WorldWideScience

Sample records for beneath north santorini

  1. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.;

    2008-01-01

    The geochemistry of basaltic to dacitic lavas and dykes in the volcanic centres of NorthSantorini (Greece) has been investigated using elemental and Sr-Nd-Pb isotopic data andthree main magmatic series with sub-parallel trace element patterns for basalts can bedistinguished. The basalts have Sr...... and Nd isotopic values consistent with varying levels of incompatible-element mantle depletion. A fourth magma group with only two basalt samples has a trace element pattern with even lower contents of incompatible elements, especially Th, and with lower 87Sr/86Sr but higher 206Pb/ 204Pb. Heterogeneous...

  2. A magmatic probe of dynamic topography beneath western North America

    Science.gov (United States)

    Klöcking, M.; White, N. J.; Maclennan, J.

    2014-12-01

    A region centered on the Yellowstone hotspot and encompassing the Colorado Plateau sits at an elevation 2 km higher than the cratonic North America. This difference broadly coincides with tomographically observed variations in lithospheric thickness: ~120 km beneath western North America, ~240 km beneath the craton. Thermochronology of the Grand Canyon area, sedimentary flux to the Gulf of Mexico, and river profile inversion all suggest that regional uplift occurred in at least two separate stages. High resolution seismic tomographic models, using USArray data, have identified a ring of low velocity material beneath the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows distinct phases: an overall increase in volume around 40 Ma and a change from lithospheric to asthenospheric signatures around 5 Ma. Volcanism is also observed to migrate north-east with time. Here, we attempt to integrate these different observations with lithospheric thickness. A dynamic topography model of progressive lithospheric erosion over a hot mantle plume might account for uplift as well as the temporal and spatial distribution of magmatism across western North America. Thinning of the lithosphere around the edges of the Colorado Plateau in combination with the hotter mantle potential temperature of a plume could create isostatic and dynamic uplift as well as allowing for melt production. To test this model, we have analysed around 100 samples from volcanic centers across western North America by ICP-MS for rare earth elements (REE). Most of the samples are younger than 5 Ma, and all of them have previously been analysed by XRF. Using trace element ratios such as La/Yb and Nb/Y we assess depth of melting and melt fraction, respectively. In addition, we use REE inversion modelling to estimate melt fractions as a function of depth and temperature of melting. The results are compared to existing constraints on lithospheric thickness and mantle potential

  3. Three-dimensional attenuation structure beneath North Island, New Zealand

    Science.gov (United States)

    Satake, Kenji; Hashida, Toshihiko

    1989-03-01

    Three-dimensional attenuation structure beneath North Island, New Zealand is determined by inversion of seismic intensity data. The method developed by Hashida and Shimazaki is used; the seismic intensity is converted to the maximum acceleration of the S-wave to obtain the acceleration at a point source and the attenuation structure. Because seismic intensity data have been accumulated on a uniform scale in New Zealand since the 1950's, we were able to use more than 2000 seismic intensity data from 26 earthquakes. The results show a remarkable contrast in the attenuation structure. In the top crustal layer, a low-Q area corresponding to the Central Volcanic Region is found. This low-Q area becomes wider to the northeast of North Island, suggesting that the Central Volcanic Region continues to the Havre Trough, a young back-arc basin. The southeastern part of the upper mantle beneath North Island shows high Q while the northwestern part shows low Q. The cross section shows that the high-Q region is dipping to the northwest, with a large amount of dip in the northeast and a smaller dip in the southwestern part of North Island. A comparison of the attenuation structure with microearthquake distribution indicates that this high-Q zone is the obliquely subducting Pacific plate. A zone of abnormally low Q which has cut the high-Q slab is found at a depth range of 130 to 230 km beneath the active volcanoes in the Taupo Volcanic Zone. A tear in the Pacific plate is suggested by this discontinuity in the attenuation structure. (1984).

  4. Mohorovicic discontinuity depth analysis beneath North Patagonian Massif

    Science.gov (United States)

    Gómez Dacal, M. L.; Tocho, C.; Aragón, E.

    2013-05-01

    The North Patagonian Massif is a 100000 km2, sub-rectangular plateau that stands out 500 to 700 m higher in altitude than the surrounding topography. The creation of this plateau took place during the Oligocene through a sudden uplift without noticeable internal deformation. This quite different mechanical response between the massif and the surrounding back arc, the short time in which this process took place and a regional negative Bouguer anomaly in the massif area, raise the question about the isostatic compensation state of the previously mentioned massif. In the present work, a comparison between different results about the depth of the Mohorovicic discontinuity beneath the North Patagonian Massif and a later analysis is made. It has the objective to analyze the crustal thickness in the area to contribute in the determination of the isostatic balance and the better understanding of the Cenozoic evolution of the mentioned area. The comparison is made between four models; two of these were created with seismic information (Feng et al., 2006 and Bassin et al., 2000), another model with gravity information (Barzaghi et al., 2011) and the last one with a combination of both techniques (Tassara y Etchaurren, 2011). The latter was the result of the adaptation to the work area of a three-dimensional density model made with some additional information, mainly seismic, that constrain the surfaces. The work of restriction and adaptation of this model, the later analysis and comparison with the other three models and the combination of both seismic models to cover the lack of resolution in some areas, is presented here. According the different models, the crustal thickness of the study zone would be between 36 and 45 Km. and thicker than the surrounding areas. These results talk us about a crust thicker than normal and that could behave as a rigid and independent block. Moreover, it can be observed that there are noticeable differences between gravimetric and seismic

  5. Accretion and reworking beneath the North China Craton

    Science.gov (United States)

    Zheng, J. P.; Griffin, W. L.; Ma, Q.; O'Reilly, S. Y.; Xiong, Q.; Tang, H. Y.; Zhao, J. H.; Yu, C. M.; Su, Y. P.

    2012-09-01

    How has the Earth's continental lithosphere evolved? Most of our knowledge is derived from surface exposures, but xenoliths carried in volcanic rocks can be an important source of information. The North China Craton (NCC) is one of the oldest in the world and Phanerozoic volcanic rocks with abundant xenoliths are widespread, making it an ideal area to study the formation and evolution of continents. New analyses of U-Pb ages and Hf isotopes in zircon were obtained for lower crustal xenoliths from four localities including the Paleozoic Yingxian lamproites, and the basalts of Pingquan (Paleocene), Hebi and Nushan (Neogene). Published ages and compositions of lower crustal and upper mantle xenoliths from the NCC are synthesized to constrain the accretion and reworking processes that have affected the deep lithosphere beneath the craton. The peridotite bodies within the Dabie-Sulu ultrahigh-pressure (UHP) belt, along the southern edge of the NCC, are compared with the xenolith peridotites to constrain early Mesozoic dynamics. The oldest components of the NCC may be ~ 4.0 Ga old. The craton experienced complex accretion and reworking processes in its deep lithosphere, accompanied by the formation (or aggregation) and differentiation of the ancient continental nucleus. The small size of the NCC, compared with many other cratons worldwide, made it more susceptible to the effects of marginal subduction and collision with surrounding blocks. The subcontinental lithosphere mantle (SCLM) was generally coupled with the lower crust through the Paleozoic, while decoupling occurred in late Mesozoic-Cenozoic time, except locally (such as the Neoarchen lower crust and SCLM in Hebi), suggesting strong interactions between the asthenosphere and the lithosphere (both upper mantle and lower crust) in Phanerozoic time. In the lower crust, the ancient components of the craton were re-worked in Paleoarchean (3.80-3.65 Ga) time. The craton also experienced two important accretionary

  6. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  7. Constraining the crustal root geometry beneath the Rif Cordillera (North Morocco)

    Science.gov (United States)

    Diaz, Jordi; Gil, Alba; Carbonell, Ramon; Gallart, Josep; Harnafi, Mimoun

    2016-04-01

    The analyses of wide-angle reflections of controlled source experiments and receiver functions calculated from teleseismic events provide consistent constraints of an over-thickened crust beneath the Rif Cordillera (North Morocco). Regarding active source data, we investigate now offline arrivals of Moho-reflected phases recorded in RIFSIS project to get new estimations of 3D crustal thickness variations beneath North Morocco. Additional constrains on the onshore-offshore transition are derived from onland recording of marine airgun shots from the coeval Gassis-Topomed profiles. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain teleseismic receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. The use of a larger dataset including new stations covering the complex areas beneath the Rif Cordillera allow us to improve the resolution of previous contributions, revealing abrupt crustal changes beneath the region. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large modest root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favor models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area

  8. Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle

    Science.gov (United States)

    Zhu, Hejun; Bozdağ, Ebru; Duffy, Thomas S.; Tromp, Jeroen

    2013-11-01

    It is well known that anelasticity has significant effects on the propagation of seismic waves, as manifested by physical dispersion and dissipation. Investigations of anelasticity provide complementary constraints on the physical properties of Earth materials, but — contrary to imaging with elastic waves — progress in mapping Earth's anelasticity has been relatively slow, and there is only limited agreement between different studies or methodologies. Here, within the framework of adjoint tomography, we use frequency-dependent phase and amplitude anomalies between observed and simulated seismograms to simultaneously constrain upper mantle wavespeeds and attenuation beneath the European continent and the North Atlantic Ocean. In the sea-floor spreading environment beneath the North Atlantic, we find enhanced attenuation in the asthenosphere and within the mantle transition zone (MTZ). In subduction zone settings, for example beneath the Hellenic arc, elevated attenuation is observed along the top of the subducting slab down to the MTZ. No prominent reductions in wavespeeds are correlated with these distinct attenuation features, suggesting that non-thermal effects may play an important role in these environments. A plausible explanation invokes the transport of water into the deep Earth by relatively cold subducting slabs, leading to a hydrated MTZ, as previously suggested by mineral physics and geodynamics studies.

  9. Preliminary result of P-wave speed tomography beneath North Sumatera region

    International Nuclear Information System (INIS)

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area

  10. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Energy Technology Data Exchange (ETDEWEB)

    Jatnika, Jajat [Earth Science Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Insitute of Technology Bandung (Indonesia); Wandono [Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia)

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  11. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean.

    Science.gov (United States)

    Zhu, Hejun; Tromp, Jeroen

    2013-08-23

    We constructed a three-dimensional azimuthally anisotropic model of Europe and the North Atlantic Ocean based on adjoint seismic tomography. Several features are well correlated with historical tectonic events in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Beneath northeastern Europe, the direction of the fast anisotropic axis follows trends of ancient rift systems older than 350 million years, suggesting "frozen-in" anisotropy related to the formation of the craton. Local anisotropic strength profiles identify the brittle-ductile transitions in lithospheric strength. In continental regions, these profiles also identify the lower crust, characterized by ductile flow. The observed anisotropic fabric is generally consistent with the current surface strain rate measured by geodetic surveys. PMID:23929947

  12. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications

    Institute of Scientific and Technical Information of China (English)

    汪素云; 许忠淮; 裴顺平

    2003-01-01

    20301 Pn arrival time data are collected from the seismological bulletins of both national and regional seismic networks. Pn travel time residuals are tomographically inverted for the Pn velocity structure of uppermost mantle beneath North China. The result indicates that the average Pn velocity in North China is 7.92 km/s, and the velocity varies laterally from ?0.21 to +0.29 km/s around the average. The approximately NNE trending high and low velocity regions arrange alternatively west-eastward. From west to east we can see high velocity in the middle Ordos region, the Shanxi graben low, the Jizhong depression high, the west Shandong uplift and Bohai Sea low, and the high velocity region to the east of the Tanlu fault. In the southern boundary zone of the North China block, except for the high velocity in the Qingling Mountains region, the velocity is generally lower than the average. Obvious velocity anisotropy is seen in the Datong Cenozoic volcanic region, with the fast velocity direction in NNE-SSW. Notable velocity anisotropy is also seen around the Bay of Bohai Sea, and the fast velocity directions seem to show a rotation pattern, possibly indicating a flow-like deformation in the uppermost mantle there. The Pn velocity variations show a reversed correlation with the Earth's heat flow. The low Pn velocity regions generally show high heat flow, e.g., the Shanxi graben and Bohai Sea region. While the high Pn velocity regions usually manifest low heat flow, e.g., the region of Jizhong depression. This indicates that the Pn velocity variation in the study region is mainly aroused by the regional temperature difference in the uppermost mantle. Strong earthquakes in the crust tend to occur in the region with the abnormal low Pn velocity, or in the transition zone between high and low Pn velocity regions. The earthquakes in the low velocity region are shallower, while that in the transition zone are deeper.

  13. Upper Mantle Discontinuity Structure Beneath the Western Atlantic Ocean and Eastern North America from SS Precursors

    Science.gov (United States)

    Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.

    2015-12-01

    Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the

  14. Perceptions of hazard and risk on Santorini

    Science.gov (United States)

    Dominey-Howes, Dale; Minos-Minopoulos, Despina

    2004-10-01

    Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no "emergency plan" for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.

  15. Complex evolution of the lower crust beneath the southeastern North China Craton: The Junan xenoliths and xenocrysts: Reply

    Science.gov (United States)

    Tang, Huayun; Zheng, Jianping; Griffin, William L.; O‧Reilly, Suzanne Y.; Yu, Chunmei; Pearson, Norman J.; Ping, Xianquan; Xia, Bing; Yang, Huaben

    2015-10-01

    In our paper, we suggested that the Junan granulite xenoliths and xenocrysts record evolution of the Precambrian lower crust beneath the southeastern North China Craton (NCC). Yuan and Xia (2015) disagree with us. However, they have not fully considered the evolutional histories of the NCC lithosphere, and geochemical and isotopic compositions of the Junan xenoliths. We also contend that they have misinterpreted the available geophysical data. Synthesizing the geochronological characteristics of the NCC lower crust, nature of the Junan granulite xenoliths, and reinterpretation of the resistivity profile, we again emphasize that the Junan granulite xenoliths are tectonically affiliated to the NCC lower crust, and the Junan zircon data could reflect the complex evolution of the lower crust beneath the southeastern NCC.

  16. Imaging Rayleigh Wave Attenuation and Phase Velocity beneath North America with USArray

    Science.gov (United States)

    Bao, X.; Dalton, C. A.; Jin, G.; Gaherty, J. B.

    2014-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle of United States at a novel scale. The majority of mantle models derived from USArray data contain spatial variations in velocity; however, little is known about the attenuation structure of the North American upper mantle. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity, and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. In this study, Rayleigh wave travel time and amplitude are measured using an interstation cross-correlation version of the Generalized Seismological Data Functional algorithm, which takes advantage of waveform similarity at nearby stations. Our data are from 670 large teleseismic earthquakes that occurred from 2006 to 2014 and were recorded by 1,764 Transportable Array stations. More than 4.8 million measurements at periods between 20 and 100 s are collected into our database. Isolating the signal of attenuation in the amplitude observations is challenging because amplitudes are sensitive to a number of factors in addition to attenuation, such as focusing/defocusing and local site amplification. We generate several Rayleigh wave attenuation maps at each period, using several different approaches to account for source and receiver effects on amplitude. This suite of attenuation maps allows us to distinguish between the robust features in the maps and the features that are sensitive to the treatment of source and receiver effects. We apply Helmholtz surface-wave tomography (Lin et al., 2012) to determine velocity and attenuation maps. A significant contrast in velocity and attenuation is observed in the transition between the western and central United States along the Rocky Mountain front. We find low Q values in the western US, along the eastern coast, and the Gulf plain. These areas are also

  17. Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes

    Science.gov (United States)

    Saki, Morvarid; Thomas, Christine; Nippress, Stuart E. J.; Lessing, Stephan

    2015-04-01

    We are mapping the topography of upper mantle seismic discontinuities beneath the North Atlantic and surrounding regions by using precursor arrivals to PP and SS seismic waves that reflect off the seismic discontinuities. Many source-receiver combinations have been used in order to collect a large dataset of reflection points beneath our investigating area. We analyzed over 1700 seismograms from MW>5.8 events using array seismic methods to enhance the signal to noise ratio. The measured time lag between PP (SS) arrivals and their corresponding precursors on robust stacks are used to measure the depth of the transition zone boundaries. The reflectors' depths show a correlation between the location of hotspots and a significantly depressed 410 km discontinuity indicating a temperature increase of 200-300 K compared to the surrounding mantle. For the 660 km discontinuity three distinct behaviours are visible: i) normal depths beneath Greenland and at a distance of a few hundred kilometres away from the hotspots and ii) shallower 660 km discontinuity compared with the global average value near hotspots closer to the Mid-Atlantic Ridge and iii) very few observations of a 660 km discontinuity at the hotspot locations. We interpret our observations as a large upwelling beneath the southern parts of our study region, possibly due to the South Atlantic convection cell. The thermal anomaly may be blocked by endothermic phase transformation and likely does not extend through the top of the transition zone as whole except for those branches which appear as the Azores, Canaries and Cape Verde hotspots at the surface.

  18. "Beneath the Gloss and Floss": Teaching American History in "The Great White North."

    Science.gov (United States)

    Bennett, Paul W.

    1990-01-01

    The senior author of a textbook presenting U.S. and Canadian history in a comparative framework criticizes U.S. history textbooks for their interpretations of Native Americans and for their mystifying tendencies. Explains how "Canada: A North American Nation" presents a more detached perspective and offers a second opinion on some of the United…

  19. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    Science.gov (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  20. Abrupt change in the dip of the subducting plate beneath north Chile

    Science.gov (United States)

    Contreras-Reyes, E.; Jara, J.; Grevemeyer, I.; Ruiz, S.; Carrizo, D.

    2012-05-01

    No large tsunamigenic earthquake has occurred in north Chile since 1877 and the region has been largely recognized as a mature seismic gap. At the southern end of the seismic gap, the 2007 Mw7.7 Tocopilla earthquake ruptured the deeper seismogenic interface, whereas the coupled upper interface remained unbroken. Seismological studies onshore show a gently varying dip of 20° to 30° of the downgoing Nazca plate, which extends from the trench down to depths of 40-50km. Here, we study the lithospheric structure of the subduction zone of north Chile at about 22°S, using wide-angle seismic refraction and reflection data from land and sea, complemented by hypocentre data recorded during the 2007 Tocopilla aftershocks. Our data document an abrupt increase in the dip of the subducting plate, from less than 10° to about 22°, at a depth of approximately 20km. The distribution of the 2007 aftershocks indicates that the change in dip acted as a barrier for the propagation of the 2007 earthquake towards the trench, which, in turn, indicates that the subduction megathrust is not only segmented along the trench, but also in the direction of the dip. We propose that large-magnitude tsunamigenic earthquakes must cross the barrier and rupture the entire seismogenic zone.

  1. Geometry of the North Anatolian fault beneath the Gulf of Izmit and extent of the 1999 seafloor rupture

    Science.gov (United States)

    Cormier, M.-H.; Seeber, L.; Polonia, A.; Cagatay, M. N.; Emre, O.; McHugh, C. M. G.; Bortoluzzi, G.; Gorur, N.

    2003-04-01

    High-resolution multibeam bathymetry data acquired during two recent surveys clearly highlight the trace of the North Anatolian Fault beneath Izmit Gulf. The fault follows the approximate axis of the Darica (Western) Basin and the Karamürsel (Central) Basin, and has an overall orientation consistent with Present relative plate motion documented by GPS measurements. In detail, the fault displays the en echelon geometry typical of right-lateral transform faults, with right-stepping en echelon folds and left-stepping Riedel shear fractures along its strike. Seafloor relief across the fault ranges from less than 1 m to over 100 m, indicating that strike-slip motion is often associated with a component of vertical slip. Holocene submerged shorelines are visible north of the fault which do not appear affected by vertical tectonics. In contrast, the corresponding shorelines cannot be unambiguously located south of the fault,. This may partly reflect the higher sediment supply south of the fault. It also suggests most of the vertical component of slip in central and western Izmit basins is accommodated by subsidence of the southern block. The August 17, 1999 earthquake produced more than 4 m of lateral slip in Golcuk on the eastern end of Karamursel basin, but did not affect Hersek Peninsula on the western end. On the other hand, several InSAR, GPS, and seismicity analysis concur to indicate 1--2 m of slip within the subsurface west of Hersek Peninsula. Multibeam backscatter data do not reveal any disturbance in Darica and Karamursel Basins, except close to Golcuk near 29^o43'E, where sub-parallel EW lineaments and very reflective seafloor affect the entire width of the Bay. We tentatively interpret this anomalous seafloor as underwater mole tracks and dewatering features associated with the 1999 seafloor rupture. In combination with the lack of evidence for ground rupture on Hersek, acoustic backscatter data suggest that the surface rupture terminated near 29^o43'E

  2. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America.

    Science.gov (United States)

    Rychert, Catherine A; Fischer, Karen M; Rondenay, Stéphane

    2005-07-28

    Plate tectonic theory hinges on the concept of a relatively rigid lithosphere moving over a weaker asthenosphere, yet the nature of the lithosphere-asthenosphere boundary remains poorly understood. The gradient in seismic velocity that occurs at this boundary is central to constraining the physical and chemical properties that create differences in mechanical strength between the two layers. For example, if the lithosphere is simply a thermal boundary layer that is more rigid owing to colder temperatures, mantle flow models indicate that the velocity gradient at its base would occur over tens of kilometres. In contrast, if the asthenosphere is weak owing to volatile enrichment or the presence of partial melt, the lithosphere-asthenosphere boundary could occur over a much smaller depth range. Here we use converted seismic phases in eastern North America to image a very sharp seismic velocity gradient at the base of the lithosphere-a 3-11 per cent drop in shear-wave velocity over a depth range of 11 km or less at 90-110 km depth. Such a strong, sharp boundary cannot be reconciled with a purely thermal gradient, but could be explained by an asthenosphere that contains a few per cent partial melt or that is enriched in volatiles relative to the lithosphere.

  3. Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton

    Science.gov (United States)

    Liu, Jingao; Rudnick, Roberta L.; Walker, Richard J.; Xu, Wen-liang; Gao, Shan; Wu, Fu-yuan

    2015-05-01

    Previous studies have shown that the eastern North China Craton (NCC) lost its ancient lithospheric mantle root during the Phanerozoic. The temporal sequence, spatial extent, and cause of the lithospheric thinning, however, continue to be debated. Here we report olivine compositions, whole-rock Re-Os isotopic systematics, and platinum-group element abundances of small ( 92) lithospheric mantle is largely absent. Osmium isotopic data suggest the Wudi peridotites experienced melt depletion primarily during the Paleoproterozoic (~ 1.8 Ga), although an Archean Os model age for one xenolith indicates incorporation of a minor component of Archean lithospheric mantle. These data suggest that a previously unrecognized Paleoproterozoic orogenic event removed and replaced the original Archean lithospheric mantle beneath the sedimentary basin at the southern edge of the Bohai Sea. By contrast, the Fuxin peridotites, entrained in Cretaceous basalts that crop out along the northern edge of the eastern NCC, document the coexistence of both ancient (≥ 2.3 Ga) and modern lithospheric mantle components. Here, the original Late Archean-Early Paleoproterozoic lithospheric mantle was, at least partially, removed and replaced prior to 100 Ma. Combined with literature data, our results show that removal of the original Archean lithosphere occurred within Proterozoic collisional orogens, and that replacement of Precambrian lithosphere during the Mesozoic may have been spatially associated with the collisional boundaries and the strike-slip Tan-Lu fault, as well as the onset of Paleo-Pacific plate subduction.

  4. Βasalts from Santorini Volcano: A New Candidate Martian Analogue

    Science.gov (United States)

    Pantazidis, A.; Baziotis, I.; Manoutsoglou, E.; Solomonidou, A.; Schwander, F.; Palles, D.; Kamitsos, E.; Koukouzas, N.; Keklikoglou, N.; Arvanitidis, C.; Martinez-Frias, J.; Asimow, P. D.

    2016-08-01

    We compared volcanic rocks from Santorini Volcano and ISAR basalts from Iceland, South Africa and Norway, which are considered as strong candidates for martian analogues. We conclude that Santorini expands the list of terrestrial Mars-like sites.

  5. Nature and melting processes of the lithosphere beneath the North-East Qiangqtang terrane, Central Tibet, during Eocene times.

    Science.gov (United States)

    Goussin, Fanny; Guillot, Stéphane; Schulmann, Karel; Cordier, Carole; Oliot, Emilien; Replumaz, Anne; Roperch, Pierrick; Dupont-Nivet, Guillaume

    2016-04-01

    At the time of the collision with India (~55Ma), the southern margin of Asia was a composite continental domain resulting from an already long history of successive accretions of different terranes having different rheologies. Knowledge about the structure, composition and thermal state of the Tibetan lithosphere through time is thus fundamental to understand the respective contributions of pre-Cenozoïc and Cenozoïc tectonics in the building of the Plateau to its present-day elevations. We focused on the boundary between the Qiangtang terrane to the south, and the Songpan-Ganze terrane to the north. We jointly studied deep crustal xenoliths and associated (ultra-)potassic magmatism from the Eocene basins of Nangqian and Xialaxiu (Qinghai Province, China), north of the Qiangtang terrane. The aims were to retrieve the composition and the thermal state of the lower crust during Eocene times, to study the behavior of the lower crust and lithospheric mantle of the Eastern Qiangtang terrane and the adjacent Songpan-Ganze terrane at the time of the collision, and the link with the magmatic activity. Crustal xenoliths are of two types: biotite-rich, amphibole bearing metasediments; and garnet-bearing quartzo-feldspathic gneisses. Such assemblages are typical of very high-grade amphibolite and granulite facies metamorphism; further study should allow us to quantify the pressures and temperatures those rocks experienced until the time they were sampled by their host lavas. Major element geochemistry places the c.a. 51-49 Ma (Spurlin et al., 2005) Xialaxiu volcanic field in a fairly differentiated (SiO2~65-70 wt%) high-K field of the calc-alcaline series. Trace element analysis suggests a strong crustal contamination of the primary mantellic melts. C.a. 38-37 Ma (Spurlin et al., 2005) Nangqian magmatic bodies span across the alkaline series, with high to extreme (K2O~6wt%) values. Complex major and trace element patterns, coupled with high-resolution microprobe data on

  6. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  7. S-Wave Velocity Structure beneath Southwest North America from Seismogram Comparisons of the Mexico Earthquake on 22 June 1997

    Directory of Open Access Journals (Sweden)

    Bagus Jaya Santosa

    2008-09-01

    Full Text Available This research investigates earth structure beneath the Southwest North America landmass, especially between Mexico and California. Models based on S wave velocities for this area were obtained by carrying out seismogram fitting in time domain and three Cartesian components simultaneously. The data used is from an event, coded as C052297B that occurred in the state of Guerrero, Mexico and it was fitted to synthetic data computed with the GEMINI program at TS network stations. Earth model IASPEI91 and SPREM were used as input to create the synthetic data. Real and synthetic seismograms were subjected to a low-pass filter with a frequency corner of 20 mHz.Waveform analysis results show very unsystematic and strong deviations in the waveform, arrival times, amount of oscillation and the height of the wave amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where the stations epicentral distances are below 300. Deviation in analysis waveform because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D was a kind of average value an elastic property at one particular depth of global earth. With the method of waveform analysis we can see how sensitive waveform is to structures within the layers of the Earth.To explain the discrepancies, a correction to the earth structure is essential. The corrections account for the thickness of the crust, speed gradient of bh, the coefficient for the bh and bv in the upper mantle for surface wave fitting, a small variation of the S speed structure at a layer under the upper mantle above 771 km for S wave fitting, and a small variation at the base the mantle layers for ScS wave fitting. At some stations, a correction for S speed structure have yielded P wave fitting. Results of this research indicate that the 1-D earth model obtained through seismogram fitting at every hypocenter-observation station pair is unique. The S-wave velocity on the upper mantle has strong negative anomalies. This

  8. A high resolution seismic reflection image for the oceanic LAB (Lithosphere-Asthenosphere Boundary), beneath southern North Island, New Zealand

    Science.gov (United States)

    Stern, T. A.; Henrys, S. A.; Okaya, D. A.; Savage, M. K.; Sato, H.; Iwasaki, T.; Louie, J. N.; Lamb, S. H.

    2014-12-01

    We present the first high-resolution, multichannel, seismic-reflection image for the base of an oceanic plate. Our image is based on an 85 km-long, ~ 900 station deployment across the lower North Island of New Zealand. 12 x 500 kg dynamite shots were used as seismic sources. Strong reflections at a two way travel time of 9-12 s define the top of the plate that dips to the NW at ~ 12-15 degrees. Between 27-32 s we identify a pair of reflections on some shot gathers that are interpreted to come from a reflection 90-100 km deep, that dips to the NW at 15 degrees. We interpret the reflection pair as marking a Lithosphere-Asthenosphere Boundary (LAB) zone at the base of the Pacific plate. Using all 12 shots we made a CDP-stacked image (maximum fold = 15) that shows the LAB as a double event (2-3 s apart) dipping roughly parallel to the top of the plate and Benioff zone. Shot quality varies but the highest frequencies we record from the base of the plate are ~ 18 Hz, suggesting a boundary zone wave speed drops off at least 8% across the LAB boundary. The double reflection at the LAB is interpreted to be a 10 km-thick layer of low seismic wave speed. Because it is so sharp it cannot be a thermal boundary and must represent some form of mechanical change. Previous attempts to explain the abruptness of seismic wave speed changes at the LAB have appealed to layered zones of ponded melt, or anelastic relaxation due to water accumulating beneath the LAB. Both mechanisms may explain our observations and both would point to low viscosity below the LAB. However, the fact we see a ~ 10 km thick channel, with strong acoustic impedances each side of the channel, suggests a shear zone where plate motion ( ~ 9 cm/y in hotspot reference frame) is taken up and strain rates of ~3 x 10-13 s-1 are generated. This interpreted, low wave-speed, low-viscosity, shear zone appears to be a key factor in allowing plates to slide with little resistance and therefore to allow plate tectonics to work.

  9. a Structural and Thermochronological Study of Santorini Detachment in Santorini Island, Aegean Sea

    Science.gov (United States)

    Marsellos, A.; Foster, D. A.; Min, K. K.; Kamenov, G. D.; Kidd, W. S.; Garver, J. I.; Kyriakopoulos, K.

    2012-12-01

    Extension in the Aegean has been very prominent since early Miocene expressed by a series of detachments, opening of the Cretan basin, arc expansion and plutons, with a peak of extensional activity at 10-16 Ma across the south Aegean. In Santorini, which is the southernmost Cyclades island and closest to the forearc, intrusion of an unexposed pluton to a depth equivalent to modern sea level took place at about 9.5 Ma (Skarpelis et al., 1992). In this study, Zircon fission-track (ZFT) and apatite (U-Th)/He (AHe) data from the Athinios metamorphic rocks exposed in Santorini caldera distinguish an upper metamorphic cooling unit associated with Early-Middle Eocene exhumation (46.3 ± 2.8 Ma, ZFT; 49.34 ± 2.9 Ma, AHe) from a lower metamorphic unit of Middle-Late Miocene (10.9 ± 0.7 Ma, ZFT; 9.4 ± 0.3 Ma, AHe) exhumation ages. The upper unit shows mineral lineations that range from N-S to NE-SW trending while the lower unit shows lineations ranging from N-S to NW-SE trending. U-Pb (LA-MC-ICP-MS) zircon data from mica-schists in the lower Santorini metamorphic unit show a prominent Pan-African signature similar to the Phyllite-quartzite unit (PQU) rocks exposed along the forearc in Kythera, Peloponnese and western Crete. The NW-SE stretching lineations in the lower unit imply an arc-parallel extension. Similar arc-parallel extension took place between 10-13 in PQU rocks in the west Crete-Kythera-south Peloponnese area (Marsellos et al., 2010). The lower unit shows ductile structures affected by top to the S shearing while the upper unit by top to the N shearing. A 3D projection of the mineral lineation dip angles along N-S direction shows a C' shear band of top to the N shearing that has affected the entire structural stack. Early brittle structures, which appear to be re-oriented normal faults, and show top to the S displacement. Later normal faults show similar shear sense. A tectonic model that could explain the above structures shows that initial exhumation of the

  10. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Institute of Scientific and Technical Information of China (English)

    Yusheng Wan; Runlong Fan; Huiyi Sun; Xianzheng Zhao; Zejiu Wang; Dunyi Liu; Alfred Kröner; Chunyan Dong; Hangqian Xie; Yuansheng Geng; Yuhai Zhang

    2014-01-01

    The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeastesouthwest direction with an area of>350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi-mentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite (J48-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41e2.51 and w2.5 Ga, respec-tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher SREE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain w2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins haveεHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, w2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  11. Determining dyke-propagation paths at Santorini volcano, Greece

    Science.gov (United States)

    Drymoni, Kyriaki; Browning, John; Lecoeur, Nora; Gudmundsson, Agust

    2016-04-01

    The volcanic Island of Santorini constitutes a complex of collapse calderas which has experienced a range of explosive and effusive volcanic eruptions and is still active. Numerous stratigraphic horizons which constitute the upper part of the volcano have widely different mechanical properties, resulting in local stresses that may act as dyke-traps, preventing the dykes from reaching the surface to erupt. Several caldera collapses (arrested and some feeders) within a section of the northern caldera wall, allowing detailed examination. This ongoing study will (1) document the petrological and structural characteristics of feeder and non-feeder (arrested) dykes and estimate their frequency; (2) determine the physiochemical and mechanical conditions that control dyke arrest/dyke penetration at contacts between layers; (3) explore the fluid and mechanical conditions of the associated magma chamber(s) that must be satisfied for chamber rupture and dyke injection to occur; (4) make numerical and probabilistic models as to the likely dyke paths in heterogeneous and anisotropic crustal segments/volcanoes (such as Santorini), including the likelihood of injected dykes reaching the surface during an unrest period in a volcano of a given type; (5) compare the data collected from Santorini with existing data on dykes worldwide, particularly those on dykes in Tenerife and Iceland. The principal aim of the study is to provide models that, during an unrest period in Santorini and other similar volcanoes, allow us to forecast (a) the condition for magma-chamber rupture and dyke injection, and (b) the likely path of the resulting dyke. The latter includes assessment of the likelihood as to dyke arrest versus dyke propagation to the surface, the latter resulting in an eruption. For dyke-fed eruptions, the study will also provide methods for forecasting the likely volumetric flow rates and eruption magnitudes.

  12. Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton

    Science.gov (United States)

    Ying, Ji-Feng; Zhang, Hong-Fu; Tang, Yan-Jie

    2010-10-01

    Geochronological, petrological and geochemical studies were performed on the granulite xenoliths from a Late Cretaceous basaltic breccia dike in Junan, Shandong province, eastern China. These xenoliths show close similarities to the Nushan granulite xenoliths from the southern margin of the North China Craton (NCC) and the Archean granulite terrains in terms of mineralogy and bulk rock compositions, but are quite different from the Hanuoba mafic granulite xenoliths from the northern NCC. In-situ zircon U-Pb age and Hf isotopic analyses, together with geochemical data reveal that the protolith of these xenoliths was formed around 2.3 Ga ago, through assimilation-fractional crystallization of a mafic magma. P-T conditions of these xenoliths suggest that the lower crust beneath the Junan region reaches to a depth of 35 km, which agree well with the result deduced from various geophysical methods. The consistent petrological and seismic Moho depths, the observed velocity structure and calculated velocity of these xenoliths imply the absence of underplating induced crust-mantle transition zone, which was well formed in the northern NCC. Compared to 40-50 km depth of the lower crust in Early Jurassic, the lower crust beneath Junan extended to a depth of 30 km in Late Cretaceous, suggesting that the lower crust of NCC was significantly thinned during Late Mesozoic.

  13. Structure of the uppermost mantle beneath North America : Regional surface wave tomography and thermo-chemical interpretation

    NARCIS (Netherlands)

    Godey, Stéphanie

    2002-01-01

    Seismology is the primary tool to probe the interior of the Earth. The main requirement to obtain a high quality image of the Earth's structure is the achievement of an extensive dataset of seismograms. The North American and Caribbean regions offer a good opportunity in that matter. The large deplo

  14. The tsunami from the 3500BP eruption of Santorini: new perspectives

    Science.gov (United States)

    Tappin, David; Nomikou, Paraskevi

    2015-04-01

    Huge caldera-forming ignimbrite eruptions are well studied and, from historical events, are increasingly better understood. Yet although the potential volcanic impacts of these eruptions are known, their hazard from tsunami generation is still poorly researched. The eruption of Krakatau in 1883 is one of the most devastating events of historical times. The eruption was spectacular, with a lateral blast or hot pyroclastic surge killing a 1,000 people on the adjacent coast of south Sumatra. Yet it was the 30-40 m high tsunami that devastated the adjacent coastlines and killed many more people than the blast/surge; estimated at over 36,000 by the Dutch authorities, but possibly up to 120,000. The Late Bronze Age (LBA), eruption of Santorini volcano in the southern Aegean is in many respects strikingly similar to the eruption of Krakatau, but no significant evidence for a major, possibly devastating, tsunami has yet been identified from nearby coastlines. Recent offshore research reveals the eruption to be much larger in volume than previously believed. At five times the volume of Krakatau, it is now possibly the largest eruption of the Holocene. The final phases of the Santorini eruption may now involve massive collapse of a volcanic pile that makes the generation of a regionally destructive tsunami much more feasible than previously believed. Archaeotsunami deposits on the east coast of Crete, an island located 100 km south of Santorini, support possible tsunami impact. Based on the revised eruption volume and new models of the eruption, together with recent and new evidence of a tsunami on Crete, we here consider the likelihood that there was indeed a devastating tsunami from the Santorini eruption. On the north coast, coring at two coastal marshes reveals marine sands buried several metres below the land surface. At Malia the sands are dated at approximately 3,500BP. 100 km to the west of Malia, at Delphinos, there are marine sands dated at 2,800BP, although the

  15. Oceanographic signatures and pressure monitoring of seafloor vertical deformation in near-coastal, shallow-water areas: a case study from Santorini Caldera.

    Science.gov (United States)

    Vilaseca, Géraud; Deplus, Christine; Escartin, Javier; Ballu, Valérie; Nomikou, Paraskevi; Mével, Catherine; Andreani, Muriel

    2016-04-01

    Bottom pressure, tilt and seawater physical-properties were monitored for a year using two instruments within the immerged Santorini caldera (Greece). Piggy-backed on the CALDERA2012 cruise, this geodetic experiment was designed to monitor evolution of the 2011-2012 Santorini unrest. Conducted during a quiescent period, it allowed us to study oceanographic and atmospheric signal in our data series. We observe periodic oceanographic signals associated with tides, and seiches that are likely linked to both the caldera and Cretan basin geometries. In winter, the caldera witnesses sudden cooling events that tilt an instrument towards the Southeast, indicating cold-water influx likely originating from the north-western passage between Thirasia and Oia. We do not obtain evidence of long-term vertical seafloor deformation from the pressure signal, although it may be masked by instrumental drift. However, tilt data suggests a local seafloor tilt event ~1 year after the end of the unrest period which could be consistent with inflation under or near Nea Kameni. In addition, we illustrate that tilt sensor can roughly record seismic induced ground motion which in our case led to a shift in sensors attitude for one seismic event. Seafloor geodetic data recorded at the bottom of the Santorini caldera illustrates that the oceanographic signature is an important part of the signal, which needs to be considered for monitoring volcanic or geological seafloor deformation in shallow-water and/or nearshore areas.

  16. Recent seismicity detection increase in the Santorini volcanic island complex

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2012-04-01

    Full Text Available Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue.

    In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region.

    The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth.

    These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  17. Complex evolution of the lower crust beneath the southeastern North China Craton: The Junan xenoliths and xenocrysts: Comment

    Science.gov (United States)

    Yuan, Ya-Juan; Xia, Bin

    2015-10-01

    The Junan granulite xenoliths and xenocrysts have a distinct overlap in U-Pb ages and Lu-Hf isotopic compositions with the Precambrian basement of the Yangtze craton. We thus believe that the Junan granulite cannot be derived from the North China lower crust. Moreover, broad deep seismic and magnetotelluric probing across the Sulu UHP terrane indicates the former is well coupled with the lower crust of the Yangtze craton. Therefore, we suggest that the Junan granulites are most likely to have been derived from the Yangtze Precambrian basement and their zircon U-Pb-Lu-Hf isotope systematics are more likely to indicate the complex evolution of the Precambrian lower crust along the northern margin of the Yangtze craton.

  18. Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific

    Science.gov (United States)

    Hutko, Alexander R.; Lay, Thorne; Revenaugh, Justin

    2009-01-01

    A large, high quality P-wave data set comprising short-period and broadband signals sampling four separate regions in the lowermost mantle beneath the Cocos plate, Mexico, the central Pacific, and the north Pacific is analyzed using regional one-dimensional double-array stacking and modelling with reflectivity synthetics. A data-screening criterion retains only events with stable PcP energy in the final data stacks used for modelling and interpretation. This significantly improves the signal stacks relative to including unscreened observations, allows confident alignment on the PcP arrival and allows tight bounds to be placed on P-wave velocity structure above the core–mantle boundary (CMB). The PcP reflections under the Cocos plate are well modelled without any ultra-low velocity zone from 5 to 20°N. At latitudes from 15 to 20°N, we find evidence for two P-wave velocity discontinuities in the D″ region. The first is ∼182 km above the CMB with a δln Vp of +1.5%, near the same depth as a weaker discontinuity (<+0.5%) observed from 5 to 15°N in prior work. The other reflector is ∼454 km above the CMB, with a δln Vp of +0.4%; this appears to be a shallower continuation of the joint P- and S-wave discontinuity previously detected south of 15° N, which is presumed to be the perovskite to post-perovskite phase transition. The data stacks for paths bottoming below Mexico have PcP images that are well matched with the simple IASP91 structure, contradicting previous inferences of ULVZ presence in this region. These particular data are not very sensitive to any D″ discontinuities, and simply bound them to be <∼2%, if present. Data sampling the lowermost mantle beneath the central Pacific confirm the presence of a ∼15-km thick ultra-low velocity zone (ULVZ) just above the CMB, with δln Vp and δln Vs of around −3 to −4% and −4 to −8%, respectively. The ULVZ models predict previous S-wave data stacks well. The data for this region

  19. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO "Fava Santorinis" (Lathyrus clymenum) adulterants.

    Science.gov (United States)

    Ganopoulos, Ioannis; Madesis, Panagiotis; Darzentas, Nikos; Argiriou, Anagnostis; Tsaftaris, Athanasios

    2012-07-15

    Legumes considered as one of the most important crops worldwide. Due to high price as a PDO product, commercial products of "Fava Santorinis" are often subjected to adulterations from other legume products coming from other Lathyrus or Vicia and Pisum species. Using plant DNA barcoding regions (trnL and rpoC) coupled with High Resolution Melting (Bar-HRM) we have developed a method allowing us to detect and authenticate PDO "Fava Santorinis". Bar-HRM proved to be a very sensitive tool able to genotype Lathyrus and its closed relative species and to detect admixtures, being sensitive enough to as low as 1:100 of non-"Fava Santorinis" in "Fava Santorinis" commercial products. In conclusion, Bar-HRM analysis can be a faster, with higher resolution and cost effectiveness alternative method to authenticate PDO "Fava Santorinis" and to quantitatively detect adulterations in "Fava Santorinis" with other relative commercial "Fava" food products. PMID:25683426

  20. Shallow ground-water quality beneath cropland in the Red River of the North Basin, Minnesota and North Dakota, 1993-95

    Science.gov (United States)

    Cowdery, Timothy K.

    1997-01-01

    During 1993-95, the agriculture on two sandy, surficial aquifers in the Red River of the North Basin affected the quality of shallow ground water in each aquifer differently. The Sheyenne Delta aquifer, in the western part of the basin, had land-use, hydrogeological, and rainfall characteristics that allowed few agricultural chemicals to reach or remain in the shallow ground water. The Otter Tail outwash aquifer, in the eastern part of the basin, had characteristics that caused significant amounts of nutrients and pesticides to reach and remain in the shallow ground water. Shallow ground water from both aquifers is dominated by calcium, magnesium, and bicarbonate ions. During the respective sampling periods, water from the Sheyenne Delta aquifer was mostly anoxic and water from the Otter Tail outwash aquifer had a median dissolved oxygen concentration of 3.6 mg/L (milligrams per liter). The median nitrate concentration was 0.03 mg/L as nitrogen (mg/L-N) in shallow ground water from the Sheyenne Delta aquifer and 6.1 mg/L-N in that from the Otter Tail outwash aquifer. Of 18 herbicides and 4 insecticides commonly used in the aquifer areas and for which analyses were done, 5 herbicides and 1 herbicide metabolite were detected in the shallow ground water from the Sheyenne Delta aquifer and 8 herbicides and 2 metabolites were detected in that from the Otter Tail outwash aquifer. The total herbicide concentration median was less than the detection limit in shallow ground water from the Sheyenne Delta aquifer and 0.023 μg/L (micorgrams per liter) in that from the Otter Tail outwash aquifer. Triazine herbicides were the most commonly detected herbicides and were detected at the highest concentrations in the shallow ground water from both study areas. One sample from the Sheyenne Delta aquifer contained a high concentration of picloram. Agricultural chemicals in both aquifers were stratified vertically and their concentration correlated inversely with ground-water age. The

  1. The most direct and precise radiocarbon date for the Minoan eruption of Santorini

    DEFF Research Database (Denmark)

    Friedrich, Walter L.; Heinemeier, Jan

    for the Minoan eruption. Together with a second olive tree, excavated only 9 meters from the first one, it enables us to repeat the earlier measurements of the first tree 2006 (Friedrich, W.L . Kromer, B Friedrich, M. Heinemeier, J. Pfeiffer, T. Talamo, S. Santorini Eruption Radiocarbon Dated to 1627-1600 BC...

  2. Application of continuous seismic-reflection techniques to delineate paleochannels beneath the Neuse River at US Marine Corps Air Station, Cherry Point, North Carolina

    Science.gov (United States)

    Cardinell, Alex P.

    1999-01-01

    A continuous seismic-reflection profiling survey was conducted by the U.S. Geological Survey on the Neuse River near the Cherry Point Marine Corps Air Station during July 7-24, 1998. Approximately 52 miles of profiling data were collected during the survey from areas northwest of the Air Station to Flanner Beach and southeast to Cherry Point. Positioning of the seismic lines was done by using an integrated navigational system. Data from the survey were used to define and delineate paleochannel alignments under the Neuse River near the Air Station. These data also were correlated with existing surface and borehole geophysical data, including vertical seismic-profiling velocity data collected in 1995. Sediments believed to be Quaternary in age were identified at varying depths on the seismic sections as undifferentiated reflectors and lack the lateral continuity of underlying reflectors believed to represent older sediments of Tertiary age. The sediments of possible Quaternary age thicken to the southeast. Paleochannels of Quaternary age and varying depths were identified beneath the Neuse River estuary. These paleochannels range in width from 870 feet to about 6,900 feet. Two zones of buried paleochannels were identified in the continuous seismic-reflection profiling data. The eastern paleochannel zone includes two large superimposed channel features identified during this study and in re-interpreted 1995 land seismic-reflection data. The second paleochannel zone, located west of the first paleochannel zone, contains several small paleochannels near the central and south shore of the Neuse River estuary between Slocum Creek and Flanner Beach. This second zone of channel features may be continuous with those mapped by the U.S. Geological Survey in 1995 using land seismic-reflection data on the southern end of the Air Station. Most of the channels were mapped at the Quaternary-Tertiary sediment boundary. These channels appear to have been cut into the older sediments

  3. In situ Re-Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: Significance for the frequently-occurring mantle events beneath the North China Block

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In situ Re-Os isotopes of sulfides in peridotitic xenoliths from Cenozoic Hannuoba basalts were analyzed by LAM-MC-ICPMS. The suifides developed two types of occurrences including silicate-enclosed and interstitial. In the enclosed sulfides, 187Os/188Os vary from 0.1124 to 0.1362 and 187Re/188Os from 0.0026 to 1.8027. In the interstitial ones, 187Os/188Os have a range from 0.1174 to 0.1354 and 187Re/188Os from 0.0365 to 1.4469. The oldest age, calculated by TRD for the enclosed sulfides, is 2.1 Ga. An isochron age of 2.3±1.2 Ga is obtained by five grains of enclosed sulfides and primitive mantle. The sulfides used have lower Re-Os isotopic ratio than primitive mantle. Meanwhile, an isochron age of 645±225 Ma is given by all interstitial sulfides and the enclosed sulfides with higher Re-Os isotopic ratio due to Re addition after mantle formation. In addition, the model age of 1.3 Ga recorded by one interstitial sulfide, having similar TDM and TRD, should be meaningful to deep thermal event. The coexistence of different ages, revealed by in situ Re-Os isotope, indicates frequently-occurring mantle events beneath Hannuoba area.

  4. Medical papyri show the effects of the Santorini eruption heavily influenced the development of ancient medicine.

    Science.gov (United States)

    Trevisanato, Siro I

    2012-01-01

    Exposure to ash from the catastrophic Santorini eruption radically changed Bronze Age medicine, triggering the development of new remedies, the wide dissemination of medical data, and the transfer of technologies. These developments were identified in medical papyri thanks to remedies for ailments linked to volcanic matter an oddity in Egypt, a country without volcanoes. The anomaly was traced back to the Santorini eruption, which through volcanic ash, acidified bodies of waters, and acid rain affected the whole eastern Mediterranean without sparing Egypt. Using available technology, doctors developed new remedies for severe irritation to eyes from ash and for burns on the skin, or imported foreign remedies as exemplified by paragraph 28 of the London Medical Papyrus (L28), thus resorting to technology transfer even if so crude. Furthermore, medical manuals rather than being guarded by families of physicians were now used to disseminate remedies as widely as possible. Finally, besides providing historical data, the medical reaction to the Santorini eruption could still be of use today. The remedies could be integrated in manuals for emergency situations for population left without adequate medical infrastructure at a time of exposure to heavy volcanic fallout or acidified rain. PMID:22649871

  5. Impingement of Deep Mantle-Derived Upwelling Beneath Northern, Subducted Extension of the East Pacific Rise and Palinspastically Restored Cenozoic Mafic Magmatism in Western North America

    Science.gov (United States)

    Rowley, D. B.; Moucha, R.; Forte, A. M.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2009-12-01

    Reconstruction of the retrodicted whole mantle flow, based on presently imaged distribution of variations in seismic velocity and its correlation to density (Simmons et al. 2009), over the past 30 Ma, in the North American fixed frame of reference, reveals that the northern, now subducted, extension of the East Pacific Rise is coincident with mantle buoyancy arising from near the core-mantle boundary and extending to the base of the lithosphere (Moucha et al. 2009 GRL, in press). Divergence of the reconstructed flow near the surface is independent of the surface plate(s) and results in predicted geological manifestations distinct from those predicted by traditional plate driven models of flow. Most particularly the retrodicted flow-related dynamic topography results in progressive west to east sweep of surface uplift, that is now centered on the Colorado Plateau (Moucha et al. 2008, 2009 GRL, in press). In addition, and the primary focus of the current study is the relationship between this retrodicted mantle-wide flow and the history of magmatism within the western U.S. and adjacent Mexico. There is a close spatial correlation between the impingement of upwelling with palinspastic restored western North America (McQuarrie and Wernicke, 2005) and onset and distribution of magmatism, particularly of mafic compositions as revealed in the Navdat (www.navdat.org) database. Although often attributed to effects of opening of a slab window (Snyder and Dickinson, 1979, McQuarrie and Oskins, 2008) associated with continued plate-driven separation, this model predicts active mantle flow induced upwelling and divergence resulting in mantle melting that sweeps across east-northeast across southern Basin and Range to the Rio Grande Rift with time and as seen in the distribution of magmatism in this region.

  6. Rheology of the lower crust beneath the northern part of North China: Inferences from lower crustal xenoliths from Hannuoba basalts, Hebei Province, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lower crustal xenoliths brought up rapidly by basaltic magma onto the earth surface may provide di-rect information on the lower crust. The main purpose of this research is to gain an insight into the rheology of the lower crust through the detailed study of lower crustal xenoliths collected from the Hannuoba basalt, North China. The lower crustal xenoliths in this area consist mainly of two pyroxene granulite, garnet granulite, and light-colored granulite, with a few exception of felsic granulite. The equilibration temperature and pressure of these xenoliths are estimated by using geothermometers and geobarometers suitable for lower crustal xenoliths. The obtained results show that the equilibration temperature of these xenoliths is within the range of 785―900℃, and the equilibrium pressure is within the range of 0.8―1.2 GPa, corresponding to a depth range of 28―42 km. These results have been used to modify the previously constructed lower crust-upper mantle geotherm for the studied area. The dif-ferential stress during the deformation process of the lower crustal xenoliths is estimated by using recrystallized grain-size paleo-piezometer to be in the range of 14―20 MPa. Comparing the available steady state flow laws for lower crustal rocks, it is confirmed that the flow law proposed by Wilks et al. in 1990 is applicable to the lower crustal xenoliths studied in this paper. The strain rate of the lower crust estimated by using this flow law is within the range of 10-13―10-11 s-1, higher than the strain rate of the upper mantle estimated previously for the studied area (10-17―10-13 s-1); the equivalent viscosity is estimated to be within the range of 1017―1019Pa·s, lower than that of the upper mantle (1019―1021 Pa·s). The constructed rheological profiles of the lower crust indicate that the differential stress shows no significant linear relation with depth, while the strain rate increases with depth and equivalent vis-cosity decrease with depth

  7. Rheology of the lower crust beneath the northern part of North China: Inferences from lower crustal xenoliths from Hannuoba basalts, Hebei Province, China

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoDe; LIN ChuanYong; SHI LanBin

    2007-01-01

    Lower crustal xenoliths brought up rapidly by basaltic magma onto the earth surface may provide direct information on the lower crust. The main purpose of this research is to gain an insight into the rheology of the lower crust through the detailed study of lower crustal xenoliths collected from the Hannuoba basalt, North China. The lower crustal xenoliths in this area consist mainly of two pyroxene granulite, garnet granulite, and light-colored granulite, with a few exception of felsic granulite. The equilibration temperature and pressure of these xenoliths are estimated by using geothermometers and geobarometers suitable for lower crustal xenoliths. The obtained results show that the equilibration temperature of these xenoliths is within the range of 785-900 ℃, and the equilibrium pressure is within the range of 0.8-1.2 GPa, corresponding to a depth range of 28-42 km. These results have been used to modify the previously constructed lower crust-upper mantle geotherm for the studied area. The differential stress during the deformation process of the lower crustal xenoliths is estimated by using recrystallized grain-size paleo-piezometer to be in the range of 14-20 MPa. Comparing the available steady state flow laws for lower crustal rocks, it is confirmed that the flow law proposed by Wilks et al.in 1990 is applicable to the lower crustal xenoliths studied in this paper. The strain rate of the lower crust estimated by using this flow law is within the range of 10-13-10-11 s-1, higher than the strain rate of the upper mantle estimated previously for the studied area (10-17-10-13 s-1); the equivalent viscosity is estimated to be within the range of 1017-1019 Pa.s, lower than that of the upper mantle (1019-1021 no significant linear relation with depth, while the strain rate increases with depth and equivalent viscosity decrease with depth. The results support the viewpoint of weak lower continental crust.

  8. Crust-mantle interaction beneath the Luxi Block, eastern North China Craton: Evidence from coexisting mantle- and crust-derived enclaves in a quartz monzonite pluton

    Science.gov (United States)

    Lan, Ting-Guang; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Yang, Yue-Heng; Liu, Yongsheng

    2013-09-01

    The Laiwu quartz monzonite in the Luxi Block of eastern North China Craton (NCC) is characterized by the presence of abundant plagioclase amphibolite and gabbro-diorite enclaves. Here we present LA-ICPMS zircon U-Pb ages which show that the host quartz monzonite was emplaced at 129.8 ± 1.0 Ma, whereas the protolith of the plagioclase amphibolite enclaves formed during early Paleoproterozoic. The gabbro-diorite enclaves were produced simultaneously with or slightly earlier than the formation of the host quartz monzonite. Combined with the Archean and Paleoproterozoic zircons as well as the low εNd(0) values (- 18.4 to - 18.0) in the plagioclase amphibolite enclaves, the equilibrium temperature and pressure conditions (645-670 °C and 4.8-6.5 Kb) suggest that the plagioclase amphibolite enclaves are fragments of the middle crust. The gabbro-diorite enclaves mainly originated from an enriched lithospheric mantle metasomatized by melts/fluids derived from the continental crust, as indicated by their low SiO2 (54.4-54.7 wt.%) and high MgO (10.9-11.1 wt.%) contents as well as the negative εNd(t) values (- 13.5 to - 10.7) and enrichment of LILEs (e.g., Ba and Sr) and depletion of HFSEs (e.g., Nb, Ta, P and Ti). Compared with the ancient crustal rocks and the mafic plutons considered to have been derived from lithospheric mantle in the Luxi Block, the moderate εNd(t) (- 15.7 to - 15.1) and εHf(t) (- 20.7 to - 13.0) values of the quartz monzonite in our study suggest that both mantle- and crust-derived melts were involved in the magma generation. Thus we propose a model involving magma mixing between mantle- and crust-derived melts for the formation of the quartz monzonite. Since significant crust-mantle interaction is recorded not only in the quartz monzonite and its enclaves in the Luxi Block but also in the other granitoids widespread in the NCC, it is considered that large-scale crust-mantle interaction and magmatic underplating were associated with the Mesozoic

  9. Living the Volcano: A First-Year Study Abroad Experience to Santorini, Greece

    Science.gov (United States)

    Skinner, L. A.; Miller, M.; Scarnati, B.

    2014-12-01

    Over the last decade, enrollment in Northern Arizona University's (NAU) Geologic Disasters (GLG112) class has grown to its current 840 students in 7 sections per semester (4% of NAU enrollment). Given this large audience composed of >50% freshmen, the course curriculum was re-designed in 2012 using standards set by NAU's First Year Learning Initiative (FYLI), which seeks to increase academic success early in college. FYLI pedagogical principles include active-learning, frequent feedback, low-stakes assessments, and increased guidance from professors & peer teaching assistants (PTAs). As a result of the successes measured in FYLI courses, we launched a FYLI study abroad experience in 2014. We posed the question, "How can an early-career study abroad experience further develop the attitudes, skills, & behaviors necessary for success?" The pioneering program was NAU in Greece: The Cataclysmic Eruption of Santorini Volcano. Enrollment was limited to freshman & sophomore students who have taken GLG112 (or equivalent). The 3-week program took 9 students, 1 PTA, & 1 faculty member to Santorini (via Athens, 2 days). A detailed itinerary addressed a set of disciplinary & non-disciplinary learning outcomes. Student learning about Santorini volcano and the tectonic setting & hazards of the Aegean Sea occurred on the go - on ferries & private boat trips and during hiking, snorkeling, and swimming. Classroom time was limited to 1 hr/day and frequent assessments were employed. Student products included a geologic field notebook, travel journal, and 3 blog posts pertaining to geologic hazards & life on Santorini. Geologic disasters are ideal topics for early career study abroad experiences because the curriculum is place-based. Student learning benefits immensely from interacting with the land & local populations, whose lives are affected daily by the dangers of living in such geologically hazardous environments. The needs of early career students are unique, however, and must be

  10. Devonian Nb-enriched basalts and andesites of north-central Tibet: Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block

    Science.gov (United States)

    Zhang, Hongrui; Yang, Tiannan; Hou, Zengqian; Bian, Yeke

    2016-07-01

    The early evolution of the Tethyan Ocean in north-central Tibet is currently poorly constrained. A sequence of volcanic rocks ranging from basic to intermediate in composition has been identified in the Zaduo area of the North Qiangtang Block. SHRIMP U-Pb dating of zircons from a sample of Zaduo andesite suggests an eruption age of Late Devonian (~ 380 Ma). The Zaduo volcanic rocks exhibit geochemical characteristics similar to those of typical Nb-enriched basalts, with relatively high Nb, Ta, and Zr contents, resulting in high Nb/La ratios (0.70-1.08) and Nb/U ratios (10.57-34.37). The relative enrichment in high field strength elements, together with positive εNd(t) values of + 4.6 to + 5.8 and low (87Sr/86Sr)i ratios of 0.70367-0.70532, indicates the Zaduo volcanic rocks were derived from a depleted mantle source metasomatized by silicate melts of a subducted oceanic slab. The occurrence of Nb-enriched volcanic rocks in the North Qiangtang Block suggests that the subduction of Paleo-Tethyan oceanic crust was initiated in the Late Devonian. Available geochronological data from ophiolites surrounding the North Qiangtang Block suggest that the subducted slab is most likely the Longmucuo-Shuanghu Paleo-Tethyan oceanic crust.

  11. THE MINOAN SANTORINI ERUPTION AND TSUNAMI DEPOSITS IN PALAIKASTRO (CRETE) : DATING BY GEOLOGY, ARCHAEOLOGY, C-14, AND EGYPTIAN CHRONOLOGY

    NARCIS (Netherlands)

    Bruins, Hendrik J.; van der Plicht, Johannes; MacGillivray, Alexander

    2009-01-01

    Deposits from the Minoan Santorini (Thera) eruption in the eastern Mediterranean region Constitute the most important regional stratigraphic marker in the chronological perplexity of the 2nd Millennium BCE. Extensive tsunami deposits were discovered in Crete at the Minoan archaeological site of Pala

  12. Evidence from cosmic-ray exposure dating based on 36Cl for the pre-Minoan caldera on Santorini, Greece

    Science.gov (United States)

    Athanassas, Constantin; Bourlès, Didier; Braucher, Regis; Druitt, Tim; Nomikou, Paraskevi; Léanni, Laetitia

    2016-04-01

    The physiography of Santorini prior to the Minoan (Late Bronze Age) eruption (17th century BCE) is of great archaeological interest, given the importance of Santorini as a commercial centre and port in the Minoan empire. However, the paleogeography of the pre-Minoan caldera has been a point of controversy: Heiken and McCoy (1984) advocated the existence, in the southern part of the present-day caldera, of a pre-existing caldera formed during the 172 ka Lower Pumice eruption, whereas Druitt and Francaviglia (1992), based on the presence of in situ plinian pumice from the Minoan eruption adhering to the modern cliff, conceived the pre-Minoan (22 ka) caldera as having occupied much of the northern basin of the present-day caldera. With the goal of settling the debate we performed cosmic ray exposure dating employing in situ-produced cosmogenic 36Cl to date different generations of caldera cliffs at Santorini, and hence to identify those cliffs predating the Minoan eruption. Our methodology involved the determination of the in situ-produced cosmogenic 36Cl in basaltic and andesitic rocks cropping out in the cliffs. The samples returned 36Cl CRE ages consistent with previously published field mapping of cliff populations based on geomorphological and stratigraphic arguments (Druitt and Francaviglia 1992), suggesting that much of the present cliff line of northern Santorini predated the Minoan eruption, or was superficially modified by landslips and rockfalls during that eruption. The 36Cl CRE ages enable us to better define the paleogeography of the pre-Minoan caldera. References [1] Druitt, T. H. and Francaviglia, V.1992. Caldera formation on Santorini and the physiography of the islands in the Late Bronze Age. Bulletin of Volcanology 54, 484-493. [2] Heiken G and McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. Journal of Geophysical Research: 89 (B10), 8841-8862.

  13. Santorini Volcano's 20th Century Eruptions: A Combined Petrogenetical, Volcanological, Sociological and Environmental Study

    Science.gov (United States)

    Drymoni, Kyriaki; Magganas, Andreas; Pomonis, Panagiotis

    2014-05-01

    Santorini, the famous stratovolcano in the Aegean Sea, erupted three time periods during the 20th century (1925-1928, 1939-1941, 1950) and since then remains dormant. This study tried to combine and evaluate new and published volcanological, petrological, geochemical, environmental and sociological data of these three phases of Santorini's activity, which practically restricted to the caldera center on the Nea Kameni Islet. After field work on the formed dacite flows, pyroclastics and domes, representative rock samples and enclaves were collected and investigated for their texture, physical parameters, mineralogy and chemical composition by polarizing light microscope, scanning electron microscope (SEM-EDS), XRD, Raman spectroscopy and ICP-MS. The petrogenetic evaluation of the data obtained suggests slight but significant changes in the solid and aerial phases produced during the three explosion stages, which can be attributed to minor variations in the magmatic differentiation and magma chamber physicochemical conditions. These variations were also expressed by decrease of duration and intensity of the eruptions, as well as in their volume of ejecta and lava. Probably, the subsequent relatively long dormant period of the volcano is also related to this tension of decrease. The first compared results were collected from scientific literature, old photos as well as local and regional press and state documents from the different periods of volcanism, record the past hazard case scenarios and civil defense planning of the individual eruptions. As part of the disaster management a pilot survey, in which personal interviews with aged local islanders that were eye-witnesses of the events and elderly people or tourists that they indirectly experienced or have heard about them, was also conducted. This event-tracing, along with air pollution software models using volcanological data have shown the social impacts and the environmental consequences of the volcanic

  14. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece).

    Science.gov (United States)

    Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha

    2013-01-01

    Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ.

  15. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece.

    Directory of Open Access Journals (Sweden)

    Paolo Cherubini

    Full Text Available Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ.

  16. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    Science.gov (United States)

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. PMID:27451177

  17. Determinism beneath Quantum Mechanics

    CERN Document Server

    Hooft, G

    2002-01-01

    Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.

  18. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    Science.gov (United States)

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  19. Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece

    Science.gov (United States)

    Athanassas, C. D.; Bourlès, D. L.; Braucher, R.; Druitt, T. H.; Nomikou, P.; Léanni, L.

    2016-05-01

    Cosmic ray exposure (CRE) dating was performed on the caldera cliffs of Santorini with the aim of detecting cliff segments predating the Minoan eruption (17th century BCE). The methodology involved the determination of in situ-produced cosmogenic 36Cl concentration in basaltic-to-rhyodacitic whole rocks cropping out in the cliffs. After the samples were processed following the chemical protocol of 36Cl preparation for silicate rocks, 36Cl concentrations were measured by accelerator mass spectrometry (AMS). Important challenges during the implementation procedure were related to large amounts of radiogenic 36Cl, complex modeling of inherited 36Cl, and dominance of the thermal and epithermal (low-energy) neutron capture production pathway. Nevertheless, quantitative assessments on the basis of the contribution of the low-energy neutron capture pathway percent to the total production rate validated the calculated CRE dates. Current CRE ages demonstrate that an ancient caldera existed on pre-Minoan Santorini, occupying at least the northern half of the modern-day caldera.

  20. Fe-Mg diffusion chronometry in orthopyroxene from the Minoan eruption of Santorini, Greece

    Science.gov (United States)

    Flaherty, Taya; Druitt, Tim; Fabbro, Gareth; Costa, Fidel; Preece, Katie; Deering, Chad

    2016-04-01

    Constraining the timescales governing magma ascent and storage prior to ignimbrite eruptions is crucial for understanding the behaviour of caldera volcanoes. Diffusion chronometry provides estimates of the pre-eruptive residence times of crystals at magmatic temperatures, and hence of the longevities of bodies of crystal-bearing magma that are finally discharged. We have used Fe-Mg diffusion chronometry in orthopyroxene (opx) crystals from the Minoan eruption of Santorini in order to calculate the pre-eruptive residence times of these crystals. The Minoan eruption occurred in the late 17th century BCE, and discharged 30-80 km3 of rhyodacitic magma containing about 10 vol.% of plagioclase, opx, cpx and Fe-Ti oxides. The orthopyroxenes have compositions of Wo2‑3En52‑70Fs28‑45 (#Mg = 0.53-0.65) with Al2O3 contents typically images reveal sector zoned morphologies with Al-rich prismatic zones and Al-poor terminations, possibly indicative of rapid growth. Representative opx crystals were extracted from pumices and mounted in epoxy grain mounts. High-resolution backscattered electron images of zoned crystals with greyscale values calibrated for Mg# were used to identify Fe-Mg gradients across zone boundaries, which were then modelled as diffusion gradients using published diffusion coefficients for Mg-Fe interdiffusion within the a-b plane of opx, a magmatic temperature (855 ± 25 ° C) and fO2 determined from touching magnetite-ilmenite pairs in the same rock. Our models assumed initial step functions in Mg and Fe concentrations, and that any non-zero width is a result of diffusion. The time required for to reach the observed width of diffusion at 855° C was taken to be a maximum residence time, and was calculated for a total of 22 zone boundaries from 13 crystals. Profiles were taken perpendicular to the crystal length, within the a-b crystallographic plane. Only zone boundaries with bounding plateaus in Mg and Fe concentrations (implicit in the diffusion model

  1. Subduction of the Indian Lithospheric Slab Beneath Tibet

    Science.gov (United States)

    Zhou, H.; Murphy, M. A.

    2001-12-01

    In order to characterize the dynamics of continent-continent collisions, it is essential to define its present geometry and physical state. We report the results of a seismic tomography study of the Tibet-Himalayan collision zone, using a global data set, which indicates that the Indian lithospheric slab has been subducted subhorizontally beneath nearly the entire Tibetan plateau to depths of 165-260 km. Tibetan velocity structure is low in the crust and high in mantle lithosphere at depths between 75-120 km. An asthenospheric layer overlies the subducted Indian slab at depths between 120-165 km beneath the Tibetan plateau. There is a large low-velocity anomaly north of the Indus-Yalu suture zone between 85ºE and 93ºE that extends from the crust down to at least 310 km depth beneath the plateau. This low-velocity anomaly is indicative of mantle upwelling through a weakened zone of the subducted slab. The extent to which India has subducted beneath Tibet, as revealed by these seismic images, is comparable to estimates of crustal shortening across the Himalaya. Moreover, we hypothesize that the buoyancy due to heating of the subducted Indian slab and the existence of the asthenospheric layer contribute to the elevation and flatness of the Tibetan plateau.

  2. 华北克拉通西部陆块北缘新生代岩石圈地幔特征的初步研究%A preliminary study on the Cenozoic lithospheric mantle beneath the northern part of the western North China Craton

    Institute of Scientific and Technical Information of China (English)

    王亚妹; William L GRIFFIN; 韩宝福

    2011-01-01

    Petrology and major- and trace-element compositions of minerals of the peridotite xenoliths from the Liangcheng, Siziwangqi, Sanyitang and Datong suggest that the lithospheric mantle beneath the northern parts of the Western Block and Central Zone of the North China Craton mainly consists of transitional peridotites. It is the relict of the primitive mantle having experienced initial melt extraction and subsequent metasomatism. The lithospheric mantle beneath the Liangcheng has been subjected to the lowest degree of melt extraction and intermediate metasomatism, which is in accordance with the lower Cr* of spinels and lower Mg# of coexisting clinopyroxenes in the Liangcheng peridotites. The lithospheric mantle beneath the Sanyitang has experienced the highest degree of melt extraction and the strongest metasomatism. The Sanyitang clinopyroxenes, even within one single sample, show large variations in La/ Yb and chondrite-normalized REE patterns (from LREE-depleted to LREE-enriched), and the Sanyitang peridotitic minerals show marked enrichment in some trace elements on the rim than in the core. The Datong and Siziwangqi lithospheric mantles have experienced intermediate melt extraction, but weaker metasomatism than the Liangcheng and Sanyitang lithospheric mantles. The lithospheric mantles were mainly affected by silicate melt metasomatism, and only the lithospheric mantle beneath the Sanyitang was probably affected by carbonatite melt metasomatism as well.%凉城、四子王旗、三义堂和大同的地幔包体的岩石学和矿物的主、微量元素成分显示华北克拉通中、西部北缘总体为过渡型岩石圈地幔,为原始地幔经过不同程度的熔体抽取和后期交代富集作用的残留.凉城岩石圈地幔经历的熔体抽取程度最低,后期交代富集作用比较强烈,这与其橄榄岩中尖晶石的Cr#较低,并且共存的单斜辉石的Mg#较低一致.三义堂岩石圈地幔经历的熔体抽取程度最高,后期交代

  3. Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate "Fava Santorinis" from other yellow split peas using chemometric tools.

    Science.gov (United States)

    Drivelos, Spiros A; Higgins, Kevin; Kalivas, John H; Haroutounian, Serkos A; Georgiou, Constantinos A

    2014-12-15

    "Fava Santorinis", is a protected designation of origin (PDO) yellow split pea species growing only in the island of Santorini in Greece. Due to its nutritional quality and taste, it has gained a high monetary value. Thus, it is prone to adulteration with other yellow split peas. In order to discriminate "Fava Santorinis" from other yellow split peas, four classification methods utilising rare earth elements (REEs) measured through inductively coupled plasma-mass spectrometry (ICP-MS) are studied. The four classification processes are orthogonal projection analysis (OPA), Mahalanobis distance (MD), partial least squares discriminant analysis (PLS-DA) and k nearest neighbours (KNN). Since it is known that trace elements are often useful to determine geographical origin of food products, we further quantitated for trace elements using ICP-MS. Presented in this paper are results using the four classification processes based on the fusion of the REEs data with the trace element data. Overall, the OPA method was found to perform best with up to 100% accuracy using the fused data. PMID:25038681

  4. Crustal structure beneath northeast India inferred from receiver function modeling

    Science.gov (United States)

    Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju

    2016-09-01

    We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.

  5. Convective upwelling in the mantle beneath the Gulf of California.

    Science.gov (United States)

    Wang, Yun; Forsyth, Donald W; Savage, Brian

    2009-11-26

    In the past six million years, Baja California has rifted obliquely apart from North America, opening up the Gulf of California. Between transform faults, seafloor spreading and rifting is well established in several basins. Other than hotspot-dominated Iceland, the Gulf of California is the only part of the world's seafloor-spreading system that has been surrounded by enough seismometers to provide horizontal resolution of upper-mantle structure at a scale of 100 kilometres over a distance great enough to include several spreading segments. Such resolution is needed to address the long-standing debate about the relative importance of dynamic and passive upwelling in the shallow mantle beneath spreading centres. Here we use Rayleigh-wave tomography to image the shear velocity in the upper 200 kilometres or so of the mantle. Low shear velocities similar to those beneath the East Pacific Rise oceanic spreading centre underlie the entire length of the Gulf, but there are three concentrated locations of anomalously low velocities spaced about 250 kilometres apart. These anomalies are 40 to 90 kilometres beneath the surface, at which depths petrological studies indicate that extensive melting of passively upwelling mantle should begin. We interpret these seismic velocity anomalies as indicating that partial melting triggers dynamic upwelling driven by either the buoyancy of retained melt or by the reduced density of depleted mantle. PMID:19940924

  6. New interpretation of the deep mantle structure beneath eastern China

    Science.gov (United States)

    Ma, Pengfei; Liu, Shaofeng; Lin, Chengfa; Yao, Xiang

    2016-04-01

    Recent study of high resolution seismic tomography presents a large mass of high velocity abnormality beneath eastern China near the phase change depth, expanding more than 1600km-wide in East-west cross-section across the North China plate. This structure high is generally believed to be the subducted slab of Pacific plate beneath the Eurasia continent, while its origin and dynamic effect on the Cenozoic tectonic evolution of eastern China remain to be controversial. We developed a subduction-driven geodynamic mantle convection model that honors a set of global plate reconstruction data since 230Ma to help understand the formation and evolution of mantle structure beneath eastern China. The assimilation of plate kinematics, continuous evolving plate margin, asymmetric subduction zone, and paleo seafloor age data enables the spatial and temporal consistency between the geologic data and the mantle convection model, and guarantees the conservation of the buoyancy flux across the lithosphere and subducted slabs. Our model achieved a first order approximation between predictions and the observed data. Interestingly, the model suggests that the slab material stagnated above discontinuity didn't form until 15Ma, much later than previous expected, and the fast abnormality in the mid-mantle further west in the tomographic image is interpreted to be the remnants of the Mesozoic Izanagi subduction. Moreover, detailed analysis suggests that the accelerated subduction of Philippine Sea plate beneath Eurasia plate along the Ryukyu Trench and Nankai Trough since 15Ma may largely contribute to extending feature above 670km discontinuity. The long distance expansion of the slab material in the East-west direction may be an illusion caused by the approximate spatial perpendicularity between the cross-section and the subduction direction of the Philippine Sea plate. Our model emphasizes the necessity of the re-examination on the geophysical observation and its tectonic and

  7. High-resolution 3D surface displacements from 2004 - 2012 at Santorini volcano, Greece measured by LiDAR-differencing

    Science.gov (United States)

    Parks, M.; Pyle, D. M.; Nissen, E.; Mather, T. A.; Raptakis, C.; Nomikou, P.

    2012-12-01

    In January 2011 Santorini volcano entered a period of unrest characterised by earthquake swarms and caldera-wide uplift. Interferometric Synthetic Aperture Radar (InSAR) measurements indicate vertical motions of 8 - 14 cm across the central volcanic island of Nea Kameni since the onset of unrest. In April 2004, a NERC funded Airborne Research and Survey Facility (ARSF) flight acquired high-resolution (1m per pixel) light detection and ranging laser radar (LiDAR) data over the central volcanic islands of Nea Kameni and Palea Kameni. This survey was repeated in May 2012 to provide an updated digital elevation model (DEM). We apply a new method of differencing pre- and post- deformation LiDAR point clouds using the Iterative Closest Point (ICP) algorithm to produce a high-resolution grid of 3D surface displacements from 2004 - 2012. The 2004 ("source") and 2012 ("target") point clouds are first split into square subsets ("windows") and the displacement for each window is determined by iterating three steps: (1) identifying closest point pairs; (2) calculating the translation and rotation required that best aligns the paired points; (3) applying this transformation to the source cloud. The surface displacement map spans both a period of slow subsidence (from 2004 - 2010), and a subsequent period of inflation (from 2011 - 2012). We shall compare our results with those obtained from simple DEM elevation differencing and from InSAR. To our knowledge, this is the first application of the ICP technique to measuring volcanic deformation. This approach may be implemented at other volcanoes to monitor 3D surface displacements during periods of unrest.

  8. Subducted slabs beneath the eastern Indonesia-Tonga region: insights from tomography

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2002-07-01

    Tomographic images of mantle structure beneath the region north and northeast of Australia show a number of anomalously fast regions. These are interpreted using a recent plate tectonic reconstruction in terms of current and former subduction systems. Several strong anomalies are related to current subduction. The inferred slab lengths and positions are consistent with Neogene subduction beneath the New Britain and Halmahera arcs, and at the Tonga and the New Hebrides trenches where there has been rapid rollback of subduction hinges since about 10 Ma. There are several deeper flat-lying anomalies which are not related to present subduction and we interpret them as former subduction zones overridden by Australia since 25 Ma. Beneath the Bird's Head and Arafura Sea is an anomaly interpreted to be due to north-dipping subduction beneath the Philippines-Halmahera arc between 45 and 25 Ma. A very large anomaly extending from the Papuan peninsula to the New Hebrides, and from the Solomon Islands to the east Australian margin, is interpreted to be the remnant of south-dipping subduction beneath the Melanesian arc between 45 and 25 Ma. This interpretation implies that a flat-lying slab can survive for many tens of millions of years at the bottom of the upper mantle. In the lower mantle there is a huge anomaly beneath the Gulf of Carpentaria and east Papua New Guinea. This is located above the position where the tectonic model interprets a change in polarity of subduction from north-dipping to south-dipping between 45 and 25 Ma. We suggest this deep anomaly may be a slab subducted beneath eastern Australian during the Cretaceous, or subducted north of Australia during the Cenozoic before 45 Ma. The tomography also supports the tectonic interpretation which suggests little Neogene subduction beneath western New Guinea since no slab is imaged south of the New Guinea trench. However, one subduction zone in the tectonic model and many others, that associated with the Trobriand

  9. Upper-mantle velocity structure beneath Jutland, Denmark and northern Germany

    DEFF Research Database (Denmark)

    Hejrani, Babak; Jacobsen, B. H.; Balling, N.;

    Several temporary seismological arrays have probed the crust and lithosphere in northern Germany and southern Scandinavia (Tor, CALAS, MAGNUS and TopoScandiaDeep, see e.g. Medhus et al., 2012). In 2011-12 we measured the Jutland-Lower Saxony (JULS) profile as collaboration between Aarhus University...... which maximizes resolution under profile arrays (Hejrani et al., 2011). This optimized profile yields new information on the upper-mantle velocity field beneath Jutland and parts of northern Germany. It clearly outlines a high velocity body located in the uppermost mantle beneath the North German Basin...

  10. Receiver Function Analysis of the Lithospheric Structure Beneath the Western Great Plains

    Science.gov (United States)

    Thurner, S.; Zhai, Y.; Levander, A.

    2010-12-01

    The lithosphere in the western Great Plain region of the Southwestern U.S. has been subject to tectonic deformation from the Proterozoic to present day. Proterozoic island arc terranes accreted onto the North American continent between 1.8 and 1.1 Ga, forming the original continent, and there is evidence for Proterozoic continental extension which formed basement penetrating faults between 1.5 and .6 Ga . This was followed by the uplift of the Ancestral Rockies and, most recently, the subduction of the Farallon plate beneath North America. Extension has occurred throughout the Basin and Range and formed the Rio Grand Rift (RGR). However, the relative impact that large scale tectonic forces, regional asthenospheric upwelling, and preexisting structural weaknesses have on the extension of the RGR is still undetermined. This study seeks to better understand the current tectonic system east of the Colorado Plateau beneath the RGR and western Great Plains. We use teleseismic receiver functions to investigate the nature of extension in the RGR as well as its connection to the small-scale convection thought to be occurring beneath the Colorado Plateau-RGR-Great Plains region. Our receiver function images were generated from 85 earthquake events recorded at 187 USArray Transportable Array seismic stations located throughout the western Great Plains (Latitude: 28-48, Longitude: -105-100). Previous studies have indicated crustal thickness between 39 km and 50 km beneath the Great Plains and as thin as 35 km beneath the RGR (Wilson et.al, 2005). Tomography results have shown high velocity anomalies on both sides of the RGR, extending to 600 km depth beneath the western Great Plains, and a low velocity anomaly directly beneath the RGR (Gok et. al, 2003, Wilson et. al, 2005, Gao et. al, Song and Helmberger, 2007). The western Great Plains high velocity anomaly has been interpreted to be part of the downwelling portion of an edge driven convection system induced by a lateral

  11. Lithospheric Architecture Beneath Hudson Bay

    Science.gov (United States)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2015-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 􏰂350 km thick but is thinner (􏰂200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  12. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14C age and δ13C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  13. Shear wave anisotropy in D" region beneath the western Pacific

    Institute of Scientific and Technical Information of China (English)

    DAI Zhi-yang; LIU Bin; WANG Xiao-xiang; ZHA Xian-jie; ZHANG Hu; YANG Feng-qin

    2007-01-01

    Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy in D" region beneath the western Pacific utilizing the ScS-S differential travel time method and obtained the splitting time values between the radial and transverse components of each ScS wave corresponding to each core-mantle boundary (CMB) reflection point. We found that most shear waves involved horizontally polarized shear wave components traveling faster than vertically polarized shear wave components through the D" region. The splitting time values of ScS wave range from (0.91 s to 3.21 s with an average value of 1.1 s. The strength of anisotropy varies from (0.45% to 1.56% with an average value of 0.52%. The observations and analyses show that in the D" region beneath the western Pacific the lateral flow is expected to be dominant and the vertical transverse isotropy may be the main anisotropic structure. This structure feature may be explained by the shape preferred orientation of the CMB chemical reaction products or partial melt and the lattice preferred orientation of the lower mantle materials caused by the lateral flow at lowermost mantle.

  14. Lithospheric structure beneath the Caribbean- South American plate boundary from S receiver functions

    Science.gov (United States)

    Masy, J.; Levander, A.; Niu, F.

    2010-12-01

    ) is not a continuous feature under the entire region, instead it is seen beneath the Cordillera de la Costa in central Venezuela at ~130 km, also under the Perijá Range and the Sierra del Interior. Under the Guayana Shield we observe two distinct regions with LAB depths at ~150 km depth. We also see the LAB at this depth in places north of the Orinoco River, suggesting the presence of cratonic structures north of the river. These results are in good agreement with the structures observed by Miller et al. (2009) in Rayleigh wave tomography images.

  15. Regional geothermal effects on subglacial water routes beneath the last Cordilleran ice sheet

    OpenAIRE

    J. Seguinot; I. Rogozhina

    2016-01-01

    The Cordilleran ice sheet, which covered the mountain ranges of north-western America during the last glacial cycle, provides an ideal setting to study the effect of geothermal anomalies on subglacial water routing beneath large-scale ice masses. First, the Cordilleran ice sheet rested directly on a geologically old yet still active subduction zone, which is responsible for significant geothermal variability in the region. Second, the deep valleys and intramontane basins that char...

  16. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology

    Indian Academy of Sciences (India)

    Dimitrios Oikonomidis; Konstantinos Albanakis; Spyridon Pavlides; Michael Fytikas

    2016-02-01

    A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the `Minoan' eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the `missing parts' (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.

  17. Imaging of subducted lithosphere beneath South America

    NARCIS (Netherlands)

    Engdahl, E.R.; Hilst, R.D. van der; Berrocal, J.

    1995-01-01

    Tomographic images are produced for the deep structure of the Andean subduction zone beneath western South America. The data used in the imaging are the delay times of P, pP and pwP phases from relocated teleseismic earthquakes in the region. Regionally, structural features larger than about 150 km

  18. Imaging Magma Plumbing Beneath Askja Volcano, Iceland

    Science.gov (United States)

    Greenfield, T. S.; White, R. S.

    2015-12-01

    Using a dense seismic network we have imaged the plumbing system beneath Askja, a large central volcano in the Northern Volcanic Zone, Iceland. Local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km around the depth of the brittle-ductile transition. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. We use relationships between mineralogy and seismic velocities to estimate that this region contains ~10% partial melt, similar to observations made at other volcanoes such as Kilauea. This low-velocity body is deeper than the depth range suggested by geodetic studies of a deflating source beneath Askja. Beneath the large low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with seismicity in the lower crust. This is suggestive of a high temperature channel into the lower crust which could be the pathway for melt rising from the mantle. This melt either intrudes into the lower crust or stalls at the brittle-ductile boundary in the imaged body. Above this, melt can travel into the fissure swarm through large dikes or erupt within the Askja caldera itself.We generate travel time tables using a finite difference technique and the residuals used to simultaneously solve for both the earthquake locations and velocity structure. The 2014-15 Bárðarbunga dike intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions.hhhh

  19. Upper Mantle Flow Beneath the Subducted Nazca Plate: Slab Contortions and Flattening (Invited)

    Science.gov (United States)

    Russo, R. M.

    2010-12-01

    The form of asthenospheric flow beneath subducted lithospheric slabs can be discerned using splitting of shear waves emanating from earthquakes in the slabs themselves. However, the subducted Nazca plate’s abrupt changes in morphology from a planar slab dipping 30° ENE beneath the central Andes to large areas of flat-lying slab beneath Peru, to the north, and Argentina, to the south, are a potential complication to the sub-slab mantle flow. S waves from earthquakes in the Nazca slab reveal details of the upper mantle flow field below and in the vicinity of the slab. Nazca slab earthquakes large enough to be well recorded (M > 5.4, typically), and deep enough to separate S from pS and sS (30-40 km or more), are suitable for such study, and, for events between 1990 and 2010, recording stations are mostly well-distributed azimuthally about the source event. The S waves were recorded at seismic stations at teleseismic distances from the events, and were corrected for known sub-station seismic anisotropy. Thus, the shear wave splitting engendered during their passage through the asthenospheric upper mantle beneath the slab was isolated, and asthenospheric deformation fabrics resulting from plastic flow beneath the slab mapped in some detail. Shear wave splitting fast directions and upper mantle flow beneath the Nazca plate are most often trench-parallel, consistent with trench-parallel upper mantle flow beneath the slab. Fast splitting polarizations at high angle to the strike of the slab occur in the transition regions from flat to normally dipping slab. Upper mantle flow beneath the slab in these regions appears to be channeled by the slab contortion. Upper mantle flow oceanward of the Nazca slab also appears to change abruptly from trends at a high angle to the Peru-Chile trench to trench-parallel as the top of the Nazca slab attains a depth of around 75 km. Trench-parallel sub-slab flow appears to develop once the asthenosphere beneath the Nazca plate is affected

  20. Magma Plumbing beneath Askja Volcano, Iceland

    Science.gov (United States)

    Greenfield, T. S.; White, R. S.

    2013-12-01

    Through a combination of accurate earthquake locations and tomography we have imaged the melt feeding network beneath Askja, a large central volcano, in the Northern Volcanic Zone, Iceland. We have deployed and operated a dense network of 3-component, broadband seismometers around the volcano since 2006 and have recorded a large number of events (on the order of 150 a day). The majority of these are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes situated in three distinct areas within the volcanic system. These have a lower frequency content to the shallower events which may be the result of highly attenuating lower crust. The deep earthquakes extend from 12-25 km depth, significantly below a well defined brittle-ductile boundary at 8-9 km. These earthquakes indicate the presence of melt moving or degassing at depth as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. To image the structure beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations and velocity structure. Results showed a pronounced low-velocity anomaly beneath the caldera at a depth of ~5 km. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. The body is unlikely to be entirely melt as S-waves are still detected at stations directly above the anomaly. This low-velocity body is slightly deeper than the depth range suggested by InSAR and GPS studies of a deflating source beneath

  1. PN velocity beneath Western New Mexico and Eastern Arizona

    Science.gov (United States)

    Jaksha, L. H.

    1985-01-01

    The experiment involved observing Pn arrivals on an areal array of 7 seismic stations located in the transition zone and along the Jemez lineament. Explosions in coal and copper mines in New Mexico and Arizona were used as energy sources as well as military detonations at White Sands Missile Range, New Mexico, Yuma, Arizona, and the Nevada Test Site. Very preliminary results suggest a Pn velocity of 7.94 km/s (with a fairly large uncertainty) beneath the study area. The Pn delay times, which can be converted to estimates of crustal thickness given knowledge of the velocity structure of the crust increase both to the north and east of Springerville, Arizona. As a constraint on the velocity of Pn, researchers analyzed the reversed refraction line GNOME-HARDHAT which passes through Springerville oriented NW to SE. This analysis resulted in a Pn velocity of 7.9-8.0 km/s for the transition zone. These preliminary results suggest that a normal Pn velocity might persist even though the crust thins (from north to south) by 15 km along the length of the Arizona-New Mexico border. If the upper mantle is currently hot anywhere in western New Mexico or eastern Arizona then the dimensions of the heat source (or sources) might be small compared to the intra-station distances of the seismic arrays used to estimate the velocity of Pn.

  2. Oceanographic conditions beneath Fimbul Ice Shelf, Antarctica

    OpenAIRE

    Abrahamsen, Einar Povl

    2012-01-01

    Antarctic ice shelves play a key role in the global climate system, acting as important sites for the cooling of shelf waters, thereby facilitating deep and bottom water formation. Many of the processes that take place under large ice shelves can be observed more conveniently beneath smaller ice shelves such as Fimbul Ice Shelf, an ice shelf in the eastern Weddell Sea. Fimbul Ice Shelf and nearby ice shelves might also play a significant regional role: although no bottom water is produced in ...

  3. Pn anisotropic tomography and mantle dynamics beneath China

    Science.gov (United States)

    Zhou, Zhigang; Lei, Jianshe

    2016-08-01

    We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In

  4. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Science.gov (United States)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  5. Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic discontinuity, and water content

    Science.gov (United States)

    Matsuno, Tetsuo; Suetsugu, Daisuke; Utada, Hisashi; Baba, Kiyoshi; Tada, Noriko; Shimizu, Hisayoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki

    2016-04-01

    We conducted a joint electromagnetic and seismic field experiment to probe water content reserved in the mantle transition zone (MTZ) beneath a normal seafloor around the Shatsky Rise in the northwestern Pacific. Specifically for the investigation of the MTZ structure, we developed new ocean bottom instruments for providing higher S/N ratio data and having higher mobility in field experiment than ever. We installed our state-of-the-art instruments in two arrays to the north and south of the Shatsky Rise for 5 years from 2010 to 2015. We first analyzed data obtained in our and previous studies to elucidate an electrical conductivity structure through the magnetotelluric and geomagnetic depth sounding methods and seismic discontinuity depths or thickness of the MTZ through the P-wave receiver function method. An electrical conductivity structure beneath two observational arrays is represented well by an average 1-D model beneath the northern Pacific. A MTZ thickness beneath the north array is thicker than a global average of MTZ thickness by 22 km, and that beneath the south array is similar to the average. For estimating water content in the MTZ, we implemented a series of forward modeling of the electromagnetic responses based on the average 1-D electrical conductivity model, temperature profiles of the MTZ involving temperature anomalies estimated from the MTZ thickness perturbations, and electrical conductivities of dry and hydrous MTZ materials (wadsleyite and ringwoodite). A result of the forward modeling indicates that the maximum water content in the MTZ beneath the north array is 0.5 wt.%.

  6. Along-arc variation in water distribution in the upper mantle beneath Kyushu, Japan, as derived from receiver function analyses

    Science.gov (United States)

    Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.

    2013-12-01

    The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism

  7. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  8. High resolution image of the Lithosphere-Asthenosphere Boundary of the subducting Nazca plate beneath northern Chile

    Science.gov (United States)

    Sodoudi, F.; Yuan, X.; Asch, G.; Kind, R.

    2010-12-01

    Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent IPOC (Integrated Plate boundary Observatory Chile) stations, we were able to obtain new constraints on the shape and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 40 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper and deeper slab to the north of 21° S to the flatter southern segment is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21° S. We have also mapped the continental Moho of the South American plate at depths ranging between 60-70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge. The Lithosphere-Astheonsphere Boundary (LAB) of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The LAB lies at a depth of 80 km beneath the coastal area and dips from a depth of 100 km beneath the Coastal Cordillera to about 150 km underneath the Western Cordillera. High frequency PRF data enabled us to make confident estimates of the top and bottom of the Nazca lithosphere, which results in a lithospheric thickness of 57-60 km. In relation to the age of the Nazca plate, which is assumed to be ~ 50

  9. Life Beneath Glacial Ice - Earth(!) Mars(?) Europa(?)

    Science.gov (United States)

    Allen, Carlton C.; Grasby, Stephen E.; Longazo, Teresa G.; Lisle, John T.; Beauchamp, Benoit

    2002-01-01

    We are investigating a set of cold springs that deposit sulfur and carbonate minerals on the surface of a Canadian arctic glacier. The spring waters and mineral deposits contain microorganisms, as well as clear evidence that biological processes mediate subglacial chemistry, mineralogy, and isotope fractionation . The formation of native sulphur and associated deposits are related to bacterially mediated reduction and oxidation of sulphur below the glacier. A non-volcanic, topography driven geothermal system, harboring a microbiological community, operates in an extremely cold environment and discharges through solid ice. Microbial life can thus exist in isolated geothermal refuges despite long-term subfreezing surface conditions. Earth history includes several periods of essentially total glaciation. lee in the near subsurface of Mars may have discharged liquid water in the recent past Cracks in the ice crust of Europa have apparently allowed the release of water to the surface. Chemolithotrophic bacteria, such as those in the Canadian springs, could have survived beneath the ice of "Snowball Earth", and life forms with similar characteristics might exist beneath the ice of Mars or Europa. Discharges of water from such refuges may have brought to the surface living microbes, as well as longlasting chemical, mineralogical, and isotopic indications of subsurface life.

  10. High-resolution image of the geometry and thickness of the subducting Nazca lithosphere beneath northern Chile

    Science.gov (United States)

    Sodoudi, F.; Yuan, X.; Asch, G.; Kind, R.

    2011-04-01

    Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (˜23°) and deeper slab to the north of 21°S to the flatter southern segment (˜19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ˜50 My, is estimated to be ˜50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere-asthenosphere boundary may require another mechanism such as hydration or melting.

  11. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  12. Palaeomagnetic analysis on pottery as indicator of the pyroclastic flow deposits temperature: new data and statistical interpretation from the Minoan eruption of Santorini, Greece

    Science.gov (United States)

    Tema, E.; Zanella, E.; Pavón-Carrasco, F. J.; Kondopoulou, D.; Pavlides, S.

    2015-10-01

    We present the results of palaeomagnetic analysis on Late Bronge Age pottery from Santorini carried out in order to estimate the thermal effect of the Minoan eruption on the pre-Minoan habitation level. A total of 170 specimens from 108 ceramic fragments have been studied. The ceramics were collected from the surface of the pre-Minoan palaeosol at six different sites, including also samples from the Akrotiri archaeological site. The deposition temperatures of the first pyroclastic products have been estimated by the maximum overlap of the re-heating temperature intervals given by the individual fragments at site level. A new statistical elaboration of the temperature data has also been proposed, calculating at 95 per cent of probability the re-heating temperatures at each site. The obtained results show that the precursor tephra layer and the first pumice fall of the eruption were hot enough to re-heat the underlying ceramics at temperatures 160-230 °C in the non-inhabited sites while the temperatures recorded inside the Akrotiri village are slightly lower, varying from 130 to 200 °C. The decrease of the temperatures registered in the human settlements suggests that there was some interaction between the buildings and the pumice fallout deposits while probably the buildings debris layer caused by the preceding and syn-eruption earthquakes has also contributed to the decrease of the recorded re-heating temperatures.

  13. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    Science.gov (United States)

    Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2001-01-01

    shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.

  14. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography

    Science.gov (United States)

    Liang, Xiaofeng; Chen, Yun; Tian, Xiaobo; Chen, Yongshun John; Ni, James; Gallegos, Andrea; Klemperer, Simon L.; Wang, Minling; Xu, Tao; Sun, Changqing; Si, Shaokun; Lan, Haiqiang; Teng, Jiwen

    2016-06-01

    We perform a finite-frequency tomographic inversion to image 3D velocity structures beneath southern and central Tibet using teleseismic body-wave data recorded by the TIBET-31N passive seismic array as well as waveforms from previous temporary seismic arrays. High-velocity bodies dip ∼40° northward beneath the Himalaya and the Lhasa Terrane. We interpret these high-velocity anomalies as subducting Indian Continental Lithosphere (ICL). The ICL appears to extend further north in central Tibet than in eastern Tibet, reaching 350 km depth at ∼31°N along 85°E but at ∼30°N along 91°E. Low P- and S-wave velocity anomalies extend from the lower crust to ≥180 km depth beneath the Tangra Yum Co Rift, Yadong-Gulu Rift, and the Cona Rift, suggesting that rifting in southern Tibet may involve the entire lithosphere. The anomaly beneath Tangra Yum Co Rift extends down to about 180 km, whereas the anomalies west of the Yadong-Gulu Rift and east of the Cona Rift extend to more than 300 km depth. The low-velocity upper mantle west of the Yadong-Gulu Rift extends furthest north and appears to connect with the extensive upper-mantle low-velocity region beneath central Tibet. Thus the northward-subducting Indian Plate is fragmented along north-south breaks that permit or induce asthenospheric upwellings indistinguishable from the upper mantle of northern Tibet.

  15. PRESSURE FLUCTUATIONS BENEATH SPATIAL HYDRAULIC JUMPS

    Institute of Scientific and Technical Information of China (English)

    YAN Zhong-min; ZHOU Chun-tian; LU Shi-qiang

    2006-01-01

    This article deals with statistical analysis of pressure fluctuations at the bottom of spatial hydraulic jumps with abrupt lateral expansions. The effects of the channel expansion ratio and inflow condition on the power spectral and dominant frequency were examined. Pressure data were recorded for different Froude numbers ranging from 3.52 to 6.86 and channel expansion ratios ranging from 1.5 to 3.0. A sampling frequency of 100 Hz was selected. The measurements were conducted in the bed of a glass-walled laboratory flume by means of pressure transducers and data acquisition systems. Power spectra as well as dominant frequency and some other statistical characteristics of fluctuating pressure beneath hydraulic jumps were obtained. Test results were compared with those of classical jump, which indicates that the peak frequencies and intensity coefficients of pressure fluctuations are higher than those of the corresponding classical jumps.

  16. Evidence for Active Subduction Beneath Gibraltar

    Science.gov (United States)

    Gutscher, M.; Malod, J. A.; Rehault, J.; Contrucci, I. M.; Klingelhoefer, F.; Victor, L. M.; Spakman, W.

    2002-12-01

    The Gibraltar arc encompasses the Betic - Rif mountain belts with outward directed thrusting, surrounding a zone of strong Neogene subsidence and crustal thinning in the Western Alboran Sea. The SISMAR marine seismic survey conducted in April 2001 acquired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), completely spanning the actively deforming region between the margins of Portugal and northwest Morocco. We report on results from this seismic survey which reveal a thick chaotic sedimentary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decollement. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives compressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered. Active subduction beneath Gibraltar should be considered as a possible candidate for the source of the destructive Lisbon great earthquake (M 8.5-9) and tsunami of 1755 which ravaged the coast of the Gulf of Cadiz.

  17. Major disruption of D″ beneath Alaska

    Science.gov (United States)

    Sun, Daoyuan; Helmberger, Don; Miller, Meghan S.; Jackson, Jennifer M.

    2016-05-01

    D″ represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D″ come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D″: (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D″ (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  18. Magmatic underplating beneath the Rajmahal Traps: Gravity signature and derived 3-D configuration

    Indian Academy of Sciences (India)

    A P Singh; Niraj Kumar; Bijendra Singh

    2004-12-01

    The early Cretaceous thermal perturbation beneath the eastern continental margin of the Indian shield resulted in the eruption of the Rajmahal Traps. To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the conspicuous gravity anomalies observed over the region have been modelled integrating with available geophysical information. The 3-D gravity modelling has delineated 10–15km thick high-density ( = 3.02 g/cm3) accreted igneous layer at the base of the crust beneath the Rajmahal Traps. Thickness of this layer varies from 16km to the west of the Rajmahal towards north to about 12km near Kharagpur towards south and about 18km to the east of the Raniganj in the central part of the region. The greater thickness of the magmatic body beneath the central part of the region presents itself as the locus of the potential feeder channel for the Rajmahal Traps. It is suggested that the crustal accretion is the imprint of the mantle thermal perturbation, over which the eastern margin of the eastern Indian shield opened around 117Ma ago. The nosing of the crustal accretion in the down south suggests the possible imprint of the subsequent magmatic intrusion along the plume path.

  19. Seismic tomography reveals the upper-mantle structure beneath the Carpathian-Pannonian system

    Science.gov (United States)

    Dando, B. D.; Houseman, G.; Stuart, G. W.; Hegedus, E.; Kovacs, A.; Brueckl, E. P.; Hausmann, H.; Radovanovic, S.

    2009-12-01

    The Carpathian Basins Project (CBP) aims to understand the formation of the Miocene-age extensional basins contained within the convergent arc of the Alpine-Carpathian system. To test competing models for the recent geological evolution of the Carpathian-Pannonian lithosphere and upper mantle, we present a new tomographic determination of P-wave velocity structure to depths of 700 km beneath this region. This model is based on inversion of seismic travel-time residuals from 97 broadband seismic stations. We include CBP data from a 15-month deployment of a high resolution network of 46 stations deployed NW-SE across the Vienna and western Pannonian basins through Austria, Hungary and Serbia, together with 10 broadband stations spread across the Pannonian basin and a further 41 permanent broadband stations. We use P-wave arrival times from 232 teleseismic events. To avoid contamination of our inversion results from crustal velocity variations, deterministic corrections are applied to our travel-time residuals using crustal velocity models obtained from controlled source experiments and sediment thickness maps. Our 3-D velocity model images the fast velocity structure of the eastern Alps down to ~350 km. Beneath the Pannonian basin the velocity variation at 300 km depth is dominated by a fast region which extends eastward from the Alpine anomaly and reaches down into the mantle transition zone (MTZ). This fast structure is limited on the North side by slow material beneath the North Carpathians. At depths greater than 450 km, below the eastern Pannonian basin, a slow anomaly extends to the base of the model. Beneath the same region Hetenyi et al. (submitted to GRL), used receiver functions from the CBP dataset, to show a localised depression of the 660 km discontinuity of up to ~40 km. We aim to address how the depression of the 660 km discontinuity and its associated density and velocity variations affect our tomographic images. Our results will help to provide

  20. Storing CO2 under the North Sea Basin - A key solution for combating climate change

    International Nuclear Information System (INIS)

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO2 beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO2 emissions away from the atmosphere for both the UK and Norway

  1. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    Science.gov (United States)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  2. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    Science.gov (United States)

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  3. Determination of the Basin Structure Beneath European Side of Istanbul

    Science.gov (United States)

    Karabulut, Savas; Cengiz Cinku, Mulla; Thomas, Michael; Lamontagne, Maurice

    2016-04-01

    Istanbul (near North Anatolian Fault Zone:NAFZ, Turkey) is located in northern part of Sea of Marmara, an area that has been influenced by possible Marmara Earthquakes. The general geology of Istanbul divided into two stratigraphic unit such as sedimentary (from Oligocene to Quaternary Deposits) and bedrock (Paleozoic and Eocene). The bedrock units consists of sand stone, clay stone to Paleozoic age and limestone to Eocene age and sedimentary unit consist of sand, clay, mil and gravel from Oligocene to Quaternary age. Earthquake disaster mitigation studies divided into two important phases, too. Firstly, earthquake, soil and engineering structure problems identify for investigation area, later on strategic emergency plan can prepare for these problems. Soil amplification play important role the disaster mitigation and the site effect analysis and basin structure is also a key parameter for determining of site effect. Some geophysical, geological and geotechnical measurements are requeired to defined this relationship. Istanbul Megacity has been waiting possible Marmara Earthquake and their related results. In order to defined to possible damage potential related to site effect, gravity measurements carried out for determining to geological structure, basin geometry and faults in Istanbul. Gravity data were collected at 640 sites by using a Scientrex CG-5 Autogravity meter Standard corrections applied to the gravity data include those for instrumental drift, Earth tides and latitude, and the free-air and Bouguer corrections. The corrected gravity data were imported into a Geosoft database to create a grid and map of the Bouguer gravity anomaly (grid cell size of 200 m). As a previously results, we determined some lineminants, faults and basins beneath Istanbul City. Especially, orientation of faults were NW-SE direction and some basin structures determined on between Buyukcekmece and Kucukcekmece Lake.

  4. Conflicting Geophysical and Geochemical Indicators of Mantle Temperature Beneath Tibet

    Science.gov (United States)

    Klemperer, S. L.

    2013-12-01

    In Tibet a small number of earthquakes occurs at 75-100 km depth, spanning the Moho, reaching >350 km and >550 km north of the Himalayan front in south-eastern Tibet and western Tibet respectively. 'Earthquake thermometry' implies these deep earthquakes occur in anhydrous lower lithosphere, either anorthitic or ultramafic, at 0.1RA (~1% mantle fluid) are conventionally taken to imply an unequivocal mantle component. Time-averaged upward flow rates calculated from measured 3He/4He ratios (R) and [4He] range from ~1-15 cm/a, implying transport times of 0.5-7 Ma through a 70-km thick crust. Discussion of 3He in Tibet in the western literature has been dominated by a single paper (Hoke et al., EPSL, 2000) that reported modest mantle helium (0.110% mantle fluids are reported 120 km and 150 km south of the northern limit of deep earthquakes in southeastern and western Tibet respectively. These hot springs apparently sampled mantle with T>800°C south of the locations where earthquake thermometry implies Moho temperatures India, Nepal and Pakistan, even though the 800°C isotherm is substantially shallower there than beneath southern Tibet? More plausibly the mantle helium is derived from an Asian mantle wedge above the region of deep earthquakes, in which case underthrusting Indian lithosphere is not intact, but breaks into an upper layer forming the lower crust of the Tibetan Plateau, and a lower seismogenic layer that is subducted more deeply into the mantle. Based on the geothermal springs, an Asian mantle wedge extended south of the Indus Tsangpo suture in SE Tibet and to the Karakoram fault in W Tibet until the latest Miocene, or even more recently.

  5. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  6. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  7. Lithospheric flexure beneath the Freyja Montes Foredeep, Venus: Constraints on lithospheric thermal gradient and heat flow

    International Nuclear Information System (INIS)

    Analysis of Venera 15 and 16 radar images and topographic data from the Freyja Montes region on Venus suggest that this mountain belt formed as a result of a sequence of underthrusts of the lithosphere of the North Polar Plains beneath the highlands of Ishtar Terra. The Freyja Montes deformation zone consists, south to north, of a linear orogenic belt, an adjacent plateau, a steep scarp separating the plateau from the North Polar Plains, a linear depression at the base of the scarp, and an outer rise. The topographic profile of the depression and outer rise are remarkably similar to that of a foreland deep and rise formed by the flexure of the underthrusting plate beneath a terrestrial mountain range. The authors test the lithospheric flexure hypothesis and they estimate the effective thickness Te of the elastic lithosphere of the underthrusting portion of the North Polar Plains by fitting individual topographic profiles to deflection curves for a broken elastic plate. The theoretical curves fit the observed topographic profiles to within measurement error for values of flexural rigidity D in the range (0.8-3) x 1022 N m, equivalent to Te in the range 11-18 km. Under the assumption that the base of the mechanical lithosphere is limited by the creep strength of olivine, the mean lithospheric thermal gradient is 14-23 K/km. That the inferred thermal gradient is similar to the value expected for the global mean gradient on the basis of scaling from Earth provides support for the hypothesis that simple conduction dominates lithospheric heat transport on Venus relative to lithospheric recycling and volcanism

  8. Active Subduction Beneath The Gibraltar Arc

    Science.gov (United States)

    Gutscher, M.-A.; Malod, J.; Rehault, J.-P.; Contrucci, I.; Klingelhoefer, F.; Spakman, W.; Sismar Scientific Team

    The Gibraltar region features the arcuate Betic - Rif mountain belt with outward di- rected thrusting, surrounding a zone of strong Neogene subsidence and crustal thin- ning in the Western Alboran Sea. Until now its geodynamic interpretation has re- mained controversial. The Gibraltar Arc is located at the eastern end of the Azores- Gibraltar transform, a diffuse transpressional plate boundary between the Iberian and African Plates. Attention has recently been focussed on this plate boundary, while seeking the likely source of the destructive Lisbon great earthquake (M 8.5 - 9) and tsunami of 1755. The SISMAR marine seismic survey conducted in April 2001 ac- quired over 3000 km of 360-channel seismic data with a 4.5 km long streamer and 1000 km of wide-angle data recorded by ocean bottom seismometers (OBS), com- pletely spanning the actively deforming region between the margins of Portugal and northwest Morocco. Results from this seismic survey reveal a thick chaotic sedimen- tary mass west of Gibraltar to be an actively deforming accretionary wedge, with east dipping thrust faults disrupting the seafloor and soleing out to an east dipping decolle- ment. New travel-time tomographic results image a continuous east dipping body with high seismic velocities (i.e. a cold slab of oceanic lithosphere) descending from the Atlantic domain of the Gulf of Cadiz, passing through intermediate depth (60 - 120 km) seismicity beneath the Gibraltar Arc and Western Alboran Sea, and merging with a region of deep focus earthquakes 600 - 660 km below Granada Spain. Together these provide compelling evidence for an active east dipping subduction zone. Slab rollback towards the west provides a plausible mechanism for extension and subsidence in the Alboran Sea, while the associated westward advance of the Gibraltar Arc drives com- pressional deformation in the accretionary wedge where active mud volcanoes have recently been discovered.

  9. Groundwater Mounding Beneath Stormwater Infiltration Basins

    Science.gov (United States)

    Nimmer, M.; Thompson, A. M.; Misra, D.

    2007-12-01

    An accurate understanding of groundwater mound formation is important in the proper design of stormwater infiltration basins since these basins are often required to recharge a portion of pre-development infiltration volume. Mound formation due to localized recharge may reduce the infiltration rate of the basin and the ability of the soil to filter pollutants. The goal of this research was to understand groundwater mounding and the potential for contaminant transport resulting from recharge beneath stormwater infiltration basins. A 0.10 ha infiltration basin serving a 9.4 ha residential subdivision in Oconomowoc, Wisconsin was used in this study. Subsurface conditions included sand and gravel material and a groundwater table at 2.3 m below grade. Three storm events, 4.9 cm, 2.8 cm, and 4.3 cm, between August 2006 and April 2007 were modeled using the two-dimensional numerical model HYDRUS. The calibrated model was used to evaluate hypothetical basin operation scenarios for various basin sizes, soil types, ponding depths, and water table depths. The groundwater mound intersected the basin floor in most scenarios with loamy sand and sandy loam soils, an unsaturated thickness of 1.52 m, and a ponding depth of 0.61 m. No groundwater table response was observed with ponding depths less than 0.31 m with an unsaturated zone thickness of 6.09 m. The mound height was most sensitive to hydraulic conductivity and unsaturated zone thickness. A 7.6 cm sediment layer delayed the time to reach maximum mound height, but had a minimal effect on the magnitude of the mound. Mound heights increased as infiltration basin size increased.

  10. Mantle Structure Beneath Central South America

    Science.gov (United States)

    Vandecar, J. C.; Silver, P. G.; James, D. E.; Assumpcao, M.; Schimmel, M.; Zandt, G.

    2003-12-01

    Making use of 60 digital broadband seismic stations that have operated across central South America in recent years, we have undertaken an inversion for the upper- and uppermost lower-mantle P- and S-wave velocity structures beneath the region. We have combined data from four portable PASSCAL-type experiments as well as the 3 GTSN permanent stations (LPAZ, BDFB and CPUP) and 1 Geoscope station (SPB) located in the region. The portable data were deployed at various times between 1992 and 1999 and include: 28 sites from the Brazilian Lithosphere Seismic Project (BLSP: Carnegie Institution of Washington and Universidade de Sao Paulo), 16 sites from the Broadband ANdean JOint experiment (BANJO: Carnegie Institution of Washington and University of Arizona), 8 sites from the Seismic Exploration of the Deep Altiplano project (SEDA: Lawrence Livermore National Laboratory) and 4 sites from the University of Brasilia. The P- and S-wave relative delay times are independently obtained via a multi-channel cross correlation of band-passed waveforms for each teleseismic event. These data are then inverted using an iterative, robust, non-linear scheme which parameterizes the 3-D velocity variations as splines under tension constrained at over 120,000 nodes across South America between latitudes of 15 and 30 degrees South. Amongst other features, we robustly image the high-velocity subducting Nazca plate penetrating into the lower mantle and the high-velocity root of the ~3.2 Gyr old Sao Francisco Craton extending to depths of 200-300 km. We will discuss the consistency between our tomographic models and predictions of dynamic mantle models based on plate tectonic reconstructions of subduction.

  11. Mapping Tectonic features beneath the Gulf of California using Rayleigh and Love Waves Group Velocities

    Science.gov (United States)

    Persaud, P.; Di Luccio, F.; Clayton, R. W.

    2012-12-01

    This study contributes to our understanding of the Pacific-North America lithospheric structure beneath the Gulf of California and its western and eastern confining regions, by mapping fundamental mode surface wave group velocities. We measure the dispersion of Rayleigh and Love surface waves to create a series of 2D maps of group velocities, which provide important information on the earth structure beneath the study region. Although several surface waves studies were published in the last decade, all of them were done using phase velocity measurements based on the two stations method. Here we combine dispersion measurements at the regional scale with data at teleseismic distances to provide a more complete dataset for studies of earth structure. We also analyze group velocities from short to long periods in order to define structural features at both crustal and mantle scales. Our study uses earthquakes recorded by the Network of Autonomously Recording Seismographs (NARS-Baja), a set of 14 broadband seismic stations that flank the Gulf of California. From the NEIC bulletin we selected 140 events recorded by the NARS-Baja array. In order to have dispersion measurements in a wide range of periods, we used regional earthquakes with M > 4.2 and teleseismic events with M > 6.9. We first computed the dispersion curves for the surface wave paths crossing the region. Then, the along path group velocity measurements for multiple periods are converted into tomographic images using kernels which vary in off-path width with the square root of the period. Dispersion measurements show interesting and consistent features for both Rayleigh and Love waves. At periods equal to or shorter than 15 s, when surface waves are primarily sensitive to shear velocity in the upper 15 km of the crust, slow group velocities beneath the northern-central Gulf reveal the presence of a thick sedimentary layer, relative to the southern Gulf. Group velocities beneath the northwestern side of Baja

  12. Window into the Caledonian orogen: Structure of the crust beneath the East Shetland platform, United Kingdom

    Science.gov (United States)

    McBride, J.H.; England, R.W.

    1999-01-01

    Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated

  13. Mantle structure beneath the western edge of the Colorado Plateau

    Science.gov (United States)

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.

    2008-01-01

    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  14. Lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt--On deep-seated xenoliths in Minggang region of Henan Province

    Institute of Scientific and Technical Information of China (English)

    LU Fengxiang; WANG Chunyang; ZHENG Jianping

    2004-01-01

    Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed in this paper is that after the Late Paleozoic South Qinling lithosphere subducted northward and decoupled, the upper part of the lithosphere emplaced under the North Qinling and the lower part continuously subducted northward under the North China Block. In Early Mesozoic, the North Qinling Block obducted northward and the North China Block inserted into the Qinling orogenic belt in a crocodile-mouth shape.

  15. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    Science.gov (United States)

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  16. Seismic characterization of the Wasatch fault system beneath Salt Lake City using a land streamer system

    Science.gov (United States)

    Brophy, B.; Liberty, L. M.; Gribler, G.

    2015-12-01

    We characterize the active Wasatch fault system beneath downtown Salt Lake City by measuring p- and s-wave velocities and seismic reflection profiling. Our focus was on the segment boundary between the Warm Springs and East Bench faults. We collected 14.5 km along 9 west-east profiles in 3 field days using a 60 m aperture seismic land streamer and 200 kg weight drop system. From a p-wave refraction analysis, we measure velocities from 230-3900 m/s for the upper 20-25 meters. Shear wave velocities for the upper 30 m, derived from a multi-channel analysis of surface waves (MASW) approach, show velocities that range from 100-1800 m/s. P-wave reflection images from the upper 100 m depth indicate offset and truncated (mostly) west-dipping strata (Bonneville Lake deposits?) that suggest active faults extend beneath the downtown urban corridor. We identify saturated sediments on the lower elevation (western) portions of the profiles and shallow high velocity (dry) strata to the east of the mapped faults. We observe slow p-wave velocities near identified faults that may represent the fault's colluvial wedge. These velocity results are best highlighted with Vp/Vs ratios. Analyzing shear wave velocities by NEHRP class, we estimate soft soil (NEHRP D) limited less than 1 m depth along most profiles, and stiff soil (NEHRP C) to up to 25 m depth in some locations. However near steep topographic slopes (footwall deposits), we identify NEHRP Class D stiff soil velocities to less than 2 m depth before transition to NEHRP Class C soft rock. Depth to hard rock (velocities >760 m/s) are as shallow as 20 m below the land surface on some steep slopes beneath north Salt Lake City and greater than our imaging depths along the western portions of our profiles. Our findings suggest large variations in seismic velocities beneath the Salt Lake City corridor and that multiple fault strands related to the Warm Springs fault segment extend beneath downtown.

  17. Ridge Subduction Beneath the Americas: Synthesis and New Research on Anomalous Tectonism and Magmatism

    Science.gov (United States)

    Thorkelson, D. J.; Madsen, J. K.; Breitsprecher, K.; Groome, W. G.; Sluggett, C.

    2006-12-01

    The west coast of the Americas has been repeatedly affected by ridge-trench interactions from Mesozoic to Recent time. Beneath North America, subduction of the Kula-Farallon, Kula-Resurrection and Farallon- Resurrection spreading ridges resulted in anomalous and time-transgressive forearc to backarc magmatism and related tectonism from the Late Cretaceous to the Eocene. Following consumption and redistribution of the Kula and Resurrection plates, the Neogene Farallon-Pacific ridge system intersected the North American trench in two locations - western Canada and northwestern Mexico / southwestern United States - causing pronounced magmatic and tectonic effects that continue to the present. Beneath Central America, divergent subduction of the Nazca and Cocos plates led to development of a slab window, with a present location beneath Panama and a probable pre-Pliocene position beneath Columbia or Ecuador. Patagonia has been the site of localized ridge subduction from the Eocene to the Recent, with the Phoenix-Farallon ridge subducting from the Eocene to the early Miocene, and the Nazca-Antarctic ridge from the Miocene to the present. Antarctica experienced diverging Antarctic-Phoenix plate subduction from the Eocene to the Pliocene. In all cases, normal arc magmatism was interrupted or eliminated by anomalous igneous activity ranging in signature from adakitic to intraplate. Our current research involves geochemical, tectonic, and thermal modeling of slab window environments. A new geochemical analysis on the effects of Miocene to Recent subduction of the northern segment of the Farallon (Juan de Fuca)-Pacific ridge is underway. A symmetrical arc-intraplate-arc geochemical pattern is evident in a transect from the northern Cascade Arc, through the volcanic fields of British Columbia, Yukon and eastern Alaska, and into the Aleutian Arc. This pattern can be explained by Neogene displacement of the arc-metasomatized mantle wedge caused by upwelling oceanic

  18. Along-strike Translation of a Fossil Slab Beneath California (Invited)

    Science.gov (United States)

    Forsyth, D. W.

    2013-12-01

    There are three places where subduction ceased before a spreading ridge was consumed at a trench, leaving behind remnant microplates that were incorporated into the non-subducting oceanic plate. In the cases of the Phoenix plate off the Antarctic peninsula and the Guadalupe and Magdalena microplates off Baja California, fossil slabs still attached to the microplates have been traced into the asthenosphere using seismological techniques. Apparently deep subducting plates can tear off from the surface plate leaving behind fossil pieces of young oceanic lithosphere extending 100 km or more into the asthenosphere. The young slab fragments may be close to neutral buoyancy with their asthenospheric surroundings. In the case of the Monterey microplate off central California, now part of the Pacific plate, oceanic crust has been traced beneath the continental margin using active source seismology. Nicholson et al. (1994) suggested that the translation of the Monterey microplate under North America dragged bits of the overriding plate with it, causing the rotation of the Transverse Ranges in southern California. They also suggested that the San Andreas initiated as a low angle fault between the overriding North American plate and the subducted Monterey plate. There is a gap in coastal, post-subduction volcanic activity opposite the microplate, perhaps because a slab window never formed. A steeply dipping seismic anomaly, the Isabella anomaly, also lies opposite the microplate, probably indicating the continuation of the Monterey slab deep into the asthenosphere. Between the Isabella anomaly and the surface remnants of the Monterey microplate lies the aseismic, creeping section of the San Andreas fault, which we speculate may be caused by the migration of fluids from the subducted plate. The Monterey case differs from the Phoenix and Guadalupe cases in that the hypothesized fossil slab lies beneath the North American plate, which is translating relative to the Pacific

  19. Using cross-correlation to map the Transition Zone thickness beneath the Iberian Peninsula and Morocco

    Science.gov (United States)

    Bonatto, L.; Schimmel, M.; Gallart, J.; Morales, J.

    2012-12-01

    Upper mantle discontinuities are commonly studied through the detection of waves which have been converted/reflected at these discontinuities. In this work a novel processing approach which is leaned on receiver functions and which is based on cross-correlation and stacking techniques was implemented to search for weak amplitude upper mantle phases that arrive in the P-wave coda, such as P-to-s conversions. To add consistency and robustness to the detections, the new approach has been used together with receiver functions. This, also permits to bridge observation gaps due to break down of one of the techniques inherent to data characteristics. The aim of this work is to map the limits of the Transition Zone, which are the 410-km and 660-km depth discontinuities, beneath the Iberian Peninsula and north Africa. The new processing approach uses two independent cross-correlations (phase cross-correlation and cross-correlation geometrically normalized) and stacking techniques (phase weighted stack) in order to eliminate the source influence and to enhance coherent signals detected for the different events at individual stations. A pilot wavelet is selected from the vertical component, this wavelet contains the P phase and part of its coda with the later arriving depth phases. Converted and reflected phases are then detected by the cross-correlation of this pilot with the vertical and radial component of each recorded event, and the stacking of cross-correlograms for common conversion point areas. Cross-correlation provides relative travel times with respect to the P phase through its correlation maxima, and stacking enhances the signals which arrive consistently (near receiver conversions and reflections) and attenuates isolated depth phases such as near source reverberations and spurious arrivals. Slant stacks are used to correctly identify these coda signals. The described process was performed for teleseismic earthquakes registered in the seismic network of Topo

  20. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

    Institute of Scientific and Technical Information of China (English)

    Jianping Wu; Yuehong Ming; Lihua Fang; Weilai Wang

    2009-01-01

    The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic re-gion, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldem. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con-sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.

  1. Subduction system and flat slab beneath the Eastern Cordillera of Colombia

    Science.gov (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Faccenna, Claudio; Speranza, Fabio; Seccia, Danilo; Dionicio, Viviana; Prieto, Germán. A.

    2016-01-01

    Seismicity at the northern terminus of the Nazca subduction is diffused over a wide area containing the puzzling seismic feature known as the Bucaramanga nest. We relocate about 5000 earthquakes recorded by the Colombian national seismic network and produce the first 3-D velocity model of the area to define the geometry of the lithosphere subducting below the Colombian Andes. We found lateral velocity heterogeneities and an abrupt offset of the Wadati-Benioff zone at 5°N indicating that the Nazca plate is segmented by an E-W slab tear, that separates a steeper Nazca segment to the south from a flat subduction to the north. The flat Nazca slab extends eastward for about 400 km, before dip increases to ˜50° beneath the Eastern Cordillera, where it yields the Bucaramanga nest. We explain this puzzling locus of intermediate-depth seismicity located beneath the Eastern Cordillera of Colombia as due to a massive dehydration and eclogitization of a thickened oceanic crust. We relate the flat subducting geometry to the entrance at the trench at ca. 10 Ma of a thick - buoyant oceanic crust, likely a volcanic ridge, producing a high coupling with the overriding plate. Sub-horizontal plate subduction is consistent with the abrupt disappearance of volcanism in the Andes of South America at latitudes > 5°N.

  2. Mantle discontinuities beneath Izu-Bonin and the implications

    Institute of Scientific and Technical Information of China (English)

    臧绍先; 周元泽; 蒋志勇

    2003-01-01

    The SdP, pdP and sdP phases are picked up with the Nth root slant stack method from the digital waveform data recorded by the networks and arrays in USA, Germany and Switzerland for the earthquakes occurring beneath Izu-Bonin and Japan Sea. The mantle discontinuities and the effects of subducting slab on the 660 km and 410 km discontinuities are studied. It is found that there are mantle discontinuities existing at the depths of 170, 220, 300, 410, 660, 850 and 1150 km. Beneath Izu-Bonin, the 410 km discontinuity is elevated, while the 660 km discontinuity is depressed; for both discontinuities, there are regionalized differences. Beneath Japan Sea, however, there is no depth variation of the 410 km discontinuity, and the 660 km discontinuity is depressed without obvious effect of the subducting slab.

  3. Initiation of liquid-solid contact beneath an impacting drop

    Science.gov (United States)

    Rubinstein, Shmuel; Kolinski, John

    2015-11-01

    Before an impacting drop contacts the solid surface it must first drain the air beneath it. As a prelude to wetting, before any contact occurs, the impinging liquid confines the intervening air into a nanometers-thin film. Once liquid-solid contact initiates by the spontaneous formation of a liquid bridge, the fluid rapidly wicks through the thin film of air, permanently binding the drop to the surface. Here, we experimentally examine these initial stages in the formation of the liquid solid contact beneath the impacting drop. Fast TIR microscopy enables unprecedented spatial and temporal resolution of the wetting process beneath the impacting drop and permits 3-dimensional imaging of the real contact line as well as nanometer-resolution of the thin film of air separating the liquid from the solid.

  4. Imaging of seismic scatterers beneath the Gauribidanur (GBA) array

    International Nuclear Information System (INIS)

    A study has been conducted to image seismic scatterers beneath the Gauribidanur (GBA) array in the Precambrian shield of south India. Short period digital data from teleseisms and regional events recorded over the 20 station L shaped array was used to image seismic scatterers beneath the array employing semblance technique. The results indicate a zone of dominant scattering encompassing the crust in a region west of GBA. The inferred zone of scattering coincides with a large N-S elongated granitic intrusion believed to be Precambrian suture zone between the East and West Dharwar craton. (author). 16 refs, 7 figs, 1 tab

  5. Seismic interferometry of the mantle transition zone beneath the western United States

    Science.gov (United States)

    Anderson, H. R.; Thorne, M. S.; Schmerr, N. C.; Brown, S. P.

    2011-12-01

    Determination of mantle structure is critical in understanding the ongoing dynamic processes in the Earth's interior and determining how the deep interior is connected to volcanic and tectonic features at the surface. Discontinuities within the mantle originating from solid-to-solid mineralogical phase transitions of olivine are important indicators of mantle temperature and composition, and provide key clues for interpreting velocity heterogeneity imaged by seismic tomography. Here we develop a new cross-correlation interferometry technique, to image the detailed topography of discontinuity surfaces and associated phase transitions within the mantle transition zone. Our interferometric technique is applied to 185 events originating along the South American subduction zone, recorded as transverse component broadband seismograms at dense seismic arrays in North America, including EarthScope's Transportable Array, and at the Japanese F-net seismic network. To retrieve upper mantle discontinuity structure, we study underside reflections of S-wave energy from the upper mantle discontinuities, arriving as precursory energy to the seismic phase SS. Our interferometric analysis consists of migrating the direct S-wave energy transmitted through the transition zone discontinuities recorded at North American seismic arrays with SS precursor energy reflecting off the underside of the discontinuities recorded at the F-net seismic array. This approach removes uncertainties in earthquake location and seismic velocity structure on the source side of the underside reflection point, providing enhanced vertical resolution of discontinuity topography over past studies. We present newly detailed images of the mantle discontinuity structure beneath the western United States, and compare our results with tomographic imaging. Initial results indicate large variations in mantle temperature and composition across the western United States associated with the subducting Juan de Fuca slab

  6. Geology and ground water resources, Williams County, North Dakota

    Science.gov (United States)

    Freers, Theodore F.; Armstrong, C.A.

    1970-01-01

    Williams County, in northwestern North Dakota, is located near the center of the structural and sedimentary Williston basin. The preglacial sedimentary formations beneath the county are as much as 14,828 feet thick. Their beds dip generally to the south except along the flanks of the north-south striking Nesson anticline in the eastern part of the county. Late Wisconsinan glacial deposits cover all of Williams County except along the Missouri River and other scattered small areas.

  7. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  8. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya

    Science.gov (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.

    2015-12-01

    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  9. Hot mantle upwelling across the 660 beneath Yellowstone

    Science.gov (United States)

    Schmandt, Brandon; Dueker, Kenneth; Humphreys, Eugene; Hansen, Steven

    2012-05-01

    P-to-s receiver functions mapped to depth through P and S body-wave tomography models image continuous 410 and 660 km discontinuities beneath the area covered by USArray prior to the year 2011. Mean depths to the 410 and 660 km discontinuities of 410 and 656 km imply a mantle transition zone that is about 4 km thicker than the global average and hence has a slightly cooler mean temperature and/or enhanced water content. Compared to the mean 660 depth beneath this ~ 2000 km wide area, the 660 beneath the Yellowstone hotspot is deflected upward by 12-18 km over an area about 200 km wide. This is the most anomalous shallowing of the 660 imaged and its horizontal extent is similar to the area where P and S tomography image low-velocity mantle extending from the top of the transition zone to about 900 km depth. Together, these results indicate a high-temperature, plume-like upwelling extending across the 660. The depth of 410 km discontinuity beneath the Yellowstone region is within 5 km of the mean depth implying that the plume is vertically heterogeneous and possibly discontinuous. Tomography indicates a similar vertically heterogeneous thermal plume. The irregular plume structure may be intrinsic to the dynamics of upwelling through the transition zone, or distortion may be caused by subduction-induced mantle flow. Topography of the 410 and 660 confirms that subducted slabs beneath the western U.S. are highly segmented, as inferred from recent tomography studies. We find no evidence of regionally pervasive velocity discontinuities between 750 and 1400 km depth. The plume's depth of origin within the lower mantle remains uncertain.

  10. Oil and gas prospecting beneath Precambrian of Foreland thrust plates in Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Gries, R.

    1983-01-01

    Only 16 wells in the Rocky Mountain region have drilled through precambrian rocks to test the 3 to 6 million acres of sedimentary rocks concealed and virtually unexplored beneath mountain-front thrust. One recent test is a major gas discovery, another a development oil well, and over half of the unsuccessful tests had oil or gas shows. These wells have helped define the structural geometry of the mountain-front thrusts, including angle of the thrust, amount of horizontal displacement, and presence or absence of fault silvers containing overturned Mesozoic or Paleozoic rocks. Important for further geophysical exploration, these wells have provided data on seismic velocities in Precambrian rocks. Analysis of these data has stimulated further exploration along the fronts already drilled: in Wyoming, the Emigrant Trail, Washakie, and Wind River thrusts, the thrust at the north end of the Laramie Range, and the Casper arch; in Utah and Colorado, the Uncompahgre and Uinta uplits. The geologic success of these wells has encouraged leasing and seismic acquisition on every other mountain-front thrust in the Rockies. An unsuccessful attempt to drill through the Arlington thrust of the Medicine Bow Range will probably only momentarily daunt that play, and attempted penetration of the Axial arch in Colorado has not condemned that area; in fact, another well is being drilled at this time. Untested areas that will be explored in the near furture are: in Wyoming, south flank of the Owl Creek Range, southwest flank of the Gros Ventre Range, east and west flanks of the Big Horn Mountains, west flank of the Big Horn basin, north flank of the Hanna basin; in Utah, south flank of the Uinta Mountains; in Colorado, White River uplift, the north flank of North Park basin, and the Front Range.

  11. Oil and gas prospecting beneath Precambrian of foreland thrust plates in Rocky Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Gries, R.

    1983-01-01

    Only 16 wells in the Rocky Mountain region have drilled through Precambrian rocks to test the 3 to 6 million acres of sedimentary rocks that are concealed and virtually unexplored beneath mountain-front thrusts. One recent test is a major gas discovery, another a development oil well, and over half of the unsuccessful tests had oil or gas shows. These wells have not only set up an exciting play, they have also helped define the structural geometry of the mountain-front thrusts including the angle of the thrust, the amount of horizontal displacement, and the presence or absence of fault silvers containing overturned Mesozoic or Paleozoic rocks. Important for further geophysical exploration, these wells have provided vital data on seismic velocities in Precambrian rocks. Analysis of these data has stimulated further exploration along the fronts already drilled in Wyoming, the Emigrant Trail thrust, the Washakie thrust, the Wind River thrust, the thrust at the north end of the Laramie Range, and the Casper arch; in Utah and Colorado, the Uncompahgre and Uinta uplifts. The geologic success of these wells has encouraged leasing and seismic acquisition on every other mountain-front thrust in the Rockies. An unsuccessful attempt to drill through the Arlington thrust of the Medicine Bow Range will probably only momentarily daunt that play, and the attempted penetration of the Axial arch in Colorado has not condemned that area; in fact, another well is being drilled at this time. Untested areas that will be explored in the near future are: in Wyoming, the south flank of the Owl Creek Range, the southwest flank of the Gros Ventre Range, the east and west flanks of the Big Horn Mountains, the west flank of the Big Horn basin, the north flank of the Hanna basin; in Utah, the south flank of the Uinta Mountains; and in Colorado, the White River uplift, the north flank of North Park basin, and the Front Range.

  12. Simultaneous Inversion of Interpolated Receiver Functions, Surface-wave Dispersion, and Gravity Observations for Lithospheric Structure Beneath the Eastern United States

    Science.gov (United States)

    Chai, C.; Ammon, C. J.; Maceira, M.; Herrmann, R. B.

    2015-12-01

    The unprecedented high-quality seismic data from Earthscope's Transportable Array provide us a great opportunity to investigate the subsurface structure beneath North America. Even with such a fine network, tightly constraining the 3D lithospheric structure is a challenge. Integrating complementary geophysical observations in simultaneous inversions has produced promising results. We have developed a receiver-function wavefield interpolation/smoothing method to enhance the complementariness of receiver functions and surface-wave dispersion. Combining information from adjacent seismic stations suppresses poorly sampled and difficult-to-interpret back-azimuthal variations and allows the stable extraction of the key features in the receiver-function wavefield. The interpolated receiver functions are inverted simultaneously with Rayleigh-wave phase and group velocities and Bouguer gravity observations to produce a robust estimate of the broad 3D shear-wave speed variations beneath the eastern United States. P-wave velocities and density variations are related to shear-speed using empirical velocity ratios and relations. We constrain the 3D variations to be laterally and vertically smooth. Application of the same methods to the western conterminous United States resulted in velocity images that are consistent with published models on the first order. With the completion of the Transportable Array deployment in the northeast US, the seismic dataset beneath the eastern U.S. region is complete. Preliminary inversions contain expected near-surface low shear-wave speeds associated with large basins and coastal regions and thicker crust beneath the interior compared with the coastal regions. Speeds in the upper mantle are generally typical, but the model includes several regions of relatively slow mantle beneath the northern Mississippi Embayment, the east coast, and beneath New England.

  13. Surface wave tomography applied to the North American upper mantle

    Science.gov (United States)

    van der Lee, Suzan; Frederiksen, Andrew

    Tomographic techniques that invert seismic surface waves for 3-D Earth structure differ in their definitions of data and the forward problem as well as in the parameterization of the tomographic model. However, all such techniques have in common that the tomographic inverse problem involves solving a large and mixed-determined set of linear equations. Consequently these inverse problems have multiple solutions and inherently undefinable accuracy. Smoother and rougher tomographic models are found with rougher (confined to great circle path) and smoother (finite-width) sensitivity kernels, respectively. A powerful, well-tested method of surface wave tomography (Partitioned Waveform Inversion) is based on inverting the waveforms of wave trains comprising regional S and surface waves from at least hundreds of seismograms for 3-D variations in S wave velocity. We apply this method to nearly 1400 seismograms recorded by digital broadband seismic stations in North America. The new 3-D S-velocity model, NA04, is consistent with previous findings that are based on separate, overlapping data sets. The merging of US and Canadian data sets, adding Canadian recordings of Mexican earthquakes, and combining fundamental-mode with higher-mode waveforms provides superior resolution, in particular in the US-Canada border region and the deep upper mantle. NA04 shows that 1) the Atlantic upper mantle is seismically faster than the Pacific upper mantle, 2) the uppermost mantle beneath Precambrian North America could be one and a half times as rigid as the upper mantle beneath Meso- and Cenozoic North America, with the upper mantle beneath Paleozoic North America being intermediate in seismic rigidity, 3) upper-mantle structure varies laterally within these geologic-age domains, and 4) the distribution of high-velocity anomalies in the deep upper mantle aligns with lower mantle images of the subducted Farallon and Kula plates and indicate that trailing fragments of these subducted

  14. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  15. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed....... This validation complements previously demonstrated accuracy for the same model in simulating pipeline scour processes in pure-wave environments. The model was subsequently utilized to simulate combined wave-plus-current scour over a wide range of combined Keulegan–Carpenter numbers and relative current strengths...

  16. Kelvin-Helmholtz wave generation beneath hovercraft skirts

    Science.gov (United States)

    Sullivan, P. A.; Walsh, C.; Hinchey, M. J.

    1993-05-01

    When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.

  17. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  18. The Dumbarton Oaks Tlazolteotl: looking beneath the surface

    OpenAIRE

    MacLaren Walsh, Jane

    2014-01-01

    The Dumbarton Oaks Tlazolteotl: looking beneath the surface. Some of the earliest and most revered pre-Columbian artifacts in the world’s major museum and private collections were collected prior to the advent of systematic, scientific archaeological excavation, and have little or no reliable provenience data. They have consistently posed problems for researchers due to anomalies of theme, material, size, technical virtuosity and iconography. This paper offers a historical and scientific appr...

  19. Flow separation and resuspension beneath shoaling nonlinear internal waves

    Science.gov (United States)

    Boegman, Leon; Ivey, Gregory N.

    2009-02-01

    Laboratory observations are presented showing the structure and dynamics of the turbulent bottom boundary layer beneath nonlinear internal waves (NLIWs) of depression shoaling upon sloping topography. The adverse pressure gradient beneath the shoaling waves causes the rear face to steepen, flow separation to occur, and wave-induced near-bottom vortices to suspend bed material. The resuspension is directly attributed to the near-bed viscous stress and to near-bed patches of elevated positive Reynolds stress generated by the vortical structures. These results are consistent with published field observations of resuspension events beneath shoaling NLIWs. Elevated near-bed viscous stresses are found throughout the domain at locations that are not correlated to the resuspension events. Near-bed viscous stress is thus required for incipient sediment motion but is not necessarily a precursor for resuspension. Resuspension is dependent on the vertical velocity field associated with positive Reynolds stress and is also found to occur where the mean (wave-averaged) vertical velocity is directed away from the bed. The results are interpreted by analogy to the eddy-stress and turbulent bursting resuspension models developed for turbulent channel flows.

  20. Recovery of datable charcoal beneath young lavas: lessons from Hawaii.

    Science.gov (United States)

    Lockwood, J.P.; Lipman, P.W.

    1980-01-01

    Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at a lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Practical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas. -Authors

  1. Transuranic distribution beneath a retired underground disposal facility, Hanford Site

    International Nuclear Information System (INIS)

    Past liquid waste disposal practices at the Hanford Site included the discharge of solutions containing low-level concentrations of transuranics directly to the ground via structures collectively termed cribs. A study was conducted to determine the present spatial distribution of plutonium and americium beneath the retired 216-Z-1A Crib, which contains one of the highest cumulative plutonium inventories, 57 kilograms. Sixteen shallow wells were drilled in the unsaturated sediments underlying the facility using specialized, totally contained drilling techniques. Samples from each well were analyzed to obtain profiles of both sediment type and plutonium and americium concentrations as a function of depth beneath the facility. The results of the study show that the highest concentration of plutonium (>104 nCi/g of sediment) occurs within the first 3 meters of sediment beneath the central distribution pipe. The high activity at this position is tentatively attributed to the removal of solid particles from the waste stream by sediment filtration. The distributions of plutonium and americium in the sediments are similar. Peak transuranic activity in the sediment profile is generally associated with silt lenses or with major sedimentary unit interfaces (ie, sand to gravel). The maximum vertical extent of transuranic activity found is approximately 30 meters below the bottom of the crib or approximately 25 meters above the regional water table. No contamination greater than the instrumental limit of detection of 10-5 nCi/g of sediment was found from a depth of 30 to 40 meters, the maximum depth of sampling

  2. Uppermost mantle P wavespeed structure beneath eastern China and its surroundings

    Science.gov (United States)

    Sun, Weijia; Kennett, B. L. N.

    2016-06-01

    Pn travel-time tomography provides a way of improving structural information on the uppermost mantle across eastern China exploiting recent developments of dense seismic networks with well recorded seismic events. We used waveforms from 2009 at Chinese stations, supplemented by bulletin arrival times. An initial P wave model was constructed using the crustal model from CRUST1.0 coupled to a P wave model in the mantle derived from the SL2013sv model to capture the broad-scale features. This starting model enables us to compensate for the large contrasts in crustal thickness across the region. All events were relocated using the initial 3-D P model, and after relocation, consistent patterns of travel-time residuals are obtained. We extract Pn as the first arrival in the distance range 1.8 ∘ to 12 ∘. We use the FMTOMO (Fast Marching TOMOgraphy) approach to invert the travel-time results to generate a P wavespeed structure with a resolution of 2 ∘× 2 ∘ down to 75 km. There are considerable variations in Pn wavespeed in the uppermost mantle across the region. The central portion of the North China craton is imaged with particularly slow P wavespeeds, whilst most of the neighbouring Ordos block is fast. Fast P wavespeeds extend through much of the uppermost mantle beneath eastern Central Asia Orogen, northeast China and beneath the Korean peninsula. In the south, the Sichuan Block and the western Yangtze craton show rather fast P wavespeeds. The Tanlu fault system appears to cut through the crust into the mantle with marked slow P wavespeed at its southern end.

  3. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is

  4. Mantle transition zone beneath northeast China from P-receiver function

    Science.gov (United States)

    Zhang, R.; Wu, Q.

    2015-12-01

    We used receiver functions to examine lateral topographical variations on the 410- and 660-km beneath northeast China and particularly the Kuril-Japan arc junctions. Compared to other receiver functions studies, our analysis was based on greater station coverage of higher density by combining all recent seismic arrays so far deployed in northeast China. Our image shows that the 410-km is featured by a ~10-20 km uplift extending in the NNE direction beneath some areas of the Quaternary basaltic rocks distributed at Abaga and at Wudalianchi. The Clapeyron slope of the olivine phase transiton at 410-km suggests that the uplift is compatible with a negative thermal anomaly. We also confirm a significant depression of the 660 from the Changbai volcanism in the north to Korea in the south along the NW-SE direction. The depression is also accompanied by an uplift of the 660 to the west. The shallow 660-km discontinuity is also particularly detected beneath the Kuril-Japan arc junctions, while it was not detected before. The thermal anomaly at 410 km depth is most likely a remnant of a detached mantle lithosphere that recently sank to depth, thus providing robust evidence for the source and evolution of these basalts. The depression of the 660-km discontinuity may support that the subducting Pacific slab bends sharply and becomes stagnant when it meets strong resistance at a depth of about 670 km. After accumulation to a great extent the stagnant slab finally penetrates into the lower mantle. Combined with the previous triplicated studies, the shallow 660-km may suggest that descending Pacific slab at its leading and junction edges might be accommodated by a tearing near a depth of 660 km. Acknowledgements. Two liner seismic arrays were deployed by the Institute of Geophysics, China Earthquake Administration. The data of the permanent stations were provided by the Data Management Centre of China, National Seismic Network at the Institute of Geophysics, China Earthquake

  5. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake

    Science.gov (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.

    2011-01-01

    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  6. Understanding the nature of mantle upwelling beneath East-Africa

    Science.gov (United States)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep

  7. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling

    Science.gov (United States)

    Cook, Frederick A.; Clowes, Ronald M.; Snyder, David B.; van der Velden, Arie J.; Hall, Kevin W.; Erdmer, Philippe; Evenchick, Carol A.

    2004-04-01

    -British Columbia border, a reflection dips eastward from ˜14.0 s to ˜21.0 s (˜45 to 73 km depth) beneath exposed Eocene magmatic rocks. It is interpreted as a relict subduction surface of the Kula plate. Our interpretation of Proterozoic layered rocks beneath most of the northern Cordillera suggests a much different crustal structure than previously considered: (1) Ancient North American crust comprising up to 25 km of metamorphosed Proterozoic to Paleozoic sediments plus 5-10 km of pre-1.8 Ga crystalline basement projects westward beneath most of the northern Canadian Cordillera. (2) The lateral (500 km by at least 1000 km) and vertical (up to 25 km) extent of the Proterozoic layers and their internal deformation are consistent with a long-lived margin for northwestern North America with alternating episodes of extension and contraction. (3) The detachments that carry deformed rocks of the Mackenzie Mountains and northern Rocky Mountains are largely confined to the upper crustal region above the layering. (4) Accreted terranes include thin klippen that were thrust over North American pericratonic strata (e.g., Yukon-Tanana), and terranes such as Nisling and Stikinia that thicken westward as the underlying Proterozoic layers taper and disappear. (5) The ages of exposed rocks are not necessarily indicative of the ages of underlying crust, a frequent observation in Lithoprobe interpretations, so that estimates of crustal growth based on surface geology may not be representative.

  8. Investigating P- and S-wave velocity structure beneath the Marmara region (Turkey) and the surrounding area from local earthquake tomography

    Science.gov (United States)

    Polat, Gulten; Özel, Nurcan Meral; Koulakov, Ivan

    2016-07-01

    We investigated the crustal structure beneath the Marmara region and the surrounding area in the western part of the North Anatolian fault zone. These areas have high seismicity and are of critical significance to earthquake hazards. The study was based on travel-time tomography using local moderate and micro-earthquakes occurring in the study area recorded by the Multi-Disciplinary Earthquake Research in High Risk Regions of Turkey project and Kandilli Observatory and Earthquake Research Institute. We selected 2131 earthquakes and a total of 92,858 arrival times, consisting of 50,044 P-wave and 42,814 S-wave arrival times. We present detailed crustal structure down to 50 km depth beneath the Marmara region for P- and S-wave velocities using the LOTOS code based on iterative inversion. We used the distributions of the resulting seismic parameters ( Vp, Vs) to pick out significant geodynamical features. The high-velocity anomalies correlate well with fracturing segments of the North Anatolian fault. High seismicity is mostly concentrated in these segments. In particular, low velocities were observed beneath the central Marmara Sea at 5 km depth.

  9. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in

  10. Determination of Nazca slab geometry and state of stress beneath the southern Peru and northern Bolivia

    Science.gov (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Young, B. E.; Zandt, G.; Long, M. D.; Tavera, H.; Minaya, E.

    2013-12-01

    Subduction of the Nazca plate in the north central Andes beneath southern Peru and northern Bolivia is of prime importance because of the role it plays in the evolution of topographic features since the late Eocene (~40 Ma). Previous studies based on slab event locations constrained only with teleseismic data defined a broad area of flat slab subduction in central and southern Peru, which transitions to a normally dipping slab beneath the northernmost Altiplano Plateau. We present earthquake locations and focal mechanisms using data from two temporary arrays: the network of 50 broadband seismic stations that were part of the NSF-Continental Dynamics-funded project 'CAUGHT' (Central Andean Uplift and the Geodynamics of High Topography) and the 40 station NSF- Geophysics funded 'PULSE' array (PerU Lithosphere and Slab Experiment). Our earthquake locations provide new information about the geometry of subducting Nazca slab between 13°S to 18°S. A significant clustering of intermediate depth earthquakes at ~15.5°S and 18°S suggests strong and localized release of tectonic stress in the slab perhaps due to bending and unbending. There are not enough intra-slab events at depth greater than 100 km to constrain the flat slab width north of 14°S. Our analyses indicate that the flat slab is at least 10 to 12 km shallower than the previous estimates (e.g. Cahill and Isacks, 1992; Ramos, 2009). Focal mechanisms and stress axis orientation of slab events at ~15.5°S indicate down-dip extension, where the dip changes from subhorizontal to steeply dipping slab. The continuity in the trend of stress suggests that the slab is deformed but not torn where it transitions from flat to steeply dipping. Data from local slab events will eventually be incorporated into a local tomographic body wave inversion to better constrain the velocity structure of the mantle lithosphere and asthenosphere below the Altiplano. This in turn will provide the valuable information on the process

  11. Regional geothermal effects on subglacial water routes beneath the last Cordilleran ice sheet

    Science.gov (United States)

    Seguinot, Julien; Rogozhina, Irina

    2016-04-01

    The Cordilleran ice sheet, which covered the mountain ranges of north-western America during the last glacial cycle, provides an ideal setting to study the effect of geothermal anomalies on subglacial water routing beneath large-scale ice masses. First, the Cordilleran ice sheet rested directly on a geologically old yet still active subduction zone, which is responsible for significant geothermal variability in the region. Second, the deep valleys and intramontane basins that characterize the Cordilleran topography tend to act as flux wells to further enhance the heterogeneity of this geothermal distribution. Third, compared to the currently ice covered areas such as Greenland and Antarctica where direct observations of the geothermal distribution are exceedingly rare, the region of the North American Cordillera offers insights into geothermal variability from numerous borehole measurements taken across western territories of the US and Canada. Fourth and last, the subglacial water system left ample evidence on the landscape, including vast esker systems, deep canyons and subglacial lake sediments, allowing for an interpretation of the modeled hydrological networks and their comparison with geological data. Here we use the Parallel Ice Sheet Model (PISM) to simulate ice dynamics and simplified subglacial hydrology of the Cordilleran ice sheet through the last 120 000 years. We test several existing reconstructions of the geothermal flux from direct and indirect observations versus a uniform distribution of heat flux to isolate the effects of regional geothermal variability on thermo-hydrological conditions at the base of the last Cordilleran ice sheet. We find that the uncertainties in the geothermal flux distribution as well as regional geothermal anomalies present in the reconstructions have little effect on the modelled ice extent and thickness, but they affect the distribution of melt rate and water routes beneath the ice sheet. All but one of the

  12. Evidence for dike emplacement beneath Iliamna Volcano, Alaska in 1996

    Science.gov (United States)

    Roman, D.C.; Power, J.A.; Moran, S.C.; Cashman, K.V.; Doukas, M.P.; Neal, C.A.; Gerlach, T.M.

    2004-01-01

    Two earthquake swarms, comprising 88 and 2833 locatable events, occurred beneath Iliamna Volcano, Alaska, in May and August of 1996. Swarm earthquakes ranged in magnitude from -0.9 to 3.3. Increases in SO2 and CO2 emissions detected during the fall of 1996 were coincident with the second swarm. No other physical changes were observed in or around the volcano during this time period. No eruption occurred, and seismicity and measured gas emissions have remained at background levels since mid-1997. Earthquake hypocenters recorded during the swarms form a cluster in a previously aseismic volume of crust located to the south of Iliamna's summit at a depth of -1 to 4 km below sea level. This cluster is elongated to the NNW-SSE, parallel to the trend of the summit and southern vents at Iliamna and to the regional axis of maximum compressive stress determined through inversion of fault-plane solutions for regional earthquakes. Fault-plane solutions calculated for 24 swarm earthquakes located at the top of the new cluster suggest a heterogeneous stress field acting during the second swarm, characterized by normal faulting and strike-slip faulting with p-axes parallel to the axis of regional maximum compressive stress. The increase in earthquake rates, the appearance of a new seismic volume, and the elevated gas emissions at Iliamna Volcano indicate that new magma intruded beneath the volcano in 1996. The elongation of the 1996-1997 earthquake cluster parallel to the direction of regional maximum compressive stress and the accelerated occurrence of both normal and strike-slip faulting in a small volume of crust at the top of the new seismic volume may be explained by the emplacement and inflation of a subvertical planar dike beneath the summit of Iliamna and its southern satellite vents. ?? 2003 Elsevier B.V. All rights reserved.

  13. The flow beneath a periodic travelling surface water wave

    International Nuclear Information System (INIS)

    We discuss some recent results on the behaviour of the velocity field, pressure and particle trajectories beneath a periodic travelling wave propagating at the surface of water with a flat bed, in a flow without underlying currents. By analysing the governing equations we avoid approximations, thus ensuring the validity of the results without restrictions on the wave amplitude. In particular, the presented approach applies to waves of large amplitude. We also formulate some open problems, venturing into the relatively unexplored field of wave–current interactions. (topical review)

  14. The ionospheric heating beneath the magnetospheric cleft revisited

    Directory of Open Access Journals (Sweden)

    G. W. Prölss

    2005-03-01

    Full Text Available A prominent peak in the electron temperature of the topside ionosphere is observed beneath the magnetospheric cleft. The present study uses DE-2 data obtained in the Northern Winter Hemisphere to investigate this phenomenon. First, the dependence of the location and magnitude of the temperature peak on the magnetic activity is determined. Next, using a superposed epoch analysis, the mean latitudinal profile of the temperature enhancement is derived. The results of the present study are compared primarily with those obtained by Titheridge (1976, but also with more recent observations and theoretical predictions.

  15. On the Turbulence Beneath Finite Amplitude Water Waves

    CERN Document Server

    Babanin, Alexander V

    2015-01-01

    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  16. Crustal structure beneath China from receiver function analysis

    Science.gov (United States)

    Chen, Youlin; Niu, Fenglin; Liu, Ruifeng; Huang, Zhibin; TkalčIć, Hrvoje; Sun, Li; Chan, Winston

    2010-03-01

    We collected and processed a large amount of high-quality broadband teleseismic waveform data recorded by the 48 Chinese National Digital Seismic Network stations to estimate large-scale lateral variations of crustal thickness and Vp/Vs ratio (hence Poisson's ratio) beneath China. A statistical method was used to select mutually coherent receiver functions at each station, which yielded over 200 traces for most of the stations. With the conventional H-κ (the crustal thickness and Vp/Vs ratio) approach, there is a large trade-off between H and κ. Consequently, multiple maxima are frequently observed in the H-κ domain. We introduced a weight function that measures the coherence between the P-to-S conversion and the reverberation phases at each H-κ grid to reduce the trade-off. A 4th-root stacking method was further applied to reduce uncorrelated noise relative to the linear stack. These modifications turned out to be very effective in reducing the H-κ trade-off and yielded reliable estimates of crustal thickness and Vp/Vs ratio. The crust beneath eastern China is as thin as 31-33 km and the underlying Moho is relatively flat and sharp. In the western part of China, the crust is considerably thicker and shows large variations. The Moho is observed at about 51 km depth along the Tian Shan fold system and about 84 km deep beneath the central part of the Tibetan Plateau. The transition occurs at the so-called N-S belt between about 100° and 110°E, which is featured by unusually high seismicity and large gravity anomalies. The average Vp/Vs ratio over the mainland China crust is about 1.730 (σ = 0.249), significantly lower than the global average 1.78 (σ = 0.27) of the continental crust. This lower Vp/Vs ratio may suggest a general absence of mafic lowermost crustal layer beneath China.

  17. Geophysical expression of the batholith beneath Questa Caldera, New Mexico

    Science.gov (United States)

    Cordell, Lindrith; Long, Carl L.; Jones, David W.

    1985-11-01

    Gravity gradients delineate uncharacteristically straight, north-south trending graben faults in the Rio Grande rift west of Questa caldera, and gravity and audiomagnetotelluric (AMT) data show north-south trending low-density and high-resistivity zones from the caldera southward. A gravity inversion technique was used to isolate the gravity anomaly of the caldera and related intrusive rocks from the complicated Bouguer gravity field. The residual gravity anomaly together with AMT data reported in a companion paper by C. L. Long seem to delineate the subcaldera batholith. Geophysical models indicate this to be a north-south trending dikelike or beamlike body about 25 km long, 5 km wide, and >4 km thick, thickness estimate being limited by the penetration depth of the AMT soundings. The north-south trend is not consistent with the regional pattern of early Miocene southwest directed extension and instead may reflect passive control by preexisting north-south strike-slip faults.

  18. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    Science.gov (United States)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident

  19. Lithospheric Structure of the Northeastern North China Craton Imaged by S Receiver Functions

    Science.gov (United States)

    Wang, Xingchen; Ding, Zhifeng; Zhu, Lupei

    2016-08-01

    Lithosphere thickness variation is important for understanding the significant tectonic reactivation of the North China Craton (NCC) in the Mesozoic and Cenozoic time. Here, we determined the lithospheric structure in the northeastern NCC using S receiver functions from 305 teleseismic events recorded by 223 seismic stations. The Moho and lithosphere-asthenosphere boundary (LAB) are imaged clearly beneath the region. The Moho depth decreases from ~45 km beneath the western NCC to ~25 km beneath the eastern NCC. We found that the lithospheric thickness varies from 60 to 80 km beneath the Trans-North China Orogen (TNCO) and eastern NCC with no significant change of the LAB depth. The lithosphere thickness beneath the northwestern Ordos plateau is 100-130 km. In addition, there is a mid-lithosphere discontinuity at a depth of 80 km beneath the plateau that is connected to the base of thinned lithosphere in TNCO and eastern NCC. We suggest that the mid-lithosphere discontinuity represents a mechanically weak zone in the original cratonic lithosphere of the NCC. The material in the lower lithosphere of the craton, when warmed and hydrated by water released from the subducting slab of Western Pacific, became weak due to decrease in viscosity and/or partial melting and was subsequently removed through small-scale mantle convections.

  20. Evidence for Along-Strike Variations in the Crustal Deformation beneath the Bhutan Himalaya from Receiver Function Imaging and Seismicity

    Science.gov (United States)

    Singer, J.; Kissling, E. H.; Diehl, T.; Hetényi, G.

    2015-12-01

    In the Bhutan Himalaya seismicity and geologic surface features like the Kuru Chu Spur (an embayment of the Main Central Thrust) or the Paro window indicate along-strike variations in the collisional structure. The deeper structure of the orogenic wedge and associated deformation processes, however, are poorly understood partly due to the lack of seismic images of the crust. To better understand these differences in structure and deformation, we use data of a temporary seismic broadband network in Bhutan to image the crustal structure with receiver functions (RF). We apply an iterative 3D wave-based migration scheme including a high-frequency ray approximation, which satisfies Snell's law for dipping interfaces. With this approach we image variably dipping intra-crustal interfaces and the Moho topography across the Bhutan Himalaya, and identify lateral variations in the orogenic structure, which we interpret jointly with a new local earthquake catalog. In West Bhutan, RF imaging depicts a northward dipping Moho at ~50 km depth. The low-angle dip steepens north of ~27.6°N which matches well observations by wide-angle seismics in South Tibet and the hypocenter of a deep crustal earthquake recorded by our network. We also identify the Main Himalayan Thrust (MHT) at ~14 km depth in West Bhutan with a ramp-like structure north of ~27.6°N. The ramp is characterized by a negative impedance contrast in the RF signals and coincides with a concentration of seismicity. In the East, the Moho appears to be almost flat at a depth of ~50 km without clear indications of steepening towards north. Beneath the Kuru Chu Spur in East Bhutan, we observe listric-shaped structures reaching from the upper crust beneath the Lesser Himalaya down to the Moho beneath the Greater Himalaya, which we interpret as a stack of crustal material typical for an accretionary wedge. While these structures appear aseismic, a horizontal alignment of seismicity at ~12 km depth suggests an active MHT in

  1. Crustal Thickness and Lower Crustal Velocity Structure Beneath the Endeavour Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Hill, R.; Soule, D. C.; Wilcock, W. S. D.; Toomey, D. R.; Hooft, E. E. E.; Weekly, R. T.

    2014-12-01

    In 2009, a multi-scale seismic tomography experiment was conducted on the Endeavour segment of the Juan de Fuca Ridge aboard the R/V Marcus G. Langseth. Ocean bottom seismometers were deployed at 64 sites and recorded 5567 shots of a 36-element, 6600 in.3 airgun array. The experiment extended 100 km along-axis and 60 km cross-axis. Two crustal tomographic analyses have previously been completed using data from the experiment. First, 93,000 manually picked crustal refraction arrivals (Pg) were used to develop a three-dimensional model of crustal velocity and thickness in the upper crust (Weekly et al. 2014). Second, this model was used as the starting model in an analysis that incorporated ~19,000 Moho reflection arrivals (PmP) for non-ridge crossing paths to image lower crustal velocity structure and crustal thickness off-axis. A key feature of this model is a ~0.5-1 km increase in crustal thickness beneath a bathymetric plateau that extends to either side of the central portion of the Endeavour segment. We present a tomographic inversions that incorporates ridge-crossing paths to examine spatial variations in lower crustal velocity and crustal thickness beneath the ridge axis. The preliminary results from an inversion that incorporates ~8700 manually picked ridge-crossing PmP arrival times reveals a ~10-km-wide low velocity zone extending throughout the lower crust with a velocity anomaly of -0.3 to -0.5 km/s at ≥4 km depth. This low velocity zone extends both to the north and south of the axial magma chamber reflector imaged previously beneath the central Endeavour. The inversion also shows significant variations in apparent crustal thickness along axis but additional analysis is required to understand whether these variations are well resolved.

  2. Compressional and Shear Wave Structure of the Upper Crust Beneath the Endeavour Segment, Juan De Fuca Ridge

    Science.gov (United States)

    Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.

    2014-12-01

    We present tomographic images of the compressional (Vp) and shear (Vs) wave velocity structure of the upper crust beneath the Endeavour segment of the Juan de Fuca Ridge. This ridge segment is bounded by the Endeavour and Cobb overlapping spreading centers (OSCs) to the north and south, respectively. Near the segment center an axial magma chamber (AMC) reflector underlies 5 hydrothermal vent fields. Our analysis uses data from the Endeavour tomography (ETOMO) experiment. A prior study of the Vp structure indicates that the shallow crust of the Endeavour segment is strongly heterogeneous [Weekly et al., 2014]. Beneath the OSCs Vp is anomalously low, indicating tectonic fracturing. Near the segment center, upper crustal Vp is relatively high beneath the hydrothermal vent fields, likely due to infilling of porosity by mineral precipitation. Lower velocities are observed immediately above the AMC, reflecting increased fracturing or higher temperatures. Anisotropic tomography reveals large amplitude ridge-parallel seismic anisotropy on-axis (>10%), but decreases in the off-axis direction over 5-10 km. Here we use crustal S-wave phases (Sg) — generated by P-to-S conversions near the seafloor — to better constrain crustal properties. Over half the OBSs in the ETOMO experiment recorded horizontal data on two channels that are of sufficiently high quality that we can orient the geophones using the polarizations of water waves from shots within 12 km. For these OBSs, crustal Sg phases are commonly visible out to ranges of ~20-25 km. We invert the Sg data separately for Vs structure, and also jointly invert Pg and Sg data to constrain the Vp/Vs ratio. Preliminary inversions indicate that Vs and Vp/Vs varies both laterally and vertically. These results imply strong lateral variations in both the physical (e.g., crack density and aspect ratio) and chemical (e.g., hydration) properties of oceanic crust.

  3. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco)

    Science.gov (United States)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha

    2016-08-01

    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  4. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco)

    Science.gov (United States)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha

    2016-08-01

    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  5. Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia

    Science.gov (United States)

    Sims, N. E.; Christensen, D. H.; Moore-Driskell, M. M.

    2015-12-01

    Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.

  6. Mantle deformation patterns beneath southern Tibet using splitting of direct-S waves

    Science.gov (United States)

    Mohanty, Debasis D.; Eken, Tuna; Singh, Arun; Singh, Chandrani; Kumar, M. Ravi

    2016-04-01

    This study presents a total of 12008 shear wave splitting measurements obtained using the reference station technique applied to direct S-waves from 106 earthquakes recorded at 143 seismic stations of the Hi-CLIMB seismic network. The results reveal significant anisotropy in regions of southern Tibet where null or negligible anisotropy has been hitherto reported from SK(K)S measurements. While the individual fast polarization direction (FPD) at each station are found to be consistent, the splitting time delays (TDs) exhibit deviations particularly at stations located south of the Indus-Tsangpo Suture Zone. The fast polarization directions (FPDs) are oriented (a) NE-SW to E-W to the south of the Indus-Tsangpo Suture Zone (b) NE-SW to ENE-SSW between Bangong-Nujiang Suture Zone and the Indus-Tsangpo Suture Zone (ITSZ) and (c) E-W to the extreme north of the profile. The splitting time delays (dt) vary between 0.45 and 1.3 s south of the ITSZ (<30 N latitude), while they range from 0.9 to 1.4 s north of it. The overall trends are similar to SKS/SKKS results. However, the differences may be due to the not so near vertical paths of direct S waves which may sample the anisotropy in a different way in comparison to SKS waves, or insufficient number of SKS observations. The significant anisotropy ( 0.8 s) observed beneath Himalaya reveals a complex deformation pattern in the region and can be best explained by the combined effects of deformation related to shear at the base of the lithosphere and subduction related flows with possible contributions from the crust. Additional measurements obtained using direct S-waves provide new constraints in regions with complex anisotropy.

  7. Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves

    Science.gov (United States)

    Singh, Arun; Eken, Tuna; Mohanty, Debasis D.; Saikia, Dipankar; Singh, Chandrani; Ravi Kumar, M.

    2016-01-01

    This study presents a total of 12008 shear wave splitting measurements obtained using the reference-station technique applied to direct S-waves from 106 earthquakes recorded at 143 seismic stations of the Hi-CLIMB seismic network. The results reveal significant anisotropy in regions of southern Tibet where null or negligible anisotropy has been hitherto reported from SK(K)S measurements. While the individual fast polarization direction (FPD) at each station are found to be consistent, the splitting time delays (TDs) exhibit deviations particularly at stations located south of the Indus-Tsangpo Suture Zone. The fast polarization directions (FPDs) are oriented (a) NE-SW to E-W to the south of the Indus-Tsangpo Suture Zone (b) NE-SW to ENE-SSW between Bangong-Nujiang Suture Zone and the Indus-Tsangpo Suture Zone (ITSZ) and (c) E-W to the extreme north of the profile. The splitting time delays (δt) vary between 0.45 and 1.3 s south of the ITSZ (<30°N latitude), while they range from 0.9 to 1.4 s north of it. The overall trends are similar to SKS/SKKS results. However, the differences may be due to the not so near vertical paths of direct S waves which may sample the anisotropy in a different way in comparison to SKS waves, or insufficient number of SKS observations. The significant anisotropy (∼ 0.8 s) observed beneath Himalaya reveals a complex deformation pattern in the region and can be best explained by the combined effects of deformation related to shear at the base of the lithosphere and subduction related flows with possible contributions from the crust. Additional measurements obtained using direct S-waves provide new constraints in regions with complex anisotropy.

  8. Using Cross-Correlation to Detect Upper Mantle Phases beneath Spain and Morocco

    Science.gov (United States)

    Bonatto, L.; Schimmel, M.; Gallart, J.; Morales, J.

    2012-04-01

    A novel technique is implemented to search for weak amplitude upper mantle phases that arrive in the P-wave coda. Cross-correlation and stacking techniques are applied in order to detect waveform similarity and eliminate the source influence from the vertical and radial component of records from single stations. A pilot wave is selected from the vertical component, this wavelet contains the P-wave and part of its coda. Phase cross-correlation (PCC) and geometrically normalized cross-correlation (CCGN) are performed between this pilot and the vertical, and the radial component of each event. It is expected that this procedure detects P to s conversions, and reflections at different mantle discontinuities (such as 410-km and 660-km depth discontinuities). Stacking is used to enhance signals which arrive consistently (near receiver conversions and reflections) and attenuate isolated depth phases and also spurious arrivals. Besides the source equalization, PCC and CCGN provide relative travel times with respect to the P phase through their correlation maxima. The data set used in the real data example is obtained from more than 40 stations selected from the first phase of the IberArray seismic network deployment (TopoIberia project) in south Spain and north Morocco. P-wave reflections and P to s conversions at 410-km and 660-km upper mantle discontinuities were detected beneath the studied region. Both discontinuities are on average within the expected depth range from global studies.

  9. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    Science.gov (United States)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  10. Storing CO{sub 2} under the North Sea Basin - A key solution for combating climate change

    Energy Technology Data Exchange (ETDEWEB)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O' Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-15

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO{sub 2} beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO{sub 2} emissions away from the atmosphere for both the UK and Norway

  11. Collapse of the northern Jalisco continental slope:Subduction erosion, forearc slivering, or subduction beneath the Tres Marias escarpment?

    Science.gov (United States)

    Bandy, W. L.; Mortera-Gutierrez, C. A.; Ortiz-Zamora, G.; Ortega-Ramirez, J.; Galindo Dominguez, R. E.; Ponce-Núñez, F.; Pérez-Calderón, D.; Rufino-Contreras, I.; Valle-Hernández, S.; Pérez-González, E.

    2010-12-01

    The Jalisco subduction zone exhibits several interesting characteristics. Among these is that convergence between the Rivera and North American plate is highly oblique, especially north of 20N, the obliquity progressively increasing to the NW. By analogy to other better studied subduction zones, this distribution of forces should produce a NW-SE extension in the overriding plate, especially north of 20N. This has led to the proposal that the trench perpendicular Bahia de Banderas is an expression of this extension [Kostoglodov and Bandy, JGR, vol. 100, 1995]. To further investigate this proposal, multibeam bathymetric data and seafloor backscatter images, seismic reflection sub-bottom profiles and marine magnetic data were collected during the MORTIC08 campaign of the B.O. EL PUMA in March 2009. The bathymetric data provides for 100% coverage (20 to 200 meter spacing of the actual measured depth value depending on the water depth) of the continental slope and trench areas north of 20N. These data indicate that a marked change occurs in the morphology of the continental slope at 20N. To the north the slope consists of a broad, fairly flat plain lying between a steep lower inner trench slope to the west and a steep, concave seaward, escarpment to the east. In contrast, to the south the continental slope exhibits a more gradual deepening until the steep lower inner trench slope. A prominent submarine canyon deeply incises the continental slope between these two morphotectonic domains. This canyon appears to represent the boundary between two NW-SE diverging forearc blocks or slivers, consistent with the presence of oblique convergence. In contrast, the broad, fairly flat plain is better explained by subsidence induced by subduction erosion (i.e. erosion of the base of the overriding plate underneath the continental slope area). The shoaling of the trench axis northward towards the Puerto Vallarta Graben and subsequent deepening may be related to subduction of the

  12. Guidelines for the selection of sites for disposal of radioactive waste on or beneath the ocean floor

    International Nuclear Information System (INIS)

    An assessment of factors which will probably need to be taken into account in selecting potential sites for the disposal of high-level radioactive wastes into geological formations beneath the ocean floor is presented based in part on a survey of available published and unpublished literature. Since present quantitative knowledge concerning the properties and processes of the sea bed and oceanic waters is poor the guidelines are generally stated in qualitative terms and it is hoped that future research will determine acceptable quantitative values for the parameters involved. The subject is dealt with under the headings; introduction, emplacement below the sea-bed, emplacement on the sea-bed, identification of oceanic areas that might prove suitable for disposal of high-level radioactive wastes (discussion limited to the North Atlantic). 30 references. (U.K.)

  13. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.

    2016-07-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  14. Imaging Transition Zone Thickness Beneath South America from SS Precursors

    Science.gov (United States)

    Schmerr, N.; Garnero, E.

    2006-12-01

    We image detailed upper mantle discontinuity structure beneath a number of geologically active regions, including the South American subduction zone, the Scotia plate subduction zone, and several volcanic hotspots (e.g., the Galapagos Islands), in a region ~10,000 km by 10,000 km wide, spanning 70° S to 20° N and 20° W to 110° W. Precursors to the seismic phase SS are analyzed, which form as a result of underside reflections off seismic discontinuities beneath the midpoint of the SS path and are highly sensitive to discontinuity depth and sharpness. Our SS dataset consists of over 15,000 high-quality transverse component broadband displacement seismograms collected from the Incorporated Research Institutions for Seismology (IRIS), the Canadian National Seismic Network (CNSN), as well as data from EarthScope seismic stations, and from the Canadian Northwest Experiment (CANOE) temporary broadband array deployment. This dataset densely samples several regions in our study area and significantly improves the sampling for this area compared to previous precursor studies. Data with common central SS bouncepoints are stacked to enhance precursory phases. Solution discontinuity structure depends on a number of factors, including dominant seismic period, crustal correction, signal-to-noise ratio threshold, and tomography model used for mantle heterogeneity correction. We exclude precursor data predicted to interfere with other seismic phases, such as topside reflections (e.g., s670sS), which have been demonstrated to contaminate final stacks. Solution transition zone thickness is at least 20 km thicker than global average estimates of 242 km along the northwestern portion of the South American subduction complex (Peru, Ecuador, and Columbia); this thickening extends 1000-1500 km to the east beneath the continent, but does not appear to continue south of -20° latitude along the convergent margin. A minimum of 10 km of thickening is imaged to the west of the Scotia

  15. Upper mantle anisotropy beneath Peru from SKS splitting: Constraints on flat slab dynamics and interaction with the Nazca Ridge

    Science.gov (United States)

    Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando

    2015-02-01

    The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.

  16. Ocean mixing beneath Pine Island Glacier Ice Shelf

    Science.gov (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  17. Similarity law of fluctuating pressure spectrum beneath hydraulic jump

    Institute of Scientific and Technical Information of China (English)

    LIAN JiJian; WANG JiMin; GU JinDe

    2008-01-01

    Similarity law is the conversion rule between model and prototype, on which a lot of research works have been done, with no agreement reached referring to the similarity law of fluctuating pressure fre-quency spectrum. Experimental data of peak frequency and dominant frequency range of fluctuating pressure spectrum beneath hydraulic jump obtained from serial models of scales 1:1, 1:2 and 1:5 are compared. As a result, similarity law of fluctuating pressure spectrum in the strongly rolling area agrees with the gravity law. As peak frequency and dominant frequencies of fluctuating pressures in hydraulic normalized spectrums of fluctuating pressures show that the similarity nearly agrees with the gravity law.

  18. Can slabs melt beneath forearcs in hot subduction zones?

    Science.gov (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  19. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong

    2014-01-01

    We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.

  20. Rayleigh wave phase velocities, shear wave structure and azimuthal anisotropy beneath southern California

    Science.gov (United States)

    Yang, Y.; Forsyth, D. W.

    2003-12-01

    We use normal mode Rayleigh wave phase and amplitude data recorded at the TriNet network in southern California to invert for phase velocities at periods from 25 to 143 s. These phase velocities were used to obtain 3-D S-wave velocity structure in the upper mantle. Phase velocities on the Pacific plate side of the plate boundary are systematically higher than on the North American side, suggesting that seismic velocity contrast between these two plates extends to the upper mantle. In the upper mantle, there is a pronounced low velocity anomaly beneath the Long Valley/Mono Lake region, which has not been observed by previous tomographic studies. This low velocity anomaly is consistent with melting extending to the base of the crust beneath this part of the western Basin and Range province, as suggested based on the composition of late Cenozoic basalts (Wang et al., JGT, 2002). There is a high velocity anomaly under the Transverse Range and a slightly slow velocity anomaly under the Salton Trough, both of which have been observed in previous body and/or surface wave tomographic studies. Assuming uniform anisotropic structure in the whole study area, the strength of anisotropy is about 2.5% at all periods. However, the fast direction varies with period. The fast direction of apparent anisotropy is nearly W-E at periods less than 50 s, consistent with the fast polarization axis of SKS splitting measurements in Southern California. At periods larger than 67s, the fast direction changes to NW-SE, subparallel to the plate boundary. This two-layer azimuthal anisotropy structure is in contrast to the one-layer SKS splitting model for southern California, implying that lateral heterogeneity may affect the apparent anisotropy of long-period surface waves. If anisotropy is allowed to vary laterally in our models, we find a minimum in azimuthal anisotropy in the vicinity of the Transverse Range, suggesting possible more vertical alignment of the olivine a-axis in a region of

  1. High velocity anomaly beneath the Deccan volcanic province: Evidence from seismic tomography

    Science.gov (United States)

    Iyer, H.M.; Gaur, V.K.; Rai, S.S.; Ramesh, D.S.; Rao, C.V.R.; Srinagesh, D.; Suryaprakasam, K.

    1989-01-01

    Analysis of teleseismic P-wave residuals observed at 15 seismograph stations operated in the Deccan volcanic province (DVP) in west central India points to the existence of a large, deep anomalous region in the upper mantle where the velocity is a few per cent higher than in the surrounding region. The seismic stations were operated in three deployments together with a reference station on precambrian granite at Hyderabad and another common station at Poona. The first group of stations lay along a west-northwesterly profile from Hyderabad through Poona to Bhatsa. The second group roughly formed an L-shaped profile from Poona to Hyderabad through Dharwar and Hospet. The third group of stations lay along a northwesterly profile from Hyderabad to Dhule through Aurangabad and Latur. Relative residuals computed with respect to Hyderabad at all the stations showed two basic features: a large almost linear variation from approximately +1s for teleseisms from the north to-1s for those from the southeast at the western stations, and persistance of the pattern with diminishing magnitudes towards the east. Preliminary ray-plotting and three-dimensional inversion of the P-wave residual data delineate the presence of a 600 km long approximately N-S trending anomalous region of high velocity (1-4% contrast) from a depth of about 100 km in the upper mantle encompassing almost the whole width of the DVP. Inversion of P-wave relative residuals reveal the existence of two prominent features beneath the DVP. The first is a thick high velocity zone (1-4% faster) extending from a depth of about 100 km directly beneath most of the DVP. The second feature is a prominent low velocity region which coincides with the westernmost part of the DVP. A possible explanation for the observed coherent high velocity anomaly is that it forms the root of the lithosphere which coherently translates with the continents during plate motions, an architecture characteristic of precambrian shields. The low

  2. Chemical transport beneath a uranium mill tailings pile, Riverton, Wyoming

    International Nuclear Information System (INIS)

    A detailed geochemical study at the Riverton site was undertaken in order to define the nature of chemical transport between an inactive tailings pile and the relationship between the underlying shallow groundwater system. Isotopic measurements of oxygen, deuterium, and tritium showed that although both the shallow alluvial aquifer and a deeper aquifer in the Wind River Formation were derived from a similar source, the nearby river, recharge from the tailings pile is occurring only in the shallow alluvium. 34S/32S ratios are used as a conservative tracer in defining zones of tailings water contamination. Offsite, drilling has revealed the existence of a chemical plume in which calcium and sulfate concentrations are an order of magnitude or more above background. The plume is also characterized by high dissolved molybdenum concentrations. Pore waters in the tailings exhibit extremely high concentrations of Al, Fe and SO4 and low pH. The dissolution of calcite occurs in the alluvium beneath the pile which is characterized by high partial pressures of CO/sub 2(g)/ in the tailings while serving to neutralize pH. The groundwater, however remains saturated with CaCO3, suggesting that a buffering capacity is active. Beneath and downgradient from the tailings, the groundwater becomes saturated with gypsum. The chemical speciation code, PHREEQE, was used to model mixing reactions, assuming a hydrologically static system. Reaction path simulations were fit to observed trends of pH that were depressed in the contaminated groundwater. The simulations estimate one percent mixing of tailings-pore water with groundwater from the shallow alluvial aquifer

  3. Crustal and uppermost mantle structure beneath the United States

    Science.gov (United States)

    Shen, Weisen; Ritzwoller, Michael H.

    2016-06-01

    This paper presents a new model of the shear velocity structure of the crust and uppermost mantle beneath the contiguous U.S. The model is based on more than a decade of USArray Transportable Array (TA) data across the U.S. and derives from a joint Bayesian Monte Carlo inversion of Rayleigh wave group and phase speeds determined from ambient noise and earthquakes, receiver functions, and Rayleigh wave ellipticity (H/V) measurements. Within the Bayesian inverse theoretic framework, a prior distribution of models is posited and a posterior distribution is inferred beneath all of the more than 1800 TA stations across the U.S. The resulting mean and standard deviation of the mean of the posterior distribution at each station summarize the inversion results, which are then interpolated onto a regular 0.25°×0.25° grid across the U.S. to define the final 3-D model. We present arguments that show that the standard deviation of the posterior distribution overestimates the effect of nonsystematic errors in the final model by a factor of 4-5 and identify uncertainties in density and mantle Q as primary potential sources of remaining systematic error in the final model. The model presents a great many newly resolved structural features across the U.S. that require further analysis and dedicated explication. We highlight here low-velocity anomalies in the upper mantle that underlie the Appalachians with centers of anomalies in northern Georgia, western Virginia, and, most prominently, New England.

  4. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-01

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  5. Development of basins in the Inner Moray Firth and the North Sea by crustal extension and dextral displacement of the Great Glen Fault

    Science.gov (United States)

    McQuillin, R.; Donato, J. A.; Tulstrup, J.

    1982-08-01

    Reflection seismic data provide evidence that Mesozoic dextral movements along the Great Glen Fault line have had an important influence on the development of the Inner Moray Firth Basin. Geophysical evidence further indicates that deep structure beneath the inner basin is dissimilar to that beneath the outer part and Viking and Central Grabens in the North Sea. Tectonic development of the inner basin can nevertheless be fitted into a pattern of North Sea extensional movements which led to the formation of the graben system with which the major North Sea hydrocarbon resources are associated.

  6. Seismic Hazard Implications of a Vanished Punjab Mountain Rammed 100 km Beneath the Southeast End of the Kashmir Valley

    Science.gov (United States)

    Schiffman, C. R.; Bali, B. S.; Bilham, R. G.

    2011-12-01

    An active normal fault parallel-to, and midway between, the Zanskar and Pir Pinjal ranges at the SE end of the Kashmir Valley (33.56N, 75.51E) raises the intriguing question of why a normal fault should exist in a region of prevailing Himalayan compression. We believe the normal fault is caused by a prominent bulge on the Indian plate. The fault is approximately 5 km long and has a surface scarp of approximately 4 m, tapering to zero to the WNW and ESE. Its recent origin is indicated by its offset of glacial moraines and stream channels with the subsequent formation of several poorly developed uphill-facing colluvial wedges, and a conspicuous 40 m x 60 m Alpine sag pond (Oldham, 1988). The fault dips steeply to the SW and its limited offset suggests that it was possibly formed in a single earthquake with Mw less than 6.0. The fault lies approximately 70 km northeast of a prominent salient in the Himalayan frontal thrusts west of the town of Jammu, and is one of several similar faults spaced roughly 5 km apart in a north-south line. The tensile surface stress implied by normal faulting is suggestive of north-south convex flexure of the region, possibly caused by the passage of a bulge on the Indian plate beneath SE Kashmir. We suggest that the Jammu salient and these normal faults record the passage of a mountain or range of mountains on the Indian plate beneath the divide separating the Chenab and Jhelum river drainages. The passage of the range is presumably responsible for the current location of the river divide and for the high passes that close the SE end of the Kashmir valley. Assuming that the crest of the range has passed 100 km beneath the Himalaya places the date of its initial collision with the frontal thrusts at 6 Mya. We anticipate that subduction of this range has resulted in significantly higher friction of the décollement here, influencing the style of Himalayan thrust faulting, and perhaps controlling the along-strike initiation or termination of

  7. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    Science.gov (United States)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  8. Electrical conductivity anomaly beneath Mare Serenitatis detected by Lunokhod 2 and Apollo 16 magnetometers

    Science.gov (United States)

    Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.

    1979-01-01

    Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.

  9. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    Science.gov (United States)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition

  10. Signature of slab fragmentation beneath Anatolia from full-waveform tomography

    Science.gov (United States)

    Govers, Rob; Fichtner, Andreas

    2016-09-01

    When oceanic basins close after a long period of convergence and subduction, continental collision and mountain building is a common consequence. Slab segmentation is expected to have been relatively common just prior to closure of other oceans in the geological past, and may explain some of the complexity that geologists have documented in the Tibetan plateau also. We focus on the eastern Mediterranean basin, which is the last remainder of a once hemispherical neo-Tethys ocean that has nearly disappeared due to convergence of the India and Africa/Arabia plates with the Eurasia plate. We present new results of full-waveform tomography that allow us to image both the crust and upper mantle in great detail. We show that a major discontinuity exists between western Anatolia lithosphere and the region to the east of it. Also, the correlation of geological features and the crustal velocities is substantially stronger in the west than in the east. We interpret these observations as the imprint in the overriding plate of fragmentation of the neo-Tethys slab below it. This north-dipping slab may have fragmented following the Eocene (about 35 million years ago) arrival of a continental promontory (Central Anatolian Core Complex) at the subduction contact. From the Eocene through the Miocene, slab roll-back ensued in the Aegean and west Anatolia, while the Cyprus-Bitlis slab subducted horizontally beneath central and east Anatolia. Following collision of Arabia (about 16 million years ago), the Cyprus-Bitlis slab steepened, exposing the crust of central and east Anatolia to high temperature, and resulting in the velocity structure that we image today. Slab fragmentation thus was a major driver of the evolution of the overriding plate as collision unfolded.

  11. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  12. Investigation of upper crustal structure beneath eastern Java

    Science.gov (United States)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummnins, Phil; Saygin, Erdinc; Masturyono

    2016-05-01

    The complexity of geology structure in eastern Java causes this region has many potential resources as much as the disasters. Therefore, the East Java province represents an interesting area to be explored, especially regarding its upper crustal structure. To investigate this structure, we employ the Ambient Noise Tomography (ANT) method. We have used seismic waveform data from 25 Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 26 portable seismographs installed for 2 to 8 weeks. Inter-station cross-correlation produces more than 800 Rayleigh wave components, which depict the structure beneath eastern Java. Based on the checkerboard resolution test, we found that the optimal grid size is 0.25ox0.25o. Our inversion results for the periods of 1 to 10 s indicate a good agreement with geological and Bouguer anomaly maps. Rembang high depression, most of the southern mountains zone, the northern part of Rembang zone and the central part of the Madura Island, the area of high gravity anomaly and areas dominated with igneous rocks are associated with high velocity zones. On the other hand, Kendeng zone and most of the basin in the Rembang zone are associated with low velocity zones.

  13. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  14. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data

    Science.gov (United States)

    Syracuse, Ellen M.; Maceira, Monica; Prieto, Germán A.; Zhang, Haijiang; Ammon, Charles J.

    2016-06-01

    Subduction beneath the northernmost Andes in Colombia is complex. Based on seismicity distributions, multiple segments of slab appear to be subducting, and arc volcanism ceases north of 5° N. Here, we illuminate the subduction system through hypocentral relocations and Vp and Vs models resulting from the joint inversion of local body wave arrivals, surface wave dispersion measurements, and gravity data. The simultaneous use of multiple data types takes advantage of the differing sensitivities of each data type, resulting in velocity models that have improved resolution at both shallower and deeper depths than would result from traditional travel time tomography alone. The relocated earthquake dataset and velocity model clearly indicate a tear in the Nazca slab at 5° N, corresponding to a 250-km shift in slab seismicity and the termination of arc volcanism. North of this tear, the slab is flat, and it comprises slabs of two sources: the Nazca and Caribbean plates. The Bucaramanga nest, a small region of among the most intense intermediate-depth seismicity globally, is associated with the boundary between these two plates and possibly with a zone of melting or elevated water content, based on reduced Vp and increased Vp/Vs. We also use relocated seismicity to identify two new faults in the South American plate, one related to plate convergence and one highlighted by induced seismicity.

  15. Seismic discontinuities beneath the southwestern United States from S receiver functions

    Science.gov (United States)

    Akanbi, Olufemi; Li, Aibing

    2016-05-01

    S-receiver functions along the Colorado Plateau-Rio Grande Rift-Great Plains Transect known as LA RISTRA in the southwestern United States have been utilized to map seismic discontinuities beneath this tectonically active region. Individual receiver functions were stacked according to ray piercing points with moveout corrections in order to improve the signal-to-noise ratio of the converted S-to-P phases. A mantle discontinuity, which is interpreted as the lithosphere-asthenosphere boundary (LAB), is observed along the profile with depth ranging from 80 km beneath the Rio Grande Rift (RGR) to 100 km beneath the Great Plains (GP) and 120-180 km beneath the Colorado Plateau (CP). The shallow LAB beneath the Rio Grande Rift is indicative of lithosphere extension and asthenosphere upwarp. The LAB deepens sharply at the RGR-CP and RGR-GP boundaries, providing evidence for edge-driven, small-scale mantle convection beneath LA RISTRA. Two local discontinuities beneath the southeastern Colorado Plateau are imaged at ~ 250 km and ~ 300 km and could be the top and base of the eroded lithosphere, respectively. The S receiver function images suggest that edge-driven, small-scale convection is probably the mantle source for recent extension and uplift in the Rio Grande Rift and the Colorado Plateau.

  16. Shear wave anisotropy beneath the Andes from the BANJO, SEDA, and PISCO experiments

    Science.gov (United States)

    Polet, J.; Silver, P. G.; Beck, S.; Wallace, T.; Zandt, G.; Ruppert, S.; Kind, R.; Rudloff, A.

    2000-03-01

    We present the results of a detailed shear wave splitting analysis of data collected by three temporary broadband deployments located in central western South America: the Broadband Andean Joint experiment (BANJO), a 1000-km-long east-west line at 20°S, and the Projecto de Investigacion Sismologica de la Cordillera Occidental (PISCO) and Seismic Exploration of the Deep Altiplano (SEDA), deployed several hunderd kilometers north and south of this line. We determined the splitting parameters ϕ (fast polarization direction) and δt (splitting delay time) for waves that sample the above- and below-slab regions: teleseismic *KS and S, ScS waves from local deep-focus events, as well as S waves from intermediate-focus events that sample only the above-slab region. All but one of the *KS stacks for the BANJO stations show E-W fast directions with δt varying between 0.4 and 1.5 s. However, for *KS recorded at most of the SEDA and PISCO stations, and for local deep-focus S events north and south of BANJO, there is a rotation of ϕ to a more nearly trench parallel direction. The splitting parameters for above-slab paths, determined from events around 200 km deep to western stations, yield small delay times (≤0.3 s) and N-S fast polarization directions. Assuming the anisotropy is limited to the top 400 km of the mantle (olivine stability field), these data suggest the following spatial distribution of anisotropy. For the above-slab component, as one goes from east (where *KS reflects the above-slab component) to west, ϕ changes from E-W to N-S, and delay times are substantially reduced. This change may mark the transition from the Brazilian craton to actively deforming (E-W shortening) Andean mantle. We see no evidence for the strain field expected for either corner flow or shear in the mantle wedge associated with relative plate motion. The small delay times for above-slab paths in the west require the existence of significant, spatially varying below-slab anisotropy to

  17. Edible North

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    2012-01-01

    -constitutive role in the formation of publics (Marres 2007) and the ways in which they are themselves reconfigured as ‘matters of concern’ (Latour 2003) in this process. I draw on digital cartographies and fieldwork carried out under the Carlsberg funded project Edible North: Mapping the ’New Nordic Food......With the publication of the Manifesto for a New Nordic Cuisine in 2004, the gastronomic potentials of the Scandinavian flora and fauna became the basis for a social innovation project with ambitions far beyond fine dining and select produce. Since then New Nordic Food has become a key platform...... for articulating concerns about (and discuss solutions for) more divisive or contentious topics like the lack of development in peripheral Scandinavia, the relationship between diet and disease, or the sustainability of our food production system. From an STS perspective it is interesting to contemplate how...

  18. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    Science.gov (United States)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  19. Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy

    Institute of Scientific and Technical Information of China (English)

    LI Weiping; LUO Yong; XIA Kun; LIU Xin

    2008-01-01

    A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence snow accumulation and ablation under the canopy. Mass balance and energetics of snow beneath a Scots pine canopy in Finland at different stages of the 2003-2004 and 2004-2005 snow seasons are analyzed. For the fairly dense Scots pine forest, drop-off of the canopy-intercepted snow contributes, in some cases, twice as much to the underlying snowpack as the direct throughfall of snow. During early winter snow melting, downward turbulent sensible and condensation heat fluxes play a dominant role together with downward net longwave radiation. In the final stage of snow ablation in middle spring, downward net all-wave radiation dominates the snow melting. Although the downward sensible heat flux is comparable to the net solar radiation during this period, evaporative cooling of the melting snow surface makes the turbulent heat flux weaker than net radiation. Sensitivities of snow processes to leaf area index (LAI) indicate that a denser canopy speeds up early winter snowmelt, but also suppresses melting later in the snow season. Higher LAI increases the interception of snowfall, therefore reduces snow accumulation under the canopy during the snow season; this effect and the enhancement of downward longwave radiation by denser foliage outweighs the increased attenuation of solar radiation, resulting in earlier snow ablation under a denser canopy. The difference in sensitivities to LAI in two snow seasons implies that the impact of canopy density on the underlying snowpack is modulated by interannual variations of climate regimes.

  20. Fine structure of Pn velocity beneath Sichuan-Yunnan region

    Institute of Scientific and Technical Information of China (English)

    黄金莉; 宋晓东; 汪素云

    2003-01-01

    We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.

  1. Slab melting and magma generation beneath the southern Cascade Arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  2. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.; RamaRao, P.

    For the first time, we report the amplitude variation with angle (AVA) pattern of bottom-simulating reflectors (BSRs) beneath fracture-filled gas hydrate deposits when the effective medium is anisotropic. The common depth point (CDP) gathers of two...

  3. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle

    OpenAIRE

    Nicholls, K.W.; Abrahamsen, E.P.; Buck, J.J.H.; P. A. Dodd; Goldblatt, C.; Griffiths, G; K. J. Heywood; Hughes, N.E.; Kaletzky, A.; Lane-Serff, G.F.; McPhail, S.D.; Millard, N. W.; Oliver, K. I. C.; Perrett, J; Price, M. R.

    2006-01-01

    The cavities beneath Antarctic ice shelves are among the least studied regions of the World Ocean, yet they are sites of globally important water mass transformations. Here we report results from a mission beneath Fimbul Ice Shelf of an autonomous underwater vehicle. The data reveal a spatially complex oceanographic environment, an ice base with widely varying roughness, and a cavity periodically exposed to water with a temperature significantly above the surface freezing point. The result...

  4. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  5. Microfungi in the soil beneath common oak and their effect on Armillaria occurrence

    OpenAIRE

    Hanna Kwaśna

    2014-01-01

    Microfungal assemblages in a soil beneath 30- and 50·year-old oaks and their 2-year-old stumps were studied using the soil dilution plate method. A total of 98 culturable microfungi were isolated. Compared to the living oaks before felling and the control living oaks, the density of Mortierella macrocystis, Penicillium jonczewskii, Pseudogymnoascus roseus Sporothrix schenckii, Tolypoccladiumum inflatum and Umbelopsis vinacea sigificantly inacased in the soil beneath slumps in the 32- and 52-y...

  6. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    Science.gov (United States)

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  7. Crustal shear-wave velocity structure beneath Sumatra from receiver function modeling

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Goyal, Ayush

    2016-05-01

    We estimated the shear-wave velocity structure and Vp/Vs ratio of the crust beneath the Sumatra region by inverting stacked receiver functions from five three-component broadband seismic stations, located in diverse geologic setting, using a well known non-linear direct search approach, Neighborhood Algorithm (NA). Inversion results show significant variation of sediment layer thicknesses from 1 km beneath the backarc basin (station BKNI and PMBI) to 3-7 km beneath the coastal part of Sumatra region (station LHMI and MNAI) and Nias island (station GSI). Average sediment layer shear velocity (Vss) beneath all the stations is observed to be less (∼1.35 km/s) and their corresponding Vp/Vs ratio is very high (∼2.2-3.0). Crustal thickness beneath Sumatra region varies between 27 and 35 km, with exception of 19 km beneath Nias island, with average crustal Vs ∼3.1-3.4 km/s (Vp/Vs ∼1.8). It is well known that thick sediments with low Vs (and high Vp/Vs) amplify seismic waves even from a small-magnitude earthquake, which can cause huge damage in the zone. This study can provide the useful information of the crust for the Sumatra region. Since, Sumatra is an earthquake prone zone, which suffered the strong shaking of Great Andaman-Sumatra earthquake; this study can also be helpful for seismic hazard assessment.

  8. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    Science.gov (United States)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  9. Extensive, water-rich magma reservoir beneath southern Montserrat

    Science.gov (United States)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  10. Metastable olivine wedge beneath northeast China and its applications

    Science.gov (United States)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  11. Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol

    Science.gov (United States)

    Wilcox, E. M.

    2010-12-01

    Marine stratocumulus cloud properties, and the free-tropospheric environment above them, are examined in NASA A-Train satellite data for cases where smoke from seasonal burning of the West African savannah overlay the persistent southeast Atlantic stratocumulus cloud deck. CALIPSO space-borne lidar observations show that features identified as layers of aerosol occur predominantly between 2 km and 4 km. Layers identified as cloud features occur predominantly below 1.5 km altitude and beneath the layer of elevated smoke aerosol. The diurnal mean shortwave heating rates attributable to the absorption of solar energy in the aerosol layer is nearly 1.5 K d-1 for an aerosol optical thickness value of 1, and increases to 1.8 K d-1 when the smoke resides above clouds owing to the additional component of upward solar radiation reflected by the cloud. As a consequence of this heating, the 700 hPa air temperature above the cloud deck is warmer by approximately 1 K on average for cases where smoke is present above the cloud compared to cases without smoke above cloud. The warmer conditions in the free-troposphere above the cloud during smoke events coincide with cloud liquid water path values that are greater by 20 g m-2 and cloud tops that are lower for overcast conditions compared to periods with low amounts of smoke. The observed thickening and subsidence of the cloud layer are consistent with published results of large-eddy simulations showing that solar absorption by smoke above stratocumulus clouds increases the buoyancy of free-tropospheric air above the temperature inversion capping the boundary layer. Increased buoyancy inhibits the entrainment of dry air through the cloud-top, thereby helping to preserve humidity and cloud cover in the boundary layer. The direct radiative effect of absorbing aerosols residing over a bright cloud deck is a positive radiative forcing (warming) at the top of the atmosphere. However, the greater liquid water path for cases of smoke

  12. Metasomatism in the oceanic lithosphere beneath La Palma, Canary Islands

    Science.gov (United States)

    Janisch, Astrid; Ntaflos, Theodoros

    2016-04-01

    host basalt) indicate that these veins have been formed prior to their transport to the surface. During to their transport to the surface host basalt infiltration propagated along these veins leading to the breakdown of the amphibole and/or phlogopite and the formation of glass, secondary clinopyroxene and spinel. The glass is of tephra-phonolitic composition in the peridotite and foiditic along the amphibole-phlogopite-veins. Mantle xenoliths from San Antonio reveal that the oceanic lithosphere beneath La Palma has been affected by different metasomatic processes. The metasomatic agents were silicate melts causing the formation of secondary clinopyroxenes and the breakdown of orthopyroxenes, whereas hydrous silica fluids formed the various amphibole and/or phlogopite veins-veinlets. Additionally, the presence of a veinlet containing haüyne and glass is a strong indication for host basalt infiltration since these basalts are haüyne bearing.

  13. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  14. Geodynamic evolution of the lithosphere beneath the Eastern Anatolia region: Constraints from geodynamic modeling

    Science.gov (United States)

    Memis, Caner; Hakan Gogus, Oguz; Pysklywec, Russell; Keskin, Mehmet; Celal Sengor, A. M.; Topuz, Gultekin

    2016-04-01

    The east Anatolian orogenic plateau is characterized by an average elevation of 2 km, and is delimited by the Bitlis-Zagros collision zone to the south and the Pontide arc to the north. Stratigraphic evidence suggests that the high plateau attained its current elevation since the Serravallian (about 12 million years ago), but probably did not reach its present height until at least the latest Pliocene. While the crustal shortening following the Arabia-Eurasia collision in the south enabled its relatively rapid rise and regional tectonic evolution, the presumed removal of the downgoing slab beneath east Anatolia has potentially played a significant role in this geodynamic configuration. According to the proposed scenario, the northward subducting slab of Neo-Tethys peels away from the overlying crust similar to the lithospheric delamination model. In this work, we performed a series of lithospheric removal models by varying rheological, physical and mechanical properties by using 2D numerical geodynamic experiments, (e.g. plate convergence rate, crustal thickness, mantle lithosphere yield-stress). Our model results show that the average amount of delamination hinge motion is maximum (18 km/my) when the lower crustal rheology is felsic granulite. The slab break-off only occurs at lower convergence rates (≤ 2 cm/yr), and is imposed on the margin of delaminating mantle lithosphere. The surface uplift takes place above the asthenospheric column (or plateau gap) through isostatic and thermal support of asthenospheric upwelling, and varies dependent on the width of the asthenospheric column. However; with higher plate convergence rates (≥3 cm/yr), the asthenospheric column does not widen enough and the continental collision occurs rather than delamination/peeling away. In this case, the average uplift appears in the central section of the crust, and this exceeds a surface elevation of 3 km. All model results are consistent with the observations from the Eastern

  15. Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity?

    Science.gov (United States)

    Jenkins, J.; Cottaar, S.; White, R. S.; Deuss, A.

    2016-01-01

    The presence of a mantle plume beneath Iceland has long been hypothesised to explain its high volumes of crustal volcanism. Practical constraints in seismic tomography mean that thin, slow velocity anomalies representative of a mantle plume signature are difficult to image. However it is possible to infer the presence of temperature anomalies at depth from the effect they have on phase transitions in surrounding mantle material. Phase changes in the olivine component of mantle rocks are thought to be responsible for global mantle seismic discontinuities at 410 and 660 km depth, though exact depths are dependent on surrounding temperature conditions. This study uses P to S seismic wave conversions at mantle discontinuities to investigate variation in topography allowing inference of temperature anomalies within the transition zone. We employ a large data set from a wide range of seismic stations across the North Atlantic region and a dense network in Iceland, including over 100 stations run by the University of Cambridge. Data are used to create over 6000 receiver functions. These are converted from time to depth including 3D corrections for variations in crustal thickness and upper mantle velocity heterogeneities, and then stacked based on common conversion points. We find that both the 410 and 660 km discontinuities are depressed under Iceland compared to normal depths in the surrounding region. The depression of 30 km observed on the 410 km discontinuity could be artificially deepened by un-modelled slow anomalies in the correcting velocity model. Adding a slow velocity conduit of -1.44% reduces the depression to 18 km; in this scenario both the velocity reduction and discontinuity topography reflect a temperature anomaly of 210 K. We find that much larger velocity reductions would be required to remove all depression on the 660 km discontinuity, and therefore correlated discontinuity depressions appear to be a robust feature of the data. While it is not possible

  16. Upper-crustal structure beneath the strait of Georgia, Southwest British Columbia

    Science.gov (United States)

    Dash, R.K.; Spence, G.D.; Riedel, M.; Hyndman, R.D.; Brocher, T.M.

    2007-01-01

    We present a new three-dimensional (3-D) P-wave velocity model for the upper-crustal structure beneath the Strait of Georgia, southwestern British Columbia based on non-linear tomographic inversion of wide-angle seismic refraction data. Our study, part of the Georgia Basin Geohazards Initiative (GBGI) is primarily aimed at mapping the depth of the Cenozoic sedimentary basin and delineating the near-surface crustal faults associated with recent seismic activities (e.g. M = 4.6 in 1997 and M = 5.0 in 1975) in the region. Joint inversion of first-arrival traveltimes from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS) and the 2002 Georgia Basin experiment provides a high-resolution velocity model of the subsurface to a depth of ???7 km. In the southcentral Georgia Basin, sedimentary rocks of the Cretaceous Nanaimo Group and early Tertiary rocks have seismic velocities between 3.0 and 5.5 km s-1. The basin thickness increases from north to south with a maximum thickness of 7 (??1) km (depth to velocities of 5.5 km s-1) at the southeast end of the strait. The underlying basement rocks, probably representing the Wrangellia terrane, have velocities of 5.5-6.5 km-1 with considerable lateral variation. Our tomographic model reveals that the Strait of Georgia is underlain by a fault-bounded block within the central Georgia Basin. It also shows a correlation between microearthquakes and areas of rapid change in basin thickness. The 1997/1975 earthquakes are located near a northeast-trending hinge line where the thicknesses of sedimentary rocks increase rapidly to the southeast. Given its association with instrumentally recorded, moderate sized earthquakes, we infer that the hinge region is cored by an active fault that we informally name the Gabriola Island fault. A northwest-trending, southwest dipping velocity discontinuity along the eastern side of Vancouver Island correlates spatially with the surface expression of the Outer Island fault. The Outer Island

  17. 2-D Finite Difference Modeling of the D'' Structure Beneath the Eastern Cocos Plate: Part I

    Science.gov (United States)

    Helmberger, D. V.; Song, T. A.; Sun, D.

    2005-12-01

    The discovery of phase transition from Perovskite (Pv) to Post-Perovskite (PPv) at depth nears the lowermost mantle has revealed a new view of the earth's D'' layer (Oganov et al. 2004; Murakami et al. 2004). Hernlund et al. (2004) recently pusposed that, depending on the geotherm at the core-mantle boundary (CMB), a double-crossing of the phase boundary by the geotherm at two different depths may also occur. To explore these new findings, we adopt 2-D finite difference scheme (Helmberger and Vidale, 1988) to model wave propagation in rapidly varying structure. We collect broadband waveform data recorded by several Passcal experiments, such as La Ristra transect and CDROM transect in the southwest US to constrain the lateral variations in D'' structure. These data provide fairly dense sampling (~ 20 km) in the lowermost mantle beneath the eastern Cocos plate. Since the source-receiver paths are mostly in the same azimuth, we make 2-D cross-sections from global tomography model (Grand, 2002) and compute finite difference synthetics. We modify the lowermost mantle below 2500 km with constraints from transverse-component waveform data at epicentral distances of 70-82 degrees in the time window between S and ScS, essentially foward modeling waveforms. Assuming a velocity jump of 3 % at D'', our preferred model shows that the D'' topography deepens from the north to the south by about 120 km over a lateral distance of 300 km. Such large topography jumps have been proposed by Thomas et al. (2004) using data recorded by TriNet. In addition, there is a negative velocity jump (-3 %) 100 km above the CMB in the south. This simple model compare favorably with results from a study by Sun, Song and Helmberger (2005), who follow Sidorin et al. (1999) approach and produce a thermodynamically consistent velocity model with Pv-PPv phase boundary. It appears that much of this complexity exists in Grand's tomographic maps with rapid variation in velocities just above the D''. We also

  18. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    Science.gov (United States)

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  19. Detecting lower-mantle slabs beneath Asia and the Aleutians

    Science.gov (United States)

    Schumacher, L.; Thomas, C.

    2016-06-01

    To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.

  20. InSAR Evidence for an active shallow thrust fault beneath the city of Spokane Washington, USA

    Science.gov (United States)

    Wicks, Charles W.; Weaver, Craig S.; Bodin, Paul; Sherrod, Brian

    2013-01-01

    In 2001, a nearly five month long sequence of shallow, mostly small magnitude earthquakes occurred beneath the city of Spokane, a city with a population of about 200,000, in the state of Washington. During most of the sequence, the earthquakes were not well located because seismic instrumentation was sparse. Despite poor-quality locations, the earthquake hypocenters were likely very shallow, because residents near the city center both heard and felt many of the earthquakes. The combination of poor earthquake locations and a lack of known surface faults with recent movement make assessing the seismic hazards related to the earthquake swarm difficult. However, the potential for destruction from a shallow moderate-sized earthquake is high, for example Christchurch New Zealand in 2011, so assessing the hazard potential of a seismic structure involved in the Spokane earthquake sequence is important. Using interferometric synthetic aperture radar (InSAR) data from the European Space Agency ERS2 and ENVISAT satellites and the Canadian Space Agency RADARSAT-1, satellite we are able to show that slip on a shallow previously unknown thrust fault, which we name the Spokane Fault, is the source of the earthquake sequence. The part of the Spokane Fault that slipped during the 2001 earthquake sequence underlies the north part of the city, and slip on the fault was concentrated between ~0.3 and 2 km depth. Projecting the buried fault plane to the surface gives a possible surface trace for the Spokane Fault that strikes northeast from the city center into north Spokane.

  1. The thermal influence of the subducting slab beneath South America from 410 and 660 km discontinuity observations

    Science.gov (United States)

    Collier, J. D.; Helffrich, G. R.

    2001-11-01

    Regional seismic network data from deep South American earthquakes to western United States and western European seismic arrays is slant stacked to detect weak near-source interactions with upper mantle discontinuities. These observations are complemented by an analysis of earlier work by Sacks & Snoke (1977) who observed S to P conversions from deep events to stations in South America, and similar observations from 1994-95 events using the BANJO and SEDA networks. Observations of the depth of the 410km discontinuity are made beneath central South America in the vicinity of the aseismic region of the subducting Nazca Plate. These results image the 410km discontinuity over a lateral extent of up to 850km perpendicular to the slab and over a distance of 2700km along the length of the slab. Away from the subducting slab the discontinuity is mainly seen near its global average depth, whilst inside the slab there is evidence for its elevation by up to around 60km but with significant scatter in the data. These results are consistent with the presence of a continuous slab through the aseismic region with a thermal anomaly of 900°C at 350km depth. This value is in good agreement with simple thermal models though our data are too sparse to accurately constrain them. Sparse observations of the 660km discontinuity agree with tomographic models suggesting penetration of the lower mantle by the slab in the north but stagnation at the base of the transition zone in the south. The geographical distribution of the data, however, does not allow us to rule out the possibility of slab stagnation at the base of the transition zone in the north. These observations, together with the presence of deep earthquakes, require more complicated thermal models than previously used to explain them, possibly including changes in slab dip and age with depth.

  2. Fungal communities in soil beneath Scots pine and their stumps. Effect of fungi on Heterobasidion annosum and Armillaria ostoyae growth

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available The soil beneath 30-year-old Scots pines, was inhabited by fungi communities which were at least iwicc as big as communities from ihe 49-year-old stand. The fungi communities in soil beneath the stumps were much smaller compared to those beneath the live trees and more abundant in the 30- than in the 49--year-old stand. The fungal communities in soil beneath the 30-year-old pines have bigger antagonistic effect on Heterobasidion annosum and Armillaria ostoyae than those beneath the 49-year-old stand. The decrease in density of fungi and in the frequency of species antagonistic to H. annosum and A. ostoyae resulted in the decrease of the antagonistic effect on both pathogens in soil beneath pine stumps.

  3. Seismicity and average velocities beneath the Argentine Puna Plateau

    Science.gov (United States)

    Schurr, B.; Asch, G.; Rietbrock, A.; Kind, R.; Pardo, M.; Heit, B.; Monfret, T.

    A network of 60 seismographs was deployed across the Andes at ∼23.5°S. The array was centered in the backarc, atop the Puna high plateau in NW Argentina. P and S arrival times of 426 intermediate depth earthquakes were inverted for 1-D velocity structure and hypocentral coordinates. Average velocities and υp/υs in the crust are low. Average mantle velocities are high but difficult to interpret because of the presence of a fast velocity slab at depth. Although the hypocenters sharply define a 35° dipping Benioff zone, seismicity in the slab is not continuous. The spatial clustering of earthquakes is thought to reflect inherited heterogeneties of the subducted oceanic lithosphere. Additionally, 57 crustal earthquakes were located. Seismicity concentrates in the fold and thrust belt of the foreland and Eastern Cordillera, and along and south of the El Toro-Olacapato-Calama Lineament (TOCL). Focal mechanisms of two earthquakes at this structure exhibit left lateral strike-slip mechanisms similar to the suggested kinematics of the TOCL. We believe that the Puna north of the TOCL behaves like a rigid block with little internal deformation, whereas the area south of the TOCL is weaker and currently deforming.

  4. Metallogenesis of superlarge gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China Craton in Mesozoic

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xinhua(周新华); YANG; Jinhui(杨进辉); ZHANG; Lianchang(张连昌)

    2003-01-01

    The study of ore-forming chronology indicates that the superlarge gold deposits in the Jiaodong region were formed in 120±10 Ma. Sr-Nd-Pb isotopic compositions from typical gold deposits suggest that ore-forming materials were derived from the multisources, mantle component was partly involved in mineralization, the deep dynamic processes are the major geological background of large-scale metallogenesis in the Jiaodong region in Mesozoic. The deep pro- cesses mainly include the effect of post deep-subduction of continental crust of the central orogen belt and the distant effect of subduction of the paleo-Pacific plate underneath the Eurasian continent. However, lithosphere thinning, crust-mantle interaction, crustal extension and formation of large-type ore-controlling structures would be the comprehensive consequences of the above- mentioned geodynamic processes in the region.

  5. Soil organic carbon beneath croplands and re-established grasslands in the North Dakota prairie pothole region

    Science.gov (United States)

    Grassland ecosystems established under the conservation reserve program (CRP) in the Prairie Pothole Region (PPR) currently provide soil conservation and wildlife habitat services. We aimed to determine if these lands also sequester soil organic carbon (SOC), as compared with neighboring croplands a...

  6. Is the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions

    Science.gov (United States)

    Shen, Xuzhang; Yuan, Xiaohui; Liu, Mian

    2015-10-01

    Whether or not the Asian lithosphere has underthrusted beneath the Tibetan Plateau is important for understanding the mechanisms of the plateau's growth. Using data from the permanent seismic stations in northeastern Tibetan Plateau, we studied seismic structures of the lithosphere and upper mantle across the plateau's northeastern margin using P and S receiver functions. The migrated P- and S-receiver function images reveal a thick crust and a diffuse lithosphere-asthenosphere boundary (LAB) beneath the Tibetan Plateau, contrasting sharply with the relatively thin crust and clear, sharp LAB under the bounding Asian blocks. The well-defined LAB under the Asian blocks tilts toward but does not extend significantly under the Tibetan Plateau; this is inconsistent with the model of Asian mantle lithosphere underthrusting beneath the Tibet Plateau. Instead, our results indicate limited, passive deformation of the bounding Asian lithosphere as it encounters the growing Tibetan Plateau.

  7. Microfungi in the soil beneath common oak and their effect on Armillaria occurrence

    Directory of Open Access Journals (Sweden)

    Hanna Kwaśna

    2014-08-01

    Full Text Available Microfungal assemblages in a soil beneath 30- and 50·year-old oaks and their 2-year-old stumps were studied using the soil dilution plate method. A total of 98 culturable microfungi were isolated. Compared to the living oaks before felling and the control living oaks, the density of Mortierella macrocystis, Penicillium jonczewskii, Pseudogymnoascus roseus Sporothrix schenckii, Tolypoccladiumum inflatum and Umbelopsis vinacea sigificantly inacased in the soil beneath slumps in the 32- and 52-year-old stands. Density of Aspergillus kanagawaensis, Monodictys lepraria, P. daleae and sterile dematiaceous hyphomycetes increased significantly in the 32-year-old stand and Chrysosporium merdarium in the 52·year-old stand. These fungi are known 'stimulants' of Armillaria rhizomorph formation. It is suggested that the increase in density of Armillaria rhizomorph 'stimulants' in a soil beneath oak stumps may increase the possibility of colonization of stumps by Armillaria.

  8. The KISS Project - Exploring the magmatic system beneath Kamchatka's volcanoes

    Science.gov (United States)

    Luehr, Birger-G.; Shapiro, Nikolai; Abkadyrov, Ilyas; Sens-Schönfelder, Christoph; Koulakov, Ivan; Jakovlev, Andrey; Abramenkov, Sergey; Saltykov, Vadim A.; Heit, Benjamin; Weber, Michael; Gordeev, Evgeny I.; Chebrov, Victor N.

    2016-04-01

    In a joint initiative of GFZ with Russian (IPGG, IVS, KGBS) and a French partner (IPGP) a temporary seismological network has been installed around the Klyuchevskoy volcanic group in Central Kamchatka. The Klyuchevskoy volcanic group is an ensemble of 13 stratovolcanoes with very different compositions and eruption styles in a ~70km diameter area which produced at least 30 VEI≥2 episodes during the last 15 years. Latest activity of the highest volcano Klyuchevskoy (4754 m) was in spring 2015. The group is located right on the triple junction between Asian, Pacifc and North American plates where the Hawaiian-Emperor seamount chain separates the Aleutian and the Kuril-Kamchatka trenches. The complex setting presumably leads to processes like increased melting at slab edges and/or accelerated mantle flow which affect the volcanism and might be responsible for the unparalleled concentration of volcanic activity in the Klyuchevskoy group. Due to the difficult field conditions and special permitting regulations seismological investigations have been rare in Kamchatka. In this consortium we build strongly on the experience of the Kamchatkan partners for permitting and logistics. Installation was done to about 50% by helicopter. Funding was provided via a grant from the Russian Science Foundation (grant 14-47-00002) to the IVS/KBGS/IPGG, the GFZ, and the IPGP. 60 of the stations were provided by the GFZ instrument pool GIPP. Including the permanent stations operated by KGBS and temporary stations provided by the partners, the network consist of 98 stations and will record earthquakes volcanic signals and the ambient field over one year in an area of approximately 150 by 150km.

  9. Mantle Melting as a Function of Water Content beneath the Mariana Arc

    OpenAIRE

    Kelley, Katherine A.; Plank, Terry; Newman, Sally; Stolper, Edward M.; Grove, Timothy L.; Parman, Stephen; Erik H. Hauri

    2010-01-01

    Subduction zone magmas are characterized by high concentrations of pre-eruptive H_2O, presumably as a result of an H_2Oflux originating from the dehydrating, subducting slab. The extent of mantle melting increases as a function of increasing water content beneath back-arc basins and is predicted to increase in a similar manner beneath arc volcanoes. Here, we present new data for olivine-hosted, basaltic melt inclusions from the Mariana arc that reveal pre-eruptive H_2O c...

  10. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    Science.gov (United States)

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  11. Crustal structure beneath the Northern Mississippi Embayment from travel time inversion of vintage wide-angle seismic data

    Science.gov (United States)

    Guo, L.; Magnani, M.

    2012-12-01

    The northern Mississippi Embayment (ME) in the central US is located along the southern margin of Laurentia, a region that has been shaped by a long history of tectonic and magmatic events, including episodes of continental rifting, collision and amalgamation. In the ME these events have fundamentally altered the structure and composition of the continental lithosphere, resulting in the formation and failure of the Paleozoic Reelfoot Rift, and in the emplacement of the enigmatic mafic rift pillow at lower crustal and upper mantle depths beneath the Reelfoot Rift. Because of the spatial correlation between the present, historical and prehistorical seismicity in the New Madrid seismic zone and the mafic rift pillow, it has been proposed that this magmatic feature plays a key role in localizing strain in the Central US. Emerging evidence, however, shows that Quaternary deformation in the ME is not restricted to the New Madrid seismic zone, but encompasses a region beyond the presently seismogenic area, perhaps suggesting that the mafic rift pillow extends beyond its previously detected location. To test this hypothesis and to better constrain the lateral extent, dimension, and velocity structure of the mafic rift pillow in lower crust and upper mantle beneath the ME, we perform a travel time tomographic inversion using recent modeling codes on two vintage wide-angle seismic datasets available in the region. The data were acquired by the USGS in 1980 and 1991, and are the only seismic wide-angle crustal data constraining the geometry of the rift pillow. The 1980 USGS seismic refraction investigation consisted of a total of 34 900-1800 kg shots gathered in 9 locations and recorded by 100 portable seismographs along a series of profiles targeting the structure of the Reelfoot Rift north of Memphis, Tennessee. The 1991 USGS survey acquired a N-S 400 km-long seismic profile from Memphis, Tennessee to St. Louis, Missouri, and included 3 680-2260 kg shots recorded by ~200

  12. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    Science.gov (United States)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen

    2016-08-01

    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  13. P and S Waves Traversing Beneath Western Japan and the Shape of the Subducting Philippine Sea Plate

    Science.gov (United States)

    Kuge, K.; Fukuda, T.

    2011-12-01

    We show the characteristics of P and S waves traversing beneath western Japan, which can provide constraints on the shape of the subducting Philippine Sea plate. The subduction of the Philippine Sea plate causes megathrust earthquakes along the Nankai trough in western Japan. The complicated shape of the subducting plate can affect the spatial variation of the plate coupling as well as the recurrence of great interplate earthquakes. For slab earthquakes at depths of about 45 km in northwestern Shikoku, we observe two arrivals of P wave at the NIED Hi-net stations in the azimuth range from the north to the east. The apparent velocities are about 8 and 6.7 km/s, corresponding to P velocities in the mantle and crust, respectively. Dominant S waves propagate by apparent velocity of about 3.8 km/s, being S velocity in the crust. These observations are in agreement with those of Oda et al. (1990) and Ohkura (2000) using a smaller number of local stations. The P and S waves propagating at the slow apparent velocities can be modeled by horizontally layered structure if the earthquakes are located within a low-velocity layer spanning the stations. The thick low-velocity layer can be a stack of the continental crust of the Eurasian plate and the oceanic crust of the Philippine Sea plate subducting nearly subhorizontally (Oda et al., 1990; Ohkura, 2000). The P and S waves with the slow apparent velocities are observable at distances up to about 300 km. On the other hand, they are not observed or observable only at small distances in the western side of the epicenters. The spatial characteristics can be used to constrain the geometry of the low-velocity layer associated with the shape of the oceanic crust of the Philippine Sea plate. We observe two arrivals of P wave in the eastern side of the Kii Peninsula for slab earthquakes beneath Shikoku. Both apparent velocities are in a range of P velocity in the mantle. There appear two ray paths of P wave propagating in the mantle

  14. Imaging Crust and Mantle Structure beneath the D'Entrecasteaux Islands, Papua New Guinea, from Rayleigh Wave Tomography

    Science.gov (United States)

    Jin, G.; Gaherty, J. B.; Abers, G. A.; Kim, Y.; Eilon, Z.; Buck, W. R.; Verave, R.

    2012-12-01

    The D'Entrecasteaux Islands and adjacent Papuan peninsula in eastern Papua New Guinea are home to the earliest stages of extension associated with the Woodlark Rift system. Very young (7-8 Ma) ultra-high pressure (coesite-eclogite facies) rocks within metamorphic core complexes (MCCs) on the D'Entrecasteaux Islands indicates exhumation from 100 km depths at plate-tectonic rates. We investigate the dynamic processes driving uplift and extension using seismic images of crustal and mantle structure derived from surface waves across the region. From March 2010 to July 2011, 31 on-shore and 8 off-shore broadband seismic stations deployed across the extensional region recorded 68 earthquakes with high signal-to-noise Rayleigh waves. We utilize a multi-channel cross-correlation technique to measure the phase delay and amplitude across the array in a period band between 20-80 sec, which images a depth range from lower crust to approximately 150 km depth. The phase difference of Rayleigh-wave arrivals between nearby stations is measured for each earthquake by fitting the narrow-band filtered cross-correlation between the observed seismograms. We then invert these intra-array phase measurements for a slowness vector map using the Eikonal equation to get the dynamic phase velocity and propagation direction. Averaging the dynamic phase velocity of all available events produces set of final phase velocity maps that can be inverted for shear-velocity structure, and the variations in phase-velocity as a function of azimuth provide constraints on anisotropy. For most of the frequency bands, the region beneath the MCCs on Goodenough Island and Fergusson Island, adjacent to the tip of the Woodlark spreading center, shows slow phase velocity, suggestive of high temperatures and/or partial melt, perhaps related to localized mantle upwelling. In contrast, the region near the Trobriand Island to the north, and the Papuan peninsula to the south, shows consistently higher phase velocity

  15. The fate of the Indian lithosphere beneath western Tibet: Upper mantle elastic wave speed structure from a joint teleseismic and regional body wave tomographic study

    Science.gov (United States)

    Razi, Ayda S.; Roecker, Steven W.; Levin, Vadim

    2016-02-01

    We investigate the fate of the Indian lithosphere following its descent beneath western Tibet by means of tomographic imaging based on arrival times of body waves from regional and teleseismic sources recorded by a portable network deployed in the region from 2007 to 2011. We use a non-linear iterative algorithm that simultaneously models absolute, regional, and relative teleseismic arrival times to obtain a 3-D velocity structure in a spherical segment that extends from 26°N to 37°N, from 76°E to 89°E, and from the surface to 430 km depth. We find that variations in P and S wave speeds in the upper mantle are similar, and identify a number of prominent fast anomalies beneath western Tibet and the adjacent Himalayas. We associate these fast anomalies with the mantle lithosphere of India that is likely colder and hence faster than the ambient mantle. Resolution tests confirm the ability of our dataset to resolve their shapes in the upper 300 km, and the lack of significant downward smearing of these features. We interpret the presence of faster material below 300 km as being consistent with former Indian lithosphere having reached these depths. There are two main fast anomalies in our model. One resembles a ∼100 km wide sub-vertical column located directly beneath the India-Asia plate boundary. The other anomaly is thinner, and has the shape of a dipping slab that spans the north-south width of the Lhasa block. It dips towards the NE, starting near the Indus-Yarlung suture and ending north of the Bangong-Nujiang Suture at depths in excess of 300 km. Another finding of our study is the absence of major fast anomalies west of ∼80°E, which our resolution tests show to be significant. Our results do not support the notion of a continuous body of formerly Indian lithosphere being presently underthrust northward, and extending all the way to the northern boundary of the plateau. Rather, shapes of fast anomalies in western Tibet suggest colder material beneath the

  16. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    Science.gov (United States)

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  17. A new insight into crustal heterogeneity beneath the 2001 Bhuj earthquake region of Northwest India and its implications for rupture initiations

    Science.gov (United States)

    Singh, A. P.; Mishra, O. P.; Yadav, R. B. S.; Kumar, Dinesh

    2012-04-01

    The seismic characteristics of the 2001 Bhuj earthquake (Mw 7.6) has been examined from the proxy indicators, relative size distribution (3D b-value mapping) and seismic tomography using a new data set to understand the role of crustal heterogeneities in rupture initiations of the 2001 Bhuj earthquake of the Gujarat (India), one of the disastrous Indian earthquakes of the new millennium. The aftershocks sequence recorded by 22 seismograph stations of Gujarat Seismic Network (GSNet) during the period from 2006 to 2009, encompassing approximately 80 km × 70 km rupture area had revealed clustering of aftershocks at depth of 5-35 km, which is seismogenic layer responsible for the occurrence of continued aftershocks activity in the study region. The 3D b-value mapping estimated from a total of 3850 precisely located aftershocks with magnitude of completeness Mc ⩾ 2.7 shows that a high b-value region is sandwiched within the main shock hypocenter at the depth of 20-25 km and low b-value region above and below of the 2001 Bhuj main shock hypocenter. Estimates of 3-D seismic velocity (Vp; Vs) and Poisson's ratio (б) structure beneath the region demonstrated a very close correspondence with the b-value mapping that supports the similar physicochemical processes of retaining fluids within the fractured rock matrix beneath the 2001 Bhuj mainshock hypocenter. The overall b-value is estimated close to 1.0 which reveals that seismogenesis is related to crustal heterogeneity, which, in turn also supported by low-Vs and high-б structures. The high b-value and high-б anomaly at the depth of 20-25 km indicate the presence of highly fractured heterogeneous rock matrix with fluid intrusions into it at deeper depth beneath the main shock hypocenter region. Low b-value and high-Vp in the region is observed towards the north-east and north-west of the main shock that might be an indication of the existence of relatively competent rock masses with negligible volume of cracks that

  18. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    Science.gov (United States)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  19. Crustal thickness, discontinuity depth, and upper mantle structure beneath southern Africa: constraints from body wave conversions

    NARCIS (Netherlands)

    Stankiewicz, Jacek; Che, Sébastien; Hilst, R.D. van der; Wit, Maarten J. de

    2002-01-01

    The technique of receiver function analysis is applied to the study of crustal and upper mantle structures beneath the Kaapvaal craton in southern Africa and its surroundings. Seismic data were recorded by the seismic array of 82 sites deployed from April 1997 to April 1999 across southern Africa, a

  20. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley

    DEFF Research Database (Denmark)

    Mikucki, J. A.; Auken, E.; Tulaczyk, S.;

    2015-01-01

    The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsu...

  1. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America

    NARCIS (Netherlands)

    Hilst, R.D. van der; Mann, P.

    1994-01-01

    We used seismic tomography to investigate the complex structure of the upper mantle below northwestern South America. Images of slab structure not delineated by previous seismicity studies help us to refine existing tectonic models of subducted Caribbean-Pacific lithosphere beneath the study area. B

  2. Depth variations of P-wave azimuthal anisotropy beneath Mainland China.

    Science.gov (United States)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-19

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  3. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der

    1997-01-01

    We investigated mantle structure beneath the Indonesian region by means of tomographic inversions of traveltime residuals of direct P and the surface-reflected depth phases pP and pwP. The hypocentres and phase data used in the inversions were derived from the reprocessing of data reported to intern

  4. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet

    Science.gov (United States)

    Legendre, Cédric P.; Deschamps, Frédéric; Zhao, Li; Chen, Qi-Fu

    2015-11-01

    The Tibetan Plateau results from the collision of the Indian and Eurasian Plates during the Cenozoic, which produced at least 2,000 km of convergence. Its tectonics is dominated by an eastward extrusion of crustal material that has been explained by models implying either a mechanical decoupling between the crust and the lithosphere, or lithospheric deformation. Discriminating between these end-member models requires constraints on crustal and lithospheric mantle deformations. Distribution of seismic anisotropy may be inferred from the mapping of azimuthal anisotropy of surface waves. Here, we use data from the CNSN to map Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath eastern Tibet. Beneath Tibet, the anisotropic patterns at periods sampling the crust support an eastward flow up to 100°E in longitude, and a southward bend between 100°E and 104°E. At longer periods, sampling the lithospheric mantle, the anisotropic structures are consistent with the absolute plate motion. By contrast, in the Sino-Korean and Yangtze cratons, the direction of fast propagation remains unchanged throughout the period range sampling the crust and lithospheric mantle. These observations suggest that the crust and lithospheric mantle are mechanically decoupled beneath eastern Tibet, and coupled beneath the Sino-Korean and Yangtze cratons.

  5. Depressed mantle discontinuities beneath Iceland : Evidence of a garnet controlled 660 km discontinuity?

    NARCIS (Netherlands)

    Jenkins, J.; Cottaar, S.; White, R. S.; Deuss, A.

    2016-01-01

    The presence of a mantle plume beneath Iceland has long been hypothesised to explain its high volumes of crustal volcanism. Practical constraints in seismic tomography mean that thin, slow velocity anomalies representative of a mantle plume signature are difficult to image. However it is possible to

  6. Imaging Lithospheric-scale Structure Beneath Northern Altiplano in Southern Peru and Northern Bolivia

    Science.gov (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2014-12-01

    The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly

  7. Regional TEMPEST survey in north-east Namibia

    Science.gov (United States)

    Peters, Geoffrey; Street, Gregory; Kahimise, Ivor; Hutchins, David

    2015-09-01

    A regional scale TEMPEST208 airborne electromagnetic survey was flown in north-east Namibia in 2011. With broad line spacing (4 km) and a relatively low-powered, fixed-wing system, the approach was intended to provide a regional geo-electric map of the area, rather than direct detection of potential mineral deposits. A key component of the geo-electric profiling was to map the relative thickness of the Kalahari sediments, which is up to 200 m thick and obscures most of the bedrock in the area. Knowledge of the thickness would allow explorers to better predict the costs of exploration under the Kalahari. An additional aim was to determine if bedrock conductors were detectable beneath the Kalahari cover. The system succeeded in measuring the Kalahari thickness where this cover was relatively thin and moderately conductive. Limitations in depth penetration mean that it is not possible to map the thickness in the centre of the survey area, and much of the northern half of the survey area. Additional problems arise due to the variable conductivity of the Kalahari cover. Where the conductivity of the Kalahari sediment is close to that of the basement, there is no discernable contrast to delineate the base of the Kalahari. Basement conductors are visible beneath the more thinly covered areas such as in the north-west and south of the survey area. The remainder of the survey area generally comprises deeper, more conductive cover and for the most part basement conductors cannot be detected. A qualitative comparison with VTEM data shows comparable results in terms of regional mapping, and suggests that even more powerful systems such as the VTEM may not detect discrete conductors beneath the thick conductive parts of the Kalahari cover.

  8. The Impact of the Subduction Modeling Beneath Calabria on Seismic Hazard

    Science.gov (United States)

    Morasca, P.; Johnson, W. J.; Del Giudice, T.; Poggi, P.; Traverso, C.; Parker, E. J.

    2014-12-01

    The aim of this work is to better understand the influence of subduction beneath Calabria on seismic hazard, as very little is known about present-day kinematics and the seismogenic potential of the slab interface in the Calabrian Arc region. This evaluation is significant because, depending on stress conditions, subduction zones can vary from being fully coupled to almost entirely decoupled with important consequences in the seismic hazard assessment. Although the debate is still open about the current kinematics of the plates and microplates lying in the region and the degree of coupling of Ionian lithosphere beneath Calabria, GPS data suggest that this subduction is locked in its interface sector. Also the lack of instrumentally recorded thrust earthquakes suggests this zone is locked. The current seismotectonic model developed for the Italian National territory is simplified in this area and does not reflect the possibility of locked subduction beneath the Calabria that could produce infrequent, but very large earthquakes associated with the subduction interface. Because of this we have conducted an independent seismic source analysis to take into account the influence of subduction as part of a regional seismic hazard analysis. Our final model includes two separate provinces for the subduction beneath the Calabria: inslab and interface. From a geometrical point of view the interface province is modeled with a depth between 20-50 km and a dip of 20°, while the inslab one dips 70° between 50 -100 km. Following recent interpretations we take into account that the interface subduction is possibly locked and, in such a case, large events could occur as characteristic earthquakes. The results of the PSHA analysis show that the subduction beneath the Calabrian region has an influence in the total hazard for this region, especially for long return periods. Regional seismotectonic models for this region should account for subduction.

  9. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for tectonic origins

    Science.gov (United States)

    Hansen, Samantha E.; Kenyon, Lindsey M.; Graw, Jordan H.; Park, Yongcheol; Nyblade, Andrew A.

    2016-02-01

    The Transantarctic Mountains (TAMs) are the largest noncollisional mountain range on Earth. Their origin, as well as the origin of the Wilkes Subglacial Basin (WSB) along the inland side of the TAMs, has been widely debated, and a key constraint to distinguish between competing models is the underlying crustal structure. Previous investigations have examined this structure but have primarily focused on a small region of the central TAMs near Ross Island, providing little along-strike constraint. In this study, we use data from the new Transantarctic Mountains Northern Network and from five stations operated by the Korea Polar Research Institute to investigate the crustal structure beneath a previously unexplored portion of the TAMs. Using S wave receiver functions and Rayleigh wave phase velocities, crustal thickness and average crustal shear velocity (V>¯s) are resolved within ±4 km and ±0.1 km/s, respectively. The crust thickens from ~20 km near the Ross Sea coast to ~46 km beneath the northern TAMs, which is somewhat thicker than that imaged in previous studies beneath the central TAMs. The crust thins to ~41 km beneath the WSB. V>¯s ranges from ~3.1-3.9 km/s, with slower velocities near the coast. Our findings are consistent with a flexural origin for the TAMs and WSB, where these features result from broad flexure of the East Antarctic lithosphere and uplift along its western edge due to thermal conduction from hotter mantle beneath West Antarctica. Locally, thicker crust may explain the ~1 km of additional topography in the northern TAMs compared to the central TAMs.

  10. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model

    Science.gov (United States)

    Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.

    2005-01-01

    This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.

  11. Melts at the Lithosphere-Asthenosphere Boundary beneath the Basin and Range, US (Invited)

    Science.gov (United States)

    Plank, T.; Gazel, E.; Bendersky, C.; Forsyth, D. W.; Rau, C. J.; Lee, C.

    2010-12-01

    The Transportable Array component of EarthScope is providing an unparalleled view of the seismic structure of the mantle beneath the North American continent. In volcanically active regions such as the Basin and Range province of the western US, petrological data can also be used to constrain the temperature, water content, and depth of melting within the mantle, all of which may contribute to seismic velocity anomalies. Of particular interest to dynamic models is the location and evolution of the lithosphere-asthenosphere boundary (LAB), for which petrological and seismological data yield complementary constraints. The LAB is a rheological boundary that may strongly relate to the locus and mode of melting, whether by upwelling, hydration or extension. Here we present a preliminary integration of mantle melting depths, derived from the chemical composition of basaltic scoria from recent cinder cones across the Basin and Range, with shear velocity structure derived from inversion of Rayleigh waves. Primitive basaltic magmas record in their major element composition the pressures and temperatures of last equilibration in the mantle. Specifically, the Fe content of primary melts scales with melting temperature (through olivine-melt equilibrium) and the Si content scales inversely with pressure (through olivine-orthopyroxene melt equilibrium). Independent of these relationships, the water content of magmas affects estimated temperatures (roughly 100 C per 3 wt percent H2O), and the ferric Fe component affects estimated pressures or depths (15-20 km per 15 percent Fe3+). Our efforts have thus gone into measuring the pre-eruptive H2O content of Basin and Range magmas, using undegassed melt inclusions trapped in olivine, and their oxidation state, based on sulfur and vanadium speciation. Our results thus far for volcanic fields in the Western Grand Canyon (AZ), St. George (UT), and Crater Flat (NV) regions, indicate melt equilibration depths around 55-70 km. These depths

  12. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula

    Science.gov (United States)

    Breitsprecher, Katrin; Thorkelson, Derek J.

    2009-01-01

    The Patagonian slab window is a subsurface tectonic feature resulting from subduction of the Nazca-Antarctic spreading-ridge system (Chile Rise) beneath southern South America. The geometry of the slab window had not been rigorously defined, in part because of the complex nature of the history of ridge subduction in the southeast Pacific region, which includes four interrelated spreading-ridge systems since 20 Ma: first, the Nazca-Phoenix ridge beneath South America, then simultaneous subduction of the Nazca-Antarctic and the northern Phoenix-Antarctic spreading-ridge systems beneath South America, and the southern Phoenix-Antarctic spreading-ridge system beneath Antarctica. Spreading-ridge paleo-geographies and rotation poles for all relevant plate pairs (Nazca, Phoenix, Antarctic, South America) are available from 20 Ma onward, and form the mathematical basis of our kinematic reconstruction of the geometry of the Patagonia and Antarctic slab windows through Neogene time. At approximately 18 Ma, the Nazca-Phoenix-Antarctic oceanic (ridge-ridge-ridge) triple junction enters the South American trench; we recognize this condition as an unstable quadruple junction. Heat flow at this junction and for some distance beneath the forearc would be considerably higher than is generally recognized in cases of ridge subduction. From 16 Ma onward, the geometry of the Patagonia slab window developed from the subduction of the trailing arms of the former oceanic triple junction. The majority of the slab window's areal extent and geometry is controlled by the highly oblique (near-parallel) subduction angle of the Nazca-Antarctic ridge system, and by the high contrast in relative convergence rates between these two plates relative to South America. The very slow convergence rate of the Antarctic slab is manifested by the shallow levels achieved by the slab edge (< 45 km); thus no point on the Antarctic slab is sufficiently deep to generate "normal" mantle-derived arc-type magmas

  13. North Korea drops out

    International Nuclear Information System (INIS)

    On March 12, North Korea announced that it was withdrawing from the Nuclear Non-Proliferation treaty (NPT). Soon afterward, it formally notified the U.N. Security Council of its intentions. The treaty remains binding on North Korea at least until mid-June, since a member must notify the Security Council and all other signatories three months in advance of withdrawing. This article explains North Korea's reasons for withdrawing, including reluctance to have the International Atomic Energy Agency (IAEA) conduct inspections of its nuclear waste sites. At press time, the US was leading an international effort to convince North Korea to reconsider its decision to withdraw from the NPT

  14. Melt transport rates in heterogeneous mantle beneath mid-ocean ridges

    CERN Document Server

    Weatherley, Samuel M

    2015-01-01

    Recent insights to melt migration beneath ridges suggest that channelized flow is a consequence of melting of a heterogeneous mantle, and that spreading rate modulates the dynamics of the localized flow. A corollary of this finding is that both mantle het- erogeneity and spreading rate have implications for the speed and time scale of melt migration. Here, we investigate these implications using numerical models of magma flow in heterogeneous mantle beneath spreading plates. The models predict that a broad distribution of magma flow speeds is characteristic of the sub-ridge mantle. Within the melting region, magmatic flow is fastest in regions of average fusibility; surprisingly, magmas from sources of above-average fusibility travel to the ridge in a longer time. Spreading rate has comparatively simple consequences, mainly resulting in faster segregation speeds at higher spreading rates. The computed time scales are short enough to preserve deep origin 230Th disequilibria and, under favourable parameter regi...

  15. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  16. Are assemblages of the fireworm Hermodice carunculata enhanced in sediments beneath offshore fish cages?

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Riera; Oscar Prez; Myriam Rodrguez; Eva Ramos; scar Monterroso

    2014-01-01

    Abundances of the fireworm Hermodice carunculata were counted through a monitoring assessment study of fish cages in Barranco Hondo (NE Tenerife). Seven campaigns were conducted from November 2007 to June 2010 and temporal variations were found, as well as differences among sampling stations. The poly-chaete H. carunculata obtained its highest abundance in sediments beneath fish cages throughout the study period. Thus, the assemblages of this omnivorous species were favoured by the presence of fish cages.

  17. Unusual lithospheric structure beneath the Hyderabad granitic region, eastern Dharwar craton, south India

    Science.gov (United States)

    Pandey, O. P.; Agrawal, P. K.; Chetty, T. R. K.

    2002-03-01

    Using multiparametric geological and geophysical data, the evolutionary history of the lithosphere beneath the Late Archean—early Proterozoic Hyderabad granitic region (HGR) of the eastern Dharwar craton of south Indian shield has been attempted. Our study reveals that the entire granitic region and the surroundings (˜200 km×200 km) is being neotectonically uplifted possibly due to a major intrusive body situated at sub-crustal depth, leading to changes in river courses and also erosion of several kilometers (˜10 km) from its upper crustal column. Beneath this region, the Moho is elevated (32-33 km), the reduced heat flow is of the order of 28 mW/m 2 and the asthenosphere is located at shallow depths of about 124 km, i.e. far less than 200-400 km depth found in Precambrian shield areas of the globe. The cratonic mantle lithosphere beneath HGR contains a highly conductive (15 Ωm) hydrous and seismically anisotropic metasomatic zone between depth of 90 and 100 km, where the estimated temperatures could be in the range of 900-1000 °C. The surface granitic layer, containing unusually high radioactivity (5.25 μW/m 3), appears very thin probably a kilometer or so, beneath which the entire crustal column seems to be differentiated and made up of low radioactive granulite facies (?) rocks of acid to intermediate composition. Persistent episodic thermal reactivations during the last 2.6 gega years and continuous uplifting seems to have played a major role towards making its crustal column unusual.

  18. Dry Lining as a Method for Maintaining Comfort Levels Beneath Pitched Roofs; An Experimental Case Study

    OpenAIRE

    Hippisley-Cox, Charles

    2010-01-01

    Loft spaces and roof voids present quite a challenge in the refurbishment and conversion of spaces beneath pitched roofs. There is a tendency for expensive heat loss in winter and excessively high temperatures during the summer months. Recent work on a small property in Northern France was used as an opportunity to undertake some tests whilst adopting some modern materials to obtain consistent comfort levels whilst addressing fuel costs and sustainability issues.

  19. Imaging the Crustal and Subducted Slab Structure Beneath Puerto Rico Using Receiver Function Analysis

    Science.gov (United States)

    Vanacore, E. A.; Lopez, A. M.; Huerfano Moreno, V. A.

    2015-12-01

    The determination of earthquake locations are dependent on the velocity model selected. Consequently, the refinement and updating of the velocity models used at the local and regional network level is a critical component for network efficiency through location accuracy. With the expansion of broadband instruments within the Puerto Rico -Virgin Islands region, updating the velocity model is a current long term goal of the Puerto Rico Seismic Network (PRSN). As a first step to this long term goal, receiver functions of ~20 broadband stations with data between 2010 and 2015 were calculated using iterative time domain deconvolution. The receiver function analysis not only provides insight into the crustal velocity structure but also leads to a better understanding of the region's larger tectonic structure. Preliminary results of the receiver function analysis exhibit evidence of a "slab signal"; the receiver function backazimuth sweeps for some stations particularly on the northern side of the island contain a strong P to S conversion at approximately 7 seconds which likely corresponds to the top of the slab beneath Puerto Rico. This strong slab signal implies that simple 1-D analyses of the data (e.g. H-K stacking) may lead to misleading results. To further understand the crustal structure of PRVI, we employ a 3D common-conversion-point analysis. This analysis yields a Moho beneath the island between 32-42km and a possible southward dipping slab structure between 60-80km depth. Further analysis is needed to determine the 2D or 3D velocity structure of Puerto Rico and the surrounding environs such as waveform modeling. Given the current geometry of the available array, detailed imaging of the slab and mantle wedge beneath Puerto Rico is limited. PRSN is currently seeking to install denser temporary networks to improve local imaging that will help understand the nature of the crust, mantle wedge and slab structure beneath the island as well as the structure's influence

  20. Experimental and numerical study of wave-induced backfilling beneath submarine pipelines

    DEFF Research Database (Denmark)

    Bayraktar, Deniz; Ahmad, Joseph; Eltard-Larsen, Bjarke;

    2016-01-01

    This paper presents results of complementary experimental and numerical studies involving wave-induced backfilling of current-generated scour holes beneath submarine pipelines. The laboratory experiments are conducted in a wave-plus-current flume, utilizing Laser Doppler Anemometry to measure...... utilizing a fully-coupled hydrodynamic and morphodynamic CFD model. The numerical simulations demonstrate the ability of the model to predict backfilling towards expected equilibrium scour depths based on the new wave climate, with time scales reasonably inline with experimental expectations....

  1. Structure of the mantle beneath the Alboran Basin from magnetotelluric soundings

    Science.gov (United States)

    Garcia, X.; Seillé, H.; Elsenbeck, J.; Evans, R. L.; Jegen, M.; Hölz, Sebastian; Ledo, J.; Lovatini, A.; Marti, A.; Marcuello, A.; Queralt, P.; Ungarelli, C.; Ranero, C. R.

    2015-12-01

    We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ˜150 km. At this depth, the mantle resistivity decreases to values of ˜100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.

  2. A magma-hydrothermal system beneath Hakone volcano, central Japan, revealed by highly resolved velocity structures

    Science.gov (United States)

    Yukutake, Yohei; Honda, Ryou; Harada, Masatake; Arai, Ryuta; Matsubara, Makoto

    2015-05-01

    High-resolution images of subsurface structures are necessary to understand the transport processes of crustal fluids from deep magma sources and their relationship to earthquake swarms in active volcanic regions. Based on a seismic tomography approach, we have developed a new model for the magma-hydrothermal system beneath Hakone volcano, central Japan, where shallow earthquake swarms and crustal deformation associated with inflation of an open-crack source are often observed. By applying travel-time data for local earthquakes to a tomographic inversion, we obtained highly resolved seismic velocity structures that show a region of low P-wave velocity (Vp), low S-wave velocity (Vs), and high Vp/Vs ratios at depths of 10-20 km beneath the volcano, corresponding to the location of the open-crack source. We suggest that the high Vp/Vs ratios represent a deep magma chamber with a high concentration of melt and/or fluids. Deep low-frequency earthquakes, located just beneath this high Vp/Vs zone, may indicate that magmatic fluids are supplied from below. Above the high Vp/Vs zone, a region of low Vp, low Vs, and low Vp/Vs ratios exists at depths of 3-10 km, suggesting the presence of crack-filled water or CO2 supplied from the inferred deep magma chamber. Many earthquake swarms occur in this low Vp/Vs zone, indicating that crustal fluids play an important role in generating the swarms. Similar relationships between magma reservoirs, overlying hydrothermal systems, and swarm activity have been reported from other volcanic areas and thus may be a ubiquitous feature beneath active volcanoes.

  3. Crustal Structure beneath the Rwenzori Region of the Albertine Rift using Ambient-Noise Tomography

    Science.gov (United States)

    Kaviani, A.; Paul, A.; Rumpker, G.

    2015-12-01

    In this study we investigate the crustal structure beneath the Rwenzori region by analyzing a 1-year ambient-noise data set recorded by a network of 33 broadband seismic stations that have operated between September 2009 and August 2011. The Rwenzori region, located between the Democratic Republic of Congo and Uganda, is part of the western (Albertine) branch of the East African Rift System (EARS). The region of study is situated between the Albert Rift and the Edward Rift segments and covers an area of approximately 120 km by 50 km. The main objective of the seismological experiment was to address the questions of the uplift of the Rwenzori Mountains in an extensional regime and the absence of a crustal root beneath the mountain range. Any model proposed to address these questions requires the knowledge of the structure of the Rwenzori horst and surrounding rift shoulders. Previous results from local travel-time tomography revealed the presence of low-velocity anomalies in the upper crust beneath the mountain range relative to higher velocities in the surrounding shoulders. However, since the stations used in the previous study only covered the northern part of the region, the resolution of the models proposed by the body-wave tomography was very low beneath the Rwenzori Mountains. Hence, the limits of the Rwenzori horst at depth relative to the rift shoulders are still poorly known. The main objective of our ambient-noise tomography (ANT) is to provide an explanation for the building of Rwenzori Mountains. Due to the small aperture of the seismological network, we are mainly interested in the shallow crustal structure including the boundaries between the central Rwenzori horst and the surrounding rift shoulders as well as the variations in the thickness of the sedimentary basins. We expect that the ANT images will be able to delineate the boundaries between the main tectonic features including the limits of the Rwenzori horst at depth.

  4. 3-D velocity structure of upper crust beneath NW Bohemia/Vogtland

    DEFF Research Database (Denmark)

    Mousavi, S. S.; Korn, M.; Bauer, K.;

    We present preliminary results from a travel time tomography investigation of the upper crust beneath west Bohemia/Vogtland region which is characterized by a series of phenomena like occurrence of repeated earthquake swarms, surface exhalation, CO2 enriched fluids, mofettes, mineral springs...... seismic experiments like Celebration 2000 and quarry blasts. Seismic Handler was applied for picking P and S wave arrival times. Before travel time inversion, we selected 399 events which were recorded by 9 or more stations and azimuthal gap

  5. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  6. Seismic detection of a low-velocity layer beneath the southeast flank of Mauna Loa, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, C.H.; Li, Yingping (State Univ. of New York, Stony Brook (USA)); Johnson, C.

    1989-07-01

    The authors have identified seismic phases reflected off the top and bottom of a low velocity layer (LVL) by analysis of seismograms from six small earthquakes in Hawaii. These events occurred almost directly beneath station AIN of the Hawaiian Volcano Observatory (HVO) seismic network, located within the Kaoiki seismic zone on the southeast flank of Mauna Loa. The polarity reversals of the first reflected phases provide clear evidence for the existence of a LVL beneath this station. The LVL is estimated to be at a depth of about 11.5 km, with a thickness of about 800 m. The estimated depth to the top of the LVL is consistent with the depth distribution of low-angle thrust faulting events from the aftershock sequence of the 1983 Kaoiki earthquake. Presumably, this zone is the marine sediment layer buried beneath the volcanic pile, along which the volcanic edifice may slip easily to cause large earthquakes. Mapping the interface between the volcanic pile and oceanic crust and thus determining the depth and thickness of the buried sediment layer is essential for understanding the tectonics of large earthquakes in Hawaii.

  7. Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms

    Science.gov (United States)

    Takanami, Tetsuo; Selwyn Sacks, I.; Hasegawa, Akira

    2000-10-01

    Anelastic structure in the asthenosphere beneath the volcanic front in northeastern Japan arc is estimated by using the spectral amplitude ratio data of P and S waves from about 100 events which occurred in the subducting Pacific slab below Japan. These earthquakes occurred within a 90 km radius centered about the station Sawauchi (SWU), with focal depths ranging from 60 to 200 km. Waveforms were recorded by the Carnegie broad-band three-component seismograph and were corrected for instrument responses, crustal reverberations, corner frequencies, and superimposed noise. Ray paths and travel times of P and S waves are calculated using a three-dimensional velocity model [Zhao, D., Hasegawa, A., Horiuchi, S., 1992. J. Geophys. Res. 97, 19909-19928]. We find a low- Q region ( QS˜70) extending down to 55 km depth from the lower crust beneath the volcanic front. Using Q-temperature laboratory results [Sato, H., Sacks, I.S., Murase, T., Muncill, G., Fukushima, H., 1989. J. Geophys. Res. 94, 10647-10661], this implies a temperature of about 130°C higher than the eastern forearc region and about 30°C higher than the western backarc region, in good agreement with the tomographic results of Zhao et al. [Zhao, D., Hasegawa, A., Horiuchi, S., 1992. J. Geophys. Res. 97, 19909-19928]. This suggests that low velocities in the crust and uppermost mantle beneath SWU may be explained by a subsolidus temperature increase without partial melting.

  8. Analysis of pumping-induced unsaturated regions beneath a perennial river

    Science.gov (United States)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constante, J.; Zhou, Q.

    2007-01-01

    The presence of an unsaturated region beneath a streambed during groundwater pumping near streams can reduce the pumping capacity, change flow paths, and alter the types of biological transformations in the streambed sediments. A three-dimensional, multiphase flow model of two horizontal collector wells along the Russian River near Forestville, California, was developed to investigate the impact of varying the ratio of the aquifer to streambed permeability on (1) the formation of an unsaturated region beneath the stream, (2) the pumping capacity, (3) stream water fluxes through the streambed, and (4) stream water traveltimes to the collector wells. The aquifer to streambed permeability ratio at which the unsaturated region was initially observed ranged from 10 to 100. The size of the unsaturated region beneath the streambed increased as the aquifer to streambed permeability ratio increased. The simulations also indicated that for a particular aquifer permeability, decreasing the streambed permeability by only a factor of 2-3 from the permeability where desaturation initially occurred resulted in reducing the pumping capacity. In some cases, the stream water fluxes increased as the streambed permeability decreased. However, the stream water residence times increased and the fraction of stream water that reached that the wells decreased as the streambed permeability decreased, indicating that a higher streambed flux does not necessarily correlate to greater recharge of stream water around the wells. Copyright 2007 by the American Geophysical Union.

  9. Percutaneous radiofrequency ablation for lung tumors beneath the rib under CT fluoroscopic guidance with gantry tilt

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takanobu; Yamagami, Takuji; Tanaka, Osamu; Yoshimatsu, Rika; Miura, Hiroshi; Nishimura, Tsunehiko (Dept. of Radiology, Graduate School of Medical Science, Kyoto Prefectural Univ. of Medicine, Kamigyo, Kyoto (Japan)), e-mail: yamagami@koto.kpu-m.ac.jp

    2010-05-15

    Background: Radiofrequency (RF) ablation of lung tumors has become a treatment of choice, especially for unresectable cases. However, RF ablation of small lung lesions located just beneath the rib is difficult. Purpose: To evaluate the efficacy and safety of gantry tilting for the performance of RF ablation of peripheral lesions located beneath the rib. Material and Methods: Our study was based on 18 of 293 lesions in the lung for which RF ablation was performed under CT scan fluoroscopic guidance at our institution between October 2004 and March 2009. For these 18 lesions, RF ablation was performed with gantry tilting because a rib blocked visualization of the RF ablation route even after other attempts had been made to change the relationship between the target and the rib. Results: All RF needles, with only one exception, were successfully advanced to hit the tumor. The commonest complication was a pneumothorax, which occurred in seven procedures. No serious complications occurred. The progression-free rates were 82.4% at 6 months, 62.5% at 12 months, and 30% at 24 months. Mean local progression-free duration was 17.6+-11.6 months (range 4-36 months). Conclusion: RF ablation under CT scan fluoroscopic guidance with gantry tilt is a useful and safe technique for RF ablation of lung nodules located beneath the rib

  10. Receiver Function Imaging of the Mantle Transition Zone beneath the South China Block

    Science.gov (United States)

    Huang, H.; Tosi, N.; Chang, S. J.; Xia, S.; Qiu, X.

    2015-12-01

    Upper mantle discontinuities are influenced by convection-related thermal heterogeneities arising in complex geodynamic settings. Slab roll-back of the Pacific plate and mantle upwelling in the Meso-Cenozoic caused the extension and spreading of continental segments in the South China Block, leading to profound variations of the local temperature conditions. We processed 201 teleseismic events beneath 87 stations in the Hainan, Guangdong, and Fujian provinces in the South China Block, and extracted 4172 high-quality receiver functions. We imaged topographies of the mantle discontinuities by using phase-weighted common conversion point (PW-CCP) stacking of the receiver functions, which effectively improves the P-to-S converted phases. We found that the average depths of the discontinuities at 410 km and 660 km depth are 429 km and 680 km, respectively, while no clearly defined discontinuity at 520 km depth was detected. We mapped the thickness of the mantle transition zone (MTZ), which can reflect temperature and/or compositional heterogeneities as well as the presence of water, and used our results to discuss possible geodynamic implications. In particular, we found that the MTZ beneath the Leizhou Peninsula in the Hainan province is 43 km thinner than average. This scenario is compatible with a "Hainan plume" responsible for positive temperature anomalies of 380 K and 220 K at the 660 km and 410 km discontinuities, respectively. Prominent uplifting of the 660 km boundary beneath the coast regions may also support a horizontal channel flow of the Hainan plume.

  11. Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic regionn, California ( USA).

    Science.gov (United States)

    Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori

    1988-01-01

    We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors

  12. 3D coupled geophysical‐petrological modelling of the Canary Islands and north-western African margin lithosphere

    OpenAIRE

    Fullea, J.

    2013-01-01

    In this work we study the present-day thermal and compositional 3D structure of the  lithosphere beneath the Canary Islands and north¿western African margin. We aim to  understand the origin and evolution of Canary and north-African intraplate volcanism  and its possible link to the thinned lithosphere imaged beneath the Atlas Mountains.     We  apply  an  integrated  and  self-consistent  geophysical¿petrological  methodology  (LitMod) that combines elevation, gravity, gradiometric, geoid, s...

  13. Rayleigh-wave imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary results from the SEGMeNT experiment

    Science.gov (United States)

    Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Nyblade, A.; Ebinger, C. J.; Mbogoni, G. J.; Chindandali, P. R. N.; Mulibo, G. D.; Ferdinand-Wambura, R.; Kamihanda, G.

    2015-12-01

    The Malawi Rift (MR) is an immature rift located at the southern tip of the Western branch of the East African Rift System (EARS). Pronounced border faults and tectonic segmentation are seen within the upper crust. Surface volcanism in the region is limited to the Rungwe volcanic province located north of Lake Malawi (Nyasa). However, the distribution of extension and magma at depth in the crust and mantle lithosphere is unknown. As the Western Rift of the EARS is largely magma-poor except for discrete volcanic provinces, the MR presents the ideal location to elucidate the role of magmatism in early-stage rifting and the manifestation of segmentation at depth. This study investigates the shear velocity of the crust and mantle lithosphere beneath the MR to constrain the thermal structure, the amount of total crustal and lithospheric thinning, and the presence and distribution of magmatism beneath the rift. Utilizing 55 stations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) passive-source seismic experiment operating in Malawi and Tanzania, we employed a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information from Rayleigh wave observations between 20 and 80 s period. We retrieve estimates of phase velocity between 9-20 s period from ambient noise cross-correlograms in the frequency domain via Aki's formula. We invert phase velocity measurements to obtain estimates of shear velocity (Vs) between 50-200 km depth. Preliminary results reveal a striking low-velocity zone (LVZ) beneath the Rungwe volcanic province with Vs ~4.2-4.3 km/s in the uppermost mantle. Low velocities extend along the entire strike of Lake Malawi and to the west where a faster velocity lid (~4.5 km/s) is imaged. These preliminary results will be extended by incorporating broadband data from seven "lake"-bottom seismometers (LBS) to be retrieved from Lake Malawi in October of this year. The crust and mantle modeling will be

  14. Thermal constraints on the emerald ash borer invasion of North America

    Science.gov (United States)

    DeSantis, R.; Moser, W. K.; Gormanson, D. D.; Bartlett, M. G.

    2012-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire; EAB), a non-native invasive beetle, has caused substantial damage to green (Fraxinus pennsylvanica Marsh.), white (Fraxinus americana L.), and black ash (Fraxinus nigra Marsh.), the major ash species of North America. In the absence of effective methods for controlling or eradicating the beetle, EAB continues to spread unimpeded across North America. Evidence indicates the mortality rate for EAB-infested trees near the epicenter of the infestation in southeast Michigan exceeds 99 percent for the major ash species. One possible climatic limitation on the spread of the infestation is suggested by recent work indicating that beetles cannot survive exposure to temperatures below -35.3 degrees Celsius. We considered whether this thermal constraint will limit the spread and distribution of EAB in North America. Historical climatic data for the United States and Canada were employed along with thermal models of the conditions beneath likely winter snowpack and beneath tree bark to predict the potential geographic distribution of the invasion. Results suggested the thermal mortality constraint will not lead to the protection of ash stands across most of North America. However, recent work indicates the majority of beetles cannot survive exposure to temperatures below -30 degrees Celsius. Along with our results, this suggests thermal constraints near the northern and western edges of the ranges of ash might limit EAB survival to some extent, thereby reducing the EAB population, the likelihood of EAB infestation, and subsequent ash mortality.

  15. Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision

    Science.gov (United States)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B.; Ionescu, C.; Hegedüs, E.; Radovanović, S.; Shen, Y.; South Carpathian Project Working Group

    2012-10-01

    The Carpathian-Pannonian system of Eastern and Central Europe represents a unique opportunity to study the interaction between surface tectonic processes involving convergence, extension and convective overturn in the upper mantle. Here, we present high-resolution images of upper mantle structure beneath the region from P-wave finite-frequency teleseismic tomography to help constrain such geodynamical interactions. We have selected earthquakes with magnitude greater than 5.5 in the distance range 30°-95°, which occurred between 2006 and 2011. The data were recorded on 54 temporary stations deployed by the South Carpathian Project (2009-2011), 56 temporary stations deployed by the Carpathian Basins Project (2005-2007), and 131 national network broadband stations. The P-wave relative arrival times are measured in two frequency bands (0.5-2.0 Hz and 0.1-0.5 Hz), and are inverted for Vp perturbation maps in the upper mantle. Our images show a sub-vertical slab of fast material beneath the eastern Alps which extends eastward across the Pannonian basin at depths below ˜300km. The fast material extends down into the mantle transition zone (MTZ), where it spreads out beneath the entire basin. Above ˜300km, the upper mantle below the Pannonian basin is dominated by relatively slow velocities, the largest of which extends down to ˜200km. We suggest that cold mantle lithospheric downwelling occurred below the Pannonian Basin before detaching in the mid-Miocene. In the Vrancea Zone of SE Romania, intermediate-depth (75-180 km) seismicity occurs at the NE end of an upper mantle high velocity structure that extends SW under the Moesian Platform, oblique to the southern edge of the South Carpathians. At greater depths (180-400 km), a sub-circular high velocity anomaly is found directly beneath the seismicity. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the MTZ. No clear evidence of a residual slab is

  16. Crustal Structure Beneath the Luangwa Rift, Zambia: Constraints from Potential Field Data

    Science.gov (United States)

    Atekwana, E. A.; Matende, K.; Abdelsalam, M. G.; Mickus, K. L.; Atekwana, E. A.; Gao, S. S.; Sikazwe, O.; Liu, K. H.; Evans, R. L.

    2015-12-01

    We used gravity and magnetic data to examine the thermal and crustal structure beneath the Luangwa Rift Valley (LRV) in Zambia in order to examine the geodynamic controls of its formation.. The LRV lies at the boundary between the Mesoproterozoic-Neoproterozoic Irumide and Southern Irumide orogenic belts between the Zimbabwe craton and the Bangwelu Block. We computed the Curie Point Depth (CPD) using two-dimensional (2D) power spectrum analysis of the aeromagnetic data, and these results were used to estimate heat flow beneath the LRV. We also inverted the aeromagnetic data for three-dimensional (3D) magnetic susceptibility distribution. We further determined the depths to the Moho using 2D power spectrum analysis of the satellite gravity data and 2D forward modeling of the terrestrial gravity data. We found that: (1) there is no consistent pattern of elevated CPD beneath the LRV, and as such no consistent pattern of elevated heat flow anomaly, (2) there are numerous 5-15 km wide magnetic bodies at shallow depth (5-20 km) beneath the LRV and the 2D forward gravity modeling suggests these to be dense intrusive bodies, (3) a thick crust (49-52 km) underlies the northwestern margin of the rift centered beneath the ~ 1 km high Muchinga escarpment which represents the main border fault of the LRV. This thick crust contrasts with the thinner crust (35-45 km) outside the rift, and (4) the thickened crust coincides with a NE-SE elongated belt of 1.05-1.0 Ga granitoids previously interpreted as manifestations of the metacratonization of the southeastern edge of the Bangweulu Block. Our 2D forward gravity model suggests that the thickened crust is due to the presence of possibly Karoo-aged magmatic under-plated mafic body (UPMB) whose thermal anomaly has since decayed. We suggest that the initiation of the LRV was associated with this deep magmatic activity that introduced rheological weaknesses that facilitated strain localization although it never breached the surface. It

  17. Comparative Study on the Electrical Properties of the Oceanic Mantle Beneath the Northwest Pacific Ocean

    Science.gov (United States)

    Toh, H.

    2013-12-01

    We have been conducting long-term seafloor electromagnetic (EM) observations at two sites in the northwest Pacific since 2001. The older site was established at the deep seafloor (~5600m) on the northwest Pacific basin (Site NWP), while the new one was installed on the west Philippine basin (Site WPB) in 2006 at the slightly deeper (~5700m) seafloor. The ages of the oceanic basins at those sites are approximately 129 Ma for Site NWP (Shipboard Scientific Party of ODP Leg 191, 2000) and 49 Ma for Site WPB (Salisbury et al., 2006), respectively. The EM instruments deployed at those sites are seafloor EM stations (SFEMS; Toh et al., 2004 and 2006) and capable of measuring vector EM fields at the seafloor for as long as one year or more with other physical quantities such as the instruments' attitude, orientation and temperature. One of the objectives of the seafloor long-term EM observations by SFEMSs is to make a comparative study of the oceanic mantle with and without influence of the so-called 'stagnant slabs' in terms of their electrical conductivity. It is anticipated that the mantle transition zone under the influence of the stagnant slab has a higher electrical conductivity because the transition zone there could be wetter than that in the absence of the stagnant slab. In this context, the mantle transition zone beneath Site WPB can be said to have influence by the stagnant slab, while that beneath Site NWP does not. It, therefore, is basically possible to estimate how much water is present in each transition zone by comparison of the electrical conductivity profiles of the two. The one-dimensional electrical profile beneath Site NWP has been derived so far using the magnetotelluric (MT) and geomagnetic depth sounding (GDS) methods with significant jumps in the electrical property at 410 and 660km discontinuities. The jumps are approximately factors of 10 and 2, respectively (Ichiki et al., 2009). Here we show a profile beneath Site WPB using both MT and GDS

  18. Moho Depth Variation Beneath Southwest Japan Revealed From Inverted Velocity Structure Based on Receiver Functions

    Science.gov (United States)

    Shiomi, K.; Obara, K.; Sato, H.

    2004-12-01

    We determine the depth variation of the Moho discontinuity beneath Chugoku-Shikoku region, southwest Japan. We apply the receiver function analysis to teleseismic waveforms from more than 250 earthquakes with magnitude 5.5 or larger recorded by the High Sensitivity Seismograph Network (Hi-net). Integrating estimated receiver functions into six groups according to the back azimuth of each station, we estimate the seismic velocity structure for every group of the receiver functions by using the improved linearized time-domain waveform inversion method. This improved method adopts a weighting function to determine the shallow structure well and estimate both S and P wave velocity, simultaneously. We detect a clear velocity discontinuity corresponding to the Moho across which the S wave velocity changes to 4.5 km/s from 3.7 km/s. The depth of the discontinuity is about 30 km beneath northern (the Japan Sea) and southern (the Pacific) coastlines and more than 40 km beneath central part of the study region. In the central part, a low velocity layer (LVL) with 10 km thickness exists under the Moho. The depth of the upper boundary of the LVL is 45 to 50 km. The Philippine Sea plate (PHS) is subducting toward the northwest from the Nankai Trough beneath the Chugoku-Shikoku region where both the continental and the oceanic Moho exist. The LVL corresponds to the subducting oceanic crust of the PHS and the oceanic Moho is the bottom of the oceanic crust. The continental Moho of the Eurasian plate lies above the low velocity oceanic crust. However, at stations in the northern and southern part of the study region, we find only one major velocity discontinuity. We read the depth of these clear discontinuities from the inverted velocity models and map the Moho depth at the conversion point. By interpolating the results, we separately draw the depth contour of the continental and the oceanic Moho beneath Chugoku-Shikoku region under the assumptions: (1) the Moho of the Pacific

  19. Precursors to ScS Phases and dipping interface in the upper mantle beneath southwestern Japan

    Science.gov (United States)

    Nakanishi, Ichiro

    1980-10-01

    Longitudinally polarized precursors to ScS phases observed in the Shikoku and Chugoku districts, southwestern Japan, are interpreted as ScSp arrivals, resulting from ScSto-P conversions at a dipping interface in the upper mantle. An ScSp phase recorded in the Tohoku district, northeastern Japan, also is examined. The location of the conversion interface, beneath the Shikoku district, determined from the ScSp observations agrees with the upper boundary of the descending Philippine Sea plate inferred from the seismicity pattern of subcrustal earthquakes. It has been proposed on the basis of no seismic activity in the upper mantle that the leading edge of the downgoing Philippine Sea plate has not reached the upper mantle beneath the Chugoku district. The ScSp observations, however, present a possibility of the existence of an aseismic continuation of the Philippine Sea plate in the upper mantle beneath the Chugoku district. An alternative interpretation of the conversion interface may be possible. The interface inferred in the present study may correspond to a boundary between the asthenosphere and an aseismic dead slab which had descended from the Nankai trough at the previous cycle of plate convergence. This ScS-to-P conversion interface may be closely related to the late Quaternary volcanism in the Chugoku district. Low-velocity zones are required in the vicinity of the inclined ScS-to-P conversion interfaces in the upper mantle beneath southwestern and northeastern Japan in order to explain the observed relative polarity between the ScSp and ScS phases. The first-order discontinuity of the velocity contrast of about 6%, which has been suggested between the lithosphere and overlying asthenosphere, cannot simultaneously explain all of the observed amplitudes, periods, and polarity of the ScSp phases. The simplest model which explains these observations is the low-velocity zone with the sharp upper and transitional lower boundaries. This low-velocity zone may be

  20. North Korean nuclear negotiation drama

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jai Bok

    1995-06-15

    This book reports negotiation on North Korean nuclear among South Korea, North Korea and U. S. It includes an account about international issues on North Korean nuclear activities, a new aspect on the problems of North Korean nuclear, pressure on North Korea and startup for dialogue trying to solve problems by communication, investigation by IAEA, IAEA resolution and high tension on Korean peninsula with North Korean nuclear.

  1. North Korean nuclear negotiation drama

    International Nuclear Information System (INIS)

    This book reports negotiation on North Korean nuclear among South Korea, North Korea and U. S. It includes an account about international issues on North Korean nuclear activities, a new aspect on the problems of North Korean nuclear, pressure on North Korea and startup for dialogue trying to solve problems by communication, investigation by IAEA, IAEA resolution and high tension on Korean peninsula with North Korean nuclear.

  2. North Korea Conundrum

    International Nuclear Information System (INIS)

    Proliferation has become an important political issue over the last decades, marked simultaneously by the nuclearization of South Asia, the strengthening of international regimes (TNP, CW, MTCR) and the discovery of fraud and trafficking. This paper presents the motivations and strategy of North Korea in violating existing agreements and developing an alternative source of weapons grade material. Then it analyses the US gradual economical and political strategy to pressure North Korea to eliminate its nuclear weapons program. The future position of the US will depend on the Iraq outcome and on the results of its pressure policy on North Korea. (J.S.)

  3. Density, temperature and composition of the North American lithosphere: new insights from a joint analysis of seismic, gravity and mineral physics data: 2. Thermal and compositional model of the upper mantle.

    NARCIS (Netherlands)

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd

    2014-01-01

    Temperature and compositional variations of the North American (NA) lithospheric mantle are estimated using a new inversion technique introduced in Part I, which allows us to jointly interpret seismic tomography and gravity data, taking into account depletion of the lithospheric mantle beneath the c

  4. NOx Emissions from Oil and Gas Production in the North Sea

    Science.gov (United States)

    Lee, J. D.; Foulds, A.; Purvis, R.; Vaughan, A. R.; Carslaw, D.; Lewis, A. C.

    2015-12-01

    North Sea oil is a mixture of hydrocarbons, comprising liquid petroleum and natural gas, produced from petroleum reservoirs beneath the North Sea. As of January 2015, the North Sea is the world's most active offshore drilling region with 173 rigs drilling. During the summer of 2015, a series of survey flights took place on the UKs FAAM BAe 146 research aircraft with the primary aim to assess background methane (and other hydrocarbons) levels in the drilling areas of the North Sea. Also measured were Nitrogen Oxides (NO and NO2), which are emitted from almost all combustion processes and are a key air pollutant, both directly and as a precursor to ozone (O3). The oil and gas platforms in the North Sea are often manned and require significant power generation and support vessels for their continued operation, processes that potentially emit significant amounts of NOx into an otherwise relative clean environment. During these flights we were able to measure the NO­­­x (and any subsequently produced O3) emitted from specific rigs, as well as the NOx levels in the wider North Sea oil and gas production region (see figure for example). NOx mixing ratios of <10 ppbv were frequently observed in plumes, with significant perturbation to the wider North Sea background levels. NOx emissions from the rigs are point sources within the UKs National Atmospheric Emission Inventory (NAEI) and the measurements taken in plumes from individual rigs are used to assess the accuracy of these estimates.

  5. Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography

    Directory of Open Access Journals (Sweden)

    P. De Gori

    1997-06-01

    Full Text Available High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf and secondary (pP,sP,PcP,PP,PKPbc,PKPab travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.

  6. Broadband Seismic Investigations of the Upper Mantle Beneath the Vienna and Pannonian Basins

    Science.gov (United States)

    Dando, B. D.; Stuart, G. W.; Houseman, G. A.; Team, C.

    2008-12-01

    The Carpathian Basins Project (CBP) aims to understand the origin of the Miocene-age extensional basins contained within the compressional arc of the Alpine-Carpathian system. To test competing models for the recent geological evolution of the Carpathian-Pannonian lithosphere and upper mantle, we present a new determination of P-wave velocity structure to depths of 700 km beneath this region. This model is based on inversion of seismic travel-time residuals from 97 broadband seismic stations. We include CBP data from a 15-month deployment of a high resolution network of 46 stations deployed NW-SE across the Vienna and western Pannonian basins through Austria, Hungary and Serbia, together with 10 broadband stations spread across the Pannonian basin and a further 41 permanent broadband stations. We use P-wave arrival times from approximately 341 teleseismic events. The 3-D velocity variation obtained by tomographic inversion of the P-wave travel-time residuals shows an approximately linear belt of fast material of width about 100 km, orientated WNW-ESE beneath the western Pannonian Basin at sub-lithospheric depths. This feature is apparently continuous with structure beneath the Eastern Alps, but becomes more diffuse into the transition zone. Our initial interpretation of these fast velocities is in terms of mantle downwelling related to the early collision of Adria and Europe. We use receiver functions to assess crustal structure variations. We also determine SKS anisotropy; regionally SKS varies systematically in direction, with a delay time of about 1.0s. E-W fast directions above the fast tomographic anomaly change to NW-SE across the Great Hungarian Plane and the Vienna Basin.

  7. Layered anisotropy within the crust and lithospheric mantle beneath the Sea of Japan

    Science.gov (United States)

    Legendre, C. P.; Zhao, L.; Deschamps, F.; Chen, Q.-F.

    2016-10-01

    Continental rifting during the Oligocene to mid-Miocene caused the opening of the Sea of Japan and the separation between the Japanese Islands and the Eurasian Plate. The tectonic evolution in the Sea of Japan is important for understanding the evolution of back-arc regions in active convergent margins. Here, we use data from the seismic stations surrounding the Sea of Japan to map the Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath the Sea of Japan. We explore the variations of Rayleigh-wave phase-velocity beneath the Sea of Japan in a broad period range (30-80 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 231 interstation paths using vertical-component broad-band waveforms at 22 seismic stations around the Sea of Japan from 1411 global earthquakes. The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy allow the examination of azimuthal anisotropy at specific periods. They exhibit several regions with different isotropic and anisotropic patterns: the Japan Basin displays fast velocities at shorter periods (30 and 40 s) with NNE-SSW anisotropy, whereas at 60 s and longer, the velocities become slow even if the anisotropy remains NE-SW; the East China Sea shows fast velocities at all periods (30-80 s) with constant NW-SE anisotropy. Trench-normal anisotropy beneath the Japanese Islands is found at short periods (30-40 s) and become trench-parallel at periods of 60 s and longer. Overall, our model resolves two layers of anisotropy, the shallowest and deepest layers being potentially related to frozen deformation due to recent geodynamic events, and asthenospheric flow, respectively.

  8. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  9. Stress in the contorted Nazca Plate beneath southern Peru from local earthquakes

    Science.gov (United States)

    Schneider, John F.; Sacks, I. Selwyn

    1987-12-01

    We study earthquake focal mechanisms in a region of highly contorted subducting lithosphere to identify dominant sources of stress in the subduction process. We observe a stress pattern in the contorted Nazca plate beneath southern Peru from an analysis of hypocentral trend and focal mechanisms of intermediate-depth earthquakes. Expanding on previous studies, we examine the hypocentral trend using 1673 of 2178 well-located local events from the nine-station Arequipa network. The dip of the plate beneath southern Peru averages 25°-30° from 25- to 100-km depth. Below this depth there is an 80- to 100-km-wide contortion between a zone of increasing dip (convex) to the southeast and a flat lying (concave) zone to the northwest. Using more than 6000 P wave first motions of events deeper than 50 km, we derive stress orientations from a moving average of composite focal mechanisms across a 200 by 350 km region including the contortion. The in-plate distribution of tension (T) and compression (P) axes reveals a coherent stress pattern. The trend is most clear beneath south-central Peru (NW section) and below 100- km depth in southernmost Peru (SE section). Both T and P axes tend to be dominantly in plate, especially below 100-km depth. T axes orient toward the contortion in a fan-shaped trend, which suggests that the deepest part of the seismic zone, within the convex SE section, is sinking and pulling the more buoyant NW section. We conclude that from 50- to 200-km depth, slab-pull forces are dominant in the observed stress. Our results suggest that a significant amount of plate extension occurs in this region of intermediate-depth subduction.

  10. Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia

    Indian Academy of Sciences (India)

    Bhaskar Kundu; V K Gahalaut

    2011-04-01

    Necking, tearing, slab detachment and subsequently slab loss complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, and causes along-strike variations in vertical motion and geochemically distinct subduction-related arc magmatism. We also propose a model for the geodynamic evolution of slab detachment.

  11. Geophysical investigations of the crust and mantle beneath Texas' Gulf Coastal Plain

    Science.gov (United States)

    Gurrola, H.; Pulliam, J.; Knuppel, M.; Agrawal, M.

    2015-12-01

    EarthScope's Transportable Array (TA) and a dense broadband profile (X4) that coincided with TA deployments in Texas formed the basis for higher resolution geophysical investigations than previously possible in the Gulf Coast Plain (GCP). X4 is a 300-km-long array of 26 broadband seismic stations deployed from Matagorda Island across the GCP, ending near the center of the Llano uplift (LU). The study found an 80-100 km wide "lithosphere-asthenosphere transition zone" (LATZ). While a negative Sp phase at ~110 km depth could be interpreted as a shallow LAB, several negative Sp phases were also found in the 110-180 km depth interval and this set of negative Sp phases is bounded by a positive Sp phase at 180-200 km depth that is semi-continuous across the length of the array. We interpret the depth interval's negative anomalies to be the results of partial melt and shearing in a softened or underdeveloped lithosphere, thus the term LATZ. The GCP was also found to have large SKS splitting delay times, which we believe is due to seismic anisotropy in the LATZ (the zone of assumed shearing). Body wave tomography found slightly high Vp but unusually low Vs beneath the GCP; Vs is more sensitive to partial melt and anisotropy than Vp, further supporting the LATZ hypothesis. Ps and Sp Moho phases are observed at ~35 km beneath the LU but both Sp and Ps RFs fail to image a Moho beneath the Balcones Fault zone (BFZ). The Moho may be undetectable due to serpentinization of the upper mantle from water leaking through the BFZ, a possibility supported by the existence of a low velocity anomaly in the upper mantle beneath the BFZ found by surface wave modeling. Ps and Sp RFs also found evidence for a low velocity zone in the 50-70 km depth interval near the shoreline of the GCP. Ps RF imaging suggests this LVZ may be a piece of subducted lower crust emplaced during the Ouachita orogeny with a trapped mantle wedge above it. These observations are supported by gravity modeling.

  12. Study on S wave velocity structure beneath part stations in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    张学民; 束沛镒; 刁桂苓

    2003-01-01

    Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.

  13. Seismic evidence for crustal underplating beneath a large igneous province: The Sierra Leone Rise, equatorial Atlantic

    OpenAIRE

    Jones, E. J. W.; McMechan, G. A.; Zeng, X.

    2015-01-01

    Wide-angle seismic profiles reveal anomalously thick crust with a high-velocity (> 7.3 km s− 1) zone under the Sierra Leone Rise, a major mid-plate elevation in the Atlantic lying between the Cape Verde platform and the Cameroon Volcanic Line. A profile recorded over the crest using an ocean-bottom seismometer and surface sonobuoys shows that beneath a 3 km water layer and 1 km of sediments, the basement extends to 16–20 km below sea level. Most velocity-depth values fall outside the expected...

  14. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging

    OpenAIRE

    Widiyantoro, Sri; van der Hilst, R. D.

    1997-01-01

    We investigated mantle structure beneath the Indonesian region by means of tomographic inversions of traveltime residuals of direct P and the surface-reflected depth phases pP and pwP. The hypocentres and phase data used in the inversions were derived from the reprocessing of data reported to international data centres, which include data from the Australian SKIPPY project. We used more than 6.0 × 10⁶ data from more than 50 000 globally distributed earthquakes recorded at a subset of nearly 3...

  15. Technology Solutions Case Study: Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate, Southwestern Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    In this project, Building America team IBACOS worked with a builder of single- and multifamily homes in southwestern Pennsylvania (climate zone 5) to understand its methods of successfully using polyethylene sheeting over aggregate as a capillary break beneath the slab in new construction. This builder’s homes vary in terms of whether they have crawlspaces or basements. However, in both cases, the strategy protects the home from water intrusion via capillary action (e.g., water wicking into cracks and spaces in the slab), thereby helping to preserve the durability of the home.

  16. Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The basement of the Songliao Basin is mainly composed of slightly-metamorphosed or unmetamorphosed Paleozoic strata, granites and gneiss. Petrographical studies indicate that the gneiss was originally the granitic intrusions which were deformed in the later stage. One undeformed granitic rock sample gives a U-Pb age of (305±2) Ma, and the mylonitic granite yields a U-Pb age of (165±3) Ma. Both of the two samples contain no inherited zircon, which suggests that there is no large-scale Precambrian crystalline basement beneath the Songliao Basin.

  17. New insight into the Upper Mantle Structure Beneath the Pacific Ocean Using PP and SS Precursors

    Science.gov (United States)

    Gurrola, H.; Rogers, K. D.

    2013-12-01

    The passing of the EarthScope Transportable array has provided a dense data set that enabled beam forming of SS and PP data that resultes in improved frequency content to as much a 1 Hz in the imaging of upper mantle structure. This combined with the application of simultaneous iterative deconvolution has resulted in images to as much as 4 Hz. The processing however results in structure being averaged over regions of 60 to 100 km in radius. This is becomes a powerful new tool to image the upper mantle beneath Oceanic regions where locating stations is expensive and difficult. This presentation will summarize work from a number of regions as to new observations of the upper mantle beneath the Pacific and Arctic Oceans. Images from a region of the Pacific Ocean furthest from hot spots or subduction zones (we will refer to this as the 'reference region'). show considerable layering in the upper mantle. The 410 km discontinuity is always imaged using these tools and appears to be a very sharp boundary. It does usually appear as an isolated positive phase. There appears to be a LAB at ~100 km as expected but there is a strong negative phase at ~ 200 km with a positive phase 15 km deeper. This is best explained as a lens of partial melt as expected for this depth based on the geothermal gradient. If so this should be a low friction point and so we would expect it to accommodate plate motion. Imaging of the Aleutian subduction zone does show the 100 km deep LAB as it descends but this 200 km deep horizon appears as a week descending positive anomaly without the shallower negative pulse. In addition to the 410, 100 and 200 km discontinuities there are a number of paired anomalies, between the 200 and 400 km depths, with a negative pulse 15 to 20 km shallower then the positive pulse. We do not believe these are side lobes or we would see side lobes on the 100 km and 410 km discontinuities. We believe these to be the result of friction induced partial melt along zones of

  18. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  19. Structure of the Crust Beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    International Nuclear Information System (INIS)

    The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ≥ 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)

  20. Tomographic imaging of the Nazca slab and surrounding mantle in the mantle transition zone beneath the Central Andes

    Science.gov (United States)

    Scire, A. C.; Biryol, C. B.; Zandt, G.; Beck, S. L.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2013-12-01

    The central Andes in South America is an ideal location to investigate the interaction between a subducting slab and the surrounding mantle to the base of the mantle transition zone (MTZ). We used finite-frequency teleseismic P-wave tomography to image velocity anomalies in the mantle from 100 - 700 km between 10° and 28°S in the central Andes by combining data from twelve separate networks deployed in the region between 1994 and 2013. P- and PKIKP- (diffracted PKP) arrivals were picked in multiple frequency bands for earthquakes at distances between 30° and 90° and between 155° to 180° from the array, respectively. The tomographic algorithm used calculates approximate finite frequency kernels for each ray, providing additional sampling for each model layer to potentially increase the resolution of our images. The trench-parallel, fast anomaly which appears to correspond with the subducting Nazca slab is the most prominent anomaly in our tomograms. Variations in the width of the slab anomaly in the deeper parts of the model show evidence for deformation of the slab between 300 and 660 km. Our results show localized thickening of the Nazca slab in the MTZ north of 14°S, between 16° and 18°S, and south of 25°S, in agreement with the idea that the Nazca slab stagnates at least temporarily in the transition zone before resuming subduction into the lower mantle. Our images of the deeply subducted Nazca slab also show evidence of varying degrees of thinning in the mantle transition zone, particularly at 20° and 24°S, possibly indicating that the stress state changes along strike as the slab deforms in the MTZ before resuming subduction into the lower mantle. We also image along-strike variations in the sub-slab mantle in the MTZ including a strong low velocity anomaly between 22° and 28°S which is similar to those seen in other subduction zones, and is interpreted as either a local thermal anomaly or a region of hydrated material in the MTZ. A similar

  1. Pockmark formation and activity, U. K. block 15/25, North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Judd, A. (School of the Enviroment, University of Sunderland, Sunderland (United Kingdom)); Long, D.; Sankey, M. (British Geological Survey, Edinburgh (United Kingdom))

    1994-03-01

    Digital seismic reflection (boomer) profiles of an active pockmark, in UK block 15/25, North Sea, reveal that the feature was formed prior to the deposition of the most recent sediments, probably by vigorous (or even catastrophic) gas escape. This release may have been triggered by the melting of ground ice when North Atlantic waters first entered the North Sea after the last glaciation, about 13,000 years ago. Possible sources of the gas are investigated by examining the composite log from a nearby petroleum exploration well; it is concluded that, although the gas may originate from the Kimmeridge Clay, it probably comes from lignites of Tertiary age. Its migration towards the seabed is interrupted by local accumulations at several horizons, the shallowest of which (<80 m below seabed) is trapped beneath clayey sediments of the Coal Pit Formation. The topography of the base of this layer apparently controls the location of gas migration pathways to the seabed. As these lead to pockmarks which formed long ago, and as these pockmarks are still active today, it is probable that the migration pathways have remained throughout the intervening period. Gas accumulating beneath the Coal Pit Formation may migrate laterally to reach the pathways. (au) (19 refs.)

  2. Contrasting Subduction Modes with Slab Tearing beneath Eastern Himalaya: Evidence from Teleseismic P-wave Tomography

    Science.gov (United States)

    Peng, M.; Jiang, M.; Li, Z. H.; Xu, Z.; Chen, Y.; Chan, W. W. W.; Wang, Y.; Yu, C.; Lei, J.

    2014-12-01

    On the eastern margin of the Himalayan orogenic belt, the rapid uplift of the Namche Barwa metamorphic terrane and the significant bending of the Yarlung Zangbo suture zone occur. However, the formation mechanism and dynamics of the Eastern Himalayan Syntaxis is still debated. In order to better understand the deep structures beneath eastern Himalaya, we further deployed 35 broadband seismic stations (2010-2013) around the Namche Barwa Mountain, which is integrated with the existing Lehigh data sets of 45 stations (2003-2004). We totally selected 18,979 high-quality P-wave arrival times from 2,140 teleseismic events to image P-wave teleseismic tomography. The results demonstrate complex deep structures and significantly different subduction modes in the eastern Himalaya. In contrast to the steep subduction of the Indian lithosphere beneath the Eastern Himalayan Syntaxis, the Indian slab flatly subducted in the west, which might extend close to the Bangong-Nujiang Suture and then steeply sink and bend over. The contrasting subduction model results in the tearing and fragmentation of the Indian lithosphere in the transition zone between the flat and steep subduction. Consequently, the upwelling of hot asthenospheric mantle may occur through the slab tear window, which might further lead to the rapid uplift of Namche Barwa and the formation of the Eastern Himalayan Syntaxis. The lateral variation in subduction mode and slab tearing induced asthenospheric mantle upwelling is similar to that observed in the Hellenide and Anatolide domains of the Tethyan orogen.

  3. Regionalized difference of the 660 km discontinuity beneath Izu-Bonin

    Institute of Scientific and Technical Information of China (English)

    周元泽; 蒋志勇; 臧绍先

    2002-01-01

    Digital waveform data recorded by the vertical component short period stations at the American networks of SCSN, NCSN and PNSN and three components broadband stations at the Germany and Swiss networks and arrays of GRFN, GRSN and SDSNet for the events between 1981 and 2000 under Izu-Bonin are used as data sets. The N-th root slant stack method was used to pick up the SdP phase converted at the velocity interface beneath source and the regionalized difference of the 660 km discontinuity beneath Izu-Bonin is studied. It is found that while the dip angles of the subducting slab and the maximal depths of sources increase gradually from 35(N to 26(N, the 660 km discontinuity appears regionalized differences. The discontinuity exists at 660 km while there is no effect from subducting slab, but it is depressed to the depth of 720 km while there are obvious effects. The dispersion of converted points is still an unsolved problem which maybe result from the complex structure of the discontinuity, converted phases which were misjudged, or the assumption of one dimensional spherical earth model.

  4. Extreme Mantle Heterogeneity beneath the Jingpohu Area, Northeastern China-Geochemical Evidence of Holocene Basaltic Rock

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Holocene basaltic rocks of the Jingpohu area are located in the "Crater Forest" and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, their petrological characteristics are very different: alkaline olivine basalt without any megacrysts in the former, and leucite tephrite with Ti-amphibole, phlogopite and anorthoclasite megacrysts in the latter. On the basis of their geochemical characteristics, the two types of basaltic rocks should belong to weakly sodian alkaline basalts. But leucite tephrite is characterized by higher Al2O3, Na2O and K2O, higher enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), lower MgO and CaO, compatible elements and moderately compatible elements and lower Mg# values and Na/K ratios in comparison with alkaline olivine basalt. However, the two types of basaltic rocks have similar Sr, Nd, Pb isotopic compositions, which suggests that the mantle beneath the Jingpohu area was homogeneous before undergoing some geological processes about 3490 years ago. As the activity of the mantle plume led to different degrees of metasomatism, extreme mantle source heterogeneities occurred beneath the Jingpohu area. In comparison with alkaline olivine basalt, the leucite tephrite was derived from the more enriched mantle source region and resulted from strong metasomatism.

  5. Mapping the subducted Nazca plate in the lower mantle beneath South America

    Science.gov (United States)

    Contenti, S. M.; Gu, Y. J.; Okeler, A.

    2009-12-01

    Recent improvements in data coverage have enabled high-resolution imaging of the morphology of subduction zones and mantle plumes. In this study, we migrate the SS precursors from over 5000 seismograms to obtain a detailed map of mid- and upper-mantle reflectors beneath the northern portion of the South American subduction zone, where the oceanic Nazca plate is descending below the South American plate. In addition to an elevated 410 and depressed 660 (as expected for a subduction zone), strong mid-mantle reflectors at 800-1100 km depth are also apparent. The amplitudes of these steeply dipping reflectors are comparable to that of the 660-kilometer discontinuity. This anomaly outlines a high-velocity (therefore presumably cold) region present in recent finite-frequency based mantle velocity models, suggesting the extension of slab material into the lower mantle. The strength of the reflection is interpreted to be caused by a relatively sharp velocity change, likely due to a strong temperature gradient in combination with mineral phase transitions, the presence of water, or other chemical heterogeneities. Significant mass and heat exchange is therefore expected between the upper- and lower-mantle beneath the study region.

  6. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

    CERN Document Server

    Turner, Andrew J; Behn, Mark D

    2014-01-01

    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady-state mean grain size beneath a mid-ocean ridge. The mantle rheology is modelled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the piezometric relationship of Austin and Evans [2007]. We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean mean grain-size field in the context of permeability. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions forms a boundary that is steeply sloped toward the ridge axis. We hypothesise that such a permeability str...

  7. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas

    Science.gov (United States)

    Kong, Fansheng; Wu, Jing; Liu, Kelly H.; Gao, Stephen S.

    2016-05-01

    Crustal anisotropy beneath 71 broadband seismic stations situated at the eastern Tibetan Plateau and the Sichuan Basin is investigated based on the sinusoidal moveout of P-to-S conversions from the Moho and an intra-crustal discontinuity. Significant crustal anisotropy is pervasively detected beneath the study area with an average splitting time of 0.39 ± 0.18 s. The resulting fast orientations are mostly parallel to the major shear zones in the Songpan-Ganzi Terrane, and can be explained by fluid-filled fractures, favoring the model of rigid block motion with deformations concentrated on the block boundaries. In the vicinity of the Xianshuihe-Xiaojiang Fault Zone in the southern Songpan-Ganzi Terrane, our results, when combined with previously revealed high crustal Poisson's ratio in the area, support the existence of mid/lower crustal flow. The Longmenshan Fault Zone and adjacent areas are dominated by strike-orthogonal fast orientations, which are consistent with alignments of cracks associated with compressional stress between the Plateau and the Sichuan Basin. The observations suggest that crustal thickening is the main cause of the high topographic relief across the Longmenshan Fault Zone.

  8. Speleogenesis of Selected Caves beneath the Lunan Shilin and Caves of Fenglin Karst in Qiubei, Yunnan

    Institute of Scientific and Technical Information of China (English)

    Stanka (S)EBELA; Tadej SLABE; LIU Hong; Petr PRUNER

    2004-01-01

    Yunnan is famous for its attractive karst landscapes especially shilins, fengcong and fenglin. The development of caves beneath the shilins in the vicinity of Lunan is closely connected with the formation of shilins. Most of the waters percolating through shilins run through the caves beneath them and are responsible for their formation. The study of cave speleogenesis deepens knowledge about both the development of shilins and karst structure. In the vicinity of the Lunan Shilin, speleological, morphological and structural geological studies of four karst caves have been accomplished. At Puzhehei, Qiubei, which is characterised by numerous fenglin, fengcong and caves, speleological and morphological studies have been performed. Cave sediments for paleomagnetic analyses have been taken from all studied areas (samples CH 1-9). Karst caves in SE Yunnan are probably much older than the age of the cave sediments (<780,000 years B.P.). The studied areas are located in the vicinity of the Xiaojiang fault (N-S direction) and the Red River fault (NW-SE direction). The general directions of both active faults are assumed to influence the direction of the most frequent fissures as well as the cave passages near the Lunan Shilin. The Xiaojiang fault more strongly influences cave passage orientation, while the more distant Red River fault most strongly influences fissure orientation.

  9. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system

    Science.gov (United States)

    Martin-Short, Robert; Allen, Richard M.; Bastow, Ian D.; Totten, Eoghan; Richards, Mark A.

    2015-12-01

    Tectonic plates are underlain by a low-viscosity mantle layer, the asthenosphere. Asthenospheric flow may be induced by the overriding plate or by deeper mantle convection. Shear strain due to this flow can be inferred using the directional dependence of seismic wave speeds--seismic anisotropy. However, isolation of asthenospheric signals is challenging; most seismometers are located on continents, whose complex structure influences the seismic waves en route to the surface. The Cascadia Initiative, an offshore seismometer deployment in the US Pacific Northwest, offers the opportunity to analyse seismic data recorded on simpler oceanic lithosphere. Here we use measurements of seismic anisotropy across the Juan de Fuca and Gorda plates to reconstruct patterns of asthenospheric mantle shear flow from the Juan de Fuca mid-ocean ridge to the Cascadia subduction zone trench. We find that the direction of fastest seismic wave motion rotates with increasing distance from the mid-ocean ridge to become aligned with the direction of motion of the Juan de Fuca Plate, implying that this plate influences mantle flow. In contrast, asthenospheric mantle flow beneath the Gorda Plate does not align with Gorda Plate motion and instead aligns with the neighbouring Pacific Plate motion. These results show that asthenospheric flow beneath the small, slow-moving Gorda Plate is controlled largely by advection due to the much larger, faster-moving Pacific Plate.

  10. Search for unconventional methane resources beneath crystalline thrust sheets in the southern Appalachians

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, K.; Costain, J.K.; Bodnar, R.J.; Coruh, C. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Geological Sciences); Henika, W.S.

    1994-03-01

    The crystalline rocks of the Virginia Blue Ridge and Piedmont provinces are generally not thought to be likely targets for natural gas exploration. However, recent fluid inclusion studies have documented the presence of methane in post-Alleghanian quartz veins in the Blue Ridge and Piedmont. Methane is not a stable component of the COH fluid phase predicted to be in equilibrium with these rocks at the P-T conditions of metamorphism. This suggests that the methane is not generated locally but, rather, is derived from other sources. Sedimentary rocks equivalent to the productive hydrocarbon Devonian shale beds of the Appalachian Basin are present in surficial tectonic slices on the Reed Mountain and Coyner Mountain structures in the roanoke area, and Devonian shale source beds are thought to exist beneath the Pulaski and Blue Ridge thrust sheets to the southeast. These source beds are part of the hydrocarbon-bearing Lower Paleozoic shelf strata that are interpreted to be buried beneath the crystalline thrust sheets in the Southern Appalachians.

  11. Seismological Investigations of Crustal and Mantle Structures Beneath the Incipient Okavango Rift

    Science.gov (United States)

    Gao, S. S.; Yu, Y.; Liu, K. H.; Reed, C. A.; Moidaki, M.; Mickus, K. L.; Atekwana, E. A.

    2015-12-01

    Rifting plays a significant role in the evolution of sedimentary basins. However, our current understandings on rifting mechanisms are mostly based on studies of mature rifts. Here we report results from the first teleseismic investigations of the incipient Okavango rift zone (ORZ), which is located at the southwestern terminal of the East African Rift System in northern Botswana. Data used in the study were recorded by the 17 broadband seismic stations deployed along a NW-SE profile traversing the ORZ with a recording duration of 2 years starting in the summer of 2012. Receiver function and shear wave splitting techniques have been employed to explore upper mantle thermal anomalies and anisotropy. The resulting dominantly absolute plate motion-parallel fast polarization orientations and normal mantle transition zone thickness ruled out the possible existence of one or more mantle plumes in the upper mantle or mantle transition zone beneath the ORZ. The Moho beneath the Okavango rift zone is uplifted by 4-5 km and is symmetric with regard to the rift axis, favoring a pure shear model of early-stage continental extension. The observations favor a passive model for rift initiation in which rifts develop inside ancient orogenic zones as the result of relative movements between Archean cratonic blocks.

  12. Tectonic history of the southeastern North America

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr. (Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences Oak Ridge National Lab., TN (United States))

    1993-03-01

    The present-day configuration of the crust of southeastern North America (SENA) is the product of a lengthy history traceable through more than 1 billion yr. of geologic time. The Appalachians (AP) record complete Wilson cycles of opening and closing of several oceans from ca. 690 Ma to 245 M. The final event forming the AP was the collision of SENA with Gondwana to form the supercontinent Pangaea. The Ouachitas (OA) had a somewhat different history culminating with island-arc collision during the Pennsylvanian--before the final collision began in the AP. SENA faced the open lapetos ocean no earlier than the Early Cambrian. The AP and OA were built on an earlier margin formed by rifting of the Rodonia super-continent formed by construction of the 1.2 to 1.0 Ga Grenville orogen, and farther west, a crust formed by still earlier (1.3 and 1.8 Ga) events. Recent suggestions that part of the AP platform is in Argentina raises the possibility that a fragment was rifted from between the AP and OA during the early Paleozoic. The crust beneath the Mississippi Embayment is atypical of continental crust, and would have been rifted during the Neoproterozoic and early Paleozoic. The Argentine fragment may have been removed along a transform that was reactivated several times since. Northern Pangaea was rifted during the Late Triassic and Early Jurassic and SENA once again faced open ocean-the nascent present Atlantic (AT) when spreading began. The Gulf of Mexico (GOM) also opened then forming extensive salt deposits. The AT opened partly along the old suture, but produced a failed rift in GA and FL leaving a piece of Africa forming the crust beneath the Coastal Plain as far south as central FL. The overlying sediments record recurrent uplift and decay of the AP and OA, cooling of new AT oceanic crust, eustatic sea-level changes during the Mesozoic and Cenozoic, and uplift of the Rockies providing a new source of voluminous detritus that is still being deposited in the GOM.

  13. Seismic structures beneath Popocatepetl (Mexico) and Gorely (Kamchatka) volcanoes derived from passive tomography studies

    Science.gov (United States)

    Kuznetsov, Pavel; Koulakov, Ivan

    2014-05-01

    A number of active volcanoes are observed in different parts of the world, and they attract great interest of scientists. Comparing their characteristics helps in understanding the origin and mechanisms of their activity. One of the most effective methods for studying the deep structure beneath volcanoes is passive source seismic tomography. In this study we present results of tomographic inversions for two active volcanoes located in different parts of the world: Popocatepetl (Mexico) and Gorely (Kamchatka, Russia). In the past century both volcanoes were actively erupted that explains great interest to their detailed investigations. In both cases we made the full data analysis starting from picking the arrival times from local events. In the case of the Popocatepetl study, a temporary seismological network was deployed by GFZ for the period from December 1999 to July 2000. Note that during this period there were a very few events recorded inside the volcano. Most of recorded earthquakes occurred in surrounding areas and they probably have the tectonic nature. We performed a special analysis to ground the efficiency of using these data for studying seismic structure beneath the network installed on the volcano. The tomographic inversion was performed using the LOTOS code by Koulakov (2009). Beneath the Popocatepetl volcano we have found a zone of strong anti-correlation between P- and S-velocities that leaded to high values of Vp/Vs ratio. Similar features were found for some other volcanoes in previous studies. We interpret these anomalies as zones of high content of fluids and melts that are related to active magma sources. For the case of Gorely volcano we used the data of a temporary network just deployed in summer 2013 by our team from IPGG, Novosibirsk. Luckily, during the field works, the volcano started to manifest strong seismic activity. In this period, 100 - 200 volcanic events occurred daily. We collected the continuous seismic records from 20 stations

  14. Low-Q structure beneath The Geysers area in the northern California

    Science.gov (United States)

    Matsubara, M.

    2010-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) due to withdrawal of steam from the reservoir. I build on these earlier studies by performing the attenuation tomography in this region to investigate the Q structure. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismographs of Northern California Earthquake Data Center, which recorded 1235 earthquakes with magnitude larger than 2.0 and resolved focal mechanisms from 2002 to 2008. The band-pass filtered seismographs are analyzed for collecting the maximum amplitude data. Three kinds of Butterworth band-pass filters, such as 1-3, 3-7, and 7-15, correspond to the analysis of the Q structure for 2, 5, and 10 Hz, respectively. I use the P- and S-wave maximum amplitudes between the two seconds after the arrival of those waves in order to avoid the effects by coda. A total of 8980 P- and 1086 S-wave amplitude data for 949 earthquakes recorded at 48 stations are available for the analysis using the attenuation tomographic method (Zao et al., 1996). Extremely low-Qp and Qs zones are found at the northwestern (NW) of The Geysers area at sea level. These zones are consistent with the high-Vp and Vs and low-Vp/Vs zones located at the NW part of the reservoir. The low-Qs zone extends to the southeast (SE) and with approximately 15 km length and 5 km width and has another negative peak beneath the SE part of the reservoir. This low-Qs zone is also consistent with the high-Vp and Vs regions of the reservoir characterized by a low-Vp/Vs zone. However, Qp in the SE part is slightly high. Below sea level in The Geysers reservoir, there are a main greywacke layer and a felsite layer. Above sea level, there is a greenstone melange beneath the NW extremely low-Qp and Qs region and a

  15. SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China

    Institute of Scientific and Technical Information of China (English)

    JIANG Yaohui; JIANG Shaoyong; ZHAO Kuidong; NI Pei; LING Hongfei; LIU Dunyi

    2005-01-01

    It is undebated fact that the lithospheric mantle beneath eastern China was considerably thinned during the Mesozoic time. However, it has no adequate evidence for the exact timing when the lithosphere thinning started. The Liaodong Peninsula is located in the eastern segment of the North China Craton and is one of the important domains to explore the event of lithosphere thinning. SHRIMP U-Pb zircon dating and geochemical study were carried out for the lamprophyre dike swarm that intruded into the magnesite ore-beds in the Dashiqiao Formation of Paleoproterozoic Liaohe Group at the Huaziyu magnesite ore district, Liaodong Peninsula. The results indicate that these lamprophyre dikes were intruded in late Jurassic (155±4 Ma) and show some geochemical characteristics of potassic magmas. It is now accepted that the lithosphere thinning took place in the late Mesozoic, and the peak thinning stage occurred in early Cretaceous (130―120 Ma). Considering the potassic mafic magmatism marking the onset of the lithospheric thinning, we therefore suggest that the studied late Jurassic potassic lamprophyre dike swarm could imply that the late Jurassic is the time that lithosphere thinning started.

  16. Tertiary thrust systems and fluid flow beneath the Beaufort coastal plain (1002 area), Arctic National Wildlife Refuge, Alaska, U.S.A.

    Science.gov (United States)

    Potter, Christopher J.; Grow, John A.; Perry, William J.; Moore, Thomas E.; O'Sullivan, Paul B.; Phillips, Jeffrey D.; Saltus, Richard W.

    2004-01-01

    Beneath the Arctic coastal plain (commonly referred to as "the 1002 area") in the Arctic National Wildlife Refuge, northeastern Alaska, United States, seismic reflection data show that the northernmost and youngest part of the Brookian orogen is preserved as a Paleogene to Neogene system of blind and buried thrust-related structures. These structures involve Proterozoic to Miocene (and younger?) rocks that contain several potential petroleum reservoir facies. Thermal maturity data indicate that the deformed rocks are mature to overmature with respect to hydrocarbon generation. Oil seeps and stains in outcrops and shows in nearby wells indicate that oil has migrated through the region; geochemical studies have identified three potential petroleum systems. Hydrocarbons that were generated from Mesozoic source rocks in the deformed belt were apparently expelled and migrated northward in the Paleogene, before much of the deformation in this part of the orogen. It is also possible that Neogene petroleum, which was generated in Tertiary rocks offshore in the Arctic Ocean, migrated southward into Neogene structural traps at the thrust front. However, the hydrocarbon resource potential of this largely unexplored region of Alaska's North Slope remains poorly known.

  17. North Korea's corroding fuel

    International Nuclear Information System (INIS)

    The roughly 8,000 irradiated or open-quotes spentclose quotes fuel rods recently discharged from the North Korean 25 megawatt (thermal) reactor are difficult to store safely under the conditions in the spent fuel ponds near the reactor. The magnesium alloy jacket, or open-quotes cladding,close quotes around the fuel elements is corroding. If the corrosion creates holes in the cladding, radionuclides may be released. In addition, the uranium metal underneath the cladding may begin to corrode, possibly creating uranium hydride which can spontaneously ignite in air. Unless the storage conditions are improved, North Korea may use the risk posed by the corrosion as an argument for reprocessing this fuel, a violation of its June 1994 pledge to the United States to freeze its nuclear program. North Korea, however, can take several steps to slow dramatically the rate of corrosion. Using available techniques, it can extend safe storage times by months or even years

  18. North Korea, Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Karl H. Stingeder

    2014-03-01

    Full Text Available North Korean politics appears neither irrational nor unpredictable: the logic of its actions may at first seem opaque, but it nonetheless displays its own rationale and patterns. – North Korea: a ruthless political actor, now under the leadership of Kim Jong-Un who inherited the regime’s leadership from his father and "Supreme Leader", Kim Jong-Il, in 2011. The country’s policy is based on its ongoing political agenda of (nuclear brinkmanship, a true threat to the world – or at least that's how the Western hemisphere sees it. Yet our factual knowledge of this post-Leninist and totalitarian regime is extremely limited and relatively distorted; it is largely circumstantial evidence and judgmental speculation that accounts for our perception of this East Asian state. Northeast Asia (China, Japan, South and North Korea, Taiwan is a region dominated by the legacy of the Cold War. The North Korean leadership has indeed established its priorities, primarily its isolationist orientation, but in the long term the regime cannot survive without external stimulus. Most importantly, even in a long-term, non-violent and gradual transformation of North Korea considerable danger can ultimately result in the demise of the regime. Apart from few signs of a North Korean "civil society", currently only the army might have the resources to see through a regime change. In the meantime, the strategies of isolationism as well as tight control of the media remain as fundamental cornerstones of the regime. A close-knit network of social control has been established and access to the internet for the most part is limited to the regime’s entrusted cadre.

  19. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  20. Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas

    Institute of Scientific and Technical Information of China (English)

    LI Qiusheng; GAO Rui; WANG Haiyan; ZHANG Jisheng; LU Zhanwu; LI Pengwu; GUAN Ye; HE Rizheng

    2009-01-01

    By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.

  1. Exploring Liquid Water Beneath Glaciers and Permafrost in Antarctica Through Airborne Electromagnetic Surveys

    Science.gov (United States)

    Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.

    2015-12-01

    Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of

  2. Transition zone structure beneath northern Italy investigated using receiver function analysis.

    Science.gov (United States)

    Levin, V.; Benoit, M.; Park, J.

    2006-12-01

    The convergence of the Eurasian and African plates has created complex tectonic features in the Apennine region in Northern Italy. While convergence within the orogen has been ongoing since ~30 Ma, syn- convergent extension has been active in this region since ~15 Ma. This extension is often attributed to slab rollback of the subducted Adriatic lithosphere. However, the present state of previously subducted Adriatic lithosphere is debated. End-member scenarios proposed are a "normal" continuous subduction with rollback, and a complete slab detachment and sinking. First-order constraints on the state of the subducted slab could be placed on the basis of its location and shape relative to the Apennines mountain chain. One way to obtain such constraints is through mapping of the transition zone interfaces. Slab material crossing the bounds of the transition zone should deflect them due to its lower temperature. We use migration and stacking of teleseismic receiver functions to construct images of the upper mantle structure beneath Northern Italy. Our data come from a recently completed 3-year long 45-station portable array deployment in the region (part of the RETREAT project, see website). We present preliminary receiver function stacks from over 4100 high quality receiver functions using time- domain deconvolution. For the stacking procedure, a specific time and amplitude was correlated with a specific position in the subsurface to bin the receiver functions, and then the amplitudes of the receiver functions were summed in 0.25 degree bins. We found that including traces from at least 3 stations together with a minimum of 30 receiver functions per bin produced stacks with discernable P-S converted arrivals. Converted-wave images of the upper mantle structure display considerable lateral variability with a fairly short (order of 1°) length scale. The 410 km discontinuity is visible in the eastern part of the study region, beneath the continental Adria plate, but is

  3. Factors contributing to the temperature beneath plaster or fiberglass cast material

    Directory of Open Access Journals (Sweden)

    Hutchinson Mark R

    2008-02-01

    Full Text Available Abstract Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints, brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period. Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of

  4. The South Tibetan Tadpole Zone: Ongoing density sorting at the Moho beneath the Indus-Tsangpo suture zone (and beneath volcanic arcs?)

    Science.gov (United States)

    Kelemen, Peter; Hacker, Bradley

    2016-04-01

    Some Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle wedge (e.g., Powell & Conaghan 73), others indicate thickening of both crustal sections, juxtaposed along a steep suture (e.g., Dewey & Burke 73), and many combine features of both end-members (e.g., Argand 24). To understand crustal scale structure and related phenomena, we focus on data from an area in southern Tibet at 28-30°N, 84-91°E. 21st century observations in this area show a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across a region where Tibetan crust is interpreted to overlie Indian crust, into thickened Tibetan crust (Zhao et al 01; Monsalve et al 08; Wittlinger et al 09; Nabelek et al 09; Kind et al 02; Schulte-Pelkum et al 05; Shi et al 15). About half the subducted Indian crustal volume is present, whereas the other half is missing (Replumaz et al 10). Vp/Vs indicates the alpha-beta quartz transition is at ca 50 km depth (Sheehan et al 13). Miocene lavas include primitive andesites probably formed by interaction of crustal material with mantle peridotite at > 1000°C (Turner et al 93; Williams et al 01, 04; Chung et al 05). Thermobarometry of xenoliths in a 12.7 Ma dike records ~ 1100°C at 2.2-2.6 GPa and 920°C at 1.7 GPa (Chan et al 09). Biotite-rich pyroxenites among the xenoliths, similar to those in central Tibet (Hacker et al 00) and the Pamirs (Hacker et al 05), may form via reaction of hot crustal lithologies and mantle peridotite (e.g., Sekine & Wyllie 82, 83). These data, taken together, indicate Miocene to present day temperatures exceeding 800°C from ca 50 km depth to the Moho, unlike thermal models with a hot mid-crust and cold Moho (McKenzie & Priestley 08, Craig et al 12, Wang et al 13; Nabelek & Nabelek 14), and despite the observation of numerous, near-Moho earthquakes (Chen & Molnar 83; Chen & Yang 04; Monsalve et al 06; Priestley et al 08; Craig et al 12) interpreted by many as brittle failure

  5. North Atlantic Circulation

    Science.gov (United States)

    Molinari, R.; Bryan, K.; Schott, F.

    The intensity of the North Atlantic winddriven and thermohaline circulation and the close proximity of many oceanographic installations make the North Atlantic a particularly favored region of the world ocean from the standpoint of research in ocean circulation. Recent increases in available data and advances in numerical modeling techniques served as the impetus to convene a joint workshop of modelers and observers working on the North Atlantic with the Scientific Committee on Oceanic Research (SCOR) Working Group (WG) 68 (“North Atlantic Circulation”). Goals of the workshop were to provide an update on data sets and models and to discuss the poleward heat flux problem and possible monitoring strategies. The joint Workshop/SCOR WG-68 meeting was convened by F. Schott (chairman of the working group; Rosenstiel School of Marine and Atmospheric Science, Miami, Fla.), K. Bryan (National Oceanic and Atmospheric Administration/ Geophysical Fluid Dynamics Laboratory (NOAA/GFDL)), and R. Molinari (NOAA/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML)).

  6. North Atlantic Temperature Anomaly

    OpenAIRE

    Vukcevic, M.A.

    2009-01-01

    The author postulates the existence of a high correlation between North Atlantic Temperature Anomaly and the variations of magnetic field over the Hudson Bay region. Post-glacial uplift and convection in the underlying mantle uplift (as reflected in changes of the area's magnetic intensity) are making significant contribution to the Atlantic basin climate change.

  7. North-South Relations

    Science.gov (United States)

    Watkins, Melville

    1975-01-01

    Multinational corporations operating mostly in northern Canada export natural resources thus creating jobs and money for foreign shareholders. Similarly, businesses based in southern Canada reap benefits from northern resources. Environmentalists and churches can ally north-south interests to protect northern resources and people from corporate…

  8. Treatment of Chlorinated Solvents in Groundwater Beneath an Occupied Building at the Young-Rainey STAR Center, Pinellas, FL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Joe [Navarro Research and Engineering; Surovchak, Scott [Dept. of Energy (DOE), Legacy Management; Tabor, Charles [Navarro Research and Engineering

    2016-03-01

    Groundwater contamination, consisting of two dissolved-phase plumes originating from chlorinated solvent source areas, in the southeastern portion of the Young- Rainey Star Center (also known as the Pinellas County, Florida, Site) in Largo, Florida, has migrated beyond the property boundary, beneath the roadways, and beneath adjacent properties to the south and east. Groundwater contamination will persist as long as the onsite contaminant source remains. The origin of the contamination appears to be multiple long-term point sources beneath Building 100, a 4.5 ha (11 acre) building that housed manufacturing facilities during US DOE operations at the site. The site is now owned by Pinellas County, and most of the space inside the building is leased to private companies, so DOE chose not to conduct characterization or remediation through the floor of the building, instead choosing to conduct all work from outside the building. Injection of emulsified soybean oil and a microbial culture has been used at other areas of the site to accelerate naturally occurring bacterial processes that degrade groundwater contaminants to harmless compounds, and that same approach was chosen for this task. The technical approach consisted of installing horizontal wells from outside the building footprint, extending through and around the identified subsurface treatment areas, and terminating beneath the building. Two 107 m (350 ft) long wells, two 122 m (400 ft) long wells, and four 137 m (450 ft) long wells have been installed to intersect the inferred source areas and confirmed contaminant plumes beneath the building. DOE then injected emulsified vegetable oil and a microbial culture into the horizontal wells at each of several target areas beneath the building where the highest groundwater contaminant concentrations have been detected. The target areas are the northwest corner of the building between the old drum storage pad locations and monitoring well PIN12-S35B, the vicinity of

  9. Preliminary Investigation to Resolve the Shear Velocity Structure of the Mantle Transition Zone beneath the Caroline Plate, Equatorial Western Pacific

    Science.gov (United States)

    Konishi, K.; Kawai, K.; Fuji, N.; Lee, S.; Geller, R. J.

    2013-12-01

    The Mantle Transition Zone (MTZ), which lies in the depth range from 410-660 km, is considered to be a region capable of carrying a large amount of water and other volatiles. A unique feature of the MTZ beneath the northwest Pacific rim is the stagnant slab which lies below much of the West Philippine Basin and extends laterally over a distance of thousands of kilometers beneath Korea and northeast China. In recent years, suggestions have been made that explain the seismicity and intra-plate volcanism in this region in terms of hydrous magmatic plumes rising from the MTZ. However, the exact mechanism remains under debate. An equally important, but less well-known, observation is that a stagnant slab appears to exist beneath much of the Caroline Plate in the equatorial western Pacific as well. If a stagnant slab does exist here, it is most likely a result of the long northward migration of the Australian Plate and subduction since its breakaway from the Antarctic. However, due to tectonic complexity and the lack of seismic stations, the structure and properties of the stagnant slab and the MTZ beneath the Caroline plate are not well understood. Also it is unclear if the large volcanic outflows around the Caroline Plate such as the Eurpik Rise can be explained by a hydrous magmatic plume stemming from the MTZ. To understand the shear-wave velocity structure of the MTZ beneath the Caroline Plate, we employ a body wave waveform inversion technique. Fuji et al. (PEPI, 2010) conducted body wave waveform inversion for the mantle transition zone beneath Japan. In this study we present preliminary results for an application of their methods to infer upper mantle and MTZ structure beneath the Caroline plate. We also estimate the resolving power of full-waveform inversion for a dataset obtained from the IRIS (Incorporated Research Institutions for Seismology) network for shear velocity structure in the upper mantle, especially for the mantle transition zone beneath the

  10. Numerical simulations of two-fluid boundary layers beneath free-stream turbulence

    Science.gov (United States)

    Jung, Seo Yoon; Zaki, Tamer

    2011-11-01

    In two-fluid boundary layers, a wall-film is sheared by an external stream with different density and viscosity. As a result, the flow becomes prone to both shear and interfacial instabilities. In this study, the evolution of two-fluid boundary layers beneath free-stream vortical forcing is investigated using DNS. The simulations employ a conservative level-set technique in conjunction with a ghost fluid approach in order to capture a sharp interface. The wall film is less viscous than the outer flow, and its thickness is 10 % of that of the boundary layer at the inlet. The choice of viscosity ratio influences the spatial development of disturbances within the boundary layer. The spatial growth of instabilities is examined into the non-linear regime, which includes the region of breakdown to turbulence. We demonstrate that, at moderate levels of free-stream turbulence intensities, appropriate choice of the viscosity ratio can yield considerable transition delay.

  11. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    International Nuclear Information System (INIS)

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  12. The Patuki intrusive suite: closed-system fractionation beneath a slow-spreading ridge

    Science.gov (United States)

    Sivell, W. J.; Waterhouse, J. B.

    A wide range of mafic and ultramafic rock types, together with cogenetic silicic plagiogranites, form a structurally coherent intrusive sequence within the Patuki Volcanics at south D'Urville Island, New Zealand. In addition, gabbroic rocks comprise abundant tectonic inclusions in highly-sheared, concordant serpentinite bands which intrude the Patuki suite. Chemical evidence suggests many of the gabbros, including those in which recrystallization has obliterated original textures, represent magmatic cumulates and indicates extensive closed-system fractionation analogous to that known to occur beneath slow-spreading mid-oceanic ridges. Dyke intrusion occurred throughout the generation of the suite. An early stage of spreading is suggested by the anomalously low thickness of the sequence, the non-sheeted nature of the dyke suite and chemical characteristics of the lavas which comprise the extrusive component of the ophiolite.

  13. Evidence of magma activation beneath the Lunayyir basaltic field (Saudi Arabia from attenuation tomography

    Directory of Open Access Journals (Sweden)

    I. Koulakov

    2014-06-01

    Full Text Available We present a seismic attenuation model for the crust beneath the Cenozoic basaltic field of Lunayyir (western Saudi Arabia, where a strong seismic swarm occurred in 2009. The tomography inversion uses the envelope shape of the S wave seismograms from over 300 strong events (M > 3.5. The resulting attenuation structures appear to be consistent with the distribution of seismic velocities. The obtained 3-D attenuation model distinguishes the low-attenuation zones down to 5 km depth corresponding to the rigid basaltic cover. At greater depths, we detect a high-attenuation anomaly coinciding with the main seismicity cluster. We propose that this zone corresponds to the upper part of the conduit area ascending from deeper magma sources. According to the distributions of local events, fluids and melts from this conduit appear to reach a depth of ~2 km, but were not able to reach the surface and cause the eruption in 2009.

  14. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji.

    Science.gov (United States)

    Chen, W P; Brudzinski, M R

    2001-06-29

    We combine spatial variations of P- and S-wave speeds, 1000 fault plane solutions, and 6600 well-determined hypocenters to investigate the nature of subducted lithosphere and deep earthquakes beneath the Tonga back-arc. We show that perplexing patterns in seismicity and fault plane solutions can be accounted for by the juxtaposition of a steep-dipping Wadati-Benioff zone and a subhorizontal remnant of slab that is no longer attached to the actively subducting lithosphere. The detached slab may be from a previous episode of subduction along the fossil Vitiaz trench about 5 to 8 million years ago. The juxtaposition of slabs retains a large amount of subducted material in the transition zone of the mantle. Such a configuration, if common in the past, would allow the preservation of a primordial component in the lower mantle.

  15. Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Baykal, Cüneyt; Sumer, B. Mutlu;

    2014-01-01

    A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier–Stokes equations, coupled with k−ω turbulence closure......, with additional bed and suspended load descriptions forming the basis for sea bed morphology. The morphological evolution is updated continuously, rather than being based e.g. on period- or other time-averaging techniques. Simulations involving wave-induced scour over the range of Keulegan–Carpenter number 5.6≤KC......≤30 demonstrate reasonable match with previous experiments, both in terms of the equilibrium scour depth as well as the scour time scale. Wave-induced backfilling processes are additionally studied by subjecting initial conditions taken from scour simulations with larger KC to new wave climates...

  16. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    Energy Technology Data Exchange (ETDEWEB)

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Bandung 40132 (Indonesia); Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610 (Indonesia); Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung 40132, Indonesia, Phone: +62-22 2534137 (Indonesia)

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strong correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.

  17. Melting features along the Ryukyu slab tear, beneath the southwestern Okinawa Trough

    Science.gov (United States)

    Lin, Jing-Yi; Hsu, Shu-Kun; Sibuet, Jean-Claude

    2004-10-01

    The present-day active volcanic front associated with the Ryukyu subduction zone extends from Japan to the Ilan plain (northern Taiwan) and is located within the Okinawa Trough, 80-100 km above the Ryukyu slab. An abnormal amount of arc volcanism, which consists of basalt, andesite and rhyolite occurs within the southwestern Okinawa Trough, above a slab tear of the Ryukyu subduction zone (CBVT). The power spectrum analysis of magnetic data shows the occurrence of a thin crust above the slab tear and a thick crust beneath this volcanic area. We suggest that an excess of H2O-rich fluid might occur at the slab tear and might increase the melt flux. Both are conveyed obliquely to the uppermost mantle and lower crust CBVT magmas. After interactions, basaltic magmas would rise up, accounting for the contrast of magnetization between this volcanic body and the adjacent OT crust.

  18. A comprehensive analysis of contaminant transport in the vadose zone beneath tank SX-109

    Energy Technology Data Exchange (ETDEWEB)

    Ward, A.L.; Gee, G.W.; White, M.D.

    1997-02-01

    The Vadose Zone Characterization Project is currently investigating the subsurface distribution of gamma-emitting radionuclides in S and SX Waste Management Area (WMA-S-SX) located in the 200 West Area of the US Department of Energy`s Hanford Site in southeastern Washington State. Spectral-gamma logging of boreholes has detected elevated {sup 137}Cs concentrations as deep as 38 m, a depth considered excessive based on the assumed geochemistry of {sup 137}Cs in Hanford sediments. Routine groundwater sampling under the Resource Conservation and Recovery Act (RCRA) have also detected elevated levels of site-specific contaminants downgradient of WMA-S-SX. The objective of this report is to explore the processes controlling the migration of {sup 137}Cs, {sup 99}Tc, and NO{sub 3} through the vadose zone of WMA-S-SX, particularly beneath tank SX-109.

  19. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    Science.gov (United States)

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  20. Topographies of seismic velocity discontinuities and penetrations of subducting slabs beneath the Sea of Okhotsk

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The existence of discontinuities, the topographies of the 410 km and 660 km discontinuities, and the penetrations of subducting slabs near the 660 km discontinuities beneath the Sea of Okhotsk were studied using Nth root slant stack and digital records from networks in Germany and the western United States. Results show the obvious evidence for reflected and refractive phases associated with the 410 km and 660 km discontinuities. There may be discontinuities at other depths such as 150 km, 220 km and 520 km. The 410 km discontinuity is elevated and the 660 km discontinuity is depressed respectively, consistent with the expected thermal signature of the phase transitions. The subducting slab has penetrated into the lower mantle in the northern part of the Sea of Okhotsk, while it is stagnant on the 660 km discontinuity in the southern part.

  1. New constraints on the textural and geochemical evolution of the upper mantle beneath the Styrian basin

    Science.gov (United States)

    Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba

    2016-04-01

    Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries

  2. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  3. Geometry of the Subducting Nazca Plate Beneath Colombia From Relocation of Intermediate-Depth Earthquakes

    Science.gov (United States)

    Chang, Y.; Warren, L. M.; Prieto, G. A.; Grigsby, I.

    2013-12-01

    In subduction zones, earthquakes help distinguish the location of the downgoing slab to hundreds of kilometers depth. However, beneath northwestern South America, the distribution of large intermediate-depth earthquakes in the Global CMT catalog has gaps along the subduction zone, so the position of the subducting Nazca plate is uncertain. In addition, the earthquake focal mechanisms, which range from along-strike compression to down-dip extension, vary over short distances, suggesting that the subducting slab may have a complicated morphology. To clarify the geometry of the subducting Nazca plate beneath Colombia, we relocate regional seismicity recorded by the Colombian National Seismic Network (RSNC). Our data set contains 1231 earthquakes with catalog locations from 0°N-6°N and 72°W-81°W at depths of 0-200 km and magnitudes from M2.5-6.5 that occurred between 1/2010-2/2013. Catalog hypocenters show an ~20 km thick slab subducting to the east, as well as vertical columns extending up from the slab. The shape, thickness, and position of the slab and other features can be refined by using differential travel times to relocate the earthquakes relative to each other. We verify and adjust the network P and S wave picks and pick arrivals at additional or temporary stations, and these arrival times are used to relocate the earthquakes. The hypocenters of the relocated earthquakes are used to generate 3D contours of the subducting plate and visualize bends and folds in the slab.

  4. Dynamics of Caribbean and Nazca Plate Subduction Beneath Colombia from Receiver Function Analysis

    Science.gov (United States)

    Porter, R. C.; Warren, L. M.

    2014-12-01

    The tectonics of northwestern South America are controlled by the complex interactions of the South American, Nazca, and Caribbean plates. In order to better understand subduction within the region, we utilize data recorded by the Colombian National Seismic Network to calculate P-to-S receiver functions at a range of frequencies across the nation of Colombia. Where the station spacing was dense enough, receiver functions were stacked using the Common Conversion Point (CCP) method in order to better image lateral changes in crustal and upper mantle structure. Along the Pacific margin of Colombia, where the Nazca plate is subducting beneath South America, the subducting slab dips too steeply to image it with receiver functions. However, layering and strong negative arrivals are observed in the crust above the subducting slab where active volcanoes are present. The presence of these arrivals is possibly indicative of slab dehydration and the presence of partial melt within the crust. In northeastern Colombia, the Caribbean plate is subducting beneath South America at an oblique angle. Along the direction of convergence, the slab extends ~500 km inland with a relatively shallow dip before steepening. Preliminary receiver function images from this region show a shallowly-dipping negative arrival, interpreted as the top of the slab. This arrival is underlain by a positive conversion, interpreted as the down-going oceanic Moho. As the dip of the seismicity associated with the subducting slab steepens, these arrivals are no longer observed within the receiver function stacks. These cross sections of the Caribbean plate subduction are consistent with the idea that phase changes within the downgoing oceanic crust and mantle are controlling the slab buoyancy and, as a result, the angle of subduction. As the receiver functions are refined and further combined with local earthquake locations, we will better be able to understand the location of earthquakes within the subducting

  5. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    International Nuclear Information System (INIS)

    Historical records that before the 17th century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4th, 2011 that Mount Lokon erupted continuously until August 28th, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified

  6. Surface-Induced Turbulence and Resulting Sand Suspension Beneath Breaking Waves

    Science.gov (United States)

    Brinkkemper, J.; Ruessink, G.

    2014-12-01

    Breaking waves and bores inject large amounts of turbulence into the water column as vortices, which can travel downward and entrain sand from the bed. Coastal evolution models rarely include the effect of this surface-induced turbulence on sand suspension and subsequent transport to predict surf-zone morphodynamics. Here, we analyze turbulence and suspension measurements beneath non-breaking waves and plunging breakers, collected during the field-scale BARDEXII laboratory experiment using a vertical array of 3 ADVs and 7 OBSs. The array was positioned at a single cross-shore location, but, because of changes in wave conditions and water levels, experienced different degrees of wave breaking. Results show a phase-coupling for both turbulence kinetic energy and sand concentration with the short-wave orbital motion during all conditions, with the highest values when the cross-shore velocity is onshore directed. The vertical turbulence flux under plunging breakers also depends on wave phase, with a downward and upward flux during offshore and onshore directed wave orbital motion, respectively. The plunging jet hits the water surface in the wave trough, resulting in a downward turbulence flux during the offshore directed wave orbital motion. The upward flux during the onshore directed wave orbital motion might represent the injected air bubbles rising to the water surface. This upward flux coincides with the peak in suspension, which, accordingly, reaches higher in the water column than beneath non-breaking waves. Besides a phase-coupling with the short-wave orbital motion, turbulence kinetic energy and sand concentration were also modulated on an infragravity timescale, with high values during the offshore directed infragravity flow. The effect of surface-generated turbulence on the direction and magnitude of short- and infragravity-induced cross-shore sand fluxes will also be discussed. This research is supported by the Dutch Technology Foundation STW, which is part

  7. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    Science.gov (United States)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  8. The whole elephant: a comprehensive study of seismic anisotropy in the upper mantle beneath Kamchatka

    Science.gov (United States)

    Levin, V.; Park, J.

    2003-04-01

    Seismic waves propagating through Earth's upper mantle commonly display evidence of anisotropic (i.e. direction-dependent) wavespeed. Common techniques for identifying and quantifying these properties all suffer from inherent non-uniqueness. In combination, however, different anisotropy-aware analysis tools make possible a description of how anisotropic properties are distributed in the volume of interest. We performed a set of studies of seismic anisotropy in Kamchatka, using core-refracted phases (SKS splitting), teleseismic P-to-S converted body-waves (receiver functions), mode-converted (quasi-Love) surface waves an shear wave birefringence from seismic events in the subducting Pacific plate. These four types of observations are sensitive to different aspects of anisotropic structure, in terms of the wavelength (from 100s of km for surface waves to sub-kilometer structures for receiver functions) and the sampling (from whole upper mantle for SKS phases to 10s of km for local S splitting). Futhermore, observations of shear-wave birefringence reflect path-integrated effects, while mode-converted phases identify strong gradients in anisotropic properties. Our studies allow us to identify regions of coherent fabric in the upper mantle beneath Kamchatka with some confidence. We see evidence for sub-slab trench-parallel flow of mantle material, and for a rapid reorientation of this flow at the northern edge of the Pacific plate. We see some evidence for trench-normal fabric above the slab, consistent with subduction-driven corner flow. However trench-normal fabric is not pervasive, especially near the end of the Kamchatka subduction zone. We also find ample evidence for strong fabric at the crust-mantle boundary beneath Kamchatka, possibly indicating mobility in the continental lithosphere.

  9. Autonomous ocean observations beneath Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Dutrieux, P.; Jenkins, A.; Jacobs, S.; Heywood, K. J.

    2015-12-01

    Warm circumpolar deep water reaching 3.5ºC above the in situ freezing point pervasively fills a network of glacially carved troughs in the Amundsen sea, West Antarctica, and melts and thins neighbouring ice shelves, including Pine Island glacier Ice Shelf (PIIS). Hydrographic, current, and microstructure observations obtained in austral summer 2009 and 2014 by an autonomous underwater vehicle beneath the PIIS are used here to detail the complex ice-ocean interaction and resulting ocean circulation. The theoretical schematic of deeply incoming warm and saline water melting the grounding line and generating a buoyant plume upwelling along the ice draft is generally consistent with observations. The cavity beneath PIIS is clearly divided in two by a seabed ridge, constraining the oceanic circulation and water masses distribution. On the seaward side of the ridge, a thick warm deep water layer circulates cyclonically and is overlaid by a thin meltwater layer. Only intermediate depth waters are allowed to overflow from the ridge top into the inner cavity, where a much thinner warm water layer is now overlaid by a thicker meltwater layer. At the ice/ocean interface, melt induced freshening is forcing an upwelling which in turn injects cyclonic vorticity and participates in creating a vigorous cyclonic recirculation in the inner cavity. The top of the ridge, where warm waters overflow in the inner cavity, is a dynamical boundary characterized by northward along-ridge currents up to 0.2 m/s and enhanced shear, thermal gradient, and mixing. Observations at two points at the ice interface indicate that the ocean remains stratified within 2 meters of the ice.

  10. Exploring information from the topology beneath the Gene Ontology terms to improve semantic similarity measures.

    Science.gov (United States)

    Zhang, Shu-Bo; Lai, Jian-Huang

    2016-07-15

    Measuring the similarity between pairs of biological entities is important in molecular biology. The introduction of Gene Ontology (GO) provides us with a promising approach to quantifying the semantic similarity between two genes or gene products. This kind of similarity measure is closely associated with the GO terms annotated to biological entities under consideration and the structure of the GO graph. However, previous works in this field mainly focused on the upper part of the graph, and seldom concerned about the lower part. In this study, we aim to explore information from the lower part of the GO graph for better semantic similarity. We proposed a framework to quantify the similarity measure beneath a term pair, which takes into account both the information two ancestral terms share and the probability that they co-occur with their common descendants. The effectiveness of our approach was evaluated against seven typical measurements on public platform CESSM, protein-protein interaction and gene expression datasets. Experimental results consistently show that the similarity derived from the lower part contributes to better semantic similarity measure. The promising features of our approach are the following: (1) it provides a mirror model to characterize the information two ancestral terms share with respect to their common descendant; (2) it quantifies the probability that two terms co-occur with their common descendant in an efficient way; and (3) our framework can effectively capture the similarity measure beneath two terms, which can serve as an add-on to improve traditional semantic similarity measure between two GO terms. The algorithm was implemented in Matlab and is freely available from http://ejl.org.cn/bio/GOBeneath/. PMID:27080954

  11. Estimation of the Crustal Bulk Properties Beneath Mainland Portugal from P-Wave Teleseismic Receiver Functions

    Science.gov (United States)

    Dündar, Süleyman; Dias, Nuno A.; Silveira, Graça; Kind, Rainer; Vinnik, Lev; Matias, Luís; Bianchi, Marcelo

    2016-06-01

    In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H- κ stacking algorithm to the PRFs enabled us to estimate the crustal thickness ( H) and the average crustal ratio of the P- and S-waves velocities V p/ V s ( κ) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V p/ V s values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V p/ V s is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V p/ V s with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.

  12. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  13. Jurassic Tectonics of North China: A Synthetic View

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yueqiao; DONG Shuwen; ZHAO Yue; ZHANG Tian

    2008-01-01

    This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in North China have been divided into three stages. The earliest Jurassic is marked by a period of magmatism quiescence (in 205-190 Ma) and regional uplift, which are considered to be the continuation of the "Indosinian movement" characterized by continent-continent collision between the North and South China blocks. The Early to Middle Jurassic (in 190-170 Ma) was predominated by weak lithospheric extension expressed by mantle-derived plutonism and volcanism along the Yanshan belt and alongside the Tan-Lu fault zone, normal faulting and graben formation along the Yinshan-Yanshan tectonic belt, depression and resuming of coal-bearing sedimentation in vast regions of the North China block (NCB). The Middle to Late Jurassic stage started at 165,.5 Ma and ended up before 136 Ma; it was dominated by intensive intraplate deformation resulting from multi-directional compressions. Two major deformation events have been identified. One is marked by stratigraphic unconformity beneath the thick Upper Jurassic molasic series in the foreland zones of the western Ordos thrust-fold belt and along the Yinshan-Yanshan belt; it was predated 160 Ma. The other one is indicated by stratigraphic unconformity at the base of the Lower Cretaceous and predated 135 Ma. During this last stage, two latitudinal tectonic belts, the Yinshan-Yanshan belt in the north and the Qinling-Dabie belt in the south, and the western margin of the Ordos basin were all activated by thrusting; the NCB itself was deformed by the NE to NNE-trending structural system involving thrusting, associated folding and sinistral strike-slip faulting, which were spatially partitioned. Foliated S-type granitic plutons aged 160-150 Ma were massively emplaced in the Jiao-Liao massif east of the Tan-Lu fault zone and

  14. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history

    NARCIS (Netherlands)

    Ren, Y.; Stutzmann, E.; Hilst, R.D. van der; Besse, J.

    2007-01-01

    We combine results from seismic tomography and plate motion history to investigate slabs of subducted lithosphere in the lower mantle beneath the Americas. Using broadband waveform cross correlation, we measured 37,000 differential P and S traveltimes, 2000 PcP-P and ScS-S times along a wide corrido

  15. Complex structure of the lithospheric slab beneath the Banda arc, eastern Indonesia depicted by a seismic tomographic model

    Directory of Open Access Journals (Sweden)

    Sri Widiyantoro

    2011-10-01

    Full Text Available Seismic tomography with a non-linear approach has been successfully applied to image the P-wave velocity structure beneath the Banda arc in detail. Nearly one million compressional phases including the surfacereflected depth phases pP and pwP from events within the Indonesian region have been used. The depth phases have been incorporated in order to improve the sampling of the uppermantle structure, particularly below the Banda Sea in the back-arc regions. For the model parameterization, we have combined a highresolution regional inversion with a low-resolution global inversion to allow detailed images of slab structures within the study region and to minimize the mapping of distant aspherical mantle structure into the volume under study. In this paper, we focus our discussion on the upper mantle and transition zone structure beneath the curved Banda arc. The tomographic images confirm previous observations of the twisting of the slab in the upper mantle, forming a spoon-shaped structure beneath the Banda arc. A slab lying flat on the 660 km discontinuity beneath the Banda Sea is also well imaged. Further interpretations of the resulting tomograms and seismicity data support the scenario of the Banda arc subduction rollback.

  16. Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Satoshi; Hasegawa, Akira [Tohoku Univ., Sendai (Japan)

    1996-02-10

    This paper investigates the geometry and the features of the midcrustal s wave reflector beneath Nikko-Shirane valcano in detail based on data acquired through seismic observations with a dense station network. The geometry and internal structure of the reflector is discribed.

  17. Synthesis of crustal seismic structure and implications for the concept of a slab gap beneath Coastal California

    Science.gov (United States)

    Brocher, T.M.; ten Brink, U.S.; Abramovitz, T.

    1999-01-01

    Compilation of seismic transects across the central and northern California Coast Ranges provides evidence for the widespread tectonic emplacement beneath the margin of a slab of partially subducted oceanic lithosphere. The oceanic crust of this lithosphere can be traced landward from the former convergent margin (fossil trench), beneath the Coast Ranges, to at least as far east as the Coast Range/Great Valley boundary. Comparison of measured shear and compressional wave velocities in the middle crust beneath the Hayward fault with laboratory measurements suggests that the middle crust is a diabase (oceanic crust). Both of these observations are consistent with recent models of the high heat flow and age progression of Neogene volcanism along the Coast Ranges based on tectonic emplacement (stalling) of young, hot oceanic lithosphere beneath the margin, but appear to contradict the major predictions of the slab-gap or asthenospheric-window model. Finally, the Neogene volcanism and major strike-slip faults in the Coast Ranges occur within the thickest regions (>14 km thick) of the forearc, suggesting that the locations of Cenozoic volcanism and faulting along the margin are structurally controlled by the forearc thickness rather than being determined by the location of a broad slab gap.

  18. What Lies beneath Seemingly Positive Campus Climate Results: Institutional Sexism, Racism, and Male Hostility toward Equity Initiatives and Liberal Bias

    Science.gov (United States)

    Vaccaro, Annemarie

    2010-01-01

    This article presents qualitative results from a campus climate study at one predominately white university. Data analysis uncovered "what lies beneath" a seemingly positive campus climate. Gender differences in survey responses suggest that men and women experienced the climate in vastly different ways. Additionally, lack of deep diversity…

  19. Characterizing a shallow groundwater system beneath irrigated sugarcane with electrical resistivity and radon (Rn-222), Puunene, Hawaii

    Science.gov (United States)

    In this study, we use a combination of electrical resistivity profiling and radon (222Rn) measurements to characterize a shallow groundwater system beneath the last remaining, large-scale sugarcane plantation on Maui, Hawaii. Hawaiian Commercial & Sugar Company has continuously operated a sugarcane...

  20. Lignite in North Dakota

    International Nuclear Information System (INIS)

    The State of North Dakota and the lignite industry are working together in a partnership called the Lignite Research, Development and Marketing Program. The program provides funds and supports activities which: preserve and enhance jobs and lignite production; ensure economic growth, stability and opportunity; and maintain a stable and competitive tax base. Since 1987, 70 grants totaling $24 million have been awarded. Each program dollar has resulted in nearly five of matching dollars. These program investments have yielded returns for the state and industry, including an additional $20 million annually from by-products at the Great Plains Synfuels Plant; about $1 million annually from improved reclamation practices; and combustion options, which preserve 2,000 megawatts of existing generation capacity. Research activities have identified future opportunities, including: the SynCoal demonstration plant, requiring 800,000 tons per year of new production; new chemical feedstock by-products from Great Plains worth an additional $26 million annually; revised reclamation practices that could substantially reduce cost; and potential new markets for upgraded lignite of about 12 million tons annually. This program helps ensure a healthy future for the North Dakota lignite industry, which currently represents 10% of the state's total economic base. Such a program is important because it will encourage the development of new and better uses of North Dakota's most abundant resource--lignite coal

  1. North American Regional Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    North America is an energy community fortunate to be endowed with a rich and varied resource base. It consumes about a third of the world's energy and produces about one quarter of world energy supply. North America depends on a mix of complementary energy sources that should remain competitive but not in conflict. The current supply mix varies between Canada, the United States and Mexico, but fossil fuels are dominant across the region, leaving the three member countries vulnerable to a myriad of risks associated with traditional supply sources. Energy trade between all three countries is also a major contributor to the region's economy. Thus, the impetus for collaboration across the region has grown out of the common goals of energy security and economic prosperity. The goal of the WEC regional group was to discuss avenues for advancing North American cooperation and coordination on a range of energy issues. An additional objective was to develop policy recommendations that will facilitate effective development and use of the region's energy resources. Results and recommendtaions are summarized from three forums that focused on the pertinent issues of energy trade, energy efficiency and energy diversification. The inaugural forum (Energy Trade) was held in Washington, D.C. in the fall of 2005. The following summer, the second forum (Energy Efficiency) took place in Mexico City. The third forum (Energy Diversification) was hosted in Halifax, Nova Scotia.

  2. The North American upper mantle: density, composition, and evolution

    Science.gov (United States)

    Mooney, Walter D.; Kaban, Mikhail K.

    2010-01-01

    The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data

  3. High resolution Rayleigh wave phase velocity tomography in northern North China

    Science.gov (United States)

    Wang, Weilai; Wu, Jianping; Fang, Lihua

    2012-04-01

    This study presents the Rayleigh wave phase velocity tomographic results in northern North China. The data are from 190 broad-band and 10 very broad-band stations of the North China Seismic Array and 50 permanent stations nearby. All available teleseismic vertical component time-series are used to extract the phase velocity dispersion curves of the fundamental mode Rayleigh wave by interstation method. Tomographic maps are obtained at periods of 10, 15, 25 and 60 s with a grid spacing of 0.25°× 0.25°. The short-period phase velocity maps show good correlation with the geological and tectonic features. To be specific, lower velocities correspond to North China Basin and depression area whereas higher velocities are associated with Taihangshan and Yanshan uplifts. At 25 s, there are obvious low-velocity anomalies in Jizhong depression and Beijing-Tianjin-Tangshan region, indicating that ascendant low velocity channel may be formed beneath these areas and induce the velocity difference in the upper crust. The phase velocity map at 60 s reflects the upper-mantle information in the study area. High-velocity anomalies are observed at Yanshan blocks north to Zhangjiakou-Bohai seismic belt, suggesting that the materials are stable beneath these areas or the asthenosphere is at deeper location. Low-velocity anomalies are mainly south to the seismic belt, implying the asthenosphere is shallower and the materials are transformed by the open stretching rift trending NNE, resulting in many NNE-directed fault belts. These structural differences at depth may be controlled by the fault activity and strong tectonic movements.

  4. The age of the lithospheric mantle beneath the Northern Kerguelen Plateau

    Science.gov (United States)

    Debaille, V.; Mattielli, N. D.; Weis, D. A.

    2009-12-01

    The Kerguelen Plateau, in the Southern part of the Indian Ocean, provides a unique perspective on the building of Large Igneous Provinces. The Kerguelen Plateau by itself is divided in four parts, each presenting different geochemical characteristics that correspond to the various tectonic stages of the plateau evolution with time. The involvement of continental material has been evidenced in the Cretaceous lavas in the South of the plateau (>100 Myr). In contrast, there is no evidence for continental material in the young, Cenozoic lavas of the Kerguelen Archipelago, located in the Northern part of the plateau (NKP). On the other hand, the presence of subcontinental lithospheric material has been invoked in some basic and ultrabasic xenoliths from the archipelago [1]. These xenoliths, disseminated within alkaline lava series in the Southern and South-East part of the archipelago, have PT conditions generally comprised between 0.6 to 1.8 GPa (10-55 km) and 800 to 1000°C, corresponding to lithospheric conditions. Such petrogenetic conditions reflect underplated basaltic magmas and deep cumulates beneath the Kerguelen Plateau [2]. We have undertaken an Hf-Nd isotopic study on various xenoliths from the South East Province of the archipelago to decipher the fine structure of the mantle and the potential distribution of continental components under the NKP. Preliminary 143Nd/144Nd and 176Hf/177Hf results on websterite and spinel ± sapphirine bearing 2-pyroxenes metagabbro xenoliths show isotopic compositions overlapping those of the depleted ~29.5 Myr oldest lavas from the Archipelago (Mont Bureau). These lavas describe an isotopic alignment between the compositions of the South-East Indian Ridge and the flood basalts from Mont Crozier, which are representative of the enriched signature of the Kerguelen mantle plume. There is no evidence for contamination of the xenoliths from their host during their ascent. The xenoliths analyzed so far do not compare to the

  5. Rapid Mantle Ascent Rates Beneath Brazil: Diamond Bullets from a Smoking Plume?

    Science.gov (United States)

    Walter, M. J.; Frost, D. J.

    2010-12-01

    inclusions in diamonds from Juina also provide evidence for mantle ascent of this magnitude [2, 3]. The questions are (1) over what timeframe do the diamonds ascend? (2) what causes mantle ascent beneath the craton? Bulanova et al [2] were able to obtain a U/Pb age for the J1 perovskite inclusion, giving an astonishingly young model age of 101 ±7 Ma, close to the eruption age of the host kimberlite (93 ±1.5 Ma). From the time and depth differences we calculate ascent rates of about 1 to 50 cm/yr. We suggest that such rapid rates of mantle ascent beneath a craton may be ascribed to buoyant upwelling of mantle material. Diamond speedometry may provide direct evidence for a Cretaceous plume beneath Brazil, which was ultimately responsible for alkaline and kimberlite magmatism, and probably the Trindade magmatic track [6]. 1. Harte et al., Geochem. Soc. Spec. Pub, 1999, 125-153. 2. Bulanova et al., CMP, 2010, DOI:10.1007/s00410-010-0490-6. 3. Harte and Cayzer, Phys. Chem. Min., 2007. 4. Shirey et al., Science, 2002. 297, 1683- 1686. 5. Walter et al., Nature, 2008. 454, 622-625. [6] Gibson et al., J Petrol, 1995, 36, 89-229.

  6. A double seismic zone in the Nazca flat slab beneath central Chile (29°-34°S)

    Science.gov (United States)

    Marot, Marianne; Monfret, Tony; Pardo, Mario; Ranalli, Giorgio

    2010-05-01

    The Nazca plate subducts beneath central Chile and western Argentina (29°-34°S) with a dip angle ~27° from the trench until ~100 km depth. North of 32oS the slab becomes sub-horizontal at this depth and continues sub-horizontally for approximately 250 km eastward before resuming sinking with dip angle ~25°. The location and extent of this "Pampean" flat subduction is very well correlated, seismically and tectonically on the continent, with the continuing subduction of the Juan Fernandez Ridge (JFR). We use the recorded seismicity from three local temporary networks, OVA99 (1999-2000), CHARSME (2002-2003) and CHASE (2005-2006) to characterize the earthquake distribution within the slab in this area. Around 7000 earthquakes were located with magnitude ranging between 1.6 and 5.7, and around 1500 focal mechanisms were calculated. A double seismic zone (or DBZ) is present in the dipping part of the slab landward from the trench. The lower seismic zone of this Pampean DBZ begins at ~50 km depth and extends to 100-120 km depth, where it merges with the upper seismic zone. The separation between the two zones is ~30 km at the shallowest depth. The lower seismic zone shows higher seismic activity relative to the upper zone. Both zones show a similar magnitude distribution, with predominantly tensional focal mechanisms. The Pampean DBZ is best observed within the subducting JFR, which is marked by a dense and thick seismic activity. This seismicity drops substantially outside the JFR ridge limits, making the Pampean DBZ more difficult to detect. Focal mechanisms for earthquakes delineating the DBZ (50-100 km depth) show a strong tendency of the focal planes to strike NS, parallel to the trench axis, suggesting that intermediate-depth earthquakes in the subducting Nazca plate occur on pre-existing reactivated outer rise faults. The separation distance between the two seismic zones cannot be explained by plate age models which predict a much smaller separation distance

  7. Anaglyph, North America

    Science.gov (United States)

    2003-01-01

    This anaglyph (stereoscopic view) of North America was generated with data from the Shuttle Radar Topography Mission (SRTM). It is best viewed at or near full resolution with anaglyph glasses. For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south and 736 meters east-west in central North America), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the North American continent is readily apparent.Active tectonics (structural deformation of the Earth's crust) along and near the Pacific North American plate boundary creates the great topographic relief seen along the Pacific coast. Earth's crustal plates converge in southern Mexico and in the northwest United States, melting the crust and producing volcanic cones. Along the California coast, the plates are sliding laterally past each other, producing a pattern of slices within the San Andreas fault system. And, where the plates are diverging, the crust appears torn apart as one huge tear along the Gulf of California (northwest Mexico), and as the several fractures comprising the Basin and Range province (in and around Nevada).Across the Great Plains, erosional patterns dominate, with stream channels surrounding and penetrating the remnants of older smooth slopes east of the Rocky Mountains. This same erosion process is exposing the bedrock structural patterns of the Black Hills in South Dakota and the Ozark Mountains in Arkansas. Lateral erosion and sediment deposition by the Mississippi River has produced the flatlands of the lower Mississippi Valley and the Mississippi Delta.To the north, evidence of the glaciers of the last ice age is widely found, particularly east of the Canadian Rocky Mountains and around the

  8. Upper mantle discontinuity beneath the SW-Iberia peninsula: A multidisciplinary view.

    Science.gov (United States)

    Palomeras, Imma; de Lis Mancilla, Flor; Ayarza, Puy; Afonso, Juan Carlos; Diaz, Jordi; Morales, Jose; Carbonell, Ramon; Topoiberia Working Group

    2010-05-01

    Evidence for an upper mantle discontinuity located between 60 and 70 km depth have been provided by different seismic data sets acquired in the Southern Iberian peninsula. First indications of such a discontinuity were obtained by the very long offsets seismic refraction shot gathers acquired within the DSS ILIHA project in the early 90's. Clear seismic events recoded by the dense wide-angle seismic reflection shot gathers of the IBERSEIS experiment (2003) provided further constraints on the depth of the discontinuity and first-order estimates of its physical properties beneath the Ossa Morena Zone. Furthermore, the normal incidence Vibroseis deep seismic reflection images of the ALCUDIA transect (2007) extends this structure to the northeast beneath the Central Iberian Zone. This transect images deep laterally discontinuous reflections at upper mantle travel times (19 s) that roughly correspond to depths within the range of 60-70 km. Receiver function studies of the passive seismic recordings acquired by the IBERARRAY (TOPOIBERIA projects) provides additional support for the existence of this upper mantle structure and suggests that this is a relatively large scale regional feature. Two major scenarios need to be addressed when discussing the origin and nature of this deep structure. One is the tectonic scenario in which the structure maybe be related to a major tectonic event such as an old subduction process and therefore represent an ancient slab. A second hypothesis, would relate this feature to a phase change in the mantle. This latter assumption requires this feature ought to be a broader scale boundary which could be identified by different seismic techniques. Reflectivity modeling carried out over the IBERSEIS wide angle reflection data concludes that the observed phase is consistent with an heterogeneous gradient zone located at, approximately, 61-72 km depth. A layered structure with alternating velocities within ranges 8.1 to 8.3 km/s is necessary in

  9. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc

    Science.gov (United States)

    Freymuth, Heye; Ivko, Ben; Gill, James B.; Tamura, Yoshihiko; Elliott, Tim

    2016-08-01

    We address the question of whether melting of the mafic oceanic crust occurs beneath ordinary volcanic arcs using constraints from U-Series (238U/232Th, 230Th/232Th and 226Ra/230Th) measurements. Alteration of the top few hundred meters of the mafic crust leads to strong U enrichment. Via decay of 238U to 230Th, this results in elevated (230Th/232Th) (where brackets indicate activity ratios) over time-scales of ∼350 ka. This process leads to the high (230Th/232Th), between 2.6 and 11.0 in the mafic altered oceanic crust (AOC) sampled at ODP Sites 801 and 1149 near the Izu-Bonin-Mariana arc. Th activity ratios in the Izu arc lavas range from (230Th/232Th) = 1.2-2.0. These values are substantially higher than those in bulk sediment subducting at the Izu trench and also extend to higher values than in mid-ocean ridge basalts and the Mariana arc. We show that the range in Th isotope ratios in the Izu arc lavas is consistent with the presence of a slab melt from a mixed source consisting of AOC and subducted sediments with an AOC mass fraction of up to approximately 80 wt.% in the component added to the arc lava source. The oceanic plate subducting at the Izu arc is comparatively cold which therefore indicates that temperatures high enough for fluid-saturated melting of the AOC are commonly achieved beneath volcanic arcs. The high ratio of AOC/sediments of the slab melt component suggested for the Izu arc lavas requires preferential melting of the AOC. This can be achieved when fluid-saturated melting of the slab is triggered by fluids derived from underlying subducted serpentinites. Dehydration of serpentinites and migration of the fluid into the overlying crust causes melting to start within the AOC. The absence of a significant sediment melt component suggests there was insufficient water to flux both AOC and overlying sediments.

  10. Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts

    Science.gov (United States)

    Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen

    2016-04-01

    Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high

  11. Mica-dominated seismic properties of mid-crust beneath west Yunnan (China) and geodynamic implications

    Science.gov (United States)

    Shao, Tongbin; Ji, Shaocheng; Oya, Shoma; Michibayashi, Katsuyoshi; Wang, Qian

    2016-05-01

    Measurements of crystallographic preferred orientations (CPO) and calculations of P- and S-wave velocities (Vp and Vs) and anisotropy were conducted on three quartz-mica schists and one felsic mylonite, which are representative of typical metamorphic rocks deformed in the middle crust beneath the southeastern Tibetan plateau. Results show that the schists have Vp anisotropy (AVp) ranging from 16.4% to 25.5% and maximum Vs anisotropy [AVs(max)] between 21.6% and 37.8%. The mylonite has lower AVp and AVs(max) but slightly higher foliation anisotropy, which are 13.2%, 18.5%, and 3.07%, respectively, due to the lower content and CPO strength of mica. With increasing mica content, the deformed rocks tend to form transverse isotropy (TI) with fast velocities in the foliation plane and slow velocities normal to the foliation. However, the presence of prismatic minerals (e.g., amphibole and sillimanite) forces the overall symmetry to deviate from TI. An increase in feldspar content reduces the bulk anisotropy caused by mica or quartz because the fast-axis of feldspar aligns parallel to the slow-axis of mica and/or quartz. The effect of quartz on seismic properties of mica-bearing rocks is complex, depending on its content and prevailing slip system. The greatest shear-wave splitting and fastest Vp both occur for propagation directions within the foliation plane, consistent with the fast Pms (S-wave converted from P-wave at the Moho) polarization directions in the west Yunnan where mica/amphibole-bearing rocks have developed pervasive subvertical foliation and subhorizontal lineation. The fast Pms directions are perpendicular to the approximately E-W orienting fast SKS (S-wave traversing the core as P-wave) directions, indicating a decoupling at the Moho interface between the crust and mantle beneath the region. The seismic data are inconsistent with the model of crustal channel flow as the latter should produce a subhorizontal foliation where vertically incident shear

  12. High-resolution Waveform Tomography of Mantle Transition Zone and Slab Structure beneath Northeast China

    Science.gov (United States)

    TAO, K.; Grand, S.; Niu, F.; Chen, M.; Zhu, H.

    2015-12-01

    Northeast China has undergone widespread extension and magmatism since Late Cretaceous. There are many Cenozoic volcanoes in this region and a few of them are still active today, such as Changbaishan and Wudalianchi. Previous tomography models show stagnant slabs within the transition zone beneath NE China, and suggest deep slab control on the regional tectonics and volcanism. Proposed mechanisms for the magmatism include: 1) a mantle plume, 2) hot upwelling above the stagnant slab by deep dehydration and 3) upwelling induced by deep slab segmentation and detachment. To date, NE China seismic images still contain enough uncertainty to allow for multiple models. Using the dense seismic data coverage in NE China and adjacent regions our goal is to make high-resolution image of the transition zone and slab structure to test the origins of intraplate volcanism. Recently Chen et al. (2015) developed a 3D model for P and S velocity structure beneath East Asia using adjoint tomography using the SPECFEM3D synthetic technique and cross-correlation time shifts as the objective function. We use their model as a starting model and further improve the resolution by fitting waveforms to a shorter period (from ~12s to ~5s) using the correlation coefficient as the objective function. The new objective function is closely related to the L2 waveform misfit but is insensitive to a constant amplitude ratio between the synthetic and data within each time window used. This feature is desirable because the absolute amplitude can be hard to model as it can be affected by many factors difficult to incorporate in simulations, such as site effects, source magnitude and mechanism error or even poor calibration of instruments. During inversion we focus specifically on the transition zone and the structure of slabs with the goal of fitting triplicated and multipath body waves. We have performed a waveform inversion experiment using data from a single deep earthquake. Excellent fits of the

  13. Early Carboniferous (˜357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria)

    Science.gov (United States)

    Stern, Robert J.; Ren, Minghua; Ali, Kamal; Förster, Hans-Jürgen; Al Safarjalani, Abdulrahman; Nasir, Sobhi; Whitehouse, Martin J.; Leybourne, Matthew I.; Romer, Rolf L.

    2014-05-01

    Continental crust beneath northern Arabia is deeply buried and poorly known. To advance our knowledge of this crust, we studied 8 xenoliths brought to the surface by Neogene eruptions of Tell Thannoun, S. Syria. The xenolith suite consists of two peridotites, one pyroxenite, four mafic granulites, and one charnockite. The four mafic granulites and charnockite are probably samples of the lower crust, and two mafic granulites gave 2-pyroxene equilibration temperatures of 780-800 °C, which we take to reflect temperatures at the time of formation. Peridotite and pyroxenite gave significantly higher temperatures of ∼900 °C, consistent with derivation from the underlying lithospheric mantle. Fe-rich peridotite yielded T∼800 °C, perhaps representing a cumulate layer in the crust. Three samples spanning the lithologic range of the suite (pyroxenite, mafic granulite, and charnockite) yielded indistinguishable concordant U-Pb zircon ages of ∼357 Ma, interpreted to approximate when these magmas crystallized. These igneous rocks are mostly juvenile additions from the mantle, as indicated by low initial 87Sr/86Sr (0.70312 to 0.70510) and strongly positive initial εNd(357 Ma) (+4 to +9.5). Nd model ages range from 0.55 to 0.71 Ga. We were unable to unequivocally infer a tectonic setting where these melts formed: convergent margin, rift, or hotspot. These xenoliths differ from those of Jordan and Saudi Arabia to the south in four principal ways: 1) age, being least 200 Ma younger than the presumed Neoproterozoic (533-1000 Ma) crust beneath Jordan and Saudi Arabia; 2) the presence of charnockite; 3) abundance of Fe-rich mafic and ultramafic lithologies; and 4) the presence of sapphirine. Our studies indicate that northern Arabian plate lithosphere contains a significant proportion of juvenile Late Paleozoic crust, the extent of which remains to be elucidated. This discovery helps explain fission track resetting documented for rocks from Israel and provides insights into

  14. Apollo in the North

    DEFF Research Database (Denmark)

    Østermark-Johansen, Lene

    2015-01-01

    Walter Pater’s fascination with the Hyperborean Apollo, who according to myth resided north of the home of the northern wind, is explored in two of his pieces of short fiction, ‘Duke Carl of Rosenmold’ (1887) and ‘Apollo in Picardy’ (1893). The essay discusses some of Pater’s complex dialogue wit......: where does it begin? Where does it end? Is it a place of light or of darkness? Pater’s dark Apollo challenges conventional notions of the sun god and testifies to the strong presence of paganism in Pater’s late writings....

  15. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China

    Science.gov (United States)

    Cen, Tao; Li, Wu-xian; Wang, Xuan-ce; Pang, Chong-jin; Li, Zheng-xiang; Xing, Guang-fu; Zhao, Xi-lin; Tao, Jihua

    2016-07-01

    Early Jurassic bimodal volcanic and intrusive rocks in southern South China show distinct associations and distribution patterns in comparison with those of the Middle Jurassic and Cretaceous rocks in the area. It is widely accepted that these rocks formed in an extensional setting, although the timing of the onset and the tectonic driver for extension are debated. Here, we present systematic LA-ICP-MS zircon U-Pb ages, whole-rock geochemistry and Sr-Nd isotope data for bimodal volcanic rocks from the Changpu Formation in the Changpu-Baimianshi and Dongkeng-Linjiang basins in southern Jiangxi Province, South China. Zircon U-Pb ages indicate that the bimodal volcanic rocks erupted at ca. 190 Ma, contemporaneous with the Fankeng basalts (~ 183 Ma). A compilation of geochronological results demonstrates that basin-scale basaltic eruptions occurred during the Early Jurassic within a relatively short interval (< 5 Ma). These Early Jurassic basalts have tholeiitic compositions and OIB-like trace element distribution patterns. Geochemical analyses show that the basalts were derived from depleted asthenospheric mantle, dominated by a volatile-free peridotite source. The calculated primary melt compositions suggest that the basalts formed at 1.9-2.1 GPa, with melting temperatures of 1378 °C-1405 °C and a mantle potential temperature (TP) ranging from 1383 °C to 1407 °C. The temperature range is somewhat hotter than normal mid-ocean-basalt (MORB) mantle but similar to an intra-plate continental mantle setting, such as the Basin and Range Province in western North America. This study provides an important constraint on the Early Jurassic mantle thermal state beneath South China.

  16. Alleghenian regional diagenesis: A response to the migration of modified metamorphic fluids derived from beneath the Blue Ridge-Piedmont thrust sheet

    Energy Technology Data Exchange (ETDEWEB)

    Schedl, A.; McCabe, C. (Louisiana State Univ., Baton Rouge (United States)); Montanez, I.P. (Univ. of California, Riverside (United States)); Fullagar, P.D. (Univ. of North Carolina, Chapel Hill (United States)); Valley, J.W. (Univ. of Wisconsin, Madison (United States))

    1992-05-01

    To examine the nature and origin of fluids that caused widespread diagenetic alteration and remagnetization of the Appalachian foreland during the late Paleozoic, the authors examined the evidence for metamorphic fluids originating from beneath the Blue Ridge and Piedmont, causing extensive alteration along the Linville Falls fault in the Grandfather Mountain window, North Carolina. These fluids were hot (310 to 400C), enriched in radiogenic strontium, and had {delta}{sup 18}O values of 3 to 10{per thousand} SMOW and {delta}D values of {minus}20 to 10{per thousand}. A Rb/Sr isochron from the fault zone rocks yielded an Alleghenian age of 301 {plus minus} 5.0 Ma. Next they examined the diagenetic fluids that produced Alleghenian silicification, K-feldspar authigenesis, and associated dolomitization in remagnetized Upper Knox Group carbonates of the Valley and Ridge and Plateau Provinces from Tennessee to northern Virginia. The fluids were hot (140 to 245C), highly saline (14 to 23 wt % NaCl equivalent), enriched in radiogenic strontium, and had a {delta}{sup 18}O of 5 to 13{per thousand}. Thus, the fluids that caused alteration in the Linville Falls area were remarkably similar geochemically to the fluids that caused alteration in the Upper Knox Group at about the same time. The authors suggest that both alteration events were part of a large-scale fluid flow system involving metamorphic and basinal fluids rather than meteoric waters. Thus, metamorphic fluids may have played a key role in causing remagnetization and other diagenetic phenomena on the Appalachian foreland during the Alleghenian Orogeny.

  17. Deformation, annealing, reactive melt percolation, and seismic anisotropy in the lithospheric mantle beneath the southeastern Ethiopian rift: Constraints from mantle xenoliths from Mega

    Science.gov (United States)

    Tommasi, Andréa; Baptiste, Virginie; Vauchez, Alain; Holtzman, Benjamin

    2016-07-01

    We explore the relations between deformation, annealing, and melt percolation during rifting and the effect of these processes on seismic anisotropy by analyzing the microstructures and crystal preferred orientations (CPO) in a suite of mantle xenoliths from Mega, in the southern end of the Ethiopian rift. Previous geochemical studies on these xenoliths showed evidence for interactions with variable melt types and volumes during the rifting process. The peridotites have dominantly coarse-porphyroclastic microstructures, but coarse granular or partially recrystallized microstructures also occur. The olivine CPO, characterized by orthorhombic to fiber-[100] patterns and moderate intensities, the common occurrence of (100) tilt walls, and the predominance of rotation axes accommodating low angle misorientations in olivine support deformation by dislocation creep with dominant activation of the [100](010) system. Annealing (static recrystallization) of variable intensity followed this deformation. Modal enrichment in pyroxenes in > 60% of the studied peridotites corroborates extensive, but spatially heterogeneous reactive melt percolation leading to refertilization of the lithospheric mantle beneath the southern Ethiopian rift. The common interstitial shapes of the pyroxenes and lack of correlation between the pyroxenes and the olivine CPOs in many samples suggest that part of the refertilization is post-kinematic. However, there is no simple relation between reactive melt percolation and annealing of the olivine deformation microstructure. Comparison with data from other xenolith localities points to changes in the metasomatic imprint in the lithospheric mantle along the East African rift system correlated with the evolution in the rift maturity. Seismic properties averaged over all samples show typical lithospheric mantle patterns with fast propagation of P- and polarization of the fast S-waves parallel to the lineation. The anisotropy is moderate (seismic anisotropy

  18. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.

    Science.gov (United States)

    French, Scott W; Romanowicz, Barbara

    2015-09-01

    Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection. PMID:26333468

  19. Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting

    Science.gov (United States)

    Sims, Kenneth W. W.; Maclennan, John; Blichert-Toft, Janne; Mervine, Evelyn M.; Blusztajn, Jurek; Grönvold, Karl

    2013-10-01

    Glacial modulation of melting beneath Iceland provides a unique opportunity to better understand both the nature and length scale of mantle heterogeneity. At the end of the last glacial period, ∼13 000 yr BP, eruption rates were ∼20-100 times greater than in glacial or late postglacial times and geophysical modeling posits that rapid melting of the large ice sheet covering Iceland caused a transient increase in mantle decompression melting rates. Here we present the first time-series of Sr-Nd-Hf-Pb isotopic data for a full glacial cycle from a spatially confined region of basaltic volcanism in northern Iceland. Basalts and picrites erupted during the early postglacial burst of volcanic activity are systematically offset to more depleted isotopic compositions than those of lavas erupted during glacial or recent (Iceland is heterogeneous on small (glacial unloading indicates that the isotopic composition of mantle heterogeneities can be linked to their melting behavior. The present geochemical data can be accounted for by a melting model in which a lithologically heterogeneous mantle source contains an enriched component more fusible than its companion depleted component.

  20. Measurement of dynamic scattering beneath stationary layers using multiple-exposure laser speckle contrast analysis

    Science.gov (United States)

    Hirst, Evan; Thompson, Oliver; Andrews, Mike

    2013-02-01

    The retina/choroid structure is an example of a complex biological target featuring highly perfused tissues and vessel flows both near the surface and at some depth. Laser speckle imaging can be used to image blood flows but static scattering paths present a problem for extracting quantifiable data. The speckle contrast is artificially increased by any residual specular reflection and light paths where no moving scatterers are encountered. Here we present results from phantom experiments demonstrating that the static and dynamic contributions to laser speckle contrast can be separated when camera exposures of varying duration are used. The stationary contrast parameter follows the thickness and strength of the overlying scatterer while the dynamic proportion of the scatter resulting from vessel flows and Brownian motion is unchanged. The importance of separating the two scatter components is illustrated by in vivo measurements from a scarred human retina, where the effect of the un-perfused scar tissue can be decoupled from the dynamic speckle from the intact tissue beneath it.

  1. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.

    Science.gov (United States)

    Booker, John R; Favetto, Alicia; Pomposiello, M Cristina

    2004-05-27

    Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.

  2. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    International Nuclear Information System (INIS)

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images

  3. UNSTEADY WAVES DUE TO AN IMPULSIVE OSEENLET BENEATH THE CAPILLARY SURFACE OF A VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    LU Dong-qiang; CHEN Xiao-bo

    2008-01-01

    The two-dimensional free-surface waves due to a point force steadily moving beneath the capillary surface of an incompressible viscous fluid of infinite depth were analytically investigated. The unsteady Oseen equations were taken as the governing equations for the viscous flows. The kinematic and dynamic conditions including the combined effects of surface tension and viscosity were linearized for small-amplitude waves on the free-surface. The point force is modeled as an impulsive Oseenlet. The complex dispersion relation for the capillary-gravity waves shows that the wave patterns are characterized by the Weber number and the Reynolds number. The asymptotic expansions for the wave profiles were explicitly derived by means of Lighthill's theorem for the Fourier transform of a function with a finite number of singularities. Furthermore, it is found that the unsteady wave system consists of four families, that is, the steady-state gravity wave, the steady-state capillary wave, the transient gravity wave, and the transient capillary wave. The effect of viscosity on the capillary-gravity was analytically expressed.

  4. The Biogeochemistry beneath the Whillans Ice Stream, West Antarctica: Evidence for a Chemoautotrophically Driven Ecosystem

    Science.gov (United States)

    Purcell, A.; Mikucki, J.; Achberger, A.; Christner, B. C.; Michaud, A. B.; Mitchell, A. C.; Priscu, J. C.; Skidmore, M. L.; Vick-Majors, T.

    2015-12-01

    Antarctic sub ice environments represent some of the most understudied microbial ecosystems on Earth. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project recently sampled sediments and water from Subglacial Lake Whillans (SLW) and its hydrologically connected grounding zone where this lake system empties beneath the Ross Ice Shelf. Here we highlight findings on the diversity and metabolic capabilities of the microbial community detected in these samples. We utilized a hot water drill with a novel filtration and UV treatment system to insure that our entry and sampling did not contaminate our samples or the pristine subglacial ecosystem. Geochemical and microbiological data suggests the water column hosts an active microbial community sustained by the production of fixed carbon from chemosynthesis with energy derived from reduced nitrogen, sulfur, and iron compounds. These energy sources appear to be influenced by bedrock weathering at the sediment surface. For example, dominant 16S rRNA gene phylotypes in the water column suggest ammonia oxidation as a potential source of chemoautotrophic energy. While in the SLW surficial sediments, diversity analysis of functional genes involved in both sulfur oxidation and sulfate reduction (aprA, dsrA, and rdsrA), aprA gene abundance, and 16S rRNA gene analysis indicate that sulfur-oxidizing microbes are dominant. These preliminary results represents the first data on microbial community structure and function from an Antarctic subglacial lake and its grounding zone.

  5. Basement interface structural characteristics beneath Jiashi strong earthquake swarm area in Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    XU Zhao-fan; DUAN Yong-hong; TIAN Xiao-feng; PAN Ji-shun; ZHANG Jian-shi; HU Xiu-qi

    2007-01-01

    The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approximately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.

  6. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Agustya Adi [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia); Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung (Indonesia); Widiyantoro, Sri [Global Geophysics Group, Institut Teknologi Bandung, Bandung (Indonesia); Center for Disaster Mitigation, Institut Teknologi Bandung, Bandung (Indonesia); Cummins, Phil; Saygin, Erdinc [Research School of Earth Sciences, Australian National University, Canberra (Australia); Masturyono [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia)

    2015-04-24

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.

  7. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    Science.gov (United States)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of 120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic. Since Zn is a trace element in the mantle and Zn isotopic compositions of marine carbonates and the mantle differ markedly, we highlight Zn isotopes as a new and useful tool of tracing deep carbonate cycling in the Earth's mantle.

  8. Phase structure within a fracture network beneath a surface pond: Field experiment

    Energy Technology Data Exchange (ETDEWEB)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  9. Lateral variation of Pn velocity beneath northeastern marginal region of Qinghai- Xizang plateau

    Institute of Scientific and Technical Information of China (English)

    许忠淮; 汪素云; 裴顺平

    2003-01-01

    Pn arrival time data are collected from the bulletins of both national and regional seismological network in China. These data are tomographically inverted to map the lateral variation and anisotropy of Pn velocity in the northeastern marginal region of Qinghai-Xizang plateau. The average Pn velocity in this region is 8.09 km/s, being a little higher than the average for whole China. Higher velocity is found in tectonically stable Qaidam basin, while lower velocity is seen in and around tectonically active Shanxi graben. The region where the 1920 Haiyuan great earthquake occurred shows a slightly low Pn velocity. A noticeable result is that, differing from the tectonically compressive Tianshan region, where Pn velocity is low, the Qilianshan region, where the Neotectonic deformation is also primarily compressive, shows high Pn velocity. In the uppermost mantle beneath the Ordos plateau Pn velocity is inhomogeneous, varying from higher velocity in southwestern part to lower one in northeastern part. This may be attributed to possible movement of the Ordos block, as there are strong earthquakes all around the block.

  10. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  11. The geological storage of spent nuclear fuel and depleted uranium beneath the Williston Basin

    Energy Technology Data Exchange (ETDEWEB)

    Brunskill, B. [Helix Geological Consultants, Regina, SK (Canada)

    2007-07-01

    In order to prevent or retard the leakage of buried nuclear material into the surrounding rocks, regulatory agencies in Canada and the United States are recommending that spent nuclear fuel eventually be stored in suitable geological repositories with highly-engineered barriers. This presentation discussed the development of a repository somewhere in the Precambrian Shield beneath the Williston Basin in Canada, as well as a repository that was under construction at Yucca Mountain, Nevada, in the United States. Potential storage sites in Canada were provided in an illustration and a figure of the proposed repository development was provided. Other illustrations included a light-water fuel rod and assembly as well as storage containers and drip shield. It was shown that in order to prevent potential migration, it would be highly beneficial if a repository were located where the groundwater surrounding the repository was not vertically mobile. A map of the Williston Basin boundary and a fluid-flow model and alternate model through the Williston Basin were also presented. The primary benefits of developing a deep geological repository were presented. These included a favourable hydrogeological regime which would likely isolate and contain the eventual release of any radioactive material. Other benefits that were discussed included minimal disturbance to the geological media during development; elimination of most underground-related mining construction; and, radiation safety issues. tabs., figs.

  12. Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia

    Science.gov (United States)

    Ely, Kim S.; Sandiford, Mike

    2010-03-01

    Variations in seismic moment release and stress state across the transition from subduction of oceanic crust to arc-continent collision in the Banda Arc are constrained by focal mechanism solutions from the CMT earthquake catalogue. In particular the slab under the western Savu Sea is unusual in that intermediate depth (70-300 km) events indicate that at this depth range the slab is largely in down-dip compression. This contrasts with the intermediate depth, down-dip tension that typifies the Sunda slab to the west and the far eastern Banda slab to the east. Down-dip compression beneath the Savu Sea reflects subduction of transitional crust of the Scott Plateau, more buoyant than the Indian Ocean crust subducting further west. In this region, enhanced magma flux is indicated by unusually narrow volcano spacing in the overlying arc, and suggests that down-dip compression reflects not only more buoyant transitional crust but also a reduction in slab-wedge coupling induced by enhanced magma flux. East of the Savu Sea, the near complete absence of intermediate depth seismicity is attributed to a slab window that has opened where Australian continental crust has collided with the arc. Differences in seismic moment release around this slab window indicate asymmetric rupture, propagating to the east at a much faster rate than to the west.

  13. Azimuthal anisotropy of Rayleigh waves beneath the Tibetan Plateau and adjacent areas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.

  14. Postcolonial Myth in Salman Rushdie’s The Ground Beneath Her Feet

    Directory of Open Access Journals (Sweden)

    Doncu Roxana Elena

    2014-01-01

    Full Text Available Postcolonial writers like Salman Rushdie often write back to the “empire” by appropriating myth and allegory. In The Ground beneath Her Feet, Rushdie rewrites the mythological story of Orpheus and Eurydice, using katabasis (the trope of the descent into Hell to comment both on the situation of the postcolonial writer from a personal perspective and to attempt a redefinition of postcolonial migrant identity-formation. Hell has a symbolic function, pointing both to the external context of globalization and migration (which results in the characters’ disorientation and to an interior space which can be interpreted either as a source of unrepressed energies and creativity (in a Romantic vein or as the space of the abject (in the manner of Julia Kristeva. The article sets out to investigate the complex ways in which the Orphic myth and katabasis are employed to shed light on the psychology of the creative artist and on the reconfiguration of identity that becomes the task of the postcolonial migrant subject. The journey into the underworld functions simultaneously as an allegory of artistic creation and identity reconstruction.

  15. Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau

    Science.gov (United States)

    Klosko, E. R.; Russo, R. M.; Okal, E. A.; Richardson, W. P.

    2001-04-01

    Shear wave splitting measurements, in conjunction with studies of shear wave velocity structure, indicate that the Ontong-Java Plateau (OJP) large igneous province (LIP) has a thick, compositionally distinct root that diverts asthenospheric mantle flow beneath the Pacific plate. The OJP, the largest of Earth's LIPs, stands 2 km above adjacent Pacific abyssal plains and is composed of mantle plume derived volcanics erupted at 122 and 90 Ma. Surface wave tomography of the Plateau reveals a seismically slow upper mantle root that extends approximately to 300 km depth. The thickness and juxtaposition of the Plateau and the mantle root imply that the OJP is the preserved 'head' of a rising mantle plume formed in situ when the LIP erupted. Thus, it is a far-traveled body currently moving northwestwards with the Pacific plate. Shear wave splitting at four seismic stations along the northern margin of the OJP varies systematically: the fast axis of seismic anisotropy at three stations on the NE OJP margin trend NW, parallel to hotspot-defined Pacific absolute plate motion; at a fourth station, on the NW margin of the Plateau, the fast shear wave trend is NE. Upper mantle flow directions delineated by the shear wave splitting could thus represent mantle flow diverted around the leading, northwestern face of the rheologically strong, chemically distinct OJP root. In sum, the Plateau and its deep root appear to be similar to continental tectosphere, except for contrasting seismic velocities.

  16. A modeling study of water flow in the vadose zone beneath the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    A modeling study was conducted for the purpose of gaining insight into the nature of water flow in the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The modeling study focused on three specific hydrologic aspects: (1) relationship between meteorologic conditions and net infiltration, (2) water movement associated with past flooding events, and (3) estimation of water travel-times through the vadose zone. This information is necessary for understanding how contaminants may be transported through the vadose zone. Evaluations of net infiltration at the RWMC were performed by modeling the processes of precipitation, evaporation, infiltration and soil-moisture redistribution. Water flow simulations were performed for two distinct time periods, namely 1955--1964 and 1984--1990. The patterns of infiltration were calculated for both the undisturbed (or natural sediments) and the pit/trench cover materials. Detailed simulations of the 1969 flooding of Pit 10 were performed to estimate the rate and extent of water movement through the vadose zone. Water travel-times through the vadose zone were estimated using a Monte Carlo simulation approach. The simulations accounted for variability of soil and rock hydraulic properties as well as variations in the infiltration rate

  17. Seismic tomography beneath the orogenic belts and adjacent basins of northwestern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three-dimensional velocity images of the crust and upper mantlebeneath orogenic belts and adjacent basins of the northwestern continent of China are reconstructed by seismic tomography, based on arrival data of P wave recorded in seismic networks in Xinjiang, Qinghai, Gansu of China and Kyrgyzstan. The velocity images of upper crust demonstrate the tectonic framework on the ground surface. High velocities are observed beneath orogenic belts, and low velocities are observed in the basins and depressions that are obviously related to unconsolidated sediments. The velocity image in mid-crust maintains the above features, and in addition low velocities appear in some earthquake regions and a low velocity boundary separates the western Tianshan Mts. from eastern Tianshan Mts. The orogenic belts and the northern Tibetan plateau have a Moho depth over 50 km, whereas the depths of the Moho in basins and depressions are smaller than 50 km. The velocity images of upper mantle clearly reveal the colliding relationship and location of deep boundaries of the continental blocks in northwestern China, indicating a weakness of the upper mantle structure of orogenic belts. The top depth of upper mantle asthenosphere varies from place to place. It seems shallower under the northern Tibetan plateau, Altay and Qilian Mts., and deeper under the Tarim and Tianshan regions. Hot mantle probably rose to the bottom of some orogenic belts along tectonic boundaries when continental blocks collided to each other. Therefore their dynamic features are closely correlated to the formation and evolution of orogenic belts in northwestern China.

  18. Structural evolution beneath Sakurajima Volcano, Japan, revealed through rounds of controlled seismic experiments

    Science.gov (United States)

    Tsutsui, Tomoki; Iguchi, Masato; Tameguri, Takeshi; Nakamichi, Haruhisa

    2016-04-01

    Structural evolution beneath an active volcano is detected as the variation of seismic reflectivity through controlled seismic experiments, which is interpreted as being associated with discharging magma. The target of the present study is Sakurajima Volcano, which is one of the most active volcanoes in Japan. Six rounds of seismic experiments with controlled sources have been conducted annually at the volcano. Two seismic reflection profiles are obtained from the datasets for each successful round of experiments. The experiments reveal clear annual variation in seismic reflectivity at a depth of 6.2 km in the northeastern part of Sakurajima. The reflectivity is maximum in December 2009 upon the first intrusion of magma and decreases gradually until December 2013, which coincides with the inflation and deflation cycle of Sakurajima Volcano. Reflectivity variation occurred in the embedded clear reflector at depth. An evolving sandwiched structure in the intermediate layer is used as the reflector model. Lower-velocity magma embedded in the intermediate layer and its succeeding velocity increment explain the variation range of reflectivity. This is interpreted as a temperature decrease associated with discharging magma at depth. The present study describes a new approach for instantaneously sensing magma properties and for monitoring active volcanoes.

  19. Velocity structure of uppermost mantle beneath China continent from Pn tomography

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    39473 Pn travel times are inverted to tomographically image both lateral variation and anisotropy of uppermost mantle velocities beneath China continent. The result indicates that the overall average Pn velocity of uppermost mantle in the studied region is 8.0 km/s and the regional velocity fluctuation varies from -0.30 km/s to +0.35 km/s. Pn velocities higher than 8.2 km/s are found in the regions surrounding Qingzang Plateau, such as Junggar Basin, Tarim Basin, Qaidam Basin and Sichun Basin. Pn velocities slightly lower than the average are found in western Sichuan and Yunnan, Shanxi Graben and Bohai Bay region. A Pn velocity as low as 7.8 km/s may exist in the region striding the boundary between Guangxi and Guangdong provinces. In general, Pn velocity in tectonically stable region like cratonic platform tends to be high, while that in tectonically active region tends to be low. The regions in compressive setting usually show higher Pn velocity, while extensional basins or grabens generally display lower one. Anisotropy of Pn velocity is seen in some regions. In the southeastern region of Qingzang Plateau the directions of fastest Pn velocity show a rotation pattern, which may be related to southeastward escape of the plateau material due to the collision and compression of Indian Plate to Asia along Himalaya arc. Notable anisotropy also exists around Bohai Bay region, likely indicating crustal extending and possible magma activity therein.

  20. Study of evapotranspiration and evaporation beneath the canopy in a buckwheat field

    Science.gov (United States)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Wang, Guoqing; He, Bin

    2015-11-01

    The determination of evaporation and transpiration separately is very important in improving water use efficiency and developing exact irrigation scheduling. Hourly crop evapotranspiration ( ET c) and soil evaporation ( E g) beneath the buckwheat canopy were measured using Bowen ratio energy balance method and micro-lysimeters, respectively. The total ET c and E g in the whole growth season of buckwheat were 187.4 and 72.1 mm, respectively. Crop coefficient of buckwheat plant was simulated by days after sowing (DAS) and leaf area index (LAI), the average values for four growth stages were 0.58, 0.59, 1.10, and 0.74; and soil evaporation coefficient (the ratio of soil evaporation to reference evapotranspiration) was modeled by soil water content at 5-cm depth by dividing the LAI into two stages. The relationship between the ratio of soil evaporation to actual evapotranspiration ( E g/ ET c) and LAI was decided. It was found that E g/ ET c decreased from 1 to 0.3 with the increase in LAI.

  1. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet.

    Science.gov (United States)

    Schroeder, Dustin M; Blankenship, Donald D; Young, Duncan A; Quartini, Enrica

    2014-06-24

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼ 114 ± 10 mW/m(2) with areas of high flux exceeding 200 mW/m(2) consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578

  2. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    Science.gov (United States)

    McCrory, P. A.; Constantz, J. E.; Hunt, A. G.; Blair, J. L.

    2016-06-01

    Helium isotopic ratios (3He/4He) observed in 25 mineral springs and wells above the Cascadia forearc provide a marker for fluids derived from Juan de Fuca lithosphere. This exploratory study documents a significant component of mantle-derived helium within forearc springs and wells, and in turn, documents variability in helium enrichment across the Cascadia forearc. Sample sites arcward of the forearc mantle corner generally yield significantly higher ratios (˜1.2-4.0 RA) than those seaward of the corner (˜0.03-0.7 RA). 3He detected above the inner forearc mantle wedge may represent a mixture of both oceanic lithosphere and forearc mantle sources, whereas 3He detected seaward of the forearc mantle corner likely has only an oceanic source. The highest ratios in the Cascadia forearc coincide with slab depths (˜40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (˜25-30 km) beneath sites seaward of the corner. These observations provide independent evidence that tremor is associated with deep fluids, and further suggest that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through the ductile upper mantle and lower crust.

  3. Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography

    Science.gov (United States)

    Zabelina, Irina; Koulakov, Ivan; Amanatashvili, Iason; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    We present a new seismic model of the crust beneath the Caucasus based on tomographic inversion of P and S arrival times from earthquakes occurred in the region recorded by regional seismic networks in the Caucasian republics. The resulting P and S velocity models clearly delineate major tectonic units of the study area. A high velocity anomaly in Transcaucasian separating the Great and Lesser Caucasus possibly represents a rigid crustal block corresponding to the remnant oceanic lithosphere of Tethys. Another high-velocity pattern coincides with the southern edge of the Scythian Plate. Strongly deformed areas of Great and Lesser Caucasus are mostly associated with low-velocity patterns representing thickened felsic part of the crust and strong fracturing of rocks. Most Cenozoic volcanic centers of Caucasus match to the low-velocity seismic anomalies in the crust. For example, the Kazbegi volcano group is located above an elongated low-velocity anomaly squeezed between high-velocity segments of Transcaucasian and Scythian Plate. We propose that mantle part of the Arabian and Eurasian Plates has been delaminated due to the continental collision in the Caucasus region. As a result, overheated asthenosphere appeared nearly the bottom of the crust and facilitated melting of the crustal material that caused the origin of recent volcanism in Great and Lesser Caucasus.

  4. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    Science.gov (United States)

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  5. Soft-bed experiments beneath Engabreen, Norway: Regelation, infiltration, basal slip and bed deformation

    Science.gov (United States)

    Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Cohen, D.; Moore, P.L.; Jackson, M.; Lappegard, G.; Kohler, J.

    2007-01-01

    To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m ?? 1.6 m ?? 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50-80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore-water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.

  6. Mantle insulation beneath the West African craton during the Precambrian-Cambrian transition

    Science.gov (United States)

    Doblas, Miguel; López-Ruiz, José; Cebriá, José-María; Youbi, Nasrrddine; Degroote, Eugenio

    2002-09-01

    At the time of the Precambrian-Cambrian transition, the West African craton underwent widespread magmatism, hydrothermal activity, and thermal rejuvenation. This tectonothermal event gave rise to an anorogenic “ring of fire” along the rim of this craton, following the Pan-African Brasiliano belt that was reactivated by extension and transtension. The thermal phenomena were due to the progressive peripheral release of mantle heat that had built up beneath this craton because of strong insulating conditions. The West African craton at the Precambrian-Cambrian transition can thus be envisioned in terms of a gigantic pressure-cooker with a thick blanketing lithospheric lid. These insulation processes triggered an unusually hot mantle that was channeled by edge-driven convection toward the peri West African craton extensional corridors and released through magmatic pressure-relief valves. Massive ice melting and outgassing of volcanic CO2 gave rise to a planet-scale sea-level rise, a greenhouse effect, and the end of the icehouse snowball Earth. These processes played an important role in the Phanerozoic explosion of life on Earth.

  7. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  8. A seismic search for the paleoshorelines of Lake Otero beneath White Sands Dune Field, New Mexico

    Science.gov (United States)

    Wagner, P. F.; Reece, R.; Ewing, R. C.

    2014-12-01

    The Tularosa Basin, which now houses White Sands Dune Field, was once occupied by Pleistocene Lake Otero. Several paleoshorelines of Lake Otero have been identified throughout the basin by field surveys and remote sensing using digital elevation models. Up to four shorelines may be buried beneath White Sands Dune Field and it has been posited that the current upwind margin of White Sands coincides with a one of these shorelines. Here we employ a novel geophysical instrument and method to image the subsurface: the seismic land streamer. The land streamer utilizes weighted base plates and one-component vertical geophones in a towed array. With a seisgun acoustic source, we imaged in the Alkali Flats area near the upwind margin, one potential location of paleoshorelines, as well as the Film Lot closer to the center of the dune field. Surfaces in both locations are indurated gypsum playa, which made seismic imaging possible and successful. We collected one SW-NE trending seismic line at each location, which matches the dominant wind and dune migration directions. Based on initial data analysis we find some subsurface structure that may coincide with the paleo lake bed of Lake Otero. The successful demonstration of this new method provides the foundation for an expanded regional subsurface study to image the strata and structure of the Tularosa Basin.

  9. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Science.gov (United States)

    Gozlan, Rodolphe E; Marshall, Wyth L; Lilje, Osu; Jessop, Casey N; Gleason, Frank H; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  10. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm

    International Nuclear Information System (INIS)

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO2 and O2 and >2000 times for NH4+, when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m−2 d−1 POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. - Highlights: ► We studied the biogeochemistry in sediments beneath a deep-water fish farm. ► Initially, sediment biogeochemical cycling was stimulated to high levels. ► After 10 months, microbial mineralization was inhibited due to organic overloading. ► Conclusion: deep water sediment has an upper limit for organic matter mineralization. ► Conclusion: deep water fish farms can lead to negative environmental impacts. - Siting fish farms at deep water farming locations is not a universal solution for alleviating benthic impacts.

  11. Thickness and Lower Limit Seismogenic Layer within the Crust beneath Japanese Islands on the Japan Sea Side

    Science.gov (United States)

    Matsubara, M.; Sato, H.

    2015-12-01

    1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity

  12. Roof Defects in North Cyprus

    OpenAIRE

    Aghghaleh, Shadi Pakpour

    2015-01-01

    ABSTRACT: The construction boom in North Cyprus, followed by Annan Plan, have resulted in the construction of a great number of buildings with minimum costs and quality. Although there exist certain rules for the construction of new buildings in North Cyprus, and part of these rules are related to the roofs, defects are observed few years after construction. This thesis intends to introduce different roof systems in North Cyprus, to find their problems and suggest solutions. In this respe...

  13. Energy policy of North Korea

    International Nuclear Information System (INIS)

    Since the year 1990, North Korea suffers internal-policy problems as well as foreign-political problems. The gross domestic investment decreased by 3.8% yearly between the years 1990 and 1998. Many actual problems of North Korea correspond with the energy crisis in this land affecting nearly all sectors of economy and society. This energy crisis was released by the fact, that the former Soviet Union has stopped the supply of primary energy in the year 1991. In the contribution under consideration, the author reports on the energy policy of North Korea. The main themes of this contribution are: (a) Development and characteristics of the energy sector; (b) Crisis of the energy sector; (c) Consequences of the energy crisis in North Korea; (d) Possibilities of the solution of the energy crisis. For the U.S.A. and the international community, the energy crisis offers the possibility to turn North Korea to negotiations by means of remedial measures in the energy sector. In response, North Korea should drop its nuclear energy program. Apart from such positive incentives, the threat of sanctions is conceivable. North Korea imports nearly 70 % of its oil demand from the People's Republic of China. Therefore, China has an great influence on North Korea. The energy crisis of North Korea shows the fatal consequences of a falsely performed energy policy with respect to the population of this land and with respect to the stability and disposing capacity of the political leadership

  14. Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow

    Science.gov (United States)

    Ramirez, C.; Nyblade, A.; Hansen, S. E.; Wiens, D. A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Shore, P.; Wilson, T.

    2016-03-01

    S-wave receiver functions (SRFs) are used to investigate crustal and upper-mantle structure beneath several ice-covered areas of Antarctica. Moho S-to-P (Sp) arrivals are observed at ˜6-8 s in SRF stacks for stations in the Gamburtsev Mountains (GAM) and Vostok Highlands (VHIG), ˜5-6 s for stations in the Transantarctic Mountains (TAM) and the Wilkes Basin (WILK), and ˜3-4 s for stations in the West Antarctic Rift System (WARS) and the Marie Byrd Land Dome (MBLD). A grid search is used to model the Moho Sp conversion time with Rayleigh wave phase velocities from 18 to 30 s period to estimate crustal thickness and mean crustal shear wave velocity. The Moho depths obtained are between 43 and 58 km for GAM, 36 and 47 km for VHIG, 39 and 46 km for WILK, 39 and 45 km for TAM, 19 and 29 km for WARS and 20 and 35 km for MBLD. SRF stacks for GAM, VHIG, WILK and TAM show little evidence of Sp arrivals coming from upper-mantle depths. SRF stacks for WARS and MBLD show Sp energy arriving from upper-mantle depths but arrival amplitudes do not rise above bootstrapped uncertainty bounds. The age and thickness of the crust is used as a heat flow proxy through comparison with other similar terrains where heat flow has been measured. Crustal structure in GAM, VHIG and WILK is similar to Precambrian terrains in other continents where heat flow ranges from ˜41 to 58 mW m-2, suggesting that heat flow across those areas of East Antarctica is not elevated. For the WARS, we use the Cretaceous Newfoundland-Iberia rifted margins and the Mesozoic-Tertiary North Sea rift as tectonic analogues. The low-to-moderate heat flow reported for the Newfoundland-Iberia margins (40-65 mW m-2) and North Sea rift (60-85 mW m-2) suggest that heat flow across the WARS also may not be elevated. However, the possibility of high heat flow associated with localized Cenozoic extension or Cenozoic-recent magmatic activity in some parts of the WARS cannot be ruled out.

  15. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau—Receiver functions and travel-time residuals analysis of north Hi-Climb

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Teleseismic receiver functions and travel-time residuals along the north Hi-Climb broadband seismic array in the central-southern Qinghai-Tibet Plateau show that the lithosphere structures in the central and western Qinghai-Tibet Plateau are different. In the central Qinghai-Tibet Plateau, the Indian Plate is northward subducted beneath the Qiangtang block and arrives at the greatest depth beneath the central-southern Qiangtang block. The delaminated Indian lithospheric slab remains beneath the central Lhasa block to a depth possibly greater than that of the upper interface of the mantle transform zone. In the western Qinghai-Tibet Plateau, the Indian lithospheric plate is gently northward subducted and may have arrived to the south of Tarim plate. Due to the resistance from the gently northward subduction of the Indian mantle lithosphere in the western Qinghai-Tibet Plateau, the upwelling mantle material be-neath the Qiangtang block moves mostly toward the east to bring about the lateral eastward flow of the deep mantle hot material in the central Qinghai-Tibet Plateau.

  16. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau——Receiver functions and travel-time residuals analysis of north Hi-Climb

    Institute of Scientific and Technical Information of China (English)

    LI HaiOu; XU XiWei; JIANG Mei

    2008-01-01

    Teleseismic receiver functions and travel-time residuals along the north Hi-Climb broadband seismic array in the central-southern Qinghai-Tibet Plateau show that the lithosphere structures in the central and western Qinghai-Tibet Plateau are different.In the central Qinghai-Tibet Plateau, the Indian Plate is northward subducted beneath the Qiangtang block and arrives at the greatest depth beneath the central-southern Qiangtang block.The delaminated Indian lithospheric slab remains beneath the central Lhasa block to a depth possibly greater than that of the upper interface of the mantle transform zone.In the western Qinghai-Tibet Plateau, the Indian lithospheric plate is gently northward subducted and may have arrived to the south of Tarim plate.Due to the resistance from the gently northward subduction of the Indian mantle lithosphere in the western Qinghai-Tibet Plateau, the upwelling mantle material beneath the Qiangtang block moves mostly toward the east to bring about the lateral eastward flow of the deep mantle hot material in the central Qinghai-Tibet Plateau.

  17. Mantle seismic structure beneath the MELT region of the east pacific rise from P and S wave tomography

    Science.gov (United States)

    Toomey; Wilcock; Solomon; Hammond; Orcutt

    1998-05-22

    Relative travel time delays of teleseismic P and S waves, recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment, have been inverted tomographically for upper-mantle structure beneath the southern East Pacific Rise. A broad zone of low seismic velocities extends beneath the rise to depths of about 200 kilometers and is centered to the west of the spreading center. The magnitudes of the P and S wave anomalies require the presence of retained mantle melt; the melt fraction near the rise exceeds the fraction 300 kilometers off axis by as little as 1%. Seismic anisotropy, induced by mantle flow, is evident in the P wave delays at near-vertical incidence and is consistent with a half-width of mantle upwelling of about 100 km. PMID:9596567

  18. Upper mantle P-wave velocity structure beneath northern Lake Malawi and the Rungwe Volcanic Province, East Africa

    Science.gov (United States)

    Grijalva, A. N.; Kachingwe, M.; Nyblade, A.; Shillington, D. J.; Gaherty, J. B.; Ebinger, C. J.; Accardo, N. J.; O'Donnell, J. P.; Mbogoni, G. J.; Mulibo, G. D.; Ferdinand, R.; Chindandali, P. R. N.; Mphepo, F.

    2015-12-01

    A recent deployment of 55 broadband seismic stations around the northern Lake Malawi rift as part of the SEGMeNT project have provided a new dataset for imaging crustal and upper mantle structure beneath the Rungwe volcanic center and northern most segment of the Lake Malawi Rift. The goal of our study is to characterize the upper mantle velocity structure and determine to what extent the rifting has been influenced by magmatism. P relative arrival time residuals have been obtained for 115 teleseismic events with magnitudes > 5 in the 30 - 90 degree distance range. They are being tomographically inverted, together with travel time residuals from previous deployments for a 3-D velocity model of the upper mantle. Preliminary results indicate a low wave speed anomaly in the uppermost mantle beneath the Rungwe volcanics. Future results will determine if this anomaly exists under the northern Lake Malawi rift.

  19. The Pacific and Philippine Sea slabs in contact beneath Tokyo, central Japan: their roles in defining hazardous interaction earthquakes and in limiting the southern extent of Tohoku-oki aftershocks

    Science.gov (United States)

    Okaya, D. A.; Sato, H.; Lavier, L. L.; Tan, E.; Wu, F. T.; Hirata, N.

    2011-12-01

    The M9 Tohoku-oki earthquake produced over 11,000 >M3 aftershocks within the first four months after its 2011 March 11 occurrence date. The majority of these aftershocks define the earthquake source region between the subducting Pacific plate (PAC) and its overlying Eurasian plate (EUR) along the Japan Trench. While this portion of the trench boundary extends southward to the Boso triple junction (latitude ~34.3 oN), the Tohoku-oki aftershocks predominantly terminate at ~35.7 oN. Between these two latitudes there is a marked dropoff in aftershocks, most noticably offshore of Boso Peninsula, eastern Kanto, which we refer to as the off-Boso aftershock gap. Inside this gap, aftershocks that have occurred form two narrow-width streaks that radiate from the triple junction and extend into central Kanto. There is a correlation between the location of the off-Boso aftershock gap and the northern extent of the Philippine Sea plate (PHS). The PHS is sandwiched between the PAC-EUR plates beneath Kanto. While the majority of Tohoku-oki aftershocks occur within the one-slab PAC-EUR system to the north, the off-Boso gap is updip of where the PHS slab is resident inside the PAC-EUR mantle wedge. Furthermore, the northern of the two aftershock streaks spatially correlates with the downdip extent of the PHS with many located at the PHS-PAC contact based on published tomographic/seismicity studies. The presence of PHS changes the conditions of PAC-EUR slip. Preliminary finite-source studies from web sources (e.g., Univ Tokyo, Harvard) show that Tohoku-oki rupture terminated just north of the off-Boso gap. Apparently, the presence of the Philippine Sea plate may have been a contributing factor to inhibiting this rupture from propagating further southward. The megathrust source faults beneath Kanto are associated with the tops of Philippine Sea and Pacific plates. These shallow source faults have been the focus of much recent geological and geophysical study including seismicity and

  20. Emotional Undercurrents Beneath the Calm S urface---Langston Hughes’s Writing?Skills Seen in?Early Autumn

    Institute of Scientific and Technical Information of China (English)

    牛玉琴

    2014-01-01

    Langston Hughes,a versatile American black writer,published a lot of poems and short stories,with humor as outstanding fea-ture.However,in his Early Autumn he used unique skills to express the main female character’s emotional undercurrents beneath the calm sur-face through simple language,superficial calmness,especially through the writing skills of comparisonand contrast,as well as setting off atmos-phere of early autumn,dusk.

  1. Permeability of sheeted dykes beneath oceanic ridges: Strain experiments coupled with 3D numerical modeling of the Troodos Ophiolite, Cyprus

    OpenAIRE

    Coelho, Gabriel; Branquet, Yannick; Sizaret, Stanislas; Arbaret, Laurent; Champallier, Rémi; Rozenbaum, Olivier

    2015-01-01

    Permeability laboratory measurements under in-situ pressures, temperature and strain have been performed on three different diabase alteration facies (metadiabase, chloritized diabase, epidosite) from the Troodos Ophiolite, Cyprus. This aims to study the relations between hydrodynamics, deformation and hydrothermal reaction in the sheeted dyke complex beneath oceanic ridges. The use of water as pore fluid in these experiments favors hydrothermal fluid-rock interactions. All experiments, perfo...

  2. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  3. Preliminary Results of Crustal Structure beneath the Wabash Valley Seismic Zone Using Teleseismic Receiver Functions and Ambient Noise Tomography

    Science.gov (United States)

    Zhu, L.; Aziz Zanjani, A.; Hu, S.; Liu, Y.; Herrmann, R. B.; Conder, J. A.

    2015-12-01

    As part of a on-going EarthScope FlexArray project, we deployed 45 broadband seismographs in a 300-km-long linear profile across the Wabash Valley Seismic Zone (WVSZ). Here we present preliminary results of crustal structure beneath WVSZ based on teleseismic receiver functions and ambient noise tomography. We combined waveform data of the temporary stations in 2014 with those of permanent seismic stations and the transportable array stations in our study area since 2011. We found 656 teleseismic events with clear P-wave signals and obtained 2657 good-quality receiver functions of 84 stations using a time-domain iterative deconvolution method. We estimated crustal thickness and Vp/Vs ratio beneath each station using the H-κ stacking method. A high-resolution crustal structural image along the linear profile was obtained using the Common-Conversion-Point (CCP) stacking method. We also measured Rayleigh-wave phase and group velocities from 5 to 50 s by cross-correlating ambient noises between stations and did joint-inversion of receiver functions and surface wave dispersions for S-velocity structures beneath selected stations. The results show that the average crustal thickness in the region is 47 km with a gentle increase of crustal thickness from southeast to northwest. A mid-crustal interface is identified in the CCP image that also deepens from 15 km in the southeastern end to >20 km in the northwest. The CCP image shows that the low-velocity sedimentary layer along the profile is broad and is thickest (~10 km) near the center of the Wabash Valley. Beneath the center of the Valley there is a 40-km-wide positive velocity discontinuity at a depth of 40 km in the lower crust that might be the top of a rift pillow in this failed continental rift. Further results using 3D joint inversion and CCP migration will be presented at the meeting.

  4. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  5. Mantle wedge anisotropy beneath the Japan and Ryukyu arcs from teleseismic receiver functions - Implications for mantle flow and wedge hydration

    Science.gov (United States)

    Wirth, E. A.; Long, M. D.; Mccormack, K. A.

    2012-12-01

    Many fundamental aspects of the mantle wedge above subducting slabs, such as the dynamics of mantle flow and the transport of water and melt, have yet to be fully understood. A complete characterization of seismic anisotropy can yield powerful constraints on mantle flow and the degree of mantle wedge hydration. In this study, we characterize the geometry and strength of anisotropy in the mantle wedges beneath northeast Japan and the Ryukyu arc, which overlie the subducting Pacific and Philippine Sea plates, respectively. We compute radial and transverse component P-to-S receiver functions from 15 stations of the F-net array using the multitaper correlation receiver function estimator (Park and Levin, 2000). In both regions, we observe P-to-SV converted energy on radial component receiver functions that are consistent with conversions originating at the subducting oceanic Moho and the top of the subducting oceanic crust. We also observe P-to-SH conversions on the transverse component receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. We compute synthetic receiver functions using a forward modeling scheme to create models for the depths, thicknesses, and strengths of the anisotropic layers beneath both northeast Japan and Ryukyu. Beneath Ryukyu, we detect evidence for a layer of strong anisotropy and high Vp/Vs ratio directly above the slab, consistent with the presence of serpentinite. We see no evidence of this signature in receiver functions from northeast Japan; instead, we see evidence for relatively modest anisotropy due to olivine fabric. We also detect a low-velocity region in the mantle wedge beneath northeast Japan, which may be consistent with the presence of partial melt. Since the presence of serpentinite indicates significant hydration of the wedge, the contrast in anisotropic structure between Ryukyu and northeast Japan has important implications for our understanding of slab hydration and how water

  6. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)

    2015-04-24

    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  7. Large-scale depressions on the 660 seismic discontinuity beneath Europe: signature of the role of akimotoite in subducting slabs

    Science.gov (United States)

    Cottaar, S.; Deuss, A. F.

    2015-12-01

    The upper and lower mantle are delineated by a seismic discontinuity around 660 km depth. This discontinuity is regularly associated with the dissociation of ringwoodite to bridgmanite and periclase, which has a negative Clapeyron slope, and appears to play a role in global mantle dynamics. Here we study the topography of this discontinuity and the one around 410 km, using receiver functions and investigate the effect of subducting and ponding slabs beneath Europe. We collected ~150,000 receiver functions across Europe over a time period from 2000 to 2014. After quality control, we use ~28,000 in a common conversion point stack. Corrections for lateral velocity variations are applied using the P- and S-velocity models in EU60 from Zhu et al. (2015). While northern Europe shows an average mantle transition zone, strong anomalous depressions of 30 km are seen in the topography of the 660 beneath central Europe and around the Mediterranean. There is no (anti-)correlated topographic anomaly on the 410 in these regions. The observed depressions beneath central Europe correlate with elevated seismic velocities above 660 km, and are therefore probably caused by cold subducted slab material. Temperature effects on the ringwoodite-bridgmanite transition alone cannot explain such a depression. Several wt% water deepens the 660 and increases the Clapeyron slope, but other geophysical observations, e.g. elevated Vp/Vs ratio, attenuation and electric conductivity, are not seen in these regions in various studies. Our preferred alternative hypothesis is the suggestion of Yu et al. (2011) that ringwoodite dissociates into akimotoite and periclase at temperatures beneath ~1400 K within the slab The subsequent transition of akimotoite to bridgmanite has a strong negative Clapeyron slope, which explains the deep discontinuity seen here in combination with cold temperatures, as well as providing a mechanism for slabs to pond in the mantle transition zone.

  8. Evidence of an upper mantle seismic anomaly opposing the Cocos slab beneath the Isthmus of Tehuantepec, Mexico

    OpenAIRE

    Kim, YoungHee; Lim, Hobin; Miller, Meghan S.; Pearce, Fred; Clayton, Robert W.

    2014-01-01

    Subduction of the Cocos plate beneath southern Mexico is characterized by several unusual features, such as a discontinuous volcanic arc, unusual arc chemistry, and anomalously low topography of Tehuantepec Isthmus. Recent seismic images from both receiver functions and seismic tomography suggest that there may be an additional, opposing structure dipping to the southwest from the Gulf of Mexico, and these images have been previously explained by a southwest-dipping slab. However, standard mo...

  9. Ps Reciever Function Analysis of the Crustal Structure Beneath the United States Great Plains

    Science.gov (United States)

    Thurner, S.; Levander, A.; Niu, F.

    2013-12-01

    The North American Great Plains, located directly east of the Rocky Mountain deformation front, were initially formed in the Precambrian through a series of island arc accretion events, and they have since been affected by multiple phases of both compression and extension. Understanding both the past and present tectonic deformation occurring throughout the Great Plains region can, therefore, provide valuable information regarding the assembly of southern North America. We use Ps teleseismic receiver functions to investigate the crustal and lithospheric structure throughout this region. Using over 250 M > 6.0 events recorded at ~450 USArray Transportable Array seismic located in the Great Plains, we calculated .5 Hz, 1Hz, and 2 Hz receiver functions. Both CCP stacking and H-k analysis were applied to the dataset in order to determine the crustal thickness structure of the region. The Ps receiver functions indicate an average crustal thickness of ~ 45 km in the central portion of the study region with variations up to +/- 10 km. We observe NE-SW trending zones of increased crustal thickness (up to ~53 km) associated with the NE-SW trending boundaries between accreted Proterozoic terrains. We also observe a sharp increase in crustal thickness from ~35 km just west of the Rio Grande Rift to ~50 km just east of the Rio Grande Rift. Finally, we observe a very complicated crustal structure in the north-central portion of the study region. Here we see a thrust system that appears to affect much of the crust north of 40° latitude between -104° to - 98° longitude. This structure appears to reach Moho depths in some places and is likely associated with the original suturing of the Wyoming and Superior Archean provinces at the Trans Hudson Orogen as well as subsequent Proterozoic accretion events that occurred during continent formation. Similar Moho penetrating features have been observed in the Lithoprobe studies further north (Winardhi et al, 1997; Clowes et al.,2002

  10. Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data

    Science.gov (United States)

    El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Petrunin, Alexey G.

    2016-06-01

    We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ˜ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (˜ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.

  11. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  12. Magma source beneath the Bezymianny volcano and its interconnection with Klyuchevskoy inferred from local earthquake seismic tomography

    Science.gov (United States)

    Ivanov, A. I.; Koulakov, I. Yu.; West, M.; Jakovlev, A. V.; Gordeev, E. I.; Senyukov, S.; Chebrov, V. N.

    2016-09-01

    We present a new 3D model of P and S wave velocities and Vp/Vs ratio to 20 km depth beneath the active Klyuchevskoy and Bezymianny volcanoes (Kamchatka, Russia). In this study, we use travel time data from local seismicity recorded by temporary stations of the PIRE experiment from October 24 to December 15, 2009 and permanent stations operated by the Kamchatkan Branch of Geophysical Survey (KBGS). The calculations were performed using the LOTOS code (Koulakov, 2009). The resolution limitations were explored using a series of synthetic tests with checkerboard patterns in the horizontal and vertical sections. At shallow depths, the resulting Vp and Vs anomalies tend to alternate on opposite sides of the lineation connecting the most active volcanic centers of the Klyuchevskoy Volcanic Group (KVG). This prominent lineation suggests the presence of a large fault zone passing throughout the KVG, consistent with regional tectonics. We suggest that this fault zone weakens the crust creating a natural pathway for magmas to reach the upper crust. Beneath Bezymianny volcano we observe a shallow anomaly of high Vp/Vs ratio extending to 5-6 km depth. Beneath Klyuchevskoy another high Vp/Vs anomaly is observed, at deeper depths of 7 and 15 km. These findings are consistent with the regional-scale model of Koulakov et al. (2013a) and provide some explanation for how very different eruption styles can be maintained at two volcanoes in close proximity over numerous eruption cycles.

  13. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We used 71670 P-wave arrival times from 3594 earthquakes recorded by the Sichuan and Yunnan seismic networks to determine the three-dimensional P-wave velocity structure in the crust and uppermost mantle beneath the southeastern Tibetan Plateau. Our results show that prominent low P-wave velocity (low-Vp) anomalies exist in the midto lower crust of the Song- pan-Ganze and Sichuan-Yunnan blocks. In contrast, a high P-wave velocity (high-Vp) anomaly is resolved in the middle and lower crust beneath the Sichuan Basin. Our tomographic results provide seismic evidence for a dynamic model of lower crustal flow. Ongoing lower crustal flow beneath the central and eastern Tibetan Plateau abuts against the mechanically strong Si- chuan Basin resulting in accumulated strain in the Longmen Shan region. When a critical accumulation of strain energy was reached, its sudden release led to the occurrence of 2008 Wenchuan earthquake. Pronounced low-Vp anomalies are observed in the uppermost mantle in the region south of ~26°N. Combining these results with shear-wave splitting investigations, we suggest that the flow of asthenospheric material has impacted the velocity structure of the uppermost mantle and caused the thinning of the southwestern Yangtze Craton.

  14. Crustal structure beneath the western Hubei Province of China from joint inversion of ambient noise and receiver functions

    Science.gov (United States)

    Luo, S.; Zhu, L.; Luo, Y.

    2015-12-01

    We investigate crustal S-wave structure beneath the western Hubei Province, which is located at a topographic step in China with high-rising plateaus to the west and low-elevation plains to the east. We collected two-year continuous seismic waveform records of 22 permanent broadband stations and six-month records of 29 portable stations and did cross-correlations of the waveform data between stations. We then measured phase/group velocity dispersion curves from 8 to 35s using frequency-time analysis (FTAN) method and performed surface wave tomography using the fast marching method to obtain phase/group velocity maps. We finally constructed high resolution 3-D shear-wave velocity structure beneath the western Hubei Province from joint inversion of surface wave dispersion data and receiver functions. The 3D model shows shear velocity variations are well correlated with geological features, such as sedimentary basins and mountain ranges. In particular, a high velocity anomaly beneath the Three Gorges Reservoir Dam indicates that it is located in a tectonic stable region.

  15. ITS Platform North Denmark

    DEFF Research Database (Denmark)

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens;

    2012-01-01

    This paper presents the project entitled “ITS Platform North Denmark” which is used as a test platform for Intelligent Transportation System (ITS) solutions. The platform consists of a newly developed GNSS/GPRS On Board Unit (OBU) to be installed in 500 cars, a backend server and a specially...... designed digital road map for ITS applications. The platform is freely accessible, which means that third party applications could be run on the platform. It is estimated that using this platform enables the ITS applications to be developed for 20% of the normal cost, hence third party are invited to test...... their applications in this platform. This paper presents the platform’s potentials and explains a series of test applications which are under development on it. Moreover, a number of new projects planned for the platform are demonstrated....

  16. Phoenix Animation Looking North

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This animation is a series of images, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, combined into a panoramic view looking north from the lander. The area depicted is beyond the immediate workspace of the lander and shows a system of polygons and troughs that connect with the ones Phoenix will be investigating in depth. The images were taken on sol 14 (June 8, 2008) or the 14th Martian day after landing. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Four flavours of orogenic plateau magmatism: what's melting beneath the Turkish-Iranian Plateau?

    Science.gov (United States)

    Neill, Iain; Allen, Mark; Kheirkhah, Monireh; Meliksetian, Khachatur; Kaislaniemi, Lars; van Hunen, Jeroen

    2014-05-01

    in (1) is plausibly caused by asthenospheric upwelling following slab breakoff, whereas magmatism in (2) is dominated by melting of the base of the still-present lithospheric mantle during convective removal or asthenospheric upwelling. Magmatism in (3) is probably triggered by decomposition of hydrous phases within the lithosphere, whereas those in (4) have various triggers: OIB-like magmas may relate to local delamination or thin-spots, more arc-like magmas may be due to lithospheric thickening in the Alborz and Greater Caucasus. Geochemical and geodynamic modelling suggest that at ~500 km distance from the suture there is a cut-off, at which asthenosphere stirring (due to slab break-off) ceases to be an effective cause of decompression melting, small-scale lithospheric delamination and convection. The relative scarcity of magmatism in Western and Central Iran is good evidence that the mantle beneath this region is not being stirred by delamination processes: there is otherwise little difference in the previous Tethyan subduction histories of Iran and Eastern Turkey. Overall, there is no single trigger or source of magmatism beneath the TIP, but two processes appear to dominate: melting due to dehydration of the lithosphere as it is thickened or convectively removed, and decompression melting of upwelling asthenosphere.

  18. Additional evidence to the existence of a subducted plate beneath equatorial Atlantic

    International Nuclear Information System (INIS)

    The lithosphere surrounding the St Paul Fracture Zone (SPFZ) is typically cooler than other areas in the Atlantic Ocean as pointed out by Bonatti (1990). The existence of older lithospheric material in the Equatorial Atlantic was first suggested by the analysis of Re-Pt-Os concentrations and Os isotopic composition of abyssal peridotites (Esperan et al, 1999) from SPFZ. Tomographic evidence, in combination with the geochemical data supports that a fossil subducting slab is present in this region (CIRON, 2000). The existence of a fossil subduction in the Equatorial Atlantic is further corroborated by paleo-reconstructions for the period between 460 and 300 Ma (Maia et al, 2001). The consequences of a cold subducted lithosphere beneath this region are the high ratio of ultramafic to volcanic rocks, the ridge axis morphology, and the petrology of both basalts and uplifted abyssal peridotites (Bonatti, 1992, Schilling et al.1994, Schilling et al., 1995, Hekinian et al, 2000 and Cadoux, 2000). The Equatorial Atlantic is marked by sparse volcanic activity (e.g., pillow lavas, diabase dikes) and intense tectonic activity (e.g., normal faults) at the inter transform ridge axes. These inter transform ridges do not show a sigmoid shape as the fracture zones in the Pacific. Serpentinized peridotites are observed in the flanks of the axial valley and cut by diabase dikes. Significant tectonic movement allowed the exposure of abundant abyssal peridotites some of them exposed in the islets of St. Peter and St. Paul (SPSP). The SPFZ is located at 1 on the MAR and represents one of the largest discontinuities, which offsets the MAR axis roughly by 600 km. The SPFZ is a multiple fracture zone system (Gorini, 1977). The St. Paul transform fault is a triple fracture zone interrupted by four Intra- Transform Ridges (ITR). The ITR display rift valleys showing recent volcanic and tectonic activities at depths of 4700m. A complete geological section from 4500m to 1850m was done based on

  19. Imaging subsurface density distribution beneath Montserrat (West Indies) from Bouguer gravity data

    Science.gov (United States)

    Hautmann, S.; Camacho, A. G.; Gottsmann, J.; Odbert, H. M.; Syers, T.

    2012-12-01

    of the anomalous body, which matches as much as possible the observed gravity anomaly. Model results reveal high-density bodies beneath the centres of the extinct volcanic complexes (Silver Hills, Centre Hills). In contrast, the active Soufrière Hills and the flanks of the Silver Hills and Centre Hills are low-density zones. The high-density bodies are interpreted to represent the sub-surface extension of the exposed dome rocks of CH and SH, while the surrounding low-density regions may represent the volcano-clastic aprons around their flanks. The gravity field around the active SH may be influenced by melt aggregations in the subsurface, resulting in a low density anomaly beneath the volcanic edifice. Although our results agree well with observations from seismic tomography, due to the high spatial density of our survey we are able to additionally capture smaller tectonic features, such as the horst structure of Garibaldi Hill. Co-conducted spatio-temporal gravity surveys revealed that gravity changes are confined to low-density regions on Montserrat, while high-density regions are barely affected by dynamic changes. Observed gravity changes are inconsistent with expected variations due to in groundwater level changes induced by seasonal changes in precipitation. Future studies will investigate and quantify fluid dynamics on the island in response to stress changes at SHV.

  20. Fate and Transport of 17β-estradiol Beneath Animal Waste Holding Ponds

    Science.gov (United States)

    Gibson, L. A.; Tyner, J. S.; Hawkins, S. A.; Lee, J.; Buchanan, J. R.

    2011-12-01

    Steroidal hormones, such as 17β-estradiol (E2), are prevalent in animal waste and are a common subject of study due to potential stream and groundwater contamination. These particular hormones are labeled as Endocrine Disrupting Chemicals (EDCs) because of their developmental effects in reptiles and amphibians. Dairy waste at concentrated animal feeding operations is typically stored in a pond that is regulated by law to include an underlying soil liner with a minimal hydraulic conductivity to limit leaching beneath the pond, yet some studies have traced stream and groundwater contamination to these ponds. Previous studies have shown that the soil underlying earthen ponds are always unsaturated. This increases the pore water velocity relative to a given flux, which itself is dictated almost entirely by an organic seal that forms at the bottom of a waste pond. This increased velocity results in more rapid transport and less retention time within the vadose zone where E2 could biodegrade into its daughter product, estrone (E1). And since the soil is unsaturated and therefore has a negative pressure, preferential flow should not serve as a method of transport. On the contrary, E2 and E1 may sorb to mobile colloids increasing their mobility. This study will evaluate the use of biochar, an increasingly common activated carbon source, as a soil liner amendment. Biochar has a specific surface area that can exceed 1,500 m2/g and is high in organic matter, which E2 sorbs to strongly. The biochar amendment should be most effective and enduring as a layer located at the bottom of the soil liner so that the leachate has been treated by the soil prior to contact. Another proposed amendment technique is to uniformly mix the biochar within the soil liner to increase the leachate contact time with the biochar, but realistically could prove to be too costly and energy-intensive. Field and laboratory studies were conducted to analyze hormone persistence and transport processes and

  1. Wide-angle seismic reflections as direct indictors of partial melt beneath an andesite arc

    Science.gov (United States)

    Stern, T. A.; Benson, A.; Stratford, W. R.; Gamble, J. A.

    2011-12-01

    Quasi-linear arcs of andesite volcanoes that erupt above 120 ± 40 km deep Waditi-Benioff zones are one of the most striking surface manifestations of plate tectonics. The prevailing view is that andesite magma that feed these arcs are an end-product of fluid-assisted melting in the mantle wedge1. Two key questions remain unresolved: why is the line of an active arc so sharply defined? and where do parental mantle-derived melts pool and differentiate into mafic restite and more felsic magma components that are so distinctive of continental magmatic arc systems ? Here we present seismic evidence from the MORC (mantle or crust?) project for a focused zone of melt below the andesite arc within northern New Zealand. Nine ~ 0.4 - 1.3 tonne dynamite shots were recorded on ~ 700 seismographs spaced along a 120 km long array across, and normal to the axis of the Taupo Volcanic Zone (TVZ). Two important features of the ray tracing solution are: (i) a lower-crustal, 10 km thick, "rift-pillow" of rocks where the P-wave seismic velocities (Vp) are ~ 6.8-7.1 km/s. Seismic reflections from top and bottom of the pillow are termed R1 and R2 respectively. (ii) Strong seismic reflections (termed R3 reflector) are recorded from a relatively short (12 -18 km-long) reflector at a depth of ~ 32 ± 2 km. An analysis of interval velocities between the R2 and R3 reflectors show a P-wave speed of 7.6 +/- 0.2 km/s, which is interpreted as anomalous upper mantle. Thus R3 is regarded as being a reflector within the upper mantle. Ray-tracing locates R3 beneath the eastern margin of the TVZ and directly beneath the active volcanic (andesite) front and geothermal fields. A causal relationship between the R3 reflector and the andesite arc is therefore implied. The amplitude ratio of the R3/R2 reflections along common traces is as high as 4-6 for incidence angles of reflection of 45-60 degrees. These data suggest R3 is best explained with numerical methods by an interface across which there is a

  2. Moho geometry along a north-south passive seismic transect through Central Australia

    Science.gov (United States)

    Sippl, Christian

    2016-04-01

    Receiver functions from a temporary deployment of 25 broadband stations along a north-south transect through Central Australia are used to retrieve crustal and uppermost mantle structural constraints from a combination of different methods. Using H-K stacking as well as receiver function inversion, overall thick crust with significant thickness variation along the profile (40 to ≥ 55 km) is found. Bulk crustal vp/vs values are largely in the felsic to intermediate range, with the southernmost stations on the Gawler Craton exhibiting higher values in excess of 1.8. A common conversion point (CCP) stacking profile shows three major discontinuities of the crust-mantle boundary: (1) a two-sided Moho downwarp beneath the Musgrave Province, which has previously been associated with the Neoproterozoic to early Cambrian Petermann Orogeny, (2) a Moho offset along the Redbank Shear Zone further north attributed to the Middle to Late Paleozoic Alice Springs Orogeny, and (3) another Moho offset further north, located at the boundary between the Davenport and Warramunga Provinces, which has not been imaged before. In all cases, the difference in crustal thickness between the two sides of the offset is > 8-10 km. Unlike the two southern Moho offsets, the northernmost one does not coincide with a prominent gravity anomaly. Its location and the absence of known reactivation events in the region make it likely that it belongs to a Proterozoic suture zone that marks a previously unknown block boundary within the North Australian Craton.

  3. Simultaneous Seismic Tomography and Gravity Inversion for Tertiary Basin Geometry Beneath Puget Lowland, Washington

    Science.gov (United States)

    Brocher, T. M.; Parsons, T.; Blakely, R. J.

    2001-12-01

    We present a simultaneous seismic tomography and gravity inversion model for the subsurface geometry of Tertiary basins underlying the Puget Lowland, Washington. The method extrapolates high-resolution seismic tomography results from Seismic Hazards Investigation of Puget Sound (SHIPS), which covered much of the Lowland, to adjacent regions not well imaged by SHIPS. Our current algorithm uses the initial seismic tomography result to calculate the gravity field assuming Gardner's rule of ρ (kg/m3) = 1740v0.25 for velocities (in km/s) below 6 km/s. We currently use ρ = 2920 kg/m3 for velocities greater than 6 km/s. Iteratively, the method compares the observed and calculated gravity fields, increases or decreases the velocity gradient as necessary, and updates the velocity model for the next iteration of the seismic tomography inversion. This tomography result is subsequently used for another comparison of observed and calculated gravity fields. Currently, the RMS first-arrival travel time misfit (90 msec) produced by this algorithm is identical to that obtained using solely the seismic data, and the RMS gravity error is 9 mgal, slightly higher than desired. Nonetheless, the simultaneous inversion has successfully extended the region of subsurface coverage from that obtained from SHIPS to the core of the accretionary rocks on the Olympic Peninsula and to the Everett and Bellingham basins, where the SHIPS coverage was limited. The inverse model clearly shows accretionary rocks in the Olympic core complex dipping eastward beneath east dipping rocks of the Siletz terrane. We present an overview of our algorithm and summarize the crustal structure inferred from our inversion.

  4. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  5. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

    Science.gov (United States)

    Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito

    2014-01-01

    Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.

  6. Evaluation of Sources of Nitrate Beneath Food Processing Wastewater-Application Sites near Umatilla, Oregon

    Science.gov (United States)

    Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt

    2009-01-01

    Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.

  7. Flexure and gravity anomalies of the oceanic lithosphere beneath the Louisville seamount

    Science.gov (United States)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-08-01

    We have calculated the elastic thickness (Te), flexural deflection, and gravity anomaly of the oceanic crust beneath the Louisville seamount (LSC-03), near the Kermadec trench. A regional-residual separation of the bathymetry was performed to remove the effect of other geologic features (e.g., the trench). We used the uniform density and dense core models to approximate the total mass of the seamount, which was defined as the surface load required for flexural deformation. From the flexure modeling results, we found that more flexural depression was predicted by the uniform density model than by the dense core model. However, the uniform density model predicted a significantly smaller gravity anomaly than observed, whereas the dense core model minimized the prediction misfits reasonably. The best flexure model was found with a Te of 16 km for the uniform density model and 6 km for the dense core model. The flexure computed with the dense core model was consistent with the seismically detected Moho. The flexure modeling for LSC-03, thus, indicates that the dense core model better approximates the inner structure of the LSC-03. Based on the crustal age and geochronology of the given seamount, the age of the oceanic crust at the time of seamount formation (Δt) is 20 Ma. If this is the case, however, the Te estimates from both flexure models require some degree of lithospheric reheating by Louisville hotspot activity. Alternatively, considering the tectonic plate motion of the Osbourn Trough, Δt becomes approximately 4 Ma. This younger lithosphere model is more consistent with the observed flexural deformation and the Te estimate from the dense core model. Therefore, the time that the seamount-induced lithospheric deformation occurred may be far earlier than the age-dated volcanism.

  8. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  9. Observations of turbulence beneath sea ice in southern McMurdo Sound, Antarctica

    Directory of Open Access Journals (Sweden)

    C. L. Stevens

    2009-10-01

    Full Text Available The first turbulence profiler observations beneath land fast sea ice which is directly adjacent to an Antarctic ice shelf are described. The stratification in the 325 m deep water column consisted of a layer of supercooled water in the upper 40 m lying above a quasi-linearly stratified water column with a sharp step in density at mid-depth. Turbulent energy dissipation rates were on average 3×10−8 m2 s−3 with peak bin-averaged values reaching 4×10−7 m2 s−3. The local dissipation rate per unit area was estimated to be 10 m Wm−2 on average with a peak of 50 m Wm−2. These values are consistent with a moderate baroclinic response to the tides. The small-scale turbulent energetics lie on the boundary between isotropy and buoyancy-affected. This will likely influence the formation and aggregation of frazil ice crystals within the supercooled layer. The data suggest that the large crystals observed in McMurdo Sound will transition from initial growth at scales smaller than the Kolmogorov lengthscale to sizes substantially (1–2 orders of magnitude greater than the Kolmogorov scale. An estimate of the experiment-averaged vertical diffusivity of mass Kρ yields a coefficient of around 2×10−4 m2s−1 although this increased by a factor of 2 near the surface. Combining this estimate of Kρ with available observations of average and maximum currents suggests the layer of supercooled water can persist for a distance of ~250 km from the front of the McMurdo Ice Shelf.

  10. Advective heat transport in the upper carbonate aquifer beneath Winnipeg, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, G.A.G.; Woodbury, A.D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2003-07-01

    Air conditioning and industrial cooling in Winnipeg, Manitoba requires large volumes of groundwater, with the bulk of this water pumped from the Upper Carbonate Aquifer. Pumping takes place at the erosional surface of several dipping Paleozoic carbonate units beneath the city. To prevent excessive drawdown, wastewater from these processes is reinjected into the aquifer. Heat loading from the surface, combined with this practice, leads to the creation of areas of elevated temperature within the Upper Carbonate Aquifer. An industrial area located in eastern Winnipeg is the site of the largest of these anomalies, where the aquifer's permeability is enhanced by the presence of conduits and discrete fractures. The use of numerical modeling showed that the greatest temperature anomalies occur where there are very high permeabilities, especially in the form of conduits and discrete fractures. Groundwater velocities are increased by these factors, and could result in the creation of plumes of heated water. Plumes of heated water are less likely to occur where the aquifer is thicker and conduits are absent, due to advective heat transport becoming focused between the injection well and the production well in lower permeability situations. These areas also correspond to the areas of decreased transmissivity in several parts of the Upper Carbonate Aquifer, and may not be capable of producing the required volumes of groundwater for thermal applications. Taking into account these permeability features in planning and design of non-consumptive groundwater systems in the Upper Carbonate Aquifer helps to minimize both drawdown and changes in aquifer temperature. 8 refs., 2 figs.

  11. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  12. The puzzle of high heads beneath the West Cumbrian coast, UK: a possible solution

    Science.gov (United States)

    Black, John H.; Barker, John A.

    2016-03-01

    A region of high heads within the Borrowdale Volcanic Group (BVG; a fractured crystalline rock) beneath the coastal plain of West Cumbria, England (UK), is identified as a possible relic left over by the Late Devensian ice sheet. It was found during investigations in the 1990s. Contemporary modelling work failed to produce a satisfactory explanation of the high heads compatible with the `cold recharge' isotopic signature of the groundwater. This study has reassessed the original hydraulic testing results. By plotting density-adjusted heads versus their depth below the water table in the immediate vicinity of the borehole in which they were measured, a depth profile resembling a `wave' was revealed with a peak value located at 1,100 m depth. The possibility that this wave represents relic heads from the last major ice sheet has been assessed using one-dimensional mathematical analysis based on a poroelastic approach. It is found that a wet-based ice sheet above the West Cumbrian coast was probably thick enough and sufficiently long-lasting to leave such relic heads providing that the hydraulic diffusivity of the BVG is in the order of 10-6 m s-1. Initial assessment 20 years ago of the long-interval slug tests suggested that such low values are not likely. More recent interpretation argues for such low values of hydraulic diffusivity. It is concluded that ice sheet recharge is the most likely cause of the raised heads, that the BVG contains significant patches of very low conductivity rock, and that long-interval single-hole tests should be avoided in fractured crystalline rock.

  13. Circulation, chemistry, and biology of the subglacial lake beneath the Skaftárkatlar cauldron, Iceland

    Science.gov (United States)

    Gaidos, E.; Thorsteinsson, T.; Glazer, B.; Jóhannessen, T.; Skidmore, M.; Stefansson, A.; Elefsen, S.; Lanoil, B.; Marteinsson, V.; Einarsson, B.; Kjartansson, V.; Gíslason, S.; de Camargo, L.; Kristjánsson, J.; Miller, M.; Roberts, M. J.; Sigurdsson, G. J.; Sigurdsson, O.

    2006-12-01

    We used sterile hotwater drilling to penetrate 300~m of glacial ice and sample the volcanic lake beneath the western Skaftárkatlar cauldron on the Vatnajökull ice cap. The depth (115~m) and temperature profile of the lake were determined by pressure and temperature probes. Temperatures at the ice-water interface and throughout the upper water column were 4.6°C, falling to 3.4°C within a 30 m-thick layer near the bottom and rising again to ≥ 4°C within 1~m of the bottom. A sample obtained 2~m above the bottom using a specialized gas-tight bailer was anoxic and had a pH of 5.3, 1~mM HS-1 and >10~mM CO2. These and other dissolved species indicate significant hydrothermal input. Direct cell counts averaged 5× 105~ml-1, far higher than blanks or control samples of snow, ice, or drilling water. The inverted temperature profile suggests point-source heating and melting of basal glacial ice by hydrothermal plumes, and sinking of the melt water once its density exceeds the underlying water column. This indicates large-scale circulation and complete anoxia of the lake. The lake redox state is determined by the relative input of O2 via glacial meltwater and reaction with reduced volcanogenic compounds, i.e., HS-1 and Fe2+. Our findings suggests low input of external oxygenated waters, high rates of HS-1 production by SO2 disproportionation, and/or weathering of glassy basalts. The simultaneous presence of H2 and CH4 indicates the occurence of methanogenesis, an important anaerobic metabolism. Any redoxocline must occur near or at the ice-water interface where it may support metabolisms based on the oxidation of reduced sulfur compounds. We will discuss these and biomolecular-based results.

  14. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    Energy Technology Data Exchange (ETDEWEB)

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  15. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Wang, Yue; Ma, Jie; Suuberg, Eric M

    2016-07-15

    Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab "oxygen shadow" (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation. PMID:27016669

  16. Surface motion induced by nuclear explosions beneath Pahute Mesa. Part I. Halfbreak, Greeley, Scotch, Boxcar events

    International Nuclear Information System (INIS)

    Results of surface motion studies conducted by Sandia Laboratories during seven underground nuclear explosions detonated beneath Pahute Mesa, Areas 19 and 20 of the Nevada Test Site, between 1966 and 1973 are reported. The report is divided into two parts of which this, Part I, includes (1) descriptions of the Pahute Mesa geological environment and of the purposes and instrumentation used in these programs (Chapter 1), and (2) description of four events, the data derived from each, and analysis of these data. These Part I events are HALFBEAK (Chapter 2), GREELEY (Chapter 3), SCOTCH (Chapter 4), and BOXCAR (Chapter 5) for all of which a nominally radial array of gage stations yielded data as a function of distance primarily, although in a few cases data were derived from stations at widely separated azimuths from the explosion. Results of the analysis indicate that average propagation velocity through the geologic column between the explosions and mesa surface was about 8800 ft/sec and that for horizontal distances greater than shot depth, refraction occurred within rhyolite flows with characteristic velocity of about 12,300 ft/sec. There is evidence which suggests possible deeper refraction at a velocity between 18,000 and 21,000 ft/sec. Only the verticle motion peaks follow a pattern amenable to regression analysis because geometrical effects influence horizontal motion amplitudes differently as horizontal distances increase. Particle velocities vary roughly as the inverse square of slant or radial range with exponent values ranging from -3.9 to -1.3. Displacements follow a similar pattern with exponents ranging from about -6 to -2. Displacement profiles at various times during the motion and displacement hodographs in the vertical-radial plane aid in understanding several local phenomena implied by individual motion records

  17. Investigating the subsurface connection beneath Cerro Negro volcano and the El Hoyo Complex, Nicaragua

    Science.gov (United States)

    Venugopal, Swetha; Moune, Séverine; Williams-Jones, Glyn

    2016-10-01

    Cerro Negro, the youngest volcano along the Central American Volcanic Belt (CAVB), is a polygenetic cinder cone with relatively frequent basaltic eruptions. The neighbouring El Hoyo complex, of which Las Pilas is the dominant edifice, is a much larger and older complex with milder and less frequent eruptions. Previous studies have suggested a deep link beneath these two closely spaced volcanoes (McKnight, 1995; MacQueen, 2013). Melt inclusions were collected from various tephra samples in order to determine whether a connection exists and to delineate the features of this link. Major, volatile, and trace elemental compositions reveal a distinct geochemical continuum with Cerro Negro defining the primitive endmember and El Hoyo representing the evolved endmember. Magmatic conditions at the time of melt inclusion entrapment were estimated with major and volatile contents: 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for El Hoyo melts with an overall oxygen fugacity at the NNO buffer. Trace element contents are distinct and suggest Cerro Negro magmas fractionally crystallise while El Hoyo magmas are a mix between primitive Cerro Negro melts and residual and evolved El Hoyo magma. Modelling of end member compositions with alphaMELTS confirms the unique nature of El Hoyo magmas as resulting from incremental mixing between Cerro Negro and residual evolved magma at 4 km depth. Combining all available literature data, this study presents a model of the interconnected subsurface plumbing system. This model considers the modern day analogue of the Lemptégy cinder cones in Massif Central, France and incorporates structurally controlled dykes. The main implications of this study are the classification of Cerro Negro as the newest conduit within the El Hoyo Complex as well as the potential re-activation of the El Hoyo edifice.

  18. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet.

    Science.gov (United States)

    Dieser, Markus; Broemsen, Erik L J E; Cameron, Karen A; King, Gary M; Achberger, Amanda; Choquette, Kyla; Hagedorn, Birgit; Sletten, Ron; Junge, Karen; Christner, Brent C

    2014-11-01

    Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59-100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ(13)C-CH4 values between -64‰ and -62‰ together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ∼30 days incubation at ∼4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks.

  19. Deep Magma Transport beneath Soufriere Hills Volcano, Montserrat, WI: 1995-2007

    Science.gov (United States)

    Elsworth, D.; Mattioli, G.; Taron, J.; Voight, B.; Herd, R.; Foroozan, R.

    2009-04-01

    Magma melting and transport produces a complex architecture of connected magmatic systems present beneath many arc volcanoes. Although melt supplied by subduction may be considered constant over very long timescales (>Ma), rates of magma transport and eruptive episodes are episodic at timescales encompassing millennia and centuries to hours. A variety of mechanisms act at these various timescales; in general longer periodicities imply controlling processes rooted at greater depth and involving reservoirs of increasing volumes. Here we use histories of magma efflux and surface deformation to quantitatively constrain magma transfer into and within the deep (>12 km) crustal plumbing of the Soufrière Hills volcano over a 12-year eruptive cycle of active effusion punctuated by discrete pauses. For three cycles of effusion followed by pause, with a periodicity of 4-6 years, deep supply to the system is continuous and never drops below ~0.5-1 m3/s; this minimum supply is similar in magnitude to both the mean measured eruptive efflux (including pauses) (~0.7 m3/s) and the mass accumulation due to crustal convergence (~0.6 m3/s). Deep fluxes rise synchronously from this background magnitude in times of active eruption (~1-5 m3/s), are augmented by deflation (~1-2 m3/s) of a reservoir centered at ~12 km, and pass through an upper magmatic reservoir. An eruptive pause is marked by a decrease in supply from the deep crust, fully accommodated as the deep reservoir switches to reinflate, and with no resulting supply to the shallow crust. For a two-reservoir model, these observations implicate the deep system in controlling short-term (~3-5 yr) eruptive periodicity. They are consistent with a model involving the continuous supply of magma from the deep crust/mantle into a voluminous and compliant deep reservoir, episodically-valved below the shallow reservoir.

  20. Observations of turbulence beneath sea ice in southern McMurdo Sound, Antarctica

    Directory of Open Access Journals (Sweden)

    C. L. Stevens

    2009-07-01

    Full Text Available The first turbulence profiler observations beneath land fast sea ice which is directly adjacent to an Antarctic ice shelf are described. The stratification in the 325 m deep water column consisted of a layer of supercooled water in the upper 40 m lying above a quasi-linearly stratified water column with a sharp step in density at mid-depth. Turbulent energy dissipation rates were on average 3×10−8 m2 s−3 with peak bin-averaged values reaching 4×10−7 m2 s−3. The local dissipation rate per unit area was estimated to be 10 mWm−2 on average with a peak of 50 mWm−2. These values are consistent with a moderate baroclinic response to the tides. The small-scale turbulent energetics lie on the boundary between isotropy and buoyancy-affected. This will likely influence the formation and aggregation of frazil ice crystals within the supercooled layer. An estimate of the vertical diffusivity of mass Kρ yields a coefficient of around 10−3 m2 s−1. Combining this estimate of Kρ with available observations of average and maximum currents suggests the layer of supercooled water can persist for a distance of ~20 km from the front of the McMurdo Ice Shelf.

  1. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics

    Science.gov (United States)

    Huang, Zhouchuan; Zhao, Dapeng; Wang, Liangshu

    2015-07-01

    Southeast Asia is surrounded by subduction zones resulting from the interactions of several lithospheric plates. Its evolution has been also influenced by active tectonics due to the Indo-Asian collision in the Cenozoic. In this study, we use a large number of arrival-time data of local and regional earthquakes to determine 3-D P wave tomography and azimuthal anisotropy in the mantle beneath SE Asia. High-velocity (high-V) anomalies representing the subducting slabs are clearly visible in the upper mantle and the mantle transition zone (MTZ). Low-velocity (low-V) zones with trench-normal anisotropy are revealed in the uppermost mantle, which indicate back-arc spreading or secondary mantle-wedge flow induced by the slab subduction. In contrast, trench-parallel anisotropy dominates in the deep upper mantle and reflects structures either in the subducting slab or in the upper mantle surrounding the slab. The trench-parallel anisotropy is also significant in the lower MTZ, which may contribute to shear wave splitting observations. A low-V body extending down to the lower mantle is visible under the Hainan volcano far away from the plate boundaries, suggesting that Hainan is a hot spot fed by a lower-mantle plume. The low-V body under Hainan is connected with low-V zones in the upper mantle under SE Tibet and Vietnam. Our P wave anisotropy results reflect significant mantle flow existing in the asthenosphere from SE Tibet to Hainan and further southwestward to Vietnam. The present study, especially the 3-D P wave anisotropy results, provides important new insight into mantle dynamics in SE Asia.

  2. Subsurface Characterization Beneath the Coso Geothermal Field by Ambient Noise Tomography

    Science.gov (United States)

    Ritzwoller, M. H.; Yang, Y.; Levshin, A. L.; Barmin, M. P.; Jones, C. H.

    2009-12-01

    The Coso Geothermal Area has been the subject of numerous geophysical studies over the past 30 years. Various seismological techniques have been applied to evaluate the regional stress distribution, velocity and attenuation structure of the subsurface. None of these studies has imaged subsurface shear velocity using surface waves generated either by local micro-earthquakes or by regional or teleseismic earthquakes, nor have any used interferometric methods based on ambient noise. In this study, we apply an interferometic method based on ambient seismic noise aimed at imaging the shallow shear velocity structure beneath the Coso Geothermal Area. Data are from a PASSCAL experiment deployed between 1998 and 2000 and regional broad-band seismometers operated by CalTech. Cross-correlations are performed between each pair of the COSO PASSCAL and CalTech stations for 15 months from March 1999 to May 2000. After compensating for or correcting instrumental irregularities and selecting reliable Rayleigh wave dispersion measurements from the inter-station cross-correlations, we obtain about 300 measurement paths as the basis for surface wave tomography at periods from 3 to 10 sec. Uncertainties of both group and phase velocity measurements are estimated using the variations among the dispersion curves from one-month cross-correlations in different months. The resulting dispersion maps reveal low group and phase velocities in the COSO volcanic field, especially at 3 sec period for group velocities, and high velocities to the east of the COSO volcanic field. The velocity variations are consistent with surface geological features, which encourages future inversion for 3-D shear velocity structure in the top 15 km of the crust.

  3. North Carolina surgical workforce trends.

    Science.gov (United States)

    Poley, Stephanie T; Kasper, Elizabeth W; Walker, Elizabeth K; Lyons, Jessica C; Newkirk, Vann R; Thompson, Kristie

    2011-01-01

    Between 1997 and 2008, the number of general surgeons in North Carolina increased and shifted demographically, geographically, and by specialty. However, surgeon numbers--overall and by specialty--do not appear to have increased as quickly or to have shifted in the same ways as North Carolina's general population.

  4. North Korea: A Geographical Analysis.

    Science.gov (United States)

    Palka, Eugene J., Ed.; Galgano, Francis A., Ed.

    North Korea is a country about the size of the state of New York, inhabited by about 23 million people. It came into existence after the conclusion of World War II following decades of occupation of the Korean Peninsula by the Japanese empire. Dividing the peninsula into North and South Korea was the politically expedient solution to one of the…

  5. The North Pacific Gyre Mode

    Science.gov (United States)

    Schneider, N.; di Lorenzo, E.

    2007-12-01

    Discussion of North Pacific Decadal decadal variability has focused primarily on the Pacific Decadal Oscillation, the leading mode of sea surface temperature anomalies north of the tropics. The PDO appears to result from a superposition of SST pattern forced by the North Pacific atmosphere due to its intrinsic dynamics and teleconnected from the tropics, with a regional impact of the ocean circulation in the frontal regions associated with the Kuroshio/Oyashio and their extensions into the interior. Recent modeling, however, suggest that previously unexplained decadal changes of salinity, nutrient upwelling and chlorophyl in the California Current are not dominated by the PDO. Rather, these are associated with a mode of variability associated with wind driven changes of the North Pacific Gyre. Consideration of this mode variability may thus be important to understand present and future variations of the North Pacific ecosystem, and in the interpretation of climate proxies.

  6. 3-D Isotropic and Anisotropic S-velocity Structure in the North American Upper Mantle

    Science.gov (United States)

    Yuan, H.; Marone, F.; Romanowicz, B.; Abt, D.; Fischer, K.

    2008-12-01

    The tectonic diversity of the North American continent has led to a number of geological, tectonic and geodynamical models, many of which can be better tested with high resolution 3-d tomographic models of the isotropic and anisotropic mantle structure of the continent. In the framework of non-linear asymptotic coupling theory (NACT), we recently developed tools to invert long period seismic waveforms combined with SKS splitting data, for both isotropic and radial and azimuthal anisotropic S-wave velocity structure in the upper mantle at the continental scale (Marone et al., 2007; Marone and Romanowicz, 2007). Striking differences in both isotropic and anisotropic velocity structure were observed: beneath the high velocity stable cratonic region a distinct two-layer anisotropic domain is present, with the bottom layer fast axis direction aligned with the absolute plate motion, and a shallower lithospheric layer with north pointing fast axis most likely showing records of past tectonic history; under the active western US the direction of tomographically inferred anisotropy is stable with depth and compatible with the absolute plate motion direction. Here we present an updated model which includes nearly five more years of data, including data from newly operative USArray stations, and a somewhat more extended frequency band. Our new model confirms our previous results, and reveals greater yet complex details of the anisotropic velocity structure beneath the western U.S.. We also show initial results of incorporating constraints on the depth to the lithosphere-asthenosphere boundary (LAB) using teleseismic receiver functions. We discuss the different anisotropic domains resolved both laterally and in depth, in the context of tectonic history of the north American continent.

  7. Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~

    Science.gov (United States)

    Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.

    2012-12-01

    The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).

  8. Progress on the seismic anisotropy knowledge beneath Iberia and northern Morocco: the contribution of the second Topoiberia-Iberarray deployment

    Science.gov (United States)

    Diaz Cusí, J.; Gallart, J.

    2012-04-01

    In summer 2009 the dense Iberarray broad-band seismic network deployed in the framework of the large-scale TopoIberia project moved to its second footprint. Up to 55 stations covered the central part of the Iberian Peninsula for roughly 18 months, distributed in a regular grid with a nominal spacing of 60 km. 19 additional stations, active since late 2007 in the Northern part of Morocco, were moved southwards during the summer 2010 to the High Atlas, thus extending the investigated area. Continuous data from all the permanent broad-band networks covering the region have also been gathered to produce a complete database. We focus here in the results constraining the presence of anisotropy as evidenced from the analysis of splitted teleseismic phases. Few anisotropic results in the area covered by this IberArray deployment have been published till now, all of them coming from a scarce number of permanent stations. The results here presented extend the anisotropic map obtained from the first TopoIberia-Iberarray deployment in the Betics-Alboran zone (Díaz et al, 2010). The inferred fast polarization directions (FPD) clearly document a spectacular rotation along the Gibraltar arc, following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. The stations beneath the Central Iberian Massif present a small amount of anisotropy, oriented roughly E-W. Beneath SW Iberia, within the Variscan Ossa-Morena zone, the dominant orientation changes to NNE-SSW, the induced time delays are smaller and a number of good quality measurements show no evidences for anisotropy. Beneath Eastern Iberia, the NE-SW and E-W FPD observed respectively in the Betics and Central Iberia seems to converge, without any indication of an abrupt change similar to that evidenced in the southern part of the Gibraltar arc. The preliminary data of the stations located in the High Atlas show a small degree of anisotropy, with rather unconstrained

  9. Progress on the Seismic Anisotropy Parameters Knowledge Beneath Iberia and Morocco: New Results from the Second Topoiberia-Iberarray Deployment

    Science.gov (United States)

    Diaz, J.; Gallart, J.; TopoIberia Seismic Working Group

    2011-12-01

    In summer 2009 the dense Iberarray broad-band seismic network deployed in the framework of the large-scale TopoIberia project moved to its second footprint. Up to 55 stations covered the central part of the Iberian Peninsula until end 2010, distributed in a regular grid with a nominal spacing of 60 km. Up to 19 additional stations, active since late 2007, have remained operative in the Northern part of Morocco till summer 2010 and then moved southwards, to cover the Atlas belt. Continuous data from permanent broad-band stations have also been gathered to produce a complete database. We focus here in the results constraining the presence of anisotropy as evidenced from the analysis of splitted teleseismic phases. Few anisotropic results in the area covered by this IberArray deployment have been published till now, all of them coming from a scarce number of permanent stations. Beneath Iberia, this second deployment encompasses mainly the Variscan units of the Central Iberian Massif. To the East, the investigated area includes also the southern part of the Celtiberian Chain and reaches the Valencia Gulf, affected by a significant extensional episode in Neogene times. Beneath Morocco, the newly installed stations cover the Atlas belt, and area that seems to be associated with a significant lithospheric thinning, even if its geodynamic features are still poorly constrained. The results would extend the anisotropic map obtained from the first TopoIberia-Iberarray deployment in the Betics-Alboran zone (Díaz et al, 2010). The inferred fast polarization directions (FPD) have clearly documented a spectacular rotation along the Gibraltar arc, following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. The stations of that first deployment located in the Iberian Massif tent to present a relatively small amount of anisotropy and suggested complex anisotropy features, probably including two anisotropic layers. The

  10. Evolution of Pre-Jurassic basement beneath northern Gulf of Mexico coastal plain

    Energy Technology Data Exchange (ETDEWEB)

    Van Siclen, D.C.

    1990-09-01

    Data from the northern Gulf Coast region reveal a late Paleozoic wrench fault system along which North America (NA) moved southeast (present directions) alongside the northeastern edge of future South America (SA), to where collision with that continent converted a broad continental embankment off the Southern Oklahoma aulacogen into the Ouachita thrust belt. At the same time, Africa farther east, to which protruding SA was firmly joined, was continuing to advance the Appalachian thrusts on the opposite side of these faults. This relationship left no space between the American continents for the conventional remnant ocean or microcontinents. By Late Triassic time, however, extension south of the Ouachita Mountains was forming the series of Interior rift basins, at both ends of which new wrench faults transferred the extension southward to the DeSoto Canyon and South Texas rift basins. Genetically, the Ouachita thrusts are part of the subduction zone along the front of a former SA forearc basin, which continued to receive marine sediments into middle Permian. The Wiggins arch southeast of it is a sliver of that continent, left with NA when the Interior basin rifting jumped from that forearc basin southward across bordering outer basement highs to begin opening the deep Gulf of Mexico (GOM) basin. The Late Triassic crustal extension resulted from right-lateral translation of NA around the bulge of northwestern Africa. About 200 mi of this placed Cape Hatteras against Africa's Cap Blanc, in the configuration from which the magnetic data indicate spreading began in the Central North Atlantic Ocean. The reality of this translation is confirmed by widespread rifting at the same time in western North Africa and between all three northern Atlantic continents; this drew the tip of the Tethys sea southward to Cape Hatteras and led to deposition of voluminous Late Triassic red beds and evaporites along it.

  11. Upper Mantle Structure beneath the Chinese Capital Region from Teleseismic Finite-Frequency Seismic Tomography

    Science.gov (United States)

    Yang, F.; Huang, J.

    2009-12-01

    In this study, we applied the finite-frequency seismic tomography(FFST) to teleseismic waveform data to determine 3-D P-wave velocity structure of the upper mantle under the Chinese capital region. The seismic waveform data from more than 300 teleseismic events recorded by the Chinese digital Capital Seismic Network during the period from September 2003 to December 2005 was used in this study. We obtained 18499 high accuracy P-wave relative travel-times by filtering these waveform data on the vertical component into high-, intermediate-, low-frequency bands (1.0-2.0, 0.1-1.0 and 0.05-0.1 hz, respectively) and the multi-channel waveform cross correlation measurement. The 3-D Fréchet sensitivity kernels were calculated by paraxial approximation for each frequency band. We established observation equations with these measured relative travel-times and 3-D Fréchet sensitivity kernels and then determined the 3-D velocity structure by inverting the observation equations. Our results show there are distinct differences of deep velocity structure down to 150 km depth under the four tectonic units of present study region. The Yanshan uplift exhibited the high velocity(high-V) feature. Under the Taihangshan uplift, broad low velocity(low-V) are visible, but it also shows up as small high-V anomalies. A large scale prominent low-V anomaly was revealed in the shallow upper mantle under the North China basin and Bohai bay. In the North China basin the low-V anomaly generally extend from 50 km to 150 km depth, but in the Bohai bay, this low-V anomaly gradually extend down to 200 km depth. The depth of this low-V anomaly is 50-70 km under the North China basin and Bohai bay, which is consistent with the depth of high conductivity layer in the upper mantle determined by the measurement of magnetotelluric sounding and heat flow. This result shows lithosphere thinning in the North China basin and Bohai bay. Most of large earthquakes occurred in the Zhangjiakou-Penglai fault zone

  12. A 200 years record of multidecadal oceanographic changes from offshore North Iceland

    Science.gov (United States)

    Perner, Kerstin; Moros, Matthias; Jansen, Eystein

    2016-04-01

    A 200 years record of multidecadal oceanographic changes from offshore North Iceland During the cruise GS15-198 of the RV G.O. Sars in summer 2015, new sediments cores have been collected from the North Ic