underground nuclear tests on the NTS, possesses some geologic characteristics similar to those of Yucca Mountain, which makes it a likely candidate for comparison. Almost 500 references regarding geology, hydrology, meteorology, biology, and archaeology were annotated and entered alpha-numerically into the bibliography. These references were categorized into 50 topics which are defined in Section 2 and presented in Section 3. Each reference is categorized as to whether it contains Yucca Mountain data, Rainier Mesa data, or both, and a final category consists of those reports that contain Rainier Mesa data that have already been applied to Yucca Mountain research. The annotated bibliography is presented in Section 4

  1. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250{degrees}C is better than 1.8 percent, with the precision better than 4.5 ;percent. The accuracy of the unconfined data collected between ambient temperature and 50{degrees}C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined.

  2. A Larger Volcanic Field About Yucca Mountain: New Geochemical Data From the Death Valley Volcanic Field, Inyo County California

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.

    2008-12-01

    Volcanism is an important issue for the characterization of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Due to recent legal decisions that now require DOE to evaluate hazards over both 10,000 year and 1,000,000 year compliance periods, the definition of the area of interest for calculation of disruption probability and a knowledge of the volcanic process have become more important. New geochemical data for the Death Valley volcanic field in the Greenwater Range in Inyo County, California indicate that the Death Valley field and the volcanoes about Yucca Mountain are parts of the same volcanic field. The Death Valley field is just 35 km south of Yucca Mountain and only 20 km south of buried volcanoes in the Amargosa Valley. Trace elements for both areas show a negative Nb anomaly, but differ in that Death Valley basalt has lower La (70 vs. 130 ppm). Isotopic ratios are remarkably similar and strongly support a link between the Death Valley and Yucca Mountain areas. The isotope ranges for Death Valley are -11.88 to -3.26, 0.706322 to 0.707600, 17.725 to 18.509, 15.512 to 15.587, and 38.237 to 38.854 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Crater Flat isotope ranges are -13.17 to -5.48, 0.706221 to 0.707851, 18.066 to 18.706, 15.488 to 15.564, and 38.143 to 38.709 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Depth of melting calculated using the Fe-Na geobarometer indicates that basalt magma was generated at depths of 135-138 km beneath Death Valley and 115-133 km for Crater Flat indicating asthenospheric melting for both areas. Combining the Death Valley and Yucca Mountain areas into a single volcanic field increases the area of interest for probability calculations by over 1/3 and increases the number of volcanic events by 23. The increased size of the volcanic field and number of volcanoes may result in an increase in the probability of disruption of the

  3. Application of natural analogues in the Yucca Mountain project - overview

    International Nuclear Information System (INIS)

    Simmons, Ardyth M.

    2003-01-01

    The Natural Analogue Synthesis Report (NASR) [1] provides a compilation of information from analogues that test, corroborate, and add confidence to process models and model predictions pertinent to total system performance assessment (TSPA). The report updated previous work [2] with new literature examples and results of quantitative studies conducted by the Yucca Mountain Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate greater understanding of processes expected to occur during postclosure of a proposed Yucca Mountain repository. Natural analogues, as used here, refer to either natural or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have occurred over long time periods (decades to millenia) and large spatial scales (up to tens of kilometers). In the past, the YMP has used analogues for testing and building confidence in conceptual and numerical process models in a number of ways. Yucca Mountain mineral alteration phases provided a self-analogue for postclosure alteration [3]. Thermodynamic parameters for silica minerals of the Wairakai, New Zealand geothermal field were added to databases used in geochemical modeling [4]. Scoping calculations of radionuclide transport using the Yucca Mountain TSPA numerical model were conducted for the Peqa Blanca site [5]. Eruption parameters from the Cerro Negro volcano, Nicaragua, were used to verify codes that model ash plume dispersion [6]. Analogues have also been used in supplemental science and performance analyses to provide multiple lines of evidence in support of both analyses and model reports (AMRs) [7]; in screening arguments for inclusion or exclusion of features, events, and processes (FEP)s in TSPAs; in the quantification of uncertainties [7]; in expert elicitations of volcanic and seismic hazards [8, 9] and in peer reviews [10]. Natural analogues may be applied

  4. Modeling unsaturated-zone flow at Rainier Mesa as a possible analog for a future Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1998-01-01

    Rainier Mesa is structurally similar to Yucca Mountain, and receives precipitation similar to the estimated long-term average for Yucca Mountain. Tunnels through the unsaturated zone at Rainier Mesa have encountered perched water and, after the perched water was drained, flow in fractures and faults. Although flow observations have been primarily qualitative, Rainier Mesa hydrology is a potential analog for Yucca Mountain hydrology in a wetter climate. In this paper, a groundwater flow model that has been used in the performance assessment of Yucca Mountain--the weeps model--is applied to Rainier Mesa. The intent is to gain insight in both Rainier Mesa and the weeps flow model

  5. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  6. Yucca Mountain Feature, Event, and Process (FEP) Analysis

    International Nuclear Information System (INIS)

    Freeze, G.

    2005-01-01

    A Total System Performance Assessment (TSPA) model was developed for the U.S. Department of Energy (DOE) Yucca Mountain Project (YMP) to help demonstrate compliance with applicable postclosure regulatory standards and support the License Application (LA). Two important precursors to the development of the TSPA model were (1) the identification and screening of features, events, and processes (FEPs) that might affect the Yucca Mountain disposal system (i.e., FEP analysis), and (2) the formation of scenarios from screened in (included) FEPs to be evaluated in the TSPA model (i.e., scenario development). YMP FEP analysis and scenario development followed a five-step process: (1) Identify a comprehensive list of FEPs potentially relevant to the long-term performance of the disposal system. (2) Screen the FEPs using specified criteria to identify those FEPs that should be included in the TSPA analysis and those that can be excluded from the analysis. (3) Form scenarios from the screened in (included) FEPs. (4) Screen the scenarios using the same criteria applied to the FEPs to identify any scenarios that can be excluded from the TSPA, as appropriate. (5) Specify the implementation of the scenarios in the computational modeling for the TSPA, and document the treatment of included FEPs. This paper describes the FEP analysis approach (Steps 1 and 2) for YMP, with a brief discussion of scenario formation (Step 3). Details of YMP scenario development (Steps 3 and 4) and TSPA modeling (Step 5) are beyond scope of this paper. The identification and screening of the YMP FEPs was an iterative process based on site-specific information, design, and regulations. The process was iterative in the sense that there were multiple evaluation and feedback steps (e.g., separate preliminary, interim, and final analyses). The initial YMP FEP list was compiled from an existing international list of FEPs from other radioactive waste disposal programs and was augmented by YMP site- and design

  7. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  8. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, F.; Youngs, B.

    2000-01-01

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M and O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M and O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M and O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M and O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M and O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M and O 2000b). The calculations for both footprints are presented in this AMR. In

  9. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both

  10. Tectonic and neotectonic framwork of the Yucca Mountain region, Task 5

    International Nuclear Information System (INIS)

    Schweickert, R.A.

    1993-01-01

    Research continued on the tectonic and neotectonics of the Yucca Mountain region. Highlights from projects include: structural studies in Grapevine Mountains, Funeral Mountains, Bullfrog Hills, and Bare Mountain; development of structural models for pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; Paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain; sampling of pegmatites in Bullfrog Hills and Funeral Mountains for U-Pb isotopic analysis; and review and analysis of Mesozoic structure between eastern sierra and Nevada test Site

  11. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    International Nuclear Information System (INIS)

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip

  12. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  13. ELECTRICAL IMAGING AT THE LARGE BLOCK TEST YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Ramirez, A.

    2000-01-01

    A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m by 3 m by 4.5 m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map 2 dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent six months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures which are draining condensate from the block. Others may be rain water entering a fracture at the top of the block. During cooldown a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment

  14. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  15. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-01-01

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  16. Drift natural convection and seepage at the Yucca Mountain repository

    Science.gov (United States)

    Halecky, Nicholaus Eugene

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock, from the hot drift center to the cool drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water- induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  17. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  18. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  19. Effects of actinide burning on waste disposal at Yucca Mountain

    International Nuclear Information System (INIS)

    Hirschfelder, J.

    1992-01-01

    Release rates of 15 radionuclides from waste packages expected to result from partitioning and transmutation of Light-Water Reactor (LWR) and Actinide-Burning Liquid-Metal Reactor (ALMR) spent fuel are calculated and compared to release rates from standard LWR spent fuel packages. The release rates are input to a model for radionuclide transport from the proposed geologic repository at Yucca Mountain to the water table. Discharge rates at the water table are calculated and used in a model for transport to the accessible environment, defined to be five kilometers from the repository edge. Concentrations and dose rates at the accessible environment from spent fuel and wastes from reprocessing, with partitioning and transmutation, are calculated. Partitioning and transmutation of LWR and ALMR spent fuel reduces the inventories of uranium, neptunium, plutonium, americium and curium in the high-level waste by factors of 40 to 500. However, because release rates of all of the actinides except curium are limited by solubility and are independent of package inventory, they are not reduced correspondingly. Only for curium is the repository release rate much lower for reprocessing wastes

  20. Volcanic hazard studies for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Crowe, B.; Turrin, B.; Wells, S.; Perry, F.; McFadden, L.; Renault, C.E.; Champion, D.; Harrington, C.

    1989-01-01

    Volcanic hazard studies are ongoing to evaluate the risk of future volcanism with respect to siting of a repository for disposal of high-level radioactive waste at the Yucca Mountain site. Seven Quaternary basaltic volcanic centers are located a minimum distance of 12 km and a maximum distance of 47 km from the outer boundary of the exploration block. The conditional probability of disruption of a repository by future basaltic volcanism is bounded by the range of 10/sup /minus/8/ to 10/sup /minus/10/ yr/sup /minus/1/. These values are currently being reexamined based on new developments in the understanding of the evaluation of small volume, basaltic volcanic centers including: (1) Many, perhaps most, of the volcanic centers exhibit brief periods of eruptive activity separated by longer periods of inactivity. (2) The centers may be active for time spans exceeding 10 5 yrs, (3) There is a decline in the volume of eruptions of the centers through time, and (4) Small volume eruptions occurred at two of the Quaternary centers during latest Pleistocene or Holocene time. We classify the basalt centers as polycyclic, and distinguish them from polygenetic volcanoes. Polycyclic volcanism is characterized by small volume, episodic eruptions of magma of uniform composition over time spans of 10 3 to 10 5 yrs. Magma eruption rates are low and the time between eruptions exceeds the cooling time of the magma volumes. 25 refs., 2 figs

  1. Distributional equity problems at the proposed Yucca Mountain facility

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Abdollahzadeh, S.

    1988-07-01

    This paper addresses one quite specific part of this broad range of issues -- the distribution of impacts to the state of Nevada and to the nation likely to be associated with the proposed Yucca Mountain repository. As such, it is one of four needed analyses of the overall equity problems and needs to be read in conjunction with our proposed overall framework for equity studies. The objective of this report is to consider how an analysis might be made of the distribution of projected outcomes between the state and nation. At the same time, it needs to be clear that no attempt will be made actually to implement the analysis that is proposed. What follows is a conceptual statement that identifies the analytical issues and pro poses an approach for overcoming them. Significantly, it must also be noted that this report will not address procedural equity issues between the state and nation for this is the subject of a separate analysis. 14 refs., 8 figs., 3 tabs

  2. THE PROPOSED YUCCA MOUNTAIN REPOSITORY FROM A CORROSIVE PERSPECTIVE

    International Nuclear Information System (INIS)

    PAYER JH

    2006-01-01

    The proposed Yucca Mountain Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. Researchers at Case are part of a Department of Energy Corrosion and Materials Performance Cooperative. This team of leading scientists/engineers from major universities and national laboratories is working together to further enhance the understanding of the role of engineered barriers in waste isolation. The team is organized to address important topics: (1) Long-term behavior of protective, passive films; (2) Composition and properties of moisture in contact with metal surfaces; and (3) Rate of penetration and extent of corrosion damage over extremely long times. The work will also explore technical enhancements and seek to offer improvements in materials costs and reliability

  3. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993

  4. Illstrative probabilistic biosphere model for Yucca Mountain individual risk calculations

    International Nuclear Information System (INIS)

    Wilems, R.E.

    1994-01-01

    The proposed EPA Standards for the disposal of spent fuel, high-level and transuranic radioactive waste prescribe future biosphere--one in which no sustained human activity occurs inside the controlled zone, yet sustained use of groundwater occurs just outside the controlled zone boundary. Performance assessments have generally assumed a person at this location extracts all his water needs directly from the projected contaminated plume for all of his life. Dose to this maximally-exposed individual is too conservative a measure of performance for a nuclear waste repository and does not reflect the isolation characteristics of a site. A better measure is individual risk in which uncertainties in biosphere characteristics for the longer periods of performance, for a site like Yucca Mountain only those characteristics associated with well water scenarios need be prescribed. Such a prescription of the biosphere is appropriate because the goal of the regulations is to provide indicators of future performance so the regulators can make a responsible decision regarding reasonable assurance of public health and safety

  5. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L. Hevesi, J.A.

    1994-01-01

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface

  6. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  7. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  8. YUCCA

    Science.gov (United States)

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L; Palmer, Christine M; Covington, Michael F; Wallace, Andreah D; Harmer, Stacey L; Maloof, Julin N

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  9. Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Bjerstedt, T.W.

    1996-01-01

    This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain

  10. Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1992-01-01

    This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository

  11. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  12. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  13. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Hunter, W.C.

    1995-01-01

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs

  14. Yucca Mountain program summary of research, site monitoring and technical review activities (January 1987--June 1988)

    International Nuclear Information System (INIS)

    1988-12-01

    Although studies of orbital mechanics provide speculative notions of future climatic trends, they cannot predict how these trends will manifest themselves in the immediate area around Yucca Mountain. The generally accepted approach to this question is to consider the climatic variations that have occurred during the last 10,000 years, and use these as a guide to the likely range of future variation in climate. However, because climatic studies around the world indicate that we are potentially on the verge of another ice age, we should also consider the conditions that predominated during the Pleistocene. The specific aim of this project is to derive the climatic history of Yucca Mountain during the last 20,000 years from the vegetation history. By integrating data obtained from pollen records, woodrat dens (middens), and tree-ring sequences from the Nevada Test Site (NTS) area, a regional climatic record is being generated that can be correlated to data obtained at Yucca Mountain to formulate a local climatic sequence there. This will then be used to determine the magnitude and frequency of climatic variation that have occurred during that time at Yucca Mountain. These data can then be used by other researchers to provide estimates of rainfall, recharge and soil chemical changes for modeling the past hydrology of Yucca Mountain

  15. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  16. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K. [University of South Florida, Tampa, FL (United States)

    1992-06-01

    For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA`S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA`s done for other radiation-related facilities and have likely caused earlier QRA`s to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA`s include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain.

  17. Management and research of desert tortoises for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O'Farrell, T.P.; Rakestraw, D.L.

    1991-01-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on the biology of tortoises at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design that can be used to identify and mitigate direct and cumulative impacts and provide information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: Individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated

  18. Management and research of desert tortoises for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O'Farrell, T.P.; Rakestraw, D.L.

    1991-01-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on tortoise biology at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design for identifying and mitigating direct and cumulative impacts and providing information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated. 29 refs

  19. Expert judgment in assessing radwaste risks: What Nevadans should know about Yucca Mountain

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1992-06-01

    For phenomena characterized by accurate and largely complete data, quantitative risk assessment (QRA) provides extraordinarily valuable and objective information. However, with phenomena for which the data, models, or probabilities are incomplete or uncertain, QRA may be less useful and more questionable, because its conclusions are typically empirically and theoretically underdetermined. In the face of empirical or theoretical underdetermination, scientists often are forced to make a number of methodological value judgments and inferences about how to estimate and evaluate the associated risks. The purpose of this project is to evaluate instances of methodological value judgments and invalid or imprecise inferences that have occurred in the QRA done for the proposed Yucca Mountain high-level radioactive waste facility. We shall show (1) that questionable methodological value judgments and inferences have occurred in some Yucca Mountain QRA'S; (2) that questionable judgments and inferences, similar to those in the Yucca Mountain studies, have occurred in previous QRA's done for other radiation-related facilities and have likely caused earlier QRA's to err in specific ways; and (3) that, because the value judgments and problems associated with some Yucca Mountain QRA's include repetitions of similar difficulties in earlier studies, therefore the QRA conclusions of some Yucca Mountain analyses are, at best, uncertain

  20. Mineralogic variation in drill core UE-25 UZ number-sign 16, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Vaniman, D.T.; Carlos, B.A.; Bish, D.L.

    1995-02-01

    Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ number-sign 16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors' previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ number-sign 16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ number-sign 16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ number-sign 16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy

  1. Progress report on colloid-facilitated transport at Yucca Mountain: Yucca Mountain site characterization program milestone 3383

    International Nuclear Information System (INIS)

    Triay, I.R.; Degueldre, C.; Wistrom, A.O.; Cotter, C.R.; Lemons, W.W.

    1996-06-01

    To assess colloid-facilitated radionuclide transport in groundwaters at the potential nuclear waste repository at Yucca Mountain, it is very important to understand the generation and stability of colloids, including naturally occurring colloids. To this end, we measured the colloid concentration in waters from Well J-13, which is on the order of 106 particles per milliliter (for particle sizes larger than 100 manometers). At this low particle loading, the sorption of radionuclides to colloids would have to be extremely high before the colloids could carry a significant amount of radionuclides from the repository to the accessible environment. We also performed aggregation experiments to evaluate the stability of silica (particle diameter: 85 nm) and clay colloids (particle diameter: 140 nm) as a function of ionic strength in a carbonate-rich synthetic groundwater. When the concentration of electrolyte is increased to induce aggregation, the aggregation is irreversible and the rate of aggregation increases with increasing electrolyte strength. We used autocorrelation photon spectroscopy to estimate the rate of particle aggregation for both types of colloids. By relating the measured aggregation rate to the Smoluchowski rate expression, we determined the stability ratio, W. Aggregation of silica particles and kaolinite clay particles decreased dramatically for an electrolyte concentration, C NaCl , below 300 mM and 200 mM, respectively

  2. TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, R.W.; Wilson, M.L.; Dockery, H.A.; Kaplan, P.G.; Eaton, R.R.; Bingham, F.W. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1992-07-01

    This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulative distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.

  3. Hot upwelling conduit beneath the Atlas Mountains, Morocco

    Science.gov (United States)

    Sun, Daoyuan; Miller, Meghan S.; Holt, Adam F.; Becker, Thorsten W.

    2014-11-01

    The Atlas Mountains of Morocco display high topography, no deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation. However, the existence, shape, and physical properties of an associated mantle anomaly are debated. Here we use seismic waveform analysis from a broadband deployment and geodynamic modeling to define the physical properties and morphology of the anomaly. The imaged low-velocity structure extends to ~200 km beneath the Atlas and appears ~350 K hotter than the ambient mantle with possible partial melting. It includes a lateral conduit, which suggests that the Quaternary volcanism arises from the upper mantle. Moreover, the shape and temperature of the imaged anomaly indicate that the unusually high topography of the Atlas Mountains is due to active mantle support.

  4. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    International Nuclear Information System (INIS)

    1996-08-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it

  5. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  6. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  7. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, P.M. [ed.

    1996-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  8. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    Brickey, D.W.

    1992-01-01

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  9. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    International Nuclear Information System (INIS)

    Stephan, P.M.

    1995-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  10. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    International Nuclear Information System (INIS)

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository

  11. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  12. Strontium isotope geochemistry of soil and playa deposits near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Mahan, S.A.

    1994-01-01

    The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infillings in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from a fan draining a carbonate terrane have strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system

  13. Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

    1993-01-01

    The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed

  14. K/AR dating of clinoptilolite, mordenite, and associated clays from Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    WoldeGabriel, G.

    1993-01-01

    Zeolites are abundant in the geologic record in both continental and marine environments. The purpose of the present study is to evaluate the utility of K-bearing zeolites for dating by the K/Ar method to determine the time of zeolite diagenesis at Yucca Mountain, Nevada (Fig. 1). At Yucca Mountain, K-rich clinoptilolite and possibly mordenite are the only potentially K/Ar dateable secondary minerals present in the zeolite-rich tuffs except for some illite/smectites (≥10% illite layers) associated with these minerals. Direct dating of K-rich clinoptilolite, the most abundant zeolite in the altered tuffs, is important to delineate zeolite chronology as part of the site characterization of Yucca Mountain

  15. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  16. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

  17. Yucca Mountain Site Characterization Project bibliography, July--December 1992: An update, Supplement 3, Addendum 2

    International Nuclear Information System (INIS)

    1993-04-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from July 1, 1992, through December 31, 1992. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  18. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository.

  19. Department of Energy perspective on high-level waste standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Brocoum, S.J.; Gil, A.V.; Van Luik, A.E.; Lugo, M.A.

    1996-01-01

    This paper provides a regulatory perspective from the viewpoint of the potential licensee, the U.S. Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards issued in August 1995, and on how the recommendations in that report should be considered in the development of high-level radioactive waste standards applicable to Yucca Mountain. The paper first provides an overview of the DOE perspective and then discusses several of the issues that are of most importance in the development of the regulatory framework for Yucca Mountain, including both the U.S. Environmental Protection Agency (EPA) standard and the U.S. Nuclear Regulatory Commission (NRC) implementing regulation. These issues include: the regulatory time frame, the risk/dose limit, the definition of the reference biosphere, human intrusion, and natural processes and events

  20. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs

  1. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  2. Yucca Mountain Site Characterization Project Bibliography, July, December 194: An update

    International Nuclear Information System (INIS)

    1995-03-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  3. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    International Nuclear Information System (INIS)

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies

  4. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  5. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  6. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  7. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  8. Effect of variations in the geologic data base on mining at Yucca Mountain for NNWSI

    International Nuclear Information System (INIS)

    1984-12-01

    This study was conducted to assess the impact of the known geologic factors and their variations at Yucca Mountain on the mining of the underground repository. The repository horizon host rock was classified according to the Norwegian Geotechnical Institute Tunneling Quality Index, which, in turn, qualified the range of ground support for the geologic and hydrologic conditions in the proposed repository area. The CSIR Classification System was used to verify the results of the NGI System. The expected range of requirements are well within normal mining industry standards and unusual or expensive ground support requirements are not expected to be required at Yucca Mountain. The amount of subsurface geologic information on Yucca Mountain is limited to data from a few drill holes. Variations in the existing data base are probable and should be provided for in the conceptual designs

  9. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    Peppin, W.A.

    1988-01-01

    This document describes activities for the year ending 30 June 1988 by staff members of the Seismological Laboratory in support of the Yucca Mountain site assessment program. Activities during the year centered largely around acquisition of equipment to be used for site assessment and around a review of the draft site characterization plan for Yucca Mountain. Due to modifications in the scheduling and level of funding, this work has not progressed as originally anticipated. The report describes progress in seven areas, listed in approximate order of significance to the Yucca Mountain project. These are: (1) equipment acquisition, (2) review of the draft site characterization plan, (3) studies of earthquake sequence related to the tectonic problems at Yucca Mountain, (4) a review of the work of Szymanski in relation to Task 4 concerns, (5) coordination meetings with USGS, DOE, and NRC personnel, (6) studies related to Yucca Mountain, and (7) other studies

  10. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This document describes activities for the year ending 30 June 1988 by staff members of the Seismological Laboratory in support of the Yucca Mountain site assessment program. Participants include James N. Brune, Director, John Anderson, William Peppin, Keith Priestley, Martha Savage, and Ute Vetter. Activities during the year centered largely around acquisition of equipment to be used for site characterization plan for Yucca Mountain. Due to modifications in the scheduling and level of funding, this work has not progressed as originally anticipated. The report describes progress in seven areas, listed in approximate order of significance to the Yucca Mountain project. These are: (1) equipment acquisition, (2) review of the draft site characterization plan, (3) studies of earthquake sequence related to the tectonic problems at Yucca Mountain, (4) a review of the work of Szymanski in relation to Task 4 concerns, (5) coordination meetings with USGS, DOE and NRC personnel, (6) studies related to Yucca Mountain and (7) other studies

  11. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    The Yucca Mountain Project is one part of the Department of Energy`s Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program`s goal is to site the nation`s first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it.

  12. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The Yucca Mountain Project is one part of the Department of Energy's Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program's goal is to site the nation's first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it

  13. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  14. Physical limits on ground motion at Yucca Mountain

    Science.gov (United States)

    Andrews, D.J.; Hanks, T.C.; Whitney, J.W.

    2007-01-01

    Physical limits on possible maximum ground motion at Yucca Mountain, Nevada, the designated site of a high-level radioactive waste repository, are set by the shear stress available in the seismogenic depth of the crust and by limits on stress change that can propagate through the medium. We find in dynamic deterministic 2D calculations that maximum possible horizontal peak ground velocity (PGV) at the underground repository site is 3.6 m/sec, which is smaller than the mean PGV predicted by the probabilistic seismic hazard analysis (PSHA) at annual exceedance probabilities less than 10-6 per year. The physical limit on vertical PGV, 5.7 m/sec, arises from supershear rupture and is larger than that from the PSHA down to 10-8 per year. In addition to these physical limits, we also calculate the maximum ground motion subject to the constraint of known fault slip at the surface, as inferred from paleoseismic studies. Using a published probabilistic fault displacement hazard curve, these calculations provide a probabilistic hazard curve for horizontal PGV that is lower than that from the PSHA. In all cases the maximum ground motion at the repository site is found by maximizing constructive interference of signals from the rupture front, for physically realizable rupture velocity, from all parts of the fault. Vertical PGV is maximized for ruptures propagating near the P-wave speed, and horizontal PGV is maximized for ruptures propagating near the Rayleigh-wave speed. Yielding in shear with a Mohr-Coulomb yield condition reduces ground motion only a modest amount in events with supershear rupture velocity, because ground motion consists primarily of P waves in that case. The possibility of compaction of the porous unsaturated tuffs at the higher ground-motion levels is another attenuating mechanism that needs to be investigated.

  15. Lead isotopes and trace metals in dust at Yucca Mountain

    Science.gov (United States)

    Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.

    2008-01-01

    Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.

  16. Ventilation design for Yucca Mountain Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Jurani, R.S.

    1995-01-01

    Yucca Mountain, located in Southern Nevada approximately 160 km northwest of Las Vegas, is currently the site of intensive surface-based and underground investigations. The investigations are required to determine if the site is suitable for long term isolation of the Nation's high level nuclear waste inventory. A major component of the program is the Exploratory Studies Facility, or ESF. The ESF, when completed, will consist of approximately 25,600 meters of tunnels and drifts. The network of tunnels and drifts will house and support a wide array of testing programs conceived to provide physical information about the site. Information on geologic, geomechanical, and hydrologic data will be used in the repository design if the site is found suitable. Besides a few special requirements, the general ESF ventilation criteria during construction are similar to that of commercial tunneling and mining operations. The minimum air velocity at the Tunnel Boring Machine (TBM) and other active mining faces is 0.51 meter per second (m/s) (100 feet per minute [fpm]). Airways, estimated leakages and ventilation controls are converted into equivalent resistances for input to mine ventilation network computer simulations. VNETPC Version 3.1 computer software is used to generate the ventilation models for optimized system design and component selection. Subsequently, actual performance of the ventilation system will be verified and validated to comply with applicable nuclear regulatory quality assurance requirements. Dust control in the ESF is dependent on effective dust collection, enclosure, and airflow dilution. Minimum use of water, as feasible, is necessary to avoid adding moisture to the potential repository horizon. The limitation of water use for test drilling and TBM operation, and the rigid compliance with applicable federal and state regulations, make the ESF a ventilation design challenge

  17. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  18. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  19. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    F. Perry; R. Youngs

    2004-01-01

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M and O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance

  20. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  1. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  2. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia; Peterman, Zell; Oliver, Thomas A.; Gascoyne, Mel; Laaksoharju, Marcus

    2011-02-01

    The main objective of this work is to assess the importance of mixing on the hydrochemistry of waters in and around Yucca Mountain, most importantly in those waters south of Yucca Mountain. Due to the general north-south gradient of groundwater flow in the Yucca Mountain area, leakage from the proposed high-level radioactive waste repository would have the greatest consequences in the saturated zone waters south of Yucca Mountain. In this area (Amargosa River, Amargosa Flat and Ash Meadows), three main aquifers interact: the Regional Palaeozoic Carbonate Aquifer (RCA), the Tertiary Tuffs Aquifer (TTA) and the Quaternary Basin-fill Aquifer (QBfA). One consequence of upward leakage from the Palaeozoic Carbonate Aquifer would be to dilute the contaminant plume should one develop from the radioactive waste repository at Yucca Mountain. The reverse, downward leakage from the Tertiary Tuffs Aquifer or the Quaternary Basin-fill Aquifer into the Palaeozoic Carbonate Aquifer would contaminate a major aquifer system. It is clearly of the utmost importance to explore the links between theses aquifer systems and to assess the degree of mixing between the groundwaters. To attain this general objective, the following specific objectives have been either defined in advance or decided as being important during the development of the project: 1. Compile a dataset of water samples from the Yucca Mountain area. This dataset should contain samples from all the potential water types that contribute to the chemistry of the groundwaters in the aquifer systems in the area. 2. Perform a careful total-system exploratory analysis on the initial (raw) dataset in order to identify trends and outliers. 3. Perform a detailed exploratory analysis of each individual hydrofacies with the aim of identifying and eliminating from the raw dataset all the samples heavily affected by processes other than mixing (e.g. water-rock interaction, evaporation, cation exchange). PHREEQC simulations were

  3. Site environmental report for calendar year 1996: Yucca Mountain site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1997-11-01

    The environmental program established by the Yucca Mountain Site Characterization Office (YMSCO) has been designed and implemented to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US Department of Energy (DOE) Orders. In accordance with DOE Order 5400.1, General Environmental Protection Program (DOE, 1990a), to be superseded by DOE Order 231.1 (under review), the status of the Yucca Mountain Site Characterization Project (YMP) environmental program has been summarized in this annual Site Environmental Report (SER) to characterize performance, document compliance with environmental requirements, and highlight significant programs and efforts during calendar year 1996

  4. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Pescatore, C.

    1994-02-01

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  5. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    Science.gov (United States)

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  6. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia (Geochemical Modelling Group, Dept. of Earth Sciences, Univ. of Zaragoza (Spain)); Peterman, Zell; Oliver, Thomas A. (U.S. Geological Survey (United States)); Gascoyne, Mel (Gascoyne Geoprojects Inc (Canada)); Laaksoharju, Marcus (Geopoint AB (Sweden))

    2011-02-15

    The main objective of this work is to assess the importance of mixing on the hydrochemistry of waters in and around Yucca Mountain, most importantly in those waters south of Yucca Mountain. Due to the general north-south gradient of groundwater flow in the Yucca Mountain area, leakage from the proposed high-level radioactive waste repository would have the greatest consequences in the saturated zone waters south of Yucca Mountain. In this area (Amargosa River, Amargosa Flat and Ash Meadows), three main aquifers interact: the Regional Palaeozoic Carbonate Aquifer (RCA), the Tertiary Tuffs Aquifer (TTA) and the Quaternary Basin-fill Aquifer (QBfA). One consequence of upward leakage from the Palaeozoic Carbonate Aquifer would be to dilute the contaminant plume should one develop from the radioactive waste repository at Yucca Mountain. The reverse, downward leakage from the Tertiary Tuffs Aquifer or the Quaternary Basin-fill Aquifer into the Palaeozoic Carbonate Aquifer would contaminate a major aquifer system. It is clearly of the utmost importance to explore the links between theses aquifer systems and to assess the degree of mixing between the groundwaters. To attain this general objective, the following specific objectives have been either defined in advance or decided as being important during the development of the project: 1. Compile a dataset of water samples from the Yucca Mountain area. This dataset should contain samples from all the potential water types that contribute to the chemistry of the groundwaters in the aquifer systems in the area. 2. Perform a careful total-system exploratory analysis on the initial (raw) dataset in order to identify trends and outliers. 3. Perform a detailed exploratory analysis of each individual hydrofacies with the aim of identifying and eliminating from the raw dataset all the samples heavily affected by processes other than mixing (e.g. water-rock interaction, evaporation, cation exchange). PHREEQC simulations were

  7. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    International Nuclear Information System (INIS)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  8. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    International Nuclear Information System (INIS)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  9. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  10. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  11. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    Energy Technology Data Exchange (ETDEWEB)

    Ruhala, E.R.; Klein, S.H. [comps.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  12. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    Energy Technology Data Exchange (ETDEWEB)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H. [comps.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance.

  13. Site environmental report for calendar year 1996: Yucca Mountain site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The environmental program established by the Yucca Mountain Site Characterization Office (YMSCO) has been designed and implemented to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US Department of Energy (DOE) Orders. In accordance with DOE Order 5400.1, General Environmental Protection Program (DOE, 1990a), to be superseded by DOE Order 231.1 (under review), the status of the Yucca Mountain Site Characterization Project (YMP) environmental program has been summarized in this annual Site Environmental Report (SER) to characterize performance, document compliance with environmental requirements, and highlight significant programs and efforts during calendar year 1996.

  14. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    International Nuclear Information System (INIS)

    McGraw, D.; Oberlander, P.

    2007-01-01

    Eleana Formation is absent at borehole UE-25 p No.1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient

  15. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, D.; Oberlander, P.

    2007-12-18

    Eleana Formation is absent at borehole UE-25 p#1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient.

  16. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    International Nuclear Information System (INIS)

    Smith, Ken

    2007-01-01

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report

  17. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Hoxie, D.T.

    1995-04-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system.

  18. An overview of the Yucca Mountain Global/Regional Climate Modeling Program

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-01-01

    The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ''geologic information'') of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain

  19. Development of rail access to the proposed repository site at Yucca Mountain

    International Nuclear Information System (INIS)

    Standish, P.N.; Seidler, P.E.; Andrews, W.B.; Shearin, G.

    1991-01-01

    In accordance with the Nuclear Waste Policy Amendment Act of 1987, Yucca Mountain was designated as the initial site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is considered desirable by the Office of Civilian Radioactive Waste Management (OCRWM) program because of the potential of rail transportation to reduce (1) costs and (2) number of shipments, relative to highway transportation. Therefore, it is necessary to conduct a study to determine (1) that there are alignments for a potential rail line from existing mainline railroads to Yucca Mountain and (2) that these are consistent with present rail design standards and are acceptable relative to environmental and land access considerations

  20. Los Alamos National Laboratory Yucca Mountain Site Characterization Project: 1991 quality program status report

    International Nuclear Information System (INIS)

    1992-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory (Los Alamos) Yucca Mountain Site Characterization Project's (YMP) quality assurance program for calendar year 1991. The report is divided into three Sections: Program Activities, Verification Activities, and Trend Analysis

  1. Important parameters in the performance of a potential repository at Yucca Mountain (TSPA-1995)

    International Nuclear Information System (INIS)

    Atkins, J.E.; Sevougian, S.D.; Lee, J.H.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    A total system performance assessment (TSPA) was conducted to determine how a potential repository at Yucca Mountain would behave. Using the results of this TSPA, regression was done to determine which parameters had the most important effect on the repository performance. These results were consistent with the current conceptual understanding of the repository

  2. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    International Nuclear Information System (INIS)

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  3. The legal debate about the U.S. repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Buchreiter-Schulz, M.; Seidel, E.R.

    2004-01-01

    The U.S. Department of Energy in 1978 began to explore the Yucca Mountain, Nevada, site for its suitability as a repository for high-level radioactive waste and spent fuel. The U.S. Senate approved the project on July 9, 2002. On July 23, 2003, President Bush signed Resolution 87 allowing the U.S. Department of Energy (DOE) to take further steps on the road to the establishment of a repository. DOE is currently drafting the application for a permit to be filed with the competent Nuclear Regulatory Commission. Opponents of the repository sought to obtain a court decision killing the project. In its ruling of July 9, 2004, the United States Court of Appeals for the District of Columbia Circuit dealt with a number of objections to regulations and decisions by U.S. federal agencies in connection with plans to build the Yucca Mountain repository. The main complainant in that procedure was the state of Nevada, on the territory of which Yucca Mountain is situated. The legal argument focused on the Nuclear Waste Policy Act (NWPA) and the Energy Policy Act (EnPA). The differentiated decision by the court is analyzed, and its importance in further proceedings about the Yucca Mountain site and in the repository debate in Germany in discussed. (orig.)

  4. Storage of spent fuel: the Senate is favorable to the site of Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The Senate commission has approved a law proposition in favor of an intermediate storage destined to receive the spent fuel coming from nuclear power plants and the waste of the Ministry of defense. The chosen site is this one of Yucca Mountain which is already reserved for the long term storage of radioactive waste. (N.C.)

  5. Application of QA grading to Yucca Mountain Site Characterization Project items and activities

    International Nuclear Information System (INIS)

    Murthy, R.B.; Smith, S.C.

    1991-01-01

    Grading is the act of selecting the quality assurance (QA) measures necessary to develop and maintain confidence in the quality of an item or activity. The list of QA measures from which this selection is made are the 20 criteria of the Yucca Mountain Site Characterization Project Quality Assurance Requirements Document

  6. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  7. Alternative strategies: A means for saving money and time on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1993-01-01

    The United States Department of Energy (DOE) is undertaking studies to determine the suitability of Yucca Mountain (YM) as a potential site for disposal of high level nuclear waste. Yucca Mountain is located in an arid environment. Many processes that could contribute to mobilization of radionuclides are either absent or minimized in a dry site. Therefore, Yucca Mountain should have the potential of being a veryfavorable site for disposal of waste. The determination of suitability has no precedence, and the characterization of an and site is complex, requiring intensive studies to determine suitability. The studies undertaken by the Yucca Mountain Site Characterization Project (YMP) are very costly. By a process called performance allocation, the YMP determined strategies to satisfy regulations or meet performance while minimizing costs and schedules. Those involved recognized that allocations should be reviewed as additional information became available. The allocation has not been reviewed nor revised since the initial allocation in the Site Characterization Plan (SCP). The purpose of this paper is to outline alternative allocations that the author feels should be considered based on the additional information that is available at this time

  8. Viability Assessment of a Repository at Yucca Mountain. Volume 1: Introduction and Site Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This first volume contains an introduction to the viability assessment, including the purpose, scope, waste forms, technical challenges, an historical perspective, regulatory framework, management of the repository, technical components, preparations for the license application, and repository milestones after the assessment. The second part of this first volume addresses characteristics of the Yucca Mountain site.

  9. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  10. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  11. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  12. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  13. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  14. Literature review and ethnohistory of Native American occupancy and use of the Yucca Mountain Region

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Olmsted, J.E.; Evans, M.J.

    1990-01-01

    This report presents a review of the literature concerning Native American occupancy and use of the Yucca Mountain area and vicinity. It draws on a wide range of material, including early traveler reports, government documents, ethnographic and historical works, and local newspapers. The report complements two other concurrent studies, one focused on the cultural resources of Native American people in the study area and the other an ethnobotanical study of plant resources used by Native American people in the study area. The literature review has had two principal purposes: to determine the completeness of the Yucca Mountain Native American study design and to contribute to the understanding of the presence of Native American people in the Yucca Mountain area. A review of the existing literature about the Yucca Mountain area and southern Nye County, supplemented by the broader literature about the Great Basin, has verified three aspects of the study design. First, the review has aided in assessing the completeness of the list of Native American ethnic groups that have traditional or historical ties to the site. Second, it has aided in the production of a chronology of Native American activities that occurred on or near the site during the late nineteenth and early twentieth centuries. Third, it has helped to identify the location of cultural resources, including burials and other archaeological sites, in the study area and vicinity. 200 refs., 16 figs., 6 tabs

  15. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization

  16. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project's (YMP's) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis

  17. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  18. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  19. DOE's Yucca Mountain studies: What are they? Why are they being done?

    International Nuclear Information System (INIS)

    1990-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is intended for readers who do not have a technical background. It discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied and provides basic information about those studies

  20. As Yucca Mountain debate continues, industry calls for 'comprehensive' solution

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-12-15

    The proposed Nevada site Yucca Mountain is still the only game in town for a deep geologic repository in the US, but resolving the uncertainty that surrounds the project could still take years, making centralised temporary storage more important than ever. The nuclear industry in the US has renewed a call for 'a more comprehensive nuclear fuel management system' that includes the development of centralised temporary storage while the licensing process for a deep geologic repository at Yucca Mountain in Nevada continues. Scott Peterson, senior vice-president for communications of the Washington-based Nuclear Energy Institute, told that centralised temporary storage would allow the removal of spent fuel from reactor sites, especially from reactors that have already shut down, while uncertainty surrounding the Yucca Mountain deep geologic project is resolved. Resolving that uncertainty could take time. The Yucca Mountain project has been shut down by the Department of Energy (DOE) since 2010 and there is no work going on right now at the repository site or on the DOE's part to continue licensing activities. The outcome of mid-term elections on 4 November could yet see the political manoeuvrings surrounding Yucca Mountain take another twist. The Republican party takes control of the Senate. There will be an opportunity to change the funding profile for the NRC and to take measures through legislation to make sure the DOE is following the 1982 Nuclear Waste Policy Act. This Act, which made the DOE responsible for finding a site, building, and operating an underground geologic repository, is still in force.

  1. Regulatory compliance for a Yucca Mountain Repository: A performance assessment perspective

    International Nuclear Information System (INIS)

    Dyer, J.R.; Van Luik, A.E.; Gil, A.V.; Brocoum, S.J.

    1997-01-01

    The U.S. Department of Energy's Yucca Mountain Site Characterization Project is scheduled to submit a License Application in the year 2002. The License Application is to show compliance with the regulations promulgated by the U.S. Nuclear Regulatory Commission which implement standards promulgated by the U.S. Environmental Protection Agency. These standards are being revised, and it is not certain what their exact nature will be in term of either the performance measure(s) or the time frames that are to be addressed. This paper provides some insights pertaining to this regulatory history, an update on Yucca Mountain performance assessments, and a Yucca Mountain Site Characterization Project perspective on proper standards based on Project experience in performance assessment for its proposed Yucca Mountain Repository system. The Project's performance assessment based perspective on a proper standard applicable to Yucca Mountain may be summarized as follows: a proper standard should be straight forward and understandable; should be consistent with other standards and regulations; and should require a degree of proof that is scientifically supportable in a licensing setting. A proper standard should have several attributes: (1) propose a reasonable risk level as its basis, whatever the quantitative performance measure is chosen to be, (2) state a definite regulatory time frame for showing compliance with quantitative requirements, (3) explicitly recognize that the compliance calculations are not predictions of actual future risks, (4) define the biosphere to which risk needs to be calculated in such a way as to constrain potentially endless speculation about future societies and future human actions, and (5) have as its only quantitative requirement the risk limit (or surrogate performance measure keyed to risk) for the total system

  2. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  3. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    International Nuclear Information System (INIS)

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences' National Research Council released its report entitled ''Ground Water at Yucca Mountain: How High Can It Rise?'' which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities

  4. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  5. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  6. The impact of episodic nonequilibrium fracture-matrix flow on repository performance at the potential Yucca Mountain site

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.; Chesnut, D.A.

    1991-11-01

    Adequate representation of fracture-matrix interaction during episodic infiltration events is crucial in making valid hydrological predictions of repository performance at Yucca Mountain. Approximations have been applied to represent fracture-matrix flow interaction, including the Equivalent Continuum Model, which assumes capillary equilibrium between fractures and matrix, and the Fracture-Matrix Model, which accounts for nonequilibrium fracture-matrix flow and transport for the eight major hydrostratigraphic units in the unsaturated zone at Yucca Mountain. 18 refs., 6 figs., 3 tabs

  7. The Effects of Site Characterization Activities on the Abundance of Ravens (Corvus corax) in the Yucca Mountain Area

    International Nuclear Information System (INIS)

    P.E. Lederle

    1998-01-01

    In response to the Nuclear Waste Policy Act of 1982 and the Nuclear Waste Policy Amendments Act of 1987, the U.S. Department of Energy (DOE) developed and is implementing the Yucca Mountain Site Characterization Project. Raven abundance was measured from August 1991 through August 1995 along treatment and control routes to evaluate whether site characterization activities resulted in increased raven abundance at Yucca Mountain. This study fulfills the requirement set forth in the incidental take provisions of the Biological Opinion that DOE monitor the abundance of ravens at Yucca Mountain. Ravens were more abundant at Yucca Mountain than in the control area, and raven abundance in both areas increased over time. However, the magnitude of differences between Yucca Mountain and control surveys did not change over time, indicating that the increase in raven abundance observed during this study was not related to site characterization activities. Increases over time on both Yucca Mountain and control routes are consistent with increases in raven abundance in the Mojave Desert reported by the annual Breeding Bird Survey of the US. Fish and Wildlife Service. Evidence from the Desert Tortoise Monitoring Program at Yucca Mountain suggests that ravens are not a significant predator of small tortoises in this locale. Carcasses of small tortoises (less than 110 mm in length) collected during the study showed little evidence of raven predation, and 59 radiomarked hatchlings that were monitored on a regular basis were not preyed upon by ravens. Overall, no direct evidence of raven predation on tortoises was observed during this study. Small tortoises are probably encountered so infrequently by ravens that they are rarely exploited as a food source. This is likely due to the relatively low abundance of both desert tortoises and ravens in the Yucca Mountain area

  8. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  9. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  10. A revised Lithostratigraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain

  11. Use of chlorine-36 and other geochemical data to test a groundwater flow model for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wolfsberg, A.V.; Fabryka-Martin, J.T.; Levy, S.S.

    1998-01-01

    Defining the spatial distribution and timing of subsurface fluid percolation is one of the most important factors determining long term performance of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. The nonwelded interval of the Paintbrush Group (PTn), which overlies most of the potential repository, has high matrix porosities and permeabilities and is mostly unfractured. The Exploratory Studies Facility (ESF) is a 8-km long, 7.6-m diameter, tunnel excavated beneath Yucca Mountain to the level of the potential repository horizon in order to provide access for characterization of these rocks. Several samples collected within the ESF have measured 36 Cl/Cl ratios that record anthropogenic 36 Cl (bomb-pulse 36 Cl), indicating that at least some fraction of the water has traversed the overlying PTn in 40 years or less and that flow is not confined to the matrix of that unit. The presence of a fast path transmitting bomb-pulse 36 Cl to depth appears to require the simultaneous presence of a structure (such as a fault) cutting the PTn and sufficiently high magnitude to surface infiltration to initiate and sustain at least a small component of fracture flow along the connected fracture path associated with the structure. The 36 Cl data have been simulated using the flow and transport model FEHM in order to establish bounds on infiltration rates at the site and to provide greater confidence in the understanding of unsaturated flow processes at the site by showing consistency between the observed and simulated data sets. An analogous effort simulating the distribution of porewater chloride concentrations is providing an independent means for confirming the conceptual model

  12. Control of tracers, fluids, and materials for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1993-01-01

    This paper describes use and control of tracers, fluids, and materials (TFM) at the Yucca Mountain Site Characterization Project, Management of TFM is necessary to ensure that site characterization activity does not introduce TFM that may have impact on Yucca Mountain's ability to isolate high-level radioactive waste from the accessible environment. All participants must identify TFM used for testing and construction and have the TFM evaluated to ascertain any impact on waste isolation capabilities of the site or on adjacent tests. Two data bases are created to track TFM: a working data base managed by Los Alamos National Lab. and a permanent data base managed by EG ampersand G, which will contain information on actual TFM used

  13. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  14. Site characterization progress report, Yucca Mountain, Nevada. Number 19, April 1, 1998 - September 30, 1998

    International Nuclear Information System (INIS)

    1999-06-01

    The nineteenth semiannual report of the Yucca Mountain Site Characterization Project (YMP) summarizes activities during the period from April 1, 1998, through September 30, 1998. Project activities are aimed at evaluating Yucca Mountain as a potential location for permanent geologic disposal of nuclear materials, as directed by the Nuclear Waste Policy Act of 1982, as amended (NWPA). The progress report documents activities this period that contribute to completing the Project's near-term programmatic and statutory objectives. These objectives include completing the Viability Assessment, the Environmental Impact Statement (EIS), a possible US Department of Energy (DOE) Secretarial Site Recommendation to the President, and, if the site is suitable, submittal of a license application to the US Nuclear Regulatory Commission (NRC). Project work this period continued to be concentrated in three integrated activities: site characterization, engineering design and construction, and performance assessment. Accomplishments this period and their relation to near-term objectives are briefly summarized

  15. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation's high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs

  16. Container materials for high-level nuclear waste at the proposed Yucca Mountain site

    International Nuclear Information System (INIS)

    McCright, R.D.

    1991-05-01

    Candidate container materials for high-level nuclear waste packages to be emplaced at the proposed Yucca Mountain repository site are being considered for their long-term resistance to corrosion, oxidation, embrittlement and other kinds of degradation. An extensive compilation of the degradation phenomena for six candidate materials is complete, and further studies have begun on the degradation modes affecting additional candidate materials. Phenomenological models for predicting container degradation rates are being advanced for environmental conditions applicable to Yucca Mountain. An experimental program is underway to evaluate the susceptibility of container materials is localized corrosion, stress corrosion cracking, and enhancement of corrosion and oxidation attack by gamma radiation. Initial evaluations of container fabrication and welding processes have identified some processes that appear to alleviate some long-term susceptibility concerns. 10 refs., 2 figs

  17. Seismotectonic investigations for Yucca Mountain high-level waste repository: Rationale for defining scope

    International Nuclear Information System (INIS)

    Gupta, D.C.; Blackford, M.E.

    1990-01-01

    The geologic, seismic, and engineering characteristics of the Yucca Mountain site and its environs need to be investigated in sufficient scope and detail to provide reasonable assurance that they are sufficiently well understood to permit an adequate evaluation of the proposed site for the development of a high-level waste repository. The paper examines the extent of seismotectonic investigations needed for proper evaluation of the geologic setting. At the Yucca Mountain site, a thorough understanding of tectonic phenomena such as seismicity and faulting is critical to the identification of potentially disqualifying conditions. Study of the tectonic movement, stress, or co-tectonic effects that could affect the performance of the waste-handling facilities, waste package, underground openings, shaft and borehole seals, and long-term alteration of geohydrology would be necessary. In addition, the uncertainties involved in evaluating the effect of seismotectonics on the radionuclide transport mechanism need to be thoroughly investigated. 8 refs., 1 fig

  18. Scenarios constructed for nominal flow in the presence of a repository at Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    Barr, G.E.; Hunter, R.L.; Dunn, E.; Flint, A.

    1995-03-01

    Scenario development for the system performance assessment of the Yucca Mountain Site Characterization Project defines a scenario as a well-posed problem connecting an initiating event with radionuclide release to the accessible environment by a logical and physically possible combination or sequence of features, events, and processes. Drawing on the advice and assistance of the Project's principal investigators (PIs), a collection of release scenarios initiated by the nominal ground-water flow occurring in the vicinity of the potential Yucca Mountain high-level-waste repository is developed and described in pictorial form. This collection of scenarios is intended to provide a framework to assist PIs in recognizing essential field and calculational analyses, to assist performance assessment in providing guidance to site characterization, and to continue the effort to exhaustively identify all features, events, and processes important to releases. It represents a step in the iterative process of identifying what details of the potential site are important for safe disposal. 67 refs

  19. Evaluating the Long-Term Safety of a Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Luik, Abe Van

    2002-01-01

    Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

  20. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; McKenna, S.A.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area

  1. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  2. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, St George' s Redditch (United Kingdom)

    2017-08-15

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  3. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  4. Site characterization progress report, Yucca Mountain, Nevada: Number 19, April 1, 1998--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-01

    The nineteenth semiannual report of the Yucca Mountain Site Characterization Project (YMP) summarizes activities during the period from April 1, 1998, through September 30, 1998. Project activities are aimed at evaluating Yucca Mountain as a potential location for permanent geologic disposal of nuclear materials, as directed by the Nuclear Waste Policy Act of 1982, as amended (NWPA). The progress report documents activities this period that contribute to completing the Project`s near-term programmatic and statutory objectives. These objectives include completing the Viability Assessment, the Environmental Impact Statement (EIS), a possible US Department of Energy (DOE) Secretarial Site Recommendation to the President, and, if the site is suitable, submittal of a license application to the US Nuclear Regulatory Commission (NRC). Project work this period continued to be concentrated in three integrated activities: site characterization, engineering design and construction, and performance assessment. Accomplishments this period and their relation to near-term objectives are briefly summarized.

  5. Geochemistry of outcrop samples from the Raven Canyon and Paintbrush Canyon reference sections, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1996-01-01

    The Yucca Mountain area in southern Nevada is being evaluated for its suitability as a potential site for the construction of an underground, high-level nuclear waste repository. With support from the Department of Energy, the US Geological Survey is conducting detailed petrographic, geochemical, and isotopic analyses of samples collected from drill cores and from outcrops. The geochemical and isotopic compositions of the volcanic rocks of Yucca Mountain derive from those of their parental magmas, from changes resulting from the eruptive processes and from post-depositional alteration. In this study, geochemical and isotopic data were acquired on samples from reference sections selected in areas where the effects of the post-depositional alteration has been minimal. These data will be used as baseline information for delineating and correlating zonal features in the volcanic rock alteration that may occur in the thermal aureole of the potential repository after it has been loaded with nuclear waste

  6. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area.

  7. Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.E.; George, J.T.; Riggins, M.

    1999-08-02

    A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data.

  8. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report

  9. The reason why the budget for the Yucca mountain project is cut

    International Nuclear Information System (INIS)

    Wang Ju

    2010-01-01

    This paper introduces the event that the 2009 and 2010 budgets for the Yucca Mountain Spent Fuel Disposal Project is cut. The political, ethnical, technical, economical and resource recycling reasons for the budget cutting are analyzed. It is proposed that the strong objection of Senator Harry Reid and the political consideration are the main reasons for budget cutting. Many objections on the budget cutting are also introduced. (authors)

  10. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  11. An American perspective. Yucca mountain, or: The struggle for radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Karam, A.

    2002-01-01

    Recently, the US President and Congress (which includes both the Republican House and Democratic Senate) approved a bill naming Yucca Mountain as the nation's sole repository for spent reactor fuel. This marks the first positive step for radioactive waste disposal in the US in nearly 20 years, and it puts the US government only a decade or so behind their obligations under the Radioactive Waste Act. What is really going on here? (orig.)

  12. Concepts in prototype testing for in situ geomechanical investigations at Yucca Mountain

    International Nuclear Information System (INIS)

    Luke, B.A.; Finley, R.E.

    1990-01-01

    This paper discusses the geomechanical investigations that comprise a significant portion of the site characterization program to be conducted at Yucca Mountain, the site of a proposed repository for nuclear waste. The investigations include large-scale experiments conducted in an exploratory shaft facility at the site. A program of prototype testing has been initiated to ensure the success of these expensive and complex experiments. The prototype testing program addresses three problems in rock mechanics

  13. Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report

  14. Rock mass mechanical property estimation strategy for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Lin, M.; Brechtel, C.E.; Hardy, M.P.; Bauer, S.J.

    1992-01-01

    This paper presents a method of estimating the rock mass properties for the welded and nonwelded tuffs based on currently available information on intact rock and joint characteristics at the Yucca Mountain site. Variability of the expected ground conditions at the potential repository horizon (the TSw2 thermomechanical unit) and in the Calico Hills nonwelded tuffs is accommodated by defining five rock mass quality categories in each unit based upon assumed and observed distributions of the data

  15. Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report.

  16. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  17. Site environmental report for the Yucca Mountain Project. Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-10-01

    This site environmental report describes the environmental program conducted during 2005 by the U.S. Department of Energy, Office of Repository Development. The report describes the environmental laws and regulations that were applicable to the Yucca Mountain Project in 2005, the actions taken to comply with those laws and regulations, and the Project’s environmental program. The report also summarizes the data collected to monitor potential impacts of the Project on the environment.

  18. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  19. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  20. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Lu, Ning; Amter, S.; Ross, B.

    1990-01-01

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids

  1. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Amter, S.; Ross, B. [Disposal Safety, Inc., Washington, DC (USA)

    1990-12-31

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids.

  2. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons

  3. Strontium isotope geochemistry of soil and playa a deposits near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Mahan, S.A.

    1994-01-01

    The isotopic composition of strontium contained in the carbonate fractions of soils provides an excellent tracer which can be used to test models for their origin. This paper reports data on surface coatings and cements, eolian sediments, playas and alluvial fan soils which help to constrain a model for formation of the extensive calcretes and fault infilling in the Yucca Mountain region. The playas contain carbonate with a wide range of strontium compositions; further work will be required to fully understand their possible contributions to the pedogenic carbonate system. Soils from an alluvial fan to the west of Yucca Mountain show that only small amounts of strontium are derived from weathering of silicate detritus. However, calcretes from a fan draining a carbonate terrane have strontium compositions dominated locally by the limestone strontium component. Although much evidence points to an eolian source for at least some of the strontium in the pedogenic carbonates near Yucca Mountain, an additional component or past variation of strontium composition in the eolian source is required to model the pedogenic carbonate system

  4. Mineralogy of drill hole UE-25pnumber1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1988-05-01

    Drill hole UE-25p/number sign/1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p/number sign/1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs

  5. Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.

    1998-04-01

    This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

  6. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  7. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  8. Yucca Mountain Site Characterization Project bibliography, 1992--1993. Supplement 4

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE)

  9. Preliminary integrated calculation of radionuclide cation and anion transport at Yucca Mountain using a geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.G.; Travis, B.J.

    1989-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain using preliminary data for mineral distributions, retardation parameter distributions, and hypothetical recharge scenarios. These calculations are not performance assessments, but are used to study the effectiveness of the geochemical barriers at the site at mechanistic level. The preliminary calculations presented have many shortcomings and should be viewed only as a demonstration of the modeling methodology. The simulations were run with TRACRN, a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 finite-difference nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Sorption ratios for the radionuclides modeled are assumed to be functions of mineralogic assemblages of the underlying rock. These transport calculations present a representative radionuclide cation, 135 Cs and anion, 99 Tc. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. The model provides a method for examining the integration of flow scenarios, transport, and retardation processes as currently understood for the site. It will also form the basis for estimates of the sensitivity of transport calculations to retardation processes. 11 refs., 17 figs., 1 tab

  10. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  11. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons.

  12. GENISES: A GIS Database for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Beckett, J.

    1991-01-01

    This paper provides a general description of the Geographic Nodal Information Study and Evaluation System (GENISES) database design. The GENISES database is the Geographic Information System (GIS) component of the Yucca Mountain Site Characterization Project Technical Database (TDB). The GENISES database has been developed and is maintained by EG ampersand G Energy Measurements, Inc., Las Vegas, NV (EG ampersand G/EM). As part of the Yucca Mountain Project (YMP) Site Characterization Technical Data Management System, GENISES provides a repository for geographically oriented technical data. The primary objective of the GENISES database is to support the Yucca Mountain Site Characterization Project with an effective tool for describing, analyzing, and archiving geo-referenced data. The database design provides the maximum efficiency in input/output, data analysis, data management and information display. This paper provides the systematic approach or plan for the GENISES database design and operation. The paper also discusses the techniques used for data normalization or the decomposition of complex data structures as they apply to GIS database. ARC/INFO and INGRES files are linked or joined by establishing ''relate'' fields through the common attribute names. Thus, through these keys, ARC can allow access to normalized INGRES files greatly reducing redundancy and the size of the database

  13. The role of fault zones in affecting multiphase flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-01-01

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C 14 . The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones

  14. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block

  15. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on open-quotes Fractures, Hydrology, and Yucca Mountainclose quotes: Abstracts and summary

    International Nuclear Information System (INIS)

    Gomberg, J.

    1991-01-01

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation

  16. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  17. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    International Nuclear Information System (INIS)

    2002-01-01

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that the Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of

  18. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  19. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  20. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  1. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  2. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Science.gov (United States)

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  3. Yucca L.: yucca

    Science.gov (United States)

    Robert R. Alexander; Floyd W. Pond; Jane E. Rodgers

    2008-01-01

    There are about 30 species of yucca native to North America and the West Indies. Although most of these long-lived, evergreen plants grow in the arid southwestern United States and on Mexican tablelands, yuccas are found up to 2,400 m in elevation in the mountains of Colorado (Arnott 1962; Webber 1953). Four western species are considered here (table 1). Great Plains...

  4. Characterizing the Evolution of the In-Drift Environment in a Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Abraham Van Luik

    2004-01-01

    This presentation provides a high-level summary of the approach taken to achieve a conceptual understanding of the chemical environments likely to exist in the proposed Yucca Mountain repository after the permanent closure of the facility. That conceptual understanding was then made quantitative through laboratory and modeling studies. This summary gives an overview of the in-drift chemical environment modeling that was needed to evaluate a Yucca Mountain repository: it describes the geological, hydrological, and geochemical aspects of the chemistry of water contacting engineered barriers and includes a summary of the technical basis that supports the integration of this information into the total system performance assessment. In addition, it presents a description of some of the most important data and processes influencing the in-drift environment, and describes how data and parameter uncertainty are propagated through the modeling. Sources of data include: (1) external studies regarding climate changes; (2) site-specific studies of the structure of the mountain and the properties of its rock layers; (3) properties of dust in the mountain and investigations of the potential for deliquescence on that dust to create solutions above the boiling point of water; (4) obtaining thermal data from a comprehensive thermal test addressing coupled processes; and (5) modeling the evolution of the in-drift environment at several scales. Model validation is also briefly addressed

  5. The Multi-Scale Model Approach to Thermohydrology at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L; Buscheck, T A; Gansemer, J; Sun, Y

    2002-01-01

    The Multi-Scale Thermo-Hydrologic (MSTH) process model is a modeling abstraction of them1 hydrology (TH) of the potential Yucca Mountain repository at multiple spatial scales. The MSTH model as described herein was used for the Supplemental Science and Performance Analyses (BSC, 2001) and is documented in detail in CRWMS M and O (2000) and Glascoe et al. (2002). The model has been validated to a nested grid model in Buscheck et al. (In Review). The MSTH approach is necessary for modeling thermal hydrology at Yucca Mountain for two reasons: (1) varying levels of detail are necessary at different spatial scales to capture important TH processes and (2) a fully-coupled TH model of the repository which includes the necessary spatial detail is computationally prohibitive. The MSTH model consists of six ''submodels'' which are combined in a manner to reduce the complexity of modeling where appropriate. The coupling of these models allows for appropriate consideration of mountain-scale thermal hydrology along with the thermal hydrology of drift-scale discrete waste packages of varying heat load. Two stages are involved in the MSTH approach, first, the execution of submodels, and second, the assembly of submodels using the Multi-scale Thermohydrology Abstraction Code (MSTHAC). MSTHAC assembles the submodels in a five-step process culminating in the TH model output of discrete waste packages including a mountain-scale influence

  6. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  7. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  8. Dialogs by Jerry Szymanski regarding the Yucca Mountain controversy from December, 1990 to March, 1991. Volume 1, Special report No. 9

    International Nuclear Information System (INIS)

    Szymanski, J.; Livingston, D.E.

    1993-07-01

    This document contains dialogs from December, 1990 to March, 1991 by Jerry Szymanski regarding the Yucca Mountain controversy. These dialogs involve the dispute about the origin of carbonate deposits at Yucca Mountain; whether pedogenic in origin or a result of episodic upwellings of ground water

  9. Challenges and issues with building a potential railroad to Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.

    2004-01-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public

  10. Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Wang, J.S.Y. [Lawrence Berkeley Lab., CA (United States)

    1992-07-01

    The authors of this report have been participating in the Sandia National Laboratory`s hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP.

  11. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  12. Lithospheric Strength Beneath the Zagros Mountains of Southwestern Iran

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-05-01

    The Zagros Mountain Belt of southwestern Iran is among the most seismically active mountain belts in the world. Early seismic studies of this area found that the lithosphere underlying the Zagros Mountains follows the "jelly sandwich" model, having a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. More recent studies, which analyzed earthquakes originating within the Zagros Mountains that were recorded at teleseismic distances, however, found that these earthquakes occurred only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere lies only within the upper crust, in accordance with the "creme brulee" lithospheric model. Preliminary analysis of regionally recorded earthquakes that originated within the Zagros Mountains is presented here. Using earthquakes recorded at regional distances will allow the analysis of a larger dataset than has been used in previous studies. Preliminary results show earthquakes occurring throughout the crust and possibly extending into the upper mantle.

  13. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    International Nuclear Information System (INIS)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-01-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group

  14. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-05-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group.

  15. Hydrogeologic studies at Yucca Mountain, Nevada, USA. An interpretation of results for radioactive waste disposal site characterization

    International Nuclear Information System (INIS)

    Dudley, W.W.

    1984-02-01

    Of nine potential nuclear-waste repository sites being investigated in the United States, Yucca Mountain is the only one for which disposal above the water table is proposed. The host rock is a fractured, permeable welded tuff more than 300 m beneath the surface. The principal factors contributing to the isolation of waste include: a small recharge flux, estimated to be about 5 mm/yr; free drainage in the host rock and little opportunity for contact of water with the waste; near-neutral water of low ionic and organic content; unsaturated-zone and saturated-zone flowpaths through altered tuffs that are rich in sorptive zeolites and clays; and very deep regional ground-water flow that terminates in a closed basin. Hydraulic testing of the saturated zone has demonstrated that fractures cause the observed high transmissivity, and seepage velocities in major fracture zones may be as high as 0.01 to 0.1 km/yr. Diffusion of radionuclides from water in fractures to that in the porous rock matrix, however, would attenuate their migration and allow sorptive processes to operate if a release from the repository were to occur. Psychrometers, heat-dissipation probes, pressure transducers, and sampling tubes that were recently installed in a 380-m drill hole are still undergoing stabilization. Data from this hole and other planned experiments will allow definition of recharge flux, frequency, and flowpaths for statistical treatment in models

  16. Seismic Evidence for Splays of the Eureka Peak Fault beneath Yucca Valley, California

    Science.gov (United States)

    Goldman, M.; Catchings, R.; Chan, J. H.; Sickler, R. R.; Criley, C.; O'leary, D. R.; Christensen, A.

    2016-12-01

    In April 2015, we acquired high-resolution P- and S-wave seismic data along a 3.1-km-long, E-W-trending profile in Yucca Valley, California. Our seismic survey was designed to locate possible sub-parallel faults of the Eureka Peak Fault, which trends NW-SE near the western end of our profile. The Eureka Peak Fault is a potential hazard to the Yucca Valley region, as it appears to have experienced surface ruptures associated with both the 23 April 1992 M 6.1 Joshua Tree earthquake and the 28 June 1992 M 7.3 Landers earthquake. We simultaneously acquired P- and S-wave data using explosive sources spaced every 100 m, along with higher resolution P-wave data from seisgun sources spaced every 5 m. Each shot was co-located with and recorded by 634 P-wave geophones (40-Hz) spaced 5 m apart and 250 S-wave geophones (4.5-Hz) spaced 10 meters apart. We developed P-wave tomographic velocity models and reflection images that show at least one significant fault about 2.3 km NE of the Eureka Peak Fault. This fault may potentially pose a hazard and affect groundwater flow in the area.

  17. Data Qualification Report: Precipitation Chloride Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The data covered by this qualification report have been cited in analysis/model reports (AMRs) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. Those analyses cited both qualified and unqualified hydrochemical data. This report evaluates unqualified precipitation chloride data based on the pedigree of the data and within the context of supporting analyses on the Yucca Mountain Project (YMP). The following AMRs use the unqualified chloride data considered in this report: (1) AMR S0040, ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (ANL-NBS-HS-000021) (Kwicklis 2000)--an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. (2) AMR U0085, ''Analysis of Geochemical Data for the Unsaturated Zone'' (ANL-NBS-HS-000017) (Fabryka-Martin 2000)--identifies fluid geochemical parameters for the unsaturated zone, local precipitation, and surface water; discusses the occurrence and origins of fracture minerals; and presents a thermal history of the unsaturated zone. These data are being evaluated for inclusion in technical products to include AMRs and Process Modeling Reports (PMRs) that support the Site Recommendation and that may also be used to support the License Application. A finding that the precipitation chloride data are qualified means that the data are adequate for generalized use and can be appropriately used in a wide variety of applications, so long as consideration is given to limitations on the accuracy, precision and representativeness of the data for an intended use in a technical product

  18. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  19. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  20. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-01-01

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as ''physical-property stratigraphy'' as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs

  1. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  2. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  3. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  4. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  5. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  6. Origins of secondary silica within Yucca Mountain, Nye County, southwestern Nevada

    International Nuclear Information System (INIS)

    Moscati, R.J.; Whelan, J.F.

    1996-01-01

    The accuracy of predictions of the hydrologic response of Yucca Mountain to future climate depends largely on how well relations between past climate and hydrology can be resolved. To advance this reconstruction, secondary minerals in and near Yucca Mountain, deposited by ground waters that originated both as surficial recharge at Yucca Mountain and from regional aquifers, are being studied to determine past ground-water sources and chemistries. Preliminary data on stable oxygen isotopes indicate that, although silica (opal, quartz, and chalcedony) and calcite and have formed in similar settings and from somewhat similar fluids, the authors have found no compelling evidence of coprecipitation or formation from identical fluids. If verified by further analyses, this precludes the use of silica-calcite mineral pairs for precise geothermometry. The preliminary data also indicate that opal and calcite occurrences in pedogenic and unsaturated-zone settings are invariably compatible with formation under modern ambient surface or subsurface temperatures. Silica and calcite stable-isotope studies are being integrated with soil geochemical modeling. This modeling will define the soil geochemical condition (climate) leading to opal or calcite deposition and to the transfer functions that may apply at the meteorologic soil unsaturated-zone interfaces. Additional study of pedogenic and unsaturated-zone silica is needed to support these models. The hypothesis that the transformation of vapor-phase tridymite to quartz requires saturated conditions is being tested through stable oxygen-isotope studies of lithophysal tridymite/quartz mixtures. Should this hypothesis be verified, mineralogic analysis by X-ray diffraction theoretically would permit reconstruction of past maximum water-table elevations

  7. Oxygen isotopes and trace elements in the Tiva Canyon Tuff, Yucca Mountain and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.D.; Kyser, T.K.; Peterman, Z.E.

    1996-12-31

    Yucca Mountain is being studied as a potential site for an underground repository for high-level radioactive waste. Because Yucca Mountain is located in a resource-rich geologic setting, one aspect of the site characterization studies is an evaluation of the resource potential at Yucca Mountain. The Tiva Canyon Tuff (TCT) is a widespread felsic ash-flow sheet that is well exposed in the Yucca Mountain area. Samples of the upper part of the TCT were selected to evaluate the potential for economic mineral deposits within the Miocene volcanic section. These samples of the upper cliff and caprock subunits have been analyzed for oxygen isotopes and a large suite of elements. Oxygen isotope compositions ({delta}{sup 18}O) of the TCT are typical of felsic igneous rocks but range from 6.9 to 11.8 permil, indicating some post-depositional alteration. There is no evidence of the low {delta}{sup 18}O values (less than 6 permil) that are typical of epithermal precious-metal deposits in the region. The variation in oxygen isotope ratios is probably the result of deuteric alteration during late-stage crystallization of silica and low-temperature hydration of glassy horizons; these processes are also recorded by the chemical compositions of the rocks. However, most elemental contents in the TCT reflect igneous processes, and the effects of alteration are observed only in some of the more mobile elements. These studies indicate that the TCT at Yucca Mountain has not been affected by large-scale meteoric-water hydrothermal circulation. The chemical compositions of the TCT, especially the low concentrations of most trace elements including typical pathfinder elements, show no evidence for epithermal metal deposits. Together, these data indicate that the potential for economic mineralization in this part of the volcanic section at Yucca Mountain is small.

  8. Draft environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The Yucca Mountain site is located in the Great Basin, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Yucca Mountain site as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the Yucca Mountain site is one of three sites preferred for site characterization

  9. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  10. Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain

    Science.gov (United States)

    Rutqvist, Jonny; Tsang, Chin-Fu

    2012-09-01

    The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled-process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal-hydrological-mechanical (THM) multiphysics processes over the long-term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small-scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long-term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture

  11. User's guide to the Yucca Mountain Integrating Model (YMIM) Version 2.1

    International Nuclear Information System (INIS)

    Gansemer, J.; Lamont, A.

    1995-04-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the engineered barrier system. It contains models of the processes of waste container failure and nuclide release from the fuel rods. YMIM is driven by scenarios of container and rod temperature, near-field chemistry, and near-field hydrology provided by other modules. It is designed to be highly modular so that a model of an individual process can be easily modified to replaced without interfering with the models of other processes. This manual describes the process models and provides instructions for setting up and running YMIM Version 2.1

  12. Smoothwall blasting planned for the underground research facility at Yucca Mountain

    International Nuclear Information System (INIS)

    Bullock, R.L.; McKenzie, J.

    1990-01-01

    This paper discusses whether or not the Exploratory Shaft Facility (ESF) at yucca Mountain, Nevada will be completely mechanically excavated, completely developed by drilling and blasting or whether both methods will be utilized on different parts of the ESF. Where drilling and blasting may be used, smoothwall blasting techniques will be used and strict controls will be placed on drill hole placement and alignment, and the correct use of limiting damage explosive, so that minimum amount of fracturing will occur beyond the perimeter of the openings. The authors discuss why this is necessary and how it is achievable

  13. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  14. Site environmental report for calendar year 1994, Yucca Mountain Site, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Yucca Mountain Site Characterization office has established an environmental program to ensure that facilities are operated in order to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US DOE orders. The status of the environmental program has been summarized in this annual report to characterize performance, confirm compliance with environmental requirements, and highlight significant programs and efforts during CY 1994. Monitoring, archaeology, groundwater, ecosystems, tortoise conservation, waste minimization, etc., are covered.

  15. Role of underground testing to determine suitability of Yucca Mountain as a potential repository site

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1990-01-01

    A brief description of the Exploratory Shaft based site characterization testing program for the Yucca Mountain Project of the permanent disposal of high level radioactive waste is briefly described in this paper. Details of the testing program are presented in the DOE-issued Site Characterization Plan. Overview of the current planning process and status of various activities is briefly described. This study will reevaluate the mining method, ESF location and any changes in the ESF testing program. 2 refs., 2 figs., 1 tab

  16. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991; Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment.

  17. A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dahl, C.A.

    2003-01-01

    To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities

  18. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1990--September 30, 1990, Number 3

    International Nuclear Information System (INIS)

    1991-03-01

    In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (NWPA), as amended, the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1 through September 30, 1990. This report is the third of a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of new initiatives to improve the effectiveness of the site characterization program and covers continued efforts related to preparatory activities, study plans, and performance assessment. 85 refs., 2 figs., 3 tabs

  19. Applications of natural analogue studies to Yucca Mountain as a potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    1995-02-01

    The 5-member group convened in Las Vegas, Nov. 11-13, 1991, to clarify the extent to which studies of natural analogues can assist the Yucca Mountain site characterization (SC) project. This document is to provide guidance and recommendations to DOE for the implementation of natural analogue studies in the SC program. Performance assessment, integrity of engineered barriers, and communication to the public and the scientific community are stressed. The reference design being developed by Babcock ampersand Wilcox Fuel Company are reviewed. Guidelines for selecting natural analogues are given. Quality assurance is discussed. Recommendations are given for developing an effective natural analogue program within the SC program

  20. Radiological Programs- Ambient Radon at the Yucca Mountain Site (SCPB:NA)

    International Nuclear Information System (INIS)

    TRW

    1999-01-01

    This report summarizes the results of the ambient radon monitoring activities conducted by the Radiological/Environmental Field Programs Department of the Civilian Radioactive Waste Management and Operating Contractor (CRWMS M and O), Yucca Mountain Site Characterization Office. Overall, outdoor radon concentrations measured at the Yucca Mountain site were within the range of those reported for other areas in Nevada and the continental United States. Though there was some evidence of trends with time at some monitoring sites, regional atmospheric radon concentrations to date, do not appear to have changed significantly since the inception of site characterization activities. A preliminary dose assessment yielded an estimated annual effective dose equivalent of 134 mrem based on a continuous exposure to the average ambient radon concentration measured at the Yucca Mountain site. Concentrations were measured using two types of systems, passive electret ion chambers (EIC) and continuous radon monitors (CRM). The EICs produced time-averaged radon concentration data and the CRMs were used to study radon fluctuations over time. Between 1991 and 1995, the mean radon concentration at the site, as measured by EICs placed one meter above ground level, was 0.32 ± 0.15 pCi L -1 . Radon concentrations varied between monitoring locations and between years. Station NF38, located near the North Portal of the Exploratory Studies Facility (ESF), exhibited the highest overall average radon concentration at 0.55 pCi L -1 (1992 to 1995). Concentrations appear to cycle diurnally, generally peaking in the early morning hours and being lowest in the afternoon. The data also suggested that radon concentrations may fluctuate seasonally. The work accomplished between 1991 and 1995, established radon levels in the general area surrounding Yucca Mountain. It is recommended that further work focus directly on those locations that have the greatest potential for influencing ambient radon levels

  1. Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication

    International Nuclear Information System (INIS)

    Benson, A.B.; Nelson, P.V.; D'Ouville, M.

    2000-01-01

    Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, ''Environmental

  2. Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication

    Energy Technology Data Exchange (ETDEWEB)

    A.B. Benson; P.V. Nelson; M. d' Ouville

    2000-03-01

    Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, &apos

  3. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment

  4. Frictional sliding in layered rock model: Preliminary experiments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Perry, K.E. Jr.; Buescher, B.J.; Anderson, D.; Epstein, J.S.

    1995-09-01

    An important aspect of determining the suitability of Yucca Mountain as a possible nuclear waste repository requires understanding the mechanical behavior of jointed rock-masses. To this end we have studied the frictional sliding between simulated rock joints in the laboratory using the technique of phase shifting moire interferometry. The models were made from stacks of Lexan plates and contained a central hole to induce slip between the plates when the models were loaded in compression. These preliminary results confirm the feasibility of the approach and show a clear evolution of slip as function of load

  5. Waste form performance assessment in the YUCCA Mountain engineered barrier system, American Nuclear Society

    International Nuclear Information System (INIS)

    Morris, E. E.; Fanning, T. H.; Wigeland, R. A.

    2000-01-01

    This work demonstrates a technique for comparing the performance of waste forms in a repository environment when one or more of the waste forms constitute a small part of the total amount of waste planned for the repository. In applying the technique, it is important to identify radionuclides that are highly soluble in the transport fluid since it is only for these that the release is controlled by the dissolution rate of the waste form matrix. The techniques presented here have been applied to an evaluation of the performance of waste forms from the electrometallurgical treatment of spent fuel in the proposed Yucca Mountain Repository Engineered Barrier System (EBS)

  6. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  7. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  8. Numerical modeling for saturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Barr, G.E.

    1996-01-01

    A three-dimensional, site-scale numerical model of groundwater flow in the saturated zone at Yucca Mountain was constructed and linked to particle tracking simulations to produce an estimate of the distribution of groundwater travel times from the potential repository to the boundary of the accessible environment. This effort and associated modeling of groundwater travel times in the unsaturated zone were undertaken to aid in the evaluation of compliance of the site with 10CFR960. These regulations stipulate that pre-waste-emplacement groundwater travel time to the accessible environment shall exceed 1,000 years along any path of likely and significant radionuclide travel

  9. Site characterization progress report, April 1, 1994--September 30, 1994: Yucca Mountain, Nevada. Volume 11

    International Nuclear Information System (INIS)

    1995-03-01

    The Civil Radioactive Waste Management Program was restructured to provide a new approach to the evaluation of the site for development as a repository and to its licensing. Funding was increased for FY 95, with most of the increase going to the Yucca Mountain site characterization project. During this period, significant progress was made in surface-based testing, advanced conceptual design, performance assessment, planning, licensing support system development activities, and construction of the Exploratory Studies Facility. The report is divided into the following sections: introduction, programmatic activities, site programs, repository design, waste package, performance assessment, and exploratory studies facility design/construction

  10. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  11. Site environmental report for calendar year 1994, Yucca Mountain Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1995-06-01

    The Yucca Mountain Site Characterization office has established an environmental program to ensure that facilities are operated in order to protect, maintain, and restore environmental quality, minimize potential threats to the environment and the public, and comply with environmental policies and US DOE orders. The status of the environmental program has been summarized in this annual report to characterize performance, confirm compliance with environmental requirements, and highlight significant programs and efforts during CY 1994. Monitoring, archaeology, groundwater, ecosystems, tortoise conservation, waste minimization, etc., are covered

  12. Post-closure performance assessment of waste packages for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    O'Connell, W.J.; Ueng, T.S.; Lewis, L.C.

    1993-10-01

    This report details a system model of some core features of the performance of waste packages for the permanent disposal of spent nuclear fuel at the Yucca Mountain Site. The model is realized in the prototype computer program PANDORA-1.1. The PANDORA system model links processes leading to possible release of radionuclides from the waste package. The PANDORA submodels are being developed for processes and conditions specific to this potential repository site, notably the comparatively dry location in an arid area and well above the groundwater table, and the rock medium of porous partially welded tuff

  13. Computed distributions of residual shaft drilling and construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1989-01-01

    The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository at Yucca Mountain in southwest Nevada. One activity of site characterization is the construction of two exploratory shafts. This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. In all cases the increase in rock saturation resulting from the construction water was extremely small. 11 refs., 15 figs., 1 tab

  14. Investigations of hydro-tectonic hazards at the proposed Yucca Mountain high-level nuclear waste repository. Annual report - Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, D.E. [ed.

    1994-01-01

    This document includes several reports describing scientific studies of the origin of near surface calcite/silica deposits at Yucca Mountain, Nevada. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    International Nuclear Information System (INIS)

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W.; Widmann, B.; Wesling, J.R.

    1994-01-01

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain

  16. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W. [Geological Survey, Denver, CO (United States); Widmann, B. [Science Applications International Corp., Golden, CO (United States); Wesling, J.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1994-12-31

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  17. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  18. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    International Nuclear Information System (INIS)

    Meike, A.; Stroes-Gascoyne, S.

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  19. Investigations of hydro-tectonic hazards at the proposed Yucca Mountain high-level nuclear waste repository. Annual report - Nevada

    International Nuclear Information System (INIS)

    Livingston, D.E.

    1994-01-01

    This document includes several reports describing scientific studies of the origin of near surface calcite/silica deposits at Yucca Mountain, Nevada. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  1. Estimation of the limitations for surficial water addition above a potential high level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Fewell, M.E.; Sobolik, S.R.; Gauthier, J.H.

    1992-01-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, consisting of underground shafts, drifts, and ramps, and the accompanying surface pad facility and roads. The information in this report addresses the following topics: (1) a discussion of the potential effects of surface construction water on repository-performance, and on surface and underground experiments; (2) one-dimensional numerical calculations predicting the maximum allowable amount of water that may infiltrate the surface of the mountain without affecting repository performance; and (3) two-dimensional numerical calculations of the movement of that amount of surface water and how the water may affect repository performance and experiments. The results contained herein should be used with other site data and scientific/engineering judgement in determining controls on water usage at Yucca Mountain. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document for the Yucca Mountain Site Characterization Project

  2. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  3. Coupled In-Rock and In-Drift Hydrothermal Model Study For Yucca Mountain

    International Nuclear Information System (INIS)

    G. Danko; J. Birkholzer; D. Bahrami

    2006-01-01

    A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented

  4. Recent developments in the integrated approach toward characterization of radionuclide transport, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.; Canepa, J.A.

    1992-01-01

    The radionuclide migration program for the Yucca Mountain Site Characterization Project (YMP) includes studies of radionuclide solubility, sorption, diffusion, and transport. The study plans incorporate all possible parameters of investigation; decision-making strategies for prioritizing the parameters and evaluating their significance were developed in conjunction with the study plans. After definition of explicit research goals for each study, YMP evaluated the applicability of existing data and formulated experimental approaches for obtaining additional data. This resulted in development of individual testing strategies that were integrated into an overall strategy for the radionuclide migration program designed to provide input to credible performance assessments. The strategies allow for decision points at various steps of data collection and testing. They provide a streamlined process toward a defensible level of understanding of chemical retardation and transport processes that will be used to predict the mountain's ability to isolate waste. (author)

  5. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on {open_quotes}Fractures, Hydrology, and Yucca Mountain{close_quotes}: Abstracts and summary

    Energy Technology Data Exchange (ETDEWEB)

    Gomberg, J. [ed.

    1991-12-31

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation.

  6. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.H. [Spectra Research Inst., Albuquerque, NM (United States)

    1994-07-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The ``weeps model`` now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive.

  7. Site environmental report for calendar year 1997, Yucca Mountain Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1998-10-01

    This document is the seventh annual Site Environmental Report (SER) submitted by the Yucca Mountain Site Characterization Office (YMSCO) to describe the environmental program implemented by the US Department of Energy (DOE) at Yucca Mountain. As prescribed by the Nuclear Waste Policy Act (NWPA, 1982), this program ensures that site characterization activities are conducted in a manner that minimizes any significant adverse impacts to the environment and complies with all applicable laws and regulations. The most recent guidelines for the preparation of the SER place major emphasis on liquid and gaseous emissions of radionuclides, pollutants or hazardous substances; human exposure to radionuclides; and trends observed by comparing data collected over a period of years. To date, the YMP has not been the source of any radioactive emissions or been responsible for any human exposure to radionuclides. Minuscule amounts of radioactivity detected at the site are derived from natural sources or from dust previously contaminated by nuclear tests conducted in the past at the NTS. Because data for only a few years exist for the site, identification of long-term trends is not yet possible. Despite the lack of the aforementioned categories of information requested for the SER, the YMP has collected considerable material relevant to this report. An extensive environmental monitoring and mitigation program is currently in place and is described herein. Also, as requested by the SER guidelines, an account of YMP compliance with appropriate environmental legislation is provided

  8. Modeling studies of unsaturated flow with long-term permeability change at Yucca Mountain

    International Nuclear Information System (INIS)

    Zhang Chengyuan; Liu Xiaoyan; Liu Quansheng

    2008-01-01

    The amount of water seeping into the waste emplacement drifts is crucial for the performance of underground nuclear waste repository, since it controls the corrosion rates of waste packages and the mobilization rate of radionuclides. It is limited by water flow through drift vicinity. In the present work we study the potential rates of water flow around drifts as a function of predicted long-term change of permeability at Yucca Mountain, based on a dual-continuum model of the unsaturated flow in fractured rock mass. For stage of DECOVALEX Ⅳ, we used a simplified practical model on unsaturated flow in Yucca Mountain case simulation. These models contain main physical processes that should be considered, including thermal expansion, thermal radiation, water-rock coupling and stress-induced change of permeability. Comparative study with other DECOVALEX team's results shows that they are both good enough and flexible enough to include more physical processes. We can draw the conclusion that it is necessary to model stress-induced changes in permeability and relative processes in future studies, because there are obvious differences (in water saturation and water flux) between simulation cases with and without variable permeability, especially in areas very close to the drift. (authors)

  9. Scenarios constructed for nominal flow in the presence of a repository at Yucca Mountain and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Barr, G.E.; Hunter, R.L.; Dunn, E. [Sandia National Labs., Albuquerque, NM (United States); Flint, A. [Geological Survey, Mercury, NV (United States)

    1995-03-01

    Scenario development for the system performance assessment of the Yucca Mountain Site Characterization Project defines a scenario as a well-posed problem connecting an initiating event with radionuclide release to the accessible environment by a logical and physically possible combination or sequence of features, events, and processes. Drawing on the advice and assistance of the Project`s principal investigators (PIs), a collection of release scenarios initiated by the nominal ground-water flow occurring in the vicinity of the potential Yucca Mountain high-level-waste repository is developed and described in pictorial form. This collection of scenarios is intended to provide a framework to assist PIs in recognizing essential field and calculational analyses, to assist performance assessment in providing guidance to site characterization, and to continue the effort to exhaustively identify all features, events, and processes important to releases. It represents a step in the iterative process of identifying what details of the potential site are important for safe disposal. 67 refs.

  10. Yucca Mountain program summary of research and technical review activities, July 1988--June 1989

    International Nuclear Information System (INIS)

    1989-11-01

    The Desert Research Institute (DRI), through its Water Resources Center (WRC), since 1984 has supported the State of Nevada Nuclear Waste Project Office's activities related to the proposed high-level radioactive waste repository at Yucca Mountain on the Nevada Test Site (NTS). This effort is directed at providing the State Office with an unbiased evaluation of the Yucca Mountain Project (YMP) investigations performed by the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The overall objective is to determine independently whether or not the site meets the performance criteria defined by the Nuclear Waste Policy Act of 1982 and amendments for isolating and containing the wastes during emplacement and the proposed life of the repository. A particularly important area of concern with the proposed repository is the site's hydrology. The faculty of the DRI have long been involved with research throughout the State and have particular expertise in groundwater studies related to radionuclide migration and hydrologic safety of underground nuclear testing by DOE and predecessor agencies. In addition, we utilize laboratory personnel for chemical and isotopic analyses in both of the DRI-WMC water chemistry laboratories

  11. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  12. Physical and hydrologic properties of rock outcrop samples at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L.; Rautman, C.A.; Istok, J.D.

    1996-01-01

    Studies are underway at Yucca Mountain to characterize physical and hydrologic conditions for a potential high-level radioactive waste repository. Site characterization requires the development of three- dimensional models describing hydrogeologic units in terms of inputs for numerical models. It is also important to understand the spatial distribution of these properties, vertical and horizontally, in order to estimate values at unmeasured points. Deterministic processes of volcanism caused the initial formation of the rock units, and it is useful to be able to correlate rock properties with the more qualitative descriptions of rock lithology that occur on a larger scale. Preliminary data were collected to develop methods and evaluate spatial relations to determine sampling frequency. In addition, a data base was developed to provide some of the parameters needed for preliminary flow-modeling exercises. Surface transects of rock outcrops facilitated rapid collection of closely spaced samples of all units exposed at and around Yucca Mountain. This report presents the data collected, descriptive statistics for various units, preliminary hydrogeologic units, and analyses of porosity compared with flow properties

  13. Inventory of past DOE land disturbance, Yucca Mountain, Nevada, and estimated general reclamation costs

    International Nuclear Information System (INIS)

    1989-04-01

    Since 1976, DOE preliminary investigations for a high level nuclear waste repository at Yucca Mountain, Nevada, have caused widespread disturbances of the landscape. This report addresses the areal extent of those disturbances that have accrued up to June 1988, and identifies expected associated reclamation costs. It was first necessary to identify disturbances, next to classify them for reclamation purposes, and, then, to assign general reclamation costs. The purposes of the analysis were: (1) to establish the amount of disturbance that already exists in the area of Yucca Mountain in order to identify alterations of the landscape that comprise the existing baseline conditions; (2) to identify estimated general reclamation costs for repair of the disturbances; (3) to provide information needed to establish disturbance models, and eventually environmental impact models, that can be applied to future DOE activities during Site Characterization and later phases of repository development, if they occur, and (4) to provide indicators of the needs for reclamation of future disturbances created by DOE's Site Characterization program. Disturbances were estimated using measurements from June 1988, large scale color aerial photography. Two reconnaissance site visits were also conducted. The identified disturbance totals by type are displayed in tabular form in the appendices. 84 refs., 2 figs., 9 tabs

  14. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    Science.gov (United States)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  15. Site characterization progress report: Yucca Mountain, Nevada. Number 15, April 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on two of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.

  16. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.

    1997-01-01

    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the 87 Rb parent is billions of years, the 87 Sr/ 86 Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water

  17. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1994-01-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The open-quotes weeps modelclose quotes now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive

  18. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1993--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This report is the tenth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Also included in this report are descriptions of activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies. The Executive Summary is intended to provide a summary of major decisions, activities, accomplishments, and issues of interest during the reporting period. Chapter 1, Introduction, provides background information to assist the reader in understanding the current status of the program. Chapter 2 provides specific detailed discussions of activities conducted during the current reporting period and has two major divisions. Section 2.1, Preparatory Activities, provides information on select preparatory activities necessary to conduct site characterization and design activities. Sections 2.2 through 2.8 provide specific details on studies and activities conducted during the reporting period and follow the original structure of the Department`s 1988 Site Characterization Plan. Chapter 3 contains the current summary schedule, while Chapter 4 provides a description of the program outreach, including activities during the reporting period, in both the international program and public outreach. Chapter 5 presents an epilogue of significant events that occurred after the end of the reporting period.

  19. Total-system performance assessment for Yucca Mountain -- SNL second iteration (TSPA-1993)

    International Nuclear Information System (INIS)

    Wilson, M.L.; Barnard, R.W.; Gauthier, J.H.

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone. Probabilistic analyses are performed for aqueous and gaseous flow and transport, human intrusion, and basaltic magmatic activity. Results of the calculations lead to a number of recommendations concerning studies related to site characterization. Primary among these are the recommendations to obtain better information on percolation flux at Yucca Mountain, on the presence or absence of flowing fractures, and on physical and chemical processes influencing gaseous flow. Near-field thermal and chemical processes, and waste-container degradation are also areas where additional investigations may reduce important uncertainties. Recommendations for repository and waste-package design studies are: (1) to evaluate the performance implications of large-size containers, and (2) to investigate in more detail the implications of high repository thermal power output on the adjacent host rock and on the spent fuel

  20. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  1. Evaluation of the Corrosivity of Dust Deposited on Waste Packages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    C. Bryan; R. Jarek; T. Wolery; D. Shields; M. Sutton; E. Hardin; D. Barr

    2005-01-01

    Small amounts of dust will be deposited on the surfaces of waste packages in drifts at Yucca Mountain during the operational and the preclosure ventilation periods. Salts present in the dust will deliquesce as the waste packages cool and relative humidity in the drifts increases. In this paper, we evaluate the potential for brines formed by dust deliquescence to initiate and sustain localized corrosion that results in failure of the waste package outer barrier and early failure of the waste package. These arguments have been used to show that dust deliquescence-induced localized or crevice corrosion of the waste package outer barrier (Alloy 22) is of low consequence with respect to repository performance. Measured atmospheric and underground dust compositions are the basis of thermodynamic modeling and experimental studies to evaluate the likelihood of brine formation and persistence, the volume of brines that may form, and the relative corrosivity of the initial deliquescent brines and of brines modified by processes on the waste package surface. In addition, we evaluate several mechanisms that could inhibit or stifle localized corrosion should it initiate. The dust compositions considered include both tunnel dust samples from Yucca Mountain, National Airfall Deposition Program rainout data, and collected windblown dust samples. Also considered is sublimation of ammonium salts, a process that could affect dust composition prior to deliquescence. Ammonium chlorides, nitrates, and even sulfates sublimate readily into ammonia and acid gases, and will be lost from the surface of the waste package prior to deliquescence

  2. Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Y.W.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.