WorldWideScience

Sample records for beneath low-level radioactive

  1. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  2. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  3. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Churtgen, C.

    2007-01-01

    The low-level radioactivity measurements service performs measurements of alpha or beta emitters on various types of low-radioactivity samples (biological and environmental) from internal and external clients. to maintain and develop techniques concerning the measurement of low-level radioactivity of alpha and beta emitting radionuclides in environmental or biological samples; to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters and alpha-spectrometers); to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination or low level radioactivity measurements; to maintain the quality assurance system according to the ISO17025 standard for which we obtained the Beltest accreditation in 1998; to assess the internal dose from occupational intakes of radionuclides for workers of the nuclear industry;

  4. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2002-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advise the nuclear and non-nuclear industry on problems of radioactive contamination and low-level radioactivity measurements; (4) to maintain and improve the quality assurance system according to the ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2001 are reported

  5. Low-level Radioactivity Measurements

    International Nuclear Information System (INIS)

    Hurtgen, C.

    2001-01-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001/ISO17025 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 2000 are reported

  6. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-04-01

    The geological sequences beneath ten British nuclear sites are extrapolated from the available data. Formations that are potentially suitable hosts for low and medium level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath five afford little or no potential, formations beneath a further three offer only moderate potential and sites underlain by the most favourable formations are at Dounreay and Harwell. (author)

  7. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-06-01

    The geological sequences beneath a further twelve nuclear sites in Britain are predicted from available data. Formations that are potentially suitable hosts for low and medium-level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath six afford little or no potential, formations beneath a further 4 offer only moderate potential and sites underlain by the most favourable formations are Dungeness and Hinkley Point. (author)

  8. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  9. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  10. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  11. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  12. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  13. Low-level radioactive waste

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1983-03-01

    This bibliography contains information on low-level radioactive waste included in the Department of Energy's Energy Data Base for January through December 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Low-Level Radioactive Wastes/Transport. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each proceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 492 references

  14. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  15. The low-level radioactive waste crisis

    International Nuclear Information System (INIS)

    Bord, R.J.

    1988-01-01

    According to the author, the goals of the 1980 Low-Level Radioactive Waste Policy Act have not been met. That act stipulated that regional disposal sites were to be established by 1986. To date, no new sites have been established and none are anywhere near the construction phase. Congress, responding to existing impasse, has extended the deadline to the end of 1992 with the passage of the Low-Level Radioactive Waste Policy Act. The reasons for the impasse are no mystery: local intransigence regarding waste of any kind, public fears of radiation hazards, and politicians' anxieties about their constituents' fears. The focus of this paper is the viability of ongoing attempts to overcome public intransigence in the case of disposal siting for low-level radioactive waste (LLRW)

  16. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  17. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  18. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  19. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  20. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  1. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  2. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  3. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  4. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  5. Microbiological treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pugh, S.Y.R.; Banks, C.J.; Humphreys, P.N.

    1992-01-01

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  6. Low level radioactive waste management and discharge policies in Turkey

    International Nuclear Information System (INIS)

    Oezdemir, T.; Oezdemir, C.; Uslu, I.

    2005-01-01

    The legal infrastructure in Turkey for the management of low-level radioactive waste covers the liquid, solid and gaseous wastes. Management of these radioactive wastes is briefly described in this paper. Moreover, delay and decay tank systems that are used to collect and store the low level radioactive wastes as a part of low-level radioactive effluent discharge policy are introduced. (author)

  7. Research on near-surface disposal of very low level radioactive waste

    International Nuclear Information System (INIS)

    Wang Shaowei; Yue Huiguo; Hou Jie; Chen Haiying; Zuo Rui; Wang Jinsheng

    2012-01-01

    Radioactive waste disposal is one of the most sensitive environmental problems to control and solve. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low level radioactive waste and its disposal were introduced, and then siting principles of near-surface disposal of very low level radioactive waste were discussed. The near- surface disposal siting methods of very low level radioactive waste were analyzed from natural and geographical conditions assessment, geological conditions analysis, hydrogeological conditions analysis, geological hazard assessment and radioactive background investigation; the near-surface disposal sites'natural barriers of very low level radioactive waste were analyzed from the crustal structure and physico-chemical characteristics, the dynamics characteristics of groundwater, the radionuclide adsorption characteristics of natural barriers and so on; the near-surface disposal sites' engineered barriers of very low level radioactive waste were analyzed from the repository design, the repository barrier materials selection and so on. Finally, the improving direction of very low level radioactive waste disposal was proposed. (authors)

  8. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    International Nuclear Information System (INIS)

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was a result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release

  9. Low-level radioactive waste management: French and foreign regulations

    International Nuclear Information System (INIS)

    Coulon, R.

    1991-01-01

    This paper describes radioactive waste management regulations applied in USA, CANADA, SCANDINAVIA and FRANCE. For low level radioactive wastes, it is necessary to adapt waste management regulations which were firt definite for high level radioactive wastes. So the exemption concept is a simplification method of regulations applied to low radiation sources

  10. Issue briefs on low-level radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management

  11. Very low level radioactive material

    International Nuclear Information System (INIS)

    Schaller, K.H.; Linsley, G.; Elert, M.

    1993-01-01

    Man's environment contains naturally occurring radionuclides and doses from exposures to these radionuclides mostly cannot be avoided. Consequently, almost everything may be considered as very low level radioactive material. In practical terms, management and the selection of different routes for low level material is confined to material which was subject to industrial processing or which is under a system of radiological control. Natural radionuclides with concentrations reaching reporting or notification levels will be discussed below; nevertheless, the main body of this paper will be devoted to material, mainly of artificial origin, which is in the system involving notification, registration and licensing of practices and sources. It includes material managed in the nuclear sector and sources containing artificially produced radionuclides used in hospitals, and in industry. Radioactive materials emit ionising radiations which are harmful to man and his environment. National and international regulations provide the frame for the system of radiation protection. Nevertheless, concentrations, quantities or types of radionuclide may be such, that the material presents a very low hazard, and may therefore be removed from regulatory control, as it would be a waste of time and effort to continue supervision. These materials are said to be exempted from regulatory control. Material exempted in a particular country is no longer distinguishable from ''ordinary'' material and may be moved from country to country. Unfortunately, criteria for exempting radioactive materials differ strongly between countries and free trade. Therefore there is a necessity for an international approach to be developed for exemption levels

  12. Low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T [Radioactive Waste Management Center, Tokyo (Japan)

    1980-08-01

    In the development and utilization of nuclear energy, variety of radioactive wastes arise. A largest part is low level radioactive wastes. In Japan, they are concentrated and solidified, and stored in drums. However, no low level wastes have yet been finally disposed of; there are now about 260,000 drums of such wastes stored on the sites. In Japan, the land is narrow, and its structure is geologically unstable, so that the sea disposal is sought. On the other hand, the development of technology for the ground disposal has lagged behind the sea disposal until recently because of the law concerned. The following matters are described: for the sea disposal, preparatory technology studies, environment safety assessment, administrative measures, and international control; for the ground disposal, experiments, surveys, disposal site selection, and the concept of island repositories.

  13. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  14. Managing low-level radioactive waste in Massachusetts. Final report

    International Nuclear Information System (INIS)

    Bander, S.R.; Goldstein, M.E.

    1983-12-01

    As one of the country's largest generators of low-level radioactive waste, Massachusetts has begun independently seeking solutions to the questions surrounding low-level waste management issues. The Massachusetts Department of Public Health, Radiation Control Program, obtained funding from the U.S. Department ofEnergy through EG and G, Idaho, Inc. to develop a low-level waste management strategy for the Commonwealth. The Working Group was made up of individuals from various waste generating industries, environmental and public interest groups, medical and academic institutions, and affected state agencies. This final report document contains the following staff project reports: Proposed Low-Level Radioactive Waste Management Plan for The Commonwealth of Massachusetts, February 1983 and Low-Level Radioactive Waste Management in Massachusetts - Actions to be Considered for Implementation in 1984-1986, December 1983. These two staff reports represent the completion of the Massachusetts Low-Level Radioactive Waste Management Project. The first report provides some of the background material to the issues and some of the alternative courses of action which can be considered by state policy-makers. The second report provides the next phase in the process by delineating specific steps which may be taken before 1986 in order to address the low-level waste problem, and the estimated amount of time needed to complete each step

  15. Use of engineered soils beneath low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, T.C.; Humphrey, D.N.; DeMascio, F.A. [Univ. of Maine, Orono, ME (United States). Dept. of Civil Engineering

    1993-03-01

    Current regulations are oriented toward locating low-level radioactive waste disposal facilities on sites that have a substantial natural soil barrier and are above the groundwater table. In some of the northern states, like Maine, the overburden soils are glacially derived and in most places provide a thin cover over bedrock with a high groundwater table. Thus, the orientation of current regulations can severely limit the availability of suitable sites. A common characteristic of many locations in glaciated regions is the rapid change of soil types that may occur and the heterogeneity within a given soil type. In addition, the bedrock may be fractured, providing avenues for water movement. A reliable characterization of these sites can be difficult, even with a detailed subsurface exploration program. Moreover, fluctuating groundwater and frost as well as the natural deposition processes have introduced macro features such as cracks, fissures, sand and silt seams, and root holes. The significant effect that these macro features have on the permeability and adsorptive capacity of a large mass is often ignored or poorly accounted for in the analyses. This paper will examine an alternate approach, which is to use engineered soils as a substitute for some or all of the natural soil and to treat the fractures in the underlying bedrock. The site selection would no longer be primarily determined by the natural soil and rock and could even be placed in locations with no existing soils. Engineered soils can be used for below- or aboveground facilities.

  16. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  17. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  18. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Science.gov (United States)

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... regulatory time of compliance for a low-level radioactive waste disposal facility, allowing licensees the... system, and revising the NRC's licensing requirements for land disposal of radioactive waste. DATES: The...

  19. Kansas State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas

  20. Maine State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  1. Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Ozaki, Calvin B.; Kerr, Thomas A.; Williams, R. Eric

    1991-01-01

    Two national systems comprise the low-level radioactive waste management system in the United States of America. The U.S. Nuclear Regulatory Commission regulates low-level radioactive waste produced in the public sector (commercial waste), and the U.S. Department of Energy manages low-level radioactive waste produced by government-sponsored programs. The primary distinction between the two national systems is the source of regulatory control. This paper discusses two issues critical to the success of each system: the site selection process used by the commercial low-level waste disposal system, and the evaluation process used to determine configuration of the DOE waste management system. The two national systems take different approaches to reach the same goals, which are increased social responsibility, protection of public health and safety, and protection of the environment

  2. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  3. The storage center of very-low level radioactive wastes

    International Nuclear Information System (INIS)

    2008-01-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  4. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  5. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Vath, J.E.

    1981-01-01

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas have been selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting

  6. Development of a low-level radioactive waste shipper model. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-03-01

    During 1982, Inter/Face Associates, Inc., conducted a low-level radioactive waste management survey of Nuclear Regulatory Commission (NRC) licensees in Massachusetts for the US Department of Energy's National Low-Level Waste Management Program. In the process of conducting the survey, a model was developed, based on existing NRC license classification systems, that would identify licensees who ship low-level waste for disposal. This report presents the model and documents the procedures used in developing and testing it. After the model was tested, several modifications were developed with the goal of determining the model's ability to identify waste shippers under different parameters. The report includes a discussion of the modifications

  7. 1991 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1992-11-01

    This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the ''take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities

  8. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  9. Michigan State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Michigan State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Michigan. The profile is the result of a survey of NRC licensees in Michigan. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the discussion of relevant government agencies and activities, all of which may impact waste management practices in Michigan

  10. Illinois State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Illinois State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Illinois. The profile is the result of a survey of NRC licensees in Illinois. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Illinois

  11. 1994 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1995-04-01

    This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  12. Ocean dumping of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. The author concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA

  13. 77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction

    Science.gov (United States)

    2012-05-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume... Radioactive Waste (LLRW) Volume Reduction (Policy Statement). This statement encouraged licensees to take..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...

  14. Low-level radioactive waste management in hospitals

    International Nuclear Information System (INIS)

    Peyrin, J.O.

    1991-01-01

    In medical establishments, radioisotopes are used in diagnostic techniques, in chemotherapy or in radioimmunology. Hospitable radioactive wastes are characterized by polymorphism and low activity levels in a great volume. These wastes are also associated with infectivity and toxicity. This paper makes a balance and describes new radioactive waste management proposals. 4 refs.; 3 tabs.; 1 fig

  15. Characteristics of medically related low-level radioactive waste

    International Nuclear Information System (INIS)

    Weir, G.J. Jr.; Teele, B.

    1986-07-01

    This report describes a survey that identified the current sources of medically generated radioactive wastes. Included are recommendations on how to reduce the volume of medically-related material classified as low-level radioactive wastes, to improve handling techniques for long-lived radioisotopes, and for options for the use of radioactive materials in medical studies. 8 refs., 11 tabs

  16. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  17. 1989 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs

  18. Colorado State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Colorado State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Colorado. The profile is the result of a survey of NRC licensees in Colorado. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Colorado

  19. Tennessee State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee.

  20. Florida State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  1. California State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-12-01

    The California State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in California. The profile is the result of a survey of NRC licensees in California. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in California

  2. Massachusetts State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts

  3. Delaware State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Delaware State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Delaware. The profile is the result of a survey of NRC licensees in Delaware. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Delaware

  4. Massachusetts State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  5. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  6. Indiana State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    Mitter, E.L.; Hume, R.D.; Briggs, H.R.; Feigenbaum, E.D.

    1981-01-01

    The Indiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Indiana. The profile is the result of a survey of NRC licensees in Indiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Indiana

  7. Kentucky State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky

  8. Hawaii State briefing book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Hawaii State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Hawaii. The profile is the result of a survey of NRC licensees in Hawaii. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Hawaii

  9. Georgia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  10. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  11. Louisiana State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Louisiana State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Louisiana. The profile is a result of a survey of NRC licensees in Louisiana. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Louisiana

  12. Georgia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-01-01

    The Georgia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Georgia. The profile is the result of a survey of NRC licensees in Georgia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Georgia

  13. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  14. Vermont State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont

  15. Tennessee State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal Agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  16. Tennessee State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Tennessee State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Tennessee. The profile is the result of a survey of NRC licensees in Tennessee. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Tennessee

  17. Wisconsin State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin.

  18. Pennsylvania State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  19. Mississippi State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  20. Alabama State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alabama State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Alabama. The profile is the result of a survey of NRC licensees in Alabama. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alabama

  1. Florida State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  2. Ohio State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio

  3. Oklahoma State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Oklahoma State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oklahoma. The profile is the result of a survey of NRC licensees in Oklahoma. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal cmmunications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oklahoma

  4. Arizona State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Arizona State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arizona. The profile is the result of a survey of NRC licensees in Arizona. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arizona

  5. Iowa State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Iowa State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Iowa. The profile is the result of a survey of NRC licensees in Iowa. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Iowa

  6. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  7. Washington State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  8. Arkansas State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  9. Vermont State Briefing Book on low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

  10. Connecticut State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut

  11. Wisconsin State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Wisconsin State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wisconsin. The profile is the result of a survey of NRC licensees in Wisconsin. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wisconsin

  12. Idaho State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Idaho State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Idaho. The profile is the result of a survey of NRC licensees in Idaho. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Idaho

  13. Virginia State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1980-11-01

    The Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Virginia. The profile is the result of a survey of NRC licensees in Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Virginia

  14. Oregon State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon

  15. Washington State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington

  16. Mississippi State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi

  17. Arkansas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Arkansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. This report contains a profile of low-level radioactive waste generators in Arkansas. The profile is the result of a survey of NRC licensees in Arkansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Arkansas

  18. Florida State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida

  19. Utah State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah

  20. Ohio State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  1. Oregon State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  2. Pennsylvania State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania

  3. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  4. Discussion on the methods for calculation release limits for low-level radioactive waste

    International Nuclear Information System (INIS)

    Cao Fengbo; Liu Xiaochao

    2012-01-01

    The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)

  5. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    Science.gov (United States)

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  6. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  7. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  8. Minnesota State Briefing Book on low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Minnesota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Minnesota. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Minnesota conducted by the Minnesota Department of Health. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Minnesota

  9. Rhode Island State Briefing Book on low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  10. Rhode Island State Briefing Book on low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island

  11. IEN Low-level-radioactive waste Management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-01-01

    The control, treatment and disposal of the low-level radioactive waste produced in the units of IEN-CNEN, in Brazil are presented, in details. These wastes are generated from a particle accelerator (CV-28 cyclotron), radiochemistry laboratories and a nuclear research reactor (Argonaut type). (Author) [pt

  12. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  13. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  14. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  15. Low-level radioactive waste management: federal-state cooperation or confusion

    International Nuclear Information System (INIS)

    Choi, Y.H.

    1984-01-01

    This paper describes and analyzes the legislative history of the Low-Level Radioactive Waste Policy Act of 1980 and discusses major issues and problems resulting from the implementation of the Act. Five specific issues addressed in this paper are: what radioactive waste constitutes ''low-level radioactive waste'' within the meaning of the Act; what responsibilities, if any, do the states have to dispose of federal radioactive waste; what liabilities and protections govern the disposal of waste not generated in a disposal-site state (hereafter, the ''host state''); to what standards of care should generators of low-level radioactive waste be held, and by what authority should such generators be licensed and inspected; which disposal-site activities should be considered ''disposal,'' and which activities should be considered ''management,'' within the meaning of the Act, and what authority do the states have, under the Act, to engage in each activity, respectively. The federal government and state governments must solve these problems in order to implement the Act, and thus, to establish equity among the 50 states, and the interstate regional compacts

  16. Texas State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  17. Texas State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas

  18. Low-level radioactive waste involved in transportation events

    International Nuclear Information System (INIS)

    Cashwell, C.E.

    1990-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information about radioactive materials transportation accidents and incidents that have occurred in the United States from 1971 through 1989. Using data from RMIR, this paper will provide detailed information on transportation accidents and incidents that have occurred with low-level radioactive wastes. Additionally, overview data on the number of transport accidents and incidents that have occurred and by what transport mode will also be provided. 4 refs., 6 tabs

  19. New Jersey State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  20. New Mexico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The New Mexico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Mexico. The profile is the result of a survey of NRC licensees in New Mexico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Mexico

  1. New York State Briefing Book for low-level radioactive-waste management

    International Nuclear Information System (INIS)

    1981-06-01

    The New York State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New York. The profile is the result of a survey of NRC licensees in New York. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New York

  2. South Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina

  3. North Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  4. West Virginia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The West Virginia State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in West Virginia. The profile is the result of a survey of NRC licensees in West Virginia. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in West Virginia

  5. North Carolina State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina

  6. New Jersey State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-04-01

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey

  7. North Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota

  8. South Dakota State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota

  9. South Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  10. Puerto Rico State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico

  11. North Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  12. Puerto Rico State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  13. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  14. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1996-06-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal

  15. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  16. Alaska State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-08-01

    The Alaska State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste generators in Alaska. The profile is the result of a survey of NRC licensees in Alaska. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Alaska

  17. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    International Nuclear Information System (INIS)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal

  18. Review process for low-level radioactive waste disposal license application under Low-Level Radioactive Waste Policy Amendments Act

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1987-08-01

    This document estimates the level of effort and expertise that is needed to review a license application within the required time. It is intended to be used by the NRC staff as well as States and interested parties to provide a better understanding of what the NRC envisions will be involved in licensing a low-level radioactive waste disposal facility. 5 refs., 3 figs., 1 tab

  19. Low-level radioactive waste: the Pennsylvania situation

    International Nuclear Information System (INIS)

    Krett, R.E.; Dornsife, W.P.

    1987-01-01

    In December 1985, the Pennsylvania legislature adopted and Governor Thornburgh signed into law the Appalachian States Low-Level Radioactive Waste Compact. The Appalachian Compact provides for the establishment and operation of facilities for regional disposal of low-level radioactive waste (LLRW) to eligible states. Pennsylvania is designated as the initial host state to develop a regional LLRW disposal facility. The Compact legislation did not grant Pennsylvania the authority to license, permit, regulate, inspect or otherwise initiate the processes necessary to establish a LLRW disposal facility. The burden for implementing the Compact is placed on the state of Pennsylvania. The implementing legislation needed to proceed is currently in Pennsylvania's legislative process. Area Screening and Technology Performance/Design Criteria are currently being developed by D.E.R. staff in conjunction with a sixteen member public advisory committee. Upon enactment of the implementing legislation, Pennsylvania will proceed with all processes necessary to develop a regional LLRW disposal facility for the Appalachian Compact. 1 figure, 1 table

  20. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  1. IEN low-level radioactive waste management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-09-01

    The low-level radioactive waste produced in Instituto de Engenharia Nuclear is generated basically from three distinct modes: a particle accelerator (CV-28 Cyclotron), radiochemistry laboratories and the operation of a nuclear research reactor (Argonaut type). In the Cyclotron unit, all water flow from hot labs as well as from the decontamination laundry is retained in special tank with homogenizing system and a remote control, that signalizes when the tank gets a pre-specified level. Samples homogenized from the tank are colected for previous analysis. (Author) [pt

  2. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  3. Illinois perspective on low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Etchison, D.

    1984-01-01

    Illinois is a big generator of low level radioactive waste. It has had extensive experience with controversial waste disposal and storage facilities. This experience makes it difficult for the public and political leaders in Illinois to support the establishment of new disposal facilities in the state. Yet, with extensive debates and discussions concerning the Low Level Waste Policy Act of 1980 and the proposed Midwest Compact, political leaders and the public are facing up to the fact that they must be responsible for the disposal of the low level radioactive waste generated in the state. The Governor and many political leaders from Illinois support the regional approach and believe it can be an innovative and progressive way for the state to deal with the range of low level waste management and disposal problems. A version of the Midwest Interstate Low Level Waste Compact has become Illinois law, but it has significant differences from the one adopted by five other states. Like other states in the midwest and northeast, Illinois is opposed to Congressional consent of the four pending compacts before the remaining two compacts, the northeast and midwest are sent to Washington and interregional agreements are negotiated between the sited and non-sited regions. A new national system must be established before access to existing commercial disposal becomes restricted

  4. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  5. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  6. Radiation safety and health effects related to low-level radioactive wastes

    International Nuclear Information System (INIS)

    King, W.C.

    1979-01-01

    The hazards associated with low-level radioactive waste, one of the nation's greatest concerns, are discussed from a health physicist's perspective. Potential biological hazards, four stages of the low-level radioactive waste disposal process, and suggested methods of reducing the risks of handling and disposal, based on previous studies, are defined. Also discussed are potential pathways of human exposure and two scenarios designed to demonstrate the complexity of modeling exposure pathways. The risks of developing a fatal cancer from exposure to the radioactive material, should it occur, is compared to other more commonly accepted risks

  7. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  8. Treatment of low- and intermediate-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    1984-01-01

    This report aims at giving the reader details of the experience gained in the treatment of both low- and intermediate-level radioactive liquid wastes. The treatment comprises those operations to remove radioactivity from the wastes and those that change only its chemical composition, so as to permit its discharge. Considerable experience has been accumulated in the satisfactory treatment of such wastes. Although there are no universally accepted definitions for low- and intermediate-level liquid radioactive wastes, the IAEA classification (see section 3.2) is used in this report. The two categories differ from one another in the fact that for low-level liquids the actual radiation does not require shielding during normal handling of the wastes. Liquid wastes which are not considered in this report are those from mining and milling operations and the high-level liquid wastes resulting from fuel reprocessing. These are referred to in separate IAEA reports. Likewise, wastes from decommissioning operations are not within the scope of this report. Apart from the description of existing methods and facilities, this report is intended to provide advice to the reader for the selection of appropriate solutions to waste management problems. In addition, new and promising techniques which are either being investigated or being considered for the future are discussed

  9. Storage for low-level and intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    1992-11-01

    The objective of this report was to assess whether three nominated sites in Norway for underground storage of low-level and intermediate-level radioactive wastes would comply with safety standards and applicable laws and regulations. The site selection criteria are described and the report evaluates the technical, environmental and socio-economic suitability of the different sites. The site selection process eliminated two of the nominated sites, whereas one site was singled out. 28 refs., 14 figs., 10 tabs

  10. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  11. 76 FR 10810 - Public Workshop to Discuss Low-Level Radioactive Waste Management

    Science.gov (United States)

    2011-02-28

    ... Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Public Workshop and Request for... regulatory framework for the management of commercial low-level radioactive waste (LLW). The purpose of this...-level radioactive wastes that did not exist at the time part 61 was promulgated. The developments...

  12. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  13. Aube storage center for very-low-level radioactive wastes. Annual report 2010

    International Nuclear Information System (INIS)

    2011-09-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2010 activity report of the center for very-low-level radioactive wastes. It presents a review of the activities of the center: presentation of the installations, safety, security and radiation protection, environmental monitoring and effluents, public information and communication

  14. Status of activities: Low-level radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Ozaki, C.B.; Shilkett, R.C.; Kirkpatrick, T.D.

    1989-01-01

    A primary objective of low-level radioactive waste management in the United States is to protect the health and safety of the public and the quality of the environment. In support of this objective is the development of waste treatment and disposal technologies designed to provide stabilization and long-term institutional control of low-level radioactive wastes. Presented herein is a technical review of specific low-level radioactive waste management activities in the United States. Waste treatment and disposal technologies are discussed along with the performance objectives of the technologies aimed at protecting the health and safety of the public and the quality of the environment. 13 refs., 4 figs

  15. Low and intermediate level radioactive waste in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.C.; Ortiz, J.R.; Sanchez, S.

    2002-01-01

    Currently, it is necessary to establish, in a few years, a definitive repository for low and intermediate level radioactive waste in order to satisfy the necessities of Mexico for the next 50 years. Consequently, it is required to estimate the volumes of the radioactive waste generated annually, the stored volumes to-date and their projection to medium-term. On this subject, the annual average production of low and intermediate level radioactive waste from the electricity production by means of nuclear power reactors is 250 m 3 /y which consist of humid and dry solid waste from the 2 units of the Laguna Verde Nuclear Power plant having a re-use efficiency of effluents of 95%. On the other hand, the applications in medicine, industry and research generate 20 m 3 /y of solid waste, 280 m 3 /y of liquid waste and approximately 10 m 3 /y from 300 spent sealed radioactive sources. The estimation of the total volume of these waste to the year 2035 is 17500 m 3 corresponding to the 46% of the volume generated by the operation and maintenance of the 2 units of the Laguna Verde Nuclear Power plant, 34% to the decommissioning of these 2 units at the end of their useful life and 20% to the waste generated by applications in medicine, industry and research. (author)

  16. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    1983-04-01

    Chapters are devoted to the following: introduction; a brief description of low-level radioactive wastes and their management; system-side issues; waste reduction and packaging; transportation; disposal; issues for further study; and summary of recommendations. Nine appendices are included

  17. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Science.gov (United States)

    2012-09-20

    ... for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins From Commercial Nuclear Power... Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power Reactors. DATES: Please submit... Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial...

  18. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  19. Radiological survey of the low-level radioactive waste burial site at the Palos Forest Preserve, Illinois

    International Nuclear Information System (INIS)

    Hayes, K.A.

    1982-01-01

    Two landfill sites containing low-level radioactive waste material, Site A and Plot M, are located 14 miles southwest of Chicago, Illinois in the Palos Forest Preserve. Site A is the former location of the Argonne National Laboratory. Buried at Site A in 1956 were the dismantled reactor shells, building walls, and cooling towers from three of the world's first nuclear reactors. Plot M was used from 1943 to 1949 for burial of low-level radioactive wastes derived from Site A operations and from the University of Chicago Metallurgical Laboratory. Tritiated water was detected in 1973 in some of the Forest Preserve picnic wells located 500 to 1000 yards north of Plot M. An extensive surveillance program was initiated in 1976 to: (1) study the elevated tritium content of some picnic wells and its observed seasonal fluctuations, (2) establish if other radionuclides buried in Plot M or remaining at Site A have migrated, (3) establish the rate of groundwater movement in the glacial till and underlying dolomite aquifer, (4) determine the tritium content of the till and aquifer, and (5) predict future tritium levels in the well water. Several test wells were installed in the soil and dolomite bedrock to monitor radioactivity in groundwater, measure water levels, and provide other geohydrological information. Tritium has migrated from the Plot M burial trenches into the surrounding drift. The tritium plume, the contaminated zone in the drift in which tritium concentrations exceed 10 nanocuries per liter of water (nCi/L), has migrated at least 165 feet horizontally northward and 130 feet vertically downward to the bedrock surface. Small amounts of other radionuclides - uranium, plutonium, and strontium-90 - have been found in boreholes beneath the concrete cap covering Plot M, but not in the subsoil outside of the Plot. The radionuclide concentrations found to date are too low to result in any measureable radiation exposure to the public

  20. New Hampshire State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-07-01

    The New Hampshire State Briefing Book is one of a series of state briefing books based on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste generators in New Hampshire. The profile is the result of a survey of NRC licensees in New Hampshire. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Hampshire

  1. Report of the Task Force on Low-Level Radioactive Waste. Position paper

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Policy Council formed a Task Force in May 1980 to consider the problems associated with low-level radioactive waste disposal. Two major objectives were developed by the Task Force: (1) To recommend Federal policy for improving coordination and implementation of Federal and non-Federal programs that have been established to obtain solutions to existing low-level waste disposal problems, and (2) to recommend Federal policy for disposal of low-level waste containing minimal activity for which alternative disposal methods to existing shallow land burial practices may be acceptable for protecting the public health. These wastes constitute a significant fraction of what is currently classified as low-level radioactive wastes. Included are most of the wastes currently destined for shallow land burial from medical and research institutions, as well as from other sources. Such wastes include liquid scintillation vials, dry solids, animal carcasses, and paper trash; there are many items included which are needlessly classified, on a purely arbitrary basis, as radioactive waste merely because they contain detectable radioactive materials. It is this waste which is of major concern

  2. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  3. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  4. The future of very low level radioactive wastes in question

    International Nuclear Information System (INIS)

    Vignes, Emmanuelle

    2016-01-01

    After having recalled that nuclear plants produce various radioactive wastes, that the Cigeo project is the proposed solution to store these radioactive wastes, this article more particularly addresses the issue of very low level radioactive wastes which are now the main matter of concern for the IRSN as their quantity is expected to increase during the years to come (notably in relationship with nuclear reactor lifetime extension), and as present storage capacities will soon be saturated. The author first outlines that these wastes are not very dangerous but very cumbersome. Among these so-defined 'very low level' wastes, 30 to 50 per cent could be considered as harmless, but are now processed as dangerous wastes through costly processes. Various possibilities are then envisaged such as a diversification of storage options

  5. Interpretation of low-level environmental radioactivity measurements

    International Nuclear Information System (INIS)

    Zeigler, C.C.

    1982-01-01

    Levels of radioactivity in the environment from worldwide fallout have decreased by about a factor of 10 since the early 1970's and many environmental concentrations are now less than the routine estimated lower limit of detection. To accurately represent these data and to assist in evaluating very low levels of radioactivity, each instrumental value with its statistical counting error should be reported. In some instances the background count of the instrument exceeds the sample count resulting in a value that is less than zero (a negative concentration). Evaluation of these negative numbers along with zero and positive concentrations over a suitable sample population can yield important information about concentrations that are less than routine minimum levels of detection. Actual instrumental values (negative, zero and positive) with associated statistical counting errors have been reported by the Environmental Monitoring Group at the Savannah River Plant since 1977. Methods for evaluating these data are discussed and empirical data presented to illustrate important points

  6. LOWRAD 96. Methods and applications of low-level radioactivity measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, J [ed.; Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    1997-03-01

    The newest developments in the field of low-level radioactivity measurements and new applications for existing and low-level measuring facilities are presented. The contributions mostly were devoted to basic physical aspects and applications of low-level counting. Papers on chemical separation and preparation techniques and on low-level radiation dose determinations were also presented. (DG)

  7. 76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management

    Science.gov (United States)

    2011-09-21

    ...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste...-based approaches to managing waste are also needed to safely manage Low-Level Radioactive Waste. The...

  8. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  9. California's response to the Low-Level Radioactive Waste Policy Act of 1980: policy and progress

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1985-01-01

    The public and private corporations and institutions in California that use radioactive materials and generate low-level radioactive waste have played a major role in shaping and guiding California's response to the federal Low-Level Radioactive Waste Policy Act of 1980. Working together as the California Radioactive Materials Management Forum (CAL RAD FORUM), these organizations carry out legislative and public education programs with the objective of establishing, in California, a low-level radioactive waste disposal facility and maintaining access to existing disposal facilities in other states until the California facility is licensed and operating

  10. Guidance document for prepermit bioassay testing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report

  11. Guidance document for prepermit bioassay testing of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  12. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  13. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  14. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  15. Low-level radioactive waste management in New York State: Meeting the milestones

    International Nuclear Information System (INIS)

    White, I.L.

    1987-01-01

    The federal Low-Level Radioactive Waste Policy Act of 1980 made the states responsible for disposal of low-level radioactive waste (LLRW) generated within their borders. After extensive hearings and public participation, New York State enacted a Radioactive Waste Management Act (State LLRWMA) in July 1986. This paper describes New York's program and reviews the State's progress in complying with the milestone established by Public Law 99-240. A number of concerns about LLRW disposal and the schedule calling for a facility to be operational by January 1, 1993, are also discussed

  16. Adopting plasma pyrolysis for management of low-level solid radioactive waste in India

    International Nuclear Information System (INIS)

    Gupta, R.K.; Singh, A.K.; Yeotikar, R.G.; Patil, S.P.; Jha, Jyoti; Mishra, S.K.; Gandhi, K.G.; Misra, S.D.

    2010-01-01

    Since Plasma Pyrolysis of Low-Level Solid Radioactive Waste has the potential of reducing waste volumes by a factor of up to 1000:1, the new technology is seen as a sound engineering and economic option for managing voluminous low-active wastes. Development and adoption of such technique, to replace existing methods of Low-Level Solid Radioactive Waste management, is borne out of a compelling need to conserve disposal space. While Plasma-based systems are already in use for disposal of medical, toxic and other industrial wastes, the level of maturity is yet to be attained in their radioactive applications. A Prototype Plasma Pyrolysis Unit is being set up in India which, after extensive trials, will function as a full-scale plant for the volume reduction of Low-Level Solid Radioactive Wastes. This paper deals with the transition philosophy from the current techniques to the Plasma-based process. The design and engineering of the proposed facility and various system components is also briefly touched upon. (author)

  17. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  18. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO 2 and CH 4 ) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report

  19. Status of low-level radioactive waste management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  20. Disposal approach for long-lived low and intermediate-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Joo Wan; Kim, Chang Lak

    2005-01-01

    There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste

  1. Considerations for alternative low-level radioactive disposal sites

    International Nuclear Information System (INIS)

    Beck, J.M.

    1986-01-01

    In the immediate future, there is a need for low-level radioactive disposal sites to accommodate wastes that would otherwise be placed at a later date in permanent, government sanctioned ''compact'' sites. Until these ''compact'' sites become operational, a potential, relatively low-cost alternative exists in the numerous inactive uranium processing sites that are likewise proposed for remedial action removal or stabilization operations. This paper addressed disposal from the aspects of engineering design, economics and liability of participating parties. Many uranium (and by-product) processing facilities in the western states now stand idle due to current economic conditions within the industry. Many more were previously deactivated for various reasons. All must be dealt with under the UMTRA Program Guidelines with regard to removal, reclamation or other remedial action activities. With cooperative efforts, some of these sites would appear to be suitable for disposal of small volume, low-level radioactive wastes that presently render urban properties valueless in terms of real estate and aesthetic values. Likely sites would appear to be those slated for in-place stabilization and reclamation, particularly where the urban property material has a lower level of radioactivity than the disposal site material. The resultant impacts for site stabilization and reclamation would be solely in the areas of increased material volumes (generally requiring a minimal increase in engineering design complexity) and liability. Clearly, liability will be the overriding factor in such an approach. With the complex hierarchy of regulatory agencies involved and the private sector, what appears to be a relative simple and economic approach may have extreme difficulty in achieving reality

  2. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  3. Policy and technical considerations for intermediate-level and low-level radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This section has addressed issues, topics, and considerations related to low-level and intermediate-level wastes that are basic to developing and establishing environmental radiation protection criteria for radioactive wastes. Applicability of criteria, criteria considerations for sites, control of radiological impact to the population, and long-term considerations are discussed

  4. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  5. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description

  6. Low-level radioactive waste technology: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  7. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  8. Low-level radioactive waste management at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Rock, C.M.; Shearer, T.L.; Nelson, R.A.

    1997-01-01

    This paper is an overview of the low-level radioactive waste management practices and treatment systems at Argonne National Laboratory - East (ANL-E). It addresses the systems, processes, types of waste treated, and the status and performance of the systems. ANL-E is a Department of Energy laboratory that is engaged in a variety of research projects, some of which generate radioactive waste, in addition a significant amount of radioactive waste remains from previous projects and decontamination and decommissioning of facilities where this work was performed

  9. Conditioning characterization of low level radioactive waste

    International Nuclear Information System (INIS)

    Osman, A. F.

    2010-12-01

    This study has been carried out in the radioactive waste management laboratory Sudan Atomic Energy Commission. The main purpose of this work is method development for treatment and conditioning of low level liquid waste in order to improve radiation protection level in the country. For that purpose a liquid radioactive material containing Cs-137 was treated using the developed method. In the method different type of materials (cement, sands, concrete..etc) were tested for absorption of radiation emitted from the source as well as suitability of the material for storage for long time. It was found that the best material to be used is Smsmia concrete. Where the surface dose reduced from 150 to 3μ/h. Also design of storage container was proposed (with specification: diameter 6.5 cm, height 6 cm, placed in internal cylinder of diameter 10.3 cm, height 12.3 cm) and all are installed on the concrete and cement in the cylinder. Method was used in the process of double-packaging configuration. For more protection it is proposed that a mixed of cement to fill the void in addition to the sand be added to ensure low amount of radiation exposure while transport or storage. (Author)

  10. Appalachian States Compact Low-Level Radioactive Waste management survey, 1987

    International Nuclear Information System (INIS)

    Singh, K.N.

    1989-03-01

    Since the enactment of the Low-Level Radioactive Waste Disposal Act in February 1988, the Commonwealth of Pennsylvania has undertaken major steps to develop a Low-Level Radioactive Waste (LLRW) Disposal Facility within its borders for the exclusive use of radioactive material licensees in the Appalachian States Compact. In order to adequately plan for the design and development of that facility, it is essential to obtain accurate data on LLRW being generated in the Compact. To that end, the Division of Nuclear Safety of the Pennsylvania Bureau of Radiation Protection (BRP) conducted a survey to determine volume and activity of LLRW shipped and stored in 1987 by the licensees in the Appalachian States Compact. The 1986 LLRW survey included licensees in Pennsylvania and Maryland, while surveys conducted prior to 1986 involved only Pennsylvania licensees. So this is the first survey conducted by BRP that has included all four states of the Compact

  11. Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Doering, R.F.

    1980-01-01

    Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing 14 C and 3 H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites. 4 figures, 3 tables

  12. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  13. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  14. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  15. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  16. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2001-01-01

    Over the last few years, significant progress has been made towards siting national, purpose-built facilities for Australian radioactive waste. In 2001, after an eight year search, a preferred site and two alternatives were identified in central-north South Australia for a near-surface repository for Australian low level (low level and short-lived intermediate level) radioactive waste. Site 52a at Everts Field West on the Woomera Prohibited Area was selected as the preferred site as it performs best against the selection criteria, particularly with respect to geology, ground water, transport and security. Two alternative sites, Site 45a and Site 40a, east of the Woomera-Roxby Downs Road, were also found to be highly suitable for the siting of the national repository. A project has commenced to site a national store for intermediate (long-lived intermediate level) radioactive waste on Commonwealth land for waste produced by Commonwealth agencies. Public input has been sought on relevant selection criteria

  17. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  18. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  19. Low-level radioactive-waste compacts. Status report as of July 1982

    International Nuclear Information System (INIS)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this

  20. Low-level radioactive-waste compacts. Status report as of July 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  1. NRC perspective on extended on-site storage of low-level radioactive waste after 1993

    International Nuclear Information System (INIS)

    Remick, Forrest J.

    1992-01-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires that each State, which has not provided for disposal capacity by January 1, 1993, must take title and possession of the low-level radioactive wastes generated in the State. If the states do not take title and possession of the wastes, the rebates to which the states would have been entitled to would be returned to the waste generators. in considering the matter, the Commission solicited comments from States) low-level radioactive waste compacts, local governments, and the general public so that the public's views could be factored into the Commission's deliberations on this issue. This paper addresses the current status of NRC positions on the adequacy of the NRC's existing regulatory framework associated with the title transfer provisions of the LLRWPAA and the Commission's views on extended on-site storage of low-level radioactive wastes after the 1993 and 1996 milestones. (author)

  2. Maryland and District of Columbia State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-09-01

    The District of Columbia and Maryland State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in the District of Columbia and Maryland. The profile is the result of a survey of NRC licensees in the District of Columbia and Maryland. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in the District of Columbia and Maryland

  3. Multipurpose container for low-level radioactive waste

    International Nuclear Information System (INIS)

    Anderson, R.T.; Pearson, S.D.

    1993-01-01

    A method is described for disposing of low-level radioactive waste, comprising the steps of (a) introducing the waste into a multipurpose container, the multipurpose container comprising a polymeric inner container disposed within a concrete outer shell, the shape of the inner container conforming substantially to the shape of the outer shell's inner surface, (b) transporting the waste in the same multipurpose container to a storage location, and (c) storing the container at the storage location

  4. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    International Nuclear Information System (INIS)

    1996-01-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  5. Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1996-08-01

    'Low-Level Radioactive Waste Management Activities in the States and Compacts' is a supplement to 'LLW Notes' and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  6. Natural analogue study for low-and-intermediate level radioactive waste shallow burial disposal

    International Nuclear Information System (INIS)

    Gu Cunli; Fan Zhiwen; Huang Yawen; Cui Anxi; Liu Xiuzheng; Zhang Jinshen

    1995-01-01

    The paper makes a comparison of low-and-intermediate level radioactive waste shallow burial disposal with Chinese ancient tombs in respects of siting, engineering structures, design principle and construction procedures. Results showed that Chinese ancient tombs are very good analogue for low-and-intermediate level radioactive waste shallow burial disposal. Long-term preservation of ancient tombs and buried objects demonstrated that low-and-intermediate level radioactive waste shallow burial disposal would be safe if suitable sites were selected, reasonable engineering structures and good backfill materials were adopted, and scientific construction procedures were followed. The paper reports for the first time the testing results of certain ancient tomb backfill materials. The results indicated that the materials have so low a permeability as 1.5 x 10 -8 cm/s , and strong adsorption to radionuclides Co and Cs with the distribution coefficients of 1.4 x 10 4 mL/g and 2.1 x 10 4 mL/g, and the retardation factors of 4.4 x 10 4 and 7.7 x 10 4 respectively. Good performance of these materials is important assurance of long-term preservation of the ancient tombs. These materials may be considered to be used as backfill materials in low-and-intermediate level radioactive shallow burial disposal. (4 figs., 10 tabs.)

  7. An improved analytical method for iodine-129 determination in low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Kong; Wang, TsingHai; Jian, Li-Wei; Chen, Wei-Han; Wang, Chu-Fang [National Tsing Hua Univ., Hsinchu, Taiwan (China). Dept. of Biomedical Engineering and Environmental Sciences; Tsai, Tsuey-Lin [Atomic Energy Council, Taiwan (China). Chemical Analysis Div.

    2014-07-01

    In this study, an alkaline-digestion pretreatment and a subsequent ICP-MS measurement were conducted for iodine-129 (I-129) determination in low-level radioactive waste. A TMAH + H{sub 2}O{sub 2} + Triton X-100 mixed alkaline digestion was the most effective mixture for I-129 determination. Using this alkaline reagent, a high level of I-129 recovery (101 ± 6%) was achieved for the analysis of the I-129-spiked standard reference materials NIST 2709 and 2711. Importantly, the I-129 concentrations determined for ten real samples provided by the Lan-Yu radioactive waste temporary storage site were found to be below the detection limit (0.011 mg/kg). This value was only approximately 30-70% of the values determined using the I-129/Cs-137 scaling factor. This means that using the I-129/Cs-137 scaling factor severely overestimates the I-129 concentration in these low-level radioactive wastes. We therefore suggest that a detailed re-inspection of the I-129/Cs-137 scaling factor should be performed to appropriately categorize these low-level radioactive wastes.

  8. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  9. Recommended regulatory program plan for low-level radioactive waste management in Maryland

    International Nuclear Information System (INIS)

    1986-01-01

    The National Program for Low-Level Radioactive Waste Management was instituted by the US Department of Energy to assist the states in carrying out this new federal policy. Based on the premise that the safe disposal of low-level waste is technologically feasible and that states have the necessary degree of authority to set management policy, the National Program is helping them to develop a responsive, comprehensive regulatory program. The State of Maryland is actively engaged with the National Program in its efforts to form a comprehensive management program. The purpose of this plan is to review existing statutory and regulatory program responsibilities and provide a recommended management scheme for low-level radioactive waste

  10. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  11. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  12. Alternative methods for disposal of low-level radioactive wastes. Task 2c: technical requirements for earth mounded concrete bunker disposal of low-level radioactive waste. Volume 4

    International Nuclear Information System (INIS)

    Miller, W.O.; Bennett, R.D.

    1985-10-01

    The study reported herein contains the results of Task 2c (Technical Requirements for Earth Mounded Concrete Bunker Disposal of Low-Level Radioactive Waste) of a four-task study entitled ''Criteria for Evaluating Engineered Facilities''. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to potential license applicants. The earth mounded concrete bunker disposal alternative is one of several methods that may be proposed for disposal of low-level radioactive waste. The name of this alternative is descriptive of the disposal method used in France at the Centre de la Manche. Experience gained with this method at the Centre is described, including unit operations and features and components. Some improvements to the French system are recommended herein, including the use of previous backfill around monoliths and extending the limits of a low permeability surface layer. The applicability of existing criteria developed for near-surface disposal (10 CFR Part 61 Subpart D) to the earth mounded concrete bunker disposal method, as assessed in Task 1, are reassessed herein. With minor qualifications, these criteria were found to be applicable in the reassessment. These conclusions differ slightly from the Task 1 findings

  13. The case for deep-sea disposal of low-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1983-01-01

    The scientific justification for the sea disposal of low-level solid radioactive wastes is summarized and the relevant national and international codes of practice and legislation are outlined. It is concluded that, since the amount of radioactivity disposed of in the oceans is very small compared with the natural radioactivity, the environmental hazard is small and sea dumping could be increased. (U.K.)

  14. Packaging and transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Streatfield, R.E.

    1987-02-01

    The paper presents an overview of Nirex proposals for the packaging and transport of low and intermediate-level radioactive waste, as well as the regulatory requirements which must be met in such operations. (author)

  15. Radioactive waste management: a summary of state laws and administration. National Low-Level Radioactive Waste Management Program. Revision 6

    International Nuclear Information System (INIS)

    1985-12-01

    This is the sixth update of ''Radioactive Waste Management: A Summary of State Laws and Administration.'' It completely replaces the fifth update (15 September 1984). The updated report covers low-level radioactive waste compacts, and the administration, the legislature and the laws related to radioactive waste management in each of the fifty states. The report is organized by low-level waste compact regions. Each section begins with a description of the low-level waste compact, followed by reports on each state within the region. There are also sections for states which have made plans to dispose of waste independently of a compact, and for those states which have not yet declared their intentions. The report on each compact is divided into four sections: Cover Page, Chair Organization, State Delegations, and Compact

  16. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Proceedings

    International Nuclear Information System (INIS)

    1997-01-01

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories

  17. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    International Nuclear Information System (INIS)

    None

    1997-01-01

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories

  18. Disposal Options for Low and Intermediate-Level Radioactive Waste: Comparative Study

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    This study presents the status of current disposal options for Low and Intermediate- Level Radioactive Waste (LILRW) generated in different countries and outlines the potential for future disposal option/s of these wastes in Egypt. Since approaches used in other countries may provide useful lessons for managing Egyptian radioactive wastes. This study was based on data for19 countries repositories and we focused on 6 countries, which considered as leaders in the field of disposal of rad waste. Several countries have plans for repositories which are sufficiently advanced that it was based on their own of their extensive experience with nuclear power generation and with constructing and operating LLRW disposal facilities. On the other hand, our programme for site selection and host rock characterization for low and intermediate level radioactive waste disposal is under study. We are preparing our criteria for selecting a national repository for LIL rad waste.

  19. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  20. Research and Development of Solar Evaporation on Low Level Radioactive Liquid Waste

    Directory of Open Access Journals (Sweden)

    ZHANG Hua

    2016-02-01

    Full Text Available Solar evaporation, which can save energy and obtain the higher decontamination factor, the larger treatment capability with the simpler designed and easy operation, was one of the general methods to treat low level radioactive liquid waste. However, the use of solar evaporation was limited because the facilities had to occupy the larger area and require sunshine for the longer duration, etc. Several cases form USA, Australian, India and South Korea were presented on R&D of solar evaporation to treat low level radioactive liquid waste.

  1. The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1991-01-01

    The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These ''mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs

  2. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  3. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    Peel, J.W.; Levin, G.B.

    1980-01-01

    In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document

  4. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-01-01

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  5. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  6. Cement encapsulation of low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.

    2000-01-01

    Investigations have been carried out to solidify in cement a low-level radioactive waste of complex chemistry which should be produced in a new plant designed to process radioactive effluents from CEA Cadarache Research Center. Direct cementation comes up against a major problem: a very long setting time of cement due to strong inhibition by borates from the waste. A two-stage process, including a chemical treatment prior to immobilization, has been elaborated and the resulted material characterized. (authors)

  7. Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections

    International Nuclear Information System (INIS)

    Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

    1994-09-01

    This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging

  8. Policy considerations of low-level and intermediate-level radioactive wastes from a public interest perspective

    International Nuclear Information System (INIS)

    Rodgers, S.

    1977-01-01

    A critical, environmentalist view is taken of the problem of low-level radioactive waste disposal. Policy questions and needs for additional data are listed. The lack of a requirement for environmental impact statements prior to site licensing is pointed out. Some of New Mexico's experiences are briefly recounted. The need for definitions for radioactive wastes is pointed out

  9. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  10. 1989 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1990-12-01

    The National Low-Level Waste Management Program has published eleven annual state-by-state assessment reports. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1989 and a comparison of waste volumes by state for 1985 through 1989; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1989. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that handled by an intermediary. 7 refs., 4 tabs

  11. Historic low-level radioactive waste federal policies, programs and oversight

    International Nuclear Information System (INIS)

    Blanchette, M.; Kenney, J.; Zelmer, B.

    2011-01-01

    'Full text:' The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radio-isotopes today, there has been a steady accumulation of waste products. Historic waste is low-level radioactive waste for which the federal government has accepted responsibility for long-term management. This paper will outline the policy framework used to govern institutional and financial arrangements for the disposal of radioactive waste by waste producers and owners and the major radioactive projects in which the Government of Canada is currently involved. It will provide an overview of the organizations established for the management of historic radioactive waste and NRCan's oversight role. Finally, an overview of the historic waste program activities managed on behalf of the federal government through these organizations in the Port Hope area, the Greater Toronto Area, in Fort McMurray, Alberta and along the Northern Transportation Route is provided. Canada's Policy Framework for Radioactive Waste, sets out principles that govern the institutional and financial arrangements for disposal of radioactive waste by waste producers and owners. According to the Policy Framework: The federal government will ensure that radioactive waste disposal is carried out in a safe, environmentally sound, comprehensive, cost-effective and integrated manner; The federal government has the responsibility to develop policy, to regulate, and to oversee producers and owners; and, The waste producers and owners are responsible, in accordance with the principle of 'polluter pays', for the funding, organization, management and operation of disposal and other facilities required for their wastes. Arrangements may be different for nuclear fuel waste, low-level radioactive waste and

  12. Toward a national policy for managing low-level radioactive waste: key issues and recommendations

    International Nuclear Information System (INIS)

    Duerksen, C.J.; Mantell, M.; Thompson, G.P.

    1981-06-01

    The Conservation Foundation, a not-for-profit research and public education organization, asked individuals with diverse backgrounds and viewpoints to come together under Foundation leadership as a Dialogue Group on Low-Level Radioactive Waste Management. The group, including persons who represent waste generators, concerned citizens, state regulators, and environmentalists, met over an 18-month period to discuss issues crucial to the development of a national policy on low-level wastes. The Dialogue Group agreed that three principles, if accepted broadly, would form the basis of a sound national policy for managing low-level radioactive wastes: with proper implementation, technology exists to manage low-level waste safely; generators and their customers should pay disposal costs; and greater public involvement at all stages can improve the disposal system. These principles acted as polestars for the group as it worked toward a series of policy recommendations in four main areas: (1) cleaning up closed commercial sites; (2) remodeling a system for defining and classifying low-level radioactive waste; (3) siting new low-level waste disposal facilities; and (4) decommissioning, long-term care, and liability. This report presents an extensive discussion of these recommendations covering qualifications, limitations, and alternatives

  13. Low-level radioactive waste management: an economic assessment

    International Nuclear Information System (INIS)

    Peery, R.J.

    1981-07-01

    This paper has presented an overview of the economics of low-level radioactive waste disposal. It is hoped that this paper will assist the states in their efforts to determine their approach to the management of low-level wastes. Although the economies of scale realized by a larger facility are emphasized, the conclusion is that every state and region must examine its need for low-level waste disposal services and consider the interrelated factors that affect the volume of waste to be disposed, including waste reduction techniques, interim storage for not a single recommended capacity for a facility, but an acknowledgement of contingencies. In theory, per cubic foot disposal costs decrease as facility size increases. But theory does not preclude a state from constructing its own site, or a region generating small volumes of waste from building a shared facility. All factors should be weighed before a site is chosen and its size is determined

  14. Guidelines for the selection of sites for disposal of radioactive waste on or beneath the ocean floor

    International Nuclear Information System (INIS)

    Searle, R.C.

    1979-01-01

    An assessment of factors which will probably need to be taken into account in selecting potential sites for the disposal of high-level radioactive wastes into geological formations beneath the ocean floor is presented based in part on a survey of available published and unpublished literature. Since present quantitative knowledge concerning the properties and processes of the sea bed and oceanic waters is poor the guidelines are generally stated in qualitative terms and it is hoped that future research will determine acceptable quantitative values for the parameters involved. The subject is dealt with under the headings; introduction, emplacement below the sea-bed, emplacement on the sea-bed, identification of oceanic areas that might prove suitable for disposal of high-level radioactive wastes (discussion limited to the North Atlantic). 30 references. (U.K.)

  15. Annual report of the Aube storage center for very-low-level radioactive wastes (CSTFA) - 2011

    International Nuclear Information System (INIS)

    2012-08-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra operates two storage centers in the Aube region (France): the center for short-lived low- and intermediate-level wastes, and the center for very-low-level radioactive wastes. This document is the 2011 activity report of the center for very-low-level radioactive wastes. It presents a review of the activities of the center: presentation of the installations, safety, security and radiation protection, environmental monitoring and effluents, public information and communication

  16. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  17. Environmental monitoring of low-level radioactive materials

    International Nuclear Information System (INIS)

    Jester, W.A.; Yu, C.

    1985-01-01

    The authors discuss some of the current rationale behind the environmental monitoring of low-level radioactive materials are as follows: Committee 4 of the International commission on Radiological Protection (ICRP) defined three broad objectives for environmental monitoring: 1) assessment of the actual or potential exposure of humans to radioactive materials or radiation present in their environment or the estimation of the probable upper limits of such exposure; 2) scientific investigation, sometimes related to the assessment of exposures, sometimes to other objectives; 3) improved public relations. Various regulations have been written requiring environmental monitoring to ensure that the public is not being exposed to excessive amounts of radiation from natural sources or from human activities. An example of the monitoring of natural sources of radiation is a requirement of the Environmental Protection Agency's (EPA) National Interim Primary Drinking Water Regulations whereby U.S. water supply companies must have drinking water monitored at least once every four years for radionuclides, primarily the naturally occurring radium-226

  18. Report on the evaluation under the Act No 24/2006 of Coll. Environmental Impact Assessment Law Extension of National Radioactive Waste Repository in Mochovce for disposal low-level radioactive waste and construction of very low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Hanusik, V.; Moravek, J.; Kusovska, Z.

    2011-01-01

    The report elaborated assessment of the environmental impact of extension of the National Radioactive Waste Repository in Mochovce for disposal of low and intermediate level radioactive wastes. Within this repository also the premises for very low level radioactive waste deposition should be built. The assessment report was prepared according to the Act no. 24/2006 Coll, as amended 'On the assessment of environmental impacts' Annex No. 11 upon The scope of assessment issued by the competent authority on the basis of assessment of Intent for this action. The report was prepared in VUJE, Inc. Trnava for Nuclear and Decommissioning Company, Inc. Bratislava (JAVYS).

  19. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B. (Atomic Energy Authority, Hot Lab. Center, Cairo (Egypt))

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs.

  20. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    International Nuclear Information System (INIS)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B.

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs

  1. Some aspects of low-level radioactive-waste disposal in the US

    International Nuclear Information System (INIS)

    Schweitzer, D.G.; Davis, R.E.

    1982-01-01

    This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans

  2. A performance assessment methodology for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Derring, L.R.

    1990-01-01

    To demonstrate compliance with the performance objectives governing protection of the general population in 10 CFR 61.41, applicants for land disposal of low-level radioactive waste are required to conduct a pathways analysis, or quantitative evaluation of radionuclide release, transport through environmental media, and dose to man. The Nuclear Regulatory Commission staff defined a strategy and initiated a project at Sandia National Laboratories to develop a methodology for independently evaluating an applicant's analysis of postclosure performance. This performance assessment methodology was developed in five stages: identification of environmental pathways, ranking the significance of the pathways, identification and integration of models for pathway analyses, identification and selection of computer codes and techniques for the methodology, and implementation of the codes and documentation of the methodology. This paper summarizes the NRC approach for conducting evaluations of license applications for low-level radioactive waste facilities. 23 refs

  3. De minimis applications for alternative disposal of very low level radioactive waste at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.

    1986-01-01

    Existing NRC regulations provide no minimum level of radioactivity in waste from a licensee's facility that may be disposed of in a manner other than as radioactive waste. With one exception, in 10CFRsection20.306, licensees may dispose of certain levels of tritium and carbon-14 in liquid-scintillation and animal-carcass waste without regard to its radioactivity. In the interim, before specific or generic provisions for disposing of very low level radioactive wastes are adopted through rule making, licensees have another alternative for obtaining approval to dispose of large volumes of materials contaminated with very low levels of radioactivity under provision 10CFRsection20.302(a) ''Method for obtaining approval of proposed disposal procedures.'' This paper provides the experiences of obtaining both NRC and states (North Carolina and South Carolina) approval for disposing of very low-level radioactive wastes from Duke Power Company's nuclear stations. The approved disposal procedures include landfarming of water treatment residues, on-site disposal (burial) of sand and feedwater heaters, and include offsite release for treatment and disposal of sanitary sewage sludge. In summary, users of radioactive materials should not exclude this approach in their quest to reduce the volume of radioactive waste. It is expected that such submittals could provide a data base for further development of generic limits for radioactive wastes

  4. Low-level radioactive waste management in EDF nuclear power plants (FRANCE)

    International Nuclear Information System (INIS)

    Boussard, C.

    1991-01-01

    This paper shows some recent examples of Low-level radioactive waste management in EDF nuclear power plants: - Radioactive liquid wastes proceeding from steam generators leaching (NOGENT SUR SEINE-1 REACTOR) - Thermal insulation proceeding from heat exchanger and blower (CHINON-2 REACTOR) - Old iron from reactor dismantling (CHINON-3 REACTOR, MARCOULE G1 REACTOR, MARCOULE G2-G3 REACTORS) - fresh air filter and fire detector - CHINON-2 REACTOR breaker chambers

  5. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  6. Conditioning and storage of low level radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2000-01-01

    FR Yugoslavia is a country without any nuclear power plant on its territory. In the last forty years in the country, as a result of the two research reactors operation and also from radionuclides applications in medicine, industry and agriculture, radioactive waste materials of different levels of specific activity are generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facility. Since one of the storage facilities is completely full with radioactive wastes, packed in metal drums and plastic barrels, and the second one has an effective space for the next few years, attempts are made in the 'Vinca' Institute of Nuclear Sciences in developing the the immobilization process, for low and intermediate level radioactive wastes and their safe disposal. As an immobilization process, cementation process is investigated. Developed immobilization process has, as a final goal, production of solidified waste-matrix mixture form, that is easy for handling and satisfies requirements for interim storage and final disposal. Radioactive wastes immobilized in inactive matrices are to be placed into concrete containers for further manipulation and disposal

  7. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  8. Overview of commercial low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    Disposal of commercial low-level radioactive waste (LLW) is a critical part of the national infrastructure needed to maintain the health of American businesses, universities, and hospitals. Currently only 19 States (located in the Northwest and Southeast) have access to operating disposal facilities; all other States are storing their LLW until they open new disposal facilities on their own or in concert with other States through regional compact agreements. In response to recommendations from the National Governors Association, Congress assigned the burden for LLW disposal to all States, first in 1980 through Public Law 96-573, the open-quotes Low-level Radioactive Waste Policy Actclose quotes, and again in 1986 through Public Law 99-240, the open-quotes Low-Level Radioactive Waste Policy Amendments Act of 1985close quotes. As directed by Congress, the Department of Energy provides technical assistance to States and compact regions with this task. After almost 14 years, nine compact regions have been ratified by Congress; California, Texas, North Carolina, and Nebraska have submitted license applications; California has issued an operating license; and the number of operating disposal facilities has decreased from three to two

  9. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  10. Ward Valley and the Federal Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1996-01-01

    In his State of the Union Address delivered on 23 January 1996, President Clinton said, speaking generally, open-quotes Passing a law - even the best possible law - is only a first step. The next step is to make it work.close quotes The president is right, of course; faithful execution of any law is the key. Unfortunately, this lesson appears lost on his own administration when it comes to making the Low-Level Radioactive Waste Policy Act work. That act is one of the most important environmental laws of the 1980s. It was designed by Congress and the state governors to assure both sufficient disposal capacity for low-level radioactive waste (LLRW) and regional equity in the siting of new disposal facilities. Former Congressman Morris Udall (D-Ariz.), who was chairman of the House Interior Committee and a congressional environmental leader, was author of the act. No state has done more to make the law work than California. No state has made more progress toward developing a new disposal facility for low-level radioactive waste as mandated by the act. But further progress, that is, actual construction and operation of a disposal facility, has been stymied by the federal administration, which has refused to convey federal desert lands to California for use as the site of the proposed disposal facility

  11. Directions in low-level radioactive-waste management. Planning state policy on low-level radioactive waste

    International Nuclear Information System (INIS)

    1982-10-01

    The majority of states face a growing problem in the management of low-level radioactive waste generated within their borders. The current uncertainty regarding the availability of disposal sites for these waste products exacerbates their increasing generation rate. The purpose of this publication is to assist state governments in planning effective policy to address these problems. Background information is presented on the current situation, the responsibilities of state government, and the assistance available to states from federal agencies and national groups. The document then focuses on state policy planning, including: (a) methodology for assessing a state's current waste management status and for projecting future needs, (b) consideration of waste management options for a state, and (c) insight into the possible effects and implications of planned policies. This information is intended primarily for state officials - executive, legislative, and agency - and does not include detailed technical information on waste characteristics or handling techniques

  12. 1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1996-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

  13. 1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

  14. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  15. A review of low-level radioactive waste compacts on a national level

    International Nuclear Information System (INIS)

    Brenneman, F.N.

    1985-01-01

    Since the 1950s, increased quantities of low-level radioactive waste (LLW) have been produced in the United States as a result of the use of radioactive materials in medical diagnoses and treatment, research, industrial processes, and electrical power generation by nuclear plants. With increasing volumes of commercially generated waste, the private sector was encouraged to develop LLW disposal facilities, to be licensed by the AEC or by AEC Agreement states. In 1962, the commercially operated Beaty, Nevada low-level waste facility was opened. During the ensuing nine years, five additional low-level waste disposal facilities opened, resulting, although not planned, in a regional distribution of such facilities. A number of technical and regulatory issues were raised over a period of two years by states and federal agencies, and, for the most part, were resolved. The NRC, DOE, and DOT reviewed and commented on the compacts throughout the drafting of compact language. Comments addressed the scope of the compacts (''management'' vs. ''disposal''), inspection of NRC licensees, regulatory roles of compact commissions, and regulatory requirements inconsistent with federal regulations, to name a few. Among those unresolved issues in some compacts is the definition of LLW, which varies among the compacts. Those in PL96-573 and the Nuclear Waste Policy Act of 1982 were both used, with and without variations. The definition of transuranic waste and those concentrations allowable at the disposal facilities are not uniform in the compacts

  16. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  17. Low-level radioactive waste in the northeast: disposal volume projections

    International Nuclear Information System (INIS)

    1982-10-01

    The northeastern states, with support of the Coalition of Northeastern Governors (CONEG), are developing compact(s) for the disposal and management of low-level radioactive waste (LLRW) generated in the eleven northeastern states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont). The Technical Subcommittee has made a projection of future low-level radioactive waste to the year 2000 based on existing waste volume data and anticipated growth in the Northeast states. Aware of the difficulties involved with any long range projection - unforeseen events can drastically change projections based on current assumptions - the Technical Subcommittee believes that waste volume projections should be reviewed annually as updated information becomes available. The Technical Subcommittee made the following findings based upon a conservative projection methodology: volumes of low-level waste produced annually in the eleven states individually and collectively are expected to grow continually through the year 2000 with the rate of increase varying by state; by the year 2000, the Northeast is projected to generate 58,000 m 3 of low-level waste annually, about 1.9 times the current average; and based on current estimates, 47% of the total projected waste volume in the year 2000 will be produced by nuclear power plants, compared to the current average of 54%. Non-reactor wastes will equal 53% of the total in the year 2000 compared to the current 46%

  18. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  19. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  20. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  1. Low-level radioactive wastes in subsurface soils

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-01-01

    Low-level radioactive wastes will continue to be buried in shallow-land waste disposal sites. Several of the burial sites have been closed because of the problems that developed as a result of poor site characteristics, types of waste buried, and a number of other environmental factors. Some of the problems encountered can be traced to the activities of microorganisms. These include microbial degradation of waste forms resulting in trench cover subsidence, production of radioactive gases, and production of microbial metabolites capable of complexation, solubilization, and bioaccumulation of radionuclides. Improvements in disposal technology are being developed to minimize these problems. These include waste segregation, waste pretreatment, incineration, and solidification. Microorganisms are also known to enhance and inhibit the movement of metals. Little is known about the role of autotrophic microbial transformations of radionuclides. Such microbial processes may be significant in light of improved disposal procedures, which may result in reductions in the organic content of the waste disposed of at shallow-land sites. 102 references, 5 figures, 19 tables

  2. Questionnaire established for the Brazilian inventory of low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio T., E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Fabio; Pinto, Antonio Juscelino, E-mail: silvaf@cdtn.br, E-mail: ajp@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Taveira, Gerson L.S., E-mail: gersonluizst@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Engenharia de Producao Civil

    2015-07-01

    The Nuclear Technology Development Center (CDTN), an institute of Brazilian National Commission of Nuclear Energy (CNEN), is responsible for the technical coordination of the Brazilian Repository Project (RBMN), for Low and Intermediate Level Radioactive Wastes. To establish the inventory of the low and intermediate radioactive level waste to be disposed in the national Repository, a questionnaire was elaborated to be filled on line, via WEB, exclusively to registered users, which involved CNEN's institutes, ELETRONUCLEAR, INB and CTMSP. Based on all standardized information received from questionnaires, an easy use database to inventory the radioactive waste was created in Microsoft Access® that supported the calculation of the volume of radioactive waste treated and non-treated, stored and generated presently in Brazil. In addition, from this database it will be possible to establish some disposal procedures and the necessary area of construction. The objective of this work is to present this database and some general information about the radwastes in Brazil. (author)

  3. Questionnaire established for the Brazilian inventory of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Marumo, Julio T.; Silva, Fabio; Pinto, Antonio Juscelino; Taveira, Gerson L.S.

    2015-01-01

    The Nuclear Technology Development Center (CDTN), an institute of Brazilian National Commission of Nuclear Energy (CNEN), is responsible for the technical coordination of the Brazilian Repository Project (RBMN), for Low and Intermediate Level Radioactive Wastes. To establish the inventory of the low and intermediate radioactive level waste to be disposed in the national Repository, a questionnaire was elaborated to be filled on line, via WEB, exclusively to registered users, which involved CNEN's institutes, ELETRONUCLEAR, INB and CTMSP. Based on all standardized information received from questionnaires, an easy use database to inventory the radioactive waste was created in Microsoft Access® that supported the calculation of the volume of radioactive waste treated and non-treated, stored and generated presently in Brazil. In addition, from this database it will be possible to establish some disposal procedures and the necessary area of construction. The objective of this work is to present this database and some general information about the radwastes in Brazil. (author)

  4. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  5. Report to Congress in response to Public Law 99-240: 1990 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the progress during 1990 of states and compact regions in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1990 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act, as amended by Public Law 99-240

  6. An innovative approach to solid Low Level Radioactive Waste processing and disposal

    International Nuclear Information System (INIS)

    Pancake, D.C. Jr.; Sodaro, M.A.

    1994-01-01

    This paper will focus on a new system of Low Level Radioactive Waste (LLW) accumulation, processing and packaging, as-well as the implementation of a Laboratory-wide training program used to introduce new waste accumulation containers to all of the on-site radioactive waste generators, and to train them on the requirements of this innovative waste characterization and documentation program

  7. 76 FR 50500 - Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive...

    Science.gov (United States)

    2011-08-15

    ... issued when disposal space was scarce since two of the three operating low level radioactive waste (LLRW... radioactive waste management program. While the Commission continues to favor the disposal of LLRW over... on Volume Reduction and Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission...

  8. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  9. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  10. Central interstate low-level radioactive waste compact region site exclusionary screening study. Phase I. Final report

    International Nuclear Information System (INIS)

    1985-06-01

    The Low-Level Radioactive Waste Policy Act of 1980 assigns to the states the responsibility for disposal of the low-level radioactive waste generated within their boundaries. It also provides for regional compacts among states to address their needs on a broader basis and permits restriction of the use of regional disposal facilities after January 1, 1986, to generators of low-level waste within the region. Each state, either individually or as a member of a compact, must therefore consider the establishment of a low-level radioactive waste disposal facility within its borders. The states of Arkansas, Kansas, Louisiana, Nebraska, and Oklahoma adopted the Central Interstate Low-Level Waste Compact (CILLWC) and legislation was submitted to Congress for consent in June of 1983 legislation is being reintroduced in the 99th Congress. In August of 1984, the CILLWC selected and contracted Dames and Moore to conduct a Phase I-Site Suitability Screening Study for a low-level radioactive waste disposal facility in the five-state region. This report presents the results of the Phase I Screening Study. Dames and Moore reported to the Technical Advisory Committee (TAC) of the CILLWC which provided guidance and comment on work progress and direction

  11. A Low Level Radioactivity Monitor for Aqueous Waste

    International Nuclear Information System (INIS)

    Quirk, E.J.M.

    1968-04-01

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For β radioactivity the minimum values of specific activity measurable extend from 1 x 10 -6 Ci/m 3 to 6 x 10 -8 Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10 -8 Ci/m 3

  12. Low-level radioactive wastes. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them. 18 references

  13. A Low Level Radioactivity Monitor for Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, E J.M.

    1968-04-15

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For {beta} radioactivity the minimum values of specific activity measurable extend from 1 x 10{sup -6} Ci/m{sup 3} to 6 x 10{sup -8} Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10{sup -8} Ci/m{sup 3}.

  14. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  15. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States

  16. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  17. Experience of the Low-Level Radioactive Waste Management Office with EARP

    International Nuclear Information System (INIS)

    Franklin, B.J.; Pollock, R.W.

    1996-01-01

    The Low-Level Radioactive Waste Management Office (LLRWMO) was established by the federal government in 1982 to carry out the government's responsibilities for low-level radioactive waste (LLRW) management in Canada. The LLRWMO mandate includes the resolution of historic waste problems which are a federal responsibility. Assessment of LLRWMO projects in accordance with the federal Environmental Assessment Review Process (EARP) has been a long-standing requirement, both as a matter of AECL policy and because the work is federally funded. Several projects have required interim storage at, or near, the original waste site. This aspect, interim storage, can be controversial, and is the primary focus of this paper. Specifically, the paper describes LLRWMO experience with environmental assessment, including public consultation as an integral part of the assessment process, for projects from 1983 to present which have involved substantial volumes of contaminated soil. (author)

  18. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  19. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  20. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  1. Risk comparisons relevant to sea disposal of low level radioactive waste

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains estimates of, and comparisons among, risks to human health posed by exposures to radionuclides, including those associated with low level radioactive wastes dumping at sea, and organic chemical contaminants resulting from seafood consumption. This study was conducted at the request of the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (the London Convention 1972, formerly referred to as the London Dumping Convention) as a component of a review of the wider political, legal, economic and social aspects of sea dumping of radioactive wastes. The highest potential risks associated with seafood consumption are generally those resulting from exposures to naturally occurring radionuclides. In some representations, the potential risks associated with polychlorinated biphenyls (ΣPCB) and dieldrin in seafood are of the same order as those arising from naturally occurring radionuclides. The peak annual risks resulting from low level radioactive waste dumping at sea, assessed on any rational basis, are at least two orders of magnitude lower than those associated with the ingestion of common organic chemical contaminants in seafood. 47 refs, 4 figs, 13 tabs

  2. Significant progress towards development of the low-level radioactive waste disposal facility in Illinois

    International Nuclear Information System (INIS)

    Klebe, M.; Henry, T.L.; Corpstein, P.

    1996-01-01

    Development of disposal sites for low-level radioactive waste is a complicated legal, regulatory and public sector process. Development of the low-level radioactive waste disposal facility to support generators in Illinois and Kentucky is well under way. Significant progress has been made to re-engineer the siting development process capitalizing on prior lessons learned and a recommitment from Illinois state leadership assuring the future success of the program. Comparisons of why this new process will succeed are the major focus of this paper. Specific changes in approach from the previous process including changes in the Illinois Management Act (Management Act), creation of the Illinois Low-Level Radioactive Waste Siting Task Group (Task Group), new roles for the Illinois State Geologic Survey and Illinois State Water Survey (Scientific Surveys) and the Illinois Department of Nuclear Safety (IDNS), a new contractor reliance approach and increased confidence on the open-quote science close-quote are the major contrasts between the previous process and the new process currently underway

  3. Management of low-level radioactive waste in the Southeast Compact Region: Volume 2, Management plan: Final report

    International Nuclear Information System (INIS)

    1985-07-01

    The Southeast Compact Commission for Low-Level Radioactive Waste Management has begun the development of a regional low-level radioactive waste management plan. They have reviewed and analyzed existing data on current low-level radioactive waste volumes shipped for disposal by generators in the Southeast region and have supplemented existing data by direct contact with State regulatory personnel, disposal site operators, and individual generators. The Commission has also projected the amounts and types of waste expected to require offsite disposal. This characterized data base and the projections of waste volumes and types through 1996 are included in this volume. Alternative disposal and treatment technologies were evaluated for management of the waste in the region. This evaluation consisted of a review of the literature concerning the several technologies in low level radioactive waste management. This information is summarized in Appendix A. 72 refs., 28 figs., 30 tabs

  4. Managing Greater-Than-Class C low-level radioactive waste: A strategic plan

    International Nuclear Information System (INIS)

    1990-04-01

    This strategic plan describes the DOE goals, objectives, and strategy for fulfilling its responsibility to dispose of Greater-Than-Class C low-level radioactive waste (GTCC LLW), in accordance with the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The strategy for fulfilling this responsibility consists of three sequential tasks: interim storage of limited quantities of GTCC LLW at currently operating DOE facilities on an as-needed basis; general acceptance of GTCC LLW for storage in a DOE dedicated facility pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission (NRC). The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  5. Role of the state in the regulation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Brenneman, F.N.; Salomon, S.N.

    1983-03-01

    This document describes the role of the State in the regulation of low-level radioactive waste in the context of the Low-Level Radioactive Waste Policy Act of 1980 (Public Law 96-573), which recognizes that the States are responsible for disposal of the waste and as such may develop interstate compacts. The perspective is the present national regulatory framework for the waste system, including generation, transport, treatment, storage and disposal. Although not a definitive legal statement of the area in which States may properly act, the regulatory authority of all Compact States as Agreement States, States with a limited Agreement, and as non-Agreement States is described. The analysis is based on the assumption that the disposal site is State land

  6. Ratio methods for cost-effective field sampling of commercial radioactive low-level wastes

    International Nuclear Information System (INIS)

    Eberhardt, L.L.; Simmons, M.A.; Thomas, J.M.

    1985-07-01

    In many field studies to determine the quantities of radioactivity at commercial low-level radioactive waste sites, preliminary appraisals are made with field radiation detectors, or other relatively inaccurate devices. More accurate determinations are subsequently made with procedures requiring chemical separations or other expensive analyses. Costs of these laboratory determinations are often large, so that adequate sampling may not be achieved due to budget limitations. In this report, we propose double sampling as a way to combine the expensive and inexpensive aproaches to substantially reduce overall costs. The underlying theory was developed for human and agricultural surveys, and is partially based on assumptions that are not appropriate for commercial low-level waste sites. Consequently, extensive computer simulations were conducted to determine whether the results can be applied in circumstances of importance to the Nuclear Regulatory Commission. This report gives the simulation details, and concludes that the principal equations are appropriate for most studies at commercial low-level waste sites. A few points require further research, using actual commercial low-level radioactive waste site data. The final section of the report provides some guidance (via an example) for the field use of double sampling. Details of the simulation programs are available from the authors. Major findings are listed in the Executive Summary. 9 refs., 9 figs., 30 tabs

  7. Low-level radioactive waste transportation plan for the State of Maryland

    International Nuclear Information System (INIS)

    Chaparala, P.N.

    1985-01-01

    The purpose of this document is to prepare a recommended transportation plan that will outline specific procedures for monitoring and regulating low-level radioactive waste transport in Maryland and which is consistent with federal law and party-state requirements under the Appalachian Compact

  8. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  9. Performance assessment for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Cook, J.R.; Hsu, R.H.; Wilhite, E.L.; Yu, A.D.

    1996-01-01

    In October 1994 the Savannah River Site became the first US DOE complex to use concrete vaults to dispose of low-level radioactive solid waste and better prevent soil and groundwater contamination. This article describes the design and gives a performance assessment of the vaults. Topics include the following: Performance objectives; scope; the performance assessment process-assemble a multidisciplinary working group; collect available data; define credible pathways/scenarios; develop conceptual models; conduct screening and detailed model calculations; assess sensitivity/uncertainty; integrate and interpret results; report. 9 figs., 3 tabs

  10. The low and medium level solid radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    One of the most controversial aspects in the nuclear energy utilization for pacific purposes is related with the low and medium level solid radioactive wastes production, during the nuclear power plants operation. These wastes shall be inmobilizated before their storage on-site or their transport out-site. This paper presents an exposition about the avobe mentioned problem, attending three basic areas: the fundamental concepts and criteria for their management, the methods used in western countries and the present situation of the spanish nuclear power plants in operation and under construction. (auth.)

  11. Defining greater-than-class-C low-level radioactive waste

    International Nuclear Information System (INIS)

    Knecht, M.A.; Oztunali, O.I.

    1986-01-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) was signed by President Reagan on January 15, 1986. This act requires the federal government to be responsible for the disposal of greater-than-class-C low-level radioactive waste (LLRW) that is generated commercially by state agencies and by federal entities (other than waste generated by atomic weapons research, development, or testing, or by decommissioning of vessels of the nuclear navy). To plan for disposal, the federal government will require estimates of the volume of waste involved and characterization of this waste. A clear definition of greater-than-class-C LLRW is the first step in determining what wastes will be included in the waste to be received by the federal government. This definition will influence major policy decisions to be made for management of such waste. The purpose of this paper is to examine the existing information on greater-than-class-C LLRW in view of the current definition of such waste and potential changes in this definition - for example, an upper limit on the concentrations of radionuclides in LLRW. The paper identifies further information needs to develop a clear definition of such waste for use in federal planning for acceptance of responsibility for disposal of such waste

  12. Letter report: Minor component study for low-level radioactive waste glasses

    International Nuclear Information System (INIS)

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass

  13. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  14. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  15. Inheritance from low-level radioactive waste

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kume, Tamikazu; Makuuchi, Keizo; Inoue, Tomio; Komoda, Fumio; Maeda, Mitsuru

    2009-01-01

    A benefit born as an inheritance from low-level radioactive waste is considered. In the present study, a direct economic scale of application of radiation in Japanese industry, agriculture and medicine is taken as parameter for quantifying the size of benefit. In 2006, the economic scale is about 21 billion dollars (b$) for industry, 2.5b$ for agriculture and 14b$ for medicine. Economic scale covered the all fields is totaled 37b$. Due to those benefit, one can drive a car and play an internet, pleasure the dinning food. Diagnosis and treatment by nuclear medicine can possible to survive the millions of lives and resulting in improving the quality of life, decreasing pain and suffering. However, most Japanese (80%>) may not aware those benefits to date. This report is prepared for aiming at disseminating those benefits to our peoples. (author)

  16. 1992 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; McDonald, S.D.

    1993-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1992 and a comparison of waste volumes and radioactivity by state for 1988 through 1992; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1992. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report

  17. 1994 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1994 and a comparison of waste volumes and radioactivity by state for 1990 through 1994; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1994. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  18. Long-term cover design for low-level radioactive and hazardous waste sites as applied to the Rocky Flats Environmental Technology Site solar evaporation ponds

    International Nuclear Information System (INIS)

    Stenseng, S.E.; Nixon, P.A.

    1996-01-01

    The US Department of Energy (DOE) operated five lined solar evaporation ponds (SEPs) at the Rocky Flats Environmental Technology Site (RFETS) in Jefferson County, Colorado from 1953 until 1986. The SEPs were used primarily to store and evaporate low-level radioactive and hazardous process wastes. Operation of the SEPs has resulted in contamination of the surrounding soils, and may also provide a source of groundwater contamination. The DOE proposes to close the SEPs by consolidating the contaminated material beneath an engineered cover. The primary objective of the closure of such hazardous and radioactive sites is to limit the exposure of the general public to the contaminants for time periods ranging from 100 to 10,000 years. The goal of the SEPs engineered cover is to isolate hazardous and low-level radioactive soils for a minimum of 1,000 years. Since there is currently no existing regulatory design guidance for a 1,000-year engineered cover, the proposed design of the SEPs engineered cover is based on research and testing that has been conducted for many years at various DOE facilities in the US. This paper discusses the main design theories of the proposed engineered cover for the closure of the SEPs, and how the research and test results of these other programs have been used to arrive at the final cover configuration, the material selections, the component layering, layer thicknesses, and the balance and interaction between components to establish an overall effective cover system

  19. Champagne for France's second low level [radioactive] waste disposal facility

    International Nuclear Information System (INIS)

    Chevrier, G.P.

    1992-01-01

    Located in the southern Champagne region, France's new million m 3 low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m 3 ), which has been operating since 1969. The design of the repository is described. (Author)

  20. Champagne for France's second low level [radioactive] waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Chevrier, G P [ANDRA, Fontenay aux Roses (France)

    1992-10-01

    Located in the southern Champagne region, France's new million m[sup 3] low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m[sup 3]), which has been operating since 1969. The design of the repository is described. (Author).

  1. Practices and developments in the management of low and intermediate level radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1983-06-01

    In the Swedish nuclear power program ten reactors are in operation and two more under construction. About 100000 m 3 of low and intermediate level radioactive waste will be produced from the operation of these reactors until the year 2010 and about 150000 m 3 from their decommissioning. All burnable radioactive wastes are sent to the Studsvik incineration plant for incineration. Spent resins are incorporated into cement or bitumen. The volume of non-combustible solid waste is reduced by compaction where possible. At the Studsvik research centre a substantial program for improved management of accumulated and future radioactive waste is at the beginning of its implementation. This includes advanced treatment and intermediate storage in a rock cavity. An R and D program on volume reduction of spent resins has reached the point of process verification and equipment design. All low and intermediate radioactive waste will be disposed in a rock cavity planned for commissioning by 1988. The paper reviews actual management experience and development efforts for low and intermediate level radioactive waste in Sweden. Contribution to the Seminar on the Management of Radioactive Waste, Taipei, Taiwan, 25-26 June, 1983. (Author)

  2. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  3. About the need for low or very low level radioactive waste disposal in the Republic of Montenegro

    International Nuclear Information System (INIS)

    Jovanovic, S.

    2005-01-01

    After the major constitutional changes in 2003, all nuclear related issues in Serbia and Montenegro, including the treatment of radioactive waste, went to the portfolios of the two constituent states, the Republic of Serbia and the Republic of Montenegro. Within the establishing of nuclear regulatory framework, and towards meeting the international requirements (e.g. IAEA's Basic Safety Standards and the Code of Conduct), the need for a low or very low level radioactive waste disposal in Montenegro is discussed. (author)

  4. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  5. Low-level radioactive waste from commercial nuclear reactors. Volume 1. Recommendations for technology developments with potential to significantly improve low-level radioactive waste management

    International Nuclear Information System (INIS)

    Rodgers, B.R.; Jolley, R.L.

    1986-02-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 1 provides an executive summary and a general introduction to the four-volume set, in addition to recommendations for research and development (R and D) for low-level radioactive waste (LLRW) treatment. Generic, long-range, and/or high-risk programs identified and prioritized as needed R and D in the LLRW field include: (1) systems analysis to develop decision methodology; (2) alternative processes for dismantling, decontaminating, and decommissioning; (3) ion exchange; (4) incinerator technology; (5) disposal technology; (6) demonstration of advanced technologies; (7) technical assistance; (8) below regulatory concern materials; (9) mechanical treatment techniques; (10) monitoring and analysis procedures; (11) radical process improvements; (12) physical, chemical, thermal, and biological processes; (13) fundamental chemistry; (14) interim storage; (15) modeling; and (16) information transfer. The several areas are discussed in detail

  6. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  7. Treatment and disposal of low- and medium-level radioactive wastes in Hungary

    International Nuclear Information System (INIS)

    Berci, Karoly; Feher, Janos; Hemm, Bela; Setenyi, Marta

    1989-01-01

    Low- and medium-level radioactive wastes from the Paks Nuclear Power Plant, Hungary, are treated and disposed according to international and Hungarian regulations. Treatment of liquid wastes is accomplished by cementing, most of solid wastes are disposed after compaction. The forming of the final disposal site satisfies every radiation protection criteria. The recommendations of radioactive waste treatment are interpreted and analyzed in detail, for the implementation of advanced radioactive waste treatment techniques and facilities for treating and disposing of the liquid and solid wastes accumulated during operation of the PNPP. (R.P.) 8 figs.; 9 tabs

  8. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  9. The low-level waste handbook: A user's guide to the Low-Level Radioactive Waste Policy Amendments Act of 1985

    International Nuclear Information System (INIS)

    Brown, H.

    1986-11-01

    This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts

  10. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  11. Challenges and Lessons Learned in Low-Level Radioactive Waste Management and Disposal in the Texas Compact

    International Nuclear Information System (INIS)

    Jablonski, S.M.

    2009-01-01

    This paper discusses challenges and lessons learned in approaching the management and disposal of commercial low-level radioactive waste in the Texas Compact. The State of Texas has actively worked decades to address radioactive waste management and disposal issues. The current strides made in Texas on the radioactive waste management front have benefited from unique attributes that help support a public policy foundation. The public policy of radioactive waste management, specifically low-level radioactive waste disposal, has been evolving in Texas for more than twenty years. The policy today is a product of past events and lessons learned. In many ways, public policy on radioactive waste disposal has come full circle. A purely scientific approach to radioactive waste management has not been the solution. Radioactive waste management public policy does not solely rely on technical expertise or state of the best technology. Sound science is simply not enough. Innovation in this case is largely people-based, focused on new ways to communicate and new opportunities to deliver a message of safe and effective radioactive waste management. (authors)

  12. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, Laura [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, Patti [; Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  13. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    Science.gov (United States)

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  14. New York State low-level radioactive waste status report for 1998

    International Nuclear Information System (INIS)

    Voelk, H.

    1999-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material's radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators' projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs

  15. Greater-Than-Class C low-level radioactive waste treatment technology evaluation

    International Nuclear Information System (INIS)

    Garrison, T.W.; Fischer, D.K.

    1993-01-01

    This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria

  16. Economics model for new low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report describes LLWECON, an interactive computer mode for evaluating financial factors involved in low-level radioactive waste disposal. The logic by which LLWECON calculates the final generator price (price per cubic foot the disposal site operator charges waste generators) is detailed. Required user input and hypothetical examples, covering sites with different capacities, and both public and private-sector development, are included

  17. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  18. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  19. Radioactivity distribution of the fruit trees ascribable to radioactive fall out. A study on stone fruits cultivated in low level radioactivity region

    International Nuclear Information System (INIS)

    Takata, Daisuke; Yasunaga, Eriko; Nakanishi, Tomoko M.; Sasaki, Haruto; Oshita, Seiichi; Tanoi, Keitaro

    2012-01-01

    After the accident of Fukushima Daiichi Nuclear Power Plant, radioactivity of fruit trees grown at an experimental farm of Nishi-Tokyo City in Tokyo, which was located about 230 km away from the power plant, was measured. Each organ of Japanese apricot and peach trees was taken at harvesting stage, respectively, and the radioactivity of 134 Cs and 137 Cs was measured. Although radioactivity of orchard soil and tree each organ were low generally, that of bark sampled from 3-old-year branch was as high as 1570 Bq/kg-dry weight. The total radioactivity of 134 Cs and 137 Cs in edible portion was far lower than that of the regulation level. (author)

  20. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, Mark [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada); Case, Glenn [Atomic Energy of Canada Limited, Port Hope, ON (Canada); Ferguson Jones, Andrea [MMM Group Limited, Thornhill, ON (Canada)

    2013-07-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

  1. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    International Nuclear Information System (INIS)

    Kolberg, Mark; Case, Glenn; Ferguson Jones, Andrea

    2013-01-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m 3 of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

  2. Status of the North Carolina/Southeast Compact low-level radioactive waste disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.K. [North Carolina Low-Level Radioactive Waste Management Authority, NC (United States)

    1993-03-01

    The Southeast Compact is a sited region for low-level radioactive waste because of the current facility at Barnwell, South Carolina. North Carolina has been designated as the next host state for the compact, and the North Carolina Low-Level Radioactive Waste Management Authority is the agency charged with developing the new facility. Chem-Nuclear Systems, Inc., has been selected by the Authority as its primary site development and operations contractor. This paper will describe the progress currently being made toward the successful opening of the facility in January 1996. The areas to be addressed include site characterization, performance assessment, facility design, public outreach, litigation, finances, and the continued operation of the Barnwell facility.

  3. A product designed for final disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Baboescu, E.; Popescu, I. V.

    2001-01-01

    The product 'metallic barrel - concrete - low level radioactive wastes - 1' (ABBD - 1) was certified according to the company's standard SF ICN/1994, updated 1. The product ABBD -1 is produced according to the following certified technologies: - technology for processing and conditioning of low level radioactive solid wastes; - technology for processing and conditioning of waste ion exchangers from the TRIGA reactor; - technology for conditioning the β - γ radioactive compacts. The product is constituted of a protection shield, the concrete block - radioactive waste, securing high mechanical strength and a high degree of radionuclides retaining, thus ensuring the necessary condition for long time disposal and, finally, the metallic container fulfilling the National Standards of Nuclear Safety for Radioactive Materials Transportation. The metallic container is made of pickled slab, with a 220 l capacity, according to STAS 7683/88 standards. The main characteristics of the product 'ABBD - 1' are: - size: height, 915 ± 10 mm, diameter, 600 ± 5 mm; - mass, 300 - 600 kg; - maximum permissible activity, 6 x 10 9 Bq/ barrel (0.164 Ci/barrel); - equivalent dose rate for gamma radiation at barrel's wall, max. 1 mSv/h (200 mrem/h); - unfixed external contamination, 2 ; - compression strength of concrete block alone, > 5 x 10 6 N/m 2 ; - lixiviation rate, -3 cm/day; - the compact concrete block-radioactive waste is leak-proof and crack-free. The final product is transferred from INR Pitesti to National Repository for Radioactive Waste by railway and road transportation according to the provisions of the National Commission for Nuclear Activity Control as stipulated in the National Standards of Nuclear Safety of Radioactive Materials Transportation

  4. Survey of microbiological effects in low-level radioactive waste disposed of to land

    International Nuclear Information System (INIS)

    McGahan, D.J.

    1987-01-01

    An evaluation of published literature was mounted to determine the current position of research into microbiological effects in low-level radioactive waste disposal sites and to assess the need for further research. It is concluded from the survey that the microbial activity present in domestic landfills also occurs in shallow land burial low-level radioactive waste disposal sites. The microbial activity results in the release of tritium as tritiated methane to the atmosphere and tritiated components to the leachate. Carbon-14 migration is also enhanced. It also accelerates the corrosion of steel and concrete used to contain the wastes. There is little evidence for enhanced migration of radionuclides as a result of their incorporation in bacteria but there is considerable evidence for enhancement resulting from the presence of complexing agents (such as ethylenediamine-tetraacetic acid and tributyl phosphate) in the waste. Research in this field has been observed to be very active in the United States. Its objective is to predict with more certainty the important parameters for future low-level radioactive waste site designs. Quantitative prediction of microbial effects and their magnitude is not easy to deduce from the published literature, and new site designs will differ markedly from those that have been in operation over the last thirty years. (author)

  5. Low and intermediate level radioactive waste processing in plasma reactor

    International Nuclear Information System (INIS)

    Sauchyn, V.; Khvedchyn, I.; Van Oost, G.

    2013-01-01

    Methods of low and intermediate level radioactive waste processing comprise: cementation, bituminization, curing in polymer matrices, combustion and pyrolysis. All these methods are limited in their application in the field of chemical, morphological, and aggregate composition of material to be processed. The thermal plasma method is one of the universal methods of RAW processing. The use of electric-arc plasma with mean temperatures 2000 - 8000 K can effectively carry out the destruction of organic compounds into atoms and ions with very high speeds and high degree of conversion. Destruction of complex substances without oxygen leads to a decrease of the volume of exhaust gases and dimension of gas cleaning system. This paper presents the plasma reactor for thermal processing of low and intermediate level radioactive waste of mixed morphology. The equipment realizes plasma-pyrolytic conversion of wastes and results in a conditioned product in a single stage. As a result, the volume of conditioned waste is significantly reduced (more than 10 times). Waste is converted into an environmentally friendly form that suits long-term storage. The leaching rate of macro-components from the vitrified compound is less than 1.10 -7 g/(cm 2 .day). (authors)

  6. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  7. Low-Q structure beneath The Geysers area in the northern California

    Science.gov (United States)

    Matsubara, M.

    2010-12-01

    A large reservoir is located beneath The Geysers geothermal area, northern California. Seismic tomography revealed high-velocity (high-V) and low-Vp/Vs zones in the reservoir (Julian et al., 1996) and a decrease of Vp/Vs from 1991 to 1998 (Guasekera et al., 2003) due to withdrawal of steam from the reservoir. I build on these earlier studies by performing the attenuation tomography in this region to investigate the Q structure. The target region, 38.5-39.0°N and 122.5-123°W, covers The Geysers area. I use seismographs of Northern California Earthquake Data Center, which recorded 1235 earthquakes with magnitude larger than 2.0 and resolved focal mechanisms from 2002 to 2008. The band-pass filtered seismographs are analyzed for collecting the maximum amplitude data. Three kinds of Butterworth band-pass filters, such as 1-3, 3-7, and 7-15, correspond to the analysis of the Q structure for 2, 5, and 10 Hz, respectively. I use the P- and S-wave maximum amplitudes between the two seconds after the arrival of those waves in order to avoid the effects by coda. A total of 8980 P- and 1086 S-wave amplitude data for 949 earthquakes recorded at 48 stations are available for the analysis using the attenuation tomographic method (Zao et al., 1996). Extremely low-Qp and Qs zones are found at the northwestern (NW) of The Geysers area at sea level. These zones are consistent with the high-Vp and Vs and low-Vp/Vs zones located at the NW part of the reservoir. The low-Qs zone extends to the southeast (SE) and with approximately 15 km length and 5 km width and has another negative peak beneath the SE part of the reservoir. This low-Qs zone is also consistent with the high-Vp and Vs regions of the reservoir characterized by a low-Vp/Vs zone. However, Qp in the SE part is slightly high. Below sea level in The Geysers reservoir, there are a main greywacke layer and a felsite layer. Above sea level, there is a greenstone melange beneath the NW extremely low-Qp and Qs region and a

  8. Issues in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Ashbrook, A.W.

    1984-01-01

    All industry finds itself today enmeshed in a morass of regulation, political apathy and public antagonism when it comes to hazardous industrial waste. Our industry is a world-class leader on all three fronts. There are no disposal facilities in Canada for radioactive wastes and the prognosis for the future is bleak. As the industry gets older, more and more facilities will be closed and require decommissioning. New facilities require plans for the long-term management of their wastes. Indeed, one major public issue with the nuclear industry is the fate of the wastes produced. In looking at the situation in which we find ourselves today with respect to the long-term management of naturally-occurring low-level radioactive wastes, one must wonder where we are going in the future, and whether indeed is an end in sight

  9. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  10. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  11. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  12. A comparison and cross-reference of commercial low-level radioactive waste acceptance criteria

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1997-04-01

    This document, prepared by the National Low-Level Waste Management Program at the Idaho National Engineering and Environmental Laboratory, is a comparison and cross-reference of commercial low-level radioactive waste acceptance criteria. Many of these are draft or preliminary criteria as well as implemented criteria at operating low-level radioactive waste management facilities. Waste acceptance criteria from the following entities are included: US Nuclear Regulatory Commission, South Carolina, Washington, Utah, Nevada, California, illinois, Texas, North Carolina, Nebraska, Pennsylvania, New York, and the Midwest Compact Region. Criteria in the matrix include the following: physical form, chemical form, liquid limits, void space in packages, concentration averaging, types of packaging, chelating agents, solidification media, stability requirements, sorptive media, gas, oil, biological waste, pyrophorics, source material, special nuclear material, package dimensions, incinerator ash, dewatered resin, transuranics, and mixed waste. Each criterion in the matrix is cross-referenced to its source document so that exact requirements can be determined

  13. Technical study on separating compounds of low level radioactive wastewater by composite membranes

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2014-01-01

    In the view of low level radioactive wastewater from operation and decommissioning project for the nuclear facilities and technology of reverse osmosis, this paper analyzes the related research of reverse osmosis technology at home and aboard, and designs a technical system in practice by using reverse osmosis combined with a pretreatment process of disc filtration-ultrafiltration or filtration-microfiltration to treat radioactive wastewater. (authors)

  14. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  15. CESARR V.2 manual: Computer code for the evaluation of surface storage of low and medium level radioactive waste

    International Nuclear Information System (INIS)

    Moya Rivera, J.A.; Bolado Lavin, R.

    1997-01-01

    CESARR (Code for the safety evaluation of low and medium level radioactive waste storage). This code was developed for the safety probabilistic evaluations in the facilities of low-and medium level radioactive waste storage

  16. Radioactive waste management: a summary of state laws and administration. National Low-Level Radioactive Waste Mangement Program

    International Nuclear Information System (INIS)

    1983-05-01

    This is the first quarterly update of Radioactive Waste Management: A Summary of State Laws and Administration. Because states have been very active on waste management issues, the whole report is being reissued in this update. It covers the administration, the legislature and the laws in the 50 states related to radioactive waste. The report for each state is divided into four sections: Cover Page; Administrative; Legislative; and Applicable Legislation. The cover page indicates whether or not it is an Agreement State, the low-level waste compacts in which the state is listed as an eligible state, and the high-level waste repository site screening regions in which the state or a portion of it is located. The administrative section provides information on the governor, lead agencies, other involved administrative agencies, relevant commissions, boards and councils and various contacts. The Legislative section provides general information on the legislature and lists legislative leaders, the relevant committees and their chairs and a legislative contact. In the section covering Applicable Legislation, laws related to radiation protection, low-level waste and high-level waste have been summarized. Hazardous waste siting laws are included for states that do not have a siting law covering radioactive waste. The section also contains summaries of relevant bills introduced in 1982 and 1983 legislative sessions and their disposition. In general, the information in this report is accurate as of 15 April 1983

  17. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  18. Natural radioactivity in iron and steel materials by low-level gamma spectrometry

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, Maria

    2003-01-01

    High resolution low-level gamma spectrometry was applied to perform a radioactivity measurement in iron and steel raw materials (coal, coke, iron ore, pellets, manganese ore, limestone, dolomite), auxiliary materials (scorialite, oxide of Ti, bentonite), and some related final products (cast iron, slag, blast-furnace, flue dust) involved in iron making processing. We control the activity of materials in various kinds of samples and we investigate for transfer of radioactivity during the blast-furnace process. Artificial radioisotopes are rarely encountered. (authors)

  19. Low-level radioactive wastes. AMA Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them

  20. 1987 annual report on low-level radioactive waste management progress: Report to Congress in response to Public Law 99-240

    International Nuclear Information System (INIS)

    1988-08-01

    In response to Section 7(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Public Law 99-240), this report summarizes the progress of states and low-level radioactive waste compacts in 1987 in establishing new low-level waste disposal facilities. It also reports the volume of low-level waste received for disposal in 1987 by commercially operated low-level waste disposal facilities

  1. Low-level radioactive waste vitrification: effect of Cs partitioning

    International Nuclear Information System (INIS)

    Horton, W.S.; Ougouag, A.M.

    1986-01-01

    The traditional Low-Level Radioactive Waste (LLW) immobilization options are cementation or bituminization. Either of these options could be followed by shallow-land burial (SLB) or above-ground disposal. These rather simple LLW procedures appeared to be readily available, to meet regulatory requirements, and to satisfy cost constraints. The authorization of State Compacts, the forced closure of half of the six SLB disposal facilities of the nation, and the escalation of transportation/disposal fees diminish the viability of these options. The synergetic combination of these factors led to a reassessment of traditional methods and to an investigation of other techniques. This paper analyzes the traditional LLW immobilization options, reviews the impact of the LLW stream composition on Low-Level Waste Vitrification (LLWV), then proposes and briefly discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV)

  2. A perspective on the management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Champ, D.R.; Charlesworth, D.H.

    1994-01-01

    In Canada, low-level radioactive waste (LLRW) is defined as all radioactive waste except spent fuel waste and tailings. At the time of the conference, the current practice was storage, but programs are underway to dispose of LLRW. AECL has applied for licensing of an intrusion-resistant underground structure. A comprehensive approach to LLRW management calls for: waste stream identification, waste characterization, waste segregation and characterization, waste processing, waste emplacement (storage or disposal); general principles are discussed under these headings. Performance assessment of disposal involves mathematical modelling. Progress has been slow, so if the Canadian nuclear industry does not eventually decide on a joint strategy for LLRW disposal, the federal government may have to impose a solution. 10 refs., 2 figs

  3. Greater-than-Class C Low-Level Radioactive Waste Program 1992 baseline strategy

    International Nuclear Information System (INIS)

    1993-02-01

    This baseline strategy document describes Department of Energy (DOE) goals, objectives, and strategy for fulfilling its responsibility to dispose of greater-than-Class C low-level radioactive waste (GTCC LLW) according to the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. This document describes the baseline strategy being employed at the end of FY 1992. The strategy for fulfilling the above responsibility consists of three tasks: interim storage of limited quantities of GTCC LLW at a currently operating DOE facility to eliminate a potential public health and safety threcceptance of GTCC LLW for storage in a DOE dedicated facility on an as-needed basis pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission. The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  4. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  5. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    International Nuclear Information System (INIS)

    Puglisi, C.V.; Vold, E.L.

    1995-01-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  6. Directions in low-level radioactive-waste management. Incentives and compensation: providing resources for communities hosting low-level waste facilities

    International Nuclear Information System (INIS)

    1982-10-01

    State responsibility for the management of low-level radioactive waste necessitates the selection of candidate locations for a disposal facility. Concern over potential impacts can be expected from segments of the citizenry neighboring a proposed site. A number of national organizations comprising state and local officials have recommended the use of incentives and compensation to help offset the negative local impacts. This document explores that concept. Discussion provides background information on potential local impacts from a low-level waste facility and considers the nature and types of incentives and compensation benefits that could be provided. The document then examines realistic options for planning and implementing the benefit program. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for and managing low-level waste disposal facilities

  7. Recent experience with the land burial of solid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Meyer, G.L.

    1976-01-01

    Low-level, nuclear fuel cycle wastes are being disposed of at six commercially operated sites in the United States of America. Similar wastes resulting from Federal activities are being disposed of at five Federally operated sites. The hydrology, geology, climate and operational practices at these sites vary greatly. At three sites in the wetter eastern United States which have low-permeability burial media, it is difficult to keep water from getting into the trenches. Two commercial burial sites in New York and Kentucky have not performed as planned. Authorization to operate these facilities was based on site analyses which, it was believed, demonstrated that the buried radioactive wastes would not migrate from the site during their hazardous lifetime (i.e. for hundreds of years). In ten years or less, however, radioactivity has been detected offsite from these two sites. Radioactivity has migrated offsite from the Federal burial site at Oak Ridge National Laboratory, also. State and Federal authorities have stated that the radioactivity in the environment around the site was not a health hazard at this time. Information is presented on recent disposal practices and experience at these three low-level burial facilities. Based on this experience, the paper (1) briefly describes operations and problems at the sites; (2) suggests factors which led to the problems; (3) identifies problems which appear to be generic to disposal in humid climates; (4) identifies specific problems which could either reduce the ability to predict the impact of disposal operations or reduce the retention capability of the site; and (5) recommends improvements which can be made in site selection, development, and operation to reduce the environmental impact of the site. (author)

  8. The Texas approach to the management of low-level radioactive waste after 1992

    International Nuclear Information System (INIS)

    Jacobi, L.R.

    1992-01-01

    By 1993, Texas licensees will be producing 52000 ft 3 of low level radioactive waste (LLRW) containing 11000 Ci of Radioactivity. The three operating pressurized water reactors will produce 63% of the waste volume and greater than 90% of the radioactivity. While the majority of the waste is solid LLRW, some of it, such as liquid scintillation vials and bulk liquids from hospitals, universities, and research facilities, is mixed waste. Most of this waste can be shipped out of state and incinerated, but 60 ft 3 of lead contaminated waste from nuclear power plants and other industrial plants requires land disposal

  9. Performance assessment methodology (PAM) for low level radioactive waste (LLRW) disposal facilities

    International Nuclear Information System (INIS)

    Selander, W.N.

    1992-01-01

    An overview is given for Performance Assessment Methodology (PAM) for Low Level Radioactive Waste (LLRW) disposal technologies, as required for licensing and safety studies. This is a multi-disciplinary activity, emphasizing applied mathematics, mass transfer, geohydrology and radiotoxicity effects on humans. (author). 2 refs

  10. Performance assessment handbook for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes

  11. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)

  12. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  13. Low level radioactive waste disposal siting: a social and technical plan for Pennsylvania. Volume 2. Socioeconomic analyses

    International Nuclear Information System (INIS)

    Aron, G.; Bord, R.J.; Clemente, F.A.; Dornsife, W.P.; Jarrett, A.R.; Jester, W.A.; Schmalz, R.F.; Witzig, W.F.

    1984-09-01

    Volume II comprises five chapters: Socioeconomic Screening Criteria for LLRW Facility Siting and An Application to Counties in Pennsylvania; Evaluating Public Participation Options for the Case of Low Level Radioactive Waste Siting in Pennsylvania; Potential Socioeconomic Impacts of a LLRW Facility in Pennsylvania; The Role of Community Incentives in Low Level Radioactive Waste Management; and Institutional Aspects of LLRW Site Development and Operations in Pennsylvania

  14. Management of low-level radioactive wastes around the world

    International Nuclear Information System (INIS)

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls

  15. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  16. Demonstration tests for low level radioactive waste packaging safety

    International Nuclear Information System (INIS)

    Nagano, I.; Shimura, S.; Miki, T.; Tamamura, T.; Kunitomi, K.

    1993-01-01

    The transport packaging for low level radioactive waste (so-called the LLW packaging) has been developed to be utilized for transportation of LLW in 200 liter-drums from Japanese nuclear power stations to the LLW Disposal Center at Rokkashomura in Aomori Prefecture. Transportation is expected to start from December in 1992. We will explain the brief history of the development, technical features and specifications as well as two kinds of safety demonstration tests, namely one is '1.2 meter free drop test' and the other is 'ISO container standard test'. (J.P.N.)

  17. Low-level radioactive waste transportation safety history

    International Nuclear Information System (INIS)

    McClure, J.D.

    1997-01-01

    The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation's (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described

  18. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  19. Volume reduction by crystallization of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Grant, D.C.; Murray, A.P.

    1982-01-01

    Low-level radioactive wastes containing boric acid, borax, or sodium sulfate, with radioactive contaminants, are generated during the operation of nuclear power plants. These wastes require disposal, and as such, it is economically and environmentally desirable to reduce their volume. Crystallization was examined in the laboratory as a means of accomplishing this. The crystallizer was operated in both of two modes: evaporative cooling and total evaporation. A 12 wt% boric acid waste feed was concentrated to a 40 to 45 wt% slurry in both modes of operation. Using pure boric acid, a slurry containing over 60 wt% was obtained. An 18.5 wt% borax waste feed was concentrated to 50 wt% in the total evaporative mode and 70 wt% in the evaporatively cooled mode. A 22 wt% sodium sulfate feed was concentrated to a 78 wt% slurry in the total evaporative mode. For all of the feeds, this represents a 4- to 5-fold volume reduction by the crystallizer

  20. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  1. Acceptability of a low and intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Zeleznik, N.; Polic, M.

    2000-01-01

    Siting of a radioactive waste repository, even for the waste of low and intermediate level (LILW) radioactivity, presents a great problem in almost every country that produces such waste. The main problem is not a technical one, but socio-psychological, namely the acceptability of this kind of repository. In general, people are opposed to any such kind of facility in their vicinity (NIMBY). In this study we try to establish the factors that influence people's behavior regarding the construction of a radioactive waste repository in their local community, with the use of Ajzen's model of planned behavior. Two different scenarios about the construction of a radioactive waste repository in their community, together with a set of questions were presented to participants from different schools. Data from the survey were analysed by multivariate methods, and a model of relevant behaviour was proposed. From the results it can be seen that different approaches to local community participation in site selection process slightly influence people's attitudes towards the LILW repository, while significant differences in answers were found in the responses which depend on participants' knowledge. Therefore the RAO Agency will further intensify preparation of the relevant communication plan and start with its implementation to support LILW repository site selection process, which will also include educational programme. (author)

  2. Development of criteria and standards for management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Grey, A.E.; Falconer, K.L.

    1980-08-01

    The basic need for criteria and standards for radioactive waste management is to ensure compliance with Federal and State regulations applicable to this activity. In addition, criteria and standards can establish the parameters by which a radioactive waste disposal site is selected, the form in which the waste is to be disposed, how a disposal site is to be operated, and how that site is to be closed when it reaches the end of its useful life. For developing criteria and standards, this report discusses the nature of low-level radioactive waste and the role government agencies play in regulating its management. It describes subject areas for which criteria and standards could be developed, current and evolving requirements, and future suggested analyses

  3. Legislator's guide to low-level radioactive waste management

    International Nuclear Information System (INIS)

    Jordan, J.M.; Melson, L.G.

    1981-05-01

    The purpose of the guide is to provide state legislators and their staff with information on low-level radioactive waste management, issues of special concern to the states, and policy options. During 1979, producers of low-level radioactive wastes (LLW) faced a crisis. Two of the three commercial disposal sites were temporarily closed and some LLW producers were running short on storage space. For hospitals, clinics, research organizations, and some industries, this meant potential curtailment of activities that produced these materials. Commercial nuclear reactors were not as hard hit during the crisis because they have larger storage areas. The two sites at Beatty, Nevada, and Hanford, Washington, reopened and the immediate crisis was averted. However, the longer term problem of shortage of disposal capacity was just beginning to be recognized. States should be concerned with this problem for several reasons. First, all states produce LLW although the volumes differ among states. Second, states have the responsibility to protect the public health and welfare of their citizens. Third, states may be given the authority to regulate LLW disposal if they enter into agreements with the federal government (Agreement States Program), and 26 states have that authority. Fourth, because of the long-term monitoring and surveillance necessary at a disposal site, states rather than private industry will be held responsible for ensuring that the disposal site is performing safely. Finally, Congress established a policy in 1980 that each state is responsible for the safe disposal of LLW generated within its borders. This policy also includes provisions that could lead to excluding states from using disposal facilities unless they have entered into regional agreements with other states. Two primary options exist for a state: developing its own disposal facility for LLW generated within its borders or joining with other states to develop a regional disposal facility

  4. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cannon, J.B.; Jacobs, D.G.; Lee, D.W.

    1986-02-01

    The performance objectives included in regulations for disposal of low-level radioactive waste (10 CFR 61 for commercial waste and DOE Order 5820.2 for defense waste) are generic principles that generate technical requirements which must be factored into each phase of the development and operation of a shallow land burial facility. These phases include a determination of the quantity and characteristics of the waste, selection of a site and appropriate facility design, use of sound operating practices, and closure of the facility. The collective experience concerning shallow land burial operations has shown that achievement of the performance objectives (specifically, waste isolation and radionuclide containment) requires a systems approach, factoring into consideration the interrelationships of the phases of facility development and operation and their overall impact on performance. This report presents the technical requirements and procedures for the development and operation of a shallow land burial facility for low-level radioactive waste. The systems approach is embodied in the presentation. The report is not intended to be an instruction manual; rather, emphasis is placed on understanding the technical requirements and knowing what information and analysis are needed for making informed choices to meet them. A framework is developed for using the desired site characteristics to locate potentially suitable sites. The scope of efforts necessary for characterizing a site is then described and the range of techniques available for site characterization is identified. Given the natural features of a site, design options for achieving the performance objectives are discussed, as are the operating practices, which must be compatible with the design. Site closure is presented as functioning to preserve the containment and isolation provided at earlier stages of the development and operation of the facility

  5. Application of remote sensing technique to site selection for low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhangru; Jin Yuanxin; Liu Yuemiao; Hou Dewen

    2001-01-01

    Based on the relative criteria of selection of disposal site for low and intermediate level radioactive waste, the social-economic conditions, landform, morphologic properties, regional geological stability, hydrogeological and engineering geological characters of adjacent area of Anhui, Zhejiang and Jiangsu provinces were investigated. The geological interpretation of thematic mapper images, field reconnaissance and data analysis were conducted during the research work. The results show that three areas in the west part of Zhejiang Province were recommended as potential site for disposal of low and intermediate level radioactive waste. They are Bajiaotang area, Tiebanchong area and Changxing-Guangde-Anji nabes

  6. Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    1996-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites

  7. Technical factors in the site selection for a radioactive wastes storage of low and intermediate level

    International Nuclear Information System (INIS)

    Badillo A, V. E.; Ramirez S, J. R.; Palacios H, J. C.

    2009-10-01

    The storage on surface or near surface it is viable for wastes of low and intermediate level which contain radio nuclides of short half life that would decay at insignificant levels of radioactivity in some decades and also radio nuclides of long half life but in very low concentrations. The sites selection, for the construction of radioactive waste storages, that present an appropriate stability at long term, a foreseeable behavior to future and a capacity to fulfill other operational requirements, is one of the great tasks that confront the waste disposal agencies. In the selection of potential sites for the construction of a radioactive wastes storage of low and intermediate level, several basic judgments should be satisfied that concern to physiography, climatology, geologic, geo-hydrology, tectonic and seismic aspects; as well as factors like the population density, socioeconomic develops and existent infrastructure. the necessary technician-scientific investigations for the selection of a site for the construction of radioactive waste storages are presented in this work and they are compared with the pre-selection factors realized in specify areas in previous studies in different regions of the Mexican Republic. (Author)

  8. Influences of engineered barrier systems on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Buckley, L.P.

    1987-09-01

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described

  9. Influences of engineered barrier systems on low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L. P.

    1987-09-15

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described.

  10. Vitrification of low-level radioactive waste in a slagging combustor

    International Nuclear Information System (INIS)

    Holmes, M.J.; Downs, W.; Higley, B.A.

    1995-07-01

    The suitability of a Babcock ampersand Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock ampersand Wilcox's cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application

  11. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs

  12. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs.

  13. Method to determine the radioactivity of radioactive waste packages. Basic procedure of the method used to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants: 2007

    International Nuclear Information System (INIS)

    2008-03-01

    This document describes the procedures adopted in order to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants in Japan. The standards applied have been approved by the Atomic Energy Society of Japan after deliberations by the Subcommittee on the Radioactivity Verification Method for Waste Packages, the Nuclear Cycle Technical Committee, and the Standards Committee. The method for determining the radioactivity of the low-level radioactive waste packages was based on procedures approved by the Nuclear Safety Commission in 1992. The scaling factor method and other methods of determining radioactivity were then developed on the basis of various investigations conducted, drawing on extensive accumulated knowledge. Moreover, the international standards applied as common guidelines for the scaling factor method were developed by Technical Committee ISO/TC 85, Nuclear Energy, Subcommittee SC 5, Nuclear Fuel Technology. Since the application of accumulated knowledge to future radioactive waste disposal is considered to be rational and justified, such body of knowledge has been documented in a standardized form. The background to this standardization effort, the reasoning behind the determination method as applied to the measurement of radioactivity, as well as other related information, are given in the Annexes hereto. This document includes the following Annexes. Annex 1: (reference) Recorded items related to the determination of the scaling factor. Annex 2 (reference): Principles applied to the determining the radioactivity of waste packages. (author)

  14. Collective bads: The case of low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    McGinnis, M.V.

    1994-01-01

    In low-level radioactive waste (LLW) compact development, policy gridlock and intergovernmental conflict between states has been the norm. In addition to the not-in-my-backyard (NIMBY) phenomenon, LLW compacts must content with myriad political and ethical dilemmas endemic to a particular collective bad. This paper characterizes the epistemology of collective bads, and reviews how LLW compacts deal with such bads. In addition, using data from survey questionnaires and interviews, this paper assesses the cooperative nature of LLW compacts in terms of their levels of regional autonomy, regional efficacy, allocation of costs and benefits, and their technocentric orientation

  15. Procedures and technology for shallow-land burial. Low-level radioactive-waste-management handbook series

    International Nuclear Information System (INIS)

    1983-08-01

    This handbook provides technical information on the requirements, activities, and the roles of all parties involved in the development and operation of new shallow land burial facilities for disposal of low-level radioactive waste. It presents an overview of site selection, design, construction, operation, and closure. Low-level waste shallow land burial practices and new technology applications are described. The handbook is intended to provide a basis for understanding the magnitude and complexity of developing new low-level waste disposal facilities

  16. Characterisation of long-lived low and intermediate-level radioactive wastes in the Nordic Countries

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Carlsson, T.; Viitanen, P.; Walderhaug, T.; Sneve, M.; Hornkjoel, S.; Backe, S.

    1997-11-01

    The present report is final report from a study on characterisation of radioactive waters in the Nordic countries. The study has mainly been focused on long-lived low and intermediate level radioactive waste. Methods to measure or estimate the activity content and the general composition are discussed. Recommendations are given regarding characterisation of waste under treatment and characterisation of already produced waste packages. (au)

  17. Characterisation of long-lived low and intermediate-level radioactive wastes in the Nordic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. [Studsvik RadWaste AB, (El Salvador); Carugati, S.; Brodersen, K. [Forskningscenter Risoe, (Denmark); Carlsson, T.; Viitanen, P. [VVT, (Finland); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection Authority (Norway); Backe, S. [Institute for Energy Technology (Norway)

    1997-11-01

    The present report is final report from a study on characterisation of radioactive waters in the Nordic countries. The study has mainly been focused on long-lived low and intermediate level radioactive waste. Methods to measure or estimate the activity content and the general composition are discussed. Recommendations are given regarding characterisation of waste under treatment and characterisation of already produced waste packages. (au).

  18. Low-level radioactive waste disposal technology development through a public process

    International Nuclear Information System (INIS)

    Murphy, M.P.; Hysong, R.J.; Edwards, C.W.

    1989-01-01

    When Pennsylvania's legislature ratified the Appalachian States Low-Level Radioactive Waste Compact in 1985, the Commonwealth of Pennsylvania became the host state designee for the compact's low-level radioactive waste (LLWR) disposal facility. Programs necessary for the establishment of this facility became the responsibility of the Department of Environmental Resources' (DER), Bureau of Radiation Protection's, Division of Nuclear Safety (DNS). It was realized early in the process that the technical aspects of this program, while challenging, probably were not the largest obstacle to completing the facility on schedule. The largest obstacle was likely to be public acceptance. Recognizing this, the DNS set out to develop a program that would maximize public involvement in all aspects of site and facility development. To facilitate public involvement in the process, the DNS established a LLRW advisory committee and a strategy for holding public meetings throughout Pennsylvania. As a result of the significant public involvement generated by these efforts, Pennsylvania passed, in February of 1988, one of the most stringent and technically demanding LLRW disposal laws in the nation. Hopefully, increased public confidence will reduce to a minimum public opposition to the facility

  19. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  20. Application of EPA regulations to low-level radioactive waste

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs

  1. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators

    International Nuclear Information System (INIS)

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-01-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called “radionuclide inventory”, and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. - Highlights: • We developed a radiological characterization process for radioactive waste produced at particle accelerators. • We used extensive numerical experimentations and statistical analysis to predict a complete list of radionuclides in activated metals. • We used the new approach to characterize and dispose of more than 420 t of very-low-level radioactive waste.

  2. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  3. Improved low-level radioactive waste management practices for hospitals and research institutions

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the more detailed analysis

  4. Radioactive Waste Management Complex low-level waste radiological performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  5. Radioactive Waste Management Complex low-level waste radiological performance assessment

    International Nuclear Information System (INIS)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected

  6. Study on the treatment of low-level radioactive wastewater by ultrasound

    International Nuclear Information System (INIS)

    You Zhi; He Bin; Zhang Quanhu; Du Qianwei

    2010-01-01

    By simulating the trajectory of one single suspended radioactive particle subjected to ultrasonic standing wave, the principle of the treatment of low-level radioactive wastewater by ultrasound was analyzed. The result show that under the action of ultrasonic standing wave, the particle will move toward the pressure node plane and the time of particle reached the plane became shorter when the radium of particle and the frequency and power of ultrasound was enlarged. The mathematic equation represent the change of the number of the suspended particles was built and the decontamination efficiency was calculated. The result shows that under the condition of T=80 min, f=50 kHz and P=71.09 w, the radioactive concentration of wastewater could be reduced from 400 Bq/L to 9.295 Bq/L and the decontamination efficiency was 97.68%. The decontamination efficiency could not be obviously improved by further increasing the treating time. (authors)

  7. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  8. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  9. Properties of the cements and their use in the storage systems of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Almazan T, M. G.

    2011-11-01

    The use of materials containing cement has generalized in the facilities of definitive storage of radioactive wastes due to their easy handling and availability. Besides conforming the buildings and structures, these materials are part of the barriers system that will maintain the isolated radioactive wastes of the biosphere until their activity has decayed at innocuous levels. However, to fulfill this function, the effectiveness and durability of these materials should be demonstrated fully. In Mexico the intention exists of building a definitive storehouse for the low-level radioactive wastes, however are few the studies on the behavior of the materials containing cement used in this type of facilities. With the purpose of to guide and promoting the study of the national cements, in this work is made a revision of the characteristics and properties of the cements with relationship to its use in the systems of definitive storage of low-level radioactive wastes, as well as of some studies that are realized to evaluate its acting as engineering barriers. (Author)

  10. The storage center of very-low level radioactive wastes; Le centre de stockage des dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  11. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    International Nuclear Information System (INIS)

    Fuchs, R. L.

    1998-01-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997

  12. Low-level radioactive wastes. A bibliography of additions to the Energy Data Base in 1981

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1981-12-01

    Access to information on management of low-level radioactive wastes is provided by this special bibliography and other products of the Technical Information Center. Citations to 215 references on low-level radioactive wastes added to the Energy Data Base in 1981 are presented. The abstracts are grouped in broad subject categories. Within each category the arrangement is by report number for reports, followed by non-reports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  13. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  14. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  15. Advice concerning the advantages of a reference incinerator for low-level and intermediate-level radioactive waste processing

    International Nuclear Information System (INIS)

    Luyten, G.B.

    1985-05-01

    In this report, an inventory is presented of new incinerators and flue gas filters used in low and intermediate-level radioactive waste combustion. It is argued that a 'reference equipment' for the combustion of solid and liquid low- and intermediate-level wastes best meets existing Dutch radiation protection standards. A cost-benefit analysis of such an equipment is given including annual costs of investment, capital and exploration. A separate combustion process of organic liquids and carrions is considered finally. (G.J.P.)

  16. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  17. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  18. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on

  19. Comparison of bitumen and cement immobilization of intermediate- and low-level radioactive waste

    International Nuclear Information System (INIS)

    Voss, J.W.

    1979-01-01

    This paper discusses a systems comparison of two available immobilization processes for intermediate- and low-level radioactive wastes -- bitumen and cement. This study examines a conceptual coprocessed UO 2 - PuO 2 fuel cycle. Radioactive wastes are generated at each stage of this fuel cycle. This study focuses on these transuranic (TRU) wastes generated at a conceptual Fuel Coprocessing Facility. In this report, these wastes are quantified, the immobilization systems conceptualized to process these wastes are presented, and a comparison of the systems is made

  20. The solidification of low level radioactive organic fluids with Envirostone Gypsum Cement

    International Nuclear Information System (INIS)

    Rosenstiel, T.L.; Lange, R.G.

    1984-01-01

    The primary method for the management of low level radioactive waste (LLW) has been and continues to be the isolation of the waste in a solid mass. Of the four typical LLW streams, organic fluids pose the most significant waste isolation problem. The organic fluids comprised of lubrication oils, hydraulic fluids, sludges, scintillation fluids, etc., result from the operation and maintenance of nuclear power generating stations, research activities, tooling operations, and diagnostic analyses. The United States Gypsum Company developed the patented Envirostone Gypsum Cement system for the solidification of all types of low level radioactive wastes to facilitate handling and transportation to regulated LLW disposal sites. For the solidification of organic fluids, Envirostone Gypsum Cement is used in conjunction with Envirostone Emulsifier, selected for its ability to emulsify a broad range of organic fluids in aqueous solutions. In the solidification process it is theorized that as the crystalline matrix of the gypsum forms, the micelles of the emulsifier behave as a chemical bridge which draws the organic fluid into the crystalline structure via the hydration water. Initial testing of physical properties of solidified waste forms, including leachability, per the requirements and the procedures specified for 10 CFR Part 61 as outlined in the Branch Technical Position Report from the United States Nuclear Regulatory Commission were in progress as of the writing of this paper. Upon completion of this testing a Topical Report will be submitted to the USNRC for review and approval. The presentation reviews field experience in the use of Envirostone Gypsum Cement for the solidification of low level radioactive organic fluids from nuclear power generating stations and makes an economic comparison between Envirostone Gypsum Cement and portland cement systems

  1. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  2. Clearance of very low level radioactive waste in spanish nuclear power plants

    International Nuclear Information System (INIS)

    Alvarez Mir, F.

    2001-01-01

    According to present Spanish legislation a radioactive waste is defined as any material or waste product, without any possible planned use, that contains or is contaminated with radionuclides in concentrations or activity levels higher than those established by the Regulatory Authorities. Legally, this situation allows to develop a conventional management of very low level radioactive waste, by checking the negligibility of their radiological impact, and thus obtaining the corresponding Authorization to treat them as conventional waste. This presentation describes the clearance project of contaminated oils from spanish nuclear power plants. The on-site management includes: -) preliminary settling, centrifugation and filtration; -) oil purification; and -) radiological characterization. The off-site management includes the following operations: -) transportation to the facility where treatment is developed (dilution); -) temporary storage (decay); -) transportation to the place where final management is carried out; -) oil burning (dilution); and management of ashes and other combustion products. An annual amount of 70 m 3 /year (63 MBq) of very low contaminated oil with a specific concentration of 1 Bq/g could be disposed off. (A.C.)

  3. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  4. Results of the CRCPD survey of 1984 low-level radioactive waste: progress to mid-September, 1986

    International Nuclear Information System (INIS)

    Devine, T.L.

    1987-01-01

    The survey of 1984 low-level radioactive waste by the Conference of Radiation Control Program Directors, Inc., is the second such survey. The previous survey was for waste generated during 1982. The CRCPD survey of 1984 LLRW requested information concerning the license, the effluents and other on-site managed wastes, details of exported waste type, the capacity for storing waste prior to shipment and its average utilization during 1984. Details of the exported waste included waste type, processing and packaging, NRC class, burial site or broker to which the waste was sent, and anticipated waste generation by year and by class through 1989. Shortcomings of the questionnaire and preliminary results are discussed. Based on the results of the two surveys of low-level radioactive waste conducted by the CRCPD, and the serious discrepancies which exist between data on waste shipped by generators and that on waste received by disposal sites, the following recommendation is made. That a single, national repository be established for all data on the generation and ultimate disposition of low-level radioactive waste. 1 figure, 1 table

  5. Annual plan of research on safety techniques against low level radioactive wastes, 1984-1988

    International Nuclear Information System (INIS)

    1984-01-01

    The establishment of the countermeasures for treating and disposing radioactive wastes has become an important subject for promoting the utilization of atomic energy. Especially as to low level radioactive wastes, the cumulative quantity has reached about 460,000 in terms of 200 l drums as of the end of March, 1983, and accompanying the development of the utilization of atomic energy, its rapid increase is expected. So far, as for the disposal of low level radioactive wastes, the research and development and the preparation of safety criteria and safety evaluation techniques have been carried out, following the basic policy of the Atomic Energy Commission to execute land disposal and ocean disposal in combination, first to make the test disposal after preliminary safety evaluation, and to shift to the full scale disposal based on the results. The annual plan was decided on July 22, 1983, and the first revision was carried out this time, therefore, it is reported here. The basic policy of establishing this annual plan, and the annual plan for safety technique research are described. (Kako, I.)

  6. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  7. Geohydrology of the unsaturated zone at the burial site for low-level radioactive waste near Beatty, Nye County, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.D.

    1987-01-01

    Low-level radioactive solid waste has been buried in trenches at a site near Beatty, NV, since 1962. In 1976, as part of a national program, the US Geological Survey began a study of the geohydrology of the waste burial site to provide a basis for estimating the potential for radionuclide migration in the unsaturated zone beneath the waste burial trenches. The waste burial facility is in the northern Amargosa Desert about 170 kilometers (km) northwest of Las Vegas, NV. The site is underlain by poorly stratified deposits of gravelly or silty sand and sandy gravel, and thick beds of clayey sediments. A numerical analysis demonstrated that a potential exists for deep percolation despite high annual evaporation demands, and provided predictions of the time of year and the antecedent conditions that enhance the probability of deep percolation. Soil moisture profiles obtained monthly over an 18-month period demonstrate that deep percolation does occur. Calculation of downward moisture movement through the waste trench backfill material, on the basis of simplified assumptions, suggests that moisture could have penetrated as much as 6 m below land surface from 1963, when the oldest trenches were closed, to 1980, but that the moisture requirement for such penetration far exceeded the amount of moisture actually available. Steady-state downward movement of moisture at depths greater than 10 m and beneath the waste burial trenches would be on the order of 4 cu m/1,000 yr, assuming a steady flux rate of 0.1 microcentimeter/day. 37 refs., 32 figs., 17 tab

  8. Immobilization of INEL low-level radioactive wastes in ceramic containment materials

    International Nuclear Information System (INIS)

    Seymour, W.C.; Kelsey, P.V.

    1978-11-01

    INEL low-level radioactive wastes have an overall chemical composition that lends itself to self-containment in a ceramic-based material. Fewer chemical additives would be needed to process the wastes than to process high-level wastes or use a mixture containment method. The resulting forms of waste material could include a basalt-type glass or glass ceramic and a ceramic-type brick. Expected leach resistance is discussed in relationshp to data found in the literature for these materials and appears encouraging. An overview of possible processing steps for the ceramic materials is presented

  9. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  10. Vitrification of low level and mixed (radioactive and hazardous) wastes: Lessons learned from high level waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1994-01-01

    Borosilicate glasses will be used in the USA and in Europe immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Simultaneously, tehnologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to immobilize low-level and mixed (radioactive and hazardous) wastes (LLMW) in durable glass formulations for permanent disposal or long-term storage. Vitrification of LLMW achieves large volume reductions (86--97 %) which minimize the associated long-term storage costs. Vitrification of LLMW also ensures that mixed wastes are stabilized to the highest level reasonably possible, e.g. equivalent to HLLW, in order to meet both current and future regulatory waste disposal specifications The tehnologies being developed for vitrification of LLMW rely heavily on the technologies developed for HLLW and the lessons learned about process and product control

  11. Development of a low level radioactive waste disposal site in Texas - 1994 status

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1995-01-01

    The Texas Low Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been trying to develop a site for the disposal of low level radioactive waste in Texas for over ten years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization has been completed and a license application has been filed with the Texas Natural Resource Conservation Commission. Construction plans were completed in 1993, and the agency is prepared to begin construction and operations as soon as a license can be issued. Development costs for the site are borne by the utility companies and other major generators in Texas through the assessment of a planning and implementation fee. Total costs to date are approximately $26 million. As the project moves toward completion, state and national anti-nuclear activist groups have become more involved in attempts to thwart the Texas government's effort to solve the radioactive waste problem. To counter this increased opposition, the Texas utility companies and medical radioactive waste generators have also become more active in responding to these groups. This has been very helpful and is in keeping with the elements of building block 12 of the Nuclear Power Oversight Committee's Strategic Plan for Building New Nuclear Power Plants. This paper and poster session look at the schedule, design, and long term prospects for ultimate success of the project

  12. In situ grouting of a low-level radioactive waste trench

    International Nuclear Information System (INIS)

    Spence, R.D.; Godsey, T.T.; McDaniel, E.W.

    1987-11-01

    A shallow land burial trench containing low level radioactive waste was injected with a particulate grout to help control subsidence and radionuclide migration. The trench's accessible voids have been estimated at 20 vol %, and most of these voids appear to have been filled with grout. This injection was accomplished with a simple, labor intensive technique, and an inexperienced crew at an estimated cost of about $55,000. The grout costs $0.21/gal and 8081 gal was injected into the trench. 5 refs., 10 figs., 4 tabs

  13. Regulatory authority of the Rocky Mountain states for low-level radioactive waste packaging and transportation

    International Nuclear Information System (INIS)

    Whitman, M.; Tate, P.

    1983-07-01

    The newly-formed Rocky Mountain Low-Level Radioactive Waste Compact is an interstate agreement for the management of low-level radioactive waste (LLW). Eligible members of the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Each state must ratify the compact within its legislature for the compact to become effective in that state and to make that state a full-fledged member of the compact. By so adopting the compact, each state agrees to the terms and conditions specified therein. Among those terms and conditions are provisions requiring each member state to adopt and enforce procedures requiring low-level waste shipments originating within its borders and destined for a regional facility to conform to packaging and transportation requirements and regulations. These procedures are to include periodic inspections of packaging and shipping practices, periodic inspections of waste containers while in the custody of carriers and appropriate enforcement actions for violations. To carry out this responsibility, each state must have an adequate statutory and regulatory inspection and enforcement authority to ensure the safe transportation of low-level radioactive waste. Three states in the compact region, Arizona, Utah and Wyoming, have incorporated the Department of Transportation regulations in their entirety, and have no published rules and regulations of their own. The other states in the compact, Colorado, Nevada and New Mexico all have separate rules and regulations that incorporate the DOT regulations. A brief description of the regulatory requirements of each state is presented

  14. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes

    International Nuclear Information System (INIS)

    1994-01-01

    In recent years the authorized maximum limits for radioactive discharges into the environment have been reduced considerably, and this, together with the requirement to minimize the volume of waste for storage or disposal and to declassify some wastes from intermediate to low level or to non-radioactive wastes, has initiated studies of ways in which improvements can be made to existing decontamination processes and also to the development of new processes. This work has led to the use of more specific precipitants and to the establishment of ion exchange treatment and evaporation techniques. Additionally, the use of combinations of some existing processes or of an existing process with a new technique such as membrane filtration is becoming current practice. New biotechnological, solvent extraction and electrochemical methods are being examined and have been proven at laboratory scale to be useful for radioactive liquid waste treatment. In this report an attempt has been made to review the current research and development of mature and advanced technologies for the treatment of low and intermediate level radioactive liquid wastes, both aqueous and non-aqueous. Non-aqueous radioactive liquid wastes or organic liquid wastes typically consist of oils, reprocessing solvents, scintillation liquids and organic cleaning products. A brief state of the art of existing processes and their application is followed by the review of advances in technologies, covering chemical, physical and biological processes. 213 refs, 33 figs, 3 tabs

  15. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  16. Evaluating public involvement in the National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1982-09-01

    The Department of Energy contracted with the Keystone Center to evaluate the effectiveness of the National Low-Level Radioactive Waste Management Program's public-involvement efforts. The Center chose six evaluators with diverse training and experience related to low-level waste management and public-participation programs. Keystone's evaluation was based on (a) observations by the evaluators who attended the National Program-sponsored strategy review meetings and fairs; (b) interviews with low-level waste generators, local government officials, state legislators, public-interest groups, and members of the general public; and (c) observations of the final National Program strategy task force meeting. The evaluators concluded that, overall, the public-participation processes yielded some very positive results - for policy development and for DOE and the EG and G staff. They judged the strategy document to be complete, concise, and helpful to public dialogue on low-level waste issues. They also made specific recommendations for improvements to the public-participation program

  17. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  18. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts

  19. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  20. Low-level radioactive waste form qualification testing

    International Nuclear Information System (INIS)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing

  1. Low-level radioactive waste form qualification testing

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  2. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  3. Low-level radioactive gas monitor for natural gas operations

    International Nuclear Information System (INIS)

    Armstrong, F.E.

    1969-11-01

    A portable radioactivity detection system for monitoring the tritium content of natural gas under field conditions has been developed. The sensing device employed is a complex proportional counting assembly operated without the use of massive shielding previously employed with such low-level radiation detectors. The practical limit of detection for the system is a tritium content of 10 -9 microcurie per cc of natural gas. All components of the system are packaged in three waterproof cases weighing slightly less than 30 kg each. Power requirement is 500 watts of 120 volt, 60 Hz current. Operation is fully automatic with a printed record produced at predetermined time intervals

  4. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  5. Managing commercial low-level radioactive waste beyond 1992: Issues and potential problems of temporary storage

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1991-01-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, States will become responsible for managing low-level radioactive waste, including mixed waste, generated within their borders as of January 1, 1993. In response to this mandate, many States and compact regions have made substantial progress toward establishing new disposal capacity for these wastes. While this progress is noteworthy, many circumstances can adversely affect States' abilities to meet the 1993 deadline, and many States have indicated that they are considering other waste management options in order to fulfill their responsibilities beyond 1992. Among the options that States are considering for the interim management of low- level radioactive waste is temporary storage. Temporary storage may be either short term or long term and may be at a centralized temporary storage facility provided by the State or a contractor, or may be at the point of generation or collection. Whether States choose to establish a centralized temporary storage facility or choose to rely on generators or brokers to provide additional and problem areas that must be addressed and resolved. Areas with many potential issues associated with the temporary storage of waste include: regulations, legislation, and policy and implementation guidance; economics; public participation; siting, design, and construction; operations; and closure and decommissioning

  6. Bituminization of low- and intermediate-level radioactive concentrates

    International Nuclear Information System (INIS)

    Breza, M.; Krejci, F.; Timulak, J.; Tibensky, L.

    1985-01-01

    The results and experiences are summed up from the research and development of the technology of bituminization of low- and intermediate-level radioactive concentrates generated in the operation of nuclear power plants with WWER-440 reactors. The experiments took place on a pilot plant bituminization line with various model solutions at an evaporator capacity of 70, 100 and 140 litres per hour. The composition of the solutions changed in dependence on the knowledge of the composition of actual concentrates in the V-1 nuclear power plant at Jaslovske Bohunice. The following factors were studied in the concentrate: the effect of its pH, its borate content and content of metal carbonates, the content of organic acid salts, the content of detergents, etc., on the process of bituminization. Physico-chemical conditions are described under which the operation of the evaporator was fail-safe and filling of the bituminization product with salts homogeneous. A low water content of up to 1% was achieved. The properties of the bituminization product were negatively affected by a high level of heavy metal oxides, surfactants, oxalates and citrates. In order to improve the properties of the product it will be necessary to replace bitumen emulsion Silembit-60 used as reinforcement matrix, by a different type of bitumen. (Z.M.)

  7. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  8. Seawater corrosion tests for low-level radioactive waste drum containers

    International Nuclear Information System (INIS)

    Maeda, Sho; Wadachi, Yoshiki

    1985-11-01

    This report is a part of corrosion tests of drums under various environmental conditions (seawater, river water, coastal sand, inland soil and indoor and outdoor atmosphere) done at Japan Atomic Energy Research Institute sponsored by the Science and Technology Agency. The corrosion tests were started in November, 1977 and complated at March, 1984. This report describes the results of the seawater corrosion tests which are part of the final report, ''Corrosion Safety Demonstration Test'' (Japanese), and it is expected to contribute the safety assessment of sea dumping of low-level radioactive waste packages. (author)

  9. Status of low-level radioactive waste disposal: how to plan a disaster

    International Nuclear Information System (INIS)

    McArthur, W.C.

    1979-01-01

    The nuclear industry is faced with serious problems in the transportation and burial of low-level radioactive wastes. Soaring burial costs, state regulations regarding transportation routes, and lack of direction from regulatory agencies are problems that must quickly be resolved. In order to gain control of this situation four major steps must be taken. First, states must accept their fair share of responsibility in the waste problem. Regulatory agencies must recognize the seriousness of the problem and develop a schedule for action. The nuclear industry must assert itself in a positive manner regarding the safety of nuclear power, and the low-level waste burial ground situation must improve

  10. Brazilian low and intermediate level radioactive waste disposal and environmental conservation areas

    International Nuclear Information System (INIS)

    Uemura, George; Cuccia, Valeria

    2013-01-01

    Low and intermediate level radioactive waste should be disposed off in proper disposal facilities. These facilities must include unoccupied areas as protection barriers, also called buffer zone. Besides that, Brazilian environmental laws require that certain enterprises must preserve part of their area for environmental conservation. The future Brazilian low and intermediate level waste repository (RBMN) might be classified as such enterprise. This paper presents and discusses the main Brazilian legal framework concerning different types of conservation areas that are allowed and which of them could be applied to the buffer zones of RBMN. The possibility of creating a plant repository in the buffer zone is also discussed. (author)

  11. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  12. Low-level radioactive waste disposal operations worldwide, with special reference to organic compounds in leachates and gases

    International Nuclear Information System (INIS)

    Rushbrook, P.E.; McGahan, D.J.

    1988-01-01

    Low- and intermediate-level radioactive wastes are defined and ground disposal practices worldwide are discussed. The organic content of low-level wastes is tabulated and the organic composition of leachates and gaseous emissions from low-level wastes in the U.K. and U.S.A. are discussed. The radionuclide content of these leachates is tabulated. (U.K.)

  13. Treatment of low-level radioactive waste liquid by reverse osmosis

    International Nuclear Information System (INIS)

    Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A.

    1995-01-01

    The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations

  14. Status of the Texas low-level radioactive waste disposal site - construction sequencing and staffing patterns

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been attempting to develop a site for the disposal of low-level radioactive waste in Texas for more than fourteen years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization was completed in 1992, and a license application was filed that year. Construction plans were completed in 1993. In April 1996, the licensing agency, the Texas Natural Resource Conservation Commission, completed its review and proposed to issue a license. The administrative hearings on the proposed license should be completed by July 1997. The Authority is prepared to begin construction and operations as soon as a final license can be issued

  15. The 1988 state-by-state assessment of Low-Level Radioactive Wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1989-12-01

    This report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator categories, waste classes, volumes, and activities. Included in this report are tables showing a distribution of wastes by state for 1988 and a comparison of waste volumes by state for 1984 through 1988; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1988. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that which was handled by an intermediary. 8 refs., 3 tabs

  16. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  17. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  18. A waste characterization monitor for low-level radioactive waste management

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.; Kupca, S.; Hippola, K.B.

    1985-06-01

    The exploitation of nuclear processes and technology for the benefit of Canadians results in the routine generation of approximately 12 000 m 3 of solid low-level radioactive waste annually. To protect the public and the environment, this waste must be isolated for the duration of its potential hazard. In Canada, current planning foresees the development and use of a range of storage and disposal facilities exhibiting differing containment capabilities. To demonstrate adequate isolation safety and to minimize overall costs, the radionuclide content of waste items must be quantified so that the radiological hazards of each waste item can be matched to the isolation capabilities of specific containment facilities. This paper describes a non-invasive, waste characterization monitor that is capable of quantifying the radionuclide content of low-level waste packages to the 9 Bq/g (250 pCi/g) level. The assay technique is based on passive gamma-ray spectroscopy where the concentration of gamma-ray emitting radionuclides in a waste item can be estimated from the analysis of the gamma-ray spectra of the item and calibrated standards

  19. The exemption of regulatory control for the management of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ortiz, M.T.; Carboneras, P.

    1993-01-01

    A high number of wastes produced in different fields of science and technology, as well as nuclear power plants, contain a significant volume of byproducts contaminated with radioisotopes, having a very low radioactive level. This kind of wastes might be managed as ordinary wastes by conventional methods or even reused. In order to carry out this procedure, a new regulation exempting these products from the regulatory control normatives would be necessary. This paper analyzes the big advantages of introducing these exemptions (costs recycling, radioactive wastes minimization) and how they follow the recommendations of ICRP, IAEA, EC and NRC

  20. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1993: Report to Congress

    International Nuclear Information System (INIS)

    1994-06-01

    This is the eighth report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the following limitations specified in the Act: establish low-level radioactive waste disposal facilities; mitigate the impact of low-level radioactive waste disposal facilities on the host State; regulate low-level radioactive waste disposal facilities; or ensure the decommissioning, closure, and care during the period of institutional control of low-level radioactive waste disposal facilities. In addition to placing these limitations on the use of these funds, the Act also requires all nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within six months after receiving the individual reports, the Act requires the Secretary of Energy to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement

  1. Treatment of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  2. The NRC perspective on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, H.L. Jr.; Knapp, M.R.

    1987-01-01

    This paper describes the Nuclear Regulatory Commission's (NRC) actions in response to the Low-Level Radioactive Waste Policy Amendments Act (the Act) and NRC's assistance to States and Compacts working to discharge their responsibilities under the Act. Three of NRC's accomplishments which respond explicitly to direction in the Act are highlighted. These are: development of the capability of expedited handling of petitions addressing wastes below regulatory concern (BRC); development of capability to review and process an application within fifteen months; and development of guidance on alternatives to shallow land burial. Certain NRC efforts concerning special topics related to the Act as well as NRC efforts to assist States and Compacts are summarized

  3. Licensing the California low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; Junkert, R.

    1992-01-01

    California has made significant progress toward the issuance of a license to construct and operate the Southwestern Compact's low-level radioactive waste disposal facility. However, obstacles to completing construction and preparing to receive waste still exist. This paper will describe the technical licensing issues, EIR/S process, political events, and public interactions that have impacted on California regulators' ability to complete the license application review and reach a decision on issuing a license. Issues associated with safely and liability evaluations, finalization of the environmental impact report, and land transfer processes involving multiple state, federal, and local agencies will be identified. Major issues upon which public and political opposition is focusing will also be described. (author)

  4. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  5. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    International Nuclear Information System (INIS)

    Fish, L.W.

    1994-09-01

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study

  6. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  7. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  8. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  9. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  10. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information

  11. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  12. Volume reduction options for the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Lerch, R.E.

    1977-01-01

    This paper examines volume reduction options that are now or soon will be available for low-level wastes. These wastes generally are in the form of combustible solids, noncombustible solids, and wet wastes (solid/liquid). Initially, the wastes are collected and stored onsite. Preconditioning may be required, e.g., sorting, shredding, and classifying the solids into combustible and noncombustible fractions. The volume of combustible solids can be reduced by compaction, incineration/pyrolysis, acid digestion, or molten salt combustion. Options for reducing the volume of noncombustible solids include compaction, size reduction and decontamination, meltdown-casting, dissolution and electropolishing. Burnable wet wastes (e.g., organic wastes) can be evaporated or combusted; nonburnable wet wastes can be treated by various evaporative or nonevaporative processes. All radioactive waste processing operations result in some equipment contamination and the production of additional radioactively contaminated wastes (secondary wastes). 23 figures

  13. Corrosion of steel drums containing simulated radioactive waste of low and intermediate level

    International Nuclear Information System (INIS)

    Farina, S.B.; Schulz Rodríguez, F.; Duffó, G.S.

    2013-01-01

    Ion-exchange resins are frequently used during the operation of nuclear power plants and constitute radioactive waste of low and intermediate level. For the final disposal inside the repository the resins are immobilized by cementation and placed inside steel drums. The eventful contamination of the resins with aggressive species may cause corrosion problems to the drums. In order to assess the incidence of this phenomenon and to estimate the lifespan of the steel drums, in the present work, the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different aggressive species was studied. The aggressive species studied were chloride ions (main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The corrosion rate of the steel was monitored over a time period of 900 days and a chemical and morphological analysis of the corrosion products formed on the steel in each condition was performed. When applying the results obtained in the present work to estimate the corrosion depth of the drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Low and Intermediate Level Radioactive Waste facility in Argentina), it was found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (author)

  14. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.A. [Univ. of Maine, Orono, ME (United States)

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  15. Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE)

    International Nuclear Information System (INIS)

    Lafaille, C.

    1991-01-01

    This paper describes the advance used in C.E.A. to realize dismantling operations in the best technical and economical conditions. Particularly, for low-level radioactive waste management CEA's advance defines, first, the final destination of dismantling materials: - recycling in public lands for level activity inferior to 1 Bq/g; directly or after transformation (melting, calcination, extrusion) - storage in a ground disposal, after compacting, encapsulation or drumming. Two examples are given: - Marcoule G2 - G3 reactor dismantling - Gaseous diffusion plants demolition (COGEMA Pierrelatte)

  16. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  17. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  18. Characteristics of low-level radioactive waste disposed during 1987--1989

    International Nuclear Information System (INIS)

    Roles, G.W.

    1990-12-01

    This report presents the volume, activity, and radionuclide distributions in low-level radioactive waste (LLW) disposed during 1987 through 1989 at the commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. The report has been entirely assembled from descriptions of waste provided in LLW shipment manifests. Individual radionuclide distributions are listed as a function of waste class, of general industry, and of waste stream. In addition, information is presented about disposal of wastes containing chelating agents, about use of solidification media, about the distribution of radiation levels at the surfaces of waste containers, and about the distribution of waste container sizes. Considerably more information is presented about waste disposed at the Richland and Beatty disposal facilities than at the Barnwell disposal facility

  19. International aspects of the management of low-level dumping of radioactive wastes in the oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1982-01-01

    The following topics are discussed: international regulations governing radioactive waste disposal; radiological principles as applied to disposal to the environment; historical dumping practices; assessment of the North East Atlantic dump site; IAEA generic studies; and national and international implications. A recent analysis of international issues associated with ocean disposal of low-level radioactive wastes indicated a number of points which impact on US needs and policies and need resolution. The first is that the development of adequate international criteria and standards will assist the US in evaluating the option of using the oceans for the disposal of low-level radioactive wastes. Secondly, it is essential that international cooperation in research and radiological surveillance be expanded. Thirdly, the delays in the agreements on international mechanisms, criteria and standards, sometimes as a direct result of a lack of coordinated US policies makes the implementation of the intent of the London Dumping Convention and the NEA mechanism more difficult. Last of all in the unresolved question of how the US should apply the London Convention to the 200 mile exclusive economic zone

  20. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 4: Engineering

    International Nuclear Information System (INIS)

    Hickerson, J.; Freeman, T.J.; Boisson, J.Y.; Murray, C.N.; Gera, F.; Nakamura, H.; Nieuwenhuis, J.D.; Schaller, K.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes work performed to develop and evaluate engineering methods of emplacing high level radioactive waste in stable, deep ocean sediments. It includes results of desktop studies, laboratory experiments and field tests conducted in deep water

  1. Radiological consequences of proposed landfilling of low-level radioactive waste

    International Nuclear Information System (INIS)

    Drake, P.

    1991-01-01

    A proposal for landfilling of low-level radioactive waste (100 GBq in 10 000 m 3 ) at Ringhals Nuclear Power Plants was sent to the Swedish Radiation Protection Institute (SRPI) in 1989. In 1990, slight changes were made to the proposal to overcome the conventional risks of landfilling. In the proposed method, most of the low-level wastes is compacted and put into sealed plastic packages. The waste is then placed on a sand-moraine bed above a level-blasted rock surface. The area above and between the waste packages is filled with a sand-seashell mixture for pH adjustment of any waster infiltrating into the site. The whole deposit is covered with a least 50 cm of moraine in order to attenuate most of the radiation form the waste and to prevent rainwater from reaching the waste. Downstream from the deposit, there is a retention bed made of seashells and seaweed. Any small quantities of water from the deposit passing through the retention bed, as well as rainwater, will continue out to the sea. Use of this method will most probably not lead to an increase in the radiation dose to people outside the site. In the rather improbable case of intrusion into the deposit after 50 years, a maximum dose of 10 μSv per year would be received. If all the radioactivity were to be transported to the sea in one year, as a results of the breakdown of all the barrier, an individual eating fish caught in the vicinity of the site would receive less than 25 μSv during the following year. In the worst case, if the waste ignites prior to, or during landfilling, individuals living at a distance of 1 km from the fire could receive a dose of less than 20 μSv. (au)

  2. State implementation of the Low-Level Radioactive Waste Policy Amendments Act of 1985: Progress and issues

    International Nuclear Information System (INIS)

    Tait, T.D.

    1987-03-01

    The 1980 Low-Level Radioactive Waste Policy Act (Public Law 96-573) assigned each state the responsibility for providing disposal capacity for the low-level radioactive waste (LLW) generated within its borders, except for certain LLW generated by the activities of the federal government. The law also authorized and encouraged states to enter into interstate compacts to provide for the establishment and operation of regional LLW disposal facilities. The January 1986 enactment of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA), resolved an impasse that had delayed congressional consent to seven interstate compacts formed for the regional disposal of LLW. The Act ensures that LLW generators will have continued access to the three existing commercial LLW disposal sites through 1992 as long as their states or regions are in compliance with milestones prescribed in the Act for development of new disposal facilities. Furthermore, the LLRWPAA assigned several responsibilities to the Department of Energy. The objective of the Low-Level Radioactive Waste Policy Amendments Act of 1985 is to ensure the development of an effective, safe, and environmentally acceptable nationwide system for the disposal of LLW by 1993. The Department of Energy is assisting the states and regions to achieve that objective and ensure that the system that is developed provides for the safe management and disposal of LLW at reasonable costs. Furthermore, the Department is working with the states and regions to ensure that while the new system is being developed, there are not disruptions in the current LLW management and disposal practices and that the public continues to receive the benefits of the industries that rely on nuclear materials to deliver their services

  3. Preliminary report on the hydrogeology of a low-level radioactive waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Erickson, J.R.

    1980-01-01

    The Sheffield low-level radioactive-waste disposal site is located on 20 acres of rolling terrain about 3 miles southwest of Sheffield, Illinois. Twenty-one trenches were constructed and filled with radioactive waste from August 1967 through April 1978. Forty-three test wells were installed by the U.S. Geological Survey on and adjacent to the site. Continuous cores were collected from 36 wells to help in defining the subsurface geology. The wells have been used for water sample collection and to monitor water-level changes. A tunnel, 6.5 feet in diameter by 290 feet in length, was constructed beneath four burial trenches to provide access for collection of hydrologic and geologic data. Pennsylvanian shale and mudstone deposits are overlain by Pleistocene glacial deposits consisting of the Teneriffe Silt, Glasford Formation, Roxana Silt, Peoria Loess, Parkland Sand, Cahokia Alluvium, and Henry Formation. Three till units of the Glasford Formation, the Hulick Till Member, the Radnor Till Member, and Till A have been identified on the site. Stratigraphic position indicates that the Hulick Till Member and Till A are probably variations of the same till. A continuous pebbly sand deposit, classified as part of the Toulon Member, extends across the middle of the site and continues off site on the northeast and southwest corners. Because of its relatively high hydraulic conductivity, this deposit will be a controlling factor in shallow groundwater movement and in any radionuclide migration. Ground water at the site is derived through infiltration of precipitation and as underflow from adjacent highlands. Precipitation averages 35 inches per year, 1 or 2 inches of which probably recharge the ground water. Runoff is estimated to be 12 to 15 inches per year and evapotranspiration about 20 inches. The fluctuation of water levels has been about 2.5 feet in hilltop wells, 3.6 feet in sidehill wells, and 5.9 feet in valley wells. Hydraulic conductivity of the materials comprising

  4. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  5. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    International Nuclear Information System (INIS)

    Dyer, R.S.; Duffey, R.B.; Penzin, R.; Sorlie, A.

    1996-01-01

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper

  6. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  7. Drumlins - Potential low-level radioactive waste sites

    International Nuclear Information System (INIS)

    Maxwell, H.W.

    1988-01-01

    A drumlin is a subglacially produced low, streamlined elongate oval hill, mound or ridge with its long axis parallel to the direction of ice flow. It may be composed entirely of till, particularly basal till, or it may have a bedrock core and a relatively thin till outer layer. Most drumlins are less than a half mile long, 400 to 600 feet wide at their base and less than 100 feet high. There are some that are more than a mile long, 1500 to 2000 feet wide and more than 200 feet high. A drumlin has many characteristics which are advantageous to the siting of a low-level radioactive disposal facility. Most drumlins in New York State are composed of basal till which, because of its mode of deposition, may be as dense and impervious as concrete. This composition makes several disposal concepts feasible. Preliminary data and conceptualization indicates a subsurface mined repository paralleling the long axis of a drumlin would meet physical, environmental and long range public safety requirements. A drumlin site could answer many intervenor concerns such as longevity, esthetics, monitoring ability, and inadvertent entry. This paper will describe the structure, composition and engineering significant of the components of a drumlin and will present some alternative concepts for LLRW disposal using a drumlin as a host

  8. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  9. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  10. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  11. Low-level radioactive waste minimization for health care institutions

    International Nuclear Information System (INIS)

    Williams, G.

    1990-01-01

    In recent years medical waste has been the subject of considerable public and governmental attention. This has been, in part, due to the media's attraction to unfortunate instances of environmental pollution caused by hazardous and medical wastes. While a considerable amount of information is currently available on the treatment and disposal practices for hazardous wastes, a shortfall of information exists on the subject of medical wastes. Such wastes are generated by various health care institutions. Medical waste is a wide and all encompassing term which refers to a variety of wastes. This presentation addresses medical low-level (LLW) radioactive waste; its generation, recovery and handling. The development of generic waste minimization models and greater use of alternative technologies are part of the discussion

  12. A strategy for the improvement of the intermediate and low level radioactive waste management

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Jova, L.

    1996-01-01

    The work describes the surrent situation with regard to the management of intermediate and low level radioactive wastes that are generated in the country. Updated information is reffered on the quantities of stored wastes that are to be treated and conditioned at the facilities of the CPHR

  13. Defining mixed low-level radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Weber, M.F.

    1987-01-01

    During the last several months, staffs of the US Nuclear Regulatory Commission (NRC) and the US Environmental Protection Agency (EPA) have been developing a working definition of Mixed Low-Level Radioactive and Hazardous Waste (Mixed LLW). Such wastes are currently being regulated by NRC under authority of the Atomic Energy Act (AEA), as amended, and by EPA under the Resource Conservation and Recovery Act (RCRA), as amended. Development of the definition is one component of a comprehensive program to resolve differences between the regulatory programs of the two agencies pertaining to the regulation of the management and disposal of Mixed LLW. Although the definition is still undergoing legal and policy reviews in both agencies, this paper presents the current working definition, discusses a methodology that may be used by NRC licensees to identify Mixed LLW, and provides responses to anticipated questions from licensees about the definition. 3 references, 1 figure

  14. New York State low-level radioactive waste status report for 1997

    International Nuclear Information System (INIS)

    1998-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material's radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators' projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received

  15. Planning and consultation procedures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1989-03-01

    This Report is the result of a year-long study funded by UK Nirex Ltd. between 1986 and 1987. The central purpose was to learn from overseas experience of planning and public consultation procedures associated with the establishment of low-level radioactive waste (LLW) disposal sites. The most recent information on LLW developments in the United States, Canada, France, Holland, Switzerland, Sweden, and West Germany was sought, particularly in regard to: (1) the efficacy of public consultation and negotiation procedures, focusing in particular on the perceived problems, successes and areas for improvement; (2) the key aspects bearing on the public acceptability of LLW proposals; and (3) the form and effect of any compensation mechanisms in operation. The greatest success overseas appears to be linked to some combination of the following elements: authority and clarity in the exposition of the direction of radioactive waste management policy, backed up by authoritative and independent analysis; the early involvement of local authority (county council/regional authority) organisations in the site selection process; careful attention to the potential contribution of authoritative independent advisory groups on both technical and procedural/site selection matters; the development and nurturing of local liaison committees to establish good communications at the local level; careful consideration of means of devolving some power to local authority level for safety reassurance, for example, in relation to site inspections and safety monitoring; the development of an incremental, openly negotiated approach to compensation. (author)

  16. The Low-Level Radioactive Waste Management Office: Thirty Years of Experience in Canada - 13308

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Liliana; Gardiner, Mark J.; Zelmer, Robert L. [Natural Resources Canada, 580 Booth Street, Ottawa On. (Canada); Gardiner, Mark J.; Zelmer, Robert L. [Low-Level Radioactive Waste Management Office (Canada)

    2013-07-01

    This paper reviews thirty years of progress by the Low-Level Radioactive Waste Management Office (LLRWMO) in developing and implementing low-level radioactive waste (LLRW) remediation projects and environmentally safe co-existence strategies. It reports on the present status and the future of the national historic waste program in Canada. There are over two million cubic metres of historic LLRW in Canada. Historic LLRW is broadly defined as LLRW that was managed in the past in a manner that is no longer considered acceptable and for which the original owner cannot reasonably be held accountable. In many cases, the original owner can not be identified or no longer exists. The LLRWMO was established in 1982 as Canada's agent to carry out the responsibilities of the federal government for the management of historic LLRW. The LLRWMO is operated by Atomic Energy of Canada Limited (AECL) through a cost-recovery agreement with Natural Resources Canada (NRCan), the federal department that provides the funding and establishes national policy for radioactive waste management in Canada. The LLRWMO expertise includes project managers, environmental remediation specialists, radiation surveyors, communications staff and administrative support staff. The LLRWMO in providing all aspects of project oversight and implementation contracts additional resources supplementing core staff capacity as project/program demands require. (authors)

  17. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    International Nuclear Information System (INIS)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ''unpackaged'' volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste

  18. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  19. PIC-container for containment and disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Shinji, Yoshimasa; Maki, Yasuro; Ishizaki, Kanjiro; Minegishi, Keiichi; Sudoh, Giichi.

    1981-03-01

    Steel fiber reinforced polymer-impregnated concrete (SFPIC) has been investigated for low and intermediate level radioactive waste containers. The present study has been carried out by the following stages. A) Preliminary evaluation: 60 L size container for cold and hot tests. B) Evaluation of size effect: 200 L size container for cold tests. The 60 L and 200 L containers were designed as pressure-container (without equalizer) for 500 kg/cm 2 and 700 kg/cm 2 . Polymerization of impregnated methylmethacrylate monomer for stage-A and B were performed by 60 Co-γ ray radiation and thermal catalytic polymerization, respectively. Under the loading of 500 kg/cm 2 and 700 kg/cm 2 -outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about 1380 x 10 -6 and 3950 x 10 -6 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. An accelerated leaching test was performed by charging the concentrate of the liquid radioactive waste from JMTR in JAERI into the container. Although they were immersed in deionized water for 400 days, nuclides were not leached from the container. From results of various tests, it was evaluated that the SFPIC-container was suitable for containment and disposal of low and intermediate level radioactive wastes. There was not any great difference between the two size containers for the physical and chemical properties except in their preparation process. (author)

  20. An update of a national database of low-level radioactive waste in Canada

    Energy Technology Data Exchange (ETDEWEB)

    De, P.L.; Barker, R.C. [Atomic Energy Canada Ltd. Research, Ottawa, Ontario (Canada). Low-Level Radioactive Waste Management Office

    1993-03-01

    This paper gives an overview and update of a national database of low-level radioactive waste in Canada. To provide a relevant perspective, Canadian data are compared with US data on annual waste arisings and with disposal initiatives of the US compacts and states. Presented also is an assessment of the data and its implications for disposal solutions in Canada.

  1. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  2. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  3. Hydrologic and geologic aspects of low-level radioactive-waste site management

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations

  4. Complex-wide review of DOE's management of low-level radioactive waste - progress to date

    International Nuclear Information System (INIS)

    Letourneau, M.J.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE's Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste

  5. Quality assurance guidance for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Hedges, D.

    1991-04-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements of 10 CFR 61.12(j) for a low-level radioactive waste (LLRW) disposal facility. The QC requirements, plus audits and managerial controls requirements, establish the need for developing a quality assurance (QA) program and the guidance provided herein. The criteria developed for this document are similar to the criteria developed for Appendix B to Title 10 of the Code of Federal Regulations (10 CFR) Part 50. Although Appendix B is not a regulatory requirement for an LLRW disposal facility, the criteria that were developed for 10 CFR Part 50 are basic to any QA program. This document establishes QA guidance for the design, construction, and operation of those structures, engineered or natural systems, and components whose function is required to meet the performance objectives of Subpart C of 10 CFR Part 61 and to limit exposure to or release of radioactivity. 7 refs

  6. Microbial transformation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions

  7. Conditioning of low- and intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    The nuclear fuel cycle, together with the use of separated radioisotopes, in many endeavours generates a variety of low- and intermediate-level radioactive wastes. These waste materials contain quantities of radionuclides sufficient to present potential health risks to people if the wastes are not adequately managed, but usually insufficient quantities to require heat removal. Adequate management involves a series of steps which lead from the arising of the wastes to their safe disposal, steps which may include collection, segregation, treatment, volume reduction, conditioning, transport, interim storage and disposal. Each step is defined by the need to accommodate to the preceding one and to facilitate the ones that follow. This technical report describes primarily the technologies available for the conditioning steps (i.e., immobilization and packaging) and relates them to the other steps. In broad terms, the purpose of conditioning is to convert the wastes into packages that are suitable for transport, storage and disposal

  8. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  9. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  10. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas

  11. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program

  12. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  13. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  14. Update on the national low level radioactive waste repository study

    International Nuclear Information System (INIS)

    Veitch, S.M.

    1997-01-01

    Activity to establish a national repository for low-level and short-lived intermediate-level radioactive waste in Australia began in the early 1980's. From the early 1990's computer-based geographic information systems had developed sufficiently so that all of Australia could be quickly reviewed using digital data relevant to site selection criteria. A three-phased approach to site selection was commenced which included an iterative process of data collection, interpretation, and public involvement through discussion papers. All of Australia was reviewed using national-scale data, and eight broad regions were identified and reviewed using regional-scale data. A third phase report will be released shortly which includes details on the process for identifying the preferred region of the eight. This region will be the focus for public involvement and for detailed study to identify a site for the national repository

  15. Opting for cooperation: A case study in siting a low level radioactive waste management facility

    International Nuclear Information System (INIS)

    Armour, A.

    1991-01-01

    In 1976, the Canadian federal government called a halt to efforts by a crown corporation to site a low-level radioactive waste management facility when it became apparent that continuation of the siting process would likely result in significant social disruption and political conflict. It established an independent six-person Task Force to advise it on how to proceed. Twelve months later, the Task Force put forward a radically different siting process based on the voluntary participation of communities and collaborative, joint problem-solving and decision making. Cabinet endorsed the approach and in September 1988 authorized the Task Force to begin implementing the recommended process. The first three phases of the process have been implemented and so far it appears to be achieving its desired objective -- to encourage less confrontation and more cooperation in the siting of the low-level radioactive waste management facility

  16. Dredging up the past -- removal of historic low-level radioactive sediment from the Port Hope harbour

    International Nuclear Information System (INIS)

    Case, G.; Kolberg, M.

    2011-01-01

    Port Hope is located on the northern shore of Lake Ontario at the confluence of the Ganaraska River and has existed as a Port of Entry since at least 1819. Once operated as a major Lake Ontario port, through periods of vibrant industrial growth, it is now a recreational anchorage for the local yacht club. The history of the Port Hope harbour from the early 1800s to today is typical of other small-town ports along Lake Ontario that have experienced growth and decline in direct relation to Great Lake shipping volumes and the shift in industry and commerce to larger urban areas. However, in the case of the Port Hope harbour, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the harbour, currently limits redevelopment and revitalization opportunities. The presence of low-level radioactive waste is not limited to only harbour sediments. Several other on-land locations within the community are also affected by the low-level radioactive waste management practices of the past. To address these situations, the Port Hope Area Initiative project is currently underway to implement a local, safe, long-term waste management solution. The Port Hope Area Initiative is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remedial cleanup of the estimated 120,000 cubic metres of contaminated sediments from the Port Hope harbour is one of the more challenging components of the Initiative. This paper demonstrates how the historical development of the harbour over the past 200 years, the nature and extent of the contaminated sediments, and Municipality of Port Hope’s desires for future redevelopment of the waterfront area have all played a role in the design of the remedial cleanup plan for the Port Hope

  17. Dredging up the past -- removal of historic low-level radioactive sediment from the Port Hope harbour

    Energy Technology Data Exchange (ETDEWEB)

    Case, G. [Atomic Energy of Canada Limited, Port Hope, ON (Canada); Kolberg, M. [Baird, Oakville, ON (Canada)

    2011-07-01

    Port Hope is located on the northern shore of Lake Ontario at the confluence of the Ganaraska River and has existed as a Port of Entry since at least 1819. Once operated as a major Lake Ontario port, through periods of vibrant industrial growth, it is now a recreational anchorage for the local yacht club. The history of the Port Hope harbour from the early 1800s to today is typical of other small-town ports along Lake Ontario that have experienced growth and decline in direct relation to Great Lake shipping volumes and the shift in industry and commerce to larger urban areas. However, in the case of the Port Hope harbour, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the harbour, currently limits redevelopment and revitalization opportunities. The presence of low-level radioactive waste is not limited to only harbour sediments. Several other on-land locations within the community are also affected by the low-level radioactive waste management practices of the past. To address these situations, the Port Hope Area Initiative project is currently underway to implement a local, safe, long-term waste management solution. The Port Hope Area Initiative is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remedial cleanup of the estimated 120,000 cubic metres of contaminated sediments from the Port Hope harbour is one of the more challenging components of the Initiative. This paper demonstrates how the historical development of the harbour over the past 200 years, the nature and extent of the contaminated sediments, and Municipality of Port Hope’s desires for future redevelopment of the waterfront area have all played a role in the design of the remedial cleanup plan for the Port Hope

  18. Current issues in the management of low- and intermediate-level radioactive wastes from Ontario Hydro's CANDU reactors

    International Nuclear Information System (INIS)

    Krasznai, J.P.; Vaughan, B.R.; Williamson, A.S.

    1990-01-01

    Nuclear generating stations (NGSs) in Canada are operated by utilities in Ontario, Quebec, and New Brunswick. Ontario Hydro, with a committed nuclear program of 13,600 MW(electric) is the major producer of CANDU pressurized heavy-water reactor (PHWR) low- and intermediate-level radioactive wastes. All radioactive wastes with the exception of irradiated fuel are processed and retrievably stored at a centralized facility at the Bruce Nuclear Power Development site. Solid-waste classifications and annual production levels are given. Solid-waste management practices at the site as well as the physical, chemical, and radiochemical characteristics of the wastes are well documented. The paper summarizes types, current inventory, and estimated annual production rate of liquid waste. Operation of the tritium recovery facility at Darlington NGS, which removes tritium from heavy water and produces tritium gas in the process, gives rise to secondary streams of tritiated solid and liquid wastes, which will receive special treatment and packaging. In addition to the treatment of radioactive liquid wastes, there are a number of other important issues in low- and intermediate-level radioactive waste management that Ontario Hydro will be addressing over the next few years. The most pressing of these is the reduction of radioactive wastes through in-station material control, employee awareness, and improved waste characterization and segregation programs. Since Ontario Hydro intends to store retrievable wastes for > 50 yr, it is necessary to determine the behavior of wastes under long-term storage conditions

  19. The packaging and transport of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Grover, J.R.; Price, M.S.T.

    1985-01-01

    Up to the present time, the majority of the radioactive waste which has been transported in the United Kingdom has been low level waste for disposal in the trenches of the shallow burial site operated by British Nuclear Fuels plc at Drigg and also the packaged waste destined for sea disposal in the annual operation. However, the main bulk of the low and intermediate level wastes which have been generated over the last quarter century remain in store at the various nuclear sites where it originated. Before significant packaging and transport of intermediate level wastes takes place it is desirable to examine the sources and types of wastes, the immobilisation and packaging processes and plants, the transport, and the problems of handling of packages at future land repositories. Optimisation of the packaging and transport must take account of both the upstream and downstream con=straints as well as the implications of complying with both the IAEA Transport Regulations and radiological protection guidelines. Packages for sea disposal must in addition comply with the requirements of the London Dumping Convention and the NEA guidelines. (author)

  20. Projection to 2035 for the radioactive wastes of low and intermediate level in Mexico

    International Nuclear Information System (INIS)

    Paredes G, L.C.; Sanchez U, S.

    2004-01-01

    It is necessary to establish in few years a definitive warehouse for the radioactive waste of low and intermediate level, generated in the country and to satisfy the necessities of their confinement in the next ones 50 to 80 years. Therefore, it is required to be considered those volumes produced annually, those stored at the present and those estimated to medium and long term. The results of the simulation of 4 cases are presented, considering the operation from the 2 nuclear power reactors to 40 and 60 years, the use of the technology of current treatment and the use of super compaction of solids, as well as the importance in the taking of decision of the methodology for the dismantlement of each reactor to the finish of their useful life. At the moment the Nuclear Power Plant of Laguna Verde, produces an average of 250 m 3 /year of radioactive waste of low and intermediate level, constituted by solid dry wastes, humid solids and liquids. In the last 3 years, the power plant has reached an effectiveness of re utilization of effluents of 95%. On the other hand, in Mexico the non energetic applications of the radioisotopes, produce annually of the order of 20 m 3 /year of solid wastes, 280 m 3 /year of liquid wastes and 300 worn out radioactive sources. (Author)